mm/sl[au]b: correct allocation type check in kmalloc_slab()
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
81819f0f 21#include <linux/seq_file.h>
5a896d9e 22#include <linux/kmemcheck.h>
81819f0f
CL
23#include <linux/cpu.h>
24#include <linux/cpuset.h>
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
bfa71457 32#include <linux/stacktrace.h>
4de900b4 33#include <linux/prefetch.h>
2633d7a0 34#include <linux/memcontrol.h>
81819f0f 35
4a92379b
RK
36#include <trace/events/kmem.h>
37
072bb0aa
MG
38#include "internal.h"
39
81819f0f
CL
40/*
41 * Lock order:
18004c5d 42 * 1. slab_mutex (Global Mutex)
881db7fb
CL
43 * 2. node->list_lock
44 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 45 *
18004c5d 46 * slab_mutex
881db7fb 47 *
18004c5d 48 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
49 * and to synchronize major metadata changes to slab cache structures.
50 *
51 * The slab_lock is only used for debugging and on arches that do not
52 * have the ability to do a cmpxchg_double. It only protects the second
53 * double word in the page struct. Meaning
54 * A. page->freelist -> List of object free in a page
55 * B. page->counters -> Counters of objects
56 * C. page->frozen -> frozen state
57 *
58 * If a slab is frozen then it is exempt from list management. It is not
59 * on any list. The processor that froze the slab is the one who can
60 * perform list operations on the page. Other processors may put objects
61 * onto the freelist but the processor that froze the slab is the only
62 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
63 *
64 * The list_lock protects the partial and full list on each node and
65 * the partial slab counter. If taken then no new slabs may be added or
66 * removed from the lists nor make the number of partial slabs be modified.
67 * (Note that the total number of slabs is an atomic value that may be
68 * modified without taking the list lock).
69 *
70 * The list_lock is a centralized lock and thus we avoid taking it as
71 * much as possible. As long as SLUB does not have to handle partial
72 * slabs, operations can continue without any centralized lock. F.e.
73 * allocating a long series of objects that fill up slabs does not require
74 * the list lock.
81819f0f
CL
75 * Interrupts are disabled during allocation and deallocation in order to
76 * make the slab allocator safe to use in the context of an irq. In addition
77 * interrupts are disabled to ensure that the processor does not change
78 * while handling per_cpu slabs, due to kernel preemption.
79 *
80 * SLUB assigns one slab for allocation to each processor.
81 * Allocations only occur from these slabs called cpu slabs.
82 *
672bba3a
CL
83 * Slabs with free elements are kept on a partial list and during regular
84 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 85 * freed then the slab will show up again on the partial lists.
672bba3a
CL
86 * We track full slabs for debugging purposes though because otherwise we
87 * cannot scan all objects.
81819f0f
CL
88 *
89 * Slabs are freed when they become empty. Teardown and setup is
90 * minimal so we rely on the page allocators per cpu caches for
91 * fast frees and allocs.
92 *
93 * Overloading of page flags that are otherwise used for LRU management.
94 *
4b6f0750
CL
95 * PageActive The slab is frozen and exempt from list processing.
96 * This means that the slab is dedicated to a purpose
97 * such as satisfying allocations for a specific
98 * processor. Objects may be freed in the slab while
99 * it is frozen but slab_free will then skip the usual
100 * list operations. It is up to the processor holding
101 * the slab to integrate the slab into the slab lists
102 * when the slab is no longer needed.
103 *
104 * One use of this flag is to mark slabs that are
105 * used for allocations. Then such a slab becomes a cpu
106 * slab. The cpu slab may be equipped with an additional
dfb4f096 107 * freelist that allows lockless access to
894b8788
CL
108 * free objects in addition to the regular freelist
109 * that requires the slab lock.
81819f0f
CL
110 *
111 * PageError Slab requires special handling due to debug
112 * options set. This moves slab handling out of
894b8788 113 * the fast path and disables lockless freelists.
81819f0f
CL
114 */
115
af537b0a
CL
116static inline int kmem_cache_debug(struct kmem_cache *s)
117{
5577bd8a 118#ifdef CONFIG_SLUB_DEBUG
af537b0a 119 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 120#else
af537b0a 121 return 0;
5577bd8a 122#endif
af537b0a 123}
5577bd8a 124
81819f0f
CL
125/*
126 * Issues still to be resolved:
127 *
81819f0f
CL
128 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129 *
81819f0f
CL
130 * - Variable sizing of the per node arrays
131 */
132
133/* Enable to test recovery from slab corruption on boot */
134#undef SLUB_RESILIENCY_TEST
135
b789ef51
CL
136/* Enable to log cmpxchg failures */
137#undef SLUB_DEBUG_CMPXCHG
138
2086d26a
CL
139/*
140 * Mininum number of partial slabs. These will be left on the partial
141 * lists even if they are empty. kmem_cache_shrink may reclaim them.
142 */
76be8950 143#define MIN_PARTIAL 5
e95eed57 144
2086d26a
CL
145/*
146 * Maximum number of desirable partial slabs.
147 * The existence of more partial slabs makes kmem_cache_shrink
148 * sort the partial list by the number of objects in the.
149 */
150#define MAX_PARTIAL 10
151
81819f0f
CL
152#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
153 SLAB_POISON | SLAB_STORE_USER)
672bba3a 154
fa5ec8a1 155/*
3de47213
DR
156 * Debugging flags that require metadata to be stored in the slab. These get
157 * disabled when slub_debug=O is used and a cache's min order increases with
158 * metadata.
fa5ec8a1 159 */
3de47213 160#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 161
81819f0f
CL
162/*
163 * Set of flags that will prevent slab merging
164 */
165#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
166 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 SLAB_FAILSLAB)
81819f0f
CL
168
169#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 170 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 171
210b5c06
CG
172#define OO_SHIFT 16
173#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 174#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 175
81819f0f 176/* Internal SLUB flags */
f90ec390 177#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 178#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 179
81819f0f
CL
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
02cbc874
CL
184/*
185 * Tracking user of a slab.
186 */
d6543e39 187#define TRACK_ADDRS_COUNT 16
02cbc874 188struct track {
ce71e27c 189 unsigned long addr; /* Called from address */
d6543e39
BG
190#ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192#endif
02cbc874
CL
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196};
197
198enum track_item { TRACK_ALLOC, TRACK_FREE };
199
ab4d5ed5 200#ifdef CONFIG_SYSFS
81819f0f
CL
201static int sysfs_slab_add(struct kmem_cache *);
202static int sysfs_slab_alias(struct kmem_cache *, const char *);
203static void sysfs_slab_remove(struct kmem_cache *);
107dab5c 204static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
db265eca 209static inline void sysfs_slab_remove(struct kmem_cache *s) { }
8ff12cfc 210
107dab5c 211static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
212#endif
213
4fdccdfb 214static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
215{
216#ifdef CONFIG_SLUB_STATS
84e554e6 217 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
218#endif
219}
220
81819f0f
CL
221/********************************************************************
222 * Core slab cache functions
223 *******************************************************************/
224
81819f0f
CL
225static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
226{
81819f0f 227 return s->node[node];
81819f0f
CL
228}
229
6446faa2 230/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
231static inline int check_valid_pointer(struct kmem_cache *s,
232 struct page *page, const void *object)
233{
234 void *base;
235
a973e9dd 236 if (!object)
02cbc874
CL
237 return 1;
238
a973e9dd 239 base = page_address(page);
39b26464 240 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
241 (object - base) % s->size) {
242 return 0;
243 }
244
245 return 1;
246}
247
7656c72b
CL
248static inline void *get_freepointer(struct kmem_cache *s, void *object)
249{
250 return *(void **)(object + s->offset);
251}
252
0ad9500e
ED
253static void prefetch_freepointer(const struct kmem_cache *s, void *object)
254{
255 prefetch(object + s->offset);
256}
257
1393d9a1
CL
258static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
259{
260 void *p;
261
262#ifdef CONFIG_DEBUG_PAGEALLOC
263 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
264#else
265 p = get_freepointer(s, object);
266#endif
267 return p;
268}
269
7656c72b
CL
270static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
271{
272 *(void **)(object + s->offset) = fp;
273}
274
275/* Loop over all objects in a slab */
224a88be
CL
276#define for_each_object(__p, __s, __addr, __objects) \
277 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
278 __p += (__s)->size)
279
7656c72b
CL
280/* Determine object index from a given position */
281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282{
283 return (p - addr) / s->size;
284}
285
d71f606f
MK
286static inline size_t slab_ksize(const struct kmem_cache *s)
287{
288#ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 294 return s->object_size;
d71f606f
MK
295
296#endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308}
309
ab9a0f19
LJ
310static inline int order_objects(int order, unsigned long size, int reserved)
311{
312 return ((PAGE_SIZE << order) - reserved) / size;
313}
314
834f3d11 315static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 316 unsigned long size, int reserved)
834f3d11
CL
317{
318 struct kmem_cache_order_objects x = {
ab9a0f19 319 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
320 };
321
322 return x;
323}
324
325static inline int oo_order(struct kmem_cache_order_objects x)
326{
210b5c06 327 return x.x >> OO_SHIFT;
834f3d11
CL
328}
329
330static inline int oo_objects(struct kmem_cache_order_objects x)
331{
210b5c06 332 return x.x & OO_MASK;
834f3d11
CL
333}
334
881db7fb
CL
335/*
336 * Per slab locking using the pagelock
337 */
338static __always_inline void slab_lock(struct page *page)
339{
340 bit_spin_lock(PG_locked, &page->flags);
341}
342
343static __always_inline void slab_unlock(struct page *page)
344{
345 __bit_spin_unlock(PG_locked, &page->flags);
346}
347
1d07171c
CL
348/* Interrupts must be disabled (for the fallback code to work right) */
349static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
350 void *freelist_old, unsigned long counters_old,
351 void *freelist_new, unsigned long counters_new,
352 const char *n)
353{
354 VM_BUG_ON(!irqs_disabled());
2565409f
HC
355#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
356 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 357 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 358 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
359 freelist_old, counters_old,
360 freelist_new, counters_new))
361 return 1;
362 } else
363#endif
364 {
365 slab_lock(page);
366 if (page->freelist == freelist_old && page->counters == counters_old) {
367 page->freelist = freelist_new;
368 page->counters = counters_new;
369 slab_unlock(page);
370 return 1;
371 }
372 slab_unlock(page);
373 }
374
375 cpu_relax();
376 stat(s, CMPXCHG_DOUBLE_FAIL);
377
378#ifdef SLUB_DEBUG_CMPXCHG
379 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
380#endif
381
382 return 0;
383}
384
b789ef51
CL
385static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
386 void *freelist_old, unsigned long counters_old,
387 void *freelist_new, unsigned long counters_new,
388 const char *n)
389{
2565409f
HC
390#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
391 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 392 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 393 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
394 freelist_old, counters_old,
395 freelist_new, counters_new))
396 return 1;
397 } else
398#endif
399 {
1d07171c
CL
400 unsigned long flags;
401
402 local_irq_save(flags);
881db7fb 403 slab_lock(page);
b789ef51
CL
404 if (page->freelist == freelist_old && page->counters == counters_old) {
405 page->freelist = freelist_new;
406 page->counters = counters_new;
881db7fb 407 slab_unlock(page);
1d07171c 408 local_irq_restore(flags);
b789ef51
CL
409 return 1;
410 }
881db7fb 411 slab_unlock(page);
1d07171c 412 local_irq_restore(flags);
b789ef51
CL
413 }
414
415 cpu_relax();
416 stat(s, CMPXCHG_DOUBLE_FAIL);
417
418#ifdef SLUB_DEBUG_CMPXCHG
419 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
420#endif
421
422 return 0;
423}
424
41ecc55b 425#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
426/*
427 * Determine a map of object in use on a page.
428 *
881db7fb 429 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
430 * not vanish from under us.
431 */
432static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
433{
434 void *p;
435 void *addr = page_address(page);
436
437 for (p = page->freelist; p; p = get_freepointer(s, p))
438 set_bit(slab_index(p, s, addr), map);
439}
440
41ecc55b
CL
441/*
442 * Debug settings:
443 */
f0630fff
CL
444#ifdef CONFIG_SLUB_DEBUG_ON
445static int slub_debug = DEBUG_DEFAULT_FLAGS;
446#else
41ecc55b 447static int slub_debug;
f0630fff 448#endif
41ecc55b
CL
449
450static char *slub_debug_slabs;
fa5ec8a1 451static int disable_higher_order_debug;
41ecc55b 452
81819f0f
CL
453/*
454 * Object debugging
455 */
456static void print_section(char *text, u8 *addr, unsigned int length)
457{
ffc79d28
SAS
458 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
459 length, 1);
81819f0f
CL
460}
461
81819f0f
CL
462static struct track *get_track(struct kmem_cache *s, void *object,
463 enum track_item alloc)
464{
465 struct track *p;
466
467 if (s->offset)
468 p = object + s->offset + sizeof(void *);
469 else
470 p = object + s->inuse;
471
472 return p + alloc;
473}
474
475static void set_track(struct kmem_cache *s, void *object,
ce71e27c 476 enum track_item alloc, unsigned long addr)
81819f0f 477{
1a00df4a 478 struct track *p = get_track(s, object, alloc);
81819f0f 479
81819f0f 480 if (addr) {
d6543e39
BG
481#ifdef CONFIG_STACKTRACE
482 struct stack_trace trace;
483 int i;
484
485 trace.nr_entries = 0;
486 trace.max_entries = TRACK_ADDRS_COUNT;
487 trace.entries = p->addrs;
488 trace.skip = 3;
489 save_stack_trace(&trace);
490
491 /* See rant in lockdep.c */
492 if (trace.nr_entries != 0 &&
493 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
494 trace.nr_entries--;
495
496 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
497 p->addrs[i] = 0;
498#endif
81819f0f
CL
499 p->addr = addr;
500 p->cpu = smp_processor_id();
88e4ccf2 501 p->pid = current->pid;
81819f0f
CL
502 p->when = jiffies;
503 } else
504 memset(p, 0, sizeof(struct track));
505}
506
81819f0f
CL
507static void init_tracking(struct kmem_cache *s, void *object)
508{
24922684
CL
509 if (!(s->flags & SLAB_STORE_USER))
510 return;
511
ce71e27c
EGM
512 set_track(s, object, TRACK_FREE, 0UL);
513 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
514}
515
516static void print_track(const char *s, struct track *t)
517{
518 if (!t->addr)
519 return;
520
7daf705f 521 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 522 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
523#ifdef CONFIG_STACKTRACE
524 {
525 int i;
526 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
527 if (t->addrs[i])
528 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
529 else
530 break;
531 }
532#endif
24922684
CL
533}
534
535static void print_tracking(struct kmem_cache *s, void *object)
536{
537 if (!(s->flags & SLAB_STORE_USER))
538 return;
539
540 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
541 print_track("Freed", get_track(s, object, TRACK_FREE));
542}
543
544static void print_page_info(struct page *page)
545{
39b26464
CL
546 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
547 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
548
549}
550
551static void slab_bug(struct kmem_cache *s, char *fmt, ...)
552{
553 va_list args;
554 char buf[100];
555
556 va_start(args, fmt);
557 vsnprintf(buf, sizeof(buf), fmt, args);
558 va_end(args);
559 printk(KERN_ERR "========================================"
560 "=====================================\n");
265d47e7 561 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
562 printk(KERN_ERR "----------------------------------------"
563 "-------------------------------------\n\n");
645df230
DJ
564
565 add_taint(TAINT_BAD_PAGE);
81819f0f
CL
566}
567
24922684
CL
568static void slab_fix(struct kmem_cache *s, char *fmt, ...)
569{
570 va_list args;
571 char buf[100];
572
573 va_start(args, fmt);
574 vsnprintf(buf, sizeof(buf), fmt, args);
575 va_end(args);
576 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
577}
578
579static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
580{
581 unsigned int off; /* Offset of last byte */
a973e9dd 582 u8 *addr = page_address(page);
24922684
CL
583
584 print_tracking(s, p);
585
586 print_page_info(page);
587
588 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
589 p, p - addr, get_freepointer(s, p));
590
591 if (p > addr + 16)
ffc79d28 592 print_section("Bytes b4 ", p - 16, 16);
81819f0f 593
3b0efdfa 594 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 595 PAGE_SIZE));
81819f0f 596 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
597 print_section("Redzone ", p + s->object_size,
598 s->inuse - s->object_size);
81819f0f 599
81819f0f
CL
600 if (s->offset)
601 off = s->offset + sizeof(void *);
602 else
603 off = s->inuse;
604
24922684 605 if (s->flags & SLAB_STORE_USER)
81819f0f 606 off += 2 * sizeof(struct track);
81819f0f
CL
607
608 if (off != s->size)
609 /* Beginning of the filler is the free pointer */
ffc79d28 610 print_section("Padding ", p + off, s->size - off);
24922684
CL
611
612 dump_stack();
81819f0f
CL
613}
614
615static void object_err(struct kmem_cache *s, struct page *page,
616 u8 *object, char *reason)
617{
3dc50637 618 slab_bug(s, "%s", reason);
24922684 619 print_trailer(s, page, object);
81819f0f
CL
620}
621
945cf2b6 622static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
81819f0f
CL
623{
624 va_list args;
625 char buf[100];
626
24922684
CL
627 va_start(args, fmt);
628 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 629 va_end(args);
3dc50637 630 slab_bug(s, "%s", buf);
24922684 631 print_page_info(page);
81819f0f
CL
632 dump_stack();
633}
634
f7cb1933 635static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
636{
637 u8 *p = object;
638
639 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
640 memset(p, POISON_FREE, s->object_size - 1);
641 p[s->object_size - 1] = POISON_END;
81819f0f
CL
642 }
643
644 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 645 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
646}
647
24922684
CL
648static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
649 void *from, void *to)
650{
651 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
652 memset(from, data, to - from);
653}
654
655static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
656 u8 *object, char *what,
06428780 657 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
658{
659 u8 *fault;
660 u8 *end;
661
79824820 662 fault = memchr_inv(start, value, bytes);
24922684
CL
663 if (!fault)
664 return 1;
665
666 end = start + bytes;
667 while (end > fault && end[-1] == value)
668 end--;
669
670 slab_bug(s, "%s overwritten", what);
671 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
672 fault, end - 1, fault[0], value);
673 print_trailer(s, page, object);
674
675 restore_bytes(s, what, value, fault, end);
676 return 0;
81819f0f
CL
677}
678
81819f0f
CL
679/*
680 * Object layout:
681 *
682 * object address
683 * Bytes of the object to be managed.
684 * If the freepointer may overlay the object then the free
685 * pointer is the first word of the object.
672bba3a 686 *
81819f0f
CL
687 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
688 * 0xa5 (POISON_END)
689 *
3b0efdfa 690 * object + s->object_size
81819f0f 691 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 692 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 693 * object_size == inuse.
672bba3a 694 *
81819f0f
CL
695 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
696 * 0xcc (RED_ACTIVE) for objects in use.
697 *
698 * object + s->inuse
672bba3a
CL
699 * Meta data starts here.
700 *
81819f0f
CL
701 * A. Free pointer (if we cannot overwrite object on free)
702 * B. Tracking data for SLAB_STORE_USER
672bba3a 703 * C. Padding to reach required alignment boundary or at mininum
6446faa2 704 * one word if debugging is on to be able to detect writes
672bba3a
CL
705 * before the word boundary.
706 *
707 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
708 *
709 * object + s->size
672bba3a 710 * Nothing is used beyond s->size.
81819f0f 711 *
3b0efdfa 712 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 713 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
714 * may be used with merged slabcaches.
