smp: add func to IPI cpus based on parameter func
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
81819f0f 32
4a92379b
RK
33#include <trace/events/kmem.h>
34
81819f0f
CL
35/*
36 * Lock order:
881db7fb
CL
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 40 *
881db7fb
CL
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
81819f0f
CL
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
b789ef51
CL
134/* Enable to log cmpxchg failures */
135#undef SLUB_DEBUG_CMPXCHG
136
2086d26a
CL
137/*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
76be8950 141#define MIN_PARTIAL 5
e95eed57 142
2086d26a
CL
143/*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148#define MAX_PARTIAL 10
149
81819f0f
CL
150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
672bba3a 152
fa5ec8a1 153/*
3de47213
DR
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
fa5ec8a1 157 */
3de47213 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 159
81819f0f
CL
160/*
161 * Set of flags that will prevent slab merging
162 */
163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
81819f0f
CL
166
167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 168 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 169
210b5c06
CG
170#define OO_SHIFT 16
171#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 172#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 173
81819f0f 174/* Internal SLUB flags */
f90ec390 175#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 176#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
177
178static int kmem_size = sizeof(struct kmem_cache);
179
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
184static enum {
185 DOWN, /* No slab functionality available */
51df1142 186 PARTIAL, /* Kmem_cache_node works */
672bba3a 187 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
188 SYSFS /* Sysfs up */
189} slab_state = DOWN;
190
191/* A list of all slab caches on the system */
192static DECLARE_RWSEM(slub_lock);
5af328a5 193static LIST_HEAD(slab_caches);
81819f0f 194
02cbc874
CL
195/*
196 * Tracking user of a slab.
197 */
d6543e39 198#define TRACK_ADDRS_COUNT 16
02cbc874 199struct track {
ce71e27c 200 unsigned long addr; /* Called from address */
d6543e39
BG
201#ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203#endif
02cbc874
CL
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207};
208
209enum track_item { TRACK_ALLOC, TRACK_FREE };
210
ab4d5ed5 211#ifdef CONFIG_SYSFS
81819f0f
CL
212static int sysfs_slab_add(struct kmem_cache *);
213static int sysfs_slab_alias(struct kmem_cache *, const char *);
214static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 215
81819f0f 216#else
0c710013
CL
217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
151c602f
CL
220static inline void sysfs_slab_remove(struct kmem_cache *s)
221{
84c1cf62 222 kfree(s->name);
151c602f
CL
223 kfree(s);
224}
8ff12cfc 225
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
84e554e6 231 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
232#endif
233}
234
81819f0f
CL
235/********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239int slab_is_available(void)
240{
241 return slab_state >= UP;
242}
243
244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245{
81819f0f 246 return s->node[node];
81819f0f
CL
247}
248
6446faa2 249/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
250static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252{
253 void *base;
254
a973e9dd 255 if (!object)
02cbc874
CL
256 return 1;
257
a973e9dd 258 base = page_address(page);
39b26464 259 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265}
266
7656c72b
CL
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
269 return *(void **)(object + s->offset);
270}
271
1393d9a1
CL
272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273{
274 void *p;
275
276#ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278#else
279 p = get_freepointer(s, object);
280#endif
281 return p;
282}
283
7656c72b
CL
284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285{
286 *(void **)(object + s->offset) = fp;
287}
288
289/* Loop over all objects in a slab */
224a88be
CL
290#define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
292 __p += (__s)->size)
293
7656c72b
CL
294/* Determine object index from a given position */
295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296{
297 return (p - addr) / s->size;
298}
299
d71f606f
MK
300static inline size_t slab_ksize(const struct kmem_cache *s)
301{
302#ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310#endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322}
323
ab9a0f19
LJ
324static inline int order_objects(int order, unsigned long size, int reserved)
325{
326 return ((PAGE_SIZE << order) - reserved) / size;
327}
328
834f3d11 329static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 330 unsigned long size, int reserved)
834f3d11
CL
331{
332 struct kmem_cache_order_objects x = {
ab9a0f19 333 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
334 };
335
336 return x;
337}
338
339static inline int oo_order(struct kmem_cache_order_objects x)
340{
210b5c06 341 return x.x >> OO_SHIFT;
834f3d11
CL
342}
343
344static inline int oo_objects(struct kmem_cache_order_objects x)
345{
210b5c06 346 return x.x & OO_MASK;
834f3d11
CL
347}
348
881db7fb
CL
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
354 bit_spin_lock(PG_locked, &page->flags);
355}
356
357static __always_inline void slab_unlock(struct page *page)
358{
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
2565409f
HC
369#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 371 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 372 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
373 freelist_old, counters_old,
374 freelist_new, counters_new))
375 return 1;
376 } else
377#endif
378 {
379 slab_lock(page);
380 if (page->freelist == freelist_old && page->counters == counters_old) {
381 page->freelist = freelist_new;
382 page->counters = counters_new;
383 slab_unlock(page);
384 return 1;
385 }
386 slab_unlock(page);
387 }
388
389 cpu_relax();
390 stat(s, CMPXCHG_DOUBLE_FAIL);
391
392#ifdef SLUB_DEBUG_CMPXCHG
393 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
394#endif
395
396 return 0;
397}
398
b789ef51
CL
399static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
400 void *freelist_old, unsigned long counters_old,
401 void *freelist_new, unsigned long counters_new,
402 const char *n)
403{
2565409f
HC
404#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
405 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 406 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 407 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
408 freelist_old, counters_old,
409 freelist_new, counters_new))
410 return 1;
411 } else
412#endif
413 {
1d07171c
CL
414 unsigned long flags;
415
416 local_irq_save(flags);
881db7fb 417 slab_lock(page);
b789ef51
CL
418 if (page->freelist == freelist_old && page->counters == counters_old) {
419 page->freelist = freelist_new;
420 page->counters = counters_new;
881db7fb 421 slab_unlock(page);
1d07171c 422 local_irq_restore(flags);
b789ef51
CL
423 return 1;
424 }
881db7fb 425 slab_unlock(page);
1d07171c 426 local_irq_restore(flags);
b789ef51
CL
427 }
428
429 cpu_relax();
430 stat(s, CMPXCHG_DOUBLE_FAIL);
431
432#ifdef SLUB_DEBUG_CMPXCHG
433 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
434#endif
435
436 return 0;
437}
438
41ecc55b 439#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
440/*
441 * Determine a map of object in use on a page.
442 *
881db7fb 443 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
444 * not vanish from under us.
445 */
446static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
447{
448 void *p;
449 void *addr = page_address(page);
450
451 for (p = page->freelist; p; p = get_freepointer(s, p))
452 set_bit(slab_index(p, s, addr), map);
453}
454
41ecc55b
CL
455/*
456 * Debug settings:
457 */
f0630fff
CL
458#ifdef CONFIG_SLUB_DEBUG_ON
459static int slub_debug = DEBUG_DEFAULT_FLAGS;
460#else
41ecc55b 461static int slub_debug;
f0630fff 462#endif
41ecc55b
CL
463
464static char *slub_debug_slabs;
fa5ec8a1 465static int disable_higher_order_debug;
41ecc55b 466
81819f0f
CL
467/*
468 * Object debugging
469 */
470static void print_section(char *text, u8 *addr, unsigned int length)
471{
ffc79d28
SAS
472 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
473 length, 1);
81819f0f
CL
474}
475
81819f0f
CL
476static struct track *get_track(struct kmem_cache *s, void *object,
477 enum track_item alloc)
478{
479 struct track *p;
480
481 if (s->offset)
482 p = object + s->offset + sizeof(void *);
483 else
484 p = object + s->inuse;
485
486 return p + alloc;
487}
488
489static void set_track(struct kmem_cache *s, void *object,
ce71e27c 490 enum track_item alloc, unsigned long addr)
81819f0f 491{
1a00df4a 492 struct track *p = get_track(s, object, alloc);
81819f0f 493
81819f0f 494 if (addr) {
d6543e39
BG
495#ifdef CONFIG_STACKTRACE
496 struct stack_trace trace;
497 int i;
498
499 trace.nr_entries = 0;
500 trace.max_entries = TRACK_ADDRS_COUNT;
501 trace.entries = p->addrs;
502 trace.skip = 3;
503 save_stack_trace(&trace);
504
505 /* See rant in lockdep.c */
506 if (trace.nr_entries != 0 &&
507 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
508 trace.nr_entries--;
509
510 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
511 p->addrs[i] = 0;
512#endif
81819f0f
CL
513 p->addr = addr;
514 p->cpu = smp_processor_id();
88e4ccf2 515 p->pid = current->pid;
81819f0f
CL
516 p->when = jiffies;
517 } else
518 memset(p, 0, sizeof(struct track));
519}
520
81819f0f
CL
521static void init_tracking(struct kmem_cache *s, void *object)
522{
24922684
CL
523 if (!(s->flags & SLAB_STORE_USER))
524 return;
525
ce71e27c
EGM
526 set_track(s, object, TRACK_FREE, 0UL);
527 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
528}
529
530static void print_track(const char *s, struct track *t)
531{
532 if (!t->addr)
533 return;
534
7daf705f 535 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 536 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
537#ifdef CONFIG_STACKTRACE
538 {
539 int i;
540 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
541 if (t->addrs[i])
542 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
543 else
544 break;
545 }
546#endif
24922684
CL
547}
548
549static void print_tracking(struct kmem_cache *s, void *object)
550{
551 if (!(s->flags & SLAB_STORE_USER))
552 return;
553
554 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
555 print_track("Freed", get_track(s, object, TRACK_FREE));
556}
557
558static void print_page_info(struct page *page)
559{
39b26464
CL
560 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
561 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
562
563}
564
565static void slab_bug(struct kmem_cache *s, char *fmt, ...)
566{
567 va_list args;
568 char buf[100];
569
570 va_start(args, fmt);
571 vsnprintf(buf, sizeof(buf), fmt, args);
572 va_end(args);
573 printk(KERN_ERR "========================================"
574 "=====================================\n");
265d47e7 575 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
576 printk(KERN_ERR "----------------------------------------"
577 "-------------------------------------\n\n");
81819f0f
CL
578}
579
24922684
CL
580static void slab_fix(struct kmem_cache *s, char *fmt, ...)
581{
582 va_list args;
583 char buf[100];
584
585 va_start(args, fmt);
586 vsnprintf(buf, sizeof(buf), fmt, args);
587 va_end(args);
588 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
589}
590
591static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
592{
593 unsigned int off; /* Offset of last byte */
a973e9dd 594 u8 *addr = page_address(page);
24922684
CL
595
596 print_tracking(s, p);
597
598 print_page_info(page);
599
600 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
601 p, p - addr, get_freepointer(s, p));
602
603 if (p > addr + 16)
ffc79d28 604 print_section("Bytes b4 ", p - 16, 16);
81819f0f 605
ffc79d28
SAS
606 print_section("Object ", p, min_t(unsigned long, s->objsize,
607 PAGE_SIZE));
81819f0f 608 if (s->flags & SLAB_RED_ZONE)
ffc79d28 609 print_section("Redzone ", p + s->objsize,
81819f0f
CL
610 s->inuse - s->objsize);
611
81819f0f
CL
612 if (s->offset)
613 off = s->offset + sizeof(void *);
614 else
615 off = s->inuse;
616
24922684 617 if (s->flags & SLAB_STORE_USER)
81819f0f 618 off += 2 * sizeof(struct track);
81819f0f
CL
619
620 if (off != s->size)
621 /* Beginning of the filler is the free pointer */
ffc79d28 622 print_section("Padding ", p + off, s->size - off);
24922684
CL
623
624 dump_stack();
81819f0f
CL
625}
626
627static void object_err(struct kmem_cache *s, struct page *page,
628 u8 *object, char *reason)
629{
3dc50637 630 slab_bug(s, "%s", reason);
24922684 631 print_trailer(s, page, object);
81819f0f
CL
632}
633
24922684 634static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
635{
636 va_list args;
637 char buf[100];
638
24922684
CL
639 va_start(args, fmt);
640 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 641 va_end(args);
3dc50637 642 slab_bug(s, "%s", buf);
24922684 643 print_page_info(page);
81819f0f
CL
644 dump_stack();
645}
646
f7cb1933 647static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
648{
649 u8 *p = object;
650
651 if (s->flags & __OBJECT_POISON) {
652 memset(p, POISON_FREE, s->objsize - 1);
06428780 653 p[s->objsize - 1] = POISON_END;
81819f0f
CL
654 }
655
656 if (s->flags & SLAB_RED_ZONE)
f7cb1933 657 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
658}
659
24922684
CL
660static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
661 void *from, void *to)
662{
663 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
664 memset(from, data, to - from);
665}
666
667static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
668 u8 *object, char *what,
06428780 669 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
670{
671 u8 *fault;
672 u8 *end;
673
79824820 674 fault = memchr_inv(start, value, bytes);
24922684
CL
675 if (!fault)
676 return 1;
677
678 end = start + bytes;
679 while (end > fault && end[-1] == value)
680 end--;
681
682 slab_bug(s, "%s overwritten", what);
683 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
684 fault, end - 1, fault[0], value);
685 print_trailer(s, page, object);
686
687 restore_bytes(s, what, value, fault, end);
688 return 0;
81819f0f
CL
689}
690
81819f0f
CL
691/*
692 * Object layout:
693 *
694 * object address
695 * Bytes of the object to be managed.
696 * If the freepointer may overlay the object then the free
697 * pointer is the first word of the object.
672bba3a 698 *
81819f0f
CL
699 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
700 * 0xa5 (POISON_END)
701 *
702 * object + s->objsize
703 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
704 * Padding is extended by another word if Redzoning is enabled and
705 * objsize == inuse.
706 *
81819f0f
CL
707 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
708 * 0xcc (RED_ACTIVE) for objects in use.
709 *
710 * object + s->inuse
672bba3a
CL
711 * Meta data starts here.
712 *
81819f0f
CL
713 * A. Free pointer (if we cannot overwrite object on free)
714 * B. Tracking data for SLAB_STORE_USER
672bba3a 715 * C. Padding to reach required alignment boundary or at mininum
6446faa2 716 * one word if debugging is on to be able to detect writes
672bba3a
CL
717 * before the word boundary.
718 *
719 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
720 *
721 * object + s->size
672bba3a 722 * Nothing is used beyond s->size.
81819f0f 723 *
672bba3a
CL
724 * If slabcaches are merged then the objsize and inuse boundaries are mostly
725 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
726 * may be used with merged slabcaches.
727 */
728
81819f0f
CL
729static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
730{
731 unsigned long off = s->inuse; /* The end of info */
732
733 if (s->offset)
734 /* Freepointer is placed after the object. */
735 off += sizeof(void *);
736
737 if (s->flags & SLAB_STORE_USER)
738 /* We also have user information there */
739 off += 2 * sizeof(struct track);
740
741 if (s->size == off)
742 return 1;
743
24922684
CL
744 return check_bytes_and_report(s, page, p, "Object padding",
745 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
746}
747
39b26464 748/* Check the pad bytes at the end of a slab page */
81819f0f
CL
749static int slab_pad_check(struct kmem_cache *s, struct page *page)
750{
24922684
CL
751 u8 *start;
752 u8 *fault;
753 u8 *end;
754 int length;
755 int remainder;
81819f0f
CL
756
757 if (!(s->flags & SLAB_POISON))
758 return 1;
759
a973e9dd 760 start = page_address(page);
ab9a0f19 761 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
762 end = start + length;
763 remainder = length % s->size;
81819f0f
CL
764 if (!remainder)
765 return 1;
766
79824820 767 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
768 if (!fault)
769 return 1;
770 while (end > fault && end[-1] == POISON_INUSE)
771 end--;
772
773 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 774 print_section("Padding ", end - remainder, remainder);
24922684 775
8a3d271d 776 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 777 return 0;
81819f0f
CL
778}
779
780static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 781 void *object, u8 val)
81819f0f
CL
782{
783 u8 *p = object;
784 u8 *endobject = object + s->objsize;
785
786 if (s->flags & SLAB_RED_ZONE) {
24922684 787 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 788 endobject, val, s->inuse - s->objsize))
81819f0f 789 return 0;
81819f0f 790 } else {
3adbefee
IM
791 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
792 check_bytes_and_report(s, page, p, "Alignment padding",
793 endobject, POISON_INUSE, s->inuse - s->objsize);
794 }
81819f0f
CL
795 }
796
797 if (s->flags & SLAB_POISON) {
f7cb1933 798 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
799 (!check_bytes_and_report(s, page, p, "Poison", p,
800 POISON_FREE, s->objsize - 1) ||
801 !check_bytes_and_report(s, page, p, "Poison",
06428780 802 p + s->objsize - 1, POISON_END, 1)))
81819f0f 803 return 0;
81819f0f
CL
804 /*
805 * check_pad_bytes cleans up on its own.
806 */
807 check_pad_bytes(s, page, p);
808 }
809
f7cb1933 810 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
811 /*
812 * Object and freepointer overlap. Cannot check
813 * freepointer while object is allocated.
814 */
815 return 1;
816
817 /* Check free pointer validity */
818 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
819 object_err(s, page, p, "Freepointer corrupt");
820 /*
9f6c708e 821 * No choice but to zap it and thus lose the remainder
81819f0f 822 * of the free objects in this slab. May cause
672bba3a 823 * another error because the object count is now wrong.
81819f0f 824 */
a973e9dd 825 set_freepointer(s, p, NULL);
81819f0f
CL
826 return 0;
827 }
828 return 1;
829}
830
831static int check_slab(struct kmem_cache *s, struct page *page)
832{
39b26464
CL
833 int maxobj;
834
81819f0f
CL
835 VM_BUG_ON(!irqs_disabled());
836
837 if (!PageSlab(page)) {
24922684 838 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
839 return 0;
840 }
39b26464 841
ab9a0f19 842 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
843 if (page->objects > maxobj) {
844 slab_err(s, page, "objects %u > max %u",
845 s->name, page->objects, maxobj);
846 return 0;
847 }
848 if (page->inuse > page->objects) {
24922684 849 slab_err(s, page, "inuse %u > max %u",
39b26464 850 s->name, page->inuse, page->objects);
81819f0f
CL
851 return 0;
852 }
853 /* Slab_pad_check fixes things up after itself */
854 slab_pad_check(s, page);
855 return 1;
856}
857
858/*
672bba3a
CL
859 * Determine if a certain object on a page is on the freelist. Must hold the
860 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
861 */
862static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
863{
864 int nr = 0;
881db7fb 865 void *fp;
81819f0f 866 void *object = NULL;
224a88be 867 unsigned long max_objects;
81819f0f 868
881db7fb 869 fp = page->freelist;
39b26464 870 while (fp && nr <= page->objects) {
81819f0f
CL
871 if (fp == search)
872 return 1;
873 if (!check_valid_pointer(s, page, fp)) {
874 if (object) {
875 object_err(s, page, object,
876 "Freechain corrupt");
a973e9dd 877 set_freepointer(s, object, NULL);
81819f0f
CL
878 break;
879 } else {
24922684 880 slab_err(s, page, "Freepointer corrupt");
a973e9dd 881 page->freelist = NULL;
39b26464 882 page->inuse = page->objects;
24922684 883 slab_fix(s, "Freelist cleared");
81819f0f
CL
884 return 0;
885 }
886 break;
887 }
888 object = fp;
889 fp = get_freepointer(s, object);
890 nr++;
891 }
892
ab9a0f19 893 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
894 if (max_objects > MAX_OBJS_PER_PAGE)
895 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
896
897 if (page->objects != max_objects) {
898 slab_err(s, page, "Wrong number of objects. Found %d but "
899 "should be %d", page->objects, max_objects);
900 page->objects = max_objects;
901 slab_fix(s, "Number of objects adjusted.");
902 }
39b26464 903 if (page->inuse != page->objects - nr) {
70d71228 904 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
905 "counted were %d", page->inuse, page->objects - nr);
906 page->inuse = page->objects - nr;
24922684 907 slab_fix(s, "Object count adjusted.");
81819f0f
CL
908 }
909 return search == NULL;
910}
911
0121c619
CL
912static void trace(struct kmem_cache *s, struct page *page, void *object,
913 int alloc)
3ec09742
CL
914{
915 if (s->flags & SLAB_TRACE) {
916 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
917 s->name,
918 alloc ? "alloc" : "free",
919 object, page->inuse,
920 page->freelist);
921
922 if (!alloc)
ffc79d28 923 print_section("Object ", (void *)object, s->objsize);
3ec09742
CL
924
925 dump_stack();
926 }
927}
928
c016b0bd
CL
929/*
930 * Hooks for other subsystems that check memory allocations. In a typical
931 * production configuration these hooks all should produce no code at all.
