mm/memcontrol.c: fix defined but not used compiler warning
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
210b5c06
CG
172#define OO_SHIFT 16
173#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 174#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 175
81819f0f 176/* Internal SLUB flags */
f90ec390 177#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 178#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 179
81819f0f
CL
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
02cbc874
CL
184/*
185 * Tracking user of a slab.
186 */
d6543e39 187#define TRACK_ADDRS_COUNT 16
02cbc874 188struct track {
ce71e27c 189 unsigned long addr; /* Called from address */
d6543e39
BG
190#ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192#endif
02cbc874
CL
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196};
197
198enum track_item { TRACK_ALLOC, TRACK_FREE };
199
ab4d5ed5 200#ifdef CONFIG_SYSFS
81819f0f
CL
201static int sysfs_slab_add(struct kmem_cache *);
202static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 203static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 204#else
0c710013
CL
205static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
206static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
207 { return 0; }
107dab5c 208static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
209#endif
210
4fdccdfb 211static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
212{
213#ifdef CONFIG_SLUB_STATS
88da03a6
CL
214 /*
215 * The rmw is racy on a preemptible kernel but this is acceptable, so
216 * avoid this_cpu_add()'s irq-disable overhead.
217 */
218 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
219#endif
220}
221
81819f0f
CL
222/********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
225
6446faa2 226/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
227static inline int check_valid_pointer(struct kmem_cache *s,
228 struct page *page, const void *object)
229{
230 void *base;
231
a973e9dd 232 if (!object)
02cbc874
CL
233 return 1;
234
a973e9dd 235 base = page_address(page);
39b26464 236 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
237 (object - base) % s->size) {
238 return 0;
239 }
240
241 return 1;
242}
243
7656c72b
CL
244static inline void *get_freepointer(struct kmem_cache *s, void *object)
245{
246 return *(void **)(object + s->offset);
247}
248
0ad9500e
ED
249static void prefetch_freepointer(const struct kmem_cache *s, void *object)
250{
251 prefetch(object + s->offset);
252}
253
1393d9a1
CL
254static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
255{
256 void *p;
257
258#ifdef CONFIG_DEBUG_PAGEALLOC
259 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
260#else
261 p = get_freepointer(s, object);
262#endif
263 return p;
264}
265
7656c72b
CL
266static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
267{
268 *(void **)(object + s->offset) = fp;
269}
270
271/* Loop over all objects in a slab */
224a88be
CL
272#define for_each_object(__p, __s, __addr, __objects) \
273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
274 __p += (__s)->size)
275
54266640
WY
276#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
277 for (__p = (__addr), __idx = 1; __idx <= __objects;\
278 __p += (__s)->size, __idx++)
279
7656c72b
CL
280/* Determine object index from a given position */
281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282{
283 return (p - addr) / s->size;
284}
285
d71f606f
MK
286static inline size_t slab_ksize(const struct kmem_cache *s)
287{
288#ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 294 return s->object_size;
d71f606f
MK
295
296#endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308}
309
ab9a0f19
LJ
310static inline int order_objects(int order, unsigned long size, int reserved)
311{
312 return ((PAGE_SIZE << order) - reserved) / size;
313}
314
834f3d11 315static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 316 unsigned long size, int reserved)
834f3d11
CL
317{
318 struct kmem_cache_order_objects x = {
ab9a0f19 319 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
320 };
321
322 return x;
323}
324
325static inline int oo_order(struct kmem_cache_order_objects x)
326{
210b5c06 327 return x.x >> OO_SHIFT;
834f3d11
CL
328}
329
330static inline int oo_objects(struct kmem_cache_order_objects x)
331{
210b5c06 332 return x.x & OO_MASK;
834f3d11
CL
333}
334
881db7fb
CL
335/*
336 * Per slab locking using the pagelock
337 */
338static __always_inline void slab_lock(struct page *page)
339{
340 bit_spin_lock(PG_locked, &page->flags);
341}
342
343static __always_inline void slab_unlock(struct page *page)
344{
345 __bit_spin_unlock(PG_locked, &page->flags);
346}
347
a0320865
DH
348static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
349{
350 struct page tmp;
351 tmp.counters = counters_new;
352 /*
353 * page->counters can cover frozen/inuse/objects as well
354 * as page->_count. If we assign to ->counters directly
355 * we run the risk of losing updates to page->_count, so
356 * be careful and only assign to the fields we need.
357 */
358 page->frozen = tmp.frozen;
359 page->inuse = tmp.inuse;
360 page->objects = tmp.objects;
361}
362
1d07171c
CL
363/* Interrupts must be disabled (for the fallback code to work right) */
364static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 void *freelist_old, unsigned long counters_old,
366 void *freelist_new, unsigned long counters_new,
367 const char *n)
368{
369 VM_BUG_ON(!irqs_disabled());
2565409f
HC
370#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 372 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 373 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
374 freelist_old, counters_old,
375 freelist_new, counters_new))
376 return 1;
1d07171c
CL
377 } else
378#endif
379 {
380 slab_lock(page);
d0e0ac97
CG
381 if (page->freelist == freelist_old &&
382 page->counters == counters_old) {
1d07171c 383 page->freelist = freelist_new;
a0320865 384 set_page_slub_counters(page, counters_new);
1d07171c
CL
385 slab_unlock(page);
386 return 1;
387 }
388 slab_unlock(page);
389 }
390
391 cpu_relax();
392 stat(s, CMPXCHG_DOUBLE_FAIL);
393
394#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 395 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
396#endif
397
398 return 0;
399}
400
b789ef51
CL
401static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 void *freelist_old, unsigned long counters_old,
403 void *freelist_new, unsigned long counters_new,
404 const char *n)
405{
2565409f
HC
406#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 408 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 409 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
410 freelist_old, counters_old,
411 freelist_new, counters_new))
412 return 1;
b789ef51
CL
413 } else
414#endif
415 {
1d07171c
CL
416 unsigned long flags;
417
418 local_irq_save(flags);
881db7fb 419 slab_lock(page);
d0e0ac97
CG
420 if (page->freelist == freelist_old &&
421 page->counters == counters_old) {
b789ef51 422 page->freelist = freelist_new;
a0320865 423 set_page_slub_counters(page, counters_new);
881db7fb 424 slab_unlock(page);
1d07171c 425 local_irq_restore(flags);
b789ef51
CL
426 return 1;
427 }
881db7fb 428 slab_unlock(page);
1d07171c 429 local_irq_restore(flags);
b789ef51
CL
430 }
431
432 cpu_relax();
433 stat(s, CMPXCHG_DOUBLE_FAIL);
434
435#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 436 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
437#endif
438
439 return 0;
440}
441
41ecc55b 442#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
443/*
444 * Determine a map of object in use on a page.
445 *
881db7fb 446 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
447 * not vanish from under us.
448 */
449static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450{
451 void *p;
452 void *addr = page_address(page);
453
454 for (p = page->freelist; p; p = get_freepointer(s, p))
455 set_bit(slab_index(p, s, addr), map);
456}
457
41ecc55b
CL
458/*
459 * Debug settings:
460 */
f0630fff
CL
461#ifdef CONFIG_SLUB_DEBUG_ON
462static int slub_debug = DEBUG_DEFAULT_FLAGS;
463#else
41ecc55b 464static int slub_debug;
f0630fff 465#endif
41ecc55b
CL
466
467static char *slub_debug_slabs;
fa5ec8a1 468static int disable_higher_order_debug;
41ecc55b 469
81819f0f
CL
470/*
471 * Object debugging
472 */
473static void print_section(char *text, u8 *addr, unsigned int length)
474{
ffc79d28
SAS
475 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
476 length, 1);
81819f0f
CL
477}
478
81819f0f
CL
479static struct track *get_track(struct kmem_cache *s, void *object,
480 enum track_item alloc)
481{
482 struct track *p;
483
484 if (s->offset)
485 p = object + s->offset + sizeof(void *);
486 else
487 p = object + s->inuse;
488
489 return p + alloc;
490}
491
492static void set_track(struct kmem_cache *s, void *object,
ce71e27c 493 enum track_item alloc, unsigned long addr)
81819f0f 494{
1a00df4a 495 struct track *p = get_track(s, object, alloc);
81819f0f 496
81819f0f 497 if (addr) {
d6543e39
BG
498#ifdef CONFIG_STACKTRACE
499 struct stack_trace trace;
500 int i;
501
502 trace.nr_entries = 0;
503 trace.max_entries = TRACK_ADDRS_COUNT;
504 trace.entries = p->addrs;
505 trace.skip = 3;
506 save_stack_trace(&trace);
507
508 /* See rant in lockdep.c */
509 if (trace.nr_entries != 0 &&
510 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
511 trace.nr_entries--;
512
513 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
514 p->addrs[i] = 0;
515#endif
81819f0f
CL
516 p->addr = addr;
517 p->cpu = smp_processor_id();
88e4ccf2 518 p->pid = current->pid;
81819f0f
CL
519 p->when = jiffies;
520 } else
521 memset(p, 0, sizeof(struct track));
522}
523
81819f0f
CL
524static void init_tracking(struct kmem_cache *s, void *object)
525{
24922684
CL
526 if (!(s->flags & SLAB_STORE_USER))
527 return;
528
ce71e27c
EGM
529 set_track(s, object, TRACK_FREE, 0UL);
530 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
531}
532
533static void print_track(const char *s, struct track *t)
534{
535 if (!t->addr)
536 return;
537
f9f58285
FF
538 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
539 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
540#ifdef CONFIG_STACKTRACE
541 {
542 int i;
543 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
544 if (t->addrs[i])
f9f58285 545 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
546 else
547 break;
548 }
549#endif
24922684
CL
550}
551
552static void print_tracking(struct kmem_cache *s, void *object)
553{
554 if (!(s->flags & SLAB_STORE_USER))
555 return;
556
557 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
558 print_track("Freed", get_track(s, object, TRACK_FREE));
559}
560
561static void print_page_info(struct page *page)
562{
f9f58285 563 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 564 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
565
566}
567
568static void slab_bug(struct kmem_cache *s, char *fmt, ...)
