slob: implement RCU freeing
[linux-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
672bba3a
CL
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 71 * freed then the slab will show up again on the partial lists.
672bba3a
CL
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
81819f0f
CL
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive The slab is used as a cpu cache. Allocations
82 * may be performed from the slab. The slab is not
83 * on any slab list and cannot be moved onto one.
894b8788
CL
84 * The cpu slab may be equipped with an additioanl
85 * lockless_freelist that allows lockless access to
86 * free objects in addition to the regular freelist
87 * that requires the slab lock.
81819f0f
CL
88 *
89 * PageError Slab requires special handling due to debug
90 * options set. This moves slab handling out of
894b8788 91 * the fast path and disables lockless freelists.
81819f0f
CL
92 */
93
35e5d7ee
CL
94static inline int SlabDebug(struct page *page)
95{
41ecc55b 96#ifdef CONFIG_SLUB_DEBUG
35e5d7ee 97 return PageError(page);
41ecc55b
CL
98#else
99 return 0;
100#endif
35e5d7ee
CL
101}
102
103static inline void SetSlabDebug(struct page *page)
104{
41ecc55b 105#ifdef CONFIG_SLUB_DEBUG
35e5d7ee 106 SetPageError(page);
41ecc55b 107#endif
35e5d7ee
CL
108}
109
110static inline void ClearSlabDebug(struct page *page)
111{
41ecc55b 112#ifdef CONFIG_SLUB_DEBUG
35e5d7ee 113 ClearPageError(page);
41ecc55b 114#endif
35e5d7ee
CL
115}
116
81819f0f
CL
117/*
118 * Issues still to be resolved:
119 *
120 * - The per cpu array is updated for each new slab and and is a remote
121 * cacheline for most nodes. This could become a bouncing cacheline given
672bba3a
CL
122 * enough frequent updates. There are 16 pointers in a cacheline, so at
123 * max 16 cpus could compete for the cacheline which may be okay.
81819f0f
CL
124 *
125 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
126 *
81819f0f
CL
127 * - Variable sizing of the per node arrays
128 */
129
130/* Enable to test recovery from slab corruption on boot */
131#undef SLUB_RESILIENCY_TEST
132
133#if PAGE_SHIFT <= 12
134
135/*
136 * Small page size. Make sure that we do not fragment memory
137 */
138#define DEFAULT_MAX_ORDER 1
139#define DEFAULT_MIN_OBJECTS 4
140
141#else
142
143/*
144 * Large page machines are customarily able to handle larger
145 * page orders.
146 */
147#define DEFAULT_MAX_ORDER 2
148#define DEFAULT_MIN_OBJECTS 8
149
150#endif
151
2086d26a
CL
152/*
153 * Mininum number of partial slabs. These will be left on the partial
154 * lists even if they are empty. kmem_cache_shrink may reclaim them.
155 */
e95eed57
CL
156#define MIN_PARTIAL 2
157
2086d26a
CL
158/*
159 * Maximum number of desirable partial slabs.
160 * The existence of more partial slabs makes kmem_cache_shrink
161 * sort the partial list by the number of objects in the.
162 */
163#define MAX_PARTIAL 10
164
81819f0f
CL
165#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
166 SLAB_POISON | SLAB_STORE_USER)
672bba3a 167
81819f0f
CL
168/*
169 * Set of flags that will prevent slab merging
170 */
171#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
172 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
173
174#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
175 SLAB_CACHE_DMA)
176
177#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 178#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
179#endif
180
181#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 182#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
183#endif
184
185/* Internal SLUB flags */
186#define __OBJECT_POISON 0x80000000 /* Poison object */
187
65c02d4c
CL
188/* Not all arches define cache_line_size */
189#ifndef cache_line_size
190#define cache_line_size() L1_CACHE_BYTES
191#endif
192
81819f0f
CL
193static int kmem_size = sizeof(struct kmem_cache);
194
195#ifdef CONFIG_SMP
196static struct notifier_block slab_notifier;
197#endif
198
199static enum {
200 DOWN, /* No slab functionality available */
201 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 202 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
203 SYSFS /* Sysfs up */
204} slab_state = DOWN;
205
206/* A list of all slab caches on the system */
207static DECLARE_RWSEM(slub_lock);
208LIST_HEAD(slab_caches);
209
02cbc874
CL
210/*
211 * Tracking user of a slab.
212 */
213struct track {
214 void *addr; /* Called from address */
215 int cpu; /* Was running on cpu */
216 int pid; /* Pid context */
217 unsigned long when; /* When did the operation occur */
218};
219
220enum track_item { TRACK_ALLOC, TRACK_FREE };
221
41ecc55b 222#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
223static int sysfs_slab_add(struct kmem_cache *);
224static int sysfs_slab_alias(struct kmem_cache *, const char *);
225static void sysfs_slab_remove(struct kmem_cache *);
226#else
227static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
228static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
229static void sysfs_slab_remove(struct kmem_cache *s) {}
230#endif
231
232/********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
235
236int slab_is_available(void)
237{
238 return slab_state >= UP;
239}
240
241static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
242{
243#ifdef CONFIG_NUMA
244 return s->node[node];
245#else
246 return &s->local_node;
247#endif
248}
249
02cbc874
CL
250static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252{
253 void *base;
254
255 if (!object)
256 return 1;
257
258 base = page_address(page);
259 if (object < base || object >= base + s->objects * s->size ||
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265}
266
7656c72b
CL
267/*
268 * Slow version of get and set free pointer.
269 *
270 * This version requires touching the cache lines of kmem_cache which
271 * we avoid to do in the fast alloc free paths. There we obtain the offset
272 * from the page struct.
273 */
274static inline void *get_freepointer(struct kmem_cache *s, void *object)
275{
276 return *(void **)(object + s->offset);
277}
278
279static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
280{
281 *(void **)(object + s->offset) = fp;
282}
283
284/* Loop over all objects in a slab */
285#define for_each_object(__p, __s, __addr) \
286 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
287 __p += (__s)->size)
288
289/* Scan freelist */
290#define for_each_free_object(__p, __s, __free) \
291 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
292
293/* Determine object index from a given position */
294static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
295{
296 return (p - addr) / s->size;
297}
298
41ecc55b
CL
299#ifdef CONFIG_SLUB_DEBUG
300/*
301 * Debug settings:
302 */
303static int slub_debug;
304
305static char *slub_debug_slabs;
306
81819f0f
CL
307/*
308 * Object debugging
309 */
310static void print_section(char *text, u8 *addr, unsigned int length)
311{
312 int i, offset;
313 int newline = 1;
314 char ascii[17];
315
316 ascii[16] = 0;
317
318 for (i = 0; i < length; i++) {
319 if (newline) {
320 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
321 newline = 0;
322 }
323 printk(" %02x", addr[i]);
324 offset = i % 16;
325 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
326 if (offset == 15) {
327 printk(" %s\n",ascii);
328 newline = 1;
329 }
330 }
331 if (!newline) {
332 i %= 16;
333 while (i < 16) {
334 printk(" ");
335 ascii[i] = ' ';
336 i++;
337 }
338 printk(" %s\n", ascii);
339 }
340}
341
81819f0f
CL
342static struct track *get_track(struct kmem_cache *s, void *object,
343 enum track_item alloc)
344{
345 struct track *p;
346
347 if (s->offset)
348 p = object + s->offset + sizeof(void *);
349 else
350 p = object + s->inuse;
351
352 return p + alloc;
353}
354
355static void set_track(struct kmem_cache *s, void *object,
356 enum track_item alloc, void *addr)
357{
358 struct track *p;
359
360 if (s->offset)
361 p = object + s->offset + sizeof(void *);
362 else
363 p = object + s->inuse;
364
365 p += alloc;
366 if (addr) {
367 p->addr = addr;
368 p->cpu = smp_processor_id();
369 p->pid = current ? current->pid : -1;
370 p->when = jiffies;
371 } else
372 memset(p, 0, sizeof(struct track));
373}
374
81819f0f
CL
375static void init_tracking(struct kmem_cache *s, void *object)
376{
377 if (s->flags & SLAB_STORE_USER) {
378 set_track(s, object, TRACK_FREE, NULL);
379 set_track(s, object, TRACK_ALLOC, NULL);
380 }
381}
382
383static void print_track(const char *s, struct track *t)
384{
385 if (!t->addr)
386 return;
387
388 printk(KERN_ERR "%s: ", s);
389 __print_symbol("%s", (unsigned long)t->addr);
390 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
391}
392
393static void print_trailer(struct kmem_cache *s, u8 *p)
394{
395 unsigned int off; /* Offset of last byte */
396
397 if (s->flags & SLAB_RED_ZONE)
398 print_section("Redzone", p + s->objsize,
399 s->inuse - s->objsize);
400
401 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
402 p + s->offset,
403 get_freepointer(s, p));
404
405 if (s->offset)
406 off = s->offset + sizeof(void *);
407 else
408 off = s->inuse;
409
410 if (s->flags & SLAB_STORE_USER) {
411 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
412 print_track("Last free ", get_track(s, p, TRACK_FREE));
413 off += 2 * sizeof(struct track);
414 }
415
416 if (off != s->size)
417 /* Beginning of the filler is the free pointer */
418 print_section("Filler", p + off, s->size - off);
419}
420
421static void object_err(struct kmem_cache *s, struct page *page,
422 u8 *object, char *reason)
423{
424 u8 *addr = page_address(page);
425
426 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
427 s->name, reason, object, page);
428 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
429 object - addr, page->flags, page->inuse, page->freelist);
430 if (object > addr + 16)
431 print_section("Bytes b4", object - 16, 16);
432 print_section("Object", object, min(s->objsize, 128));
433 print_trailer(s, object);
434 dump_stack();
435}
436
437static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
438{
439 va_list args;
440 char buf[100];
441
442 va_start(args, reason);
443 vsnprintf(buf, sizeof(buf), reason, args);
444 va_end(args);
445 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
446 page);
447 dump_stack();
448}
449
450static void init_object(struct kmem_cache *s, void *object, int active)
451{
452 u8 *p = object;
453
454 if (s->flags & __OBJECT_POISON) {
455 memset(p, POISON_FREE, s->objsize - 1);
456 p[s->objsize -1] = POISON_END;
457 }
458
459 if (s->flags & SLAB_RED_ZONE)
460 memset(p + s->objsize,
461 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
462 s->inuse - s->objsize);
463}
464
465static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
466{
467 while (bytes) {
468 if (*start != (u8)value)
469 return 0;
470 start++;
471 bytes--;
472 }
473 return 1;
474}
475
81819f0f
CL
476/*
477 * Object layout:
478 *
479 * object address
480 * Bytes of the object to be managed.
481 * If the freepointer may overlay the object then the free
482 * pointer is the first word of the object.
672bba3a 483 *
81819f0f
CL
484 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
485 * 0xa5 (POISON_END)
486 *
487 * object + s->objsize
488 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
489 * Padding is extended by another word if Redzoning is enabled and
490 * objsize == inuse.
491 *
81819f0f
CL
492 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
493 * 0xcc (RED_ACTIVE) for objects in use.
494 *
495 * object + s->inuse
672bba3a
CL
496 * Meta data starts here.
497 *
81819f0f
CL
498 * A. Free pointer (if we cannot overwrite object on free)
499 * B. Tracking data for SLAB_STORE_USER
672bba3a
CL
500 * C. Padding to reach required alignment boundary or at mininum
501 * one word if debuggin is on to be able to detect writes
502 * before the word boundary.
503 *
504 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
505 *
506 * object + s->size
672bba3a 507 * Nothing is used beyond s->size.
81819f0f 508 *
672bba3a
CL
509 * If slabcaches are merged then the objsize and inuse boundaries are mostly
510 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
511 * may be used with merged slabcaches.
512 */
513
514static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
515 void *from, void *to)
516{
70d71228 517 printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
81819f0f
CL
518 s->name, message, data, from, to - 1);
519 memset(from, data, to - from);
520}
521
522static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
523{
524 unsigned long off = s->inuse; /* The end of info */
525
526 if (s->offset)
527 /* Freepointer is placed after the object. */
528 off += sizeof(void *);
529
530 if (s->flags & SLAB_STORE_USER)
531 /* We also have user information there */
532 off += 2 * sizeof(struct track);
533
534 if (s->size == off)
535 return 1;
536
537 if (check_bytes(p + off, POISON_INUSE, s->size - off))
538 return 1;
539
540 object_err(s, page, p, "Object padding check fails");
541
542 /*
543 * Restore padding
544 */
545 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
546 return 0;
547}
548
549static int slab_pad_check(struct kmem_cache *s, struct page *page)
550{
551 u8 *p;
552 int length, remainder;
553
554 if (!(s->flags & SLAB_POISON))
555 return 1;
556
557 p = page_address(page);
558 length = s->objects * s->size;
559 remainder = (PAGE_SIZE << s->order) - length;
560 if (!remainder)
561 return 1;
562
563 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
70d71228 564 slab_err(s, page, "Padding check failed");
81819f0f
CL
565 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
566 p + length + remainder);
567 return 0;
568 }
569 return 1;
570}
571
572static int check_object(struct kmem_cache *s, struct page *page,
573 void *object, int active)
574{
575 u8 *p = object;
576 u8 *endobject = object + s->objsize;
577
578 if (s->flags & SLAB_RED_ZONE) {
579 unsigned int red =
580 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
581
582 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
583 object_err(s, page, object,
584 active ? "Redzone Active" : "Redzone Inactive");
585 restore_bytes(s, "redzone", red,
586 endobject, object + s->inuse);
587 return 0;
588 }
589 } else {
590 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
591 !check_bytes(endobject, POISON_INUSE,
592 s->inuse - s->objsize)) {
593 object_err(s, page, p, "Alignment padding check fails");
594 /*
595 * Fix it so that there will not be another report.