715 */
716
81819f0f
CL
717static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
718{
719 unsigned long off = s->inuse; /* The end of info */
720
721 if (s->offset)
722 /* Freepointer is placed after the object. */
723 off += sizeof(void *);
724
725 if (s->flags & SLAB_STORE_USER)
726 /* We also have user information there */
727 off += 2 * sizeof(struct track);
728
729 if (s->size == off)
730 return 1;
731
24922684
CL
732 return check_bytes_and_report(s, page, p, "Object padding",
733 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
734}
735
39b26464 736/* Check the pad bytes at the end of a slab page */
81819f0f
CL
737static int slab_pad_check(struct kmem_cache *s, struct page *page)
738{
24922684
CL
739 u8 *start;
740 u8 *fault;
741 u8 *end;
742 int length;
743 int remainder;
81819f0f
CL
744
745 if (!(s->flags & SLAB_POISON))
746 return 1;
747
a973e9dd 748 start = page_address(page);
ab9a0f19 749 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
750 end = start + length;
751 remainder = length % s->size;
81819f0f
CL
752 if (!remainder)
753 return 1;
754
79824820 755 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
756 if (!fault)
757 return 1;
758 while (end > fault && end[-1] == POISON_INUSE)
759 end--;
760
761 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 762 print_section("Padding ", end - remainder, remainder);
24922684 763
8a3d271d 764 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 765 return 0;
81819f0f
CL
766}
767
768static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 769 void *object, u8 val)
81819f0f
CL
770{
771 u8 *p = object;
3b0efdfa 772 u8 *endobject = object + s->object_size;
81819f0f
CL
773
774 if (s->flags & SLAB_RED_ZONE) {
24922684 775 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 776 endobject, val, s->inuse - s->object_size))
81819f0f 777 return 0;
81819f0f 778 } else {
3b0efdfa 779 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 780 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 781 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 782 }
81819f0f
CL
783 }
784
785 if (s->flags & SLAB_POISON) {
f7cb1933 786 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 787 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 788 POISON_FREE, s->object_size - 1) ||
24922684 789 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 790 p + s->object_size - 1, POISON_END, 1)))
81819f0f 791 return 0;
81819f0f
CL
792 /*
793 * check_pad_bytes cleans up on its own.
794 */
795 check_pad_bytes(s, page, p);
796 }
797
f7cb1933 798 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
799 /*
800 * Object and freepointer overlap. Cannot check
801 * freepointer while object is allocated.
802 */
803 return 1;
804
805 /* Check free pointer validity */
806 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
807 object_err(s, page, p, "Freepointer corrupt");
808 /*
9f6c708e 809 * No choice but to zap it and thus lose the remainder
81819f0f 810 * of the free objects in this slab. May cause
672bba3a 811 * another error because the object count is now wrong.
81819f0f 812 */
a973e9dd 813 set_freepointer(s, p, NULL);
81819f0f
CL
814 return 0;
815 }
816 return 1;
817}
818
819static int check_slab(struct kmem_cache *s, struct page *page)
820{
39b26464
CL
821 int maxobj;
822
81819f0f
CL
823 VM_BUG_ON(!irqs_disabled());
824
825 if (!PageSlab(page)) {
24922684 826 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
827 return 0;
828 }
39b26464 829
ab9a0f19 830 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
831 if (page->objects > maxobj) {
832 slab_err(s, page, "objects %u > max %u",
833 s->name, page->objects, maxobj);
834 return 0;
835 }
836 if (page->inuse > page->objects) {
24922684 837 slab_err(s, page, "inuse %u > max %u",
39b26464 838 s->name, page->inuse, page->objects);
81819f0f
CL
839 return 0;
840 }
841 /* Slab_pad_check fixes things up after itself */
842 slab_pad_check(s, page);
843 return 1;
844}
845
846/*
672bba3a
CL
847 * Determine if a certain object on a page is on the freelist. Must hold the
848 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
849 */
850static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
851{
852 int nr = 0;
881db7fb 853 void *fp;
81819f0f 854 void *object = NULL;
224a88be 855 unsigned long max_objects;
81819f0f 856
881db7fb 857 fp = page->freelist;
39b26464 858 while (fp && nr <= page->objects) {
81819f0f
CL
859 if (fp == search)
860 return 1;
861 if (!check_valid_pointer(s, page, fp)) {
862 if (object) {
863 object_err(s, page, object,
864 "Freechain corrupt");
a973e9dd 865 set_freepointer(s, object, NULL);
81819f0f
CL
866 break;
867 } else {
24922684 868 slab_err(s, page, "Freepointer corrupt");
a973e9dd 869 page->freelist = NULL;
39b26464 870 page->inuse = page->objects;
24922684 871 slab_fix(s, "Freelist cleared");
81819f0f
CL
872 return 0;
873 }
874 break;
875 }
876 object = fp;
877 fp = get_freepointer(s, object);
878 nr++;
879 }
880
ab9a0f19 881 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
882 if (max_objects > MAX_OBJS_PER_PAGE)
883 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
884
885 if (page->objects != max_objects) {
886 slab_err(s, page, "Wrong number of objects. Found %d but "
887 "should be %d", page->objects, max_objects);
888 page->objects = max_objects;
889 slab_fix(s, "Number of objects adjusted.");
890 }
39b26464 891 if (page->inuse != page->objects - nr) {
70d71228 892 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
893 "counted were %d", page->inuse, page->objects - nr);
894 page->inuse = page->objects - nr;
24922684 895 slab_fix(s, "Object count adjusted.");
81819f0f
CL
896 }
897 return search == NULL;
898}
899
0121c619
CL
900static void trace(struct kmem_cache *s, struct page *page, void *object,
901 int alloc)
3ec09742
CL
902{
903 if (s->flags & SLAB_TRACE) {
904 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
905 s->name,
906 alloc ? "alloc" : "free",
907 object, page->inuse,
908 page->freelist);
909
910 if (!alloc)
3b0efdfa 911 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
912
913 dump_stack();
914 }
915}
916
c016b0bd
CL
917/*
918 * Hooks for other subsystems that check memory allocations. In a typical
919 * production configuration these hooks all should produce no code at all.
920 */
921static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
922{
c1d50836 923 flags &= gfp_allowed_mask;
c016b0bd
CL
924 lockdep_trace_alloc(flags);
925 might_sleep_if(flags & __GFP_WAIT);
926
3b0efdfa 927 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
928}
929
930static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
931{
c1d50836 932 flags &= gfp_allowed_mask;
b3d41885 933 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 934 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
935}
936
937static inline void slab_free_hook(struct kmem_cache *s, void *x)
938{
939 kmemleak_free_recursive(x, s->flags);
c016b0bd 940
d3f661d6
CL
941 /*
942 * Trouble is that we may no longer disable interupts in the fast path
943 * So in order to make the debug calls that expect irqs to be
944 * disabled we need to disable interrupts temporarily.
945 */
946#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
947 {
948 unsigned long flags;
949
950 local_irq_save(flags);
3b0efdfa
CL
951 kmemcheck_slab_free(s, x, s->object_size);
952 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
953 local_irq_restore(flags);
954 }
955#endif
f9b615de 956 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 957 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
958}
959
643b1138 960/*
672bba3a 961 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
962 *
963 * list_lock must be held.
643b1138 964 */
5cc6eee8
CL
965static void add_full(struct kmem_cache *s,
966 struct kmem_cache_node *n, struct page *page)
643b1138 967{
5cc6eee8
CL
968 if (!(s->flags & SLAB_STORE_USER))
969 return;
970
643b1138 971 list_add(&page->lru, &n->full);
643b1138
CL
972}
973
5cc6eee8
CL
974/*
975 * list_lock must be held.
976 */
643b1138
CL
977static void remove_full(struct kmem_cache *s, struct page *page)
978{
643b1138
CL
979 if (!(s->flags & SLAB_STORE_USER))
980 return;
981
643b1138 982 list_del(&page->lru);
643b1138
CL
983}
984
0f389ec6
CL
985/* Tracking of the number of slabs for debugging purposes */
986static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987{
988 struct kmem_cache_node *n = get_node(s, node);
989
990 return atomic_long_read(&n->nr_slabs);
991}
992
26c02cf0
AB
993static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994{
995 return atomic_long_read(&n->nr_slabs);
996}
997
205ab99d 998static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
999{
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 /*
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1007 */
7340cc84 1008 if (n) {
0f389ec6 1009 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1010 atomic_long_add(objects, &n->total_objects);
1011 }
0f389ec6 1012}
205ab99d 1013static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1014{
1015 struct kmem_cache_node *n = get_node(s, node);
1016
1017 atomic_long_dec(&n->nr_slabs);
205ab99d 1018 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1019}
1020
1021/* Object debug checks for alloc/free paths */
3ec09742
CL
1022static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 void *object)
1024{
1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 return;
1027
f7cb1933 1028 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1029 init_tracking(s, object);
1030}
1031
1537066c 1032static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1033 void *object, unsigned long addr)
81819f0f
CL
1034{
1035 if (!check_slab(s, page))
1036 goto bad;
1037
81819f0f
CL
1038 if (!check_valid_pointer(s, page, object)) {
1039 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1040 goto bad;
81819f0f
CL
1041 }
1042
f7cb1933 1043 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1044 goto bad;
81819f0f 1045
3ec09742
CL
1046 /* Success perform special debug activities for allocs */
1047 if (s->flags & SLAB_STORE_USER)
1048 set_track(s, object, TRACK_ALLOC, addr);
1049 trace(s, page, object, 1);
f7cb1933 1050 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1051 return 1;
3ec09742 1052
81819f0f
CL
1053bad:
1054 if (PageSlab(page)) {
1055 /*
1056 * If this is a slab page then lets do the best we can
1057 * to avoid issues in the future. Marking all objects
672bba3a 1058 * as used avoids touching the remaining objects.
81819f0f 1059 */
24922684 1060 slab_fix(s, "Marking all objects used");
39b26464 1061 page->inuse = page->objects;
a973e9dd 1062 page->freelist = NULL;
81819f0f
CL
1063 }
1064 return 0;
1065}
1066
19c7ff9e
CL
1067static noinline struct kmem_cache_node *free_debug_processing(
1068 struct kmem_cache *s, struct page *page, void *object,
1069 unsigned long addr, unsigned long *flags)
81819f0f 1070{
19c7ff9e 1071 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1072
19c7ff9e 1073 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1074 slab_lock(page);
1075
81819f0f
CL
1076 if (!check_slab(s, page))
1077 goto fail;
1078
1079 if (!check_valid_pointer(s, page, object)) {
70d71228 1080 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1081 goto fail;
1082 }
1083
1084 if (on_freelist(s, page, object)) {
24922684 1085 object_err(s, page, object, "Object already free");
81819f0f
CL
1086 goto fail;
1087 }
1088
f7cb1933 1089 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1090 goto out;
81819f0f 1091
1b4f59e3 1092 if (unlikely(s != page->slab_cache)) {
3adbefee 1093 if (!PageSlab(page)) {
70d71228
CL
1094 slab_err(s, page, "Attempt to free object(0x%p) "
1095 "outside of slab", object);
1b4f59e3 1096 } else if (!page->slab_cache) {
81819f0f 1097 printk(KERN_ERR
70d71228 1098 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1099 object);
70d71228 1100 dump_stack();
06428780 1101 } else
24922684
CL
1102 object_err(s, page, object,
1103 "page slab pointer corrupt.");
81819f0f
CL
1104 goto fail;
1105 }
3ec09742 1106
3ec09742
CL
1107 if (s->flags & SLAB_STORE_USER)
1108 set_track(s, object, TRACK_FREE, addr);
1109 trace(s, page, object, 0);
f7cb1933 1110 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1111out:
881db7fb 1112 slab_unlock(page);
19c7ff9e
CL
1113 /*
1114 * Keep node_lock to preserve integrity
1115 * until the object is actually freed
1116 */
1117 return n;
3ec09742 1118
81819f0f 1119fail:
19c7ff9e
CL
1120 slab_unlock(page);
1121 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1122 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1123 return NULL;
81819f0f
CL
1124}
1125
41ecc55b
CL
1126static int __init setup_slub_debug(char *str)
1127{
f0630fff
CL
1128 slub_debug = DEBUG_DEFAULT_FLAGS;
1129 if (*str++ != '=' || !*str)
1130 /*
1131 * No options specified. Switch on full debugging.
1132 */
1133 goto out;
1134
1135 if (*str == ',')
1136 /*
1137 * No options but restriction on slabs. This means full
1138 * debugging for slabs matching a pattern.
1139 */
1140 goto check_slabs;
1141
fa5ec8a1
DR
1142 if (tolower(*str) == 'o') {
1143 /*
1144 * Avoid enabling debugging on caches if its minimum order
1145 * would increase as a result.
1146 */
1147 disable_higher_order_debug = 1;
1148 goto out;
1149 }
1150
f0630fff
CL
1151 slub_debug = 0;
1152 if (*str == '-')
1153 /*
1154 * Switch off all debugging measures.
1155 */
1156 goto out;
1157
1158 /*
1159 * Determine which debug features should be switched on
1160 */
06428780 1161 for (; *str && *str != ','; str++) {
f0630fff
CL
1162 switch (tolower(*str)) {
1163 case 'f':
1164 slub_debug |= SLAB_DEBUG_FREE;
1165 break;
1166 case 'z':
1167 slub_debug |= SLAB_RED_ZONE;
1168 break;
1169 case 'p':
1170 slub_debug |= SLAB_POISON;
1171 break;
1172 case 'u':
1173 slub_debug |= SLAB_STORE_USER;
1174 break;
1175 case 't':
1176 slub_debug |= SLAB_TRACE;
1177 break;
4c13dd3b
DM
1178 case 'a':
1179 slub_debug |= SLAB_FAILSLAB;
1180 break;
f0630fff
CL
1181 default:
1182 printk(KERN_ERR "slub_debug option '%c' "
06428780 1183 "unknown. skipped\n", *str);
f0630fff 1184 }
41ecc55b
CL
1185 }
1186
f0630fff 1187check_slabs:
41ecc55b
CL
1188 if (*str == ',')
1189 slub_debug_slabs = str + 1;
f0630fff 1190out:
41ecc55b
CL
1191 return 1;
1192}
1193
1194__setup("slub_debug", setup_slub_debug);
1195
3b0efdfa 1196static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1197 unsigned long flags, const char *name,
51cc5068 1198 void (*ctor)(void *))
41ecc55b
CL
1199{
1200 /*
e153362a 1201 * Enable debugging if selected on the kernel commandline.
41ecc55b 1202 */
e153362a 1203 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1204 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1205 flags |= slub_debug;
ba0268a8
CL
1206
1207 return flags;
41ecc55b
CL
1208}
1209#else
3ec09742
CL
1210static inline void setup_object_debug(struct kmem_cache *s,
1211 struct page *page, void *object) {}
41ecc55b 1212
3ec09742 1213static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1214 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1215
19c7ff9e
CL
1216static inline struct kmem_cache_node *free_debug_processing(
1217 struct kmem_cache *s, struct page *page, void *object,
1218 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1219
41ecc55b
CL
1220static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1221 { return 1; }
1222static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1223 void *object, u8 val) { return 1; }
5cc6eee8
CL
1224static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
2cfb7455 1226static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1227static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1228 unsigned long flags, const char *name,
51cc5068 1229 void (*ctor)(void *))
ba0268a8
CL
1230{
1231 return flags;
1232}
41ecc55b 1233#define slub_debug 0
0f389ec6 1234
fdaa45e9
IM
1235#define disable_higher_order_debug 0
1236
0f389ec6
CL
1237static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1238 { return 0; }
26c02cf0
AB
1239static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1240 { return 0; }
205ab99d
CL
1241static inline void inc_slabs_node(struct kmem_cache *s, int node,
1242 int objects) {}
1243static inline void dec_slabs_node(struct kmem_cache *s, int node,
1244 int objects) {}
7d550c56
CL
1245
1246static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 { return 0; }
1248
1249static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1250 void *object) {}
1251
1252static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1253
ab4d5ed5 1254#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1255
81819f0f
CL
1256/*
1257 * Slab allocation and freeing
1258 */
65c3376a
CL
1259static inline struct page *alloc_slab_page(gfp_t flags, int node,
1260 struct kmem_cache_order_objects oo)
1261{
1262 int order = oo_order(oo);
1263
b1eeab67
VN
1264 flags |= __GFP_NOTRACK;
1265
2154a336 1266 if (node == NUMA_NO_NODE)
65c3376a
CL
1267 return alloc_pages(flags, order);
1268 else
6b65aaf3 1269 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1270}
1271
81819f0f
CL
1272static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1273{
06428780 1274 struct page *page;
834f3d11 1275 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1276 gfp_t alloc_gfp;
81819f0f 1277
7e0528da
CL
1278 flags &= gfp_allowed_mask;
1279
1280 if (flags & __GFP_WAIT)
1281 local_irq_enable();
1282
b7a49f0d 1283 flags |= s->allocflags;
e12ba74d 1284
ba52270d
PE
1285 /*
1286 * Let the initial higher-order allocation fail under memory pressure
1287 * so we fall-back to the minimum order allocation.
1288 */
1289 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1290
1291 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1292 if (unlikely(!page)) {
1293 oo = s->min;
1294 /*
1295 * Allocation may have failed due to fragmentation.
1296 * Try a lower order alloc if possible
1297 */
1298 page = alloc_slab_page(flags, node, oo);
81819f0f 1299
7e0528da
CL
1300 if (page)
1301 stat(s, ORDER_FALLBACK);
65c3376a 1302 }
5a896d9e 1303
737b719e 1304 if (kmemcheck_enabled && page
5086c389 1305 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1306 int pages = 1 << oo_order(oo);
1307
1308 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1309
1310 /*
1311 * Objects from caches that have a constructor don't get
1312 * cleared when they're allocated, so we need to do it here.
1313 */
1314 if (s->ctor)
1315 kmemcheck_mark_uninitialized_pages(page, pages);
1316 else
1317 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1318 }
1319
737b719e
DR
1320 if (flags & __GFP_WAIT)
1321 local_irq_disable();
1322 if (!page)
1323 return NULL;
1324
834f3d11 1325 page->objects = oo_objects(oo);
81819f0f
CL
1326 mod_zone_page_state(page_zone(page),
1327 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1328 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1329 1 << oo_order(oo));
81819f0f
CL
1330
1331 return page;
1332}
1333
1334static void setup_object(struct kmem_cache *s, struct page *page,
1335 void *object)
1336{
3ec09742 1337 setup_object_debug(s, page, object);
4f104934 1338 if (unlikely(s->ctor))
51cc5068 1339 s->ctor(object);
81819f0f
CL
1340}
1341
1342static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1343{
1344 struct page *page;
81819f0f 1345 void *start;
81819f0f
CL
1346 void *last;
1347 void *p;
1f458cbf 1348 int order;
81819f0f 1349
6cb06229 1350 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1351
6cb06229
CL
1352 page = allocate_slab(s,
1353 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1354 if (!page)
1355 goto out;
1356
1f458cbf 1357 order = compound_order(page);
205ab99d 1358 inc_slabs_node(s, page_to_nid(page), page->objects);
1f458cbf 1359 memcg_bind_pages(s, order);
1b4f59e3 1360 page->slab_cache = s;
c03f94cc 1361 __SetPageSlab(page);
072bb0aa
MG
1362 if (page->pfmemalloc)
1363 SetPageSlabPfmemalloc(page);
81819f0f
CL
1364
1365 start = page_address(page);
81819f0f
CL
1366
1367 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1368 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f
CL
1369
1370 last = start;
224a88be 1371 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1372 setup_object(s, page, last);
1373 set_freepointer(s, last, p);
1374 last = p;
1375 }
1376 setup_object(s, page, last);
a973e9dd 1377 set_freepointer(s, last, NULL);
81819f0f
CL
1378
1379 page->freelist = start;
e6e82ea1 1380 page->inuse = page->objects;
8cb0a506 1381 page->frozen = 1;
81819f0f 1382out:
81819f0f
CL
1383 return page;
1384}
1385
1386static void __free_slab(struct kmem_cache *s, struct page *page)
1387{
834f3d11
CL
1388 int order = compound_order(page);
1389 int pages = 1 << order;
81819f0f 1390
af537b0a 1391 if (kmem_cache_debug(s)) {
81819f0f
CL
1392 void *p;
1393
1394 slab_pad_check(s, page);
224a88be
CL
1395 for_each_object(p, s, page_address(page),
1396 page->objects)
f7cb1933 1397 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1398 }
1399
b1eeab67 1400 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1401
81819f0f
CL
1402 mod_zone_page_state(page_zone(page),
1403 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1404 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1405 -pages);
81819f0f 1406
072bb0aa 1407 __ClearPageSlabPfmemalloc(page);
49bd5221 1408 __ClearPageSlab(page);
1f458cbf
GC
1409
1410 memcg_release_pages(s, order);
49bd5221 1411 reset_page_mapcount(page);
1eb5ac64
NP
1412 if (current->reclaim_state)
1413 current->reclaim_state->reclaimed_slab += pages;
d79923fa 1414 __free_memcg_kmem_pages(page, order);
81819f0f
CL
1415}
1416
da9a638c
LJ
1417#define need_reserve_slab_rcu \
1418 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1419
81819f0f
CL
1420static void rcu_free_slab(struct rcu_head *h)
1421{
1422 struct page *page;
1423
da9a638c
LJ
1424 if (need_reserve_slab_rcu)
1425 page = virt_to_head_page(h);
1426 else
1427 page = container_of((struct list_head *)h, struct page, lru);
1428
1b4f59e3 1429 __free_slab(page->slab_cache, page);
81819f0f
CL
1430}
1431
1432static void free_slab(struct kmem_cache *s, struct page *page)
1433{
1434 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1435 struct rcu_head *head;
1436
1437 if (need_reserve_slab_rcu) {
1438 int order = compound_order(page);
1439 int offset = (PAGE_SIZE << order) - s->reserved;
1440
1441 VM_BUG_ON(s->reserved != sizeof(*head));
1442 head = page_address(page) + offset;
1443 } else {
1444 /*
1445 * RCU free overloads the RCU head over the LRU
1446 */
1447 head = (void *)&page->lru;
1448 }
81819f0f
CL
1449
1450 call_rcu(head, rcu_free_slab);
1451 } else
1452 __free_slab(s, page);
1453}
1454
1455static void discard_slab(struct kmem_cache *s, struct page *page)
1456{
205ab99d 1457 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1458 free_slab(s, page);
1459}
1460
1461/*
5cc6eee8
CL
1462 * Management of partially allocated slabs.