569{
ecc42fbe 570 struct va_format vaf;
24922684 571 va_list args;
24922684
CL
572
573 va_start(args, fmt);
ecc42fbe
FF
574 vaf.fmt = fmt;
575 vaf.va = &args;
f9f58285 576 pr_err("=============================================================================\n");
ecc42fbe 577 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 578 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 579
373d4d09 580 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 581 va_end(args);
81819f0f
CL
582}
583
24922684
CL
584static void slab_fix(struct kmem_cache *s, char *fmt, ...)
585{
ecc42fbe 586 struct va_format vaf;
24922684 587 va_list args;
24922684
CL
588
589 va_start(args, fmt);
ecc42fbe
FF
590 vaf.fmt = fmt;
591 vaf.va = &args;
592 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 593 va_end(args);
24922684
CL
594}
595
596static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
597{
598 unsigned int off; /* Offset of last byte */
a973e9dd 599 u8 *addr = page_address(page);
24922684
CL
600
601 print_tracking(s, p);
602
603 print_page_info(page);
604
f9f58285
FF
605 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
606 p, p - addr, get_freepointer(s, p));
24922684
CL
607
608 if (p > addr + 16)
ffc79d28 609 print_section("Bytes b4 ", p - 16, 16);
81819f0f 610
3b0efdfa 611 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 612 PAGE_SIZE));
81819f0f 613 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
614 print_section("Redzone ", p + s->object_size,
615 s->inuse - s->object_size);
81819f0f 616
81819f0f
CL
617 if (s->offset)
618 off = s->offset + sizeof(void *);
619 else
620 off = s->inuse;
621
24922684 622 if (s->flags & SLAB_STORE_USER)
81819f0f 623 off += 2 * sizeof(struct track);
81819f0f
CL
624
625 if (off != s->size)
626 /* Beginning of the filler is the free pointer */
ffc79d28 627 print_section("Padding ", p + off, s->size - off);
24922684
CL
628
629 dump_stack();
81819f0f
CL
630}
631
632static void object_err(struct kmem_cache *s, struct page *page,
633 u8 *object, char *reason)
634{
3dc50637 635 slab_bug(s, "%s", reason);
24922684 636 print_trailer(s, page, object);
81819f0f
CL
637}
638
d0e0ac97
CG
639static void slab_err(struct kmem_cache *s, struct page *page,
640 const char *fmt, ...)
81819f0f
CL
641{
642 va_list args;
643 char buf[100];
644
24922684
CL
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 647 va_end(args);
3dc50637 648 slab_bug(s, "%s", buf);
24922684 649 print_page_info(page);
81819f0f
CL
650 dump_stack();
651}
652
f7cb1933 653static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
654{
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
658 memset(p, POISON_FREE, s->object_size - 1);
659 p[s->object_size - 1] = POISON_END;
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 663 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
664}
665
24922684
CL
666static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668{
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671}
672
673static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
06428780 675 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
676{
677 u8 *fault;
678 u8 *end;
679
79824820 680 fault = memchr_inv(start, value, bytes);
24922684
CL
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
f9f58285 689 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
81819f0f
CL
695}
696
81819f0f
CL
697/*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
672bba3a 704 *
81819f0f
CL
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
3b0efdfa 708 * object + s->object_size
81819f0f 709 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 710 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 711 * object_size == inuse.
672bba3a 712 *
81819f0f
CL
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
672bba3a
CL
717 * Meta data starts here.
718 *
81819f0f
CL
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
672bba3a 721 * C. Padding to reach required alignment boundary or at mininum
6446faa2 722 * one word if debugging is on to be able to detect writes
672bba3a
CL
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
726 *
727 * object + s->size
672bba3a 728 * Nothing is used beyond s->size.
81819f0f 729 *
3b0efdfa 730 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 731 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
732 * may be used with merged slabcaches.
733 */
734
81819f0f
CL
735static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736{
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
24922684
CL
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
752}
753
39b26464 754/* Check the pad bytes at the end of a slab page */
81819f0f
CL
755static int slab_pad_check(struct kmem_cache *s, struct page *page)
756{
24922684
CL
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
81819f0f
CL
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
a973e9dd 766 start = page_address(page);
ab9a0f19 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
768 end = start + length;
769 remainder = length % s->size;
81819f0f
CL
770 if (!remainder)
771 return 1;
772
79824820 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 780 print_section("Padding ", end - remainder, remainder);
24922684 781
8a3d271d 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 783 return 0;
81819f0f
CL
784}
785
786static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 787 void *object, u8 val)
81819f0f
CL
788{
789 u8 *p = object;
3b0efdfa 790 u8 *endobject = object + s->object_size;
81819f0f
CL
791
792 if (s->flags & SLAB_RED_ZONE) {
24922684 793 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 794 endobject, val, s->inuse - s->object_size))
81819f0f 795 return 0;
81819f0f 796 } else {
3b0efdfa 797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 798 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
799 endobject, POISON_INUSE,
800 s->inuse - s->object_size);
3adbefee 801 }
81819f0f
CL
802 }
803
804 if (s->flags & SLAB_POISON) {
f7cb1933 805 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 806 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 807 POISON_FREE, s->object_size - 1) ||
24922684 808 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 809 p + s->object_size - 1, POISON_END, 1)))
81819f0f 810 return 0;
81819f0f
CL
811 /*
812 * check_pad_bytes cleans up on its own.
813 */
814 check_pad_bytes(s, page, p);
815 }
816
f7cb1933 817 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
818 /*
819 * Object and freepointer overlap. Cannot check
820 * freepointer while object is allocated.
821 */
822 return 1;
823
824 /* Check free pointer validity */
825 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
826 object_err(s, page, p, "Freepointer corrupt");
827 /*
9f6c708e 828 * No choice but to zap it and thus lose the remainder
81819f0f 829 * of the free objects in this slab. May cause
672bba3a 830 * another error because the object count is now wrong.
81819f0f 831 */
a973e9dd 832 set_freepointer(s, p, NULL);
81819f0f
CL
833 return 0;
834 }
835 return 1;
836}
837
838static int check_slab(struct kmem_cache *s, struct page *page)
839{
39b26464
CL
840 int maxobj;
841
81819f0f
CL
842 VM_BUG_ON(!irqs_disabled());
843
844 if (!PageSlab(page)) {
24922684 845 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
846 return 0;
847 }
39b26464 848
ab9a0f19 849 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
850 if (page->objects > maxobj) {
851 slab_err(s, page, "objects %u > max %u",
f6edde9c 852 page->objects, maxobj);
39b26464
CL
853 return 0;
854 }
855 if (page->inuse > page->objects) {
24922684 856 slab_err(s, page, "inuse %u > max %u",
f6edde9c 857 page->inuse, page->objects);
81819f0f
CL
858 return 0;
859 }
860 /* Slab_pad_check fixes things up after itself */
861 slab_pad_check(s, page);
862 return 1;
863}
864
865/*
672bba3a
CL
866 * Determine if a certain object on a page is on the freelist. Must hold the
867 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
868 */
869static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
870{
871 int nr = 0;
881db7fb 872 void *fp;
81819f0f 873 void *object = NULL;
f6edde9c 874 int max_objects;
81819f0f 875
881db7fb 876 fp = page->freelist;
39b26464 877 while (fp && nr <= page->objects) {
81819f0f
CL
878 if (fp == search)
879 return 1;
880 if (!check_valid_pointer(s, page, fp)) {
881 if (object) {
882 object_err(s, page, object,
883 "Freechain corrupt");
a973e9dd 884 set_freepointer(s, object, NULL);
81819f0f 885 } else {
24922684 886 slab_err(s, page, "Freepointer corrupt");
a973e9dd 887 page->freelist = NULL;
39b26464 888 page->inuse = page->objects;
24922684 889 slab_fix(s, "Freelist cleared");
81819f0f
CL
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
ab9a0f19 899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
39b26464 909 if (page->inuse != page->objects - nr) {
70d71228 910 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
24922684 913 slab_fix(s, "Object count adjusted.");
81819f0f
CL
914 }
915 return search == NULL;
916}
917
0121c619
CL
918static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
3ec09742
CL
920{
921 if (s->flags & SLAB_TRACE) {
f9f58285 922 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
d0e0ac97
CG
929 print_section("Object ", (void *)object,
930 s->object_size);
3ec09742
CL
931
932 dump_stack();
933 }
934}
935
643b1138 936/*
672bba3a 937 * Tracking of fully allocated slabs for debugging purposes.