596 *
597 * Hmmm... We may be corrupting an object that now expects
598 * to be longer than allowed.
599 */
600 restore_bytes(s, "alignment padding", POISON_INUSE,
601 endobject, object + s->inuse);
602 }
603 }
604
605 if (s->flags & SLAB_POISON) {
606 if (!active && (s->flags & __OBJECT_POISON) &&
607 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
608 p[s->objsize - 1] != POISON_END)) {
609
610 object_err(s, page, p, "Poison check failed");
611 restore_bytes(s, "Poison", POISON_FREE,
612 p, p + s->objsize -1);
613 restore_bytes(s, "Poison", POISON_END,
614 p + s->objsize - 1, p + s->objsize);
615 return 0;
616 }
617 /*
618 * check_pad_bytes cleans up on its own.
619 */
620 check_pad_bytes(s, page, p);
621 }
622
623 if (!s->offset && active)
624 /*
625 * Object and freepointer overlap. Cannot check
626 * freepointer while object is allocated.
627 */
628 return 1;
629
630 /* Check free pointer validity */
631 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
632 object_err(s, page, p, "Freepointer corrupt");
633 /*
634 * No choice but to zap it and thus loose the remainder
635 * of the free objects in this slab. May cause
672bba3a 636 * another error because the object count is now wrong.
81819f0f
CL
637 */
638 set_freepointer(s, p, NULL);
639 return 0;
640 }
641 return 1;
642}
643
644static int check_slab(struct kmem_cache *s, struct page *page)
645{
646 VM_BUG_ON(!irqs_disabled());
647
648 if (!PageSlab(page)) {
70d71228
CL
649 slab_err(s, page, "Not a valid slab page flags=%lx "
650 "mapping=0x%p count=%d", page->flags, page->mapping,
81819f0f
CL
651 page_count(page));
652 return 0;
653 }
654 if (page->offset * sizeof(void *) != s->offset) {
70d71228
CL
655 slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
656 "mapping=0x%p count=%d",
81819f0f 657 (unsigned long)(page->offset * sizeof(void *)),
81819f0f
CL
658 page->flags,
659 page->mapping,
660 page_count(page));
81819f0f
CL
661 return 0;
662 }
663 if (page->inuse > s->objects) {
70d71228
CL
664 slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
665 "mapping=0x%p count=%d",
666 s->name, page->inuse, s->objects, page->flags,
81819f0f 667 page->mapping, page_count(page));
81819f0f
CL
668 return 0;
669 }
670 /* Slab_pad_check fixes things up after itself */
671 slab_pad_check(s, page);
672 return 1;
673}
674
675/*
672bba3a
CL
676 * Determine if a certain object on a page is on the freelist. Must hold the
677 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
678 */
679static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
680{
681 int nr = 0;
682 void *fp = page->freelist;
683 void *object = NULL;
684
685 while (fp && nr <= s->objects) {
686 if (fp == search)
687 return 1;
688 if (!check_valid_pointer(s, page, fp)) {
689 if (object) {
690 object_err(s, page, object,
691 "Freechain corrupt");
692 set_freepointer(s, object, NULL);
693 break;
694 } else {
70d71228
CL
695 slab_err(s, page, "Freepointer 0x%p corrupt",
696 fp);
81819f0f
CL
697 page->freelist = NULL;
698 page->inuse = s->objects;
70d71228
CL
699 printk(KERN_ERR "@@@ SLUB %s: Freelist "
700 "cleared. Slab 0x%p\n",
701 s->name, page);
81819f0f
CL
702 return 0;
703 }
704 break;
705 }
706 object = fp;
707 fp = get_freepointer(s, object);
708 nr++;
709 }
710
711 if (page->inuse != s->objects - nr) {
70d71228
CL
712 slab_err(s, page, "Wrong object count. Counter is %d but "
713 "counted were %d", s, page, page->inuse,
714 s->objects - nr);
81819f0f 715 page->inuse = s->objects - nr;
70d71228
CL
716 printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
717 "Slab @0x%p\n", s->name, page);
81819f0f
CL
718 }
719 return search == NULL;
720}
721
643b1138 722/*
672bba3a 723 * Tracking of fully allocated slabs for debugging purposes.
643b1138 724 */
e95eed57 725static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 726{
643b1138
CL
727 spin_lock(&n->list_lock);
728 list_add(&page->lru, &n->full);
729 spin_unlock(&n->list_lock);
730}
731
732static void remove_full(struct kmem_cache *s, struct page *page)
733{
734 struct kmem_cache_node *n;
735
736 if (!(s->flags & SLAB_STORE_USER))
737 return;
738
739 n = get_node(s, page_to_nid(page));
740
741 spin_lock(&n->list_lock);
742 list_del(&page->lru);
743 spin_unlock(&n->list_lock);
744}
745
81819f0f
CL
746static int alloc_object_checks(struct kmem_cache *s, struct page *page,
747 void *object)
748{
749 if (!check_slab(s, page))
750 goto bad;
751
752 if (object && !on_freelist(s, page, object)) {
70d71228
CL
753 slab_err(s, page, "Object 0x%p already allocated", object);
754 goto bad;
81819f0f
CL
755 }
756
757 if (!check_valid_pointer(s, page, object)) {
758 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 759 goto bad;
81819f0f
CL
760 }
761
762 if (!object)
763 return 1;
764
765 if (!check_object(s, page, object, 0))
766 goto bad;
81819f0f 767
81819f0f 768 return 1;
81819f0f
CL
769bad:
770 if (PageSlab(page)) {
771 /*
772 * If this is a slab page then lets do the best we can
773 * to avoid issues in the future. Marking all objects
672bba3a 774 * as used avoids touching the remaining objects.
81819f0f
CL
775 */
776 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
777 s->name, page);
778 page->inuse = s->objects;
779 page->freelist = NULL;
780 /* Fix up fields that may be corrupted */
781 page->offset = s->offset / sizeof(void *);
782 }
783 return 0;
784}
785
786static int free_object_checks(struct kmem_cache *s, struct page *page,
787 void *object)
788{
789 if (!check_slab(s, page))
790 goto fail;
791
792 if (!check_valid_pointer(s, page, object)) {
70d71228 793 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
794 goto fail;
795 }
796
797 if (on_freelist(s, page, object)) {
70d71228 798 slab_err(s, page, "Object 0x%p already free", object);
81819f0f
CL
799 goto fail;
800 }
801
802 if (!check_object(s, page, object, 1))
803 return 0;
804
805 if (unlikely(s != page->slab)) {
806 if (!PageSlab(page))
70d71228
CL
807 slab_err(s, page, "Attempt to free object(0x%p) "
808 "outside of slab", object);
81819f0f 809 else
70d71228 810 if (!page->slab) {
81819f0f 811 printk(KERN_ERR
70d71228 812 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 813 object);
70d71228
CL
814 dump_stack();
815 }
81819f0f 816 else
70d71228
CL
817 slab_err(s, page, "object at 0x%p belongs "
818 "to slab %s", object, page->slab->name);
81819f0f
CL
819 goto fail;
820 }
81819f0f
CL
821 return 1;
822fail:
81819f0f
CL
823 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
824 s->name, page, object);
825 return 0;
826}
827
636f0d7d
CL
828static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
829{
830 if (s->flags & SLAB_TRACE) {
831 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
832 s->name,
833 alloc ? "alloc" : "free",
834 object, page->inuse,
835 page->freelist);
836
837 if (!alloc)
838 print_section("Object", (void *)object, s->objsize);
839
840 dump_stack();
841 }
842}
843
41ecc55b
CL
844static int __init setup_slub_debug(char *str)
845{
846 if (!str || *str != '=')
847 slub_debug = DEBUG_DEFAULT_FLAGS;
848 else {
849 str++;
850 if (*str == 0 || *str == ',')
851 slub_debug = DEBUG_DEFAULT_FLAGS;
852 else
853 for( ;*str && *str != ','; str++)
854 switch (*str) {
855 case 'f' : case 'F' :
856 slub_debug |= SLAB_DEBUG_FREE;
857 break;
858 case 'z' : case 'Z' :
859 slub_debug |= SLAB_RED_ZONE;
860 break;
861 case 'p' : case 'P' :
862 slub_debug |= SLAB_POISON;
863 break;
864 case 'u' : case 'U' :
865 slub_debug |= SLAB_STORE_USER;
866 break;
867 case 't' : case 'T' :
868 slub_debug |= SLAB_TRACE;
869 break;
870 default:
871 printk(KERN_ERR "slub_debug option '%c' "
872 "unknown. skipped\n",*str);
873 }
874 }
875
876 if (*str == ',')
877 slub_debug_slabs = str + 1;
878 return 1;
879}
880
881__setup("slub_debug", setup_slub_debug);
882
883static void kmem_cache_open_debug_check(struct kmem_cache *s)
884{
885 /*
886 * The page->offset field is only 16 bit wide. This is an offset
887 * in units of words from the beginning of an object. If the slab
888 * size is bigger then we cannot move the free pointer behind the
889 * object anymore.
890 *
891 * On 32 bit platforms the limit is 256k. On 64bit platforms
892 * the limit is 512k.
893 *
894 * Debugging or ctor/dtors may create a need to move the free
895 * pointer. Fail if this happens.
896 */
897 if (s->size >= 65535 * sizeof(void *)) {
898 BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
899 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
900 BUG_ON(s->ctor || s->dtor);
901 }
902 else
903 /*
904 * Enable debugging if selected on the kernel commandline.