1463 *
1464 * list_lock must be held.
81819f0f 1465 */
5cc6eee8 1466static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1467 struct page *page, int tail)
81819f0f 1468{
e95eed57 1469 n->nr_partial++;
136333d1 1470 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1471 list_add_tail(&page->lru, &n->partial);
1472 else
1473 list_add(&page->lru, &n->partial);
81819f0f
CL
1474}
1475
5cc6eee8
CL
1476/*
1477 * list_lock must be held.
1478 */
1479static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1480 struct page *page)
1481{
1482 list_del(&page->lru);
1483 n->nr_partial--;
1484}
1485
81819f0f 1486/*
7ced3719
CL
1487 * Remove slab from the partial list, freeze it and
1488 * return the pointer to the freelist.
81819f0f 1489 *
497b66f2
CL
1490 * Returns a list of objects or NULL if it fails.
1491 *
7ced3719 1492 * Must hold list_lock since we modify the partial list.
81819f0f 1493 */
497b66f2 1494static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1495 struct kmem_cache_node *n, struct page *page,
49e22585 1496 int mode)
81819f0f 1497{
2cfb7455
CL
1498 void *freelist;
1499 unsigned long counters;
1500 struct page new;
1501
2cfb7455
CL
1502 /*
1503 * Zap the freelist and set the frozen bit.
1504 * The old freelist is the list of objects for the
1505 * per cpu allocation list.
1506 */
7ced3719
CL
1507 freelist = page->freelist;
1508 counters = page->counters;
1509 new.counters = counters;
23910c50 1510 if (mode) {
7ced3719 1511 new.inuse = page->objects;
23910c50
PE
1512 new.freelist = NULL;
1513 } else {
1514 new.freelist = freelist;
1515 }
2cfb7455 1516
7ced3719
CL
1517 VM_BUG_ON(new.frozen);
1518 new.frozen = 1;
2cfb7455 1519
7ced3719 1520 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1521 freelist, counters,
02d7633f 1522 new.freelist, new.counters,
7ced3719 1523 "acquire_slab"))
7ced3719 1524 return NULL;
2cfb7455
CL
1525
1526 remove_partial(n, page);
7ced3719 1527 WARN_ON(!freelist);
49e22585 1528 return freelist;
81819f0f
CL
1529}
1530
49e22585 1531static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1532static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1533
81819f0f 1534/*
672bba3a 1535 * Try to allocate a partial slab from a specific node.
81819f0f 1536 */
8ba00bb6
JK
1537static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1538 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1539{
49e22585
CL
1540 struct page *page, *page2;
1541 void *object = NULL;
81819f0f
CL
1542
1543 /*
1544 * Racy check. If we mistakenly see no partial slabs then we
1545 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1546 * partial slab and there is none available then get_partials()
1547 * will return NULL.
81819f0f
CL
1548 */
1549 if (!n || !n->nr_partial)
1550 return NULL;
1551
1552 spin_lock(&n->list_lock);
49e22585 1553 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1554 void *t;
49e22585
CL
1555 int available;
1556
8ba00bb6
JK
1557 if (!pfmemalloc_match(page, flags))
1558 continue;
1559
1560 t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1561 if (!t)
1562 break;
1563
12d79634 1564 if (!object) {
49e22585 1565 c->page = page;
49e22585 1566 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1567 object = t;
1568 available = page->objects - page->inuse;
1569 } else {
49e22585 1570 available = put_cpu_partial(s, page, 0);
8028dcea 1571 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1572 }
1573 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1574 break;
1575
497b66f2 1576 }
81819f0f 1577 spin_unlock(&n->list_lock);
497b66f2 1578 return object;
81819f0f
CL
1579}
1580
1581/*
672bba3a 1582 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1583 */
de3ec035 1584static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1585 struct kmem_cache_cpu *c)
81819f0f
CL
1586{
1587#ifdef CONFIG_NUMA
1588 struct zonelist *zonelist;
dd1a239f 1589 struct zoneref *z;
54a6eb5c
MG
1590 struct zone *zone;
1591 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1592 void *object;
cc9a6c87 1593 unsigned int cpuset_mems_cookie;
81819f0f
CL
1594
1595 /*
672bba3a
CL
1596 * The defrag ratio allows a configuration of the tradeoffs between
1597 * inter node defragmentation and node local allocations. A lower
1598 * defrag_ratio increases the tendency to do local allocations
1599 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1600 *
672bba3a
CL
1601 * If the defrag_ratio is set to 0 then kmalloc() always
1602 * returns node local objects. If the ratio is higher then kmalloc()
1603 * may return off node objects because partial slabs are obtained
1604 * from other nodes and filled up.
81819f0f 1605 *
6446faa2 1606 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1607 * defrag_ratio = 1000) then every (well almost) allocation will
1608 * first attempt to defrag slab caches on other nodes. This means
1609 * scanning over all nodes to look for partial slabs which may be
1610 * expensive if we do it every time we are trying to find a slab
1611 * with available objects.
81819f0f 1612 */
9824601e
CL
1613 if (!s->remote_node_defrag_ratio ||
1614 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1615 return NULL;
1616
cc9a6c87
MG
1617 do {
1618 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1619 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1620 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1621 struct kmem_cache_node *n;
1622
1623 n = get_node(s, zone_to_nid(zone));
1624
1625 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1626 n->nr_partial > s->min_partial) {
8ba00bb6 1627 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1628 if (object) {
1629 /*
1630 * Return the object even if
1631 * put_mems_allowed indicated that
1632 * the cpuset mems_allowed was
1633 * updated in parallel. It's a
1634 * harmless race between the alloc
1635 * and the cpuset update.
1636 */
1637 put_mems_allowed(cpuset_mems_cookie);
1638 return object;
1639 }
c0ff7453 1640 }
81819f0f 1641 }
cc9a6c87 1642 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1643#endif
1644 return NULL;
1645}
1646
1647/*
1648 * Get a partial page, lock it and return it.
1649 */
497b66f2 1650static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1651 struct kmem_cache_cpu *c)
81819f0f 1652{
497b66f2 1653 void *object;
2154a336 1654 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1655
8ba00bb6 1656 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1657 if (object || node != NUMA_NO_NODE)
1658 return object;
81819f0f 1659
acd19fd1 1660 return get_any_partial(s, flags, c);
81819f0f
CL
1661}
1662
8a5ec0ba
CL
1663#ifdef CONFIG_PREEMPT
1664/*
1665 * Calculate the next globally unique transaction for disambiguiation
1666 * during cmpxchg. The transactions start with the cpu number and are then
1667 * incremented by CONFIG_NR_CPUS.
1668 */
1669#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1670#else
1671/*
1672 * No preemption supported therefore also no need to check for
1673 * different cpus.
1674 */
1675#define TID_STEP 1
1676#endif
1677
1678static inline unsigned long next_tid(unsigned long tid)
1679{
1680 return tid + TID_STEP;
1681}
1682
1683static inline unsigned int tid_to_cpu(unsigned long tid)
1684{
1685 return tid % TID_STEP;
1686}
1687
1688static inline unsigned long tid_to_event(unsigned long tid)
1689{
1690 return tid / TID_STEP;
1691}
1692
1693static inline unsigned int init_tid(int cpu)
1694{
1695 return cpu;
1696}
1697
1698static inline void note_cmpxchg_failure(const char *n,
1699 const struct kmem_cache *s, unsigned long tid)
1700{
1701#ifdef SLUB_DEBUG_CMPXCHG
1702 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1703
1704 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1705
1706#ifdef CONFIG_PREEMPT
1707 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1708 printk("due to cpu change %d -> %d\n",
1709 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1710 else
1711#endif
1712 if (tid_to_event(tid) != tid_to_event(actual_tid))
1713 printk("due to cpu running other code. Event %ld->%ld\n",
1714 tid_to_event(tid), tid_to_event(actual_tid));
1715 else
1716 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1717 actual_tid, tid, next_tid(tid));
1718#endif
4fdccdfb 1719 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1720}
1721
788e1aad 1722static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1723{
8a5ec0ba
CL
1724 int cpu;
1725
1726 for_each_possible_cpu(cpu)
1727 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1728}
2cfb7455 1729
81819f0f
CL
1730/*
1731 * Remove the cpu slab
1732 */
c17dda40 1733static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1734{
2cfb7455 1735 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1736 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1737 int lock = 0;
1738 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1739 void *nextfree;
136333d1 1740 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1741 struct page new;
1742 struct page old;
1743
1744 if (page->freelist) {
84e554e6 1745 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1746 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1747 }
1748
894b8788 1749 /*
2cfb7455
CL
1750 * Stage one: Free all available per cpu objects back
1751 * to the page freelist while it is still frozen. Leave the
1752 * last one.
1753 *
1754 * There is no need to take the list->lock because the page
1755 * is still frozen.
1756 */
1757 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1758 void *prior;
1759 unsigned long counters;
1760
1761 do {
1762 prior = page->freelist;
1763 counters = page->counters;
1764 set_freepointer(s, freelist, prior);
1765 new.counters = counters;
1766 new.inuse--;
1767 VM_BUG_ON(!new.frozen);
1768
1d07171c 1769 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1770 prior, counters,
1771 freelist, new.counters,
1772 "drain percpu freelist"));
1773
1774 freelist = nextfree;
1775 }
1776
894b8788 1777 /*
2cfb7455
CL
1778 * Stage two: Ensure that the page is unfrozen while the
1779 * list presence reflects the actual number of objects
1780 * during unfreeze.
1781 *
1782 * We setup the list membership and then perform a cmpxchg
1783 * with the count. If there is a mismatch then the page
1784 * is not unfrozen but the page is on the wrong list.
1785 *
1786 * Then we restart the process which may have to remove
1787 * the page from the list that we just put it on again
1788 * because the number of objects in the slab may have
1789 * changed.
894b8788 1790 */
2cfb7455 1791redo:
894b8788 1792
2cfb7455
CL
1793 old.freelist = page->freelist;
1794 old.counters = page->counters;
1795 VM_BUG_ON(!old.frozen);
7c2e132c 1796
2cfb7455
CL
1797 /* Determine target state of the slab */
1798 new.counters = old.counters;
1799 if (freelist) {
1800 new.inuse--;
1801 set_freepointer(s, freelist, old.freelist);
1802 new.freelist = freelist;
1803 } else
1804 new.freelist = old.freelist;
1805
1806 new.frozen = 0;
1807
81107188 1808 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1809 m = M_FREE;
1810 else if (new.freelist) {
1811 m = M_PARTIAL;
1812 if (!lock) {
1813 lock = 1;
1814 /*
1815 * Taking the spinlock removes the possiblity
1816 * that acquire_slab() will see a slab page that
1817 * is frozen
1818 */
1819 spin_lock(&n->list_lock);
1820 }
1821 } else {
1822 m = M_FULL;
1823 if (kmem_cache_debug(s) && !lock) {
1824 lock = 1;
1825 /*
1826 * This also ensures that the scanning of full
1827 * slabs from diagnostic functions will not see
1828 * any frozen slabs.
1829 */
1830 spin_lock(&n->list_lock);
1831 }
1832 }
1833
1834 if (l != m) {
1835
1836 if (l == M_PARTIAL)
1837
1838 remove_partial(n, page);
1839
1840 else if (l == M_FULL)
894b8788 1841
2cfb7455
CL
1842 remove_full(s, page);
1843
1844 if (m == M_PARTIAL) {
1845
1846 add_partial(n, page, tail);
136333d1 1847 stat(s, tail);
2cfb7455
CL
1848
1849 } else if (m == M_FULL) {
894b8788 1850
2cfb7455
CL
1851 stat(s, DEACTIVATE_FULL);
1852 add_full(s, n, page);
1853
1854 }
1855 }
1856
1857 l = m;
1d07171c 1858 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1859 old.freelist, old.counters,
1860 new.freelist, new.counters,
1861 "unfreezing slab"))
1862 goto redo;
1863
2cfb7455
CL
1864 if (lock)
1865 spin_unlock(&n->list_lock);
1866
1867 if (m == M_FREE) {
1868 stat(s, DEACTIVATE_EMPTY);
1869 discard_slab(s, page);
1870 stat(s, FREE_SLAB);
894b8788 1871 }
81819f0f
CL
1872}
1873
d24ac77f
JK
1874/*
1875 * Unfreeze all the cpu partial slabs.
1876 *
59a09917
CL
1877 * This function must be called with interrupts disabled
1878 * for the cpu using c (or some other guarantee must be there
1879 * to guarantee no concurrent accesses).
d24ac77f 1880 */
59a09917
CL
1881static void unfreeze_partials(struct kmem_cache *s,
1882 struct kmem_cache_cpu *c)
49e22585 1883{
43d77867 1884 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1885 struct page *page, *discard_page = NULL;
49e22585
CL
1886
1887 while ((page = c->partial)) {
49e22585
CL
1888 struct page new;
1889 struct page old;
1890
1891 c->partial = page->next;
43d77867
JK
1892
1893 n2 = get_node(s, page_to_nid(page));
1894 if (n != n2) {
1895 if (n)
1896 spin_unlock(&n->list_lock);
1897
1898 n = n2;
1899 spin_lock(&n->list_lock);
1900 }
49e22585
CL
1901
1902 do {
1903
1904 old.freelist = page->freelist;
1905 old.counters = page->counters;
1906 VM_BUG_ON(!old.frozen);
1907
1908 new.counters = old.counters;
1909 new.freelist = old.freelist;
1910
1911 new.frozen = 0;
1912
d24ac77f 1913 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1914 old.freelist, old.counters,
1915 new.freelist, new.counters,
1916 "unfreezing slab"));
1917
43d77867 1918 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1919 page->next = discard_page;
1920 discard_page = page;
43d77867
JK
1921 } else {
1922 add_partial(n, page, DEACTIVATE_TO_TAIL);
1923 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1924 }
1925 }
1926
1927 if (n)
1928 spin_unlock(&n->list_lock);
9ada1934
SL
1929
1930 while (discard_page) {
1931 page = discard_page;
1932 discard_page = discard_page->next;
1933
1934 stat(s, DEACTIVATE_EMPTY);
1935 discard_slab(s, page);
1936 stat(s, FREE_SLAB);
1937 }
49e22585
CL
1938}
1939
1940/*
1941 * Put a page that was just frozen (in __slab_free) into a partial page
1942 * slot if available. This is done without interrupts disabled and without
1943 * preemption disabled. The cmpxchg is racy and may put the partial page
1944 * onto a random cpus partial slot.
1945 *
1946 * If we did not find a slot then simply move all the partials to the
1947 * per node partial list.
1948 */
788e1aad 1949static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585
CL
1950{
1951 struct page *oldpage;
1952 int pages;
1953 int pobjects;
1954
1955 do {
1956 pages = 0;
1957 pobjects = 0;
1958 oldpage = this_cpu_read(s->cpu_slab->partial);
1959
1960 if (oldpage) {
1961 pobjects = oldpage->pobjects;
1962 pages = oldpage->pages;
1963 if (drain && pobjects > s->cpu_partial) {
1964 unsigned long flags;
1965 /*
1966 * partial array is full. Move the existing
1967 * set to the per node partial list.
1968 */
1969 local_irq_save(flags);
59a09917 1970 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 1971 local_irq_restore(flags);
e24fc410 1972 oldpage = NULL;
49e22585
CL
1973 pobjects = 0;
1974 pages = 0;
8028dcea 1975 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1976 }
1977 }
1978
1979 pages++;
1980 pobjects += page->objects - page->inuse;
1981
1982 page->pages = pages;
1983 page->pobjects = pobjects;
1984 page->next = oldpage;
1985
933393f5 1986 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1987 return pobjects;
1988}
1989
dfb4f096 1990static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1991{
84e554e6 1992 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
1993 deactivate_slab(s, c->page, c->freelist);
1994
1995 c->tid = next_tid(c->tid);
1996 c->page = NULL;
1997 c->freelist = NULL;
81819f0f
CL
1998}
1999
2000/*
2001 * Flush cpu slab.
6446faa2 2002 *
81819f0f
CL
2003 * Called from IPI handler with interrupts disabled.
2004 */
0c710013 2005static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2006{
9dfc6e68 2007 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2008
49e22585
CL
2009 if (likely(c)) {
2010 if (c->page)
2011 flush_slab(s, c);
2012
59a09917 2013 unfreeze_partials(s, c);
49e22585 2014 }
81819f0f
CL
2015}
2016
2017static void flush_cpu_slab(void *d)
2018{
2019 struct kmem_cache *s = d;
81819f0f 2020
dfb4f096 2021 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2022}
2023
a8364d55
GBY
2024static bool has_cpu_slab(int cpu, void *info)
2025{
2026 struct kmem_cache *s = info;
2027 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2028
02e1a9cd 2029 return c->page || c->partial;
a8364d55
GBY
2030}
2031
81819f0f
CL
2032static void flush_all(struct kmem_cache *s)
2033{
a8364d55 2034 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2035}
2036
dfb4f096
CL
2037/*
2038 * Check if the objects in a per cpu structure fit numa
2039 * locality expectations.