932 */
933static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
934{
c1d50836 935 flags &= gfp_allowed_mask;
c016b0bd
CL
936 lockdep_trace_alloc(flags);
937 might_sleep_if(flags & __GFP_WAIT);
938
939 return should_failslab(s->objsize, flags, s->flags);
940}
941
942static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
943{
c1d50836 944 flags &= gfp_allowed_mask;
b3d41885 945 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
946 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
947}
948
949static inline void slab_free_hook(struct kmem_cache *s, void *x)
950{
951 kmemleak_free_recursive(x, s->flags);
c016b0bd 952
d3f661d6
CL
953 /*
954 * Trouble is that we may no longer disable interupts in the fast path
955 * So in order to make the debug calls that expect irqs to be
956 * disabled we need to disable interrupts temporarily.
957 */
958#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
959 {
960 unsigned long flags;
961
962 local_irq_save(flags);
963 kmemcheck_slab_free(s, x, s->objsize);
964 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
965 local_irq_restore(flags);
966 }
967#endif
f9b615de
TG
968 if (!(s->flags & SLAB_DEBUG_OBJECTS))
969 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
970}
971
643b1138 972/*
672bba3a 973 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
974 *
975 * list_lock must be held.
643b1138 976 */
5cc6eee8
CL
977static void add_full(struct kmem_cache *s,
978 struct kmem_cache_node *n, struct page *page)
643b1138 979{
5cc6eee8
CL
980 if (!(s->flags & SLAB_STORE_USER))
981 return;
982
643b1138 983 list_add(&page->lru, &n->full);
643b1138
CL
984}
985
5cc6eee8
CL
986/*
987 * list_lock must be held.
988 */
643b1138
CL
989static void remove_full(struct kmem_cache *s, struct page *page)
990{
643b1138
CL
991 if (!(s->flags & SLAB_STORE_USER))
992 return;
993
643b1138 994 list_del(&page->lru);
643b1138
CL
995}
996
0f389ec6
CL
997/* Tracking of the number of slabs for debugging purposes */
998static inline unsigned long slabs_node(struct kmem_cache *s, int node)
999{
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 return atomic_long_read(&n->nr_slabs);
1003}
1004
26c02cf0
AB
1005static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1006{
1007 return atomic_long_read(&n->nr_slabs);
1008}
1009
205ab99d 1010static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1011{
1012 struct kmem_cache_node *n = get_node(s, node);
1013
1014 /*
1015 * May be called early in order to allocate a slab for the
1016 * kmem_cache_node structure. Solve the chicken-egg
1017 * dilemma by deferring the increment of the count during
1018 * bootstrap (see early_kmem_cache_node_alloc).
1019 */
7340cc84 1020 if (n) {
0f389ec6 1021 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1022 atomic_long_add(objects, &n->total_objects);
1023 }
0f389ec6 1024}
205ab99d 1025static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1026{
1027 struct kmem_cache_node *n = get_node(s, node);
1028
1029 atomic_long_dec(&n->nr_slabs);
205ab99d 1030 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1031}
1032
1033/* Object debug checks for alloc/free paths */
3ec09742
CL
1034static void setup_object_debug(struct kmem_cache *s, struct page *page,
1035 void *object)
1036{
1037 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1038 return;
1039
f7cb1933 1040 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1041 init_tracking(s, object);
1042}
1043
1537066c 1044static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1045 void *object, unsigned long addr)
81819f0f
CL
1046{
1047 if (!check_slab(s, page))
1048 goto bad;
1049
81819f0f
CL
1050 if (!check_valid_pointer(s, page, object)) {
1051 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1052 goto bad;
81819f0f
CL
1053 }
1054
f7cb1933 1055 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1056 goto bad;
81819f0f 1057
3ec09742
CL
1058 /* Success perform special debug activities for allocs */
1059 if (s->flags & SLAB_STORE_USER)
1060 set_track(s, object, TRACK_ALLOC, addr);
1061 trace(s, page, object, 1);
f7cb1933 1062 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1063 return 1;
3ec09742 1064
81819f0f
CL
1065bad:
1066 if (PageSlab(page)) {
1067 /*
1068 * If this is a slab page then lets do the best we can
1069 * to avoid issues in the future. Marking all objects
672bba3a 1070 * as used avoids touching the remaining objects.
81819f0f 1071 */
24922684 1072 slab_fix(s, "Marking all objects used");
39b26464 1073 page->inuse = page->objects;
a973e9dd 1074 page->freelist = NULL;
81819f0f
CL
1075 }
1076 return 0;
1077}
1078
1537066c
CL
1079static noinline int free_debug_processing(struct kmem_cache *s,
1080 struct page *page, void *object, unsigned long addr)
81819f0f 1081{
5c2e4bbb
CL
1082 unsigned long flags;
1083 int rc = 0;
1084
1085 local_irq_save(flags);
881db7fb
CL
1086 slab_lock(page);
1087
81819f0f
CL
1088 if (!check_slab(s, page))
1089 goto fail;
1090
1091 if (!check_valid_pointer(s, page, object)) {
70d71228 1092 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1093 goto fail;
1094 }
1095
1096 if (on_freelist(s, page, object)) {
24922684 1097 object_err(s, page, object, "Object already free");
81819f0f
CL
1098 goto fail;
1099 }
1100
f7cb1933 1101 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1102 goto out;
81819f0f
CL
1103
1104 if (unlikely(s != page->slab)) {
3adbefee 1105 if (!PageSlab(page)) {
70d71228
CL
1106 slab_err(s, page, "Attempt to free object(0x%p) "
1107 "outside of slab", object);
3adbefee 1108 } else if (!page->slab) {
81819f0f 1109 printk(KERN_ERR
70d71228 1110 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1111 object);
70d71228 1112 dump_stack();
06428780 1113 } else
24922684
CL
1114 object_err(s, page, object,
1115 "page slab pointer corrupt.");
81819f0f
CL
1116 goto fail;
1117 }
3ec09742 1118
3ec09742
CL
1119 if (s->flags & SLAB_STORE_USER)
1120 set_track(s, object, TRACK_FREE, addr);
1121 trace(s, page, object, 0);
f7cb1933 1122 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1123 rc = 1;
1124out:
881db7fb 1125 slab_unlock(page);
5c2e4bbb
CL
1126 local_irq_restore(flags);
1127 return rc;
3ec09742 1128
81819f0f 1129fail:
24922684 1130 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1131 goto out;
81819f0f
CL
1132}
1133
41ecc55b
CL
1134static int __init setup_slub_debug(char *str)
1135{
f0630fff
CL
1136 slub_debug = DEBUG_DEFAULT_FLAGS;
1137 if (*str++ != '=' || !*str)
1138 /*
1139 * No options specified. Switch on full debugging.
1140 */
1141 goto out;
1142
1143 if (*str == ',')
1144 /*
1145 * No options but restriction on slabs. This means full
1146 * debugging for slabs matching a pattern.
1147 */
1148 goto check_slabs;
1149
fa5ec8a1
DR
1150 if (tolower(*str) == 'o') {
1151 /*
1152 * Avoid enabling debugging on caches if its minimum order
1153 * would increase as a result.
1154 */
1155 disable_higher_order_debug = 1;
1156 goto out;
1157 }
1158
f0630fff
CL
1159 slub_debug = 0;
1160 if (*str == '-')
1161 /*
1162 * Switch off all debugging measures.
1163 */
1164 goto out;
1165
1166 /*
1167 * Determine which debug features should be switched on
1168 */
06428780 1169 for (; *str && *str != ','; str++) {
f0630fff
CL
1170 switch (tolower(*str)) {
1171 case 'f':
1172 slub_debug |= SLAB_DEBUG_FREE;
1173 break;
1174 case 'z':
1175 slub_debug |= SLAB_RED_ZONE;
1176 break;
1177 case 'p':
1178 slub_debug |= SLAB_POISON;
1179 break;
1180 case 'u':
1181 slub_debug |= SLAB_STORE_USER;
1182 break;
1183 case 't':
1184 slub_debug |= SLAB_TRACE;
1185 break;
4c13dd3b
DM
1186 case 'a':
1187 slub_debug |= SLAB_FAILSLAB;
1188 break;
f0630fff
CL
1189 default:
1190 printk(KERN_ERR "slub_debug option '%c' "
06428780 1191 "unknown. skipped\n", *str);
f0630fff 1192 }
41ecc55b
CL
1193 }
1194
f0630fff 1195check_slabs:
41ecc55b
CL
1196 if (*str == ',')
1197 slub_debug_slabs = str + 1;
f0630fff 1198out:
41ecc55b
CL
1199 return 1;
1200}
1201
1202__setup("slub_debug", setup_slub_debug);
1203
ba0268a8
CL
1204static unsigned long kmem_cache_flags(unsigned long objsize,
1205 unsigned long flags, const char *name,
51cc5068 1206 void (*ctor)(void *))
41ecc55b
CL
1207{
1208 /*
e153362a 1209 * Enable debugging if selected on the kernel commandline.
41ecc55b 1210 */
e153362a 1211 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1212 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1213 flags |= slub_debug;
ba0268a8
CL
1214
1215 return flags;
41ecc55b
CL
1216}
1217#else
3ec09742
CL
1218static inline void setup_object_debug(struct kmem_cache *s,
1219 struct page *page, void *object) {}
41ecc55b 1220
3ec09742 1221static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1222 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1223
3ec09742 1224static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1225 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1226
41ecc55b
CL
1227static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1228 { return 1; }
1229static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1230 void *object, u8 val) { return 1; }
5cc6eee8
CL
1231static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1232 struct page *page) {}
2cfb7455 1233static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1234static inline unsigned long kmem_cache_flags(unsigned long objsize,
1235 unsigned long flags, const char *name,
51cc5068 1236 void (*ctor)(void *))
ba0268a8
CL
1237{
1238 return flags;
1239}
41ecc55b 1240#define slub_debug 0
0f389ec6 1241
fdaa45e9
IM
1242#define disable_higher_order_debug 0
1243
0f389ec6
CL
1244static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1245 { return 0; }
26c02cf0
AB
1246static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1247 { return 0; }
205ab99d
CL
1248static inline void inc_slabs_node(struct kmem_cache *s, int node,
1249 int objects) {}
1250static inline void dec_slabs_node(struct kmem_cache *s, int node,
1251 int objects) {}
7d550c56
CL
1252
1253static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1254 { return 0; }
1255
1256static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1257 void *object) {}
1258
1259static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1260
ab4d5ed5 1261#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1262
81819f0f
CL
1263/*
1264 * Slab allocation and freeing
1265 */
65c3376a
CL
1266static inline struct page *alloc_slab_page(gfp_t flags, int node,
1267 struct kmem_cache_order_objects oo)
1268{
1269 int order = oo_order(oo);
1270
b1eeab67
VN
1271 flags |= __GFP_NOTRACK;
1272
2154a336 1273 if (node == NUMA_NO_NODE)
65c3376a
CL
1274 return alloc_pages(flags, order);
1275 else
6b65aaf3 1276 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1277}
1278
81819f0f
CL
1279static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1280{
06428780 1281 struct page *page;
834f3d11 1282 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1283 gfp_t alloc_gfp;
81819f0f 1284
7e0528da
CL
1285 flags &= gfp_allowed_mask;
1286
1287 if (flags & __GFP_WAIT)
1288 local_irq_enable();
1289
b7a49f0d 1290 flags |= s->allocflags;
e12ba74d 1291
ba52270d
PE
1292 /*
1293 * Let the initial higher-order allocation fail under memory pressure
1294 * so we fall-back to the minimum order allocation.
1295 */
1296 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1297
1298 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1299 if (unlikely(!page)) {
1300 oo = s->min;
1301 /*
1302 * Allocation may have failed due to fragmentation.
1303 * Try a lower order alloc if possible
1304 */
1305 page = alloc_slab_page(flags, node, oo);
81819f0f 1306
7e0528da
CL
1307 if (page)
1308 stat(s, ORDER_FALLBACK);
65c3376a 1309 }
5a896d9e 1310
7e0528da
CL
1311 if (flags & __GFP_WAIT)
1312 local_irq_disable();
1313
1314 if (!page)
1315 return NULL;
1316
5a896d9e 1317 if (kmemcheck_enabled
5086c389 1318 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1319 int pages = 1 << oo_order(oo);
1320
1321 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1322
1323 /*
1324 * Objects from caches that have a constructor don't get
1325 * cleared when they're allocated, so we need to do it here.
1326 */
1327 if (s->ctor)
1328 kmemcheck_mark_uninitialized_pages(page, pages);
1329 else
1330 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1331 }
1332
834f3d11 1333 page->objects = oo_objects(oo);
81819f0f
CL
1334 mod_zone_page_state(page_zone(page),
1335 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1336 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1337 1 << oo_order(oo));
81819f0f
CL
1338
1339 return page;
1340}
1341
1342static void setup_object(struct kmem_cache *s, struct page *page,
1343 void *object)
1344{
3ec09742 1345 setup_object_debug(s, page, object);
4f104934 1346 if (unlikely(s->ctor))
51cc5068 1347 s->ctor(object);
81819f0f
CL
1348}
1349
1350static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1351{
1352 struct page *page;
81819f0f 1353 void *start;
81819f0f
CL
1354 void *last;
1355 void *p;
1356
6cb06229 1357 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1358
6cb06229
CL
1359 page = allocate_slab(s,
1360 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1361 if (!page)
1362 goto out;
1363
205ab99d 1364 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1365 page->slab = s;
1366 page->flags |= 1 << PG_slab;
81819f0f
CL
1367
1368 start = page_address(page);
81819f0f
CL
1369
1370 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1371 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1372
1373 last = start;
224a88be 1374 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1375 setup_object(s, page, last);
1376 set_freepointer(s, last, p);
1377 last = p;
1378 }
1379 setup_object(s, page, last);
a973e9dd 1380 set_freepointer(s, last, NULL);
81819f0f
CL
1381
1382 page->freelist = start;
e6e82ea1 1383 page->inuse = page->objects;
8cb0a506 1384 page->frozen = 1;
81819f0f 1385out:
81819f0f
CL
1386 return page;
1387}
1388
1389static void __free_slab(struct kmem_cache *s, struct page *page)
1390{
834f3d11
CL
1391 int order = compound_order(page);
1392 int pages = 1 << order;
81819f0f 1393
af537b0a 1394 if (kmem_cache_debug(s)) {
81819f0f
CL
1395 void *p;
1396
1397 slab_pad_check(s, page);
224a88be
CL
1398 for_each_object(p, s, page_address(page),
1399 page->objects)
f7cb1933 1400 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1401 }
1402
b1eeab67 1403 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1404
81819f0f
CL
1405 mod_zone_page_state(page_zone(page),
1406 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1407 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1408 -pages);
81819f0f 1409
49bd5221
CL
1410 __ClearPageSlab(page);
1411 reset_page_mapcount(page);
1eb5ac64
NP
1412 if (current->reclaim_state)
1413 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1414 __free_pages(page, order);
81819f0f
CL
1415}
1416
da9a638c
LJ
1417#define need_reserve_slab_rcu \
1418 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1419
81819f0f
CL
1420static void rcu_free_slab(struct rcu_head *h)
1421{
1422 struct page *page;
1423
da9a638c
LJ
1424 if (need_reserve_slab_rcu)
1425 page = virt_to_head_page(h);
1426 else
1427 page = container_of((struct list_head *)h, struct page, lru);
1428
81819f0f
CL
1429 __free_slab(page->slab, page);
1430}
1431
1432static void free_slab(struct kmem_cache *s, struct page *page)
1433{
1434 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1435 struct rcu_head *head;
1436
1437 if (need_reserve_slab_rcu) {
1438 int order = compound_order(page);
1439 int offset = (PAGE_SIZE << order) - s->reserved;
1440
1441 VM_BUG_ON(s->reserved != sizeof(*head));
1442 head = page_address(page) + offset;
1443 } else {
1444 /*
1445 * RCU free overloads the RCU head over the LRU
1446 */
1447 head = (void *)&page->lru;
1448 }
81819f0f
CL
1449
1450 call_rcu(head, rcu_free_slab);
1451 } else
1452 __free_slab(s, page);
1453}
1454
1455static void discard_slab(struct kmem_cache *s, struct page *page)
1456{
205ab99d 1457 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1458 free_slab(s, page);
1459}
1460
1461/*
5cc6eee8
CL
1462 * Management of partially allocated slabs.
1463 *
1464 * list_lock must be held.
81819f0f 1465 */
5cc6eee8 1466static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1467 struct page *page, int tail)
81819f0f 1468{
e95eed57 1469 n->nr_partial++;
136333d1 1470 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1471 list_add_tail(&page->lru, &n->partial);
1472 else
1473 list_add(&page->lru, &n->partial);
81819f0f
CL
1474}
1475
5cc6eee8
CL
1476/*
1477 * list_lock must be held.
1478 */
1479static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1480 struct page *page)
1481{
1482 list_del(&page->lru);
1483 n->nr_partial--;
1484}
1485
81819f0f 1486/*
5cc6eee8
CL
1487 * Lock slab, remove from the partial list and put the object into the
1488 * per cpu freelist.
81819f0f 1489 *
497b66f2
CL
1490 * Returns a list of objects or NULL if it fails.
1491 *
672bba3a 1492 * Must hold list_lock.
81819f0f 1493 */
497b66f2 1494static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1495 struct kmem_cache_node *n, struct page *page,
49e22585 1496 int mode)
81819f0f 1497{
2cfb7455
CL
1498 void *freelist;
1499 unsigned long counters;
1500 struct page new;
1501
2cfb7455
CL
1502 /*
1503 * Zap the freelist and set the frozen bit.
1504 * The old freelist is the list of objects for the
1505 * per cpu allocation list.
1506 */
1507 do {
1508 freelist = page->freelist;
1509 counters = page->counters;
1510 new.counters = counters;
49e22585
CL
1511 if (mode)
1512 new.inuse = page->objects;
2cfb7455
CL
1513
1514 VM_BUG_ON(new.frozen);
1515 new.frozen = 1;
1516
1d07171c 1517 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1518 freelist, counters,
1519 NULL, new.counters,
1520 "lock and freeze"));
1521
1522 remove_partial(n, page);
49e22585 1523 return freelist;
81819f0f
CL
1524}
1525
49e22585
CL
1526static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1527
81819f0f 1528/*
672bba3a 1529 * Try to allocate a partial slab from a specific node.
81819f0f 1530 */
497b66f2 1531static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1532 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1533{
49e22585
CL
1534 struct page *page, *page2;
1535 void *object = NULL;
81819f0f
CL
1536
1537 /*
1538 * Racy check. If we mistakenly see no partial slabs then we
1539 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1540 * partial slab and there is none available then get_partials()
1541 * will return NULL.