905 */
906 if (slub_debug && (!slub_debug_slabs ||
907 strncmp(slub_debug_slabs, s->name,
908 strlen(slub_debug_slabs)) == 0))
909 s->flags |= slub_debug;
910}
911#else
912
913static inline int alloc_object_checks(struct kmem_cache *s,
914 struct page *page, void *object) { return 0; }
915
916static inline int free_object_checks(struct kmem_cache *s,
917 struct page *page, void *object) { return 0; }
918
919static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
920static inline void remove_full(struct kmem_cache *s, struct page *page) {}
921static inline void trace(struct kmem_cache *s, struct page *page,
922 void *object, int alloc) {}
923static inline void init_object(struct kmem_cache *s,
924 void *object, int active) {}
925static inline void init_tracking(struct kmem_cache *s, void *object) {}
926static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
927 { return 1; }
928static inline int check_object(struct kmem_cache *s, struct page *page,
929 void *object, int active) { return 1; }
930static inline void set_track(struct kmem_cache *s, void *object,
931 enum track_item alloc, void *addr) {}
932static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
933#define slub_debug 0
934#endif
81819f0f
CL
935/*
936 * Slab allocation and freeing
937 */
938static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
939{
940 struct page * page;
941 int pages = 1 << s->order;
942
943 if (s->order)
944 flags |= __GFP_COMP;
945
946 if (s->flags & SLAB_CACHE_DMA)
947 flags |= SLUB_DMA;
948
949 if (node == -1)
950 page = alloc_pages(flags, s->order);
951 else
952 page = alloc_pages_node(node, flags, s->order);
953
954 if (!page)
955 return NULL;
956
957 mod_zone_page_state(page_zone(page),
958 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
959 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
960 pages);
961
962 return page;
963}
964
965static void setup_object(struct kmem_cache *s, struct page *page,
966 void *object)
967{
35e5d7ee 968 if (SlabDebug(page)) {
81819f0f
CL
969 init_object(s, object, 0);
970 init_tracking(s, object);
971 }
972
4f104934
CL
973 if (unlikely(s->ctor))
974 s->ctor(object, s, SLAB_CTOR_CONSTRUCTOR);
81819f0f
CL
975}
976
977static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
978{
979 struct page *page;
980 struct kmem_cache_node *n;
981 void *start;
982 void *end;
983 void *last;
984 void *p;
985
81819f0f
CL
986 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
987
988 if (flags & __GFP_WAIT)
989 local_irq_enable();
990
991 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
992 if (!page)
993 goto out;
994
995 n = get_node(s, page_to_nid(page));
996 if (n)
997 atomic_long_inc(&n->nr_slabs);
998 page->offset = s->offset / sizeof(void *);
999 page->slab = s;
1000 page->flags |= 1 << PG_slab;
1001 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1002 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1003 SetSlabDebug(page);
81819f0f
CL
1004
1005 start = page_address(page);
1006 end = start + s->objects * s->size;
1007
1008 if (unlikely(s->flags & SLAB_POISON))
1009 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1010
1011 last = start;
7656c72b 1012 for_each_object(p, s, start) {
81819f0f
CL
1013 setup_object(s, page, last);
1014 set_freepointer(s, last, p);
1015 last = p;
1016 }
1017 setup_object(s, page, last);
1018 set_freepointer(s, last, NULL);
1019
1020 page->freelist = start;
894b8788 1021 page->lockless_freelist = NULL;
81819f0f
CL
1022 page->inuse = 0;
1023out:
1024 if (flags & __GFP_WAIT)
1025 local_irq_disable();
1026 return page;
1027}
1028
1029static void __free_slab(struct kmem_cache *s, struct page *page)
1030{
1031 int pages = 1 << s->order;
1032
35e5d7ee 1033 if (unlikely(SlabDebug(page) || s->dtor)) {
81819f0f
CL
1034 void *p;
1035
1036 slab_pad_check(s, page);
7656c72b 1037 for_each_object(p, s, page_address(page)) {
81819f0f
CL
1038 if (s->dtor)
1039 s->dtor(p, s, 0);
1040 check_object(s, page, p, 0);
1041 }
1042 }
1043
1044 mod_zone_page_state(page_zone(page),
1045 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1046 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1047 - pages);
1048
1049 page->mapping = NULL;
1050 __free_pages(page, s->order);
1051}
1052
1053static void rcu_free_slab(struct rcu_head *h)
1054{
1055 struct page *page;
1056
1057 page = container_of((struct list_head *)h, struct page, lru);
1058 __free_slab(page->slab, page);
1059}
1060
1061static void free_slab(struct kmem_cache *s, struct page *page)
1062{
1063 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1064 /*
1065 * RCU free overloads the RCU head over the LRU
1066 */
1067 struct rcu_head *head = (void *)&page->lru;
1068
1069 call_rcu(head, rcu_free_slab);
1070 } else
1071 __free_slab(s, page);
1072}
1073
1074static void discard_slab(struct kmem_cache *s, struct page *page)
1075{
1076 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1077
1078 atomic_long_dec(&n->nr_slabs);
1079 reset_page_mapcount(page);
35e5d7ee
CL
1080 ClearSlabDebug(page);
1081 __ClearPageSlab(page);
81819f0f
CL
1082 free_slab(s, page);
1083}
1084
1085/*
1086 * Per slab locking using the pagelock
1087 */
1088static __always_inline void slab_lock(struct page *page)
1089{
1090 bit_spin_lock(PG_locked, &page->flags);
1091}
1092
1093static __always_inline void slab_unlock(struct page *page)
1094{
1095 bit_spin_unlock(PG_locked, &page->flags);
1096}
1097
1098static __always_inline int slab_trylock(struct page *page)
1099{
1100 int rc = 1;
1101
1102 rc = bit_spin_trylock(PG_locked, &page->flags);
1103 return rc;
1104}
1105
1106/*
1107 * Management of partially allocated slabs
1108 */
e95eed57 1109static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
81819f0f 1110{
e95eed57
CL
1111 spin_lock(&n->list_lock);
1112 n->nr_partial++;
1113 list_add_tail(&page->lru, &n->partial);
1114 spin_unlock(&n->list_lock);
1115}
81819f0f 1116
e95eed57
CL
1117static void add_partial(struct kmem_cache_node *n, struct page *page)
1118{
81819f0f
CL
1119 spin_lock(&n->list_lock);
1120 n->nr_partial++;
1121 list_add(&page->lru, &n->partial);
1122 spin_unlock(&n->list_lock);
1123}
1124
1125static void remove_partial(struct kmem_cache *s,
1126 struct page *page)
1127{
1128 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1129
1130 spin_lock(&n->list_lock);
1131 list_del(&page->lru);
1132 n->nr_partial--;
1133 spin_unlock(&n->list_lock);
1134}
1135
1136/*
672bba3a 1137 * Lock slab and remove from the partial list.
81819f0f 1138 *
672bba3a 1139 * Must hold list_lock.
81819f0f
CL
1140 */
1141static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
1142{
1143 if (slab_trylock(page)) {
1144 list_del(&page->lru);
1145 n->nr_partial--;
1146 return 1;
1147 }
1148 return 0;
1149}
1150
1151/*
672bba3a 1152 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1153 */
1154static struct page *get_partial_node(struct kmem_cache_node *n)
1155{
1156 struct page *page;
1157
1158 /*
1159 * Racy check. If we mistakenly see no partial slabs then we
1160 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1161 * partial slab and there is none available then get_partials()
1162 * will return NULL.
81819f0f
CL
1163 */
1164 if (!n || !n->nr_partial)
1165 return NULL;
1166
1167 spin_lock(&n->list_lock);
1168 list_for_each_entry(page, &n->partial, lru)
1169 if (lock_and_del_slab(n, page))
1170 goto out;
1171 page = NULL;
1172out:
1173 spin_unlock(&n->list_lock);
1174 return page;
1175}
1176
1177/*
672bba3a 1178 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1179 */
1180static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1181{
1182#ifdef CONFIG_NUMA
1183 struct zonelist *zonelist;
1184 struct zone **z;
1185 struct page *page;
1186
1187 /*
672bba3a
CL
1188 * The defrag ratio allows a configuration of the tradeoffs between
1189 * inter node defragmentation and node local allocations. A lower
1190 * defrag_ratio increases the tendency to do local allocations
1191 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1192 *
672bba3a
CL
1193 * If the defrag_ratio is set to 0 then kmalloc() always
1194 * returns node local objects. If the ratio is higher then kmalloc()
1195 * may return off node objects because partial slabs are obtained
1196 * from other nodes and filled up.
81819f0f
CL
1197 *
1198 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1199 * defrag_ratio = 1000) then every (well almost) allocation will
1200 * first attempt to defrag slab caches on other nodes. This means
1201 * scanning over all nodes to look for partial slabs which may be
1202 * expensive if we do it every time we are trying to find a slab
1203 * with available objects.
81819f0f
CL
1204 */
1205 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1206 return NULL;
1207
1208 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1209 ->node_zonelists[gfp_zone(flags)];
1210 for (z = zonelist->zones; *z; z++) {
1211 struct kmem_cache_node *n;
1212
1213 n = get_node(s, zone_to_nid(*z));
1214
1215 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1216 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1217 page = get_partial_node(n);
1218 if (page)
1219 return page;
1220 }
1221 }
1222#endif
1223 return NULL;
1224}
1225
1226/*
1227 * Get a partial page, lock it and return it.
1228 */
1229static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1230{
1231 struct page *page;
1232 int searchnode = (node == -1) ? numa_node_id() : node;
1233
1234 page = get_partial_node(get_node(s, searchnode));
1235 if (page || (flags & __GFP_THISNODE))
1236 return page;
1237
1238 return get_any_partial(s, flags);
1239}
1240
1241/*
1242 * Move a page back to the lists.
1243 *
1244 * Must be called with the slab lock held.
1245 *
1246 * On exit the slab lock will have been dropped.
1247 */
1248static void putback_slab(struct kmem_cache *s, struct page *page)
1249{
e95eed57
CL
1250 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1251
81819f0f 1252 if (page->inuse) {
e95eed57 1253
81819f0f 1254 if (page->freelist)
e95eed57 1255 add_partial(n, page);
35e5d7ee 1256 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
e95eed57 1257 add_full(n, page);
81819f0f 1258 slab_unlock(page);
e95eed57 1259
81819f0f 1260 } else {
e95eed57
CL
1261 if (n->nr_partial < MIN_PARTIAL) {
1262 /*
672bba3a
CL
1263 * Adding an empty slab to the partial slabs in order
1264 * to avoid page allocator overhead. This slab needs
1265 * to come after the other slabs with objects in
1266 * order to fill them up. That way the size of the
1267 * partial list stays small. kmem_cache_shrink can
1268 * reclaim empty slabs from the partial list.
e95eed57
CL
1269 */
1270 add_partial_tail(n, page);
1271 slab_unlock(page);
1272 } else {
1273 slab_unlock(page);
1274 discard_slab(s, page);
1275 }
81819f0f
CL
1276 }
1277}
1278
1279/*
1280 * Remove the cpu slab
1281 */
1282static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1283{
894b8788
CL
1284 /*
1285 * Merge cpu freelist into freelist. Typically we get here
1286 * because both freelists are empty. So this is unlikely
1287 * to occur.
1288 */
1289 while (unlikely(page->lockless_freelist)) {
1290 void **object;
1291
1292 /* Retrieve object from cpu_freelist */
1293 object = page->lockless_freelist;
1294 page->lockless_freelist = page->lockless_freelist[page->offset];
1295
1296 /* And put onto the regular freelist */
1297 object[page->offset] = page->freelist;
1298 page->freelist = object;
1299 page->inuse--;
1300 }
81819f0f
CL
1301 s->cpu_slab[cpu] = NULL;
1302 ClearPageActive(page);
1303
1304 putback_slab(s, page);
1305}
1306
1307static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1308{
1309 slab_lock(page);
1310 deactivate_slab(s, page, cpu);
1311}
1312
1313/*
1314 * Flush cpu slab.
1315 * Called from IPI handler with interrupts disabled.
1316 */
1317static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1318{
1319 struct page *page = s->cpu_slab[cpu];
1320
1321 if (likely(page))
1322 flush_slab(s, page, cpu);
1323}
1324
1325static void flush_cpu_slab(void *d)
1326{
1327 struct kmem_cache *s = d;
1328 int cpu = smp_processor_id();
1329
1330 __flush_cpu_slab(s, cpu);
1331}
1332
1333static void flush_all(struct kmem_cache *s)
1334{
1335#ifdef CONFIG_SMP
1336 on_each_cpu(flush_cpu_slab, s, 1, 1);
1337#else
1338 unsigned long flags;
1339
1340 local_irq_save(flags);
1341 flush_cpu_slab(s);
1342 local_irq_restore(flags);
1343#endif
1344}
1345
1346/*
894b8788
CL
1347 * Slow path. The lockless freelist is empty or we need to perform
1348 * debugging duties.
1349 *
1350 * Interrupts are disabled.
81819f0f 1351 *
894b8788
CL
1352 * Processing is still very fast if new objects have been freed to the
1353 * regular freelist. In that case we simply take over the regular freelist
1354 * as the lockless freelist and zap the regular freelist.
81819f0f 1355 *
894b8788
CL
1356 * If that is not working then we fall back to the partial lists. We take the
1357 * first element of the freelist as the object to allocate now and move the
1358 * rest of the freelist to the lockless freelist.
81819f0f 1359 *
894b8788
CL
1360 * And if we were unable to get a new slab from the partial slab lists then
1361 * we need to allocate a new slab. This is slowest path since we may sleep.
81819f0f 1362 */
894b8788
CL
1363static void *__slab_alloc(struct kmem_cache *s,
1364 gfp_t gfpflags, int node, void *addr, struct page *page)
81819f0f 1365{
81819f0f 1366 void **object;
894b8788 1367 int cpu = smp_processor_id();
81819f0f 1368
81819f0f
CL
1369 if (!page)
1370 goto new_slab;
1371
1372 slab_lock(page);
1373 if (unlikely(node != -1 && page_to_nid(page) != node))
1374 goto another_slab;
894b8788 1375load_freelist:
81819f0f
CL
1376 object = page->freelist;
1377 if (unlikely(!object))
1378 goto another_slab;
35e5d7ee 1379 if (unlikely(SlabDebug(page)))
81819f0f
CL
1380 goto debug;
1381
894b8788
CL
1382 object = page->freelist;
1383 page->lockless_freelist = object[page->offset];
1384 page->inuse = s->objects;
1385 page->freelist = NULL;
81819f0f 1386 slab_unlock(page);
81819f0f
CL
1387 return object;
1388
1389another_slab:
1390 deactivate_slab(s, page, cpu);
1391
1392new_slab:
1393 page = get_partial(s, gfpflags, node);
894b8788 1394 if (page) {
81819f0f
CL
1395have_slab:
1396 s->cpu_slab[cpu] = page;
1397 SetPageActive(page);
894b8788 1398 goto load_freelist;
81819f0f
CL
1399 }
1400
1401 page = new_slab(s, gfpflags, node);
1402 if (page) {
1403 cpu = smp_processor_id();
1404 if (s->cpu_slab[cpu]) {
1405 /*
672bba3a
CL
1406 * Someone else populated the cpu_slab while we
1407 * enabled interrupts, or we have gotten scheduled
1408 * on another cpu. The page may not be on the
1409 * requested node even if __GFP_THISNODE was
1410 * specified. So we need to recheck.
81819f0f
CL
1411 */
1412 if (node == -1 ||
1413 page_to_nid(s->cpu_slab[cpu]) == node) {
1414 /*
1415 * Current cpuslab is acceptable and we
1416 * want the current one since its cache hot
1417 */
1418 discard_slab(s, page);
1419 page = s->cpu_slab[cpu];
1420 slab_lock(page);
894b8788 1421 goto load_freelist;
81819f0f 1422 }
672bba3a 1423 /* New slab does not fit our expectations */
81819f0f
CL
1424 flush_slab(s, s->cpu_slab[cpu], cpu);
1425 }
1426 slab_lock(page);
1427 goto have_slab;
1428 }
81819f0f
CL
1429 return NULL;
1430debug:
894b8788 1431 object = page->freelist;
81819f0f
CL
1432 if (!alloc_object_checks(s, page, object))
1433 goto another_slab;
1434 if (s->flags & SLAB_STORE_USER)
77c5e2d0 1435 set_track(s, object, TRACK_ALLOC, addr);
636f0d7d 1436 trace(s, page, object, 1);
70d71228 1437 init_object(s, object, 1);
894b8788
CL
1438
1439 page->inuse++;
1440 page->freelist = object[page->offset];
1441 slab_unlock(page);
1442 return object;
1443}
1444
1445/*
1446 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1447 * have the fastpath folded into their functions. So no function call
1448 * overhead for requests that can be satisfied on the fastpath.