2040 */
57d437d2 2041static inline int node_match(struct page *page, int node)
dfb4f096
CL
2042{
2043#ifdef CONFIG_NUMA
57d437d2 2044 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2045 return 0;
2046#endif
2047 return 1;
2048}
2049
781b2ba6
PE
2050static int count_free(struct page *page)
2051{
2052 return page->objects - page->inuse;
2053}
2054
2055static unsigned long count_partial(struct kmem_cache_node *n,
2056 int (*get_count)(struct page *))
2057{
2058 unsigned long flags;
2059 unsigned long x = 0;
2060 struct page *page;
2061
2062 spin_lock_irqsave(&n->list_lock, flags);
2063 list_for_each_entry(page, &n->partial, lru)
2064 x += get_count(page);
2065 spin_unlock_irqrestore(&n->list_lock, flags);
2066 return x;
2067}
2068
26c02cf0
AB
2069static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2070{
2071#ifdef CONFIG_SLUB_DEBUG
2072 return atomic_long_read(&n->total_objects);
2073#else
2074 return 0;
2075#endif
2076}
2077
781b2ba6
PE
2078static noinline void
2079slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2080{
2081 int node;
2082
2083 printk(KERN_WARNING
2084 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2085 nid, gfpflags);
2086 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2087 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2088 s->size, oo_order(s->oo), oo_order(s->min));
2089
3b0efdfa 2090 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2091 printk(KERN_WARNING " %s debugging increased min order, use "
2092 "slub_debug=O to disable.\n", s->name);
2093
781b2ba6
PE
2094 for_each_online_node(node) {
2095 struct kmem_cache_node *n = get_node(s, node);
2096 unsigned long nr_slabs;
2097 unsigned long nr_objs;
2098 unsigned long nr_free;
2099
2100 if (!n)
2101 continue;
2102
26c02cf0
AB
2103 nr_free = count_partial(n, count_free);
2104 nr_slabs = node_nr_slabs(n);
2105 nr_objs = node_nr_objs(n);
781b2ba6
PE
2106
2107 printk(KERN_WARNING
2108 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2109 node, nr_slabs, nr_objs, nr_free);
2110 }
2111}
2112
497b66f2
CL
2113static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2114 int node, struct kmem_cache_cpu **pc)
2115{
6faa6833 2116 void *freelist;
188fd063
CL
2117 struct kmem_cache_cpu *c = *pc;
2118 struct page *page;
497b66f2 2119
188fd063 2120 freelist = get_partial(s, flags, node, c);
497b66f2 2121
188fd063
CL
2122 if (freelist)
2123 return freelist;
2124
2125 page = new_slab(s, flags, node);
497b66f2
CL
2126 if (page) {
2127 c = __this_cpu_ptr(s->cpu_slab);
2128 if (c->page)
2129 flush_slab(s, c);
2130
2131 /*
2132 * No other reference to the page yet so we can
2133 * muck around with it freely without cmpxchg
2134 */
6faa6833 2135 freelist = page->freelist;
497b66f2
CL
2136 page->freelist = NULL;
2137
2138 stat(s, ALLOC_SLAB);
497b66f2
CL
2139 c->page = page;
2140 *pc = c;
2141 } else
6faa6833 2142 freelist = NULL;
497b66f2 2143
6faa6833 2144 return freelist;
497b66f2
CL
2145}
2146
072bb0aa
MG
2147static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2148{
2149 if (unlikely(PageSlabPfmemalloc(page)))
2150 return gfp_pfmemalloc_allowed(gfpflags);
2151
2152 return true;
2153}
2154
213eeb9f
CL
2155/*
2156 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2157 * or deactivate the page.
2158 *
2159 * The page is still frozen if the return value is not NULL.
2160 *
2161 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2162 *
2163 * This function must be called with interrupt disabled.
213eeb9f
CL
2164 */
2165static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2166{
2167 struct page new;
2168 unsigned long counters;
2169 void *freelist;
2170
2171 do {
2172 freelist = page->freelist;
2173 counters = page->counters;
6faa6833 2174
213eeb9f
CL
2175 new.counters = counters;
2176 VM_BUG_ON(!new.frozen);
2177
2178 new.inuse = page->objects;
2179 new.frozen = freelist != NULL;
2180
d24ac77f 2181 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2182 freelist, counters,
2183 NULL, new.counters,
2184 "get_freelist"));
2185
2186 return freelist;
2187}
2188
81819f0f 2189/*
894b8788
CL
2190 * Slow path. The lockless freelist is empty or we need to perform
2191 * debugging duties.
2192 *
894b8788
CL
2193 * Processing is still very fast if new objects have been freed to the
2194 * regular freelist. In that case we simply take over the regular freelist
2195 * as the lockless freelist and zap the regular freelist.
81819f0f 2196 *
894b8788
CL
2197 * If that is not working then we fall back to the partial lists. We take the
2198 * first element of the freelist as the object to allocate now and move the
2199 * rest of the freelist to the lockless freelist.
81819f0f 2200 *
894b8788 2201 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2202 * we need to allocate a new slab. This is the slowest path since it involves
2203 * a call to the page allocator and the setup of a new slab.
81819f0f 2204 */
ce71e27c
EGM
2205static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2206 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2207{
6faa6833 2208 void *freelist;
f6e7def7 2209 struct page *page;
8a5ec0ba
CL
2210 unsigned long flags;
2211
2212 local_irq_save(flags);
2213#ifdef CONFIG_PREEMPT
2214 /*
2215 * We may have been preempted and rescheduled on a different
2216 * cpu before disabling interrupts. Need to reload cpu area
2217 * pointer.
2218 */
2219 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2220#endif
81819f0f 2221
f6e7def7
CL
2222 page = c->page;
2223 if (!page)
81819f0f 2224 goto new_slab;
49e22585 2225redo:
6faa6833 2226
57d437d2 2227 if (unlikely(!node_match(page, node))) {
e36a2652 2228 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2229 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2230 c->page = NULL;
2231 c->freelist = NULL;
fc59c053
CL
2232 goto new_slab;
2233 }
6446faa2 2234
072bb0aa
MG
2235 /*
2236 * By rights, we should be searching for a slab page that was
2237 * PFMEMALLOC but right now, we are losing the pfmemalloc
2238 * information when the page leaves the per-cpu allocator
2239 */
2240 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2241 deactivate_slab(s, page, c->freelist);
2242 c->page = NULL;
2243 c->freelist = NULL;
2244 goto new_slab;
2245 }
2246
73736e03 2247 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2248 freelist = c->freelist;
2249 if (freelist)
73736e03 2250 goto load_freelist;
03e404af 2251
2cfb7455 2252 stat(s, ALLOC_SLOWPATH);
03e404af 2253
f6e7def7 2254 freelist = get_freelist(s, page);
6446faa2 2255
6faa6833 2256 if (!freelist) {
03e404af
CL
2257 c->page = NULL;
2258 stat(s, DEACTIVATE_BYPASS);
fc59c053 2259 goto new_slab;
03e404af 2260 }
6446faa2 2261
84e554e6 2262 stat(s, ALLOC_REFILL);
6446faa2 2263
894b8788 2264load_freelist:
507effea
CL
2265 /*
2266 * freelist is pointing to the list of objects to be used.
2267 * page is pointing to the page from which the objects are obtained.
2268 * That page must be frozen for per cpu allocations to work.
2269 */
2270 VM_BUG_ON(!c->page->frozen);
6faa6833 2271 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2272 c->tid = next_tid(c->tid);
2273 local_irq_restore(flags);
6faa6833 2274 return freelist;
81819f0f 2275
81819f0f 2276new_slab:
2cfb7455 2277
49e22585 2278 if (c->partial) {
f6e7def7
CL
2279 page = c->page = c->partial;
2280 c->partial = page->next;
49e22585
CL
2281 stat(s, CPU_PARTIAL_ALLOC);
2282 c->freelist = NULL;
2283 goto redo;
81819f0f
CL
2284 }
2285
188fd063 2286 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2287
f4697436
CL
2288 if (unlikely(!freelist)) {
2289 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2290 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2291
f4697436
CL
2292 local_irq_restore(flags);
2293 return NULL;
81819f0f 2294 }
2cfb7455 2295
f6e7def7 2296 page = c->page;
5091b74a 2297 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2298 goto load_freelist;
2cfb7455 2299
497b66f2 2300 /* Only entered in the debug case */
5091b74a 2301 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2302 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2303
f6e7def7 2304 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2305 c->page = NULL;
2306 c->freelist = NULL;
a71ae47a 2307 local_irq_restore(flags);
6faa6833 2308 return freelist;
894b8788
CL
2309}
2310
2311/*
2312 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2313 * have the fastpath folded into their functions. So no function call
2314 * overhead for requests that can be satisfied on the fastpath.
2315 *
2316 * The fastpath works by first checking if the lockless freelist can be used.
2317 * If not then __slab_alloc is called for slow processing.
2318 *
2319 * Otherwise we can simply pick the next object from the lockless free list.
2320 */
2b847c3c 2321static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2322 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2323{
894b8788 2324 void **object;
dfb4f096 2325 struct kmem_cache_cpu *c;
57d437d2 2326 struct page *page;
8a5ec0ba 2327 unsigned long tid;
1f84260c 2328
c016b0bd 2329 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2330 return NULL;
1f84260c 2331
d79923fa 2332 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2333redo:
8a5ec0ba
CL
2334
2335 /*
2336 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2337 * enabled. We may switch back and forth between cpus while
2338 * reading from one cpu area. That does not matter as long
2339 * as we end up on the original cpu again when doing the cmpxchg.
2340 */
9dfc6e68 2341 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2342
8a5ec0ba
CL
2343 /*
2344 * The transaction ids are globally unique per cpu and per operation on
2345 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2346 * occurs on the right processor and that there was no operation on the
2347 * linked list in between.
2348 */
2349 tid = c->tid;
2350 barrier();
8a5ec0ba 2351
9dfc6e68 2352 object = c->freelist;
57d437d2 2353 page = c->page;
5091b74a 2354 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2355 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2356
2357 else {
0ad9500e
ED
2358 void *next_object = get_freepointer_safe(s, object);
2359
8a5ec0ba 2360 /*
25985edc 2361 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2362 * operation and if we are on the right processor.
2363 *
2364 * The cmpxchg does the following atomically (without lock semantics!)
2365 * 1. Relocate first pointer to the current per cpu area.
2366 * 2. Verify that tid and freelist have not been changed
2367 * 3. If they were not changed replace tid and freelist
2368 *
2369 * Since this is without lock semantics the protection is only against
2370 * code executing on this cpu *not* from access by other cpus.
2371 */
933393f5 2372 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2373 s->cpu_slab->freelist, s->cpu_slab->tid,
2374 object, tid,
0ad9500e 2375 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2376
2377 note_cmpxchg_failure("slab_alloc", s, tid);
2378 goto redo;
2379 }
0ad9500e 2380 prefetch_freepointer(s, next_object);
84e554e6 2381 stat(s, ALLOC_FASTPATH);
894b8788 2382 }
8a5ec0ba 2383
74e2134f 2384 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2385 memset(object, 0, s->object_size);
d07dbea4 2386
c016b0bd 2387 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2388
894b8788 2389 return object;
81819f0f
CL
2390}
2391
2b847c3c
EG
2392static __always_inline void *slab_alloc(struct kmem_cache *s,
2393 gfp_t gfpflags, unsigned long addr)
2394{
2395 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2396}
2397
81819f0f
CL
2398void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2399{
2b847c3c 2400 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2401
3b0efdfa 2402 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2403
2404 return ret;
81819f0f
CL
2405}
2406EXPORT_SYMBOL(kmem_cache_alloc);
2407
0f24f128 2408#ifdef CONFIG_TRACING
4a92379b
RK
2409void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2410{
2b847c3c 2411 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2412 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2413 return ret;
2414}
2415EXPORT_SYMBOL(kmem_cache_alloc_trace);
2416
2417void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2418{
4a92379b
RK
2419 void *ret = kmalloc_order(size, flags, order);
2420 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2421 return ret;
5b882be4 2422}
4a92379b 2423EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2424#endif
2425
81819f0f
CL
2426#ifdef CONFIG_NUMA
2427void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2428{
2b847c3c 2429 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2430
ca2b84cb 2431 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2432 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2433
2434 return ret;
81819f0f
CL
2435}
2436EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2437
0f24f128 2438#ifdef CONFIG_TRACING
4a92379b 2439void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2440 gfp_t gfpflags,
4a92379b 2441 int node, size_t size)
5b882be4 2442{
2b847c3c 2443 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2444
2445 trace_kmalloc_node(_RET_IP_, ret,
2446 size, s->size, gfpflags, node);
2447 return ret;
5b882be4 2448}
4a92379b 2449EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2450#endif
5d1f57e4 2451#endif
5b882be4 2452
81819f0f 2453/*
894b8788
CL
2454 * Slow patch handling. This may still be called frequently since objects
2455 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2456 *
894b8788
CL
2457 * So we still attempt to reduce cache line usage. Just take the slab
2458 * lock and free the item. If there is no additional partial page
2459 * handling required then we can return immediately.
81819f0f 2460 */
894b8788 2461static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2462 void *x, unsigned long addr)
81819f0f
CL
2463{
2464 void *prior;
2465 void **object = (void *)x;
2cfb7455 2466 int was_frozen;
2cfb7455
CL
2467 struct page new;
2468 unsigned long counters;
2469 struct kmem_cache_node *n = NULL;
61728d1e 2470 unsigned long uninitialized_var(flags);
81819f0f 2471
8a5ec0ba 2472 stat(s, FREE_SLOWPATH);
81819f0f 2473
19c7ff9e
CL
2474 if (kmem_cache_debug(s) &&
2475 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2476 return;
6446faa2 2477
2cfb7455 2478 do {
837d678d
JK
2479 if (unlikely(n)) {
2480 spin_unlock_irqrestore(&n->list_lock, flags);
2481 n = NULL;
2482 }
2cfb7455
CL
2483 prior = page->freelist;
2484 counters = page->counters;
2485 set_freepointer(s, object, prior);
2486 new.counters = counters;
2487 was_frozen = new.frozen;
2488 new.inuse--;
837d678d 2489 if ((!new.inuse || !prior) && !was_frozen) {
49e22585
CL
2490
2491 if (!kmem_cache_debug(s) && !prior)
2492
2493 /*
2494 * Slab was on no list before and will be partially empty
2495 * We can defer the list move and instead freeze it.
2496 */
2497 new.frozen = 1;
2498
2499 else { /* Needs to be taken off a list */
2500
2501 n = get_node(s, page_to_nid(page));
2502 /*
2503 * Speculatively acquire the list_lock.
2504 * If the cmpxchg does not succeed then we may
2505 * drop the list_lock without any processing.
2506 *
2507 * Otherwise the list_lock will synchronize with
2508 * other processors updating the list of slabs.
2509 */
2510 spin_lock_irqsave(&n->list_lock, flags);
2511
2512 }
2cfb7455 2513 }
81819f0f 2514
2cfb7455
CL
2515 } while (!cmpxchg_double_slab(s, page,
2516 prior, counters,
2517 object, new.counters,
2518 "__slab_free"));
81819f0f 2519
2cfb7455 2520 if (likely(!n)) {
49e22585
CL
2521
2522 /*
2523 * If we just froze the page then put it onto the
2524 * per cpu partial list.
2525 */
8028dcea 2526 if (new.frozen && !was_frozen) {
49e22585 2527 put_cpu_partial(s, page, 1);
8028dcea
AS
2528 stat(s, CPU_PARTIAL_FREE);
2529 }
49e22585 2530 /*
2cfb7455
CL
2531 * The list lock was not taken therefore no list
2532 * activity can be necessary.
2533 */
2534 if (was_frozen)
2535 stat(s, FREE_FROZEN);
80f08c19 2536 return;
2cfb7455 2537 }
81819f0f 2538
837d678d
JK
2539 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2540 goto slab_empty;
2541
81819f0f 2542 /*
837d678d
JK
2543 * Objects left in the slab. If it was not on the partial list before
2544 * then add it.
81819f0f 2545 */
837d678d
JK
2546 if (kmem_cache_debug(s) && unlikely(!prior)) {
2547 remove_full(s, page);
2548 add_partial(n, page, DEACTIVATE_TO_TAIL);
2549 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2550 }
80f08c19 2551 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2552 return;
2553
2554slab_empty:
a973e9dd 2555 if (prior) {
81819f0f 2556 /*
6fbabb20 2557 * Slab on the partial list.
81819f0f 2558 */
5cc6eee8 2559 remove_partial(n, page);
84e554e6 2560 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2561 } else
2562 /* Slab must be on the full list */
2563 remove_full(s, page);
2cfb7455 2564
80f08c19 2565 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2566 stat(s, FREE_SLAB);
81819f0f 2567 discard_slab(s, page);
81819f0f
CL
2568}
2569
894b8788
CL
2570/*
2571 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2572 * can perform fastpath freeing without additional function calls.
2573 *
2574 * The fastpath is only possible if we are freeing to the current cpu slab
2575 * of this processor. This typically the case if we have just allocated
2576 * the item before.
2577 *
2578 * If fastpath is not possible then fall back to __slab_free where we deal
2579 * with all sorts of special processing.
2580 */
06428780 2581static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2582 struct page *page, void *x, unsigned long addr)
894b8788
CL
2583{
2584 void **object = (void *)x;
dfb4f096 2585 struct kmem_cache_cpu *c;
8a5ec0ba 2586 unsigned long tid;
1f84260c 2587
c016b0bd
CL
2588 slab_free_hook(s, x);
2589
8a5ec0ba
CL
2590redo:
2591 /*
2592 * Determine the currently cpus per cpu slab.
2593 * The cpu may change afterward. However that does not matter since
2594 * data is retrieved via this pointer. If we are on the same cpu
2595 * during the cmpxchg then the free will succedd.
2596 */
9dfc6e68 2597 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2598
8a5ec0ba
CL
2599 tid = c->tid;
2600 barrier();
c016b0bd 2601
442b06bc 2602 if (likely(page == c->page)) {
ff12059e 2603 set_freepointer(s, object, c->freelist);
8a5ec0ba 2604
933393f5 2605 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2606 s->cpu_slab->freelist, s->cpu_slab->tid,
2607 c->freelist, tid,
2608 object, next_tid(tid)))) {
2609
2610 note_cmpxchg_failure("slab_free", s, tid);
2611 goto redo;
2612 }
84e554e6 2613 stat(s, FREE_FASTPATH);
894b8788 2614 } else
ff12059e 2615 __slab_free(s, page, x, addr);
894b8788 2616
894b8788
CL
2617}
2618
81819f0f
CL
2619void kmem_cache_free(struct kmem_cache *s, void *x)
2620{
b9ce5ef4
GC
2621 s = cache_from_obj(s, x);
2622 if (!s)
79576102 2623 return;
b9ce5ef4 2624 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2625 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2626}
2627EXPORT_SYMBOL(kmem_cache_free);
2628
81819f0f 2629/*
672bba3a
CL
2630 * Object placement in a slab is made very easy because we always start at
2631 * offset 0. If we tune the size of the object to the alignment then we can
2632 * get the required alignment by putting one properly sized object after
2633 * another.
81819f0f
CL
2634 *
2635 * Notice that the allocation order determines the sizes of the per cpu
2636 * caches. Each processor has always one slab available for allocations.
2637 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2638 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2639 * locking overhead.
81819f0f
CL
2640 */
2641
2642/*
2643 * Mininum / Maximum order of slab pages. This influences locking overhead
2644 * and slab fragmentation. A higher order reduces the number of partial slabs
2645 * and increases the number of allocations possible without having to
2646 * take the list_lock.
2647 */
2648static int slub_min_order;
114e9e89 2649static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2650static int slub_min_objects;
81819f0f
CL
2651
2652/*
2653 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2654 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2655 */
2656static int slub_nomerge;
2657
81819f0f
CL
2658/*
2659 * Calculate the order of allocation given an slab object size.
2660 *
672bba3a
CL
2661 * The order of allocation has significant impact on performance and other
2662 * system components. Generally order 0 allocations should be preferred since
2663 * order 0 does not cause fragmentation in the page allocator. Larger objects
2664 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2665 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2666 * would be wasted.
2667 *
2668 * In order to reach satisfactory performance we must ensure that a minimum
2669 * number of objects is in one slab. Otherwise we may generate too much
2670 * activity on the partial lists which requires taking the list_lock. This is
2671 * less a concern for large slabs though which are rarely used.
81819f0f 2672 *
672bba3a
CL
2673 * slub_max_order specifies the order where we begin to stop considering the
2674 * number of objects in a slab as critical. If we reach slub_max_order then
2675 * we try to keep the page order as low as possible. So we accept more waste
2676 * of space in favor of a small page order.
81819f0f 2677 *
672bba3a
CL
2678 * Higher order allocations also allow the placement of more objects in a
2679 * slab and thereby reduce object handling overhead. If the user has
2680 * requested a higher mininum order then we start with that one instead of
2681 * the smallest order which will fit the object.