81819f0f
CL
1542 */
1543 if (!n || !n->nr_partial)
1544 return NULL;
1545
1546 spin_lock(&n->list_lock);
49e22585 1547 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1548 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1549 int available;
1550
1551 if (!t)
1552 break;
1553
12d79634 1554 if (!object) {
49e22585
CL
1555 c->page = page;
1556 c->node = page_to_nid(page);
1557 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1558 object = t;
1559 available = page->objects - page->inuse;
1560 } else {
1561 page->freelist = t;
1562 available = put_cpu_partial(s, page, 0);
1563 }
1564 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1565 break;
1566
497b66f2 1567 }
81819f0f 1568 spin_unlock(&n->list_lock);
497b66f2 1569 return object;
81819f0f
CL
1570}
1571
1572/*
672bba3a 1573 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1574 */
acd19fd1
CL
1575static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1576 struct kmem_cache_cpu *c)
81819f0f
CL
1577{
1578#ifdef CONFIG_NUMA
1579 struct zonelist *zonelist;
dd1a239f 1580 struct zoneref *z;
54a6eb5c
MG
1581 struct zone *zone;
1582 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1583 void *object;
cc9a6c87 1584 unsigned int cpuset_mems_cookie;
81819f0f
CL
1585
1586 /*
672bba3a
CL
1587 * The defrag ratio allows a configuration of the tradeoffs between
1588 * inter node defragmentation and node local allocations. A lower
1589 * defrag_ratio increases the tendency to do local allocations
1590 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1591 *
672bba3a
CL
1592 * If the defrag_ratio is set to 0 then kmalloc() always
1593 * returns node local objects. If the ratio is higher then kmalloc()
1594 * may return off node objects because partial slabs are obtained
1595 * from other nodes and filled up.
81819f0f 1596 *
6446faa2 1597 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1598 * defrag_ratio = 1000) then every (well almost) allocation will
1599 * first attempt to defrag slab caches on other nodes. This means
1600 * scanning over all nodes to look for partial slabs which may be
1601 * expensive if we do it every time we are trying to find a slab
1602 * with available objects.
81819f0f 1603 */
9824601e
CL
1604 if (!s->remote_node_defrag_ratio ||
1605 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1606 return NULL;
1607
cc9a6c87
MG
1608 do {
1609 cpuset_mems_cookie = get_mems_allowed();
1610 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1611 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1612 struct kmem_cache_node *n;
1613
1614 n = get_node(s, zone_to_nid(zone));
1615
1616 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1617 n->nr_partial > s->min_partial) {
1618 object = get_partial_node(s, n, c);
1619 if (object) {
1620 /*
1621 * Return the object even if
1622 * put_mems_allowed indicated that
1623 * the cpuset mems_allowed was
1624 * updated in parallel. It's a
1625 * harmless race between the alloc
1626 * and the cpuset update.
1627 */
1628 put_mems_allowed(cpuset_mems_cookie);
1629 return object;
1630 }
c0ff7453 1631 }
81819f0f 1632 }
cc9a6c87 1633 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1634#endif
1635 return NULL;
1636}
1637
1638/*
1639 * Get a partial page, lock it and return it.
1640 */
497b66f2 1641static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1642 struct kmem_cache_cpu *c)
81819f0f 1643{
497b66f2 1644 void *object;
2154a336 1645 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1646
497b66f2
CL
1647 object = get_partial_node(s, get_node(s, searchnode), c);
1648 if (object || node != NUMA_NO_NODE)
1649 return object;
81819f0f 1650
acd19fd1 1651 return get_any_partial(s, flags, c);
81819f0f
CL
1652}
1653
8a5ec0ba
CL
1654#ifdef CONFIG_PREEMPT
1655/*
1656 * Calculate the next globally unique transaction for disambiguiation
1657 * during cmpxchg. The transactions start with the cpu number and are then
1658 * incremented by CONFIG_NR_CPUS.
1659 */
1660#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1661#else
1662/*
1663 * No preemption supported therefore also no need to check for
1664 * different cpus.
1665 */
1666#define TID_STEP 1
1667#endif
1668
1669static inline unsigned long next_tid(unsigned long tid)
1670{
1671 return tid + TID_STEP;
1672}
1673
1674static inline unsigned int tid_to_cpu(unsigned long tid)
1675{
1676 return tid % TID_STEP;
1677}
1678
1679static inline unsigned long tid_to_event(unsigned long tid)
1680{
1681 return tid / TID_STEP;
1682}
1683
1684static inline unsigned int init_tid(int cpu)
1685{
1686 return cpu;
1687}
1688
1689static inline void note_cmpxchg_failure(const char *n,
1690 const struct kmem_cache *s, unsigned long tid)
1691{
1692#ifdef SLUB_DEBUG_CMPXCHG
1693 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1694
1695 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1696
1697#ifdef CONFIG_PREEMPT
1698 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1699 printk("due to cpu change %d -> %d\n",
1700 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1701 else
1702#endif
1703 if (tid_to_event(tid) != tid_to_event(actual_tid))
1704 printk("due to cpu running other code. Event %ld->%ld\n",
1705 tid_to_event(tid), tid_to_event(actual_tid));
1706 else
1707 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1708 actual_tid, tid, next_tid(tid));
1709#endif
4fdccdfb 1710 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1711}
1712
8a5ec0ba
CL
1713void init_kmem_cache_cpus(struct kmem_cache *s)
1714{
8a5ec0ba
CL
1715 int cpu;
1716
1717 for_each_possible_cpu(cpu)
1718 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1719}
2cfb7455 1720
81819f0f
CL
1721/*
1722 * Remove the cpu slab
1723 */
dfb4f096 1724static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1725{
2cfb7455 1726 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1727 struct page *page = c->page;
2cfb7455
CL
1728 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1729 int lock = 0;
1730 enum slab_modes l = M_NONE, m = M_NONE;
1731 void *freelist;
1732 void *nextfree;
136333d1 1733 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1734 struct page new;
1735 struct page old;
1736
1737 if (page->freelist) {
84e554e6 1738 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1739 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1740 }
1741
1742 c->tid = next_tid(c->tid);
1743 c->page = NULL;
1744 freelist = c->freelist;
1745 c->freelist = NULL;
1746
894b8788 1747 /*
2cfb7455
CL
1748 * Stage one: Free all available per cpu objects back
1749 * to the page freelist while it is still frozen. Leave the
1750 * last one.
1751 *
1752 * There is no need to take the list->lock because the page
1753 * is still frozen.
1754 */
1755 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1756 void *prior;
1757 unsigned long counters;
1758
1759 do {
1760 prior = page->freelist;
1761 counters = page->counters;
1762 set_freepointer(s, freelist, prior);
1763 new.counters = counters;
1764 new.inuse--;
1765 VM_BUG_ON(!new.frozen);
1766
1d07171c 1767 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1768 prior, counters,
1769 freelist, new.counters,
1770 "drain percpu freelist"));
1771
1772 freelist = nextfree;
1773 }
1774
894b8788 1775 /*
2cfb7455
CL
1776 * Stage two: Ensure that the page is unfrozen while the
1777 * list presence reflects the actual number of objects
1778 * during unfreeze.
1779 *
1780 * We setup the list membership and then perform a cmpxchg
1781 * with the count. If there is a mismatch then the page
1782 * is not unfrozen but the page is on the wrong list.
1783 *
1784 * Then we restart the process which may have to remove
1785 * the page from the list that we just put it on again
1786 * because the number of objects in the slab may have
1787 * changed.
894b8788 1788 */
2cfb7455 1789redo:
894b8788 1790
2cfb7455
CL
1791 old.freelist = page->freelist;
1792 old.counters = page->counters;
1793 VM_BUG_ON(!old.frozen);
7c2e132c 1794
2cfb7455
CL
1795 /* Determine target state of the slab */
1796 new.counters = old.counters;
1797 if (freelist) {
1798 new.inuse--;
1799 set_freepointer(s, freelist, old.freelist);
1800 new.freelist = freelist;
1801 } else
1802 new.freelist = old.freelist;
1803
1804 new.frozen = 0;
1805
81107188 1806 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1807 m = M_FREE;
1808 else if (new.freelist) {
1809 m = M_PARTIAL;
1810 if (!lock) {
1811 lock = 1;
1812 /*
1813 * Taking the spinlock removes the possiblity
1814 * that acquire_slab() will see a slab page that
1815 * is frozen
1816 */
1817 spin_lock(&n->list_lock);
1818 }
1819 } else {
1820 m = M_FULL;
1821 if (kmem_cache_debug(s) && !lock) {
1822 lock = 1;
1823 /*
1824 * This also ensures that the scanning of full
1825 * slabs from diagnostic functions will not see
1826 * any frozen slabs.
1827 */
1828 spin_lock(&n->list_lock);
1829 }
1830 }
1831
1832 if (l != m) {
1833
1834 if (l == M_PARTIAL)
1835
1836 remove_partial(n, page);
1837
1838 else if (l == M_FULL)
894b8788 1839
2cfb7455
CL
1840 remove_full(s, page);
1841
1842 if (m == M_PARTIAL) {
1843
1844 add_partial(n, page, tail);
136333d1 1845 stat(s, tail);
2cfb7455
CL
1846
1847 } else if (m == M_FULL) {
894b8788 1848
2cfb7455
CL
1849 stat(s, DEACTIVATE_FULL);
1850 add_full(s, n, page);
1851
1852 }
1853 }
1854
1855 l = m;
1d07171c 1856 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1857 old.freelist, old.counters,
1858 new.freelist, new.counters,
1859 "unfreezing slab"))
1860 goto redo;
1861
2cfb7455
CL
1862 if (lock)
1863 spin_unlock(&n->list_lock);
1864
1865 if (m == M_FREE) {
1866 stat(s, DEACTIVATE_EMPTY);
1867 discard_slab(s, page);
1868 stat(s, FREE_SLAB);
894b8788 1869 }
81819f0f
CL
1870}
1871
49e22585
CL
1872/* Unfreeze all the cpu partial slabs */
1873static void unfreeze_partials(struct kmem_cache *s)
1874{
1875 struct kmem_cache_node *n = NULL;
1876 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1877 struct page *page, *discard_page = NULL;
49e22585
CL
1878
1879 while ((page = c->partial)) {
1880 enum slab_modes { M_PARTIAL, M_FREE };
1881 enum slab_modes l, m;
1882 struct page new;
1883 struct page old;
1884
1885 c->partial = page->next;
1886 l = M_FREE;
1887
1888 do {
1889
1890 old.freelist = page->freelist;
1891 old.counters = page->counters;
1892 VM_BUG_ON(!old.frozen);
1893
1894 new.counters = old.counters;
1895 new.freelist = old.freelist;
1896
1897 new.frozen = 0;
1898
dcc3be6a 1899 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
49e22585
CL
1900 m = M_FREE;
1901 else {
1902 struct kmem_cache_node *n2 = get_node(s,
1903 page_to_nid(page));
1904
1905 m = M_PARTIAL;
1906 if (n != n2) {
1907 if (n)
1908 spin_unlock(&n->list_lock);
1909
1910 n = n2;
1911 spin_lock(&n->list_lock);
1912 }
1913 }
1914
1915 if (l != m) {
4c493a5a 1916 if (l == M_PARTIAL) {
49e22585 1917 remove_partial(n, page);
4c493a5a
SL
1918 stat(s, FREE_REMOVE_PARTIAL);
1919 } else {
f64ae042
SL
1920 add_partial(n, page,
1921 DEACTIVATE_TO_TAIL);
4c493a5a
SL
1922 stat(s, FREE_ADD_PARTIAL);
1923 }
49e22585
CL
1924
1925 l = m;
1926 }
1927
1928 } while (!cmpxchg_double_slab(s, page,
1929 old.freelist, old.counters,
1930 new.freelist, new.counters,
1931 "unfreezing slab"));
1932
1933 if (m == M_FREE) {
9ada1934
SL
1934 page->next = discard_page;
1935 discard_page = page;
49e22585
CL
1936 }
1937 }
1938
1939 if (n)
1940 spin_unlock(&n->list_lock);
9ada1934
SL
1941
1942 while (discard_page) {
1943 page = discard_page;
1944 discard_page = discard_page->next;
1945
1946 stat(s, DEACTIVATE_EMPTY);
1947 discard_slab(s, page);
1948 stat(s, FREE_SLAB);
1949 }
49e22585
CL
1950}
1951
1952/*
1953 * Put a page that was just frozen (in __slab_free) into a partial page
1954 * slot if available. This is done without interrupts disabled and without
1955 * preemption disabled. The cmpxchg is racy and may put the partial page
1956 * onto a random cpus partial slot.
1957 *
1958 * If we did not find a slot then simply move all the partials to the
1959 * per node partial list.
1960 */
1961int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1962{
1963 struct page *oldpage;
1964 int pages;
1965 int pobjects;
1966
1967 do {
1968 pages = 0;
1969 pobjects = 0;
1970 oldpage = this_cpu_read(s->cpu_slab->partial);
1971
1972 if (oldpage) {
1973 pobjects = oldpage->pobjects;
1974 pages = oldpage->pages;
1975 if (drain && pobjects > s->cpu_partial) {
1976 unsigned long flags;
1977 /*
1978 * partial array is full. Move the existing
1979 * set to the per node partial list.
1980 */
1981 local_irq_save(flags);
1982 unfreeze_partials(s);
1983 local_irq_restore(flags);
1984 pobjects = 0;
1985 pages = 0;
1986 }
1987 }
1988
1989 pages++;
1990 pobjects += page->objects - page->inuse;
1991
1992 page->pages = pages;
1993 page->pobjects = pobjects;
1994 page->next = oldpage;
1995
933393f5 1996 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1997 stat(s, CPU_PARTIAL_FREE);
1998 return pobjects;
1999}
2000
dfb4f096 2001static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2002{
84e554e6 2003 stat(s, CPUSLAB_FLUSH);
dfb4f096 2004 deactivate_slab(s, c);
81819f0f
CL
2005}
2006
2007/*
2008 * Flush cpu slab.
6446faa2 2009 *
81819f0f
CL
2010 * Called from IPI handler with interrupts disabled.
2011 */
0c710013 2012static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2013{
9dfc6e68 2014 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2015
49e22585
CL
2016 if (likely(c)) {
2017 if (c->page)
2018 flush_slab(s, c);
2019
2020 unfreeze_partials(s);
2021 }
81819f0f
CL
2022}
2023
2024static void flush_cpu_slab(void *d)
2025{
2026 struct kmem_cache *s = d;
81819f0f 2027
dfb4f096 2028 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2029}
2030
2031static void flush_all(struct kmem_cache *s)
2032{
15c8b6c1 2033 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
2034}
2035
dfb4f096
CL
2036/*
2037 * Check if the objects in a per cpu structure fit numa
2038 * locality expectations.
2039 */
2040static inline int node_match(struct kmem_cache_cpu *c, int node)
2041{
2042#ifdef CONFIG_NUMA
2154a336 2043 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
2044 return 0;
2045#endif
2046 return 1;
2047}
2048
781b2ba6
PE
2049static int count_free(struct page *page)
2050{
2051 return page->objects - page->inuse;
2052}
2053
2054static unsigned long count_partial(struct kmem_cache_node *n,
2055 int (*get_count)(struct page *))
2056{
2057 unsigned long flags;
2058 unsigned long x = 0;
2059 struct page *page;
2060
2061 spin_lock_irqsave(&n->list_lock, flags);
2062 list_for_each_entry(page, &n->partial, lru)
2063 x += get_count(page);
2064 spin_unlock_irqrestore(&n->list_lock, flags);
2065 return x;
2066}
2067
26c02cf0
AB
2068static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2069{
2070#ifdef CONFIG_SLUB_DEBUG
2071 return atomic_long_read(&n->total_objects);
2072#else
2073 return 0;
2074#endif
2075}
2076
781b2ba6
PE
2077static noinline void
2078slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2079{
2080 int node;
2081
2082 printk(KERN_WARNING
2083 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2084 nid, gfpflags);
2085 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2086 "default order: %d, min order: %d\n", s->name, s->objsize,
2087 s->size, oo_order(s->oo), oo_order(s->min));
2088
fa5ec8a1
DR
2089 if (oo_order(s->min) > get_order(s->objsize))
2090 printk(KERN_WARNING " %s debugging increased min order, use "
2091 "slub_debug=O to disable.\n", s->name);
2092
781b2ba6
PE
2093 for_each_online_node(node) {
2094 struct kmem_cache_node *n = get_node(s, node);
2095 unsigned long nr_slabs;
2096 unsigned long nr_objs;
2097 unsigned long nr_free;
2098
2099 if (!n)
2100 continue;
2101
26c02cf0
AB
2102 nr_free = count_partial(n, count_free);
2103 nr_slabs = node_nr_slabs(n);
2104 nr_objs = node_nr_objs(n);
781b2ba6
PE
2105
2106 printk(KERN_WARNING
2107 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2108 node, nr_slabs, nr_objs, nr_free);
2109 }
2110}
2111
497b66f2
CL
2112static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2113 int node, struct kmem_cache_cpu **pc)
2114{
2115 void *object;
2116 struct kmem_cache_cpu *c;
2117 struct page *page = new_slab(s, flags, node);
2118
2119 if (page) {
2120 c = __this_cpu_ptr(s->cpu_slab);
2121 if (c->page)
2122 flush_slab(s, c);
2123
2124 /*
2125 * No other reference to the page yet so we can
2126 * muck around with it freely without cmpxchg
2127 */
2128 object = page->freelist;
2129 page->freelist = NULL;
2130
2131 stat(s, ALLOC_SLAB);
2132 c->node = page_to_nid(page);
2133 c->page = page;
2134 *pc = c;
2135 } else
2136 object = NULL;
2137
2138 return object;
2139}
2140
213eeb9f
CL
2141/*
2142 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2143 * or deactivate the page.
2144 *
2145 * The page is still frozen if the return value is not NULL.
2146 *
2147 * If this function returns NULL then the page has been unfrozen.
2148 */
2149static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2150{
2151 struct page new;
2152 unsigned long counters;
2153 void *freelist;
2154
2155 do {
2156 freelist = page->freelist;
2157 counters = page->counters;
2158 new.counters = counters;
2159 VM_BUG_ON(!new.frozen);
2160
2161 new.inuse = page->objects;
2162 new.frozen = freelist != NULL;
2163
2164 } while (!cmpxchg_double_slab(s, page,
2165 freelist, counters,
2166 NULL, new.counters,
2167 "get_freelist"));
2168
2169 return freelist;
2170}
2171
81819f0f 2172/*
894b8788
CL
2173 * Slow path. The lockless freelist is empty or we need to perform
2174 * debugging duties.
2175 *
894b8788
CL
2176 * Processing is still very fast if new objects have been freed to the
2177 * regular freelist. In that case we simply take over the regular freelist
2178 * as the lockless freelist and zap the regular freelist.
81819f0f 2179 *
894b8788
CL
2180 * If that is not working then we fall back to the partial lists. We take the
2181 * first element of the freelist as the object to allocate now and move the
2182 * rest of the freelist to the lockless freelist.
81819f0f 2183 *
894b8788 2184 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2185 * we need to allocate a new slab. This is the slowest path since it involves
2186 * a call to the page allocator and the setup of a new slab.
81819f0f 2187 */
ce71e27c
EGM
2188static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2189 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2190{
81819f0f 2191 void **object;
8a5ec0ba
CL
2192 unsigned long flags;
2193
2194 local_irq_save(flags);
2195#ifdef CONFIG_PREEMPT
2196 /*
2197 * We may have been preempted and rescheduled on a different
2198 * cpu before disabling interrupts. Need to reload cpu area
2199 * pointer.