1449 *
1450 * The fastpath works by first checking if the lockless freelist can be used.
1451 * If not then __slab_alloc is called for slow processing.
1452 *
1453 * Otherwise we can simply pick the next object from the lockless free list.
1454 */
1455static void __always_inline *slab_alloc(struct kmem_cache *s,
1456 gfp_t gfpflags, int node, void *addr)
1457{
1458 struct page *page;
1459 void **object;
1460 unsigned long flags;
1461
1462 local_irq_save(flags);
1463 page = s->cpu_slab[smp_processor_id()];
1464 if (unlikely(!page || !page->lockless_freelist ||
1465 (node != -1 && page_to_nid(page) != node)))
1466
1467 object = __slab_alloc(s, gfpflags, node, addr, page);
1468
1469 else {
1470 object = page->lockless_freelist;
1471 page->lockless_freelist = object[page->offset];
1472 }
1473 local_irq_restore(flags);
1474 return object;
81819f0f
CL
1475}
1476
1477void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1478{
77c5e2d0 1479 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1480}
1481EXPORT_SYMBOL(kmem_cache_alloc);
1482
1483#ifdef CONFIG_NUMA
1484void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1485{
77c5e2d0 1486 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1487}
1488EXPORT_SYMBOL(kmem_cache_alloc_node);
1489#endif
1490
1491/*
894b8788
CL
1492 * Slow patch handling. This may still be called frequently since objects
1493 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1494 *
894b8788
CL
1495 * So we still attempt to reduce cache line usage. Just take the slab
1496 * lock and free the item. If there is no additional partial page
1497 * handling required then we can return immediately.
81819f0f 1498 */
894b8788 1499static void __slab_free(struct kmem_cache *s, struct page *page,
77c5e2d0 1500 void *x, void *addr)
81819f0f
CL
1501{
1502 void *prior;
1503 void **object = (void *)x;
81819f0f 1504
81819f0f
CL
1505 slab_lock(page);
1506
35e5d7ee 1507 if (unlikely(SlabDebug(page)))
81819f0f
CL
1508 goto debug;
1509checks_ok:
1510 prior = object[page->offset] = page->freelist;
1511 page->freelist = object;
1512 page->inuse--;
1513
1514 if (unlikely(PageActive(page)))
1515 /*
1516 * Cpu slabs are never on partial lists and are
1517 * never freed.
1518 */
1519 goto out_unlock;
1520
1521 if (unlikely(!page->inuse))
1522 goto slab_empty;
1523
1524 /*
1525 * Objects left in the slab. If it
1526 * was not on the partial list before
1527 * then add it.
1528 */
1529 if (unlikely(!prior))
e95eed57 1530 add_partial(get_node(s, page_to_nid(page)), page);
81819f0f
CL
1531
1532out_unlock:
1533 slab_unlock(page);
81819f0f
CL
1534 return;
1535
1536slab_empty:
1537 if (prior)
1538 /*
672bba3a 1539 * Slab still on the partial list.
81819f0f
CL
1540 */
1541 remove_partial(s, page);
1542
1543 slab_unlock(page);
1544 discard_slab(s, page);
81819f0f
CL
1545 return;
1546
1547debug:
77c5e2d0
CL
1548 if (!free_object_checks(s, page, x))
1549 goto out_unlock;
643b1138
CL
1550 if (!PageActive(page) && !page->freelist)
1551 remove_full(s, page);
77c5e2d0
CL
1552 if (s->flags & SLAB_STORE_USER)
1553 set_track(s, x, TRACK_FREE, addr);
636f0d7d 1554 trace(s, page, object, 0);
70d71228 1555 init_object(s, object, 0);
77c5e2d0 1556 goto checks_ok;
81819f0f
CL
1557}
1558
894b8788
CL
1559/*
1560 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1561 * can perform fastpath freeing without additional function calls.
1562 *
1563 * The fastpath is only possible if we are freeing to the current cpu slab
1564 * of this processor. This typically the case if we have just allocated
1565 * the item before.
1566 *
1567 * If fastpath is not possible then fall back to __slab_free where we deal
1568 * with all sorts of special processing.
1569 */
1570static void __always_inline slab_free(struct kmem_cache *s,
1571 struct page *page, void *x, void *addr)
1572{
1573 void **object = (void *)x;
1574 unsigned long flags;
1575
1576 local_irq_save(flags);
1577 if (likely(page == s->cpu_slab[smp_processor_id()] &&
1578 !SlabDebug(page))) {
1579 object[page->offset] = page->lockless_freelist;
1580 page->lockless_freelist = object;
1581 } else
1582 __slab_free(s, page, x, addr);
1583
1584 local_irq_restore(flags);
1585}
1586
81819f0f
CL
1587void kmem_cache_free(struct kmem_cache *s, void *x)
1588{
77c5e2d0 1589 struct page *page;
81819f0f 1590
b49af68f 1591 page = virt_to_head_page(x);
81819f0f 1592
77c5e2d0 1593 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1594}
1595EXPORT_SYMBOL(kmem_cache_free);
1596
1597/* Figure out on which slab object the object resides */
1598static struct page *get_object_page(const void *x)
1599{
b49af68f 1600 struct page *page = virt_to_head_page(x);
81819f0f
CL
1601
1602 if (!PageSlab(page))
1603 return NULL;
1604
1605 return page;
1606}
1607
1608/*
672bba3a
CL
1609 * Object placement in a slab is made very easy because we always start at
1610 * offset 0. If we tune the size of the object to the alignment then we can
1611 * get the required alignment by putting one properly sized object after
1612 * another.
81819f0f
CL
1613 *
1614 * Notice that the allocation order determines the sizes of the per cpu
1615 * caches. Each processor has always one slab available for allocations.
1616 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1617 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1618 * locking overhead.
81819f0f
CL
1619 */
1620
1621/*
1622 * Mininum / Maximum order of slab pages. This influences locking overhead
1623 * and slab fragmentation. A higher order reduces the number of partial slabs
1624 * and increases the number of allocations possible without having to
1625 * take the list_lock.
1626 */
1627static int slub_min_order;
1628static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1629static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1630
1631/*
1632 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1633 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1634 */
1635static int slub_nomerge;
1636
81819f0f
CL
1637/*
1638 * Calculate the order of allocation given an slab object size.
1639 *
672bba3a
CL
1640 * The order of allocation has significant impact on performance and other
1641 * system components. Generally order 0 allocations should be preferred since
1642 * order 0 does not cause fragmentation in the page allocator. Larger objects
1643 * be problematic to put into order 0 slabs because there may be too much
1644 * unused space left. We go to a higher order if more than 1/8th of the slab
1645 * would be wasted.
1646 *
1647 * In order to reach satisfactory performance we must ensure that a minimum
1648 * number of objects is in one slab. Otherwise we may generate too much
1649 * activity on the partial lists which requires taking the list_lock. This is
1650 * less a concern for large slabs though which are rarely used.
81819f0f 1651 *
672bba3a
CL
1652 * slub_max_order specifies the order where we begin to stop considering the
1653 * number of objects in a slab as critical. If we reach slub_max_order then
1654 * we try to keep the page order as low as possible. So we accept more waste
1655 * of space in favor of a small page order.
81819f0f 1656 *
672bba3a
CL
1657 * Higher order allocations also allow the placement of more objects in a
1658 * slab and thereby reduce object handling overhead. If the user has
1659 * requested a higher mininum order then we start with that one instead of
1660 * the smallest order which will fit the object.
81819f0f 1661 */
5e6d444e
CL
1662static inline int slab_order(int size, int min_objects,
1663 int max_order, int fract_leftover)
81819f0f
CL
1664{
1665 int order;
1666 int rem;
1667
5e6d444e
CL
1668 for (order = max(slub_min_order,
1669 fls(min_objects * size - 1) - PAGE_SHIFT);
1670 order <= max_order; order++) {
81819f0f 1671
5e6d444e 1672 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1673
5e6d444e 1674 if (slab_size < min_objects * size)
81819f0f
CL
1675 continue;
1676
1677 rem = slab_size % size;
1678
5e6d444e 1679 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1680 break;
1681
1682 }
672bba3a 1683
81819f0f
CL
1684 return order;
1685}
1686
5e6d444e
CL
1687static inline int calculate_order(int size)
1688{
1689 int order;
1690 int min_objects;
1691 int fraction;
1692
1693 /*
1694 * Attempt to find best configuration for a slab. This
1695 * works by first attempting to generate a layout with
1696 * the best configuration and backing off gradually.
1697 *
1698 * First we reduce the acceptable waste in a slab. Then
1699 * we reduce the minimum objects required in a slab.
1700 */
1701 min_objects = slub_min_objects;
1702 while (min_objects > 1) {
1703 fraction = 8;
1704 while (fraction >= 4) {
1705 order = slab_order(size, min_objects,
1706 slub_max_order, fraction);
1707 if (order <= slub_max_order)
1708 return order;
1709 fraction /= 2;
1710 }
1711 min_objects /= 2;
1712 }
1713
1714 /*
1715 * We were unable to place multiple objects in a slab. Now
1716 * lets see if we can place a single object there.
1717 */
1718 order = slab_order(size, 1, slub_max_order, 1);
1719 if (order <= slub_max_order)
1720 return order;
1721
1722 /*
1723 * Doh this slab cannot be placed using slub_max_order.
1724 */
1725 order = slab_order(size, 1, MAX_ORDER, 1);
1726 if (order <= MAX_ORDER)
1727 return order;
1728 return -ENOSYS;
1729}
1730
81819f0f 1731/*
672bba3a 1732 * Figure out what the alignment of the objects will be.
81819f0f
CL
1733 */
1734static unsigned long calculate_alignment(unsigned long flags,
1735 unsigned long align, unsigned long size)
1736{
1737 /*
1738 * If the user wants hardware cache aligned objects then
1739 * follow that suggestion if the object is sufficiently
1740 * large.
1741 *
1742 * The hardware cache alignment cannot override the
1743 * specified alignment though. If that is greater
1744 * then use it.
1745 */
5af60839 1746 if ((flags & SLAB_HWCACHE_ALIGN) &&
65c02d4c
CL
1747 size > cache_line_size() / 2)
1748 return max_t(unsigned long, align, cache_line_size());
81819f0f
CL
1749
1750 if (align < ARCH_SLAB_MINALIGN)
1751 return ARCH_SLAB_MINALIGN;
1752
1753 return ALIGN(align, sizeof(void *));
1754}
1755
1756static void init_kmem_cache_node(struct kmem_cache_node *n)
1757{
1758 n->nr_partial = 0;
1759 atomic_long_set(&n->nr_slabs, 0);
1760 spin_lock_init(&n->list_lock);
1761 INIT_LIST_HEAD(&n->partial);
643b1138 1762 INIT_LIST_HEAD(&n->full);
81819f0f
CL
1763}
1764
1765#ifdef CONFIG_NUMA
1766/*
1767 * No kmalloc_node yet so do it by hand. We know that this is the first
1768 * slab on the node for this slabcache. There are no concurrent accesses
1769 * possible.
1770 *
1771 * Note that this function only works on the kmalloc_node_cache
1772 * when allocating for the kmalloc_node_cache.
1773 */
1774static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1775 int node)
1776{
1777 struct page *page;
1778 struct kmem_cache_node *n;
1779
1780 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1781
1782 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1783 /* new_slab() disables interupts */
1784 local_irq_enable();
1785
1786 BUG_ON(!page);
1787 n = page->freelist;
1788 BUG_ON(!n);
1789 page->freelist = get_freepointer(kmalloc_caches, n);
1790 page->inuse++;
1791 kmalloc_caches->node[node] = n;
1792 init_object(kmalloc_caches, n, 1);
1793 init_kmem_cache_node(n);
1794 atomic_long_inc(&n->nr_slabs);
e95eed57 1795 add_partial(n, page);
81819f0f
CL
1796 return n;
1797}
1798
1799static void free_kmem_cache_nodes(struct kmem_cache *s)
1800{
1801 int node;
1802
1803 for_each_online_node(node) {
1804 struct kmem_cache_node *n = s->node[node];
1805 if (n && n != &s->local_node)
1806 kmem_cache_free(kmalloc_caches, n);
1807 s->node[node] = NULL;
1808 }
1809}
1810
1811static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1812{
1813 int node;
1814 int local_node;
1815
1816 if (slab_state >= UP)
1817 local_node = page_to_nid(virt_to_page(s));
1818 else
1819 local_node = 0;
1820
1821 for_each_online_node(node) {
1822 struct kmem_cache_node *n;
1823
1824 if (local_node == node)
1825 n = &s->local_node;
1826 else {
1827 if (slab_state == DOWN) {
1828 n = early_kmem_cache_node_alloc(gfpflags,
1829 node);
1830 continue;
1831 }
1832 n = kmem_cache_alloc_node(kmalloc_caches,
1833 gfpflags, node);
1834
1835 if (!n) {
1836 free_kmem_cache_nodes(s);
1837 return 0;
1838 }
1839
1840 }
1841 s->node[node] = n;
1842 init_kmem_cache_node(n);
1843 }
1844 return 1;
1845}
1846#else
1847static void free_kmem_cache_nodes(struct kmem_cache *s)
1848{
1849}
1850
1851static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1852{
1853 init_kmem_cache_node(&s->local_node);
1854 return 1;
1855}
1856#endif
1857
1858/*
1859 * calculate_sizes() determines the order and the distribution of data within
1860 * a slab object.