81819f0f 2682 */
5e6d444e 2683static inline int slab_order(int size, int min_objects,
ab9a0f19 2684 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2685{
2686 int order;
2687 int rem;
6300ea75 2688 int min_order = slub_min_order;
81819f0f 2689
ab9a0f19 2690 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2691 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2692
6300ea75 2693 for (order = max(min_order,
5e6d444e
CL
2694 fls(min_objects * size - 1) - PAGE_SHIFT);
2695 order <= max_order; order++) {
81819f0f 2696
5e6d444e 2697 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2698
ab9a0f19 2699 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2700 continue;
2701
ab9a0f19 2702 rem = (slab_size - reserved) % size;
81819f0f 2703
5e6d444e 2704 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2705 break;
2706
2707 }
672bba3a 2708
81819f0f
CL
2709 return order;
2710}
2711
ab9a0f19 2712static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2713{
2714 int order;
2715 int min_objects;
2716 int fraction;
e8120ff1 2717 int max_objects;
5e6d444e
CL
2718
2719 /*
2720 * Attempt to find best configuration for a slab. This
2721 * works by first attempting to generate a layout with
2722 * the best configuration and backing off gradually.
2723 *
2724 * First we reduce the acceptable waste in a slab. Then
2725 * we reduce the minimum objects required in a slab.
2726 */
2727 min_objects = slub_min_objects;
9b2cd506
CL
2728 if (!min_objects)
2729 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2730 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2731 min_objects = min(min_objects, max_objects);
2732
5e6d444e 2733 while (min_objects > 1) {
c124f5b5 2734 fraction = 16;
5e6d444e
CL
2735 while (fraction >= 4) {
2736 order = slab_order(size, min_objects,
ab9a0f19 2737 slub_max_order, fraction, reserved);
5e6d444e
CL
2738 if (order <= slub_max_order)
2739 return order;
2740 fraction /= 2;
2741 }
5086c389 2742 min_objects--;
5e6d444e
CL
2743 }
2744
2745 /*
2746 * We were unable to place multiple objects in a slab. Now
2747 * lets see if we can place a single object there.
2748 */
ab9a0f19 2749 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2750 if (order <= slub_max_order)
2751 return order;
2752
2753 /*
2754 * Doh this slab cannot be placed using slub_max_order.
2755 */
ab9a0f19 2756 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2757 if (order < MAX_ORDER)
5e6d444e
CL
2758 return order;
2759 return -ENOSYS;
2760}
2761
5595cffc 2762static void
4053497d 2763init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2764{
2765 n->nr_partial = 0;
81819f0f
CL
2766 spin_lock_init(&n->list_lock);
2767 INIT_LIST_HEAD(&n->partial);
8ab1372f 2768#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2769 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2770 atomic_long_set(&n->total_objects, 0);
643b1138 2771 INIT_LIST_HEAD(&n->full);
8ab1372f 2772#endif
81819f0f
CL
2773}
2774
55136592 2775static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2776{
6c182dc0 2777 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2778 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2779
8a5ec0ba 2780 /*
d4d84fef
CM
2781 * Must align to double word boundary for the double cmpxchg
2782 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2783 */
d4d84fef
CM
2784 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2785 2 * sizeof(void *));
8a5ec0ba
CL
2786
2787 if (!s->cpu_slab)
2788 return 0;
2789
2790 init_kmem_cache_cpus(s);
4c93c355 2791
8a5ec0ba 2792 return 1;
4c93c355 2793}
4c93c355 2794
51df1142
CL
2795static struct kmem_cache *kmem_cache_node;
2796
81819f0f
CL
2797/*
2798 * No kmalloc_node yet so do it by hand. We know that this is the first
2799 * slab on the node for this slabcache. There are no concurrent accesses
2800 * possible.
2801 *
2802 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2803 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2804 * memory on a fresh node that has no slab structures yet.
81819f0f 2805 */
55136592 2806static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2807{
2808 struct page *page;
2809 struct kmem_cache_node *n;
2810
51df1142 2811 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2812
51df1142 2813 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2814
2815 BUG_ON(!page);
a2f92ee7
CL
2816 if (page_to_nid(page) != node) {
2817 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2818 "node %d\n", node);
2819 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2820 "in order to be able to continue\n");
2821 }
2822
81819f0f
CL
2823 n = page->freelist;
2824 BUG_ON(!n);
51df1142 2825 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2826 page->inuse = 1;
8cb0a506 2827 page->frozen = 0;
51df1142 2828 kmem_cache_node->node[node] = n;
8ab1372f 2829#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2830 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2831 init_tracking(kmem_cache_node, n);
8ab1372f 2832#endif
4053497d 2833 init_kmem_cache_node(n);
51df1142 2834 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2835
136333d1 2836 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2837}
2838
2839static void free_kmem_cache_nodes(struct kmem_cache *s)
2840{
2841 int node;
2842
f64dc58c 2843 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2844 struct kmem_cache_node *n = s->node[node];
51df1142 2845
73367bd8 2846 if (n)
51df1142
CL
2847 kmem_cache_free(kmem_cache_node, n);
2848
81819f0f
CL
2849 s->node[node] = NULL;
2850 }
2851}
2852
55136592 2853static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2854{
2855 int node;
81819f0f 2856
f64dc58c 2857 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2858 struct kmem_cache_node *n;
2859
73367bd8 2860 if (slab_state == DOWN) {
55136592 2861 early_kmem_cache_node_alloc(node);
73367bd8
AD
2862 continue;
2863 }
51df1142 2864 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2865 GFP_KERNEL, node);
81819f0f 2866
73367bd8
AD
2867 if (!n) {
2868 free_kmem_cache_nodes(s);
2869 return 0;
81819f0f 2870 }
73367bd8 2871
81819f0f 2872 s->node[node] = n;
4053497d 2873 init_kmem_cache_node(n);
81819f0f
CL
2874 }
2875 return 1;
2876}
81819f0f 2877
c0bdb232 2878static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2879{
2880 if (min < MIN_PARTIAL)
2881 min = MIN_PARTIAL;
2882 else if (min > MAX_PARTIAL)
2883 min = MAX_PARTIAL;
2884 s->min_partial = min;
2885}
2886
81819f0f
CL
2887/*
2888 * calculate_sizes() determines the order and the distribution of data within
2889 * a slab object.
2890 */
06b285dc 2891static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2892{
2893 unsigned long flags = s->flags;
3b0efdfa 2894 unsigned long size = s->object_size;
834f3d11 2895 int order;
81819f0f 2896
d8b42bf5
CL
2897 /*
2898 * Round up object size to the next word boundary. We can only
2899 * place the free pointer at word boundaries and this determines
2900 * the possible location of the free pointer.
2901 */
2902 size = ALIGN(size, sizeof(void *));
2903
2904#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2905 /*
2906 * Determine if we can poison the object itself. If the user of
2907 * the slab may touch the object after free or before allocation
2908 * then we should never poison the object itself.
2909 */
2910 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2911 !s->ctor)
81819f0f
CL
2912 s->flags |= __OBJECT_POISON;
2913 else
2914 s->flags &= ~__OBJECT_POISON;
2915
81819f0f
CL
2916
2917 /*
672bba3a 2918 * If we are Redzoning then check if there is some space between the
81819f0f 2919 * end of the object and the free pointer. If not then add an
672bba3a 2920 * additional word to have some bytes to store Redzone information.
81819f0f 2921 */
3b0efdfa 2922 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2923 size += sizeof(void *);
41ecc55b 2924#endif
81819f0f
CL
2925
2926 /*
672bba3a
CL
2927 * With that we have determined the number of bytes in actual use
2928 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2929 */
2930 s->inuse = size;
2931
2932 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2933 s->ctor)) {
81819f0f
CL
2934 /*
2935 * Relocate free pointer after the object if it is not
2936 * permitted to overwrite the first word of the object on
2937 * kmem_cache_free.
2938 *
2939 * This is the case if we do RCU, have a constructor or
2940 * destructor or are poisoning the objects.
2941 */
2942 s->offset = size;
2943 size += sizeof(void *);
2944 }
2945
c12b3c62 2946#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2947 if (flags & SLAB_STORE_USER)
2948 /*
2949 * Need to store information about allocs and frees after
2950 * the object.
2951 */
2952 size += 2 * sizeof(struct track);
2953
be7b3fbc 2954 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2955 /*
2956 * Add some empty padding so that we can catch
2957 * overwrites from earlier objects rather than let
2958 * tracking information or the free pointer be
0211a9c8 2959 * corrupted if a user writes before the start
81819f0f
CL
2960 * of the object.
2961 */
2962 size += sizeof(void *);
41ecc55b 2963#endif
672bba3a 2964
81819f0f
CL
2965 /*
2966 * SLUB stores one object immediately after another beginning from
2967 * offset 0. In order to align the objects we have to simply size
2968 * each object to conform to the alignment.
2969 */
45906855 2970 size = ALIGN(size, s->align);
81819f0f 2971 s->size = size;
06b285dc
CL
2972 if (forced_order >= 0)
2973 order = forced_order;
2974 else
ab9a0f19 2975 order = calculate_order(size, s->reserved);
81819f0f 2976
834f3d11 2977 if (order < 0)
81819f0f
CL
2978 return 0;
2979
b7a49f0d 2980 s->allocflags = 0;
834f3d11 2981 if (order)
b7a49f0d
CL
2982 s->allocflags |= __GFP_COMP;
2983
2984 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 2985 s->allocflags |= GFP_DMA;
b7a49f0d
CL
2986
2987 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2988 s->allocflags |= __GFP_RECLAIMABLE;
2989
81819f0f
CL
2990 /*
2991 * Determine the number of objects per slab
2992 */
ab9a0f19
LJ
2993 s->oo = oo_make(order, size, s->reserved);
2994 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2995 if (oo_objects(s->oo) > oo_objects(s->max))
2996 s->max = s->oo;
81819f0f 2997
834f3d11 2998 return !!oo_objects(s->oo);
81819f0f
CL
2999}
3000
8a13a4cc 3001static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3002{
8a13a4cc 3003 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3004 s->reserved = 0;
81819f0f 3005
da9a638c
LJ
3006 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3007 s->reserved = sizeof(struct rcu_head);
81819f0f 3008
06b285dc 3009 if (!calculate_sizes(s, -1))
81819f0f 3010 goto error;
3de47213
DR
3011 if (disable_higher_order_debug) {
3012 /*
3013 * Disable debugging flags that store metadata if the min slab
3014 * order increased.
3015 */
3b0efdfa 3016 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3017 s->flags &= ~DEBUG_METADATA_FLAGS;
3018 s->offset = 0;
3019 if (!calculate_sizes(s, -1))
3020 goto error;
3021 }
3022 }
81819f0f 3023
2565409f
HC
3024#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3025 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3026 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3027 /* Enable fast mode */
3028 s->flags |= __CMPXCHG_DOUBLE;
3029#endif
3030
3b89d7d8
DR
3031 /*
3032 * The larger the object size is, the more pages we want on the partial
3033 * list to avoid pounding the page allocator excessively.
3034 */
49e22585
CL
3035 set_min_partial(s, ilog2(s->size) / 2);
3036
3037 /*
3038 * cpu_partial determined the maximum number of objects kept in the
3039 * per cpu partial lists of a processor.
3040 *
3041 * Per cpu partial lists mainly contain slabs that just have one
3042 * object freed. If they are used for allocation then they can be
3043 * filled up again with minimal effort. The slab will never hit the
3044 * per node partial lists and therefore no locking will be required.
3045 *
3046 * This setting also determines
3047 *
3048 * A) The number of objects from per cpu partial slabs dumped to the
3049 * per node list when we reach the limit.
9f264904 3050 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3051 * per node list when we run out of per cpu objects. We only fetch 50%
3052 * to keep some capacity around for frees.
3053 */
8f1e33da
CL
3054 if (kmem_cache_debug(s))
3055 s->cpu_partial = 0;
3056 else if (s->size >= PAGE_SIZE)
49e22585
CL
3057 s->cpu_partial = 2;
3058 else if (s->size >= 1024)
3059 s->cpu_partial = 6;
3060 else if (s->size >= 256)
3061 s->cpu_partial = 13;
3062 else
3063 s->cpu_partial = 30;
3064
81819f0f 3065#ifdef CONFIG_NUMA
e2cb96b7 3066 s->remote_node_defrag_ratio = 1000;
81819f0f 3067#endif
55136592 3068 if (!init_kmem_cache_nodes(s))
dfb4f096 3069 goto error;
81819f0f 3070
55136592 3071 if (alloc_kmem_cache_cpus(s))
278b1bb1 3072 return 0;
ff12059e 3073
4c93c355 3074 free_kmem_cache_nodes(s);
81819f0f
CL
3075error:
3076 if (flags & SLAB_PANIC)
3077 panic("Cannot create slab %s size=%lu realsize=%u "
3078 "order=%u offset=%u flags=%lx\n",
8a13a4cc 3079 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
81819f0f 3080 s->offset, flags);
278b1bb1 3081 return -EINVAL;
81819f0f 3082}
81819f0f 3083
33b12c38
CL
3084static void list_slab_objects(struct kmem_cache *s, struct page *page,
3085 const char *text)
3086{
3087#ifdef CONFIG_SLUB_DEBUG
3088 void *addr = page_address(page);
3089 void *p;
a5dd5c11
NK
3090 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3091 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3092 if (!map)
3093 return;
945cf2b6 3094 slab_err(s, page, text, s->name);
33b12c38 3095 slab_lock(page);
33b12c38 3096
5f80b13a 3097 get_map(s, page, map);
33b12c38
CL
3098 for_each_object(p, s, addr, page->objects) {
3099
3100 if (!test_bit(slab_index(p, s, addr), map)) {
3101 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3102 p, p - addr);
3103 print_tracking(s, p);
3104 }
3105 }
3106 slab_unlock(page);
bbd7d57b 3107 kfree(map);
33b12c38
CL
3108#endif
3109}
3110
81819f0f 3111/*
599870b1 3112 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3113 * This is called from kmem_cache_close(). We must be the last thread
3114 * using the cache and therefore we do not need to lock anymore.
81819f0f 3115 */
599870b1 3116static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3117{
81819f0f
CL
3118 struct page *page, *h;
3119
33b12c38 3120 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3121 if (!page->inuse) {
5cc6eee8 3122 remove_partial(n, page);
81819f0f 3123 discard_slab(s, page);
33b12c38
CL
3124 } else {
3125 list_slab_objects(s, page,
945cf2b6 3126 "Objects remaining in %s on kmem_cache_close()");
599870b1 3127 }
33b12c38 3128 }
81819f0f
CL
3129}
3130
3131/*
672bba3a 3132 * Release all resources used by a slab cache.
81819f0f 3133 */
0c710013 3134static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3135{
3136 int node;
3137
3138 flush_all(s);
81819f0f 3139 /* Attempt to free all objects */
f64dc58c 3140 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3141 struct kmem_cache_node *n = get_node(s, node);
3142
599870b1
CL
3143 free_partial(s, n);
3144 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3145 return 1;
3146 }
945cf2b6 3147 free_percpu(s->cpu_slab);
81819f0f
CL
3148 free_kmem_cache_nodes(s);
3149 return 0;
3150}
3151
945cf2b6 3152int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3153{
12c3667f 3154 int rc = kmem_cache_close(s);
945cf2b6 3155
5413dfba
GC
3156 if (!rc) {
3157 /*
3158 * We do the same lock strategy around sysfs_slab_add, see
3159 * __kmem_cache_create. Because this is pretty much the last
3160 * operation we do and the lock will be released shortly after
3161 * that in slab_common.c, we could just move sysfs_slab_remove
3162 * to a later point in common code. We should do that when we
3163 * have a common sysfs framework for all allocators.
3164 */
3165 mutex_unlock(&slab_mutex);
81819f0f 3166 sysfs_slab_remove(s);
5413dfba
GC
3167 mutex_lock(&slab_mutex);
3168 }
12c3667f
CL
3169
3170 return rc;
81819f0f 3171}
81819f0f
CL
3172
3173/********************************************************************
3174 * Kmalloc subsystem
3175 *******************************************************************/
3176
81819f0f
CL
3177static int __init setup_slub_min_order(char *str)
3178{
06428780 3179 get_option(&str, &slub_min_order);
81819f0f
CL
3180
3181 return 1;
3182}
3183
3184__setup("slub_min_order=", setup_slub_min_order);
3185
3186static int __init setup_slub_max_order(char *str)
3187{
06428780 3188 get_option(&str, &slub_max_order);
818cf590 3189 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3190
3191 return 1;
3192}
3193
3194__setup("slub_max_order=", setup_slub_max_order);
3195
3196static int __init setup_slub_min_objects(char *str)
3197{
06428780 3198 get_option(&str, &slub_min_objects);
81819f0f
CL
3199
3200 return 1;
3201}
3202
3203__setup("slub_min_objects=", setup_slub_min_objects);
3204
3205static int __init setup_slub_nomerge(char *str)
3206{
3207 slub_nomerge = 1;
3208 return 1;
3209}
3210
3211__setup("slub_nomerge", setup_slub_nomerge);
3212
81819f0f
CL
3213void *__kmalloc(size_t size, gfp_t flags)
3214{
aadb4bc4 3215 struct kmem_cache *s;
5b882be4 3216 void *ret;
81819f0f 3217
95a05b42 3218 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3219 return kmalloc_large(size, flags);
aadb4bc4 3220
2c59dd65 3221 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3222
3223 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3224 return s;
3225
2b847c3c 3226 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3227
ca2b84cb 3228 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3229
3230 return ret;
81819f0f
CL
3231}
3232EXPORT_SYMBOL(__kmalloc);
3233
5d1f57e4 3234#ifdef CONFIG_NUMA
f619cfe1
CL
3235static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3236{
b1eeab67 3237 struct page *page;
e4f7c0b4 3238 void *ptr = NULL;
f619cfe1 3239
d79923fa 3240 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
b1eeab67 3241 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3242 if (page)
e4f7c0b4
CM
3243 ptr = page_address(page);
3244
3245 kmemleak_alloc(ptr, size, 1, flags);
3246 return ptr;
f619cfe1
CL
3247}
3248
81819f0f
CL
3249void *__kmalloc_node(size_t size, gfp_t flags, int node)
3250{
aadb4bc4 3251 struct kmem_cache *s;
5b882be4 3252 void *ret;
81819f0f 3253
95a05b42 3254 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3255 ret = kmalloc_large_node(size, flags, node);
3256
ca2b84cb
EGM
3257 trace_kmalloc_node(_RET_IP_, ret,
3258 size, PAGE_SIZE << get_order(size),
3259 flags, node);
5b882be4
EGM
3260
3261 return ret;
3262 }
aadb4bc4 3263
2c59dd65 3264 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3265
3266 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3267 return s;
3268
2b847c3c 3269 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3270
ca2b84cb 3271 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3272
3273 return ret;
81819f0f
CL
3274}
3275EXPORT_SYMBOL(__kmalloc_node);
3276#endif
3277
3278size_t ksize(const void *object)
3279{
272c1d21 3280 struct page *page;
81819f0f 3281
ef8b4520 3282 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3283 return 0;
3284
294a80a8 3285 page = virt_to_head_page(object);
294a80a8 3286
76994412
PE
3287 if (unlikely(!PageSlab(page))) {
3288 WARN_ON(!PageCompound(page));
294a80a8 3289 return PAGE_SIZE << compound_order(page);
76994412 3290 }
81819f0f 3291
1b4f59e3 3292 return slab_ksize(page->slab_cache);
81819f0f 3293}
b1aabecd 3294EXPORT_SYMBOL(ksize);
81819f0f 3295
d18a90dd
BG
3296#ifdef CONFIG_SLUB_DEBUG
3297bool verify_mem_not_deleted(const void *x)
3298{
3299 struct page *page;
3300 void *object = (void *)x;
3301 unsigned long flags;
3302 bool rv;
3303
3304 if (unlikely(ZERO_OR_NULL_PTR(x)))
3305 return false;
3306
3307 local_irq_save(flags);
3308
3309 page = virt_to_head_page(x);
3310 if (unlikely(!PageSlab(page))) {
3311 /* maybe it was from stack? */
3312 rv = true;
3313 goto out_unlock;
3314 }
3315
3316 slab_lock(page);
1b4f59e3
GC
3317 if (on_freelist(page->slab_cache, page, object)) {
3318 object_err(page->slab_cache, page, object, "Object is on free-list");
d18a90dd
BG
3319 rv = false;
3320 } else {
3321 rv = true;
3322 }
3323 slab_unlock(page);
3324
3325out_unlock:
3326 local_irq_restore(flags);
3327 return rv;
3328}
3329EXPORT_SYMBOL(verify_mem_not_deleted);
3330#endif
3331
81819f0f
CL
3332void kfree(const void *x)
3333{
81819f0f 3334 struct page *page;
5bb983b0 3335 void *object = (void *)x;
81819f0f 3336
2121db74
PE
3337 trace_kfree(_RET_IP_, x);
3338
2408c550 3339 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3340 return;
3341
b49af68f 3342 page = virt_to_head_page(x);
aadb4bc4 3343 if (unlikely(!PageSlab(page))) {
0937502a 3344 BUG_ON(!PageCompound(page));
e4f7c0b4 3345 kmemleak_free(x);
d79923fa 3346 __free_memcg_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3347 return;
3348 }
1b4f59e3 3349 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3350}
3351EXPORT_SYMBOL(kfree);
3352
2086d26a 3353/*
672bba3a
CL
3354 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3355 * the remaining slabs by the number of items in use. The slabs with the
3356 * most items in use come first. New allocations will then fill those up
3357 * and thus they can be removed from the partial lists.