643b1138 938 */
5cc6eee8
CL
939static void add_full(struct kmem_cache *s,
940 struct kmem_cache_node *n, struct page *page)
643b1138 941{
5cc6eee8
CL
942 if (!(s->flags & SLAB_STORE_USER))
943 return;
944
255d0884 945 lockdep_assert_held(&n->list_lock);
643b1138 946 list_add(&page->lru, &n->full);
643b1138
CL
947}
948
c65c1877 949static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 950{
643b1138
CL
951 if (!(s->flags & SLAB_STORE_USER))
952 return;
953
255d0884 954 lockdep_assert_held(&n->list_lock);
643b1138 955 list_del(&page->lru);
643b1138
CL
956}
957
0f389ec6
CL
958/* Tracking of the number of slabs for debugging purposes */
959static inline unsigned long slabs_node(struct kmem_cache *s, int node)
960{
961 struct kmem_cache_node *n = get_node(s, node);
962
963 return atomic_long_read(&n->nr_slabs);
964}
965
26c02cf0
AB
966static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
967{
968 return atomic_long_read(&n->nr_slabs);
969}
970
205ab99d 971static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
972{
973 struct kmem_cache_node *n = get_node(s, node);
974
975 /*
976 * May be called early in order to allocate a slab for the
977 * kmem_cache_node structure. Solve the chicken-egg
978 * dilemma by deferring the increment of the count during
979 * bootstrap (see early_kmem_cache_node_alloc).
980 */
338b2642 981 if (likely(n)) {
0f389ec6 982 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
983 atomic_long_add(objects, &n->total_objects);
984 }
0f389ec6 985}
205ab99d 986static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
987{
988 struct kmem_cache_node *n = get_node(s, node);
989
990 atomic_long_dec(&n->nr_slabs);
205ab99d 991 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
992}
993
994/* Object debug checks for alloc/free paths */
3ec09742
CL
995static void setup_object_debug(struct kmem_cache *s, struct page *page,
996 void *object)
997{
998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
999 return;
1000
f7cb1933 1001 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1002 init_tracking(s, object);
1003}
1004
d0e0ac97
CG
1005static noinline int alloc_debug_processing(struct kmem_cache *s,
1006 struct page *page,
ce71e27c 1007 void *object, unsigned long addr)
81819f0f
CL
1008{
1009 if (!check_slab(s, page))
1010 goto bad;
1011
81819f0f
CL
1012 if (!check_valid_pointer(s, page, object)) {
1013 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1014 goto bad;
81819f0f
CL
1015 }
1016
f7cb1933 1017 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1018 goto bad;
81819f0f 1019
3ec09742
CL
1020 /* Success perform special debug activities for allocs */
1021 if (s->flags & SLAB_STORE_USER)
1022 set_track(s, object, TRACK_ALLOC, addr);
1023 trace(s, page, object, 1);
f7cb1933 1024 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1025 return 1;
3ec09742 1026
81819f0f
CL
1027bad:
1028 if (PageSlab(page)) {
1029 /*
1030 * If this is a slab page then lets do the best we can
1031 * to avoid issues in the future. Marking all objects
672bba3a 1032 * as used avoids touching the remaining objects.
81819f0f 1033 */
24922684 1034 slab_fix(s, "Marking all objects used");
39b26464 1035 page->inuse = page->objects;
a973e9dd 1036 page->freelist = NULL;
81819f0f
CL
1037 }
1038 return 0;
1039}
1040
19c7ff9e
CL
1041static noinline struct kmem_cache_node *free_debug_processing(
1042 struct kmem_cache *s, struct page *page, void *object,
1043 unsigned long addr, unsigned long *flags)
81819f0f 1044{
19c7ff9e 1045 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1046
19c7ff9e 1047 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1048 slab_lock(page);
1049
81819f0f
CL
1050 if (!check_slab(s, page))
1051 goto fail;
1052
1053 if (!check_valid_pointer(s, page, object)) {
70d71228 1054 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1055 goto fail;
1056 }
1057
1058 if (on_freelist(s, page, object)) {
24922684 1059 object_err(s, page, object, "Object already free");
81819f0f
CL
1060 goto fail;
1061 }
1062
f7cb1933 1063 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1064 goto out;
81819f0f 1065
1b4f59e3 1066 if (unlikely(s != page->slab_cache)) {
3adbefee 1067 if (!PageSlab(page)) {
70d71228
CL
1068 slab_err(s, page, "Attempt to free object(0x%p) "
1069 "outside of slab", object);
1b4f59e3 1070 } else if (!page->slab_cache) {
f9f58285
FF
1071 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1072 object);
70d71228 1073 dump_stack();
06428780 1074 } else
24922684
CL
1075 object_err(s, page, object,
1076 "page slab pointer corrupt.");
81819f0f
CL
1077 goto fail;
1078 }
3ec09742 1079
3ec09742
CL
1080 if (s->flags & SLAB_STORE_USER)
1081 set_track(s, object, TRACK_FREE, addr);
1082 trace(s, page, object, 0);
f7cb1933 1083 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1084out:
881db7fb 1085 slab_unlock(page);
19c7ff9e
CL
1086 /*
1087 * Keep node_lock to preserve integrity
1088 * until the object is actually freed
1089 */
1090 return n;
3ec09742 1091
81819f0f 1092fail:
19c7ff9e
CL
1093 slab_unlock(page);
1094 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1095 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1096 return NULL;
81819f0f
CL
1097}
1098
41ecc55b
CL
1099static int __init setup_slub_debug(char *str)
1100{
f0630fff
CL
1101 slub_debug = DEBUG_DEFAULT_FLAGS;
1102 if (*str++ != '=' || !*str)
1103 /*
1104 * No options specified. Switch on full debugging.
1105 */
1106 goto out;
1107
1108 if (*str == ',')
1109 /*
1110 * No options but restriction on slabs. This means full
1111 * debugging for slabs matching a pattern.
1112 */
1113 goto check_slabs;
1114
fa5ec8a1
DR
1115 if (tolower(*str) == 'o') {
1116 /*
1117 * Avoid enabling debugging on caches if its minimum order
1118 * would increase as a result.
1119 */
1120 disable_higher_order_debug = 1;
1121 goto out;
1122 }
1123
f0630fff
CL
1124 slub_debug = 0;
1125 if (*str == '-')
1126 /*
1127 * Switch off all debugging measures.
1128 */
1129 goto out;
1130
1131 /*
1132 * Determine which debug features should be switched on
1133 */
06428780 1134 for (; *str && *str != ','; str++) {
f0630fff
CL
1135 switch (tolower(*str)) {
1136 case 'f':
1137 slub_debug |= SLAB_DEBUG_FREE;
1138 break;
1139 case 'z':
1140 slub_debug |= SLAB_RED_ZONE;
1141 break;
1142 case 'p':
1143 slub_debug |= SLAB_POISON;
1144 break;
1145 case 'u':
1146 slub_debug |= SLAB_STORE_USER;
1147 break;
1148 case 't':
1149 slub_debug |= SLAB_TRACE;
1150 break;
4c13dd3b
DM
1151 case 'a':
1152 slub_debug |= SLAB_FAILSLAB;
1153 break;
f0630fff 1154 default:
f9f58285
FF
1155 pr_err("slub_debug option '%c' unknown. skipped\n",
1156 *str);
f0630fff 1157 }
41ecc55b
CL
1158 }
1159
f0630fff 1160check_slabs:
41ecc55b
CL
1161 if (*str == ',')
1162 slub_debug_slabs = str + 1;
f0630fff 1163out:
41ecc55b
CL
1164 return 1;
1165}
1166
1167__setup("slub_debug", setup_slub_debug);
1168
423c929c 1169unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1170 unsigned long flags, const char *name,
51cc5068 1171 void (*ctor)(void *))
41ecc55b
CL
1172{
1173 /*
e153362a 1174 * Enable debugging if selected on the kernel commandline.
41ecc55b 1175 */
c6f58d9b
CL
1176 if (slub_debug && (!slub_debug_slabs || (name &&
1177 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1178 flags |= slub_debug;
ba0268a8
CL
1179
1180 return flags;
41ecc55b
CL
1181}
1182#else
3ec09742
CL
1183static inline void setup_object_debug(struct kmem_cache *s,
1184 struct page *page, void *object) {}
41ecc55b 1185
3ec09742 1186static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1187 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1188
19c7ff9e
CL
1189static inline struct kmem_cache_node *free_debug_processing(
1190 struct kmem_cache *s, struct page *page, void *object,
1191 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1192
41ecc55b
CL
1193static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1194 { return 1; }
1195static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1196 void *object, u8 val) { return 1; }
5cc6eee8
CL
1197static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1198 struct page *page) {}
c65c1877
PZ
1199static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1200 struct page *page) {}
423c929c 1201unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1202 unsigned long flags, const char *name,
51cc5068 1203 void (*ctor)(void *))
ba0268a8
CL
1204{
1205 return flags;
1206}
41ecc55b 1207#define slub_debug 0
0f389ec6 1208
fdaa45e9
IM
1209#define disable_higher_order_debug 0
1210
0f389ec6
CL
1211static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1212 { return 0; }
26c02cf0
AB
1213static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1214 { return 0; }
205ab99d
CL
1215static inline void inc_slabs_node(struct kmem_cache *s, int node,
1216 int objects) {}
1217static inline void dec_slabs_node(struct kmem_cache *s, int node,
1218 int objects) {}
7d550c56 1219
02e72cc6
AR
1220#endif /* CONFIG_SLUB_DEBUG */
1221
1222/*
1223 * Hooks for other subsystems that check memory allocations. In a typical
1224 * production configuration these hooks all should produce no code at all.