2200 */
2201 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2202#endif
81819f0f 2203
497b66f2 2204 if (!c->page)
81819f0f 2205 goto new_slab;
49e22585 2206redo:
fc59c053 2207 if (unlikely(!node_match(c, node))) {
e36a2652 2208 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2209 deactivate_slab(s, c);
2210 goto new_slab;
2211 }
6446faa2 2212
73736e03
ED
2213 /* must check again c->freelist in case of cpu migration or IRQ */
2214 object = c->freelist;
2215 if (object)
2216 goto load_freelist;
03e404af 2217
2cfb7455 2218 stat(s, ALLOC_SLOWPATH);
03e404af 2219
213eeb9f 2220 object = get_freelist(s, c->page);
6446faa2 2221
49e22585 2222 if (!object) {
03e404af
CL
2223 c->page = NULL;
2224 stat(s, DEACTIVATE_BYPASS);
fc59c053 2225 goto new_slab;
03e404af 2226 }
6446faa2 2227
84e554e6 2228 stat(s, ALLOC_REFILL);
6446faa2 2229
894b8788 2230load_freelist:
ff12059e 2231 c->freelist = get_freepointer(s, object);
8a5ec0ba
CL
2232 c->tid = next_tid(c->tid);
2233 local_irq_restore(flags);
81819f0f
CL
2234 return object;
2235
81819f0f 2236new_slab:
2cfb7455 2237
49e22585
CL
2238 if (c->partial) {
2239 c->page = c->partial;
2240 c->partial = c->page->next;
2241 c->node = page_to_nid(c->page);
2242 stat(s, CPU_PARTIAL_ALLOC);
2243 c->freelist = NULL;
2244 goto redo;
81819f0f
CL
2245 }
2246
49e22585 2247 /* Then do expensive stuff like retrieving pages from the partial lists */
497b66f2 2248 object = get_partial(s, gfpflags, node, c);
b811c202 2249
497b66f2 2250 if (unlikely(!object)) {
01ad8a7b 2251
497b66f2 2252 object = new_slab_objects(s, gfpflags, node, &c);
2cfb7455 2253
497b66f2
CL
2254 if (unlikely(!object)) {
2255 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2256 slab_out_of_memory(s, gfpflags, node);
9e577e8b 2257
497b66f2
CL
2258 local_irq_restore(flags);
2259 return NULL;
2260 }
81819f0f 2261 }
2cfb7455 2262
497b66f2 2263 if (likely(!kmem_cache_debug(s)))
4b6f0750 2264 goto load_freelist;
2cfb7455 2265
497b66f2
CL
2266 /* Only entered in the debug case */
2267 if (!alloc_debug_processing(s, c->page, object, addr))
2268 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2269
2cfb7455 2270 c->freelist = get_freepointer(s, object);
442b06bc 2271 deactivate_slab(s, c);
15b7c514 2272 c->node = NUMA_NO_NODE;
a71ae47a
CL
2273 local_irq_restore(flags);
2274 return object;
894b8788
CL
2275}
2276
2277/*
2278 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2279 * have the fastpath folded into their functions. So no function call
2280 * overhead for requests that can be satisfied on the fastpath.
2281 *
2282 * The fastpath works by first checking if the lockless freelist can be used.
2283 * If not then __slab_alloc is called for slow processing.
2284 *
2285 * Otherwise we can simply pick the next object from the lockless free list.
2286 */
06428780 2287static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2288 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2289{
894b8788 2290 void **object;
dfb4f096 2291 struct kmem_cache_cpu *c;
8a5ec0ba 2292 unsigned long tid;
1f84260c 2293
c016b0bd 2294 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2295 return NULL;
1f84260c 2296
8a5ec0ba 2297redo:
8a5ec0ba
CL
2298
2299 /*
2300 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2301 * enabled. We may switch back and forth between cpus while
2302 * reading from one cpu area. That does not matter as long
2303 * as we end up on the original cpu again when doing the cmpxchg.
2304 */
9dfc6e68 2305 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2306
8a5ec0ba
CL
2307 /*
2308 * The transaction ids are globally unique per cpu and per operation on
2309 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2310 * occurs on the right processor and that there was no operation on the
2311 * linked list in between.
2312 */
2313 tid = c->tid;
2314 barrier();
8a5ec0ba 2315
9dfc6e68 2316 object = c->freelist;
9dfc6e68 2317 if (unlikely(!object || !node_match(c, node)))
894b8788 2318
dfb4f096 2319 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2320
2321 else {
8a5ec0ba 2322 /*
25985edc 2323 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2324 * operation and if we are on the right processor.
2325 *
2326 * The cmpxchg does the following atomically (without lock semantics!)
2327 * 1. Relocate first pointer to the current per cpu area.
2328 * 2. Verify that tid and freelist have not been changed
2329 * 3. If they were not changed replace tid and freelist
2330 *
2331 * Since this is without lock semantics the protection is only against
2332 * code executing on this cpu *not* from access by other cpus.
2333 */
933393f5 2334 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2335 s->cpu_slab->freelist, s->cpu_slab->tid,
2336 object, tid,
1393d9a1 2337 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
2338
2339 note_cmpxchg_failure("slab_alloc", s, tid);
2340 goto redo;
2341 }
84e554e6 2342 stat(s, ALLOC_FASTPATH);
894b8788 2343 }
8a5ec0ba 2344
74e2134f 2345 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2346 memset(object, 0, s->objsize);
d07dbea4 2347
c016b0bd 2348 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2349
894b8788 2350 return object;
81819f0f
CL
2351}
2352
2353void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2354{
2154a336 2355 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2356
ca2b84cb 2357 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2358
2359 return ret;
81819f0f
CL
2360}
2361EXPORT_SYMBOL(kmem_cache_alloc);
2362
0f24f128 2363#ifdef CONFIG_TRACING
4a92379b
RK
2364void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2365{
2366 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2367 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2368 return ret;
2369}
2370EXPORT_SYMBOL(kmem_cache_alloc_trace);
2371
2372void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2373{
4a92379b
RK
2374 void *ret = kmalloc_order(size, flags, order);
2375 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2376 return ret;
5b882be4 2377}
4a92379b 2378EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2379#endif
2380
81819f0f
CL
2381#ifdef CONFIG_NUMA
2382void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2383{
5b882be4
EGM
2384 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2385
ca2b84cb
EGM
2386 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2387 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2388
2389 return ret;
81819f0f
CL
2390}
2391EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2392
0f24f128 2393#ifdef CONFIG_TRACING
4a92379b 2394void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2395 gfp_t gfpflags,
4a92379b 2396 int node, size_t size)
5b882be4 2397{
4a92379b
RK
2398 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2399
2400 trace_kmalloc_node(_RET_IP_, ret,
2401 size, s->size, gfpflags, node);
2402 return ret;
5b882be4 2403}
4a92379b 2404EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2405#endif
5d1f57e4 2406#endif
5b882be4 2407
81819f0f 2408/*
894b8788
CL
2409 * Slow patch handling. This may still be called frequently since objects
2410 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2411 *
894b8788
CL
2412 * So we still attempt to reduce cache line usage. Just take the slab
2413 * lock and free the item. If there is no additional partial page
2414 * handling required then we can return immediately.
81819f0f 2415 */
894b8788 2416static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2417 void *x, unsigned long addr)
81819f0f
CL
2418{
2419 void *prior;
2420 void **object = (void *)x;
2cfb7455
CL
2421 int was_frozen;
2422 int inuse;
2423 struct page new;
2424 unsigned long counters;
2425 struct kmem_cache_node *n = NULL;
61728d1e 2426 unsigned long uninitialized_var(flags);
81819f0f 2427
8a5ec0ba 2428 stat(s, FREE_SLOWPATH);
81819f0f 2429
8dc16c6c 2430 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2431 return;
6446faa2 2432
2cfb7455
CL
2433 do {
2434 prior = page->freelist;
2435 counters = page->counters;
2436 set_freepointer(s, object, prior);
2437 new.counters = counters;
2438 was_frozen = new.frozen;
2439 new.inuse--;
2440 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2441
2442 if (!kmem_cache_debug(s) && !prior)
2443
2444 /*
2445 * Slab was on no list before and will be partially empty
2446 * We can defer the list move and instead freeze it.
2447 */
2448 new.frozen = 1;
2449
2450 else { /* Needs to be taken off a list */
2451
2452 n = get_node(s, page_to_nid(page));
2453 /*
2454 * Speculatively acquire the list_lock.
2455 * If the cmpxchg does not succeed then we may
2456 * drop the list_lock without any processing.
2457 *
2458 * Otherwise the list_lock will synchronize with
2459 * other processors updating the list of slabs.
2460 */
2461 spin_lock_irqsave(&n->list_lock, flags);
2462
2463 }
2cfb7455
CL
2464 }
2465 inuse = new.inuse;
81819f0f 2466
2cfb7455
CL
2467 } while (!cmpxchg_double_slab(s, page,
2468 prior, counters,
2469 object, new.counters,
2470 "__slab_free"));
81819f0f 2471
2cfb7455 2472 if (likely(!n)) {
49e22585
CL
2473
2474 /*
2475 * If we just froze the page then put it onto the
2476 * per cpu partial list.
2477 */
2478 if (new.frozen && !was_frozen)
2479 put_cpu_partial(s, page, 1);
2480
2481 /*
2cfb7455
CL
2482 * The list lock was not taken therefore no list
2483 * activity can be necessary.
2484 */
2485 if (was_frozen)
2486 stat(s, FREE_FROZEN);
80f08c19 2487 return;
2cfb7455 2488 }
81819f0f
CL
2489
2490 /*
2cfb7455
CL
2491 * was_frozen may have been set after we acquired the list_lock in
2492 * an earlier loop. So we need to check it here again.
81819f0f 2493 */
2cfb7455
CL
2494 if (was_frozen)
2495 stat(s, FREE_FROZEN);
2496 else {
2497 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2498 goto slab_empty;
81819f0f 2499
2cfb7455
CL
2500 /*
2501 * Objects left in the slab. If it was not on the partial list before
2502 * then add it.
2503 */
2504 if (unlikely(!prior)) {
2505 remove_full(s, page);
136333d1 2506 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2507 stat(s, FREE_ADD_PARTIAL);
2508 }
8ff12cfc 2509 }
80f08c19 2510 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2511 return;
2512
2513slab_empty:
a973e9dd 2514 if (prior) {
81819f0f 2515 /*
6fbabb20 2516 * Slab on the partial list.
81819f0f 2517 */
5cc6eee8 2518 remove_partial(n, page);
84e554e6 2519 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2520 } else
2521 /* Slab must be on the full list */
2522 remove_full(s, page);
2cfb7455 2523
80f08c19 2524 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2525 stat(s, FREE_SLAB);
81819f0f 2526 discard_slab(s, page);
81819f0f
CL
2527}
2528
894b8788
CL
2529/*
2530 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2531 * can perform fastpath freeing without additional function calls.
2532 *
2533 * The fastpath is only possible if we are freeing to the current cpu slab
2534 * of this processor. This typically the case if we have just allocated
2535 * the item before.
2536 *
2537 * If fastpath is not possible then fall back to __slab_free where we deal
2538 * with all sorts of special processing.
2539 */
06428780 2540static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2541 struct page *page, void *x, unsigned long addr)
894b8788
CL
2542{
2543 void **object = (void *)x;
dfb4f096 2544 struct kmem_cache_cpu *c;
8a5ec0ba 2545 unsigned long tid;
1f84260c 2546
c016b0bd
CL
2547 slab_free_hook(s, x);
2548
8a5ec0ba
CL
2549redo:
2550 /*
2551 * Determine the currently cpus per cpu slab.
2552 * The cpu may change afterward. However that does not matter since
2553 * data is retrieved via this pointer. If we are on the same cpu
2554 * during the cmpxchg then the free will succedd.
2555 */
9dfc6e68 2556 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2557
8a5ec0ba
CL
2558 tid = c->tid;
2559 barrier();
c016b0bd 2560
442b06bc 2561 if (likely(page == c->page)) {
ff12059e 2562 set_freepointer(s, object, c->freelist);
8a5ec0ba 2563
933393f5 2564 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2565 s->cpu_slab->freelist, s->cpu_slab->tid,
2566 c->freelist, tid,
2567 object, next_tid(tid)))) {
2568
2569 note_cmpxchg_failure("slab_free", s, tid);
2570 goto redo;
2571 }
84e554e6 2572 stat(s, FREE_FASTPATH);
894b8788 2573 } else
ff12059e 2574 __slab_free(s, page, x, addr);
894b8788 2575
894b8788
CL
2576}
2577
81819f0f
CL
2578void kmem_cache_free(struct kmem_cache *s, void *x)
2579{
77c5e2d0 2580 struct page *page;
81819f0f 2581
b49af68f 2582 page = virt_to_head_page(x);
81819f0f 2583
ce71e27c 2584 slab_free(s, page, x, _RET_IP_);
5b882be4 2585
ca2b84cb 2586 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2587}
2588EXPORT_SYMBOL(kmem_cache_free);
2589
81819f0f 2590/*
672bba3a
CL
2591 * Object placement in a slab is made very easy because we always start at
2592 * offset 0. If we tune the size of the object to the alignment then we can
2593 * get the required alignment by putting one properly sized object after
2594 * another.
81819f0f
CL
2595 *
2596 * Notice that the allocation order determines the sizes of the per cpu
2597 * caches. Each processor has always one slab available for allocations.
2598 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2599 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2600 * locking overhead.
81819f0f
CL
2601 */
2602
2603/*
2604 * Mininum / Maximum order of slab pages. This influences locking overhead
2605 * and slab fragmentation. A higher order reduces the number of partial slabs
2606 * and increases the number of allocations possible without having to
2607 * take the list_lock.
2608 */
2609static int slub_min_order;
114e9e89 2610static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2611static int slub_min_objects;
81819f0f
CL
2612
2613/*
2614 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2615 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2616 */
2617static int slub_nomerge;
2618
81819f0f
CL
2619/*
2620 * Calculate the order of allocation given an slab object size.
2621 *
672bba3a
CL
2622 * The order of allocation has significant impact on performance and other
2623 * system components. Generally order 0 allocations should be preferred since
2624 * order 0 does not cause fragmentation in the page allocator. Larger objects
2625 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2626 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2627 * would be wasted.
2628 *
2629 * In order to reach satisfactory performance we must ensure that a minimum
2630 * number of objects is in one slab. Otherwise we may generate too much
2631 * activity on the partial lists which requires taking the list_lock. This is
2632 * less a concern for large slabs though which are rarely used.
81819f0f 2633 *
672bba3a
CL
2634 * slub_max_order specifies the order where we begin to stop considering the
2635 * number of objects in a slab as critical. If we reach slub_max_order then
2636 * we try to keep the page order as low as possible. So we accept more waste
2637 * of space in favor of a small page order.
81819f0f 2638 *
672bba3a
CL
2639 * Higher order allocations also allow the placement of more objects in a
2640 * slab and thereby reduce object handling overhead. If the user has
2641 * requested a higher mininum order then we start with that one instead of
2642 * the smallest order which will fit the object.
81819f0f 2643 */
5e6d444e 2644static inline int slab_order(int size, int min_objects,
ab9a0f19 2645 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2646{
2647 int order;
2648 int rem;
6300ea75 2649 int min_order = slub_min_order;
81819f0f 2650
ab9a0f19 2651 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2652 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2653
6300ea75 2654 for (order = max(min_order,
5e6d444e
CL
2655 fls(min_objects * size - 1) - PAGE_SHIFT);
2656 order <= max_order; order++) {
81819f0f 2657
5e6d444e 2658 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2659
ab9a0f19 2660 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2661 continue;
2662
ab9a0f19 2663 rem = (slab_size - reserved) % size;
81819f0f 2664
5e6d444e 2665 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2666 break;
2667
2668 }
672bba3a 2669
81819f0f
CL
2670 return order;
2671}
2672
ab9a0f19 2673static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2674{
2675 int order;
2676 int min_objects;
2677 int fraction;
e8120ff1 2678 int max_objects;
5e6d444e
CL
2679
2680 /*
2681 * Attempt to find best configuration for a slab. This
2682 * works by first attempting to generate a layout with
2683 * the best configuration and backing off gradually.
2684 *
2685 * First we reduce the acceptable waste in a slab. Then
2686 * we reduce the minimum objects required in a slab.
2687 */
2688 min_objects = slub_min_objects;
9b2cd506
CL
2689 if (!min_objects)
2690 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2691 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2692 min_objects = min(min_objects, max_objects);
2693
5e6d444e 2694 while (min_objects > 1) {
c124f5b5 2695 fraction = 16;
5e6d444e
CL
2696 while (fraction >= 4) {
2697 order = slab_order(size, min_objects,
ab9a0f19 2698 slub_max_order, fraction, reserved);
5e6d444e
CL
2699 if (order <= slub_max_order)
2700 return order;
2701 fraction /= 2;
2702 }
5086c389 2703 min_objects--;
5e6d444e
CL
2704 }
2705
2706 /*
2707 * We were unable to place multiple objects in a slab. Now
2708 * lets see if we can place a single object there.
2709 */
ab9a0f19 2710 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2711 if (order <= slub_max_order)
2712 return order;
2713
2714 /*
2715 * Doh this slab cannot be placed using slub_max_order.
2716 */
ab9a0f19 2717 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2718 if (order < MAX_ORDER)
5e6d444e
CL
2719 return order;
2720 return -ENOSYS;
2721}
2722
81819f0f 2723/*
672bba3a 2724 * Figure out what the alignment of the objects will be.
81819f0f
CL
2725 */
2726static unsigned long calculate_alignment(unsigned long flags,
2727 unsigned long align, unsigned long size)
2728{
2729 /*
6446faa2
CL
2730 * If the user wants hardware cache aligned objects then follow that
2731 * suggestion if the object is sufficiently large.
81819f0f 2732 *
6446faa2
CL
2733 * The hardware cache alignment cannot override the specified
2734 * alignment though. If that is greater then use it.
81819f0f 2735 */
b6210386
NP
2736 if (flags & SLAB_HWCACHE_ALIGN) {
2737 unsigned long ralign = cache_line_size();
2738 while (size <= ralign / 2)
2739 ralign /= 2;
2740 align = max(align, ralign);
2741 }
81819f0f
CL
2742
2743 if (align < ARCH_SLAB_MINALIGN)
b6210386 2744 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2745
2746 return ALIGN(align, sizeof(void *));
2747}
2748
5595cffc
PE
2749static void
2750init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2751{
2752 n->nr_partial = 0;
81819f0f
CL
2753 spin_lock_init(&n->list_lock);
2754 INIT_LIST_HEAD(&n->partial);
8ab1372f 2755#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2756 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2757 atomic_long_set(&n->total_objects, 0);
643b1138 2758 INIT_LIST_HEAD(&n->full);
8ab1372f 2759#endif
81819f0f
CL
2760}
2761
55136592 2762static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2763{
6c182dc0
CL
2764 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2765 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2766
8a5ec0ba 2767 /*
d4d84fef
CM
2768 * Must align to double word boundary for the double cmpxchg
2769 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2770 */
d4d84fef
CM
2771 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2772 2 * sizeof(void *));
8a5ec0ba
CL
2773
2774 if (!s->cpu_slab)
2775 return 0;
2776
2777 init_kmem_cache_cpus(s);
4c93c355 2778
8a5ec0ba 2779 return 1;
4c93c355 2780}
4c93c355 2781
51df1142
CL
2782static struct kmem_cache *kmem_cache_node;
2783
81819f0f
CL
2784/*
2785 * No kmalloc_node yet so do it by hand. We know that this is the first
2786 * slab on the node for this slabcache. There are no concurrent accesses
2787 * possible.
2788 *
2789 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2790 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2791 * memory on a fresh node that has no slab structures yet.
81819f0f 2792 */
55136592 2793static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2794{
2795 struct page *page;
2796 struct kmem_cache_node *n;
2797
51df1142 2798 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2799
51df1142 2800 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2801
2802 BUG_ON(!page);
a2f92ee7
CL
2803 if (page_to_nid(page) != node) {
2804 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2805 "node %d\n", node);
2806 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2807 "in order to be able to continue\n");
2808 }
2809
81819f0f
CL
2810 n = page->freelist;
2811 BUG_ON(!n);
51df1142 2812 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2813 page->inuse = 1;
8cb0a506 2814 page->frozen = 0;
51df1142 2815 kmem_cache_node->node[node] = n;
8ab1372f 2816#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2817 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2818 init_tracking(kmem_cache_node, n);
8ab1372f 2819#endif
51df1142
CL
2820 init_kmem_cache_node(n, kmem_cache_node);
2821 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2822
136333d1 2823 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2824}
2825
2826static void free_kmem_cache_nodes(struct kmem_cache *s)
2827{
2828 int node;
2829
f64dc58c 2830 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2831 struct kmem_cache_node *n = s->node[node];
51df1142 2832
73367bd8 2833 if (n)
51df1142
CL
2834 kmem_cache_free(kmem_cache_node, n);
2835
81819f0f
CL
2836 s->node[node] = NULL;
2837 }
2838}
2839
55136592 2840static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2841{
2842 int node;
81819f0f 2843
f64dc58c 2844 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2845 struct kmem_cache_node *n;
2846
73367bd8 2847 if (slab_state == DOWN) {
55136592 2848 early_kmem_cache_node_alloc(node);
73367bd8
AD
2849 continue;
2850 }
51df1142 2851 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2852 GFP_KERNEL, node);
81819f0f 2853
73367bd8
AD
2854 if (!n) {
2855 free_kmem_cache_nodes(s);
2856 return 0;
81819f0f 2857 }
73367bd8 2858
81819f0f 2859 s->node[node] = n;
5595cffc 2860 init_kmem_cache_node(n, s);
81819f0f
CL
2861 }
2862 return 1;
2863}
81819f0f 2864
c0bdb232 2865static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2866{
2867 if (min < MIN_PARTIAL)
2868 min = MIN_PARTIAL;
2869 else if (min > MAX_PARTIAL)
2870 min = MAX_PARTIAL;
2871 s->min_partial = min;
2872}
2873
81819f0f
CL
2874/*
2875 * calculate_sizes() determines the order and the distribution of data within
2876 * a slab object.