3358 *
3359 * The slabs with the least items are placed last. This results in them
3360 * being allocated from last increasing the chance that the last objects
3361 * are freed in them.
2086d26a
CL
3362 */
3363int kmem_cache_shrink(struct kmem_cache *s)
3364{
3365 int node;
3366 int i;
3367 struct kmem_cache_node *n;
3368 struct page *page;
3369 struct page *t;
205ab99d 3370 int objects = oo_objects(s->max);
2086d26a 3371 struct list_head *slabs_by_inuse =
834f3d11 3372 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3373 unsigned long flags;
3374
3375 if (!slabs_by_inuse)
3376 return -ENOMEM;
3377
3378 flush_all(s);
f64dc58c 3379 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3380 n = get_node(s, node);
3381
3382 if (!n->nr_partial)
3383 continue;
3384
834f3d11 3385 for (i = 0; i < objects; i++)
2086d26a
CL
3386 INIT_LIST_HEAD(slabs_by_inuse + i);
3387
3388 spin_lock_irqsave(&n->list_lock, flags);
3389
3390 /*
672bba3a 3391 * Build lists indexed by the items in use in each slab.
2086d26a 3392 *
672bba3a
CL
3393 * Note that concurrent frees may occur while we hold the
3394 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3395 */
3396 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3397 list_move(&page->lru, slabs_by_inuse + page->inuse);
3398 if (!page->inuse)
3399 n->nr_partial--;
2086d26a
CL
3400 }
3401
2086d26a 3402 /*
672bba3a
CL
3403 * Rebuild the partial list with the slabs filled up most
3404 * first and the least used slabs at the end.
2086d26a 3405 */
69cb8e6b 3406 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3407 list_splice(slabs_by_inuse + i, n->partial.prev);
3408
2086d26a 3409 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3410
3411 /* Release empty slabs */
3412 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3413 discard_slab(s, page);
2086d26a
CL
3414 }
3415
3416 kfree(slabs_by_inuse);
3417 return 0;
3418}
3419EXPORT_SYMBOL(kmem_cache_shrink);
3420
92a5bbc1 3421#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3422static int slab_mem_going_offline_callback(void *arg)
3423{
3424 struct kmem_cache *s;
3425
18004c5d 3426 mutex_lock(&slab_mutex);
b9049e23
YG
3427 list_for_each_entry(s, &slab_caches, list)
3428 kmem_cache_shrink(s);
18004c5d 3429 mutex_unlock(&slab_mutex);
b9049e23
YG
3430
3431 return 0;
3432}
3433
3434static void slab_mem_offline_callback(void *arg)
3435{
3436 struct kmem_cache_node *n;
3437 struct kmem_cache *s;
3438 struct memory_notify *marg = arg;
3439 int offline_node;
3440
b9d5ab25 3441 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3442
3443 /*
3444 * If the node still has available memory. we need kmem_cache_node
3445 * for it yet.
3446 */
3447 if (offline_node < 0)
3448 return;
3449
18004c5d 3450 mutex_lock(&slab_mutex);
b9049e23
YG
3451 list_for_each_entry(s, &slab_caches, list) {
3452 n = get_node(s, offline_node);
3453 if (n) {
3454 /*
3455 * if n->nr_slabs > 0, slabs still exist on the node
3456 * that is going down. We were unable to free them,
c9404c9c 3457 * and offline_pages() function shouldn't call this
b9049e23
YG
3458 * callback. So, we must fail.
3459 */
0f389ec6 3460 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3461
3462 s->node[offline_node] = NULL;
8de66a0c 3463 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3464 }
3465 }
18004c5d 3466 mutex_unlock(&slab_mutex);
b9049e23
YG
3467}
3468
3469static int slab_mem_going_online_callback(void *arg)
3470{
3471 struct kmem_cache_node *n;
3472 struct kmem_cache *s;
3473 struct memory_notify *marg = arg;
b9d5ab25 3474 int nid = marg->status_change_nid_normal;
b9049e23
YG
3475 int ret = 0;
3476
3477 /*
3478 * If the node's memory is already available, then kmem_cache_node is
3479 * already created. Nothing to do.
3480 */
3481 if (nid < 0)
3482 return 0;
3483
3484 /*
0121c619 3485 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3486 * allocate a kmem_cache_node structure in order to bring the node
3487 * online.
3488 */
18004c5d 3489 mutex_lock(&slab_mutex);
b9049e23
YG
3490 list_for_each_entry(s, &slab_caches, list) {
3491 /*
3492 * XXX: kmem_cache_alloc_node will fallback to other nodes
3493 * since memory is not yet available from the node that
3494 * is brought up.
3495 */
8de66a0c 3496 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3497 if (!n) {
3498 ret = -ENOMEM;
3499 goto out;
3500 }
4053497d 3501 init_kmem_cache_node(n);
b9049e23
YG
3502 s->node[nid] = n;
3503 }
3504out:
18004c5d 3505 mutex_unlock(&slab_mutex);
b9049e23
YG
3506 return ret;
3507}
3508
3509static int slab_memory_callback(struct notifier_block *self,
3510 unsigned long action, void *arg)
3511{
3512 int ret = 0;
3513
3514 switch (action) {
3515 case MEM_GOING_ONLINE:
3516 ret = slab_mem_going_online_callback(arg);
3517 break;
3518 case MEM_GOING_OFFLINE:
3519 ret = slab_mem_going_offline_callback(arg);
3520 break;
3521 case MEM_OFFLINE:
3522 case MEM_CANCEL_ONLINE:
3523 slab_mem_offline_callback(arg);
3524 break;
3525 case MEM_ONLINE:
3526 case MEM_CANCEL_OFFLINE:
3527 break;
3528 }
dc19f9db
KH
3529 if (ret)
3530 ret = notifier_from_errno(ret);
3531 else
3532 ret = NOTIFY_OK;
b9049e23
YG
3533 return ret;
3534}
3535
3536#endif /* CONFIG_MEMORY_HOTPLUG */
3537
81819f0f
CL
3538/********************************************************************
3539 * Basic setup of slabs
3540 *******************************************************************/
3541
51df1142
CL
3542/*
3543 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3544 * the page allocator. Allocate them properly then fix up the pointers
3545 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3546 */
3547
dffb4d60 3548static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3549{
3550 int node;
dffb4d60 3551 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
51df1142 3552
dffb4d60 3553 memcpy(s, static_cache, kmem_cache->object_size);
51df1142
CL
3554
3555 for_each_node_state(node, N_NORMAL_MEMORY) {
3556 struct kmem_cache_node *n = get_node(s, node);
3557 struct page *p;
3558
3559 if (n) {
3560 list_for_each_entry(p, &n->partial, lru)
1b4f59e3 3561 p->slab_cache = s;
51df1142 3562
607bf324 3563#ifdef CONFIG_SLUB_DEBUG
51df1142 3564 list_for_each_entry(p, &n->full, lru)
1b4f59e3 3565 p->slab_cache = s;
51df1142
CL
3566#endif
3567 }
3568 }
dffb4d60
CL
3569 list_add(&s->list, &slab_caches);
3570 return s;
51df1142
CL
3571}
3572
81819f0f
CL
3573void __init kmem_cache_init(void)
3574{
dffb4d60
CL
3575 static __initdata struct kmem_cache boot_kmem_cache,
3576 boot_kmem_cache_node;
51df1142 3577
fc8d8620
SG
3578 if (debug_guardpage_minorder())
3579 slub_max_order = 0;
3580
dffb4d60
CL
3581 kmem_cache_node = &boot_kmem_cache_node;
3582 kmem_cache = &boot_kmem_cache;
51df1142 3583
dffb4d60
CL
3584 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3585 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3586
0c40ba4f 3587 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3588
3589 /* Able to allocate the per node structures */
3590 slab_state = PARTIAL;
3591
dffb4d60
CL
3592 create_boot_cache(kmem_cache, "kmem_cache",
3593 offsetof(struct kmem_cache, node) +
3594 nr_node_ids * sizeof(struct kmem_cache_node *),
3595 SLAB_HWCACHE_ALIGN);
8a13a4cc 3596
dffb4d60 3597 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3598
51df1142
CL
3599 /*
3600 * Allocate kmem_cache_node properly from the kmem_cache slab.
3601 * kmem_cache_node is separately allocated so no need to
3602 * update any list pointers.
3603 */
dffb4d60 3604 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3605
3606 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3607 create_kmalloc_caches(0);
81819f0f
CL
3608
3609#ifdef CONFIG_SMP
3610 register_cpu_notifier(&slab_notifier);
9dfc6e68 3611#endif
81819f0f 3612
3adbefee 3613 printk(KERN_INFO
f97d5f63 3614 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0 3615 " CPUs=%d, Nodes=%d\n",
f97d5f63 3616 cache_line_size(),
81819f0f
CL
3617 slub_min_order, slub_max_order, slub_min_objects,
3618 nr_cpu_ids, nr_node_ids);
3619}
3620
7e85ee0c
PE
3621void __init kmem_cache_init_late(void)
3622{
7e85ee0c
PE
3623}
3624
81819f0f
CL
3625/*
3626 * Find a mergeable slab cache
3627 */
3628static int slab_unmergeable(struct kmem_cache *s)
3629{
3630 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3631 return 1;
3632
c59def9f 3633 if (s->ctor)
81819f0f
CL
3634 return 1;
3635
8ffa6875
CL
3636 /*
3637 * We may have set a slab to be unmergeable during bootstrap.
3638 */
3639 if (s->refcount < 0)
3640 return 1;
3641
81819f0f
CL
3642 return 0;
3643}
3644
2633d7a0 3645static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
ba0268a8 3646 size_t align, unsigned long flags, const char *name,
51cc5068 3647 void (*ctor)(void *))
81819f0f 3648{
5b95a4ac 3649 struct kmem_cache *s;
81819f0f
CL
3650
3651 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3652 return NULL;
3653
c59def9f 3654 if (ctor)
81819f0f
CL
3655 return NULL;
3656
3657 size = ALIGN(size, sizeof(void *));
3658 align = calculate_alignment(flags, align, size);
3659 size = ALIGN(size, align);
ba0268a8 3660 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3661
5b95a4ac 3662 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3663 if (slab_unmergeable(s))
3664 continue;
3665
3666 if (size > s->size)
3667 continue;
3668
ba0268a8 3669 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3670 continue;
3671 /*
3672 * Check if alignment is compatible.
3673 * Courtesy of Adrian Drzewiecki
3674 */
06428780 3675 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3676 continue;
3677
3678 if (s->size - size >= sizeof(void *))
3679 continue;
3680
2633d7a0
GC
3681 if (!cache_match_memcg(s, memcg))
3682 continue;
3683
81819f0f
CL
3684 return s;
3685 }
3686 return NULL;
3687}
3688
2633d7a0
GC
3689struct kmem_cache *
3690__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3691 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3692{
3693 struct kmem_cache *s;
3694
2633d7a0 3695 s = find_mergeable(memcg, size, align, flags, name, ctor);
81819f0f
CL
3696 if (s) {
3697 s->refcount++;
3698 /*
3699 * Adjust the object sizes so that we clear
3700 * the complete object on kzalloc.
3701 */
3b0efdfa 3702 s->object_size = max(s->object_size, (int)size);
81819f0f 3703 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3704
7b8f3b66 3705 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3706 s->refcount--;
cbb79694 3707 s = NULL;
7b8f3b66 3708 }
a0e1d1be 3709 }
6446faa2 3710
cbb79694
CL
3711 return s;
3712}
84c1cf62 3713
8a13a4cc 3714int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3715{
aac3a166
PE
3716 int err;
3717
3718 err = kmem_cache_open(s, flags);
3719 if (err)
3720 return err;
20cea968 3721
45530c44
CL
3722 /* Mutex is not taken during early boot */
3723 if (slab_state <= UP)
3724 return 0;
3725
107dab5c 3726 memcg_propagate_slab_attrs(s);
aac3a166
PE
3727 mutex_unlock(&slab_mutex);
3728 err = sysfs_slab_add(s);
3729 mutex_lock(&slab_mutex);
20cea968 3730
aac3a166
PE
3731 if (err)
3732 kmem_cache_close(s);
20cea968 3733
aac3a166 3734 return err;
81819f0f 3735}
81819f0f 3736
81819f0f 3737#ifdef CONFIG_SMP
81819f0f 3738/*
672bba3a
CL
3739 * Use the cpu notifier to insure that the cpu slabs are flushed when
3740 * necessary.
81819f0f
CL
3741 */
3742static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3743 unsigned long action, void *hcpu)
3744{
3745 long cpu = (long)hcpu;
5b95a4ac
CL
3746 struct kmem_cache *s;
3747 unsigned long flags;
81819f0f
CL
3748
3749 switch (action) {
3750 case CPU_UP_CANCELED:
8bb78442 3751 case CPU_UP_CANCELED_FROZEN:
81819f0f 3752 case CPU_DEAD:
8bb78442 3753 case CPU_DEAD_FROZEN:
18004c5d 3754 mutex_lock(&slab_mutex);
5b95a4ac
CL
3755 list_for_each_entry(s, &slab_caches, list) {
3756 local_irq_save(flags);
3757 __flush_cpu_slab(s, cpu);
3758 local_irq_restore(flags);
3759 }
18004c5d 3760 mutex_unlock(&slab_mutex);
81819f0f
CL
3761 break;
3762 default:
3763 break;
3764 }
3765 return NOTIFY_OK;
3766}
3767
06428780 3768static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3769 .notifier_call = slab_cpuup_callback
06428780 3770};
81819f0f
CL
3771
3772#endif
3773
ce71e27c 3774void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3775{
aadb4bc4 3776 struct kmem_cache *s;
94b528d0 3777 void *ret;
aadb4bc4 3778
95a05b42 3779 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3780 return kmalloc_large(size, gfpflags);
3781
2c59dd65 3782 s = kmalloc_slab(size, gfpflags);
81819f0f 3783
2408c550 3784 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3785 return s;
81819f0f 3786
2b847c3c 3787 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3788
25985edc 3789 /* Honor the call site pointer we received. */
ca2b84cb 3790 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3791
3792 return ret;
81819f0f
CL
3793}
3794
5d1f57e4 3795#ifdef CONFIG_NUMA
81819f0f 3796void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3797 int node, unsigned long caller)
81819f0f 3798{
aadb4bc4 3799 struct kmem_cache *s;
94b528d0 3800 void *ret;
aadb4bc4 3801
95a05b42 3802 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3803 ret = kmalloc_large_node(size, gfpflags, node);
3804
3805 trace_kmalloc_node(caller, ret,
3806 size, PAGE_SIZE << get_order(size),
3807 gfpflags, node);
3808
3809 return ret;
3810 }
eada35ef 3811
2c59dd65 3812 s = kmalloc_slab(size, gfpflags);
81819f0f 3813
2408c550 3814 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3815 return s;
81819f0f 3816
2b847c3c 3817 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3818
25985edc 3819 /* Honor the call site pointer we received. */
ca2b84cb 3820 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3821
3822 return ret;
81819f0f 3823}
5d1f57e4 3824#endif
81819f0f 3825
ab4d5ed5 3826#ifdef CONFIG_SYSFS
205ab99d
CL
3827static int count_inuse(struct page *page)
3828{
3829 return page->inuse;
3830}
3831
3832static int count_total(struct page *page)
3833{
3834 return page->objects;
3835}
ab4d5ed5 3836#endif
205ab99d 3837
ab4d5ed5 3838#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3839static int validate_slab(struct kmem_cache *s, struct page *page,
3840 unsigned long *map)
53e15af0
CL
3841{
3842 void *p;
a973e9dd 3843 void *addr = page_address(page);
53e15af0
CL
3844
3845 if (!check_slab(s, page) ||
3846 !on_freelist(s, page, NULL))
3847 return 0;
3848
3849 /* Now we know that a valid freelist exists */
39b26464 3850 bitmap_zero(map, page->objects);
53e15af0 3851
5f80b13a
CL
3852 get_map(s, page, map);
3853 for_each_object(p, s, addr, page->objects) {
3854 if (test_bit(slab_index(p, s, addr), map))
3855 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3856 return 0;
53e15af0
CL
3857 }
3858
224a88be 3859 for_each_object(p, s, addr, page->objects)
7656c72b 3860 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3861 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3862 return 0;
3863 return 1;
3864}
3865
434e245d
CL
3866static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3867 unsigned long *map)
53e15af0 3868{
881db7fb
CL
3869 slab_lock(page);
3870 validate_slab(s, page, map);
3871 slab_unlock(page);
53e15af0
CL
3872}
3873
434e245d
CL
3874static int validate_slab_node(struct kmem_cache *s,
3875 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3876{
3877 unsigned long count = 0;
3878 struct page *page;
3879 unsigned long flags;
3880
3881 spin_lock_irqsave(&n->list_lock, flags);
3882
3883 list_for_each_entry(page, &n->partial, lru) {
434e245d 3884 validate_slab_slab(s, page, map);
53e15af0
CL
3885 count++;
3886 }
3887 if (count != n->nr_partial)
3888 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3889 "counter=%ld\n", s->name, count, n->nr_partial);
3890
3891 if (!(s->flags & SLAB_STORE_USER))
3892 goto out;
3893
3894 list_for_each_entry(page, &n->full, lru) {
434e245d 3895 validate_slab_slab(s, page, map);
53e15af0
CL
3896 count++;
3897 }
3898 if (count != atomic_long_read(&n->nr_slabs))
3899 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3900 "counter=%ld\n", s->name, count,
3901 atomic_long_read(&n->nr_slabs));
3902
3903out:
3904 spin_unlock_irqrestore(&n->list_lock, flags);
3905 return count;
3906}
3907
434e245d 3908static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3909{
3910 int node;
3911 unsigned long count = 0;
205ab99d 3912 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3913 sizeof(unsigned long), GFP_KERNEL);
3914
3915 if (!map)
3916 return -ENOMEM;
53e15af0
CL
3917
3918 flush_all(s);
f64dc58c 3919 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3920 struct kmem_cache_node *n = get_node(s, node);
3921
434e245d 3922 count += validate_slab_node(s, n, map);
53e15af0 3923 }
434e245d 3924 kfree(map);
53e15af0
CL
3925 return count;
3926}
88a420e4 3927/*
672bba3a 3928 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3929 * and freed.