1861 */
1862static int calculate_sizes(struct kmem_cache *s)
1863{
1864 unsigned long flags = s->flags;
1865 unsigned long size = s->objsize;
1866 unsigned long align = s->align;
1867
1868 /*
1869 * Determine if we can poison the object itself. If the user of
1870 * the slab may touch the object after free or before allocation
1871 * then we should never poison the object itself.
1872 */
1873 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1874 !s->ctor && !s->dtor)
1875 s->flags |= __OBJECT_POISON;
1876 else
1877 s->flags &= ~__OBJECT_POISON;
1878
1879 /*
1880 * Round up object size to the next word boundary. We can only
1881 * place the free pointer at word boundaries and this determines
1882 * the possible location of the free pointer.
1883 */
1884 size = ALIGN(size, sizeof(void *));
1885
41ecc55b 1886#ifdef CONFIG_SLUB_DEBUG
81819f0f 1887 /*
672bba3a 1888 * If we are Redzoning then check if there is some space between the
81819f0f 1889 * end of the object and the free pointer. If not then add an
672bba3a 1890 * additional word to have some bytes to store Redzone information.
81819f0f
CL
1891 */
1892 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1893 size += sizeof(void *);
41ecc55b 1894#endif
81819f0f
CL
1895
1896 /*
672bba3a
CL
1897 * With that we have determined the number of bytes in actual use
1898 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
1899 */
1900 s->inuse = size;
1901
41ecc55b 1902#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
1903 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1904 s->ctor || s->dtor)) {
1905 /*
1906 * Relocate free pointer after the object if it is not
1907 * permitted to overwrite the first word of the object on
1908 * kmem_cache_free.
1909 *
1910 * This is the case if we do RCU, have a constructor or
1911 * destructor or are poisoning the objects.
1912 */
1913 s->offset = size;
1914 size += sizeof(void *);
1915 }
1916
1917 if (flags & SLAB_STORE_USER)
1918 /*
1919 * Need to store information about allocs and frees after
1920 * the object.
1921 */
1922 size += 2 * sizeof(struct track);
1923
be7b3fbc 1924 if (flags & SLAB_RED_ZONE)
81819f0f
CL
1925 /*
1926 * Add some empty padding so that we can catch
1927 * overwrites from earlier objects rather than let
1928 * tracking information or the free pointer be
1929 * corrupted if an user writes before the start
1930 * of the object.
1931 */
1932 size += sizeof(void *);
41ecc55b 1933#endif
672bba3a 1934
81819f0f
CL
1935 /*
1936 * Determine the alignment based on various parameters that the
65c02d4c
CL
1937 * user specified and the dynamic determination of cache line size
1938 * on bootup.
81819f0f
CL
1939 */
1940 align = calculate_alignment(flags, align, s->objsize);
1941
1942 /*
1943 * SLUB stores one object immediately after another beginning from
1944 * offset 0. In order to align the objects we have to simply size
1945 * each object to conform to the alignment.
1946 */
1947 size = ALIGN(size, align);
1948 s->size = size;
1949
1950 s->order = calculate_order(size);
1951 if (s->order < 0)
1952 return 0;
1953
1954 /*
1955 * Determine the number of objects per slab
1956 */
1957 s->objects = (PAGE_SIZE << s->order) / size;
1958
1959 /*
1960 * Verify that the number of objects is within permitted limits.
1961 * The page->inuse field is only 16 bit wide! So we cannot have
1962 * more than 64k objects per slab.
1963 */
1964 if (!s->objects || s->objects > 65535)
1965 return 0;
1966 return 1;
1967
1968}
1969
81819f0f
CL
1970static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1971 const char *name, size_t size,
1972 size_t align, unsigned long flags,
1973 void (*ctor)(void *, struct kmem_cache *, unsigned long),
1974 void (*dtor)(void *, struct kmem_cache *, unsigned long))
1975{
1976 memset(s, 0, kmem_size);
1977 s->name = name;
1978 s->ctor = ctor;
1979 s->dtor = dtor;
1980 s->objsize = size;
1981 s->flags = flags;
1982 s->align = align;
41ecc55b 1983 kmem_cache_open_debug_check(s);
81819f0f
CL
1984
1985 if (!calculate_sizes(s))
1986 goto error;
1987
1988 s->refcount = 1;
1989#ifdef CONFIG_NUMA
1990 s->defrag_ratio = 100;
1991#endif
1992
1993 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
1994 return 1;
1995error:
1996 if (flags & SLAB_PANIC)
1997 panic("Cannot create slab %s size=%lu realsize=%u "
1998 "order=%u offset=%u flags=%lx\n",
1999 s->name, (unsigned long)size, s->size, s->order,
2000 s->offset, flags);
2001 return 0;
2002}
2003EXPORT_SYMBOL(kmem_cache_open);
2004
2005/*
2006 * Check if a given pointer is valid
2007 */
2008int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2009{
2010 struct page * page;
81819f0f
CL
2011
2012 page = get_object_page(object);
2013
2014 if (!page || s != page->slab)
2015 /* No slab or wrong slab */
2016 return 0;
2017
abcd08a6 2018 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2019 return 0;
2020
2021 /*
2022 * We could also check if the object is on the slabs freelist.
2023 * But this would be too expensive and it seems that the main
2024 * purpose of kmem_ptr_valid is to check if the object belongs
2025 * to a certain slab.
2026 */
2027 return 1;
2028}
2029EXPORT_SYMBOL(kmem_ptr_validate);
2030
2031/*
2032 * Determine the size of a slab object
2033 */
2034unsigned int kmem_cache_size(struct kmem_cache *s)
2035{
2036 return s->objsize;
2037}
2038EXPORT_SYMBOL(kmem_cache_size);
2039
2040const char *kmem_cache_name(struct kmem_cache *s)
2041{
2042 return s->name;
2043}
2044EXPORT_SYMBOL(kmem_cache_name);
2045
2046/*
672bba3a
CL
2047 * Attempt to free all slabs on a node. Return the number of slabs we
2048 * were unable to free.
81819f0f
CL
2049 */
2050static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2051 struct list_head *list)
2052{
2053 int slabs_inuse = 0;
2054 unsigned long flags;
2055 struct page *page, *h;
2056
2057 spin_lock_irqsave(&n->list_lock, flags);
2058 list_for_each_entry_safe(page, h, list, lru)
2059 if (!page->inuse) {
2060 list_del(&page->lru);
2061 discard_slab(s, page);
2062 } else
2063 slabs_inuse++;
2064 spin_unlock_irqrestore(&n->list_lock, flags);
2065 return slabs_inuse;
2066}
2067
2068/*
672bba3a 2069 * Release all resources used by a slab cache.
81819f0f
CL
2070 */
2071static int kmem_cache_close(struct kmem_cache *s)
2072{
2073 int node;
2074
2075 flush_all(s);
2076
2077 /* Attempt to free all objects */
2078 for_each_online_node(node) {
2079 struct kmem_cache_node *n = get_node(s, node);
2080
2086d26a 2081 n->nr_partial -= free_list(s, n, &n->partial);
81819f0f
CL
2082 if (atomic_long_read(&n->nr_slabs))
2083 return 1;
2084 }
2085 free_kmem_cache_nodes(s);
2086 return 0;
2087}
2088
2089/*
2090 * Close a cache and release the kmem_cache structure
2091 * (must be used for caches created using kmem_cache_create)
2092 */
2093void kmem_cache_destroy(struct kmem_cache *s)
2094{
2095 down_write(&slub_lock);
2096 s->refcount--;
2097 if (!s->refcount) {
2098 list_del(&s->list);
2099 if (kmem_cache_close(s))
2100 WARN_ON(1);
2101 sysfs_slab_remove(s);
2102 kfree(s);
2103 }
2104 up_write(&slub_lock);
2105}
2106EXPORT_SYMBOL(kmem_cache_destroy);
2107
2108/********************************************************************
2109 * Kmalloc subsystem
2110 *******************************************************************/
2111
2112struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
2113EXPORT_SYMBOL(kmalloc_caches);
2114
2115#ifdef CONFIG_ZONE_DMA
2116static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
2117#endif
2118
2119static int __init setup_slub_min_order(char *str)
2120{
2121 get_option (&str, &slub_min_order);
2122
2123 return 1;
2124}
2125
2126__setup("slub_min_order=", setup_slub_min_order);
2127
2128static int __init setup_slub_max_order(char *str)
2129{
2130 get_option (&str, &slub_max_order);
2131
2132 return 1;
2133}
2134
2135__setup("slub_max_order=", setup_slub_max_order);
2136
2137static int __init setup_slub_min_objects(char *str)
2138{
2139 get_option (&str, &slub_min_objects);
2140
2141 return 1;
2142}
2143
2144__setup("slub_min_objects=", setup_slub_min_objects);
2145
2146static int __init setup_slub_nomerge(char *str)
2147{
2148 slub_nomerge = 1;
2149 return 1;
2150}
2151
2152__setup("slub_nomerge", setup_slub_nomerge);
2153
81819f0f
CL
2154static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2155 const char *name, int size, gfp_t gfp_flags)
2156{
2157 unsigned int flags = 0;
2158
2159 if (gfp_flags & SLUB_DMA)
2160 flags = SLAB_CACHE_DMA;
2161
2162 down_write(&slub_lock);
2163 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2164 flags, NULL, NULL))
2165 goto panic;
2166
2167 list_add(&s->list, &slab_caches);
2168 up_write(&slub_lock);
2169 if (sysfs_slab_add(s))
2170 goto panic;
2171 return s;
2172
2173panic:
2174 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2175}
2176
2177static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2178{
2179 int index = kmalloc_index(size);
2180
614410d5 2181 if (!index)
81819f0f
CL
2182 return NULL;
2183
2184 /* Allocation too large? */
2185 BUG_ON(index < 0);
2186
2187#ifdef CONFIG_ZONE_DMA
2188 if ((flags & SLUB_DMA)) {
2189 struct kmem_cache *s;
2190 struct kmem_cache *x;
2191 char *text;
2192 size_t realsize;
2193
2194 s = kmalloc_caches_dma[index];
2195 if (s)
2196 return s;
2197
2198 /* Dynamically create dma cache */
2199 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2200 if (!x)
2201 panic("Unable to allocate memory for dma cache\n");
2202
2203 if (index <= KMALLOC_SHIFT_HIGH)
2204 realsize = 1 << index;
2205 else {
2206 if (index == 1)
2207 realsize = 96;
2208 else
2209 realsize = 192;
2210 }
2211
2212 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2213 (unsigned int)realsize);
2214 s = create_kmalloc_cache(x, text, realsize, flags);
2215 kmalloc_caches_dma[index] = s;
2216 return s;
2217 }
2218#endif
2219 return &kmalloc_caches[index];
2220}
2221
2222void *__kmalloc(size_t size, gfp_t flags)
2223{
2224 struct kmem_cache *s = get_slab(size, flags);
2225
2226 if (s)
77c5e2d0 2227 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2228 return NULL;
2229}
2230EXPORT_SYMBOL(__kmalloc);
2231
2232#ifdef CONFIG_NUMA
2233void *__kmalloc_node(size_t size, gfp_t flags, int node)
2234{
2235 struct kmem_cache *s = get_slab(size, flags);
2236
2237 if (s)
77c5e2d0 2238 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2239 return NULL;
2240}
2241EXPORT_SYMBOL(__kmalloc_node);
2242#endif
2243
2244size_t ksize(const void *object)
2245{
2246 struct page *page = get_object_page(object);
2247 struct kmem_cache *s;
2248
2249 BUG_ON(!page);
2250 s = page->slab;
2251 BUG_ON(!s);
2252
2253 /*
2254 * Debugging requires use of the padding between object
2255 * and whatever may come after it.
2256 */
2257 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2258 return s->objsize;
2259
2260 /*
2261 * If we have the need to store the freelist pointer
2262 * back there or track user information then we can
2263 * only use the space before that information.
2264 */
2265 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2266 return s->inuse;
2267
2268 /*
2269 * Else we can use all the padding etc for the allocation
2270 */
2271 return s->size;
2272}
2273EXPORT_SYMBOL(ksize);
2274
2275void kfree(const void *x)
2276{
2277 struct kmem_cache *s;
2278 struct page *page;
2279
2280 if (!x)
2281 return;
2282
b49af68f 2283 page = virt_to_head_page(x);
81819f0f
CL
2284 s = page->slab;
2285
77c5e2d0 2286 slab_free(s, page, (void *)x, __builtin_return_address(0));
81819f0f
CL
2287}
2288EXPORT_SYMBOL(kfree);
2289
2086d26a 2290/*
672bba3a
CL
2291 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2292 * the remaining slabs by the number of items in use. The slabs with the
2293 * most items in use come first. New allocations will then fill those up
2294 * and thus they can be removed from the partial lists.
2295 *
2296 * The slabs with the least items are placed last. This results in them
2297 * being allocated from last increasing the chance that the last objects
2298 * are freed in them.