2877 */
06b285dc 2878static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2879{
2880 unsigned long flags = s->flags;
2881 unsigned long size = s->objsize;
2882 unsigned long align = s->align;
834f3d11 2883 int order;
81819f0f 2884
d8b42bf5
CL
2885 /*
2886 * Round up object size to the next word boundary. We can only
2887 * place the free pointer at word boundaries and this determines
2888 * the possible location of the free pointer.
2889 */
2890 size = ALIGN(size, sizeof(void *));
2891
2892#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2893 /*
2894 * Determine if we can poison the object itself. If the user of
2895 * the slab may touch the object after free or before allocation
2896 * then we should never poison the object itself.
2897 */
2898 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2899 !s->ctor)
81819f0f
CL
2900 s->flags |= __OBJECT_POISON;
2901 else
2902 s->flags &= ~__OBJECT_POISON;
2903
81819f0f
CL
2904
2905 /*
672bba3a 2906 * If we are Redzoning then check if there is some space between the
81819f0f 2907 * end of the object and the free pointer. If not then add an
672bba3a 2908 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2909 */
2910 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2911 size += sizeof(void *);
41ecc55b 2912#endif
81819f0f
CL
2913
2914 /*
672bba3a
CL
2915 * With that we have determined the number of bytes in actual use
2916 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2917 */
2918 s->inuse = size;
2919
2920 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2921 s->ctor)) {
81819f0f
CL
2922 /*
2923 * Relocate free pointer after the object if it is not
2924 * permitted to overwrite the first word of the object on
2925 * kmem_cache_free.
2926 *
2927 * This is the case if we do RCU, have a constructor or
2928 * destructor or are poisoning the objects.
2929 */
2930 s->offset = size;
2931 size += sizeof(void *);
2932 }
2933
c12b3c62 2934#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2935 if (flags & SLAB_STORE_USER)
2936 /*
2937 * Need to store information about allocs and frees after
2938 * the object.
2939 */
2940 size += 2 * sizeof(struct track);
2941
be7b3fbc 2942 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2943 /*
2944 * Add some empty padding so that we can catch
2945 * overwrites from earlier objects rather than let
2946 * tracking information or the free pointer be
0211a9c8 2947 * corrupted if a user writes before the start
81819f0f
CL
2948 * of the object.
2949 */
2950 size += sizeof(void *);
41ecc55b 2951#endif
672bba3a 2952
81819f0f
CL
2953 /*
2954 * Determine the alignment based on various parameters that the
65c02d4c
CL
2955 * user specified and the dynamic determination of cache line size
2956 * on bootup.
81819f0f
CL
2957 */
2958 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2959 s->align = align;
81819f0f
CL
2960
2961 /*
2962 * SLUB stores one object immediately after another beginning from
2963 * offset 0. In order to align the objects we have to simply size
2964 * each object to conform to the alignment.
2965 */
2966 size = ALIGN(size, align);
2967 s->size = size;
06b285dc
CL
2968 if (forced_order >= 0)
2969 order = forced_order;
2970 else
ab9a0f19 2971 order = calculate_order(size, s->reserved);
81819f0f 2972
834f3d11 2973 if (order < 0)
81819f0f
CL
2974 return 0;
2975
b7a49f0d 2976 s->allocflags = 0;
834f3d11 2977 if (order)
b7a49f0d
CL
2978 s->allocflags |= __GFP_COMP;
2979
2980 if (s->flags & SLAB_CACHE_DMA)
2981 s->allocflags |= SLUB_DMA;
2982
2983 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2984 s->allocflags |= __GFP_RECLAIMABLE;
2985
81819f0f
CL
2986 /*
2987 * Determine the number of objects per slab
2988 */
ab9a0f19
LJ
2989 s->oo = oo_make(order, size, s->reserved);
2990 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2991 if (oo_objects(s->oo) > oo_objects(s->max))
2992 s->max = s->oo;
81819f0f 2993
834f3d11 2994 return !!oo_objects(s->oo);
81819f0f
CL
2995
2996}
2997
55136592 2998static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2999 const char *name, size_t size,
3000 size_t align, unsigned long flags,
51cc5068 3001 void (*ctor)(void *))
81819f0f
CL
3002{
3003 memset(s, 0, kmem_size);
3004 s->name = name;
3005 s->ctor = ctor;
81819f0f 3006 s->objsize = size;
81819f0f 3007 s->align = align;
ba0268a8 3008 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3009 s->reserved = 0;
81819f0f 3010
da9a638c
LJ
3011 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3012 s->reserved = sizeof(struct rcu_head);
81819f0f 3013
06b285dc 3014 if (!calculate_sizes(s, -1))
81819f0f 3015 goto error;
3de47213
DR
3016 if (disable_higher_order_debug) {
3017 /*
3018 * Disable debugging flags that store metadata if the min slab
3019 * order increased.
3020 */
3021 if (get_order(s->size) > get_order(s->objsize)) {
3022 s->flags &= ~DEBUG_METADATA_FLAGS;
3023 s->offset = 0;
3024 if (!calculate_sizes(s, -1))
3025 goto error;
3026 }
3027 }
81819f0f 3028
2565409f
HC
3029#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3030 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3031 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3032 /* Enable fast mode */
3033 s->flags |= __CMPXCHG_DOUBLE;
3034#endif
3035
3b89d7d8
DR
3036 /*
3037 * The larger the object size is, the more pages we want on the partial
3038 * list to avoid pounding the page allocator excessively.
3039 */
49e22585
CL
3040 set_min_partial(s, ilog2(s->size) / 2);
3041
3042 /*
3043 * cpu_partial determined the maximum number of objects kept in the
3044 * per cpu partial lists of a processor.
3045 *
3046 * Per cpu partial lists mainly contain slabs that just have one
3047 * object freed. If they are used for allocation then they can be
3048 * filled up again with minimal effort. The slab will never hit the
3049 * per node partial lists and therefore no locking will be required.
3050 *
3051 * This setting also determines
3052 *
3053 * A) The number of objects from per cpu partial slabs dumped to the
3054 * per node list when we reach the limit.
9f264904 3055 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3056 * per node list when we run out of per cpu objects. We only fetch 50%
3057 * to keep some capacity around for frees.
3058 */
8f1e33da
CL
3059 if (kmem_cache_debug(s))
3060 s->cpu_partial = 0;
3061 else if (s->size >= PAGE_SIZE)
49e22585
CL
3062 s->cpu_partial = 2;
3063 else if (s->size >= 1024)
3064 s->cpu_partial = 6;
3065 else if (s->size >= 256)
3066 s->cpu_partial = 13;
3067 else
3068 s->cpu_partial = 30;
3069
81819f0f
CL
3070 s->refcount = 1;
3071#ifdef CONFIG_NUMA
e2cb96b7 3072 s->remote_node_defrag_ratio = 1000;
81819f0f 3073#endif
55136592 3074 if (!init_kmem_cache_nodes(s))
dfb4f096 3075 goto error;
81819f0f 3076
55136592 3077 if (alloc_kmem_cache_cpus(s))
81819f0f 3078 return 1;
ff12059e 3079
4c93c355 3080 free_kmem_cache_nodes(s);
81819f0f
CL
3081error:
3082 if (flags & SLAB_PANIC)
3083 panic("Cannot create slab %s size=%lu realsize=%u "
3084 "order=%u offset=%u flags=%lx\n",
834f3d11 3085 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3086 s->offset, flags);
3087 return 0;
3088}
81819f0f 3089
81819f0f
CL
3090/*
3091 * Determine the size of a slab object
3092 */
3093unsigned int kmem_cache_size(struct kmem_cache *s)
3094{
3095 return s->objsize;
3096}
3097EXPORT_SYMBOL(kmem_cache_size);
3098
33b12c38
CL
3099static void list_slab_objects(struct kmem_cache *s, struct page *page,
3100 const char *text)
3101{
3102#ifdef CONFIG_SLUB_DEBUG
3103 void *addr = page_address(page);
3104 void *p;
a5dd5c11
NK
3105 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3106 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3107 if (!map)
3108 return;
33b12c38
CL
3109 slab_err(s, page, "%s", text);
3110 slab_lock(page);
33b12c38 3111
5f80b13a 3112 get_map(s, page, map);
33b12c38
CL
3113 for_each_object(p, s, addr, page->objects) {
3114
3115 if (!test_bit(slab_index(p, s, addr), map)) {
3116 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3117 p, p - addr);
3118 print_tracking(s, p);
3119 }
3120 }
3121 slab_unlock(page);
bbd7d57b 3122 kfree(map);
33b12c38
CL
3123#endif
3124}
3125
81819f0f 3126/*
599870b1 3127 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3128 * This is called from kmem_cache_close(). We must be the last thread
3129 * using the cache and therefore we do not need to lock anymore.
81819f0f 3130 */
599870b1 3131static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3132{
81819f0f
CL
3133 struct page *page, *h;
3134
33b12c38 3135 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3136 if (!page->inuse) {
5cc6eee8 3137 remove_partial(n, page);
81819f0f 3138 discard_slab(s, page);
33b12c38
CL
3139 } else {
3140 list_slab_objects(s, page,
3141 "Objects remaining on kmem_cache_close()");
599870b1 3142 }
33b12c38 3143 }
81819f0f
CL
3144}
3145
3146/*
672bba3a 3147 * Release all resources used by a slab cache.
81819f0f 3148 */
0c710013 3149static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3150{
3151 int node;
3152
3153 flush_all(s);
9dfc6e68 3154 free_percpu(s->cpu_slab);
81819f0f 3155 /* Attempt to free all objects */
f64dc58c 3156 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3157 struct kmem_cache_node *n = get_node(s, node);
3158
599870b1
CL
3159 free_partial(s, n);
3160 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3161 return 1;
3162 }
3163 free_kmem_cache_nodes(s);
3164 return 0;
3165}
3166
3167/*
3168 * Close a cache and release the kmem_cache structure
3169 * (must be used for caches created using kmem_cache_create)
3170 */
3171void kmem_cache_destroy(struct kmem_cache *s)
3172{
3173 down_write(&slub_lock);
3174 s->refcount--;
3175 if (!s->refcount) {
3176 list_del(&s->list);
69cb8e6b 3177 up_write(&slub_lock);
d629d819
PE
3178 if (kmem_cache_close(s)) {
3179 printk(KERN_ERR "SLUB %s: %s called for cache that "
3180 "still has objects.\n", s->name, __func__);
3181 dump_stack();
3182 }
d76b1590
ED
3183 if (s->flags & SLAB_DESTROY_BY_RCU)
3184 rcu_barrier();
81819f0f 3185 sysfs_slab_remove(s);
69cb8e6b
CL
3186 } else
3187 up_write(&slub_lock);
81819f0f
CL
3188}
3189EXPORT_SYMBOL(kmem_cache_destroy);
3190
3191/********************************************************************
3192 * Kmalloc subsystem
3193 *******************************************************************/
3194
51df1142 3195struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3196EXPORT_SYMBOL(kmalloc_caches);
3197
51df1142
CL
3198static struct kmem_cache *kmem_cache;
3199
55136592 3200#ifdef CONFIG_ZONE_DMA
51df1142 3201static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3202#endif
3203
81819f0f
CL
3204static int __init setup_slub_min_order(char *str)
3205{
06428780 3206 get_option(&str, &slub_min_order);
81819f0f
CL
3207
3208 return 1;
3209}
3210
3211__setup("slub_min_order=", setup_slub_min_order);
3212
3213static int __init setup_slub_max_order(char *str)
3214{
06428780 3215 get_option(&str, &slub_max_order);
818cf590 3216 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3217
3218 return 1;
3219}
3220
3221__setup("slub_max_order=", setup_slub_max_order);
3222
3223static int __init setup_slub_min_objects(char *str)
3224{
06428780 3225 get_option(&str, &slub_min_objects);
81819f0f
CL
3226
3227 return 1;
3228}
3229
3230__setup("slub_min_objects=", setup_slub_min_objects);
3231
3232static int __init setup_slub_nomerge(char *str)
3233{
3234 slub_nomerge = 1;
3235 return 1;
3236}
3237
3238__setup("slub_nomerge", setup_slub_nomerge);
3239
51df1142
CL
3240static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3241 int size, unsigned int flags)
81819f0f 3242{
51df1142
CL
3243 struct kmem_cache *s;
3244
3245 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3246
83b519e8
PE
3247 /*
3248 * This function is called with IRQs disabled during early-boot on
3249 * single CPU so there's no need to take slub_lock here.
3250 */
55136592 3251 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3252 flags, NULL))
81819f0f
CL
3253 goto panic;
3254
3255 list_add(&s->list, &slab_caches);
51df1142 3256 return s;
81819f0f
CL
3257
3258panic:
3259 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3260 return NULL;
81819f0f
CL
3261}
3262
f1b26339
CL
3263/*
3264 * Conversion table for small slabs sizes / 8 to the index in the
3265 * kmalloc array. This is necessary for slabs < 192 since we have non power
3266 * of two cache sizes there. The size of larger slabs can be determined using
3267 * fls.
3268 */
3269static s8 size_index[24] = {
3270 3, /* 8 */
3271 4, /* 16 */
3272 5, /* 24 */
3273 5, /* 32 */
3274 6, /* 40 */
3275 6, /* 48 */
3276 6, /* 56 */
3277 6, /* 64 */
3278 1, /* 72 */
3279 1, /* 80 */
3280 1, /* 88 */
3281 1, /* 96 */
3282 7, /* 104 */
3283 7, /* 112 */
3284 7, /* 120 */
3285 7, /* 128 */
3286 2, /* 136 */
3287 2, /* 144 */
3288 2, /* 152 */
3289 2, /* 160 */
3290 2, /* 168 */
3291 2, /* 176 */
3292 2, /* 184 */
3293 2 /* 192 */
3294};
3295
acdfcd04
AK
3296static inline int size_index_elem(size_t bytes)
3297{
3298 return (bytes - 1) / 8;
3299}
3300
81819f0f
CL
3301static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3302{
f1b26339 3303 int index;
81819f0f 3304
f1b26339
CL
3305 if (size <= 192) {
3306 if (!size)
3307 return ZERO_SIZE_PTR;
81819f0f 3308
acdfcd04 3309 index = size_index[size_index_elem(size)];
aadb4bc4 3310 } else
f1b26339 3311 index = fls(size - 1);
81819f0f
CL
3312
3313#ifdef CONFIG_ZONE_DMA
f1b26339 3314 if (unlikely((flags & SLUB_DMA)))
51df1142 3315 return kmalloc_dma_caches[index];
f1b26339 3316
81819f0f 3317#endif
51df1142 3318 return kmalloc_caches[index];
81819f0f
CL
3319}
3320
3321void *__kmalloc(size_t size, gfp_t flags)
3322{
aadb4bc4 3323 struct kmem_cache *s;
5b882be4 3324 void *ret;
81819f0f 3325
ffadd4d0 3326 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3327 return kmalloc_large(size, flags);
aadb4bc4
CL
3328
3329 s = get_slab(size, flags);
3330
3331 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3332 return s;
3333
2154a336 3334 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3335
ca2b84cb 3336 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3337
3338 return ret;
81819f0f
CL
3339}
3340EXPORT_SYMBOL(__kmalloc);
3341
5d1f57e4 3342#ifdef CONFIG_NUMA
f619cfe1
CL
3343static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3344{
b1eeab67 3345 struct page *page;
e4f7c0b4 3346 void *ptr = NULL;
f619cfe1 3347
b1eeab67
VN
3348 flags |= __GFP_COMP | __GFP_NOTRACK;
3349 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3350 if (page)
e4f7c0b4
CM
3351 ptr = page_address(page);
3352
3353 kmemleak_alloc(ptr, size, 1, flags);
3354 return ptr;
f619cfe1
CL
3355}
3356
81819f0f
CL
3357void *__kmalloc_node(size_t size, gfp_t flags, int node)
3358{
aadb4bc4 3359 struct kmem_cache *s;
5b882be4 3360 void *ret;
81819f0f 3361
057685cf 3362 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3363 ret = kmalloc_large_node(size, flags, node);
3364
ca2b84cb
EGM
3365 trace_kmalloc_node(_RET_IP_, ret,
3366 size, PAGE_SIZE << get_order(size),
3367 flags, node);
5b882be4
EGM
3368
3369 return ret;
3370 }
aadb4bc4
CL
3371
3372 s = get_slab(size, flags);
3373
3374 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3375 return s;
3376
5b882be4
EGM
3377 ret = slab_alloc(s, flags, node, _RET_IP_);
3378
ca2b84cb 3379 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3380
3381 return ret;
81819f0f
CL
3382}
3383EXPORT_SYMBOL(__kmalloc_node);
3384#endif
3385
3386size_t ksize(const void *object)
3387{
272c1d21 3388 struct page *page;
81819f0f 3389
ef8b4520 3390 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3391 return 0;
3392
294a80a8 3393 page = virt_to_head_page(object);
294a80a8 3394
76994412
PE
3395 if (unlikely(!PageSlab(page))) {
3396 WARN_ON(!PageCompound(page));
294a80a8 3397 return PAGE_SIZE << compound_order(page);
76994412 3398 }
81819f0f 3399
b3d41885 3400 return slab_ksize(page->slab);
81819f0f 3401}
b1aabecd 3402EXPORT_SYMBOL(ksize);
81819f0f 3403
d18a90dd
BG
3404#ifdef CONFIG_SLUB_DEBUG
3405bool verify_mem_not_deleted(const void *x)
3406{
3407 struct page *page;
3408 void *object = (void *)x;
3409 unsigned long flags;
3410 bool rv;
3411
3412 if (unlikely(ZERO_OR_NULL_PTR(x)))
3413 return false;
3414
3415 local_irq_save(flags);
3416
3417 page = virt_to_head_page(x);
3418 if (unlikely(!PageSlab(page))) {
3419 /* maybe it was from stack? */
3420 rv = true;
3421 goto out_unlock;
3422 }
3423
3424 slab_lock(page);
3425 if (on_freelist(page->slab, page, object)) {
3426 object_err(page->slab, page, object, "Object is on free-list");
3427 rv = false;
3428 } else {
3429 rv = true;
3430 }
3431 slab_unlock(page);
3432
3433out_unlock:
3434 local_irq_restore(flags);
3435 return rv;
3436}
3437EXPORT_SYMBOL(verify_mem_not_deleted);
3438#endif
3439
81819f0f
CL
3440void kfree(const void *x)
3441{
81819f0f 3442 struct page *page;
5bb983b0 3443 void *object = (void *)x;
81819f0f 3444
2121db74
PE
3445 trace_kfree(_RET_IP_, x);
3446
2408c550 3447 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3448 return;
3449
b49af68f 3450 page = virt_to_head_page(x);
aadb4bc4 3451 if (unlikely(!PageSlab(page))) {
0937502a 3452 BUG_ON(!PageCompound(page));
e4f7c0b4 3453 kmemleak_free(x);
aadb4bc4
CL
3454 put_page(page);
3455 return;
3456 }
ce71e27c 3457 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3458}
3459EXPORT_SYMBOL(kfree);
3460
2086d26a 3461/*
672bba3a
CL
3462 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3463 * the remaining slabs by the number of items in use. The slabs with the
3464 * most items in use come first. New allocations will then fill those up
3465 * and thus they can be removed from the partial lists.