3930 */
3931
3932struct location {
3933 unsigned long count;
ce71e27c 3934 unsigned long addr;
45edfa58
CL
3935 long long sum_time;
3936 long min_time;
3937 long max_time;
3938 long min_pid;
3939 long max_pid;
174596a0 3940 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3941 nodemask_t nodes;
88a420e4
CL
3942};
3943
3944struct loc_track {
3945 unsigned long max;
3946 unsigned long count;
3947 struct location *loc;
3948};
3949
3950static void free_loc_track(struct loc_track *t)
3951{
3952 if (t->max)
3953 free_pages((unsigned long)t->loc,
3954 get_order(sizeof(struct location) * t->max));
3955}
3956
68dff6a9 3957static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3958{
3959 struct location *l;
3960 int order;
3961
88a420e4
CL
3962 order = get_order(sizeof(struct location) * max);
3963
68dff6a9 3964 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3965 if (!l)
3966 return 0;
3967
3968 if (t->count) {
3969 memcpy(l, t->loc, sizeof(struct location) * t->count);
3970 free_loc_track(t);
3971 }
3972 t->max = max;
3973 t->loc = l;
3974 return 1;
3975}
3976
3977static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3978 const struct track *track)
88a420e4
CL
3979{
3980 long start, end, pos;
3981 struct location *l;
ce71e27c 3982 unsigned long caddr;
45edfa58 3983 unsigned long age = jiffies - track->when;
88a420e4
CL
3984
3985 start = -1;
3986 end = t->count;
3987
3988 for ( ; ; ) {
3989 pos = start + (end - start + 1) / 2;
3990
3991 /*
3992 * There is nothing at "end". If we end up there
3993 * we need to add something to before end.
3994 */
3995 if (pos == end)
3996 break;
3997
3998 caddr = t->loc[pos].addr;
45edfa58
CL
3999 if (track->addr == caddr) {
4000
4001 l = &t->loc[pos];
4002 l->count++;
4003 if (track->when) {
4004 l->sum_time += age;
4005 if (age < l->min_time)
4006 l->min_time = age;
4007 if (age > l->max_time)
4008 l->max_time = age;
4009
4010 if (track->pid < l->min_pid)
4011 l->min_pid = track->pid;
4012 if (track->pid > l->max_pid)
4013 l->max_pid = track->pid;
4014
174596a0
RR
4015 cpumask_set_cpu(track->cpu,
4016 to_cpumask(l->cpus));
45edfa58
CL
4017 }
4018 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4019 return 1;
4020 }
4021
45edfa58 4022 if (track->addr < caddr)
88a420e4
CL
4023 end = pos;
4024 else
4025 start = pos;
4026 }
4027
4028 /*
672bba3a 4029 * Not found. Insert new tracking element.
88a420e4 4030 */
68dff6a9 4031 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4032 return 0;
4033
4034 l = t->loc + pos;
4035 if (pos < t->count)
4036 memmove(l + 1, l,
4037 (t->count - pos) * sizeof(struct location));
4038 t->count++;
4039 l->count = 1;
45edfa58
CL
4040 l->addr = track->addr;
4041 l->sum_time = age;
4042 l->min_time = age;
4043 l->max_time = age;
4044 l->min_pid = track->pid;
4045 l->max_pid = track->pid;
174596a0
RR
4046 cpumask_clear(to_cpumask(l->cpus));
4047 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4048 nodes_clear(l->nodes);
4049 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4050 return 1;
4051}
4052
4053static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4054 struct page *page, enum track_item alloc,
a5dd5c11 4055 unsigned long *map)
88a420e4 4056{
a973e9dd 4057 void *addr = page_address(page);
88a420e4
CL
4058 void *p;
4059
39b26464 4060 bitmap_zero(map, page->objects);
5f80b13a 4061 get_map(s, page, map);
88a420e4 4062
224a88be 4063 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4064 if (!test_bit(slab_index(p, s, addr), map))
4065 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4066}
4067
4068static int list_locations(struct kmem_cache *s, char *buf,
4069 enum track_item alloc)
4070{
e374d483 4071 int len = 0;
88a420e4 4072 unsigned long i;
68dff6a9 4073 struct loc_track t = { 0, 0, NULL };
88a420e4 4074 int node;
bbd7d57b
ED
4075 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4076 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4077
bbd7d57b
ED
4078 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4079 GFP_TEMPORARY)) {
4080 kfree(map);
68dff6a9 4081 return sprintf(buf, "Out of memory\n");
bbd7d57b 4082 }
88a420e4
CL
4083 /* Push back cpu slabs */
4084 flush_all(s);
4085
f64dc58c 4086 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4087 struct kmem_cache_node *n = get_node(s, node);
4088 unsigned long flags;
4089 struct page *page;
4090
9e86943b 4091 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4092 continue;
4093
4094 spin_lock_irqsave(&n->list_lock, flags);
4095 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4096 process_slab(&t, s, page, alloc, map);
88a420e4 4097 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4098 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4099 spin_unlock_irqrestore(&n->list_lock, flags);
4100 }
4101
4102 for (i = 0; i < t.count; i++) {
45edfa58 4103 struct location *l = &t.loc[i];
88a420e4 4104
9c246247 4105 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4106 break;
e374d483 4107 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4108
4109 if (l->addr)
62c70bce 4110 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4111 else
e374d483 4112 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4113
4114 if (l->sum_time != l->min_time) {
e374d483 4115 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4116 l->min_time,
4117 (long)div_u64(l->sum_time, l->count),
4118 l->max_time);
45edfa58 4119 } else
e374d483 4120 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4121 l->min_time);
4122
4123 if (l->min_pid != l->max_pid)
e374d483 4124 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4125 l->min_pid, l->max_pid);
4126 else
e374d483 4127 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4128 l->min_pid);
4129
174596a0
RR
4130 if (num_online_cpus() > 1 &&
4131 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4132 len < PAGE_SIZE - 60) {
4133 len += sprintf(buf + len, " cpus=");
4134 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4135 to_cpumask(l->cpus));
45edfa58
CL
4136 }
4137
62bc62a8 4138 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4139 len < PAGE_SIZE - 60) {
4140 len += sprintf(buf + len, " nodes=");
4141 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4142 l->nodes);
4143 }
4144
e374d483 4145 len += sprintf(buf + len, "\n");
88a420e4
CL
4146 }
4147
4148 free_loc_track(&t);
bbd7d57b 4149 kfree(map);
88a420e4 4150 if (!t.count)
e374d483
HH
4151 len += sprintf(buf, "No data\n");
4152 return len;
88a420e4 4153}
ab4d5ed5 4154#endif
88a420e4 4155
a5a84755
CL
4156#ifdef SLUB_RESILIENCY_TEST
4157static void resiliency_test(void)
4158{
4159 u8 *p;
4160
95a05b42 4161 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755
CL
4162
4163 printk(KERN_ERR "SLUB resiliency testing\n");
4164 printk(KERN_ERR "-----------------------\n");
4165 printk(KERN_ERR "A. Corruption after allocation\n");
4166
4167 p = kzalloc(16, GFP_KERNEL);
4168 p[16] = 0x12;
4169 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4170 " 0x12->0x%p\n\n", p + 16);
4171
4172 validate_slab_cache(kmalloc_caches[4]);
4173
4174 /* Hmmm... The next two are dangerous */
4175 p = kzalloc(32, GFP_KERNEL);
4176 p[32 + sizeof(void *)] = 0x34;
4177 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4178 " 0x34 -> -0x%p\n", p);
4179 printk(KERN_ERR
4180 "If allocated object is overwritten then not detectable\n\n");
4181
4182 validate_slab_cache(kmalloc_caches[5]);
4183 p = kzalloc(64, GFP_KERNEL);
4184 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4185 *p = 0x56;
4186 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4187 p);
4188 printk(KERN_ERR
4189 "If allocated object is overwritten then not detectable\n\n");
4190 validate_slab_cache(kmalloc_caches[6]);
4191
4192 printk(KERN_ERR "\nB. Corruption after free\n");
4193 p = kzalloc(128, GFP_KERNEL);
4194 kfree(p);
4195 *p = 0x78;
4196 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4197 validate_slab_cache(kmalloc_caches[7]);
4198
4199 p = kzalloc(256, GFP_KERNEL);
4200 kfree(p);
4201 p[50] = 0x9a;
4202 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4203 p);
4204 validate_slab_cache(kmalloc_caches[8]);
4205
4206 p = kzalloc(512, GFP_KERNEL);
4207 kfree(p);
4208 p[512] = 0xab;
4209 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4210 validate_slab_cache(kmalloc_caches[9]);
4211}
4212#else
4213#ifdef CONFIG_SYSFS
4214static void resiliency_test(void) {};
4215#endif
4216#endif
4217
ab4d5ed5 4218#ifdef CONFIG_SYSFS
81819f0f 4219enum slab_stat_type {
205ab99d
CL
4220 SL_ALL, /* All slabs */
4221 SL_PARTIAL, /* Only partially allocated slabs */
4222 SL_CPU, /* Only slabs used for cpu caches */
4223 SL_OBJECTS, /* Determine allocated objects not slabs */
4224 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4225};
4226
205ab99d 4227#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4228#define SO_PARTIAL (1 << SL_PARTIAL)
4229#define SO_CPU (1 << SL_CPU)
4230#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4231#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4232
62e5c4b4
CG
4233static ssize_t show_slab_objects(struct kmem_cache *s,
4234 char *buf, unsigned long flags)
81819f0f
CL
4235{
4236 unsigned long total = 0;
81819f0f
CL
4237 int node;
4238 int x;
4239 unsigned long *nodes;
4240 unsigned long *per_cpu;
4241
4242 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4243 if (!nodes)
4244 return -ENOMEM;
81819f0f
CL
4245 per_cpu = nodes + nr_node_ids;
4246
205ab99d
CL
4247 if (flags & SO_CPU) {
4248 int cpu;
81819f0f 4249
205ab99d 4250 for_each_possible_cpu(cpu) {
9dfc6e68 4251 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4252 int node;
49e22585 4253 struct page *page;
dfb4f096 4254
bc6697d8 4255 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4256 if (!page)
4257 continue;
205ab99d 4258
ec3ab083
CL
4259 node = page_to_nid(page);
4260 if (flags & SO_TOTAL)
4261 x = page->objects;
4262 else if (flags & SO_OBJECTS)
4263 x = page->inuse;
4264 else
4265 x = 1;
49e22585 4266
ec3ab083
CL
4267 total += x;
4268 nodes[node] += x;
4269
4270 page = ACCESS_ONCE(c->partial);
49e22585
CL
4271 if (page) {
4272 x = page->pobjects;
bc6697d8
ED
4273 total += x;
4274 nodes[node] += x;
49e22585 4275 }
ec3ab083 4276
bc6697d8 4277 per_cpu[node]++;
81819f0f
CL
4278 }
4279 }
4280
04d94879 4281 lock_memory_hotplug();
ab4d5ed5 4282#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4283 if (flags & SO_ALL) {
4284 for_each_node_state(node, N_NORMAL_MEMORY) {
4285 struct kmem_cache_node *n = get_node(s, node);
4286
4287 if (flags & SO_TOTAL)
4288 x = atomic_long_read(&n->total_objects);
4289 else if (flags & SO_OBJECTS)
4290 x = atomic_long_read(&n->total_objects) -
4291 count_partial(n, count_free);
81819f0f 4292
81819f0f 4293 else
205ab99d 4294 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4295 total += x;
4296 nodes[node] += x;
4297 }
4298
ab4d5ed5
CL
4299 } else
4300#endif
4301 if (flags & SO_PARTIAL) {
205ab99d
CL
4302 for_each_node_state(node, N_NORMAL_MEMORY) {
4303 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4304
205ab99d
CL
4305 if (flags & SO_TOTAL)
4306 x = count_partial(n, count_total);
4307 else if (flags & SO_OBJECTS)
4308 x = count_partial(n, count_inuse);
81819f0f 4309 else
205ab99d 4310 x = n->nr_partial;
81819f0f
CL
4311 total += x;
4312 nodes[node] += x;
4313 }
4314 }
81819f0f
CL
4315 x = sprintf(buf, "%lu", total);
4316#ifdef CONFIG_NUMA
f64dc58c 4317 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4318 if (nodes[node])
4319 x += sprintf(buf + x, " N%d=%lu",
4320 node, nodes[node]);
4321#endif
04d94879 4322 unlock_memory_hotplug();
81819f0f
CL
4323 kfree(nodes);
4324 return x + sprintf(buf + x, "\n");
4325}
4326
ab4d5ed5 4327#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4328static int any_slab_objects(struct kmem_cache *s)
4329{
4330 int node;
81819f0f 4331
dfb4f096 4332 for_each_online_node(node) {
81819f0f
CL
4333 struct kmem_cache_node *n = get_node(s, node);
4334
dfb4f096
CL
4335 if (!n)
4336 continue;
4337
4ea33e2d 4338 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4339 return 1;
4340 }
4341 return 0;
4342}
ab4d5ed5 4343#endif
81819f0f
CL
4344
4345#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4346#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4347
4348struct slab_attribute {
4349 struct attribute attr;
4350 ssize_t (*show)(struct kmem_cache *s, char *buf);
4351 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4352};
4353
4354#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4355 static struct slab_attribute _name##_attr = \
4356 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4357
4358#define SLAB_ATTR(_name) \
4359 static struct slab_attribute _name##_attr = \
ab067e99 4360 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4361
81819f0f
CL
4362static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4363{
4364 return sprintf(buf, "%d\n", s->size);
4365}
4366SLAB_ATTR_RO(slab_size);
4367
4368static ssize_t align_show(struct kmem_cache *s, char *buf)
4369{
4370 return sprintf(buf, "%d\n", s->align);
4371}
4372SLAB_ATTR_RO(align);
4373
4374static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4375{
3b0efdfa 4376 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4377}
4378SLAB_ATTR_RO(object_size);
4379
4380static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4381{
834f3d11 4382 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4383}
4384SLAB_ATTR_RO(objs_per_slab);
4385
06b285dc
CL
4386static ssize_t order_store(struct kmem_cache *s,
4387 const char *buf, size_t length)
4388{
0121c619
CL
4389 unsigned long order;
4390 int err;
4391
4392 err = strict_strtoul(buf, 10, &order);
4393 if (err)
4394 return err;
06b285dc
CL
4395
4396 if (order > slub_max_order || order < slub_min_order)
4397 return -EINVAL;
4398
4399 calculate_sizes(s, order);
4400 return length;
4401}
4402
81819f0f
CL
4403static ssize_t order_show(struct kmem_cache *s, char *buf)
4404{
834f3d11 4405 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4406}
06b285dc 4407SLAB_ATTR(order);
81819f0f 4408
73d342b1
DR
4409static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4410{
4411 return sprintf(buf, "%lu\n", s->min_partial);
4412}
4413
4414static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4415 size_t length)
4416{
4417 unsigned long min;
4418 int err;
4419
4420 err = strict_strtoul(buf, 10, &min);
4421 if (err)
4422 return err;
4423
c0bdb232 4424 set_min_partial(s, min);
73d342b1
DR
4425 return length;
4426}
4427SLAB_ATTR(min_partial);
4428
49e22585
CL
4429static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4430{
4431 return sprintf(buf, "%u\n", s->cpu_partial);
4432}
4433
4434static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4435 size_t length)
4436{
4437 unsigned long objects;
4438 int err;
4439
4440 err = strict_strtoul(buf, 10, &objects);
4441 if (err)
4442 return err;
74ee4ef1
DR
4443 if (objects && kmem_cache_debug(s))
4444 return -EINVAL;
49e22585
CL
4445
4446 s->cpu_partial = objects;
4447 flush_all(s);
4448 return length;
4449}
4450SLAB_ATTR(cpu_partial);
4451
81819f0f
CL
4452static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4453{
62c70bce
JP
4454 if (!s->ctor)
4455 return 0;
4456 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4457}
4458SLAB_ATTR_RO(ctor);
4459
81819f0f
CL
4460static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4461{
4462 return sprintf(buf, "%d\n", s->refcount - 1);
4463}
4464SLAB_ATTR_RO(aliases);
4465
81819f0f
CL
4466static ssize_t partial_show(struct kmem_cache *s, char *buf)
4467{
d9acf4b7 4468 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4469}
4470SLAB_ATTR_RO(partial);
4471
4472static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4473{
d9acf4b7 4474 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4475}
4476SLAB_ATTR_RO(cpu_slabs);
4477
4478static ssize_t objects_show(struct kmem_cache *s, char *buf)
4479{
205ab99d 4480 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4481}
4482SLAB_ATTR_RO(objects);
4483
205ab99d
CL
4484static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4485{
4486 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4487}
4488SLAB_ATTR_RO(objects_partial);
4489
49e22585
CL
4490static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4491{
4492 int objects = 0;
4493 int pages = 0;
4494 int cpu;
4495 int len;
4496
4497 for_each_online_cpu(cpu) {
4498 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4499
4500 if (page) {
4501 pages += page->pages;
4502 objects += page->pobjects;
4503 }
4504 }
4505
4506 len = sprintf(buf, "%d(%d)", objects, pages);
4507
4508#ifdef CONFIG_SMP
4509 for_each_online_cpu(cpu) {
4510 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4511
4512 if (page && len < PAGE_SIZE - 20)
4513 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4514 page->pobjects, page->pages);
4515 }
4516#endif
4517 return len + sprintf(buf + len, "\n");
4518}
4519SLAB_ATTR_RO(slabs_cpu_partial);
4520
a5a84755
CL
4521static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4522{
4523 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4524}
4525
4526static ssize_t reclaim_account_store(struct kmem_cache *s,
4527 const char *buf, size_t length)
4528{
4529 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4530 if (buf[0] == '1')
4531 s->flags |= SLAB_RECLAIM_ACCOUNT;
4532 return length;
4533}
4534SLAB_ATTR(reclaim_account);
4535
4536static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4537{
4538 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4539}
4540SLAB_ATTR_RO(hwcache_align);
4541
4542#ifdef CONFIG_ZONE_DMA
4543static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4544{
4545 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4546}
4547SLAB_ATTR_RO(cache_dma);
4548#endif
4549
4550static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4551{
4552 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4553}
4554SLAB_ATTR_RO(destroy_by_rcu);
4555
ab9a0f19
LJ
4556static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4557{
4558 return sprintf(buf, "%d\n", s->reserved);
4559}
4560SLAB_ATTR_RO(reserved);
4561
ab4d5ed5 4562#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4563static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4564{
4565 return show_slab_objects(s, buf, SO_ALL);
4566}
4567SLAB_ATTR_RO(slabs);
4568
205ab99d
CL
4569static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4570{
4571 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4572}
4573SLAB_ATTR_RO(total_objects);
4574
81819f0f
CL
4575static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4576{
4577 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4578}
4579
4580static ssize_t sanity_checks_store(struct kmem_cache *s,
4581 const char *buf, size_t length)
4582{
4583 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4584 if (buf[0] == '1') {
4585 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4586 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4587 }
81819f0f
CL
4588 return length;
4589}
4590SLAB_ATTR(sanity_checks);
4591
4592static ssize_t trace_show(struct kmem_cache *s, char *buf)
4593{
4594 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4595}
4596
4597static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4598 size_t length)
4599{
4600 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4601 if (buf[0] == '1') {
4602 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4603 s->flags |= SLAB_TRACE;
b789ef51 4604 }
81819f0f
CL
4605 return length;
4606}
4607SLAB_ATTR(trace);
4608
81819f0f
CL
4609static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4610{
4611 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4612}
4613