1225 */
d56791b3
RB
1226static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1227{
1228 kmemleak_alloc(ptr, size, 1, flags);
1229}
1230
1231static inline void kfree_hook(const void *x)
1232{
1233 kmemleak_free(x);
1234}
1235
7d550c56 1236static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
02e72cc6
AR
1237{
1238 flags &= gfp_allowed_mask;
1239 lockdep_trace_alloc(flags);
1240 might_sleep_if(flags & __GFP_WAIT);
7d550c56 1241
02e72cc6
AR
1242 return should_failslab(s->object_size, flags, s->flags);
1243}
1244
1245static inline void slab_post_alloc_hook(struct kmem_cache *s,
1246 gfp_t flags, void *object)
d56791b3 1247{
02e72cc6
AR
1248 flags &= gfp_allowed_mask;
1249 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1250 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
d56791b3 1251}
7d550c56 1252
d56791b3
RB
1253static inline void slab_free_hook(struct kmem_cache *s, void *x)
1254{
1255 kmemleak_free_recursive(x, s->flags);
7d550c56 1256
02e72cc6
AR
1257 /*
1258 * Trouble is that we may no longer disable interrupts in the fast path
1259 * So in order to make the debug calls that expect irqs to be
1260 * disabled we need to disable interrupts temporarily.
1261 */
1262#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1263 {
1264 unsigned long flags;
1265
1266 local_irq_save(flags);
1267 kmemcheck_slab_free(s, x, s->object_size);
1268 debug_check_no_locks_freed(x, s->object_size);
1269 local_irq_restore(flags);
1270 }
1271#endif
1272 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1273 debug_check_no_obj_freed(x, s->object_size);
1274}
205ab99d 1275
81819f0f
CL
1276/*
1277 * Slab allocation and freeing
1278 */
5dfb4175
VD
1279static inline struct page *alloc_slab_page(struct kmem_cache *s,
1280 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1281{
5dfb4175 1282 struct page *page;
65c3376a
CL
1283 int order = oo_order(oo);
1284
b1eeab67
VN
1285 flags |= __GFP_NOTRACK;
1286
5dfb4175
VD
1287 if (memcg_charge_slab(s, flags, order))
1288 return NULL;
1289
2154a336 1290 if (node == NUMA_NO_NODE)
5dfb4175 1291 page = alloc_pages(flags, order);
65c3376a 1292 else
5dfb4175
VD
1293 page = alloc_pages_exact_node(node, flags, order);
1294
1295 if (!page)
1296 memcg_uncharge_slab(s, order);
1297
1298 return page;
65c3376a
CL
1299}
1300
81819f0f
CL
1301static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1302{
06428780 1303 struct page *page;
834f3d11 1304 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1305 gfp_t alloc_gfp;
81819f0f 1306
7e0528da
CL
1307 flags &= gfp_allowed_mask;
1308
1309 if (flags & __GFP_WAIT)
1310 local_irq_enable();
1311
b7a49f0d 1312 flags |= s->allocflags;
e12ba74d 1313
ba52270d
PE
1314 /*
1315 * Let the initial higher-order allocation fail under memory pressure
1316 * so we fall-back to the minimum order allocation.
1317 */
1318 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1319
5dfb4175 1320 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1321 if (unlikely(!page)) {
1322 oo = s->min;
80c3a998 1323 alloc_gfp = flags;
65c3376a
CL
1324 /*
1325 * Allocation may have failed due to fragmentation.
1326 * Try a lower order alloc if possible
1327 */
5dfb4175 1328 page = alloc_slab_page(s, alloc_gfp, node, oo);
81819f0f 1329
7e0528da
CL
1330 if (page)
1331 stat(s, ORDER_FALLBACK);
65c3376a 1332 }
5a896d9e 1333
737b719e 1334 if (kmemcheck_enabled && page
5086c389 1335 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1336 int pages = 1 << oo_order(oo);
1337
80c3a998 1338 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1339
1340 /*
1341 * Objects from caches that have a constructor don't get
1342 * cleared when they're allocated, so we need to do it here.
1343 */
1344 if (s->ctor)
1345 kmemcheck_mark_uninitialized_pages(page, pages);
1346 else
1347 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1348 }
1349
737b719e
DR
1350 if (flags & __GFP_WAIT)
1351 local_irq_disable();
1352 if (!page)
1353 return NULL;
1354
834f3d11 1355 page->objects = oo_objects(oo);
81819f0f
CL
1356 mod_zone_page_state(page_zone(page),
1357 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1358 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1359 1 << oo_order(oo));
81819f0f
CL
1360
1361 return page;
1362}
1363
1364static void setup_object(struct kmem_cache *s, struct page *page,
1365 void *object)
1366{
3ec09742 1367 setup_object_debug(s, page, object);
4f104934 1368 if (unlikely(s->ctor))
51cc5068 1369 s->ctor(object);
81819f0f
CL
1370}
1371
1372static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1373{
1374 struct page *page;
81819f0f 1375 void *start;
81819f0f 1376 void *p;
1f458cbf 1377 int order;
54266640 1378 int idx;
81819f0f 1379
c871ac4e
AM
1380 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1381 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1382 BUG();
1383 }
81819f0f 1384
6cb06229
CL
1385 page = allocate_slab(s,
1386 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1387 if (!page)
1388 goto out;
1389
1f458cbf 1390 order = compound_order(page);
205ab99d 1391 inc_slabs_node(s, page_to_nid(page), page->objects);
1b4f59e3 1392 page->slab_cache = s;
c03f94cc 1393 __SetPageSlab(page);
072bb0aa
MG
1394 if (page->pfmemalloc)
1395 SetPageSlabPfmemalloc(page);
81819f0f
CL
1396
1397 start = page_address(page);
81819f0f
CL
1398
1399 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1400 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1401
54266640
WY
1402 for_each_object_idx(p, idx, s, start, page->objects) {
1403 setup_object(s, page, p);
1404 if (likely(idx < page->objects))
1405 set_freepointer(s, p, p + s->size);
1406 else
1407 set_freepointer(s, p, NULL);
81819f0f 1408 }
81819f0f
CL
1409
1410 page->freelist = start;
e6e82ea1 1411 page->inuse = page->objects;
8cb0a506 1412 page->frozen = 1;
81819f0f 1413out:
81819f0f
CL
1414 return page;
1415}
1416
1417static void __free_slab(struct kmem_cache *s, struct page *page)
1418{
834f3d11
CL
1419 int order = compound_order(page);
1420 int pages = 1 << order;
81819f0f 1421
af537b0a 1422 if (kmem_cache_debug(s)) {
81819f0f
CL
1423 void *p;
1424
1425 slab_pad_check(s, page);
224a88be
CL
1426 for_each_object(p, s, page_address(page),
1427 page->objects)
f7cb1933 1428 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1429 }
1430
b1eeab67 1431 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1432
81819f0f
CL
1433 mod_zone_page_state(page_zone(page),
1434 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1435 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1436 -pages);
81819f0f 1437
072bb0aa 1438 __ClearPageSlabPfmemalloc(page);
49bd5221 1439 __ClearPageSlab(page);
1f458cbf 1440
22b751c3 1441 page_mapcount_reset(page);
1eb5ac64
NP
1442 if (current->reclaim_state)
1443 current->reclaim_state->reclaimed_slab += pages;
5dfb4175
VD
1444 __free_pages(page, order);
1445 memcg_uncharge_slab(s, order);
81819f0f
CL
1446}
1447
da9a638c
LJ
1448#define need_reserve_slab_rcu \
1449 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1450
81819f0f
CL
1451static void rcu_free_slab(struct rcu_head *h)
1452{
1453 struct page *page;
1454
da9a638c
LJ
1455 if (need_reserve_slab_rcu)
1456 page = virt_to_head_page(h);
1457 else
1458 page = container_of((struct list_head *)h, struct page, lru);
1459
1b4f59e3 1460 __free_slab(page->slab_cache, page);
81819f0f
CL
1461}
1462
1463static void free_slab(struct kmem_cache *s, struct page *page)
1464{
1465 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1466 struct rcu_head *head;
1467
1468 if (need_reserve_slab_rcu) {
1469 int order = compound_order(page);
1470 int offset = (PAGE_SIZE << order) - s->reserved;
1471
1472 VM_BUG_ON(s->reserved != sizeof(*head));
1473 head = page_address(page) + offset;
1474 } else {
1475 /*
1476 * RCU free overloads the RCU head over the LRU
1477 */
1478 head = (void *)&page->lru;
1479 }
81819f0f
CL
1480
1481 call_rcu(head, rcu_free_slab);
1482 } else
1483 __free_slab(s, page);
1484}
1485
1486static void discard_slab(struct kmem_cache *s, struct page *page)
1487{
205ab99d 1488 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1489 free_slab(s, page);
1490}
1491
1492/*
5cc6eee8 1493 * Management of partially allocated slabs.