3466 *
3467 * The slabs with the least items are placed last. This results in them
3468 * being allocated from last increasing the chance that the last objects
3469 * are freed in them.
2086d26a
CL
3470 */
3471int kmem_cache_shrink(struct kmem_cache *s)
3472{
3473 int node;
3474 int i;
3475 struct kmem_cache_node *n;
3476 struct page *page;
3477 struct page *t;
205ab99d 3478 int objects = oo_objects(s->max);
2086d26a 3479 struct list_head *slabs_by_inuse =
834f3d11 3480 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3481 unsigned long flags;
3482
3483 if (!slabs_by_inuse)
3484 return -ENOMEM;
3485
3486 flush_all(s);
f64dc58c 3487 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3488 n = get_node(s, node);
3489
3490 if (!n->nr_partial)
3491 continue;
3492
834f3d11 3493 for (i = 0; i < objects; i++)
2086d26a
CL
3494 INIT_LIST_HEAD(slabs_by_inuse + i);
3495
3496 spin_lock_irqsave(&n->list_lock, flags);
3497
3498 /*
672bba3a 3499 * Build lists indexed by the items in use in each slab.
2086d26a 3500 *
672bba3a
CL
3501 * Note that concurrent frees may occur while we hold the
3502 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3503 */
3504 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3505 list_move(&page->lru, slabs_by_inuse + page->inuse);
3506 if (!page->inuse)
3507 n->nr_partial--;
2086d26a
CL
3508 }
3509
2086d26a 3510 /*
672bba3a
CL
3511 * Rebuild the partial list with the slabs filled up most
3512 * first and the least used slabs at the end.
2086d26a 3513 */
69cb8e6b 3514 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3515 list_splice(slabs_by_inuse + i, n->partial.prev);
3516
2086d26a 3517 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3518
3519 /* Release empty slabs */
3520 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3521 discard_slab(s, page);
2086d26a
CL
3522 }
3523
3524 kfree(slabs_by_inuse);
3525 return 0;
3526}
3527EXPORT_SYMBOL(kmem_cache_shrink);
3528
92a5bbc1 3529#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3530static int slab_mem_going_offline_callback(void *arg)
3531{
3532 struct kmem_cache *s;
3533
3534 down_read(&slub_lock);
3535 list_for_each_entry(s, &slab_caches, list)
3536 kmem_cache_shrink(s);
3537 up_read(&slub_lock);
3538
3539 return 0;
3540}
3541
3542static void slab_mem_offline_callback(void *arg)
3543{
3544 struct kmem_cache_node *n;
3545 struct kmem_cache *s;
3546 struct memory_notify *marg = arg;
3547 int offline_node;
3548
3549 offline_node = marg->status_change_nid;
3550
3551 /*
3552 * If the node still has available memory. we need kmem_cache_node
3553 * for it yet.
3554 */
3555 if (offline_node < 0)
3556 return;
3557
3558 down_read(&slub_lock);
3559 list_for_each_entry(s, &slab_caches, list) {
3560 n = get_node(s, offline_node);
3561 if (n) {
3562 /*
3563 * if n->nr_slabs > 0, slabs still exist on the node
3564 * that is going down. We were unable to free them,
c9404c9c 3565 * and offline_pages() function shouldn't call this
b9049e23
YG
3566 * callback. So, we must fail.
3567 */
0f389ec6 3568 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3569
3570 s->node[offline_node] = NULL;
8de66a0c 3571 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3572 }
3573 }
3574 up_read(&slub_lock);
3575}
3576
3577static int slab_mem_going_online_callback(void *arg)
3578{
3579 struct kmem_cache_node *n;
3580 struct kmem_cache *s;
3581 struct memory_notify *marg = arg;
3582 int nid = marg->status_change_nid;
3583 int ret = 0;
3584
3585 /*
3586 * If the node's memory is already available, then kmem_cache_node is
3587 * already created. Nothing to do.
3588 */
3589 if (nid < 0)
3590 return 0;
3591
3592 /*
0121c619 3593 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3594 * allocate a kmem_cache_node structure in order to bring the node
3595 * online.
3596 */
3597 down_read(&slub_lock);
3598 list_for_each_entry(s, &slab_caches, list) {
3599 /*
3600 * XXX: kmem_cache_alloc_node will fallback to other nodes
3601 * since memory is not yet available from the node that
3602 * is brought up.
3603 */
8de66a0c 3604 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3605 if (!n) {
3606 ret = -ENOMEM;
3607 goto out;
3608 }
5595cffc 3609 init_kmem_cache_node(n, s);
b9049e23
YG
3610 s->node[nid] = n;
3611 }
3612out:
3613 up_read(&slub_lock);
3614 return ret;
3615}
3616
3617static int slab_memory_callback(struct notifier_block *self,
3618 unsigned long action, void *arg)
3619{
3620 int ret = 0;
3621
3622 switch (action) {
3623 case MEM_GOING_ONLINE:
3624 ret = slab_mem_going_online_callback(arg);
3625 break;
3626 case MEM_GOING_OFFLINE:
3627 ret = slab_mem_going_offline_callback(arg);
3628 break;
3629 case MEM_OFFLINE:
3630 case MEM_CANCEL_ONLINE:
3631 slab_mem_offline_callback(arg);
3632 break;
3633 case MEM_ONLINE:
3634 case MEM_CANCEL_OFFLINE:
3635 break;
3636 }
dc19f9db
KH
3637 if (ret)
3638 ret = notifier_from_errno(ret);
3639 else
3640 ret = NOTIFY_OK;
b9049e23
YG
3641 return ret;
3642}
3643
3644#endif /* CONFIG_MEMORY_HOTPLUG */
3645
81819f0f
CL
3646/********************************************************************
3647 * Basic setup of slabs
3648 *******************************************************************/
3649
51df1142
CL
3650/*
3651 * Used for early kmem_cache structures that were allocated using
3652 * the page allocator
3653 */
3654
3655static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3656{
3657 int node;
3658
3659 list_add(&s->list, &slab_caches);
3660 s->refcount = -1;
3661
3662 for_each_node_state(node, N_NORMAL_MEMORY) {
3663 struct kmem_cache_node *n = get_node(s, node);
3664 struct page *p;
3665
3666 if (n) {
3667 list_for_each_entry(p, &n->partial, lru)
3668 p->slab = s;
3669
607bf324 3670#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3671 list_for_each_entry(p, &n->full, lru)
3672 p->slab = s;
3673#endif
3674 }
3675 }
3676}
3677
81819f0f
CL
3678void __init kmem_cache_init(void)
3679{
3680 int i;
4b356be0 3681 int caches = 0;
51df1142
CL
3682 struct kmem_cache *temp_kmem_cache;
3683 int order;
51df1142
CL
3684 struct kmem_cache *temp_kmem_cache_node;
3685 unsigned long kmalloc_size;
3686
fc8d8620
SG
3687 if (debug_guardpage_minorder())
3688 slub_max_order = 0;
3689
51df1142
CL
3690 kmem_size = offsetof(struct kmem_cache, node) +
3691 nr_node_ids * sizeof(struct kmem_cache_node *);
3692
3693 /* Allocate two kmem_caches from the page allocator */
3694 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3695 order = get_order(2 * kmalloc_size);
3696 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3697
81819f0f
CL
3698 /*
3699 * Must first have the slab cache available for the allocations of the
672bba3a 3700 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3701 * kmem_cache_open for slab_state == DOWN.
3702 */
51df1142
CL
3703 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3704
3705 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3706 sizeof(struct kmem_cache_node),
3707 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3708
0c40ba4f 3709 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3710
3711 /* Able to allocate the per node structures */
3712 slab_state = PARTIAL;
3713
51df1142
CL
3714 temp_kmem_cache = kmem_cache;
3715 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3716 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3717 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3718 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3719
51df1142
CL
3720 /*
3721 * Allocate kmem_cache_node properly from the kmem_cache slab.
3722 * kmem_cache_node is separately allocated so no need to
3723 * update any list pointers.
3724 */
3725 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3726
51df1142
CL
3727 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3728 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3729
3730 kmem_cache_bootstrap_fixup(kmem_cache_node);
3731
3732 caches++;
51df1142
CL
3733 kmem_cache_bootstrap_fixup(kmem_cache);
3734 caches++;
3735 /* Free temporary boot structure */
3736 free_pages((unsigned long)temp_kmem_cache, order);
3737
3738 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3739
3740 /*
3741 * Patch up the size_index table if we have strange large alignment
3742 * requirements for the kmalloc array. This is only the case for
6446faa2 3743 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3744 *
3745 * Largest permitted alignment is 256 bytes due to the way we
3746 * handle the index determination for the smaller caches.
3747 *
3748 * Make sure that nothing crazy happens if someone starts tinkering
3749 * around with ARCH_KMALLOC_MINALIGN
3750 */
3751 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3752 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3753
acdfcd04
AK
3754 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3755 int elem = size_index_elem(i);
3756 if (elem >= ARRAY_SIZE(size_index))
3757 break;
3758 size_index[elem] = KMALLOC_SHIFT_LOW;
3759 }
f1b26339 3760
acdfcd04
AK
3761 if (KMALLOC_MIN_SIZE == 64) {
3762 /*
3763 * The 96 byte size cache is not used if the alignment
3764 * is 64 byte.
3765 */
3766 for (i = 64 + 8; i <= 96; i += 8)
3767 size_index[size_index_elem(i)] = 7;
3768 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3769 /*
3770 * The 192 byte sized cache is not used if the alignment
3771 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3772 * instead.
3773 */
3774 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3775 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3776 }
3777
51df1142
CL
3778 /* Caches that are not of the two-to-the-power-of size */
3779 if (KMALLOC_MIN_SIZE <= 32) {
3780 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3781 caches++;
3782 }
3783
3784 if (KMALLOC_MIN_SIZE <= 64) {
3785 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3786 caches++;
3787 }
3788
3789 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3790 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3791 caches++;
3792 }
3793
81819f0f
CL
3794 slab_state = UP;
3795
3796 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3797 if (KMALLOC_MIN_SIZE <= 32) {
3798 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3799 BUG_ON(!kmalloc_caches[1]->name);
3800 }
3801
3802 if (KMALLOC_MIN_SIZE <= 64) {
3803 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3804 BUG_ON(!kmalloc_caches[2]->name);
3805 }
3806
d7278bd7
CL
3807 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3808 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3809
3810 BUG_ON(!s);
51df1142 3811 kmalloc_caches[i]->name = s;
d7278bd7 3812 }
81819f0f
CL
3813
3814#ifdef CONFIG_SMP
3815 register_cpu_notifier(&slab_notifier);
9dfc6e68 3816#endif
81819f0f 3817
55136592 3818#ifdef CONFIG_ZONE_DMA
51df1142
CL
3819 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3820 struct kmem_cache *s = kmalloc_caches[i];
55136592 3821
51df1142 3822 if (s && s->size) {
55136592
CL
3823 char *name = kasprintf(GFP_NOWAIT,
3824 "dma-kmalloc-%d", s->objsize);
3825
3826 BUG_ON(!name);
51df1142
CL
3827 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3828 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3829 }
3830 }
3831#endif
3adbefee
IM
3832 printk(KERN_INFO
3833 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3834 " CPUs=%d, Nodes=%d\n",
3835 caches, cache_line_size(),
81819f0f
CL
3836 slub_min_order, slub_max_order, slub_min_objects,
3837 nr_cpu_ids, nr_node_ids);
3838}
3839
7e85ee0c
PE
3840void __init kmem_cache_init_late(void)
3841{
7e85ee0c
PE
3842}
3843
81819f0f
CL
3844/*
3845 * Find a mergeable slab cache
3846 */
3847static int slab_unmergeable(struct kmem_cache *s)
3848{
3849 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3850 return 1;
3851
c59def9f 3852 if (s->ctor)
81819f0f
CL
3853 return 1;
3854
8ffa6875
CL
3855 /*
3856 * We may have set a slab to be unmergeable during bootstrap.
3857 */
3858 if (s->refcount < 0)
3859 return 1;
3860
81819f0f
CL
3861 return 0;
3862}
3863
3864static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3865 size_t align, unsigned long flags, const char *name,
51cc5068 3866 void (*ctor)(void *))
81819f0f 3867{
5b95a4ac 3868 struct kmem_cache *s;
81819f0f
CL
3869
3870 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3871 return NULL;
3872
c59def9f 3873 if (ctor)
81819f0f
CL
3874 return NULL;
3875
3876 size = ALIGN(size, sizeof(void *));
3877 align = calculate_alignment(flags, align, size);
3878 size = ALIGN(size, align);
ba0268a8 3879 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3880
5b95a4ac 3881 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3882 if (slab_unmergeable(s))
3883 continue;
3884
3885 if (size > s->size)
3886 continue;
3887
ba0268a8 3888 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3889 continue;
3890 /*
3891 * Check if alignment is compatible.
3892 * Courtesy of Adrian Drzewiecki
3893 */
06428780 3894 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3895 continue;
3896
3897 if (s->size - size >= sizeof(void *))
3898 continue;
3899
3900 return s;
3901 }
3902 return NULL;
3903}
3904
3905struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3906 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3907{
3908 struct kmem_cache *s;
84c1cf62 3909 char *n;
81819f0f 3910
fe1ff49d
BH
3911 if (WARN_ON(!name))
3912 return NULL;
3913
81819f0f 3914 down_write(&slub_lock);
ba0268a8 3915 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3916 if (s) {
3917 s->refcount++;
3918 /*
3919 * Adjust the object sizes so that we clear
3920 * the complete object on kzalloc.
3921 */
3922 s->objsize = max(s->objsize, (int)size);
3923 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3924
7b8f3b66 3925 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3926 s->refcount--;
81819f0f 3927 goto err;
7b8f3b66 3928 }
2bce6485 3929 up_write(&slub_lock);
a0e1d1be
CL
3930 return s;
3931 }
6446faa2 3932
84c1cf62
PE
3933 n = kstrdup(name, GFP_KERNEL);
3934 if (!n)
3935 goto err;
3936
a0e1d1be
CL
3937 s = kmalloc(kmem_size, GFP_KERNEL);
3938 if (s) {
84c1cf62 3939 if (kmem_cache_open(s, n,
c59def9f 3940 size, align, flags, ctor)) {
81819f0f 3941 list_add(&s->list, &slab_caches);
7b8f3b66 3942 if (sysfs_slab_add(s)) {
7b8f3b66 3943 list_del(&s->list);
84c1cf62 3944 kfree(n);
7b8f3b66 3945 kfree(s);
a0e1d1be 3946 goto err;
7b8f3b66 3947 }
2bce6485 3948 up_write(&slub_lock);
a0e1d1be
CL
3949 return s;
3950 }
84c1cf62 3951 kfree(n);
a0e1d1be 3952 kfree(s);
81819f0f 3953 }
68cee4f1 3954err:
81819f0f 3955 up_write(&slub_lock);
81819f0f 3956
81819f0f
CL
3957 if (flags & SLAB_PANIC)
3958 panic("Cannot create slabcache %s\n", name);
3959 else
3960 s = NULL;
3961 return s;
3962}
3963EXPORT_SYMBOL(kmem_cache_create);
3964
81819f0f 3965#ifdef CONFIG_SMP
81819f0f 3966/*
672bba3a
CL
3967 * Use the cpu notifier to insure that the cpu slabs are flushed when
3968 * necessary.
81819f0f
CL
3969 */
3970static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3971 unsigned long action, void *hcpu)
3972{
3973 long cpu = (long)hcpu;
5b95a4ac
CL
3974 struct kmem_cache *s;
3975 unsigned long flags;
81819f0f
CL
3976
3977 switch (action) {
3978 case CPU_UP_CANCELED:
8bb78442 3979 case CPU_UP_CANCELED_FROZEN:
81819f0f 3980 case CPU_DEAD:
8bb78442 3981 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3982 down_read(&slub_lock);
3983 list_for_each_entry(s, &slab_caches, list) {
3984 local_irq_save(flags);
3985 __flush_cpu_slab(s, cpu);
3986 local_irq_restore(flags);
3987 }
3988 up_read(&slub_lock);
81819f0f
CL
3989 break;
3990 default:
3991 break;
3992 }
3993 return NOTIFY_OK;
3994}
3995
06428780 3996static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3997 .notifier_call = slab_cpuup_callback
06428780 3998};
81819f0f
CL
3999
4000#endif
4001
ce71e27c 4002void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4003{
aadb4bc4 4004 struct kmem_cache *s;
94b528d0 4005 void *ret;
aadb4bc4 4006
ffadd4d0 4007 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4008 return kmalloc_large(size, gfpflags);
4009
aadb4bc4 4010 s = get_slab(size, gfpflags);
81819f0f 4011
2408c550 4012 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4013 return s;
81819f0f 4014
2154a336 4015 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4016
25985edc 4017 /* Honor the call site pointer we received. */
ca2b84cb 4018 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4019
4020 return ret;
81819f0f
CL
4021}
4022
5d1f57e4 4023#ifdef CONFIG_NUMA
81819f0f 4024void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4025 int node, unsigned long caller)
81819f0f 4026{
aadb4bc4 4027 struct kmem_cache *s;
94b528d0 4028 void *ret;
aadb4bc4 4029
d3e14aa3
XF
4030 if (unlikely(size > SLUB_MAX_SIZE)) {
4031 ret = kmalloc_large_node(size, gfpflags, node);
4032
4033 trace_kmalloc_node(caller, ret,
4034 size, PAGE_SIZE << get_order(size),
4035 gfpflags, node);
4036
4037 return ret;
4038 }
eada35ef 4039
aadb4bc4 4040 s = get_slab(size, gfpflags);
81819f0f 4041
2408c550 4042 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4043 return s;
81819f0f 4044
94b528d0
EGM
4045 ret = slab_alloc(s, gfpflags, node, caller);
4046
25985edc 4047 /* Honor the call site pointer we received. */
ca2b84cb 4048 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4049
4050 return ret;
81819f0f 4051}
5d1f57e4 4052#endif
81819f0f 4053
ab4d5ed5 4054#ifdef CONFIG_SYSFS
205ab99d
CL
4055static int count_inuse(struct page *page)
4056{
4057 return page->inuse;
4058}
4059
4060static int count_total(struct page *page)
4061{
4062 return page->objects;
4063}
ab4d5ed5 4064#endif
205ab99d 4065
ab4d5ed5 4066#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4067static int validate_slab(struct kmem_cache *s, struct page *page,
4068 unsigned long *map)
53e15af0
CL
4069{
4070 void *p;
a973e9dd 4071 void *addr = page_address(page);
53e15af0
CL
4072
4073 if (!check_slab(s, page) ||
4074 !on_freelist(s, page, NULL))
4075 return 0;
4076
4077 /* Now we know that a valid freelist exists */
39b26464 4078 bitmap_zero(map, page->objects);
53e15af0 4079
5f80b13a
CL
4080 get_map(s, page, map);
4081 for_each_object(p, s, addr, page->objects) {
4082 if (test_bit(slab_index(p, s, addr), map))
4083 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4084 return 0;
53e15af0
CL
4085 }
4086
224a88be 4087 for_each_object(p, s, addr, page->objects)
7656c72b 4088 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4089 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4090 return 0;
4091 return 1;
4092}
4093
434e245d
CL
4094static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4095 unsigned long *map)
53e15af0 4096{
881db7fb
CL
4097 slab_lock(page);
4098 validate_slab(s, page, map);
4099 slab_unlock(page);
53e15af0
CL
4100}
4101
434e245d
CL
4102static int validate_slab_node(struct kmem_cache *s,
4103 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4104{
4105 unsigned long count = 0;
4106 struct page *page;
4107 unsigned long flags;
4108
4109 spin_lock_irqsave(&n->list_lock, flags);
4110
4111 list_for_each_entry(page, &n->partial, lru) {
434e245d 4112 validate_slab_slab(s, page, map);
53e15af0
CL
4113 count++;
4114 }
4115 if (count != n->nr_partial)
4116 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4117 "counter=%ld\n", s->name, count, n->nr_partial);
4118
4119 if (!(s->flags & SLAB_STORE_USER))
4120 goto out;
4121
4122 list_for_each_entry(page, &n->full, lru) {
434e245d 4123 validate_slab_slab(s, page, map);
53e15af0
CL
4124 count++;
4125 }
4126 if (count != atomic_long_read(&n->nr_slabs))
4127 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4128 "counter=%ld\n", s->name, count,
4129 atomic_long_read(&n->nr_slabs));
4130
4131out:
4132 spin_unlock_irqrestore(&n->list_lock, flags);
4133 return count;
4134}
4135
434e245d 4136static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4137{
4138 int node;
4139 unsigned long count = 0;
205ab99d 4140 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4141 sizeof(unsigned long), GFP_KERNEL);
4142
4143 if (!map)
4144 return -ENOMEM;
53e15af0
CL
4145
4146 flush_all(s);
f64dc58c 4147 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4148 struct kmem_cache_node *n = get_node(s, node);
4149
434e245d 4150 count += validate_slab_node(s, n, map);
53e15af0 4151 }
434e245d 4152 kfree(map);
53e15af0
CL
4153 return count;
4154}
88a420e4 4155/*
672bba3a 4156 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4157 * and freed.