2086d26a
CL
2299 */
2300int kmem_cache_shrink(struct kmem_cache *s)
2301{
2302 int node;
2303 int i;
2304 struct kmem_cache_node *n;
2305 struct page *page;
2306 struct page *t;
2307 struct list_head *slabs_by_inuse =
2308 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2309 unsigned long flags;
2310
2311 if (!slabs_by_inuse)
2312 return -ENOMEM;
2313
2314 flush_all(s);
2315 for_each_online_node(node) {
2316 n = get_node(s, node);
2317
2318 if (!n->nr_partial)
2319 continue;
2320
2321 for (i = 0; i < s->objects; i++)
2322 INIT_LIST_HEAD(slabs_by_inuse + i);
2323
2324 spin_lock_irqsave(&n->list_lock, flags);
2325
2326 /*
672bba3a 2327 * Build lists indexed by the items in use in each slab.
2086d26a 2328 *
672bba3a
CL
2329 * Note that concurrent frees may occur while we hold the
2330 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2331 */
2332 list_for_each_entry_safe(page, t, &n->partial, lru) {
2333 if (!page->inuse && slab_trylock(page)) {
2334 /*
2335 * Must hold slab lock here because slab_free
2336 * may have freed the last object and be
2337 * waiting to release the slab.
2338 */
2339 list_del(&page->lru);
2340 n->nr_partial--;
2341 slab_unlock(page);
2342 discard_slab(s, page);
2343 } else {
2344 if (n->nr_partial > MAX_PARTIAL)
2345 list_move(&page->lru,
2346 slabs_by_inuse + page->inuse);
2347 }
2348 }
2349
2350 if (n->nr_partial <= MAX_PARTIAL)
2351 goto out;
2352
2353 /*
672bba3a
CL
2354 * Rebuild the partial list with the slabs filled up most
2355 * first and the least used slabs at the end.
2086d26a
CL
2356 */
2357 for (i = s->objects - 1; i >= 0; i--)
2358 list_splice(slabs_by_inuse + i, n->partial.prev);
2359
2360 out:
2361 spin_unlock_irqrestore(&n->list_lock, flags);
2362 }
2363
2364 kfree(slabs_by_inuse);
2365 return 0;
2366}
2367EXPORT_SYMBOL(kmem_cache_shrink);
2368
81819f0f
CL
2369/**
2370 * krealloc - reallocate memory. The contents will remain unchanged.
81819f0f
CL
2371 * @p: object to reallocate memory for.
2372 * @new_size: how many bytes of memory are required.
2373 * @flags: the type of memory to allocate.
2374 *
2375 * The contents of the object pointed to are preserved up to the
2376 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2377 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2378 * %NULL pointer, the object pointed to is freed.
2379 */
2380void *krealloc(const void *p, size_t new_size, gfp_t flags)
2381{
81819f0f 2382 void *ret;
1f99a283 2383 size_t ks;
81819f0f
CL
2384
2385 if (unlikely(!p))
2386 return kmalloc(new_size, flags);
2387
2388 if (unlikely(!new_size)) {
2389 kfree(p);
2390 return NULL;
2391 }
2392
1f99a283
CL
2393 ks = ksize(p);
2394 if (ks >= new_size)
81819f0f
CL
2395 return (void *)p;
2396
2397 ret = kmalloc(new_size, flags);
2398 if (ret) {
1f99a283 2399 memcpy(ret, p, min(new_size, ks));
81819f0f
CL
2400 kfree(p);
2401 }
2402 return ret;
2403}
2404EXPORT_SYMBOL(krealloc);
2405
2406/********************************************************************
2407 * Basic setup of slabs
2408 *******************************************************************/
2409
2410void __init kmem_cache_init(void)
2411{
2412 int i;
2413
2414#ifdef CONFIG_NUMA
2415 /*
2416 * Must first have the slab cache available for the allocations of the
672bba3a 2417 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2418 * kmem_cache_open for slab_state == DOWN.
2419 */
2420 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2421 sizeof(struct kmem_cache_node), GFP_KERNEL);
2422#endif
2423
2424 /* Able to allocate the per node structures */
2425 slab_state = PARTIAL;
2426
2427 /* Caches that are not of the two-to-the-power-of size */
2428 create_kmalloc_cache(&kmalloc_caches[1],
2429 "kmalloc-96", 96, GFP_KERNEL);
2430 create_kmalloc_cache(&kmalloc_caches[2],
2431 "kmalloc-192", 192, GFP_KERNEL);
2432
2433 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2434 create_kmalloc_cache(&kmalloc_caches[i],
2435 "kmalloc", 1 << i, GFP_KERNEL);
2436
2437 slab_state = UP;
2438
2439 /* Provide the correct kmalloc names now that the caches are up */
2440 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2441 kmalloc_caches[i]. name =
2442 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2443
2444#ifdef CONFIG_SMP
2445 register_cpu_notifier(&slab_notifier);
2446#endif
2447
bcf889f9
CL
2448 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2449 nr_cpu_ids * sizeof(struct page *);
81819f0f
CL
2450
2451 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2452 " Processors=%d, Nodes=%d\n",
65c02d4c 2453 KMALLOC_SHIFT_HIGH, cache_line_size(),
81819f0f
CL
2454 slub_min_order, slub_max_order, slub_min_objects,
2455 nr_cpu_ids, nr_node_ids);
2456}
2457
2458/*
2459 * Find a mergeable slab cache
2460 */
2461static int slab_unmergeable(struct kmem_cache *s)
2462{
2463 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2464 return 1;
2465
2466 if (s->ctor || s->dtor)
2467 return 1;
2468
2469 return 0;
2470}
2471
2472static struct kmem_cache *find_mergeable(size_t size,
2473 size_t align, unsigned long flags,
2474 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2475 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2476{
2477 struct list_head *h;
2478
2479 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2480 return NULL;
2481
2482 if (ctor || dtor)
2483 return NULL;
2484
2485 size = ALIGN(size, sizeof(void *));
2486 align = calculate_alignment(flags, align, size);
2487 size = ALIGN(size, align);
2488
2489 list_for_each(h, &slab_caches) {
2490 struct kmem_cache *s =
2491 container_of(h, struct kmem_cache, list);
2492
2493 if (slab_unmergeable(s))
2494 continue;
2495
2496 if (size > s->size)
2497 continue;
2498
2499 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2500 (s->flags & SLUB_MERGE_SAME))
2501 continue;
2502 /*
2503 * Check if alignment is compatible.
2504 * Courtesy of Adrian Drzewiecki
2505 */
2506 if ((s->size & ~(align -1)) != s->size)
2507 continue;
2508
2509 if (s->size - size >= sizeof(void *))
2510 continue;
2511
2512 return s;
2513 }
2514 return NULL;
2515}
2516
2517struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2518 size_t align, unsigned long flags,
2519 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2520 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2521{
2522 struct kmem_cache *s;
2523
2524 down_write(&slub_lock);
18007820 2525 s = find_mergeable(size, align, flags, ctor, dtor);
81819f0f
CL
2526 if (s) {
2527 s->refcount++;
2528 /*
2529 * Adjust the object sizes so that we clear
2530 * the complete object on kzalloc.
2531 */
2532 s->objsize = max(s->objsize, (int)size);
2533 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2534 if (sysfs_slab_alias(s, name))
2535 goto err;
2536 } else {
2537 s = kmalloc(kmem_size, GFP_KERNEL);
2538 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2539 size, align, flags, ctor, dtor)) {
2540 if (sysfs_slab_add(s)) {
2541 kfree(s);
2542 goto err;
2543 }
2544 list_add(&s->list, &slab_caches);
2545 } else
2546 kfree(s);
2547 }
2548 up_write(&slub_lock);
2549 return s;
2550
2551err:
2552 up_write(&slub_lock);
2553 if (flags & SLAB_PANIC)
2554 panic("Cannot create slabcache %s\n", name);
2555 else
2556 s = NULL;
2557 return s;
2558}
2559EXPORT_SYMBOL(kmem_cache_create);
2560
2561void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2562{
2563 void *x;
2564
77c5e2d0 2565 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2566 if (x)
2567 memset(x, 0, s->objsize);
2568 return x;
2569}
2570EXPORT_SYMBOL(kmem_cache_zalloc);
2571
2572#ifdef CONFIG_SMP
2573static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2574{
2575 struct list_head *h;
2576
2577 down_read(&slub_lock);
2578 list_for_each(h, &slab_caches) {
2579 struct kmem_cache *s =
2580 container_of(h, struct kmem_cache, list);
2581
2582 func(s, cpu);
2583 }
2584 up_read(&slub_lock);
2585}
2586
2587/*
672bba3a
CL
2588 * Use the cpu notifier to insure that the cpu slabs are flushed when
2589 * necessary.
81819f0f
CL
2590 */
2591static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2592 unsigned long action, void *hcpu)
2593{
2594 long cpu = (long)hcpu;
2595
2596 switch (action) {
2597 case CPU_UP_CANCELED:
8bb78442 2598 case CPU_UP_CANCELED_FROZEN:
81819f0f 2599 case CPU_DEAD:
8bb78442 2600 case CPU_DEAD_FROZEN:
81819f0f
CL
2601 for_all_slabs(__flush_cpu_slab, cpu);
2602 break;
2603 default:
2604 break;
2605 }
2606 return NOTIFY_OK;
2607}
2608
2609static struct notifier_block __cpuinitdata slab_notifier =
2610 { &slab_cpuup_callback, NULL, 0 };
2611
2612#endif
2613
81819f0f
CL
2614void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2615{
2616 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2617
2618 if (!s)
2619 return NULL;
2620
77c5e2d0 2621 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
2622}
2623
2624void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2625 int node, void *caller)
2626{
2627 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2628
2629 if (!s)
2630 return NULL;
2631
77c5e2d0 2632 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
2633}
2634
41ecc55b 2635#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
53e15af0
CL
2636static int validate_slab(struct kmem_cache *s, struct page *page)
2637{
2638 void *p;
2639 void *addr = page_address(page);
7656c72b 2640 DECLARE_BITMAP(map, s->objects);
53e15af0
CL
2641
2642 if (!check_slab(s, page) ||
2643 !on_freelist(s, page, NULL))
2644 return 0;
2645
2646 /* Now we know that a valid freelist exists */
2647 bitmap_zero(map, s->objects);
2648
7656c72b
CL
2649 for_each_free_object(p, s, page->freelist) {
2650 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
2651 if (!check_object(s, page, p, 0))
2652 return 0;
2653 }
2654
7656c72b
CL
2655 for_each_object(p, s, addr)
2656 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
2657 if (!check_object(s, page, p, 1))
2658 return 0;
2659 return 1;
2660}
2661
2662static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2663{
2664 if (slab_trylock(page)) {
2665 validate_slab(s, page);
2666 slab_unlock(page);
2667 } else
2668 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2669 s->name, page);
2670
2671 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
2672 if (!SlabDebug(page))
2673 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
2674 "on slab 0x%p\n", s->name, page);
2675 } else {
35e5d7ee
CL
2676 if (SlabDebug(page))
2677 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
2678 "slab 0x%p\n", s->name, page);
2679 }
2680}
2681
2682static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2683{
2684 unsigned long count = 0;
2685 struct page *page;
2686 unsigned long flags;
2687
2688 spin_lock_irqsave(&n->list_lock, flags);
2689
2690 list_for_each_entry(page, &n->partial, lru) {
2691 validate_slab_slab(s, page);
2692 count++;
2693 }
2694 if (count != n->nr_partial)
2695 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2696 "counter=%ld\n", s->name, count, n->nr_partial);
2697
2698 if (!(s->flags & SLAB_STORE_USER))
2699 goto out;
2700
2701 list_for_each_entry(page, &n->full, lru) {
2702 validate_slab_slab(s, page);
2703 count++;
2704 }
2705 if (count != atomic_long_read(&n->nr_slabs))
2706 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2707 "counter=%ld\n", s->name, count,
2708 atomic_long_read(&n->nr_slabs));
2709
2710out:
2711 spin_unlock_irqrestore(&n->list_lock, flags);
2712 return count;
2713}
2714
2715static unsigned long validate_slab_cache(struct kmem_cache *s)
2716{
2717 int node;
2718 unsigned long count = 0;
2719
2720 flush_all(s);
2721 for_each_online_node(node) {
2722 struct kmem_cache_node *n = get_node(s, node);
2723
2724 count += validate_slab_node(s, n);
2725 }
2726 return count;
2727}
2728
b3459709
CL
2729#ifdef SLUB_RESILIENCY_TEST
2730static void resiliency_test(void)
2731{
2732 u8 *p;
2733
2734 printk(KERN_ERR "SLUB resiliency testing\n");
2735 printk(KERN_ERR "-----------------------\n");
2736 printk(KERN_ERR "A. Corruption after allocation\n");
2737
2738 p = kzalloc(16, GFP_KERNEL);
2739 p[16] = 0x12;
2740 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2741 " 0x12->0x%p\n\n", p + 16);
2742
2743 validate_slab_cache(kmalloc_caches + 4);
2744
2745 /* Hmmm... The next two are dangerous */
2746 p = kzalloc(32, GFP_KERNEL);
2747 p[32 + sizeof(void *)] = 0x34;
2748 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2749 " 0x34 -> -0x%p\n", p);
2750 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2751
2752 validate_slab_cache(kmalloc_caches + 5);
2753 p = kzalloc(64, GFP_KERNEL);
2754 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2755 *p = 0x56;
2756 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2757 p);
2758 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2759 validate_slab_cache(kmalloc_caches + 6);
2760
2761 printk(KERN_ERR "\nB. Corruption after free\n");
2762 p = kzalloc(128, GFP_KERNEL);
2763 kfree(p);
2764 *p = 0x78;
2765 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2766 validate_slab_cache(kmalloc_caches + 7);
2767
2768 p = kzalloc(256, GFP_KERNEL);
2769 kfree(p);
2770 p[50] = 0x9a;
2771 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2772 validate_slab_cache(kmalloc_caches + 8);
2773
2774 p = kzalloc(512, GFP_KERNEL);
2775 kfree(p);
2776 p[512] = 0xab;
2777 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2778 validate_slab_cache(kmalloc_caches + 9);
2779}
2780#else
2781static void resiliency_test(void) {};
2782#endif
2783
88a420e4 2784/*
672bba3a 2785 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
2786 * and freed.