81819f0f 1494 */
1e4dd946
SR
1495static inline void
1496__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1497{
e95eed57 1498 n->nr_partial++;
136333d1 1499 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1500 list_add_tail(&page->lru, &n->partial);
1501 else
1502 list_add(&page->lru, &n->partial);
81819f0f
CL
1503}
1504
1e4dd946
SR
1505static inline void add_partial(struct kmem_cache_node *n,
1506 struct page *page, int tail)
62e346a8 1507{
c65c1877 1508 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1509 __add_partial(n, page, tail);
1510}
c65c1877 1511
1e4dd946
SR
1512static inline void
1513__remove_partial(struct kmem_cache_node *n, struct page *page)
1514{
62e346a8
CL
1515 list_del(&page->lru);
1516 n->nr_partial--;
1517}
1518
1e4dd946
SR
1519static inline void remove_partial(struct kmem_cache_node *n,
1520 struct page *page)
1521{
1522 lockdep_assert_held(&n->list_lock);
1523 __remove_partial(n, page);
1524}
1525
81819f0f 1526/*
7ced3719
CL
1527 * Remove slab from the partial list, freeze it and
1528 * return the pointer to the freelist.
81819f0f 1529 *
497b66f2 1530 * Returns a list of objects or NULL if it fails.
81819f0f 1531 */
497b66f2 1532static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1533 struct kmem_cache_node *n, struct page *page,
633b0764 1534 int mode, int *objects)
81819f0f 1535{
2cfb7455
CL
1536 void *freelist;
1537 unsigned long counters;
1538 struct page new;
1539
c65c1877
PZ
1540 lockdep_assert_held(&n->list_lock);
1541
2cfb7455
CL
1542 /*
1543 * Zap the freelist and set the frozen bit.
1544 * The old freelist is the list of objects for the
1545 * per cpu allocation list.
1546 */
7ced3719
CL
1547 freelist = page->freelist;
1548 counters = page->counters;
1549 new.counters = counters;
633b0764 1550 *objects = new.objects - new.inuse;
23910c50 1551 if (mode) {
7ced3719 1552 new.inuse = page->objects;
23910c50
PE
1553 new.freelist = NULL;
1554 } else {
1555 new.freelist = freelist;
1556 }
2cfb7455 1557
a0132ac0 1558 VM_BUG_ON(new.frozen);
7ced3719 1559 new.frozen = 1;
2cfb7455 1560
7ced3719 1561 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1562 freelist, counters,
02d7633f 1563 new.freelist, new.counters,
7ced3719 1564 "acquire_slab"))
7ced3719 1565 return NULL;
2cfb7455
CL
1566
1567 remove_partial(n, page);
7ced3719 1568 WARN_ON(!freelist);
49e22585 1569 return freelist;
81819f0f
CL
1570}
1571
633b0764 1572static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1573static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1574
81819f0f 1575/*
672bba3a 1576 * Try to allocate a partial slab from a specific node.
81819f0f 1577 */
8ba00bb6
JK
1578static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1579 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1580{
49e22585
CL
1581 struct page *page, *page2;
1582 void *object = NULL;
633b0764
JK
1583 int available = 0;
1584 int objects;
81819f0f
CL
1585
1586 /*
1587 * Racy check. If we mistakenly see no partial slabs then we
1588 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1589 * partial slab and there is none available then get_partials()
1590 * will return NULL.
81819f0f
CL
1591 */
1592 if (!n || !n->nr_partial)
1593 return NULL;
1594
1595 spin_lock(&n->list_lock);
49e22585 1596 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1597 void *t;
49e22585 1598
8ba00bb6
JK
1599 if (!pfmemalloc_match(page, flags))
1600 continue;
1601
633b0764 1602 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1603 if (!t)
1604 break;
1605
633b0764 1606 available += objects;
12d79634 1607 if (!object) {
49e22585 1608 c->page = page;
49e22585 1609 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1610 object = t;
49e22585 1611 } else {
633b0764 1612 put_cpu_partial(s, page, 0);
8028dcea 1613 stat(s, CPU_PARTIAL_NODE);
49e22585 1614 }
345c905d
JK
1615 if (!kmem_cache_has_cpu_partial(s)
1616 || available > s->cpu_partial / 2)
49e22585
CL
1617 break;
1618
497b66f2 1619 }
81819f0f 1620 spin_unlock(&n->list_lock);
497b66f2 1621 return object;
81819f0f
CL
1622}
1623
1624/*
672bba3a 1625 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1626 */
de3ec035 1627static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1628 struct kmem_cache_cpu *c)
81819f0f
CL
1629{
1630#ifdef CONFIG_NUMA
1631 struct zonelist *zonelist;
dd1a239f 1632 struct zoneref *z;
54a6eb5c
MG
1633 struct zone *zone;
1634 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1635 void *object;
cc9a6c87 1636 unsigned int cpuset_mems_cookie;
81819f0f
CL
1637
1638 /*
672bba3a
CL
1639 * The defrag ratio allows a configuration of the tradeoffs between
1640 * inter node defragmentation and node local allocations. A lower
1641 * defrag_ratio increases the tendency to do local allocations
1642 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1643 *
672bba3a
CL
1644 * If the defrag_ratio is set to 0 then kmalloc() always
1645 * returns node local objects. If the ratio is higher then kmalloc()
1646 * may return off node objects because partial slabs are obtained
1647 * from other nodes and filled up.
81819f0f 1648 *
6446faa2 1649 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1650 * defrag_ratio = 1000) then every (well almost) allocation will
1651 * first attempt to defrag slab caches on other nodes. This means
1652 * scanning over all nodes to look for partial slabs which may be
1653 * expensive if we do it every time we are trying to find a slab
1654 * with available objects.
81819f0f 1655 */
9824601e
CL
1656 if (!s->remote_node_defrag_ratio ||
1657 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1658 return NULL;
1659
cc9a6c87 1660 do {
d26914d1 1661 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1662 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1663 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1664 struct kmem_cache_node *n;
1665
1666 n = get_node(s, zone_to_nid(zone));
1667
344736f2
VD
1668 if (n && cpuset_zone_allowed(zone,
1669 flags | __GFP_HARDWALL) &&
cc9a6c87 1670 n->nr_partial > s->min_partial) {
8ba00bb6 1671 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1672 if (object) {
1673 /*
d26914d1
MG
1674 * Don't check read_mems_allowed_retry()
1675 * here - if mems_allowed was updated in
1676 * parallel, that was a harmless race
1677 * between allocation and the cpuset
1678 * update
cc9a6c87 1679 */
cc9a6c87
MG
1680 return object;
1681 }
c0ff7453 1682 }
81819f0f 1683 }
d26914d1 1684 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1685#endif
1686 return NULL;
1687}
1688
1689/*
1690 * Get a partial page, lock it and return it.
1691 */
497b66f2 1692static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1693 struct kmem_cache_cpu *c)
81819f0f 1694{
497b66f2 1695 void *object;
a561ce00
JK
1696 int searchnode = node;
1697
1698 if (node == NUMA_NO_NODE)
1699 searchnode = numa_mem_id();
1700 else if (!node_present_pages(node))
1701 searchnode = node_to_mem_node(node);
81819f0f 1702
8ba00bb6 1703 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1704 if (object || node != NUMA_NO_NODE)
1705 return object;
81819f0f 1706
acd19fd1 1707 return get_any_partial(s, flags, c);
81819f0f
CL
1708}
1709
8a5ec0ba
CL
1710#ifdef CONFIG_PREEMPT
1711/*
1712 * Calculate the next globally unique transaction for disambiguiation
1713 * during cmpxchg. The transactions start with the cpu number and are then
1714 * incremented by CONFIG_NR_CPUS.
1715 */
1716#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1717#else
1718/*
1719 * No preemption supported therefore also no need to check for
1720 * different cpus.
1721 */
1722#define TID_STEP 1
1723#endif
1724
1725static inline unsigned long next_tid(unsigned long tid)
1726{
1727 return tid + TID_STEP;
1728}
1729
1730static inline unsigned int tid_to_cpu(unsigned long tid)
1731{
1732 return tid % TID_STEP;
1733}
1734
1735static inline unsigned long tid_to_event(unsigned long tid)
1736{
1737 return tid / TID_STEP;
1738}
1739
1740static inline unsigned int init_tid(int cpu)
1741{
1742 return cpu;
1743}
1744
1745static inline void note_cmpxchg_failure(const char *n,
1746 const struct kmem_cache *s, unsigned long tid)
1747{
1748#ifdef SLUB_DEBUG_CMPXCHG
1749 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1750
f9f58285 1751 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1752
1753#ifdef CONFIG_PREEMPT
1754 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1755 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1756 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1757 else
1758#endif
1759 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1760 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1761 tid_to_event(tid), tid_to_event(actual_tid));
1762 else
f9f58285 1763 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1764 actual_tid, tid, next_tid(tid));
1765#endif
4fdccdfb 1766 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1767}
1768
788e1aad 1769static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1770{
8a5ec0ba
CL
1771 int cpu;
1772
1773 for_each_possible_cpu(cpu)
1774 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1775}
2cfb7455 1776
81819f0f
CL
1777/*
1778 * Remove the cpu slab
1779 */
d0e0ac97
CG
1780static void deactivate_slab(struct kmem_cache *s, struct page *page,
1781 void *freelist)
81819f0f 1782{
2cfb7455 1783 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1784 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1785 int lock = 0;
1786 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1787 void *nextfree;
136333d1 1788 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1789 struct page new;
1790 struct page old;
1791
1792 if (page->freelist) {
84e554e6 1793 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1794 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1795 }
1796
894b8788 1797 /*
2cfb7455
CL
1798 * Stage one: Free all available per cpu objects back
1799 * to the page freelist while it is still frozen. Leave the
1800 * last one.