4158 */
4159
4160struct location {
4161 unsigned long count;
ce71e27c 4162 unsigned long addr;
45edfa58
CL
4163 long long sum_time;
4164 long min_time;
4165 long max_time;
4166 long min_pid;
4167 long max_pid;
174596a0 4168 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4169 nodemask_t nodes;
88a420e4
CL
4170};
4171
4172struct loc_track {
4173 unsigned long max;
4174 unsigned long count;
4175 struct location *loc;
4176};
4177
4178static void free_loc_track(struct loc_track *t)
4179{
4180 if (t->max)
4181 free_pages((unsigned long)t->loc,
4182 get_order(sizeof(struct location) * t->max));
4183}
4184
68dff6a9 4185static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4186{
4187 struct location *l;
4188 int order;
4189
88a420e4
CL
4190 order = get_order(sizeof(struct location) * max);
4191
68dff6a9 4192 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4193 if (!l)
4194 return 0;
4195
4196 if (t->count) {
4197 memcpy(l, t->loc, sizeof(struct location) * t->count);
4198 free_loc_track(t);
4199 }
4200 t->max = max;
4201 t->loc = l;
4202 return 1;
4203}
4204
4205static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4206 const struct track *track)
88a420e4
CL
4207{
4208 long start, end, pos;
4209 struct location *l;
ce71e27c 4210 unsigned long caddr;
45edfa58 4211 unsigned long age = jiffies - track->when;
88a420e4
CL
4212
4213 start = -1;
4214 end = t->count;
4215
4216 for ( ; ; ) {
4217 pos = start + (end - start + 1) / 2;
4218
4219 /*
4220 * There is nothing at "end". If we end up there
4221 * we need to add something to before end.
4222 */
4223 if (pos == end)
4224 break;
4225
4226 caddr = t->loc[pos].addr;
45edfa58
CL
4227 if (track->addr == caddr) {
4228
4229 l = &t->loc[pos];
4230 l->count++;
4231 if (track->when) {
4232 l->sum_time += age;
4233 if (age < l->min_time)
4234 l->min_time = age;
4235 if (age > l->max_time)
4236 l->max_time = age;
4237
4238 if (track->pid < l->min_pid)
4239 l->min_pid = track->pid;
4240 if (track->pid > l->max_pid)
4241 l->max_pid = track->pid;
4242
174596a0
RR
4243 cpumask_set_cpu(track->cpu,
4244 to_cpumask(l->cpus));
45edfa58
CL
4245 }
4246 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4247 return 1;
4248 }
4249
45edfa58 4250 if (track->addr < caddr)
88a420e4
CL
4251 end = pos;
4252 else
4253 start = pos;
4254 }
4255
4256 /*
672bba3a 4257 * Not found. Insert new tracking element.
88a420e4 4258 */
68dff6a9 4259 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4260 return 0;
4261
4262 l = t->loc + pos;
4263 if (pos < t->count)
4264 memmove(l + 1, l,
4265 (t->count - pos) * sizeof(struct location));
4266 t->count++;
4267 l->count = 1;
45edfa58
CL
4268 l->addr = track->addr;
4269 l->sum_time = age;
4270 l->min_time = age;
4271 l->max_time = age;
4272 l->min_pid = track->pid;
4273 l->max_pid = track->pid;
174596a0
RR
4274 cpumask_clear(to_cpumask(l->cpus));
4275 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4276 nodes_clear(l->nodes);
4277 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4278 return 1;
4279}
4280
4281static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4282 struct page *page, enum track_item alloc,
a5dd5c11 4283 unsigned long *map)
88a420e4 4284{
a973e9dd 4285 void *addr = page_address(page);
88a420e4
CL
4286 void *p;
4287
39b26464 4288 bitmap_zero(map, page->objects);
5f80b13a 4289 get_map(s, page, map);
88a420e4 4290
224a88be 4291 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4292 if (!test_bit(slab_index(p, s, addr), map))
4293 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4294}
4295
4296static int list_locations(struct kmem_cache *s, char *buf,
4297 enum track_item alloc)
4298{
e374d483 4299 int len = 0;
88a420e4 4300 unsigned long i;
68dff6a9 4301 struct loc_track t = { 0, 0, NULL };
88a420e4 4302 int node;
bbd7d57b
ED
4303 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4304 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4305
bbd7d57b
ED
4306 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4307 GFP_TEMPORARY)) {
4308 kfree(map);
68dff6a9 4309 return sprintf(buf, "Out of memory\n");
bbd7d57b 4310 }
88a420e4
CL
4311 /* Push back cpu slabs */
4312 flush_all(s);
4313
f64dc58c 4314 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4315 struct kmem_cache_node *n = get_node(s, node);
4316 unsigned long flags;
4317 struct page *page;
4318
9e86943b 4319 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4320 continue;
4321
4322 spin_lock_irqsave(&n->list_lock, flags);
4323 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4324 process_slab(&t, s, page, alloc, map);
88a420e4 4325 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4326 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4327 spin_unlock_irqrestore(&n->list_lock, flags);
4328 }
4329
4330 for (i = 0; i < t.count; i++) {
45edfa58 4331 struct location *l = &t.loc[i];
88a420e4 4332
9c246247 4333 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4334 break;
e374d483 4335 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4336
4337 if (l->addr)
62c70bce 4338 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4339 else
e374d483 4340 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4341
4342 if (l->sum_time != l->min_time) {
e374d483 4343 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4344 l->min_time,
4345 (long)div_u64(l->sum_time, l->count),
4346 l->max_time);
45edfa58 4347 } else
e374d483 4348 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4349 l->min_time);
4350
4351 if (l->min_pid != l->max_pid)
e374d483 4352 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4353 l->min_pid, l->max_pid);
4354 else
e374d483 4355 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4356 l->min_pid);
4357
174596a0
RR
4358 if (num_online_cpus() > 1 &&
4359 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4360 len < PAGE_SIZE - 60) {
4361 len += sprintf(buf + len, " cpus=");
4362 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4363 to_cpumask(l->cpus));
45edfa58
CL
4364 }
4365
62bc62a8 4366 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4367 len < PAGE_SIZE - 60) {
4368 len += sprintf(buf + len, " nodes=");
4369 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4370 l->nodes);
4371 }
4372
e374d483 4373 len += sprintf(buf + len, "\n");
88a420e4
CL
4374 }
4375
4376 free_loc_track(&t);
bbd7d57b 4377 kfree(map);
88a420e4 4378 if (!t.count)
e374d483
HH
4379 len += sprintf(buf, "No data\n");
4380 return len;
88a420e4 4381}
ab4d5ed5 4382#endif
88a420e4 4383
a5a84755
CL
4384#ifdef SLUB_RESILIENCY_TEST
4385static void resiliency_test(void)
4386{
4387 u8 *p;
4388
4389 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4390
4391 printk(KERN_ERR "SLUB resiliency testing\n");
4392 printk(KERN_ERR "-----------------------\n");
4393 printk(KERN_ERR "A. Corruption after allocation\n");
4394
4395 p = kzalloc(16, GFP_KERNEL);
4396 p[16] = 0x12;
4397 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4398 " 0x12->0x%p\n\n", p + 16);
4399
4400 validate_slab_cache(kmalloc_caches[4]);
4401
4402 /* Hmmm... The next two are dangerous */
4403 p = kzalloc(32, GFP_KERNEL);
4404 p[32 + sizeof(void *)] = 0x34;
4405 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4406 " 0x34 -> -0x%p\n", p);
4407 printk(KERN_ERR
4408 "If allocated object is overwritten then not detectable\n\n");
4409
4410 validate_slab_cache(kmalloc_caches[5]);
4411 p = kzalloc(64, GFP_KERNEL);
4412 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4413 *p = 0x56;
4414 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4415 p);
4416 printk(KERN_ERR
4417 "If allocated object is overwritten then not detectable\n\n");
4418 validate_slab_cache(kmalloc_caches[6]);
4419
4420 printk(KERN_ERR "\nB. Corruption after free\n");
4421 p = kzalloc(128, GFP_KERNEL);
4422 kfree(p);
4423 *p = 0x78;
4424 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4425 validate_slab_cache(kmalloc_caches[7]);
4426
4427 p = kzalloc(256, GFP_KERNEL);
4428 kfree(p);
4429 p[50] = 0x9a;
4430 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4431 p);
4432 validate_slab_cache(kmalloc_caches[8]);
4433
4434 p = kzalloc(512, GFP_KERNEL);
4435 kfree(p);
4436 p[512] = 0xab;
4437 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4438 validate_slab_cache(kmalloc_caches[9]);
4439}
4440#else
4441#ifdef CONFIG_SYSFS
4442static void resiliency_test(void) {};
4443#endif
4444#endif
4445
ab4d5ed5 4446#ifdef CONFIG_SYSFS
81819f0f 4447enum slab_stat_type {
205ab99d
CL
4448 SL_ALL, /* All slabs */
4449 SL_PARTIAL, /* Only partially allocated slabs */
4450 SL_CPU, /* Only slabs used for cpu caches */
4451 SL_OBJECTS, /* Determine allocated objects not slabs */
4452 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4453};
4454
205ab99d 4455#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4456#define SO_PARTIAL (1 << SL_PARTIAL)
4457#define SO_CPU (1 << SL_CPU)
4458#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4459#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4460
62e5c4b4
CG
4461static ssize_t show_slab_objects(struct kmem_cache *s,
4462 char *buf, unsigned long flags)
81819f0f
CL
4463{
4464 unsigned long total = 0;
81819f0f
CL
4465 int node;
4466 int x;
4467 unsigned long *nodes;
4468 unsigned long *per_cpu;
4469
4470 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4471 if (!nodes)
4472 return -ENOMEM;
81819f0f
CL
4473 per_cpu = nodes + nr_node_ids;
4474
205ab99d
CL
4475 if (flags & SO_CPU) {
4476 int cpu;
81819f0f 4477
205ab99d 4478 for_each_possible_cpu(cpu) {
9dfc6e68 4479 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
bc6697d8 4480 int node = ACCESS_ONCE(c->node);
49e22585 4481 struct page *page;
dfb4f096 4482
bc6697d8 4483 if (node < 0)
205ab99d 4484 continue;
bc6697d8
ED
4485 page = ACCESS_ONCE(c->page);
4486 if (page) {
4487 if (flags & SO_TOTAL)
4488 x = page->objects;
205ab99d 4489 else if (flags & SO_OBJECTS)
bc6697d8 4490 x = page->inuse;
81819f0f
CL
4491 else
4492 x = 1;
205ab99d 4493
81819f0f 4494 total += x;
bc6697d8 4495 nodes[node] += x;
81819f0f 4496 }
49e22585
CL
4497 page = c->partial;
4498
4499 if (page) {
4500 x = page->pobjects;
bc6697d8
ED
4501 total += x;
4502 nodes[node] += x;
49e22585 4503 }
bc6697d8 4504 per_cpu[node]++;
81819f0f
CL
4505 }
4506 }
4507
04d94879 4508 lock_memory_hotplug();
ab4d5ed5 4509#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4510 if (flags & SO_ALL) {
4511 for_each_node_state(node, N_NORMAL_MEMORY) {
4512 struct kmem_cache_node *n = get_node(s, node);
4513
4514 if (flags & SO_TOTAL)
4515 x = atomic_long_read(&n->total_objects);
4516 else if (flags & SO_OBJECTS)
4517 x = atomic_long_read(&n->total_objects) -
4518 count_partial(n, count_free);
81819f0f 4519
81819f0f 4520 else
205ab99d 4521 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4522 total += x;
4523 nodes[node] += x;
4524 }
4525
ab4d5ed5
CL
4526 } else
4527#endif
4528 if (flags & SO_PARTIAL) {
205ab99d
CL
4529 for_each_node_state(node, N_NORMAL_MEMORY) {
4530 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4531
205ab99d
CL
4532 if (flags & SO_TOTAL)
4533 x = count_partial(n, count_total);
4534 else if (flags & SO_OBJECTS)
4535 x = count_partial(n, count_inuse);
81819f0f 4536 else
205ab99d 4537 x = n->nr_partial;
81819f0f
CL
4538 total += x;
4539 nodes[node] += x;
4540 }
4541 }
81819f0f
CL
4542 x = sprintf(buf, "%lu", total);
4543#ifdef CONFIG_NUMA
f64dc58c 4544 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4545 if (nodes[node])
4546 x += sprintf(buf + x, " N%d=%lu",
4547 node, nodes[node]);
4548#endif
04d94879 4549 unlock_memory_hotplug();
81819f0f
CL
4550 kfree(nodes);
4551 return x + sprintf(buf + x, "\n");
4552}
4553
ab4d5ed5 4554#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4555static int any_slab_objects(struct kmem_cache *s)
4556{
4557 int node;
81819f0f 4558
dfb4f096 4559 for_each_online_node(node) {
81819f0f
CL
4560 struct kmem_cache_node *n = get_node(s, node);
4561
dfb4f096
CL
4562 if (!n)
4563 continue;
4564
4ea33e2d 4565 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4566 return 1;
4567 }
4568 return 0;
4569}
ab4d5ed5 4570#endif
81819f0f
CL
4571
4572#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4573#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4574
4575struct slab_attribute {
4576 struct attribute attr;
4577 ssize_t (*show)(struct kmem_cache *s, char *buf);
4578 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4579};
4580
4581#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4582 static struct slab_attribute _name##_attr = \
4583 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4584
4585#define SLAB_ATTR(_name) \
4586 static struct slab_attribute _name##_attr = \
ab067e99 4587 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4588
81819f0f
CL
4589static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4590{
4591 return sprintf(buf, "%d\n", s->size);
4592}
4593SLAB_ATTR_RO(slab_size);
4594
4595static ssize_t align_show(struct kmem_cache *s, char *buf)
4596{
4597 return sprintf(buf, "%d\n", s->align);
4598}
4599SLAB_ATTR_RO(align);
4600
4601static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4602{
4603 return sprintf(buf, "%d\n", s->objsize);
4604}
4605SLAB_ATTR_RO(object_size);
4606
4607static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4608{
834f3d11 4609 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4610}
4611SLAB_ATTR_RO(objs_per_slab);
4612
06b285dc
CL
4613static ssize_t order_store(struct kmem_cache *s,
4614 const char *buf, size_t length)
4615{
0121c619
CL
4616 unsigned long order;
4617 int err;
4618
4619 err = strict_strtoul(buf, 10, &order);
4620 if (err)
4621 return err;
06b285dc
CL
4622
4623 if (order > slub_max_order || order < slub_min_order)
4624 return -EINVAL;
4625
4626 calculate_sizes(s, order);
4627 return length;
4628}
4629
81819f0f
CL
4630static ssize_t order_show(struct kmem_cache *s, char *buf)
4631{
834f3d11 4632 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4633}
06b285dc 4634SLAB_ATTR(order);
81819f0f 4635
73d342b1
DR
4636static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4637{
4638 return sprintf(buf, "%lu\n", s->min_partial);
4639}
4640
4641static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4642 size_t length)
4643{
4644 unsigned long min;
4645 int err;
4646
4647 err = strict_strtoul(buf, 10, &min);
4648 if (err)
4649 return err;
4650
c0bdb232 4651 set_min_partial(s, min);
73d342b1
DR
4652 return length;
4653}
4654SLAB_ATTR(min_partial);
4655
49e22585
CL
4656static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4657{
4658 return sprintf(buf, "%u\n", s->cpu_partial);
4659}
4660
4661static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4662 size_t length)
4663{
4664 unsigned long objects;
4665 int err;
4666
4667 err = strict_strtoul(buf, 10, &objects);
4668 if (err)
4669 return err;
74ee4ef1
DR
4670 if (objects && kmem_cache_debug(s))
4671 return -EINVAL;
49e22585
CL
4672
4673 s->cpu_partial = objects;
4674 flush_all(s);
4675 return length;
4676}
4677SLAB_ATTR(cpu_partial);
4678
81819f0f
CL
4679static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4680{
62c70bce
JP
4681 if (!s->ctor)
4682 return 0;
4683 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4684}
4685SLAB_ATTR_RO(ctor);
4686
81819f0f
CL
4687static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4688{
4689 return sprintf(buf, "%d\n", s->refcount - 1);
4690}
4691SLAB_ATTR_RO(aliases);
4692
81819f0f
CL
4693static ssize_t partial_show(struct kmem_cache *s, char *buf)
4694{
d9acf4b7 4695 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4696}
4697SLAB_ATTR_RO(partial);
4698
4699static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4700{
d9acf4b7 4701 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4702}
4703SLAB_ATTR_RO(cpu_slabs);
4704
4705static ssize_t objects_show(struct kmem_cache *s, char *buf)
4706{
205ab99d 4707 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4708}
4709SLAB_ATTR_RO(objects);
4710
205ab99d
CL
4711static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4712{
4713 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4714}
4715SLAB_ATTR_RO(objects_partial);
4716
49e22585
CL
4717static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4718{
4719 int objects = 0;
4720 int pages = 0;
4721 int cpu;
4722 int len;
4723
4724 for_each_online_cpu(cpu) {
4725 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4726
4727 if (page) {
4728 pages += page->pages;
4729 objects += page->pobjects;
4730 }
4731 }
4732
4733 len = sprintf(buf, "%d(%d)", objects, pages);
4734
4735#ifdef CONFIG_SMP
4736 for_each_online_cpu(cpu) {
4737 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4738
4739 if (page && len < PAGE_SIZE - 20)
4740 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4741 page->pobjects, page->pages);
4742 }
4743#endif
4744 return len + sprintf(buf + len, "\n");
4745}
4746SLAB_ATTR_RO(slabs_cpu_partial);
4747
a5a84755
CL
4748static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4749{
4750 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4751}
4752
4753static ssize_t reclaim_account_store(struct kmem_cache *s,
4754 const char *buf, size_t length)
4755{
4756 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4757 if (buf[0] == '1')
4758 s->flags |= SLAB_RECLAIM_ACCOUNT;
4759 return length;
4760}
4761SLAB_ATTR(reclaim_account);
4762
4763static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4764{
4765 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4766}
4767SLAB_ATTR_RO(hwcache_align);
4768
4769#ifdef CONFIG_ZONE_DMA
4770static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4771{
4772 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4773}
4774SLAB_ATTR_RO(cache_dma);
4775#endif
4776
4777static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4778{
4779 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4780}
4781SLAB_ATTR_RO(destroy_by_rcu);
4782
ab9a0f19
LJ
4783static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4784{
4785 return sprintf(buf, "%d\n", s->reserved);
4786}
4787SLAB_ATTR_RO(reserved);
4788
ab4d5ed5 4789#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4790static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4791{
4792 return show_slab_objects(s, buf, SO_ALL);
4793}
4794SLAB_ATTR_RO(slabs);
4795
205ab99d
CL
4796static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4797{
4798 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4799}
4800SLAB_ATTR_RO(total_objects);
4801
81819f0f
CL
4802static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4803{
4804 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4805}
4806
4807static ssize_t sanity_checks_store(struct kmem_cache *s,
4808 const char *buf, size_t length)
4809{
4810 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4811 if (buf[0] == '1') {
4812 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4813 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4814 }
81819f0f
CL
4815 return length;
4816}
4817SLAB_ATTR(sanity_checks);