2787 */
2788
2789struct location {
2790 unsigned long count;
2791 void *addr;
45edfa58
CL
2792 long long sum_time;
2793 long min_time;
2794 long max_time;
2795 long min_pid;
2796 long max_pid;
2797 cpumask_t cpus;
2798 nodemask_t nodes;
88a420e4
CL
2799};
2800
2801struct loc_track {
2802 unsigned long max;
2803 unsigned long count;
2804 struct location *loc;
2805};
2806
2807static void free_loc_track(struct loc_track *t)
2808{
2809 if (t->max)
2810 free_pages((unsigned long)t->loc,
2811 get_order(sizeof(struct location) * t->max));
2812}
2813
2814static int alloc_loc_track(struct loc_track *t, unsigned long max)
2815{
2816 struct location *l;
2817 int order;
2818
2819 if (!max)
2820 max = PAGE_SIZE / sizeof(struct location);
2821
2822 order = get_order(sizeof(struct location) * max);
2823
2824 l = (void *)__get_free_pages(GFP_KERNEL, order);
2825
2826 if (!l)
2827 return 0;
2828
2829 if (t->count) {
2830 memcpy(l, t->loc, sizeof(struct location) * t->count);
2831 free_loc_track(t);
2832 }
2833 t->max = max;
2834 t->loc = l;
2835 return 1;
2836}
2837
2838static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 2839 const struct track *track)
88a420e4
CL
2840{
2841 long start, end, pos;
2842 struct location *l;
2843 void *caddr;
45edfa58 2844 unsigned long age = jiffies - track->when;
88a420e4
CL
2845
2846 start = -1;
2847 end = t->count;
2848
2849 for ( ; ; ) {
2850 pos = start + (end - start + 1) / 2;
2851
2852 /*
2853 * There is nothing at "end". If we end up there
2854 * we need to add something to before end.
2855 */
2856 if (pos == end)
2857 break;
2858
2859 caddr = t->loc[pos].addr;
45edfa58
CL
2860 if (track->addr == caddr) {
2861
2862 l = &t->loc[pos];
2863 l->count++;
2864 if (track->when) {
2865 l->sum_time += age;
2866 if (age < l->min_time)
2867 l->min_time = age;
2868 if (age > l->max_time)
2869 l->max_time = age;
2870
2871 if (track->pid < l->min_pid)
2872 l->min_pid = track->pid;
2873 if (track->pid > l->max_pid)
2874 l->max_pid = track->pid;
2875
2876 cpu_set(track->cpu, l->cpus);
2877 }
2878 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
2879 return 1;
2880 }
2881
45edfa58 2882 if (track->addr < caddr)
88a420e4
CL
2883 end = pos;
2884 else
2885 start = pos;
2886 }
2887
2888 /*
672bba3a 2889 * Not found. Insert new tracking element.
88a420e4
CL
2890 */
2891 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2892 return 0;
2893
2894 l = t->loc + pos;
2895 if (pos < t->count)
2896 memmove(l + 1, l,
2897 (t->count - pos) * sizeof(struct location));
2898 t->count++;
2899 l->count = 1;
45edfa58
CL
2900 l->addr = track->addr;
2901 l->sum_time = age;
2902 l->min_time = age;
2903 l->max_time = age;
2904 l->min_pid = track->pid;
2905 l->max_pid = track->pid;
2906 cpus_clear(l->cpus);
2907 cpu_set(track->cpu, l->cpus);
2908 nodes_clear(l->nodes);
2909 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
2910 return 1;
2911}
2912
2913static void process_slab(struct loc_track *t, struct kmem_cache *s,
2914 struct page *page, enum track_item alloc)
2915{
2916 void *addr = page_address(page);
7656c72b 2917 DECLARE_BITMAP(map, s->objects);
88a420e4
CL
2918 void *p;
2919
2920 bitmap_zero(map, s->objects);
7656c72b
CL
2921 for_each_free_object(p, s, page->freelist)
2922 set_bit(slab_index(p, s, addr), map);
88a420e4 2923
7656c72b 2924 for_each_object(p, s, addr)
45edfa58
CL
2925 if (!test_bit(slab_index(p, s, addr), map))
2926 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
2927}
2928
2929static int list_locations(struct kmem_cache *s, char *buf,
2930 enum track_item alloc)
2931{
2932 int n = 0;
2933 unsigned long i;
2934 struct loc_track t;
2935 int node;
2936
2937 t.count = 0;
2938 t.max = 0;
2939
2940 /* Push back cpu slabs */
2941 flush_all(s);
2942
2943 for_each_online_node(node) {
2944 struct kmem_cache_node *n = get_node(s, node);
2945 unsigned long flags;
2946 struct page *page;
2947
2948 if (!atomic_read(&n->nr_slabs))
2949 continue;
2950
2951 spin_lock_irqsave(&n->list_lock, flags);
2952 list_for_each_entry(page, &n->partial, lru)
2953 process_slab(&t, s, page, alloc);
2954 list_for_each_entry(page, &n->full, lru)
2955 process_slab(&t, s, page, alloc);
2956 spin_unlock_irqrestore(&n->list_lock, flags);
2957 }
2958
2959 for (i = 0; i < t.count; i++) {
45edfa58 2960 struct location *l = &t.loc[i];
88a420e4
CL
2961
2962 if (n > PAGE_SIZE - 100)
2963 break;
45edfa58
CL
2964 n += sprintf(buf + n, "%7ld ", l->count);
2965
2966 if (l->addr)
2967 n += sprint_symbol(buf + n, (unsigned long)l->addr);
88a420e4
CL
2968 else
2969 n += sprintf(buf + n, "<not-available>");
45edfa58
CL
2970
2971 if (l->sum_time != l->min_time) {
2972 unsigned long remainder;
2973
2974 n += sprintf(buf + n, " age=%ld/%ld/%ld",
2975 l->min_time,
2976 div_long_long_rem(l->sum_time, l->count, &remainder),
2977 l->max_time);
2978 } else
2979 n += sprintf(buf + n, " age=%ld",
2980 l->min_time);
2981
2982 if (l->min_pid != l->max_pid)
2983 n += sprintf(buf + n, " pid=%ld-%ld",
2984 l->min_pid, l->max_pid);
2985 else
2986 n += sprintf(buf + n, " pid=%ld",
2987 l->min_pid);
2988
2989 if (num_online_cpus() > 1 && !cpus_empty(l->cpus)) {
2990 n += sprintf(buf + n, " cpus=");
2991 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
2992 l->cpus);
2993 }
2994
2995 if (num_online_nodes() > 1 && !nodes_empty(l->nodes)) {
2996 n += sprintf(buf + n, " nodes=");
2997 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
2998 l->nodes);
2999 }
3000
88a420e4
CL
3001 n += sprintf(buf + n, "\n");
3002 }
3003
3004 free_loc_track(&t);
3005 if (!t.count)
3006 n += sprintf(buf, "No data\n");
3007 return n;
3008}
3009
81819f0f
CL
3010static unsigned long count_partial(struct kmem_cache_node *n)
3011{
3012 unsigned long flags;
3013 unsigned long x = 0;
3014 struct page *page;
3015
3016 spin_lock_irqsave(&n->list_lock, flags);
3017 list_for_each_entry(page, &n->partial, lru)
3018 x += page->inuse;
3019 spin_unlock_irqrestore(&n->list_lock, flags);
3020 return x;
3021}
3022
3023enum slab_stat_type {
3024 SL_FULL,
3025 SL_PARTIAL,
3026 SL_CPU,
3027 SL_OBJECTS
3028};
3029
3030#define SO_FULL (1 << SL_FULL)
3031#define SO_PARTIAL (1 << SL_PARTIAL)
3032#define SO_CPU (1 << SL_CPU)
3033#define SO_OBJECTS (1 << SL_OBJECTS)
3034
3035static unsigned long slab_objects(struct kmem_cache *s,
3036 char *buf, unsigned long flags)
3037{
3038 unsigned long total = 0;
3039 int cpu;
3040 int node;
3041 int x;
3042 unsigned long *nodes;
3043 unsigned long *per_cpu;
3044
3045 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3046 per_cpu = nodes + nr_node_ids;
3047
3048 for_each_possible_cpu(cpu) {
3049 struct page *page = s->cpu_slab[cpu];
3050 int node;
3051
3052 if (page) {
3053 node = page_to_nid(page);
3054 if (flags & SO_CPU) {
3055 int x = 0;
3056
3057 if (flags & SO_OBJECTS)
3058 x = page->inuse;
3059 else
3060 x = 1;
3061 total += x;
3062 nodes[node] += x;
3063 }
3064 per_cpu[node]++;
3065 }
3066 }
3067
3068 for_each_online_node(node) {
3069 struct kmem_cache_node *n = get_node(s, node);
3070
3071 if (flags & SO_PARTIAL) {
3072 if (flags & SO_OBJECTS)
3073 x = count_partial(n);
3074 else
3075 x = n->nr_partial;
3076 total += x;
3077 nodes[node] += x;
3078 }
3079
3080 if (flags & SO_FULL) {
3081 int full_slabs = atomic_read(&n->nr_slabs)
3082 - per_cpu[node]
3083 - n->nr_partial;
3084
3085 if (flags & SO_OBJECTS)
3086 x = full_slabs * s->objects;
3087 else
3088 x = full_slabs;
3089 total += x;
3090 nodes[node] += x;
3091 }
3092 }
3093
3094 x = sprintf(buf, "%lu", total);
3095#ifdef CONFIG_NUMA
3096 for_each_online_node(node)
3097 if (nodes[node])
3098 x += sprintf(buf + x, " N%d=%lu",
3099 node, nodes[node]);
3100#endif
3101 kfree(nodes);
3102 return x + sprintf(buf + x, "\n");
3103}
3104
3105static int any_slab_objects(struct kmem_cache *s)
3106{
3107 int node;
3108 int cpu;
3109
3110 for_each_possible_cpu(cpu)
3111 if (s->cpu_slab[cpu])
3112 return 1;
3113
3114 for_each_node(node) {
3115 struct kmem_cache_node *n = get_node(s, node);
3116
3117 if (n->nr_partial || atomic_read(&n->nr_slabs))
3118 return 1;
3119 }
3120 return 0;
3121}
3122
3123#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3124#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3125
3126struct slab_attribute {
3127 struct attribute attr;
3128 ssize_t (*show)(struct kmem_cache *s, char *buf);
3129 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3130};
3131
3132#define SLAB_ATTR_RO(_name) \
3133 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3134
3135#define SLAB_ATTR(_name) \
3136 static struct slab_attribute _name##_attr = \
3137 __ATTR(_name, 0644, _name##_show, _name##_store)
3138
81819f0f
CL
3139static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3140{
3141 return sprintf(buf, "%d\n", s->size);
3142}
3143SLAB_ATTR_RO(slab_size);
3144
3145static ssize_t align_show(struct kmem_cache *s, char *buf)
3146{
3147 return sprintf(buf, "%d\n", s->align);
3148}
3149SLAB_ATTR_RO(align);
3150
3151static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3152{
3153 return sprintf(buf, "%d\n", s->objsize);
3154}
3155SLAB_ATTR_RO(object_size);
3156
3157static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3158{
3159 return sprintf(buf, "%d\n", s->objects);
3160}
3161SLAB_ATTR_RO(objs_per_slab);
3162
3163static ssize_t order_show(struct kmem_cache *s, char *buf)
3164{
3165 return sprintf(buf, "%d\n", s->order);
3166}
3167SLAB_ATTR_RO(order);
3168
3169static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3170{
3171 if (s->ctor) {
3172 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3173
3174 return n + sprintf(buf + n, "\n");
3175 }
3176 return 0;
3177}
3178SLAB_ATTR_RO(ctor);
3179
3180static ssize_t dtor_show(struct kmem_cache *s, char *buf)
3181{
3182 if (s->dtor) {
3183 int n = sprint_symbol(buf, (unsigned long)s->dtor);
3184
3185 return n + sprintf(buf + n, "\n");
3186 }
3187 return 0;
3188}
3189SLAB_ATTR_RO(dtor);
3190
3191static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3192{
3193 return sprintf(buf, "%d\n", s->refcount - 1);
3194}
3195SLAB_ATTR_RO(aliases);
3196
3197static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3198{
3199 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3200}
3201SLAB_ATTR_RO(slabs);
3202
3203static ssize_t partial_show(struct kmem_cache *s, char *buf)
3204{
3205 return slab_objects(s, buf, SO_PARTIAL);
3206}
3207SLAB_ATTR_RO(partial);
3208
3209static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3210{
3211 return slab_objects(s, buf, SO_CPU);
3212}
3213SLAB_ATTR_RO(cpu_slabs);
3214
3215static ssize_t objects_show(struct kmem_cache *s, char *buf)
3216{
3217 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3218}
3219SLAB_ATTR_RO(objects);
3220
3221static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3222{
3223 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3224}
3225
3226static ssize_t sanity_checks_store(struct kmem_cache *s,