1801 *
1802 * There is no need to take the list->lock because the page
1803 * is still frozen.
1804 */
1805 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1806 void *prior;
1807 unsigned long counters;
1808
1809 do {
1810 prior = page->freelist;
1811 counters = page->counters;
1812 set_freepointer(s, freelist, prior);
1813 new.counters = counters;
1814 new.inuse--;
a0132ac0 1815 VM_BUG_ON(!new.frozen);
2cfb7455 1816
1d07171c 1817 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1818 prior, counters,
1819 freelist, new.counters,
1820 "drain percpu freelist"));
1821
1822 freelist = nextfree;
1823 }
1824
894b8788 1825 /*
2cfb7455
CL
1826 * Stage two: Ensure that the page is unfrozen while the
1827 * list presence reflects the actual number of objects
1828 * during unfreeze.
1829 *
1830 * We setup the list membership and then perform a cmpxchg
1831 * with the count. If there is a mismatch then the page
1832 * is not unfrozen but the page is on the wrong list.
1833 *
1834 * Then we restart the process which may have to remove
1835 * the page from the list that we just put it on again
1836 * because the number of objects in the slab may have
1837 * changed.
894b8788 1838 */
2cfb7455 1839redo:
894b8788 1840
2cfb7455
CL
1841 old.freelist = page->freelist;
1842 old.counters = page->counters;
a0132ac0 1843 VM_BUG_ON(!old.frozen);
7c2e132c 1844
2cfb7455
CL
1845 /* Determine target state of the slab */
1846 new.counters = old.counters;
1847 if (freelist) {
1848 new.inuse--;
1849 set_freepointer(s, freelist, old.freelist);
1850 new.freelist = freelist;
1851 } else
1852 new.freelist = old.freelist;
1853
1854 new.frozen = 0;
1855
8a5b20ae 1856 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1857 m = M_FREE;
1858 else if (new.freelist) {
1859 m = M_PARTIAL;
1860 if (!lock) {
1861 lock = 1;
1862 /*
1863 * Taking the spinlock removes the possiblity
1864 * that acquire_slab() will see a slab page that
1865 * is frozen
1866 */
1867 spin_lock(&n->list_lock);
1868 }
1869 } else {
1870 m = M_FULL;
1871 if (kmem_cache_debug(s) && !lock) {
1872 lock = 1;
1873 /*
1874 * This also ensures that the scanning of full
1875 * slabs from diagnostic functions will not see
1876 * any frozen slabs.
1877 */
1878 spin_lock(&n->list_lock);
1879 }
1880 }
1881
1882 if (l != m) {
1883
1884 if (l == M_PARTIAL)
1885
1886 remove_partial(n, page);
1887
1888 else if (l == M_FULL)
894b8788 1889
c65c1877 1890 remove_full(s, n, page);
2cfb7455
CL
1891
1892 if (m == M_PARTIAL) {
1893
1894 add_partial(n, page, tail);
136333d1 1895 stat(s, tail);
2cfb7455
CL
1896
1897 } else if (m == M_FULL) {
894b8788 1898
2cfb7455
CL
1899 stat(s, DEACTIVATE_FULL);
1900 add_full(s, n, page);
1901
1902 }
1903 }
1904
1905 l = m;
1d07171c 1906 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1907 old.freelist, old.counters,
1908 new.freelist, new.counters,
1909 "unfreezing slab"))
1910 goto redo;
1911
2cfb7455
CL
1912 if (lock)
1913 spin_unlock(&n->list_lock);
1914
1915 if (m == M_FREE) {
1916 stat(s, DEACTIVATE_EMPTY);
1917 discard_slab(s, page);
1918 stat(s, FREE_SLAB);
894b8788 1919 }
81819f0f
CL
1920}
1921
d24ac77f
JK
1922/*
1923 * Unfreeze all the cpu partial slabs.
1924 *
59a09917
CL
1925 * This function must be called with interrupts disabled
1926 * for the cpu using c (or some other guarantee must be there
1927 * to guarantee no concurrent accesses).
d24ac77f 1928 */
59a09917
CL
1929static void unfreeze_partials(struct kmem_cache *s,
1930 struct kmem_cache_cpu *c)
49e22585 1931{
345c905d 1932#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1933 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1934 struct page *page, *discard_page = NULL;
49e22585
CL
1935
1936 while ((page = c->partial)) {
49e22585
CL
1937 struct page new;
1938 struct page old;
1939
1940 c->partial = page->next;
43d77867
JK
1941
1942 n2 = get_node(s, page_to_nid(page));
1943 if (n != n2) {
1944 if (n)
1945 spin_unlock(&n->list_lock);
1946
1947 n = n2;
1948 spin_lock(&n->list_lock);
1949 }
49e22585
CL
1950
1951 do {
1952
1953 old.freelist = page->freelist;
1954 old.counters = page->counters;
a0132ac0 1955 VM_BUG_ON(!old.frozen);
49e22585
CL
1956
1957 new.counters = old.counters;
1958 new.freelist = old.freelist;
1959
1960 new.frozen = 0;
1961
d24ac77f 1962 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1963 old.freelist, old.counters,
1964 new.freelist, new.counters,
1965 "unfreezing slab"));
1966
8a5b20ae 1967 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
1968 page->next = discard_page;
1969 discard_page = page;
43d77867
JK
1970 } else {
1971 add_partial(n, page, DEACTIVATE_TO_TAIL);
1972 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1973 }
1974 }
1975
1976 if (n)
1977 spin_unlock(&n->list_lock);
9ada1934
SL
1978
1979 while (discard_page) {
1980 page = discard_page;
1981 discard_page = discard_page->next;
1982
1983 stat(s, DEACTIVATE_EMPTY);
1984 discard_slab(s, page);
1985 stat(s, FREE_SLAB);
1986 }
345c905d 1987#endif
49e22585
CL
1988}
1989
1990/*
1991 * Put a page that was just frozen (in __slab_free) into a partial page
1992 * slot if available. This is done without interrupts disabled and without
1993 * preemption disabled. The cmpxchg is racy and may put the partial page
1994 * onto a random cpus partial slot.
1995 *
1996 * If we did not find a slot then simply move all the partials to the
1997 * per node partial list.
1998 */
633b0764 1999static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2000{
345c905d 2001#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2002 struct page *oldpage;
2003 int pages;
2004 int pobjects;
2005
2006 do {
2007 pages = 0;
2008 pobjects = 0;
2009 oldpage = this_cpu_read(s->cpu_slab->partial);
2010
2011 if (oldpage) {
2012 pobjects = oldpage->pobjects;
2013 pages = oldpage->pages;
2014 if (drain && pobjects > s->cpu_partial) {
2015 unsigned long flags;
2016 /*
2017 * partial array is full. Move the existing
2018 * set to the per node partial list.
2019 */
2020 local_irq_save(flags);
59a09917 2021 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2022 local_irq_restore(flags);
e24fc410 2023 oldpage = NULL;
49e22585
CL
2024 pobjects = 0;
2025 pages = 0;
8028dcea 2026 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2027 }
2028 }
2029
2030 pages++;
2031 pobjects += page->objects - page->inuse;
2032
2033 page->pages = pages;
2034 page->pobjects = pobjects;
2035 page->next = oldpage;
2036
d0e0ac97
CG
2037 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2038 != oldpage);
345c905d 2039#endif
49e22585
CL
2040}
2041
dfb4f096 2042static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2043{
84e554e6 2044 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2045 deactivate_slab(s, c->page, c->freelist);
2046
2047 c->tid = next_tid(c->tid);
2048 c->page = NULL;
2049 c->freelist = NULL;
81819f0f
CL
2050}
2051
2052/*
2053 * Flush cpu slab.
6446faa2 2054 *
81819f0f
CL
2055 * Called from IPI handler with interrupts disabled.
2056 */
0c710013 2057static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2058{
9dfc6e68 2059 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2060
49e22585
CL
2061 if (likely(c)) {
2062 if (c->page)
2063 flush_slab(s, c);
2064
59a09917 2065 unfreeze_partials(s, c);
49e22585 2066 }
81819f0f
CL
2067}
2068
2069static void flush_cpu_slab(void *d)
2070{
2071 struct kmem_cache *s = d;
81819f0f 2072
dfb4f096 2073 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2074}
2075
a8364d55
GBY
2076static bool has_cpu_slab(int cpu, void *info)
2077{
2078 struct kmem_cache *s = info;
2079 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2080
02e1a9cd 2081 return c->page || c->partial;
a8364d55
GBY
2082}
2083
81819f0f
CL
2084static void flush_all(struct kmem_cache *s)
2085{
a8364d55 2086 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2087}
2088
dfb4f096
CL
2089/*
2090 * Check if the objects in a per cpu structure fit numa
2091 * locality expectations.