4818
4819static ssize_t trace_show(struct kmem_cache *s, char *buf)
4820{
4821 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4822}
4823
4824static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4825 size_t length)
4826{
4827 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4828 if (buf[0] == '1') {
4829 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4830 s->flags |= SLAB_TRACE;
b789ef51 4831 }
81819f0f
CL
4832 return length;
4833}
4834SLAB_ATTR(trace);
4835
81819f0f
CL
4836static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4837{
4838 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4839}
4840
4841static ssize_t red_zone_store(struct kmem_cache *s,
4842 const char *buf, size_t length)
4843{
4844 if (any_slab_objects(s))
4845 return -EBUSY;
4846
4847 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4848 if (buf[0] == '1') {
4849 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4850 s->flags |= SLAB_RED_ZONE;
b789ef51 4851 }
06b285dc 4852 calculate_sizes(s, -1);
81819f0f
CL
4853 return length;
4854}
4855SLAB_ATTR(red_zone);
4856
4857static ssize_t poison_show(struct kmem_cache *s, char *buf)
4858{
4859 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4860}
4861
4862static ssize_t poison_store(struct kmem_cache *s,
4863 const char *buf, size_t length)
4864{
4865 if (any_slab_objects(s))
4866 return -EBUSY;
4867
4868 s->flags &= ~SLAB_POISON;
b789ef51
CL
4869 if (buf[0] == '1') {
4870 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4871 s->flags |= SLAB_POISON;
b789ef51 4872 }
06b285dc 4873 calculate_sizes(s, -1);
81819f0f
CL
4874 return length;
4875}
4876SLAB_ATTR(poison);
4877
4878static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4879{
4880 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4881}
4882
4883static ssize_t store_user_store(struct kmem_cache *s,
4884 const char *buf, size_t length)
4885{
4886 if (any_slab_objects(s))
4887 return -EBUSY;
4888
4889 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4890 if (buf[0] == '1') {
4891 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4892 s->flags |= SLAB_STORE_USER;
b789ef51 4893 }
06b285dc 4894 calculate_sizes(s, -1);
81819f0f
CL
4895 return length;
4896}
4897SLAB_ATTR(store_user);
4898
53e15af0
CL
4899static ssize_t validate_show(struct kmem_cache *s, char *buf)
4900{
4901 return 0;
4902}
4903
4904static ssize_t validate_store(struct kmem_cache *s,
4905 const char *buf, size_t length)
4906{
434e245d
CL
4907 int ret = -EINVAL;
4908
4909 if (buf[0] == '1') {
4910 ret = validate_slab_cache(s);
4911 if (ret >= 0)
4912 ret = length;
4913 }
4914 return ret;
53e15af0
CL
4915}
4916SLAB_ATTR(validate);
a5a84755
CL
4917
4918static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4919{
4920 if (!(s->flags & SLAB_STORE_USER))
4921 return -ENOSYS;
4922 return list_locations(s, buf, TRACK_ALLOC);
4923}
4924SLAB_ATTR_RO(alloc_calls);
4925
4926static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4927{
4928 if (!(s->flags & SLAB_STORE_USER))
4929 return -ENOSYS;
4930 return list_locations(s, buf, TRACK_FREE);
4931}
4932SLAB_ATTR_RO(free_calls);
4933#endif /* CONFIG_SLUB_DEBUG */
4934
4935#ifdef CONFIG_FAILSLAB
4936static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4937{
4938 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4939}
4940
4941static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4942 size_t length)
4943{
4944 s->flags &= ~SLAB_FAILSLAB;
4945 if (buf[0] == '1')
4946 s->flags |= SLAB_FAILSLAB;
4947 return length;
4948}
4949SLAB_ATTR(failslab);
ab4d5ed5 4950#endif
53e15af0 4951
2086d26a
CL
4952static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4953{
4954 return 0;
4955}
4956
4957static ssize_t shrink_store(struct kmem_cache *s,
4958 const char *buf, size_t length)
4959{
4960 if (buf[0] == '1') {
4961 int rc = kmem_cache_shrink(s);
4962
4963 if (rc)
4964 return rc;
4965 } else
4966 return -EINVAL;
4967 return length;
4968}
4969SLAB_ATTR(shrink);
4970
81819f0f 4971#ifdef CONFIG_NUMA
9824601e 4972static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4973{
9824601e 4974 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4975}
4976
9824601e 4977static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4978 const char *buf, size_t length)
4979{
0121c619
CL
4980 unsigned long ratio;
4981 int err;
4982
4983 err = strict_strtoul(buf, 10, &ratio);
4984 if (err)
4985 return err;
4986
e2cb96b7 4987 if (ratio <= 100)
0121c619 4988 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4989
81819f0f
CL
4990 return length;
4991}
9824601e 4992SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4993#endif
4994
8ff12cfc 4995#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4996static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4997{
4998 unsigned long sum = 0;
4999 int cpu;
5000 int len;
5001 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5002
5003 if (!data)
5004 return -ENOMEM;
5005
5006 for_each_online_cpu(cpu) {
9dfc6e68 5007 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5008
5009 data[cpu] = x;
5010 sum += x;
5011 }
5012
5013 len = sprintf(buf, "%lu", sum);
5014
50ef37b9 5015#ifdef CONFIG_SMP
8ff12cfc
CL
5016 for_each_online_cpu(cpu) {
5017 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5018 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5019 }
50ef37b9 5020#endif
8ff12cfc
CL
5021 kfree(data);
5022 return len + sprintf(buf + len, "\n");
5023}
5024
78eb00cc
DR
5025static void clear_stat(struct kmem_cache *s, enum stat_item si)
5026{
5027 int cpu;
5028
5029 for_each_online_cpu(cpu)
9dfc6e68 5030 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5031}
5032
8ff12cfc
CL
5033#define STAT_ATTR(si, text) \
5034static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5035{ \
5036 return show_stat(s, buf, si); \
5037} \
78eb00cc
DR
5038static ssize_t text##_store(struct kmem_cache *s, \
5039 const char *buf, size_t length) \
5040{ \
5041 if (buf[0] != '0') \
5042 return -EINVAL; \
5043 clear_stat(s, si); \
5044 return length; \
5045} \
5046SLAB_ATTR(text); \
8ff12cfc
CL
5047
5048STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5049STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5050STAT_ATTR(FREE_FASTPATH, free_fastpath);
5051STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5052STAT_ATTR(FREE_FROZEN, free_frozen);
5053STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5054STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5055STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5056STAT_ATTR(ALLOC_SLAB, alloc_slab);
5057STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5058STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5059STAT_ATTR(FREE_SLAB, free_slab);
5060STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5061STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5062STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5063STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5064STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5065STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5066STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5067STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5068STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5069STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5070STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5071STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8ff12cfc
CL
5072#endif
5073
06428780 5074static struct attribute *slab_attrs[] = {
81819f0f
CL
5075 &slab_size_attr.attr,
5076 &object_size_attr.attr,
5077 &objs_per_slab_attr.attr,
5078 &order_attr.attr,
73d342b1 5079 &min_partial_attr.attr,
49e22585 5080 &cpu_partial_attr.attr,
81819f0f 5081 &objects_attr.attr,
205ab99d 5082 &objects_partial_attr.attr,
81819f0f
CL
5083 &partial_attr.attr,
5084 &cpu_slabs_attr.attr,
5085 &ctor_attr.attr,
81819f0f
CL
5086 &aliases_attr.attr,
5087 &align_attr.attr,
81819f0f
CL
5088 &hwcache_align_attr.attr,
5089 &reclaim_account_attr.attr,
5090 &destroy_by_rcu_attr.attr,
a5a84755 5091 &shrink_attr.attr,
ab9a0f19 5092 &reserved_attr.attr,
49e22585 5093 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5094#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5095 &total_objects_attr.attr,
5096 &slabs_attr.attr,
5097 &sanity_checks_attr.attr,
5098 &trace_attr.attr,
81819f0f
CL
5099 &red_zone_attr.attr,
5100 &poison_attr.attr,
5101 &store_user_attr.attr,
53e15af0 5102 &validate_attr.attr,
88a420e4
CL
5103 &alloc_calls_attr.attr,
5104 &free_calls_attr.attr,
ab4d5ed5 5105#endif
81819f0f
CL
5106#ifdef CONFIG_ZONE_DMA
5107 &cache_dma_attr.attr,
5108#endif
5109#ifdef CONFIG_NUMA
9824601e 5110 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5111#endif
5112#ifdef CONFIG_SLUB_STATS
5113 &alloc_fastpath_attr.attr,
5114 &alloc_slowpath_attr.attr,
5115 &free_fastpath_attr.attr,
5116 &free_slowpath_attr.attr,
5117 &free_frozen_attr.attr,
5118 &free_add_partial_attr.attr,
5119 &free_remove_partial_attr.attr,
5120 &alloc_from_partial_attr.attr,
5121 &alloc_slab_attr.attr,
5122 &alloc_refill_attr.attr,
e36a2652 5123 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5124 &free_slab_attr.attr,
5125 &cpuslab_flush_attr.attr,
5126 &deactivate_full_attr.attr,
5127 &deactivate_empty_attr.attr,
5128 &deactivate_to_head_attr.attr,
5129 &deactivate_to_tail_attr.attr,
5130 &deactivate_remote_frees_attr.attr,
03e404af 5131 &deactivate_bypass_attr.attr,
65c3376a 5132 &order_fallback_attr.attr,
b789ef51
CL
5133 &cmpxchg_double_fail_attr.attr,
5134 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5135 &cpu_partial_alloc_attr.attr,
5136 &cpu_partial_free_attr.attr,
81819f0f 5137#endif
4c13dd3b
DM
5138#ifdef CONFIG_FAILSLAB
5139 &failslab_attr.attr,
5140#endif
5141
81819f0f
CL
5142 NULL
5143};
5144
5145static struct attribute_group slab_attr_group = {
5146 .attrs = slab_attrs,
5147};
5148
5149static ssize_t slab_attr_show(struct kobject *kobj,
5150 struct attribute *attr,
5151 char *buf)
5152{
5153 struct slab_attribute *attribute;
5154 struct kmem_cache *s;
5155 int err;
5156
5157 attribute = to_slab_attr(attr);
5158 s = to_slab(kobj);
5159
5160 if (!attribute->show)
5161 return -EIO;
5162
5163 err = attribute->show(s, buf);
5164
5165 return err;
5166}
5167
5168static ssize_t slab_attr_store(struct kobject *kobj,
5169 struct attribute *attr,
5170 const char *buf, size_t len)
5171{
5172 struct slab_attribute *attribute;
5173 struct kmem_cache *s;
5174 int err;
5175
5176 attribute = to_slab_attr(attr);
5177 s = to_slab(kobj);
5178
5179 if (!attribute->store)
5180 return -EIO;
5181
5182 err = attribute->store(s, buf, len);
5183
5184 return err;
5185}
5186
151c602f
CL
5187static void kmem_cache_release(struct kobject *kobj)
5188{
5189 struct kmem_cache *s = to_slab(kobj);
5190
84c1cf62 5191 kfree(s->name);
151c602f
CL
5192 kfree(s);
5193}
5194
52cf25d0 5195static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5196 .show = slab_attr_show,
5197 .store = slab_attr_store,
5198};
5199
5200static struct kobj_type slab_ktype = {
5201 .sysfs_ops = &slab_sysfs_ops,
151c602f 5202 .release = kmem_cache_release
81819f0f
CL
5203};
5204
5205static int uevent_filter(struct kset *kset, struct kobject *kobj)
5206{
5207 struct kobj_type *ktype = get_ktype(kobj);
5208
5209 if (ktype == &slab_ktype)
5210 return 1;
5211 return 0;
5212}
5213
9cd43611 5214static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5215 .filter = uevent_filter,
5216};
5217
27c3a314 5218static struct kset *slab_kset;
81819f0f
CL
5219
5220#define ID_STR_LENGTH 64
5221
5222/* Create a unique string id for a slab cache:
6446faa2
CL
5223 *
5224 * Format :[flags-]size
81819f0f
CL
5225 */
5226static char *create_unique_id(struct kmem_cache *s)
5227{
5228 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5229 char *p = name;
5230
5231 BUG_ON(!name);
5232
5233 *p++ = ':';
5234 /*
5235 * First flags affecting slabcache operations. We will only
5236 * get here for aliasable slabs so we do not need to support
5237 * too many flags. The flags here must cover all flags that
5238 * are matched during merging to guarantee that the id is
5239 * unique.
5240 */
5241 if (s->flags & SLAB_CACHE_DMA)
5242 *p++ = 'd';
5243 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5244 *p++ = 'a';
5245 if (s->flags & SLAB_DEBUG_FREE)
5246 *p++ = 'F';
5a896d9e
VN
5247 if (!(s->flags & SLAB_NOTRACK))
5248 *p++ = 't';
81819f0f
CL
5249 if (p != name + 1)
5250 *p++ = '-';
5251 p += sprintf(p, "%07d", s->size);
5252 BUG_ON(p > name + ID_STR_LENGTH - 1);
5253 return name;
5254}
5255
5256static int sysfs_slab_add(struct kmem_cache *s)
5257{
5258 int err;
5259 const char *name;
5260 int unmergeable;
5261
5262 if (slab_state < SYSFS)
5263 /* Defer until later */
5264 return 0;
5265
5266 unmergeable = slab_unmergeable(s);
5267 if (unmergeable) {
5268 /*
5269 * Slabcache can never be merged so we can use the name proper.
5270 * This is typically the case for debug situations. In that
5271 * case we can catch duplicate names easily.
5272 */
27c3a314 5273 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5274 name = s->name;
5275 } else {
5276 /*
5277 * Create a unique name for the slab as a target
5278 * for the symlinks.
5279 */
5280 name = create_unique_id(s);
5281 }
5282
27c3a314 5283 s->kobj.kset = slab_kset;
1eada11c
GKH
5284 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5285 if (err) {
5286 kobject_put(&s->kobj);
81819f0f 5287 return err;
1eada11c 5288 }
81819f0f
CL
5289
5290 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5291 if (err) {
5292 kobject_del(&s->kobj);
5293 kobject_put(&s->kobj);
81819f0f 5294 return err;
5788d8ad 5295 }
81819f0f
CL
5296 kobject_uevent(&s->kobj, KOBJ_ADD);
5297 if (!unmergeable) {
5298 /* Setup first alias */
5299 sysfs_slab_alias(s, s->name);
5300 kfree(name);
5301 }
5302 return 0;
5303}
5304
5305static void sysfs_slab_remove(struct kmem_cache *s)
5306{
2bce6485
CL
5307 if (slab_state < SYSFS)
5308 /*
5309 * Sysfs has not been setup yet so no need to remove the
5310 * cache from sysfs.
5311 */
5312 return;
5313
81819f0f
CL
5314 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5315 kobject_del(&s->kobj);
151c602f 5316 kobject_put(&s->kobj);
81819f0f
CL
5317}
5318
5319/*
5320 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5321 * available lest we lose that information.
81819f0f
CL
5322 */
5323struct saved_alias {
5324 struct kmem_cache *s;
5325 const char *name;
5326 struct saved_alias *next;
5327};
5328
5af328a5 5329static struct saved_alias *alias_list;
81819f0f
CL
5330
5331static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5332{
5333 struct saved_alias *al;
5334
5335 if (slab_state == SYSFS) {
5336 /*
5337 * If we have a leftover link then remove it.
5338 */
27c3a314
GKH
5339 sysfs_remove_link(&slab_kset->kobj, name);
5340 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5341 }
5342
5343 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5344 if (!al)
5345 return -ENOMEM;
5346
5347 al->s = s;
5348 al->name = name;
5349 al->next = alias_list;
5350 alias_list = al;
5351 return 0;
5352}
5353
5354static int __init slab_sysfs_init(void)
5355{
5b95a4ac 5356 struct kmem_cache *s;
81819f0f
CL
5357 int err;
5358
2bce6485
CL
5359 down_write(&slub_lock);
5360
0ff21e46 5361 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5362 if (!slab_kset) {
2bce6485 5363 up_write(&slub_lock);
81819f0f
CL
5364 printk(KERN_ERR "Cannot register slab subsystem.\n");
5365 return -ENOSYS;
5366 }
5367
26a7bd03
CL
5368 slab_state = SYSFS;
5369
5b95a4ac 5370 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5371 err = sysfs_slab_add(s);
5d540fb7
CL
5372 if (err)
5373 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5374 " to sysfs\n", s->name);
26a7bd03 5375 }
81819f0f
CL
5376
5377 while (alias_list) {
5378 struct saved_alias *al = alias_list;
5379
5380 alias_list = alias_list->next;
5381 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5382 if (err)
5383 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5384 " %s to sysfs\n", s->name);
81819f0f
CL
5385 kfree(al);
5386 }
5387
2bce6485 5388 up_write(&slub_lock);
81819f0f
CL
5389 resiliency_test();
5390 return 0;
5391}
5392
5393__initcall(slab_sysfs_init);
ab4d5ed5 5394#endif /* CONFIG_SYSFS */
57ed3eda
PE
5395
5396/*
5397 * The /proc/slabinfo ABI
5398 */
158a9624 5399#ifdef CONFIG_SLABINFO
57ed3eda
PE
5400static void print_slabinfo_header(struct seq_file *m)
5401{
5402 seq_puts(m, "slabinfo - version: 2.1\n");
5403 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5404 "<objperslab> <pagesperslab>");
5405 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5406 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5407 seq_putc(m, '\n');
5408}
5409
5410static void *s_start(struct seq_file *m, loff_t *pos)
5411{
5412 loff_t n = *pos;
5413
5414 down_read(&slub_lock);
5415 if (!n)
5416 print_slabinfo_header(m);
5417
5418 return seq_list_start(&slab_caches, *pos);
5419}
5420
5421static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5422{
5423 return seq_list_next(p, &slab_caches, pos);
5424}
5425
5426static void s_stop(struct seq_file *m, void *p)
5427{
5428 up_read(&slub_lock);
5429}
5430
5431static int s_show(struct seq_file *m, void *p)
5432{
5433 unsigned long nr_partials = 0;
5434 unsigned long nr_slabs = 0;
5435 unsigned long nr_inuse = 0;
205ab99d
CL
5436 unsigned long nr_objs = 0;
5437 unsigned long nr_free = 0;
57ed3eda
PE
5438 struct kmem_cache *s;
5439 int node;
5440
5441 s = list_entry(p, struct kmem_cache, list);
5442
5443 for_each_online_node(node) {
5444 struct kmem_cache_node *n = get_node(s, node);
5445
5446 if (!n)
5447 continue;
5448
5449 nr_partials += n->nr_partial;
5450 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5451 nr_objs += atomic_long_read(&n->total_objects);
5452 nr_free += count_partial(n, count_free);
57ed3eda
PE
5453 }
5454
205ab99d 5455 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5456
5457 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5458 nr_objs, s->size, oo_objects(s->oo),
5459 (1 << oo_order(s->oo)));
57ed3eda
PE
5460 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5461 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5462 0UL);
5463 seq_putc(m, '\n');
5464 return 0;
5465}
5466
7b3c3a50 5467static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5468 .start = s_start,
5469 .next = s_next,
5470 .stop = s_stop,
5471 .show = s_show,
5472};
5473
7b3c3a50
AD
5474static int slabinfo_open(struct inode *inode, struct file *file)
5475{
5476 return seq_open(file, &slabinfo_op);
5477}
5478
5479static const struct file_operations proc_slabinfo_operations = {
5480 .open = slabinfo_open,
5481 .read = seq_read,
5482 .llseek = seq_lseek,
5483 .release = seq_release,
5484};
5485
5486static int __init slab_proc_init(void)
5487{
ab067e99 5488 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5489 return 0;
5490}
5491module_init(slab_proc_init);
158a9624 5492#endif /* CONFIG_SLABINFO */