3227 const char *buf, size_t length)
3228{
3229 s->flags &= ~SLAB_DEBUG_FREE;
3230 if (buf[0] == '1')
3231 s->flags |= SLAB_DEBUG_FREE;
3232 return length;
3233}
3234SLAB_ATTR(sanity_checks);
3235
3236static ssize_t trace_show(struct kmem_cache *s, char *buf)
3237{
3238 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3239}
3240
3241static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3242 size_t length)
3243{
3244 s->flags &= ~SLAB_TRACE;
3245 if (buf[0] == '1')
3246 s->flags |= SLAB_TRACE;
3247 return length;
3248}
3249SLAB_ATTR(trace);
3250
3251static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3252{
3253 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3254}
3255
3256static ssize_t reclaim_account_store(struct kmem_cache *s,
3257 const char *buf, size_t length)
3258{
3259 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3260 if (buf[0] == '1')
3261 s->flags |= SLAB_RECLAIM_ACCOUNT;
3262 return length;
3263}
3264SLAB_ATTR(reclaim_account);
3265
3266static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3267{
5af60839 3268 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3269}
3270SLAB_ATTR_RO(hwcache_align);
3271
3272#ifdef CONFIG_ZONE_DMA
3273static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3274{
3275 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3276}
3277SLAB_ATTR_RO(cache_dma);
3278#endif
3279
3280static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3281{
3282 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3283}
3284SLAB_ATTR_RO(destroy_by_rcu);
3285
3286static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3287{
3288 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3289}
3290
3291static ssize_t red_zone_store(struct kmem_cache *s,
3292 const char *buf, size_t length)
3293{
3294 if (any_slab_objects(s))
3295 return -EBUSY;
3296
3297 s->flags &= ~SLAB_RED_ZONE;
3298 if (buf[0] == '1')
3299 s->flags |= SLAB_RED_ZONE;
3300 calculate_sizes(s);
3301 return length;
3302}
3303SLAB_ATTR(red_zone);
3304
3305static ssize_t poison_show(struct kmem_cache *s, char *buf)
3306{
3307 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3308}
3309
3310static ssize_t poison_store(struct kmem_cache *s,
3311 const char *buf, size_t length)
3312{
3313 if (any_slab_objects(s))
3314 return -EBUSY;
3315
3316 s->flags &= ~SLAB_POISON;
3317 if (buf[0] == '1')
3318 s->flags |= SLAB_POISON;
3319 calculate_sizes(s);
3320 return length;
3321}
3322SLAB_ATTR(poison);
3323
3324static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3325{
3326 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3327}
3328
3329static ssize_t store_user_store(struct kmem_cache *s,
3330 const char *buf, size_t length)
3331{
3332 if (any_slab_objects(s))
3333 return -EBUSY;
3334
3335 s->flags &= ~SLAB_STORE_USER;
3336 if (buf[0] == '1')
3337 s->flags |= SLAB_STORE_USER;
3338 calculate_sizes(s);
3339 return length;
3340}
3341SLAB_ATTR(store_user);
3342
53e15af0
CL
3343static ssize_t validate_show(struct kmem_cache *s, char *buf)
3344{
3345 return 0;
3346}
3347
3348static ssize_t validate_store(struct kmem_cache *s,
3349 const char *buf, size_t length)
3350{
3351 if (buf[0] == '1')
3352 validate_slab_cache(s);
3353 else
3354 return -EINVAL;
3355 return length;
3356}
3357SLAB_ATTR(validate);
3358
2086d26a
CL
3359static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3360{
3361 return 0;
3362}
3363
3364static ssize_t shrink_store(struct kmem_cache *s,
3365 const char *buf, size_t length)
3366{
3367 if (buf[0] == '1') {
3368 int rc = kmem_cache_shrink(s);
3369
3370 if (rc)
3371 return rc;
3372 } else
3373 return -EINVAL;
3374 return length;
3375}
3376SLAB_ATTR(shrink);
3377
88a420e4
CL
3378static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3379{
3380 if (!(s->flags & SLAB_STORE_USER))
3381 return -ENOSYS;
3382 return list_locations(s, buf, TRACK_ALLOC);
3383}
3384SLAB_ATTR_RO(alloc_calls);
3385
3386static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3387{
3388 if (!(s->flags & SLAB_STORE_USER))
3389 return -ENOSYS;
3390 return list_locations(s, buf, TRACK_FREE);
3391}
3392SLAB_ATTR_RO(free_calls);
3393
81819f0f
CL
3394#ifdef CONFIG_NUMA
3395static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3396{
3397 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3398}
3399
3400static ssize_t defrag_ratio_store(struct kmem_cache *s,
3401 const char *buf, size_t length)
3402{
3403 int n = simple_strtoul(buf, NULL, 10);
3404
3405 if (n < 100)
3406 s->defrag_ratio = n * 10;
3407 return length;
3408}
3409SLAB_ATTR(defrag_ratio);
3410#endif
3411
3412static struct attribute * slab_attrs[] = {
3413 &slab_size_attr.attr,
3414 &object_size_attr.attr,
3415 &objs_per_slab_attr.attr,
3416 &order_attr.attr,
3417 &objects_attr.attr,
3418 &slabs_attr.attr,
3419 &partial_attr.attr,
3420 &cpu_slabs_attr.attr,
3421 &ctor_attr.attr,
3422 &dtor_attr.attr,
3423 &aliases_attr.attr,
3424 &align_attr.attr,
3425 &sanity_checks_attr.attr,
3426 &trace_attr.attr,
3427 &hwcache_align_attr.attr,
3428 &reclaim_account_attr.attr,
3429 &destroy_by_rcu_attr.attr,
3430 &red_zone_attr.attr,
3431 &poison_attr.attr,
3432 &store_user_attr.attr,
53e15af0 3433 &validate_attr.attr,
2086d26a 3434 &shrink_attr.attr,
88a420e4
CL
3435 &alloc_calls_attr.attr,
3436 &free_calls_attr.attr,
81819f0f
CL
3437#ifdef CONFIG_ZONE_DMA
3438 &cache_dma_attr.attr,
3439#endif
3440#ifdef CONFIG_NUMA
3441 &defrag_ratio_attr.attr,
3442#endif
3443 NULL
3444};
3445
3446static struct attribute_group slab_attr_group = {
3447 .attrs = slab_attrs,
3448};
3449
3450static ssize_t slab_attr_show(struct kobject *kobj,
3451 struct attribute *attr,
3452 char *buf)
3453{
3454 struct slab_attribute *attribute;
3455 struct kmem_cache *s;
3456 int err;
3457
3458 attribute = to_slab_attr(attr);
3459 s = to_slab(kobj);
3460
3461 if (!attribute->show)
3462 return -EIO;
3463
3464 err = attribute->show(s, buf);
3465
3466 return err;
3467}
3468
3469static ssize_t slab_attr_store(struct kobject *kobj,
3470 struct attribute *attr,
3471 const char *buf, size_t len)
3472{
3473 struct slab_attribute *attribute;
3474 struct kmem_cache *s;
3475 int err;
3476
3477 attribute = to_slab_attr(attr);
3478 s = to_slab(kobj);
3479
3480 if (!attribute->store)
3481 return -EIO;
3482
3483 err = attribute->store(s, buf, len);
3484
3485 return err;
3486}
3487
3488static struct sysfs_ops slab_sysfs_ops = {
3489 .show = slab_attr_show,
3490 .store = slab_attr_store,
3491};
3492
3493static struct kobj_type slab_ktype = {
3494 .sysfs_ops = &slab_sysfs_ops,
3495};
3496
3497static int uevent_filter(struct kset *kset, struct kobject *kobj)
3498{
3499 struct kobj_type *ktype = get_ktype(kobj);
3500
3501 if (ktype == &slab_ktype)
3502 return 1;
3503 return 0;
3504}
3505
3506static struct kset_uevent_ops slab_uevent_ops = {
3507 .filter = uevent_filter,
3508};
3509
3510decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3511
3512#define ID_STR_LENGTH 64
3513
3514/* Create a unique string id for a slab cache:
3515 * format
3516 * :[flags-]size:[memory address of kmemcache]
3517 */
3518static char *create_unique_id(struct kmem_cache *s)
3519{
3520 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3521 char *p = name;
3522
3523 BUG_ON(!name);
3524
3525 *p++ = ':';
3526 /*
3527 * First flags affecting slabcache operations. We will only
3528 * get here for aliasable slabs so we do not need to support
3529 * too many flags. The flags here must cover all flags that
3530 * are matched during merging to guarantee that the id is
3531 * unique.
3532 */
3533 if (s->flags & SLAB_CACHE_DMA)
3534 *p++ = 'd';
3535 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3536 *p++ = 'a';
3537 if (s->flags & SLAB_DEBUG_FREE)
3538 *p++ = 'F';
3539 if (p != name + 1)
3540 *p++ = '-';
3541 p += sprintf(p, "%07d", s->size);
3542 BUG_ON(p > name + ID_STR_LENGTH - 1);
3543 return name;
3544}
3545
3546static int sysfs_slab_add(struct kmem_cache *s)
3547{
3548 int err;
3549 const char *name;
3550 int unmergeable;
3551
3552 if (slab_state < SYSFS)
3553 /* Defer until later */
3554 return 0;
3555
3556 unmergeable = slab_unmergeable(s);
3557 if (unmergeable) {
3558 /*
3559 * Slabcache can never be merged so we can use the name proper.
3560 * This is typically the case for debug situations. In that
3561 * case we can catch duplicate names easily.
3562 */
0f9008ef 3563 sysfs_remove_link(&slab_subsys.kobj, s->name);
81819f0f
CL
3564 name = s->name;
3565 } else {
3566 /*
3567 * Create a unique name for the slab as a target
3568 * for the symlinks.
3569 */
3570 name = create_unique_id(s);
3571 }
3572
3573 kobj_set_kset_s(s, slab_subsys);
3574 kobject_set_name(&s->kobj, name);
3575 kobject_init(&s->kobj);
3576 err = kobject_add(&s->kobj);
3577 if (err)
3578 return err;
3579
3580 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3581 if (err)
3582 return err;
3583 kobject_uevent(&s->kobj, KOBJ_ADD);
3584 if (!unmergeable) {
3585 /* Setup first alias */
3586 sysfs_slab_alias(s, s->name);
3587 kfree(name);
3588 }
3589 return 0;
3590}
3591
3592static void sysfs_slab_remove(struct kmem_cache *s)
3593{
3594 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3595 kobject_del(&s->kobj);
3596}
3597
3598/*
3599 * Need to buffer aliases during bootup until sysfs becomes
3600 * available lest we loose that information.
3601 */
3602struct saved_alias {
3603 struct kmem_cache *s;
3604 const char *name;
3605 struct saved_alias *next;
3606};
3607
3608struct saved_alias *alias_list;
3609
3610static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3611{
3612 struct saved_alias *al;
3613
3614 if (slab_state == SYSFS) {
3615 /*
3616 * If we have a leftover link then remove it.
3617 */
0f9008ef
LT
3618 sysfs_remove_link(&slab_subsys.kobj, name);
3619 return sysfs_create_link(&slab_subsys.kobj,
81819f0f
CL
3620 &s->kobj, name);
3621 }
3622
3623 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3624 if (!al)
3625 return -ENOMEM;
3626
3627 al->s = s;
3628 al->name = name;
3629 al->next = alias_list;
3630 alias_list = al;
3631 return 0;
3632}
3633
3634static int __init slab_sysfs_init(void)
3635{
26a7bd03 3636 struct list_head *h;
81819f0f
CL
3637 int err;
3638
3639 err = subsystem_register(&slab_subsys);
3640 if (err) {
3641 printk(KERN_ERR "Cannot register slab subsystem.\n");
3642 return -ENOSYS;
3643 }
3644
26a7bd03
CL
3645 slab_state = SYSFS;
3646
3647 list_for_each(h, &slab_caches) {
3648 struct kmem_cache *s =
3649 container_of(h, struct kmem_cache, list);
3650
3651 err = sysfs_slab_add(s);
3652 BUG_ON(err);
3653 }
81819f0f
CL
3654
3655 while (alias_list) {
3656 struct saved_alias *al = alias_list;
3657
3658 alias_list = alias_list->next;
3659 err = sysfs_slab_alias(al->s, al->name);
3660 BUG_ON(err);
3661 kfree(al);
3662 }
3663
3664 resiliency_test();
3665 return 0;
3666}
3667
3668__initcall(slab_sysfs_init);
81819f0f 3669#endif