2092 */
57d437d2 2093static inline int node_match(struct page *page, int node)
dfb4f096
CL
2094{
2095#ifdef CONFIG_NUMA
4d7868e6 2096 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2097 return 0;
2098#endif
2099 return 1;
2100}
2101
9a02d699 2102#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2103static int count_free(struct page *page)
2104{
2105 return page->objects - page->inuse;
2106}
2107
9a02d699
DR
2108static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2109{
2110 return atomic_long_read(&n->total_objects);
2111}
2112#endif /* CONFIG_SLUB_DEBUG */
2113
2114#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2115static unsigned long count_partial(struct kmem_cache_node *n,
2116 int (*get_count)(struct page *))
2117{
2118 unsigned long flags;
2119 unsigned long x = 0;
2120 struct page *page;
2121
2122 spin_lock_irqsave(&n->list_lock, flags);
2123 list_for_each_entry(page, &n->partial, lru)
2124 x += get_count(page);
2125 spin_unlock_irqrestore(&n->list_lock, flags);
2126 return x;
2127}
9a02d699 2128#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2129
781b2ba6
PE
2130static noinline void
2131slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2132{
9a02d699
DR
2133#ifdef CONFIG_SLUB_DEBUG
2134 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2135 DEFAULT_RATELIMIT_BURST);
781b2ba6 2136 int node;
fa45dc25 2137 struct kmem_cache_node *n;
781b2ba6 2138
9a02d699
DR
2139 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2140 return;
2141
f9f58285 2142 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2143 nid, gfpflags);
f9f58285
FF
2144 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2145 s->name, s->object_size, s->size, oo_order(s->oo),
2146 oo_order(s->min));
781b2ba6 2147
3b0efdfa 2148 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2149 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2150 s->name);
fa5ec8a1 2151
fa45dc25 2152 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2153 unsigned long nr_slabs;
2154 unsigned long nr_objs;
2155 unsigned long nr_free;
2156
26c02cf0
AB
2157 nr_free = count_partial(n, count_free);
2158 nr_slabs = node_nr_slabs(n);
2159 nr_objs = node_nr_objs(n);
781b2ba6 2160
f9f58285 2161 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2162 node, nr_slabs, nr_objs, nr_free);
2163 }
9a02d699 2164#endif
781b2ba6
PE
2165}
2166
497b66f2
CL
2167static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2168 int node, struct kmem_cache_cpu **pc)
2169{
6faa6833 2170 void *freelist;
188fd063
CL
2171 struct kmem_cache_cpu *c = *pc;
2172 struct page *page;
497b66f2 2173
188fd063 2174 freelist = get_partial(s, flags, node, c);
497b66f2 2175
188fd063
CL
2176 if (freelist)
2177 return freelist;
2178
2179 page = new_slab(s, flags, node);
497b66f2 2180 if (page) {
7c8e0181 2181 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2182 if (c->page)
2183 flush_slab(s, c);
2184
2185 /*
2186 * No other reference to the page yet so we can
2187 * muck around with it freely without cmpxchg
2188 */
6faa6833 2189 freelist = page->freelist;
497b66f2
CL
2190 page->freelist = NULL;
2191
2192 stat(s, ALLOC_SLAB);
497b66f2
CL
2193 c->page = page;
2194 *pc = c;
2195 } else
6faa6833 2196 freelist = NULL;
497b66f2 2197
6faa6833 2198 return freelist;
497b66f2
CL
2199}
2200
072bb0aa
MG
2201static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2202{
2203 if (unlikely(PageSlabPfmemalloc(page)))
2204 return gfp_pfmemalloc_allowed(gfpflags);
2205
2206 return true;
2207}
2208
213eeb9f 2209/*
d0e0ac97
CG
2210 * Check the page->freelist of a page and either transfer the freelist to the
2211 * per cpu freelist or deactivate the page.
213eeb9f
CL
2212 *
2213 * The page is still frozen if the return value is not NULL.
2214 *
2215 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2216 *
2217 * This function must be called with interrupt disabled.
213eeb9f
CL
2218 */
2219static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2220{
2221 struct page new;
2222 unsigned long counters;
2223 void *freelist;
2224
2225 do {
2226 freelist = page->freelist;
2227 counters = page->counters;
6faa6833 2228
213eeb9f 2229 new.counters = counters;
a0132ac0 2230 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2231
2232 new.inuse = page->objects;
2233 new.frozen = freelist != NULL;
2234
d24ac77f 2235 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2236 freelist, counters,
2237 NULL, new.counters,
2238 "get_freelist"));
2239
2240 return freelist;
2241}
2242
81819f0f 2243/*
894b8788
CL
2244 * Slow path. The lockless freelist is empty or we need to perform
2245 * debugging duties.
2246 *
894b8788
CL
2247 * Processing is still very fast if new objects have been freed to the
2248 * regular freelist. In that case we simply take over the regular freelist
2249 * as the lockless freelist and zap the regular freelist.
81819f0f 2250 *
894b8788
CL
2251 * If that is not working then we fall back to the partial lists. We take the
2252 * first element of the freelist as the object to allocate now and move the
2253 * rest of the freelist to the lockless freelist.
81819f0f 2254 *
894b8788 2255 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2256 * we need to allocate a new slab. This is the slowest path since it involves
2257 * a call to the page allocator and the setup of a new slab.
81819f0f 2258 */
ce71e27c
EGM
2259static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2260 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2261{
6faa6833 2262 void *freelist;
f6e7def7 2263 struct page *page;
8a5ec0ba
CL
2264 unsigned long flags;
2265
2266 local_irq_save(flags);
2267#ifdef CONFIG_PREEMPT
2268 /*
2269 * We may have been preempted and rescheduled on a different
2270 * cpu before disabling interrupts. Need to reload cpu area
2271 * pointer.
2272 */
2273 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2274#endif
81819f0f 2275
f6e7def7
CL
2276 page = c->page;
2277 if (!page)
81819f0f 2278 goto new_slab;
49e22585 2279redo:
6faa6833 2280
57d437d2 2281 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2282 int searchnode = node;
2283
2284 if (node != NUMA_NO_NODE && !node_present_pages(node))
2285 searchnode = node_to_mem_node(node);
2286
2287 if (unlikely(!node_match(page, searchnode))) {
2288 stat(s, ALLOC_NODE_MISMATCH);
2289 deactivate_slab(s, page, c->freelist);
2290 c->page = NULL;
2291 c->freelist = NULL;
2292 goto new_slab;
2293 }
fc59c053 2294 }
6446faa2 2295
072bb0aa
MG
2296 /*
2297 * By rights, we should be searching for a slab page that was
2298 * PFMEMALLOC but right now, we are losing the pfmemalloc
2299 * information when the page leaves the per-cpu allocator
2300 */
2301 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2302 deactivate_slab(s, page, c->freelist);
2303 c->page = NULL;
2304 c->freelist = NULL;
2305 goto new_slab;
2306 }
2307
73736e03 2308 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2309 freelist = c->freelist;
2310 if (freelist)
73736e03 2311 goto load_freelist;
03e404af 2312
f6e7def7 2313 freelist = get_freelist(s, page);
6446faa2 2314
6faa6833 2315 if (!freelist) {
03e404af
CL
2316 c->page = NULL;
2317 stat(s, DEACTIVATE_BYPASS);
fc59c053 2318 goto new_slab;
03e404af 2319 }
6446faa2 2320
84e554e6 2321 stat(s, ALLOC_REFILL);
6446faa2 2322
894b8788 2323load_freelist:
507effea
CL
2324 /*
2325 * freelist is pointing to the list of objects to be used.
2326 * page is pointing to the page from which the objects are obtained.
2327 * That page must be frozen for per cpu allocations to work.
2328 */
a0132ac0 2329 VM_BUG_ON(!c->page->frozen);
6faa6833 2330 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2331 c->tid = next_tid(c->tid);
2332 local_irq_restore(flags);
6faa6833 2333 return freelist;
81819f0f 2334
81819f0f 2335new_slab:
2cfb7455 2336
49e22585 2337 if (c->partial) {
f6e7def7
CL
2338 page = c->page = c->partial;
2339 c->partial = page->next;
49e22585
CL
2340 stat(s, CPU_PARTIAL_ALLOC);
2341 c->freelist = NULL;
2342 goto redo;
81819f0f
CL
2343 }
2344
188fd063 2345 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2346
f4697436 2347 if (unlikely(!freelist)) {
9a02d699 2348 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2349 local_irq_restore(flags);
2350 return NULL;
81819f0f 2351 }
2cfb7455 2352
f6e7def7 2353 page = c->page;
5091b74a 2354 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2355 goto load_freelist;
2cfb7455 2356
497b66f2 2357 /* Only entered in the debug case */
d0e0ac97
CG
2358 if (kmem_cache_debug(s) &&
2359 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2360 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2361
f6e7def7 2362 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2363 c->page = NULL;
2364 c->freelist = NULL;
a71ae47a 2365 local_irq_restore(flags);
6faa6833 2366 return freelist;
894b8788
CL
2367}
2368
2369/*
2370 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2371 * have the fastpath folded into their functions. So no function call
2372 * overhead for requests that can be satisfied on the fastpath.