4614static ssize_t red_zone_store(struct kmem_cache *s,
4615 const char *buf, size_t length)
4616{
4617 if (any_slab_objects(s))
4618 return -EBUSY;
4619
4620 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4621 if (buf[0] == '1') {
4622 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4623 s->flags |= SLAB_RED_ZONE;
b789ef51 4624 }
06b285dc 4625 calculate_sizes(s, -1);
81819f0f
CL
4626 return length;
4627}
4628SLAB_ATTR(red_zone);
4629
4630static ssize_t poison_show(struct kmem_cache *s, char *buf)
4631{
4632 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4633}
4634
4635static ssize_t poison_store(struct kmem_cache *s,
4636 const char *buf, size_t length)
4637{
4638 if (any_slab_objects(s))
4639 return -EBUSY;
4640
4641 s->flags &= ~SLAB_POISON;
b789ef51
CL
4642 if (buf[0] == '1') {
4643 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4644 s->flags |= SLAB_POISON;
b789ef51 4645 }
06b285dc 4646 calculate_sizes(s, -1);
81819f0f
CL
4647 return length;
4648}
4649SLAB_ATTR(poison);
4650
4651static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4652{
4653 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4654}
4655
4656static ssize_t store_user_store(struct kmem_cache *s,
4657 const char *buf, size_t length)
4658{
4659 if (any_slab_objects(s))
4660 return -EBUSY;
4661
4662 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4663 if (buf[0] == '1') {
4664 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4665 s->flags |= SLAB_STORE_USER;
b789ef51 4666 }
06b285dc 4667 calculate_sizes(s, -1);
81819f0f
CL
4668 return length;
4669}
4670SLAB_ATTR(store_user);
4671
53e15af0
CL
4672static ssize_t validate_show(struct kmem_cache *s, char *buf)
4673{
4674 return 0;
4675}
4676
4677static ssize_t validate_store(struct kmem_cache *s,
4678 const char *buf, size_t length)
4679{
434e245d
CL
4680 int ret = -EINVAL;
4681
4682 if (buf[0] == '1') {
4683 ret = validate_slab_cache(s);
4684 if (ret >= 0)
4685 ret = length;
4686 }
4687 return ret;
53e15af0
CL
4688}
4689SLAB_ATTR(validate);
a5a84755
CL
4690
4691static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4692{
4693 if (!(s->flags & SLAB_STORE_USER))
4694 return -ENOSYS;
4695 return list_locations(s, buf, TRACK_ALLOC);
4696}
4697SLAB_ATTR_RO(alloc_calls);
4698
4699static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4700{
4701 if (!(s->flags & SLAB_STORE_USER))
4702 return -ENOSYS;
4703 return list_locations(s, buf, TRACK_FREE);
4704}
4705SLAB_ATTR_RO(free_calls);
4706#endif /* CONFIG_SLUB_DEBUG */
4707
4708#ifdef CONFIG_FAILSLAB
4709static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4710{
4711 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4712}
4713
4714static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4715 size_t length)
4716{
4717 s->flags &= ~SLAB_FAILSLAB;
4718 if (buf[0] == '1')
4719 s->flags |= SLAB_FAILSLAB;
4720 return length;
4721}
4722SLAB_ATTR(failslab);
ab4d5ed5 4723#endif
53e15af0 4724
2086d26a
CL
4725static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4726{
4727 return 0;
4728}
4729
4730static ssize_t shrink_store(struct kmem_cache *s,
4731 const char *buf, size_t length)
4732{
4733 if (buf[0] == '1') {
4734 int rc = kmem_cache_shrink(s);
4735
4736 if (rc)
4737 return rc;
4738 } else
4739 return -EINVAL;
4740 return length;
4741}
4742SLAB_ATTR(shrink);
4743
81819f0f 4744#ifdef CONFIG_NUMA
9824601e 4745static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4746{
9824601e 4747 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4748}
4749
9824601e 4750static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4751 const char *buf, size_t length)
4752{
0121c619
CL
4753 unsigned long ratio;
4754 int err;
4755
4756 err = strict_strtoul(buf, 10, &ratio);
4757 if (err)
4758 return err;
4759
e2cb96b7 4760 if (ratio <= 100)
0121c619 4761 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4762
81819f0f
CL
4763 return length;
4764}
9824601e 4765SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4766#endif
4767
8ff12cfc 4768#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4769static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4770{
4771 unsigned long sum = 0;
4772 int cpu;
4773 int len;
4774 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4775
4776 if (!data)
4777 return -ENOMEM;
4778
4779 for_each_online_cpu(cpu) {
9dfc6e68 4780 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4781
4782 data[cpu] = x;
4783 sum += x;
4784 }
4785
4786 len = sprintf(buf, "%lu", sum);
4787
50ef37b9 4788#ifdef CONFIG_SMP
8ff12cfc
CL
4789 for_each_online_cpu(cpu) {
4790 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4791 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4792 }
50ef37b9 4793#endif
8ff12cfc
CL
4794 kfree(data);
4795 return len + sprintf(buf + len, "\n");
4796}
4797
78eb00cc
DR
4798static void clear_stat(struct kmem_cache *s, enum stat_item si)
4799{
4800 int cpu;
4801
4802 for_each_online_cpu(cpu)
9dfc6e68 4803 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4804}
4805
8ff12cfc
CL
4806#define STAT_ATTR(si, text) \
4807static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4808{ \
4809 return show_stat(s, buf, si); \
4810} \
78eb00cc
DR
4811static ssize_t text##_store(struct kmem_cache *s, \
4812 const char *buf, size_t length) \
4813{ \
4814 if (buf[0] != '0') \
4815 return -EINVAL; \
4816 clear_stat(s, si); \
4817 return length; \
4818} \
4819SLAB_ATTR(text); \
8ff12cfc
CL
4820
4821STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4822STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4823STAT_ATTR(FREE_FASTPATH, free_fastpath);
4824STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4825STAT_ATTR(FREE_FROZEN, free_frozen);
4826STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4827STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4828STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4829STAT_ATTR(ALLOC_SLAB, alloc_slab);
4830STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4831STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4832STAT_ATTR(FREE_SLAB, free_slab);
4833STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4834STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4835STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4836STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4837STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4838STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4839STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4840STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4841STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4842STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4843STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4844STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4845STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4846STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4847#endif
4848
06428780 4849static struct attribute *slab_attrs[] = {
81819f0f
CL
4850 &slab_size_attr.attr,
4851 &object_size_attr.attr,
4852 &objs_per_slab_attr.attr,
4853 &order_attr.attr,
73d342b1 4854 &min_partial_attr.attr,
49e22585 4855 &cpu_partial_attr.attr,
81819f0f 4856 &objects_attr.attr,
205ab99d 4857 &objects_partial_attr.attr,
81819f0f
CL
4858 &partial_attr.attr,
4859 &cpu_slabs_attr.attr,
4860 &ctor_attr.attr,
81819f0f
CL
4861 &aliases_attr.attr,
4862 &align_attr.attr,
81819f0f
CL
4863 &hwcache_align_attr.attr,
4864 &reclaim_account_attr.attr,
4865 &destroy_by_rcu_attr.attr,
a5a84755 4866 &shrink_attr.attr,
ab9a0f19 4867 &reserved_attr.attr,
49e22585 4868 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4869#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4870 &total_objects_attr.attr,
4871 &slabs_attr.attr,
4872 &sanity_checks_attr.attr,
4873 &trace_attr.attr,
81819f0f
CL
4874 &red_zone_attr.attr,
4875 &poison_attr.attr,
4876 &store_user_attr.attr,
53e15af0 4877 &validate_attr.attr,
88a420e4
CL
4878 &alloc_calls_attr.attr,
4879 &free_calls_attr.attr,
ab4d5ed5 4880#endif
81819f0f
CL
4881#ifdef CONFIG_ZONE_DMA
4882 &cache_dma_attr.attr,
4883#endif
4884#ifdef CONFIG_NUMA
9824601e 4885 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4886#endif
4887#ifdef CONFIG_SLUB_STATS
4888 &alloc_fastpath_attr.attr,
4889 &alloc_slowpath_attr.attr,
4890 &free_fastpath_attr.attr,
4891 &free_slowpath_attr.attr,
4892 &free_frozen_attr.attr,
4893 &free_add_partial_attr.attr,
4894 &free_remove_partial_attr.attr,
4895 &alloc_from_partial_attr.attr,
4896 &alloc_slab_attr.attr,
4897 &alloc_refill_attr.attr,
e36a2652 4898 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4899 &free_slab_attr.attr,
4900 &cpuslab_flush_attr.attr,
4901 &deactivate_full_attr.attr,
4902 &deactivate_empty_attr.attr,
4903 &deactivate_to_head_attr.attr,
4904 &deactivate_to_tail_attr.attr,
4905 &deactivate_remote_frees_attr.attr,
03e404af 4906 &deactivate_bypass_attr.attr,
65c3376a 4907 &order_fallback_attr.attr,
b789ef51
CL
4908 &cmpxchg_double_fail_attr.attr,
4909 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4910 &cpu_partial_alloc_attr.attr,
4911 &cpu_partial_free_attr.attr,
8028dcea
AS
4912 &cpu_partial_node_attr.attr,
4913 &cpu_partial_drain_attr.attr,
81819f0f 4914#endif
4c13dd3b
DM
4915#ifdef CONFIG_FAILSLAB
4916 &failslab_attr.attr,
4917#endif
4918
81819f0f
CL
4919 NULL
4920};
4921
4922static struct attribute_group slab_attr_group = {
4923 .attrs = slab_attrs,
4924};
4925
4926static ssize_t slab_attr_show(struct kobject *kobj,
4927 struct attribute *attr,
4928 char *buf)
4929{
4930 struct slab_attribute *attribute;
4931 struct kmem_cache *s;
4932 int err;
4933
4934 attribute = to_slab_attr(attr);
4935 s = to_slab(kobj);
4936
4937 if (!attribute->show)
4938 return -EIO;
4939
4940 err = attribute->show(s, buf);
4941
4942 return err;
4943}
4944
4945static ssize_t slab_attr_store(struct kobject *kobj,
4946 struct attribute *attr,
4947 const char *buf, size_t len)
4948{
4949 struct slab_attribute *attribute;
4950 struct kmem_cache *s;
4951 int err;
4952
4953 attribute = to_slab_attr(attr);
4954 s = to_slab(kobj);
4955
4956 if (!attribute->store)
4957 return -EIO;
4958
4959 err = attribute->store(s, buf, len);
107dab5c
GC
4960#ifdef CONFIG_MEMCG_KMEM
4961 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4962 int i;
81819f0f 4963
107dab5c
GC
4964 mutex_lock(&slab_mutex);
4965 if (s->max_attr_size < len)
4966 s->max_attr_size = len;
4967
ebe945c2
GC
4968 /*
4969 * This is a best effort propagation, so this function's return
4970 * value will be determined by the parent cache only. This is
4971 * basically because not all attributes will have a well
4972 * defined semantics for rollbacks - most of the actions will
4973 * have permanent effects.
4974 *
4975 * Returning the error value of any of the children that fail
4976 * is not 100 % defined, in the sense that users seeing the
4977 * error code won't be able to know anything about the state of
4978 * the cache.
4979 *
4980 * Only returning the error code for the parent cache at least
4981 * has well defined semantics. The cache being written to
4982 * directly either failed or succeeded, in which case we loop
4983 * through the descendants with best-effort propagation.
4984 */
107dab5c
GC
4985 for_each_memcg_cache_index(i) {
4986 struct kmem_cache *c = cache_from_memcg(s, i);
107dab5c
GC
4987 if (c)
4988 attribute->store(c, buf, len);
4989 }
4990 mutex_unlock(&slab_mutex);
4991 }
4992#endif
81819f0f
CL
4993 return err;
4994}
4995
107dab5c
GC
4996static void memcg_propagate_slab_attrs(struct kmem_cache *s)
4997{
4998#ifdef CONFIG_MEMCG_KMEM
4999 int i;
5000 char *buffer = NULL;
5001
5002 if (!is_root_cache(s))
5003 return;
5004
5005 /*
5006 * This mean this cache had no attribute written. Therefore, no point
5007 * in copying default values around
5008 */
5009 if (!s->max_attr_size)
5010 return;
5011
5012 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5013 char mbuf[64];
5014 char *buf;
5015 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5016
5017 if (!attr || !attr->store || !attr->show)
5018 continue;
5019
5020 /*
5021 * It is really bad that we have to allocate here, so we will
5022 * do it only as a fallback. If we actually allocate, though,
5023 * we can just use the allocated buffer until the end.
5024 *
5025 * Most of the slub attributes will tend to be very small in
5026 * size, but sysfs allows buffers up to a page, so they can
5027 * theoretically happen.
5028 */
5029 if (buffer)
5030 buf = buffer;
5031 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5032 buf = mbuf;
5033 else {
5034 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5035 if (WARN_ON(!buffer))
5036 continue;
5037 buf = buffer;
5038 }
5039
5040 attr->show(s->memcg_params->root_cache, buf);
5041 attr->store(s, buf, strlen(buf));
5042 }
5043
5044 if (buffer)
5045 free_page((unsigned long)buffer);
5046#endif
5047}
5048
52cf25d0 5049static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5050 .show = slab_attr_show,
5051 .store = slab_attr_store,
5052};
5053
5054static struct kobj_type slab_ktype = {
5055 .sysfs_ops = &slab_sysfs_ops,
5056};
5057
5058static int uevent_filter(struct kset *kset, struct kobject *kobj)
5059{
5060 struct kobj_type *ktype = get_ktype(kobj);
5061
5062 if (ktype == &slab_ktype)
5063 return 1;
5064 return 0;
5065}
5066
9cd43611 5067static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5068 .filter = uevent_filter,
5069};
5070
27c3a314 5071static struct kset *slab_kset;
81819f0f
CL
5072
5073#define ID_STR_LENGTH 64
5074
5075/* Create a unique string id for a slab cache:
6446faa2
CL
5076 *
5077 * Format :[flags-]size
81819f0f
CL
5078 */
5079static char *create_unique_id(struct kmem_cache *s)
5080{
5081 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5082 char *p = name;
5083
5084 BUG_ON(!name);
5085
5086 *p++ = ':';
5087 /*
5088 * First flags affecting slabcache operations. We will only
5089 * get here for aliasable slabs so we do not need to support
5090 * too many flags. The flags here must cover all flags that
5091 * are matched during merging to guarantee that the id is
5092 * unique.
5093 */
5094 if (s->flags & SLAB_CACHE_DMA)
5095 *p++ = 'd';
5096 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5097 *p++ = 'a';
5098 if (s->flags & SLAB_DEBUG_FREE)
5099 *p++ = 'F';
5a896d9e
VN
5100 if (!(s->flags & SLAB_NOTRACK))
5101 *p++ = 't';
81819f0f
CL
5102 if (p != name + 1)
5103 *p++ = '-';
5104 p += sprintf(p, "%07d", s->size);
2633d7a0
GC
5105
5106#ifdef CONFIG_MEMCG_KMEM
5107 if (!is_root_cache(s))
5108 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5109#endif
5110
81819f0f
CL
5111 BUG_ON(p > name + ID_STR_LENGTH - 1);
5112 return name;
5113}
5114
5115static int sysfs_slab_add(struct kmem_cache *s)
5116{
5117 int err;
5118 const char *name;
45530c44 5119 int unmergeable = slab_unmergeable(s);
81819f0f 5120
81819f0f
CL
5121 if (unmergeable) {
5122 /*
5123 * Slabcache can never be merged so we can use the name proper.
5124 * This is typically the case for debug situations. In that
5125 * case we can catch duplicate names easily.
5126 */
27c3a314 5127 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5128 name = s->name;
5129 } else {
5130 /*
5131 * Create a unique name for the slab as a target
5132 * for the symlinks.
5133 */
5134 name = create_unique_id(s);
5135 }
5136
27c3a314 5137 s->kobj.kset = slab_kset;
1eada11c
GKH
5138 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5139 if (err) {
5140 kobject_put(&s->kobj);
81819f0f 5141 return err;
1eada11c 5142 }
81819f0f
CL
5143
5144 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5145 if (err) {
5146 kobject_del(&s->kobj);
5147 kobject_put(&s->kobj);
81819f0f 5148 return err;
5788d8ad 5149 }
81819f0f
CL
5150 kobject_uevent(&s->kobj, KOBJ_ADD);
5151 if (!unmergeable) {
5152 /* Setup first alias */
5153 sysfs_slab_alias(s, s->name);
5154 kfree(name);
5155 }
5156 return 0;
5157}
5158
5159static void sysfs_slab_remove(struct kmem_cache *s)
5160{
97d06609 5161 if (slab_state < FULL)
2bce6485
CL
5162 /*
5163 * Sysfs has not been setup yet so no need to remove the
5164 * cache from sysfs.
5165 */
5166 return;
5167
81819f0f
CL
5168 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5169 kobject_del(&s->kobj);
151c602f 5170 kobject_put(&s->kobj);
81819f0f
CL
5171}
5172
5173/*
5174 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5175 * available lest we lose that information.
81819f0f
CL
5176 */
5177struct saved_alias {
5178 struct kmem_cache *s;
5179 const char *name;
5180 struct saved_alias *next;
5181};
5182
5af328a5 5183static struct saved_alias *alias_list;
81819f0f
CL
5184
5185static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5186{
5187 struct saved_alias *al;
5188
97d06609 5189 if (slab_state == FULL) {
81819f0f
CL
5190 /*
5191 * If we have a leftover link then remove it.
5192 */
27c3a314
GKH
5193 sysfs_remove_link(&slab_kset->kobj, name);
5194 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5195 }
5196
5197 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5198 if (!al)
5199 return -ENOMEM;
5200
5201 al->s = s;
5202 al->name = name;
5203 al->next = alias_list;
5204 alias_list = al;
5205 return 0;
5206}
5207
5208static int __init slab_sysfs_init(void)
5209{
5b95a4ac 5210 struct kmem_cache *s;
81819f0f
CL
5211 int err;
5212
18004c5d 5213 mutex_lock(&slab_mutex);
2bce6485 5214
0ff21e46 5215 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5216 if (!slab_kset) {
18004c5d 5217 mutex_unlock(&slab_mutex);
81819f0f
CL
5218 printk(KERN_ERR "Cannot register slab subsystem.\n");
5219 return -ENOSYS;
5220 }
5221
97d06609 5222 slab_state = FULL;
26a7bd03 5223
5b95a4ac 5224 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5225 err = sysfs_slab_add(s);
5d540fb7
CL
5226 if (err)
5227 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5228 " to sysfs\n", s->name);
26a7bd03 5229 }
81819f0f
CL
5230
5231 while (alias_list) {
5232 struct saved_alias *al = alias_list;
5233
5234 alias_list = alias_list->next;
5235 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5236 if (err)
5237 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5238 " %s to sysfs\n", al->name);
81819f0f
CL
5239 kfree(al);
5240 }
5241
18004c5d 5242 mutex_unlock(&slab_mutex);
81819f0f
CL
5243 resiliency_test();
5244 return 0;
5245}
5246
5247__initcall(slab_sysfs_init);
ab4d5ed5 5248#endif /* CONFIG_SYSFS */
57ed3eda
PE
5249
5250/*
5251 * The /proc/slabinfo ABI
5252 */
158a9624 5253#ifdef CONFIG_SLABINFO
0d7561c6 5254void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda
PE
5255{
5256 unsigned long nr_partials = 0;
5257 unsigned long nr_slabs = 0;
205ab99d
CL
5258 unsigned long nr_objs = 0;
5259 unsigned long nr_free = 0;
57ed3eda
PE
5260 int node;
5261
57ed3eda
PE
5262 for_each_online_node(node) {
5263 struct kmem_cache_node *n = get_node(s, node);
5264
5265 if (!n)
5266 continue;
5267
5268 nr_partials += n->nr_partial;
5269 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5270 nr_objs += atomic_long_read(&n->total_objects);
5271 nr_free += count_partial(n, count_free);
57ed3eda
PE
5272 }
5273
0d7561c6
GC
5274 sinfo->active_objs = nr_objs - nr_free;
5275 sinfo->num_objs = nr_objs;
5276 sinfo->active_slabs = nr_slabs;
5277 sinfo->num_slabs = nr_slabs;
5278 sinfo->objects_per_slab = oo_objects(s->oo);
5279 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5280}
5281
0d7561c6 5282void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5283{
7b3c3a50
AD
5284}
5285
b7454ad3
GC
5286ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5287 size_t count, loff_t *ppos)
7b3c3a50 5288{
b7454ad3 5289 return -EIO;
7b3c3a50 5290}
158a9624 5291#endif /* CONFIG_SLABINFO */