2373 *
2374 * The fastpath works by first checking if the lockless freelist can be used.
2375 * If not then __slab_alloc is called for slow processing.
2376 *
2377 * Otherwise we can simply pick the next object from the lockless free list.
2378 */
2b847c3c 2379static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2380 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2381{
894b8788 2382 void **object;
dfb4f096 2383 struct kmem_cache_cpu *c;
57d437d2 2384 struct page *page;
8a5ec0ba 2385 unsigned long tid;
1f84260c 2386
c016b0bd 2387 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2388 return NULL;
1f84260c 2389
d79923fa 2390 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2391redo:
8a5ec0ba
CL
2392 /*
2393 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2394 * enabled. We may switch back and forth between cpus while
2395 * reading from one cpu area. That does not matter as long
2396 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2397 *
2398 * Preemption is disabled for the retrieval of the tid because that
2399 * must occur from the current processor. We cannot allow rescheduling
2400 * on a different processor between the determination of the pointer
2401 * and the retrieval of the tid.
8a5ec0ba 2402 */
7cccd80b 2403 preempt_disable();
7c8e0181 2404 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2405
8a5ec0ba
CL
2406 /*
2407 * The transaction ids are globally unique per cpu and per operation on
2408 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2409 * occurs on the right processor and that there was no operation on the
2410 * linked list in between.
2411 */
2412 tid = c->tid;
7cccd80b 2413 preempt_enable();
8a5ec0ba 2414
9dfc6e68 2415 object = c->freelist;
57d437d2 2416 page = c->page;
8eae1492 2417 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2418 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2419 stat(s, ALLOC_SLOWPATH);
2420 } else {
0ad9500e
ED
2421 void *next_object = get_freepointer_safe(s, object);
2422
8a5ec0ba 2423 /*
25985edc 2424 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2425 * operation and if we are on the right processor.
2426 *
d0e0ac97
CG
2427 * The cmpxchg does the following atomically (without lock
2428 * semantics!)
8a5ec0ba
CL
2429 * 1. Relocate first pointer to the current per cpu area.
2430 * 2. Verify that tid and freelist have not been changed
2431 * 3. If they were not changed replace tid and freelist
2432 *
d0e0ac97
CG
2433 * Since this is without lock semantics the protection is only
2434 * against code executing on this cpu *not* from access by
2435 * other cpus.
8a5ec0ba 2436 */
933393f5 2437 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2438 s->cpu_slab->freelist, s->cpu_slab->tid,
2439 object, tid,
0ad9500e 2440 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2441
2442 note_cmpxchg_failure("slab_alloc", s, tid);
2443 goto redo;
2444 }
0ad9500e 2445 prefetch_freepointer(s, next_object);
84e554e6 2446 stat(s, ALLOC_FASTPATH);
894b8788 2447 }
8a5ec0ba 2448
74e2134f 2449 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2450 memset(object, 0, s->object_size);
d07dbea4 2451
c016b0bd 2452 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2453
894b8788 2454 return object;
81819f0f
CL
2455}
2456
2b847c3c
EG
2457static __always_inline void *slab_alloc(struct kmem_cache *s,
2458 gfp_t gfpflags, unsigned long addr)
2459{
2460 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2461}
2462
81819f0f
CL
2463void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2464{
2b847c3c 2465 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2466
d0e0ac97
CG
2467 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2468 s->size, gfpflags);
5b882be4
EGM
2469
2470 return ret;
81819f0f
CL
2471}
2472EXPORT_SYMBOL(kmem_cache_alloc);
2473
0f24f128 2474#ifdef CONFIG_TRACING
4a92379b
RK
2475void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2476{
2b847c3c 2477 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2478 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2479 return ret;
2480}
2481EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2482#endif
2483
81819f0f
CL
2484#ifdef CONFIG_NUMA
2485void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2486{
2b847c3c 2487 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2488
ca2b84cb 2489 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2490 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2491
2492 return ret;
81819f0f
CL
2493}
2494EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2495
0f24f128 2496#ifdef CONFIG_TRACING
4a92379b 2497void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2498 gfp_t gfpflags,
4a92379b 2499 int node, size_t size)
5b882be4 2500{
2b847c3c 2501 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2502
2503 trace_kmalloc_node(_RET_IP_, ret,
2504 size, s->size, gfpflags, node);
2505 return ret;
5b882be4 2506}
4a92379b 2507EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2508#endif
5d1f57e4 2509#endif
5b882be4 2510
81819f0f 2511/*
894b8788
CL
2512 * Slow patch handling. This may still be called frequently since objects
2513 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2514 *
894b8788
CL
2515 * So we still attempt to reduce cache line usage. Just take the slab
2516 * lock and free the item. If there is no additional partial page
2517 * handling required then we can return immediately.
81819f0f 2518 */
894b8788 2519static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2520 void *x, unsigned long addr)
81819f0f
CL
2521{
2522 void *prior;
2523 void **object = (void *)x;
2cfb7455 2524 int was_frozen;
2cfb7455
CL
2525 struct page new;
2526 unsigned long counters;
2527 struct kmem_cache_node *n = NULL;
61728d1e 2528 unsigned long uninitialized_var(flags);
81819f0f 2529
8a5ec0ba 2530 stat(s, FREE_SLOWPATH);
81819f0f 2531
19c7ff9e
CL
2532 if (kmem_cache_debug(s) &&
2533 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2534 return;
6446faa2 2535
2cfb7455 2536 do {
837d678d
JK
2537 if (unlikely(n)) {
2538 spin_unlock_irqrestore(&n->list_lock, flags);
2539 n = NULL;
2540 }
2cfb7455
CL
2541 prior = page->freelist;
2542 counters = page->counters;
2543 set_freepointer(s, object, prior);
2544 new.counters = counters;
2545 was_frozen = new.frozen;
2546 new.inuse--;
837d678d 2547 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2548
c65c1877 2549 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2550
2551 /*
d0e0ac97
CG
2552 * Slab was on no list before and will be
2553 * partially empty
2554 * We can defer the list move and instead
2555 * freeze it.
49e22585
CL
2556 */
2557 new.frozen = 1;
2558
c65c1877 2559 } else { /* Needs to be taken off a list */
49e22585 2560
b455def2 2561 n = get_node(s, page_to_nid(page));
49e22585
CL
2562 /*
2563 * Speculatively acquire the list_lock.
2564 * If the cmpxchg does not succeed then we may
2565 * drop the list_lock without any processing.
2566 *
2567 * Otherwise the list_lock will synchronize with
2568 * other processors updating the list of slabs.
2569 */
2570 spin_lock_irqsave(&n->list_lock, flags);
2571
2572 }
2cfb7455 2573 }
81819f0f 2574
2cfb7455
CL
2575 } while (!cmpxchg_double_slab(s, page,
2576 prior, counters,
2577 object, new.counters,
2578 "__slab_free"));
81819f0f 2579
2cfb7455 2580 if (likely(!n)) {
49e22585
CL
2581
2582 /*
2583 * If we just froze the page then put it onto the
2584 * per cpu partial list.
2585 */
8028dcea 2586 if (new.frozen && !was_frozen) {
49e22585 2587 put_cpu_partial(s, page, 1);
8028dcea
AS
2588 stat(s, CPU_PARTIAL_FREE);
2589 }
49e22585 2590 /*
2cfb7455
CL
2591 * The list lock was not taken therefore no list
2592 * activity can be necessary.
2593 */
b455def2
L
2594 if (was_frozen)
2595 stat(s, FREE_FROZEN);
2596 return;
2597 }
81819f0f 2598
8a5b20ae 2599 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2600 goto slab_empty;
2601
81819f0f 2602 /*
837d678d
JK
2603 * Objects left in the slab. If it was not on the partial list before
2604 * then add it.
81819f0f 2605 */
345c905d
JK
2606 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2607 if (kmem_cache_debug(s))
c65c1877 2608 remove_full(s, n, page);
837d678d
JK
2609 add_partial(n, page, DEACTIVATE_TO_TAIL);
2610 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2611 }
80f08c19 2612 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2613 return;
2614
2615slab_empty:
a973e9dd 2616 if (prior) {
81819f0f 2617 /*
6fbabb20 2618 * Slab on the partial list.
81819f0f 2619 */
5cc6eee8 2620 remove_partial(n, page);
84e554e6 2621 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2622 } else {
6fbabb20 2623 /* Slab must be on the full list */
c65c1877
PZ
2624 remove_full(s, n, page);
2625 }
2cfb7455 2626
80f08c19 2627 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2628 stat(s, FREE_SLAB);
81819f0f 2629 discard_slab(s, page);
81819f0f
CL
2630}
2631
894b8788
CL
2632/*
2633 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2634 * can perform fastpath freeing without additional function calls.
2635 *
2636 * The fastpath is only possible if we are freeing to the current cpu slab
2637 * of this processor. This typically the case if we have just allocated
2638 * the item before.
2639 *
2640 * If fastpath is not possible then fall back to __slab_free where we deal
2641 * with all sorts of special processing.
2642 */
06428780 2643static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2644 struct page *page, void *x, unsigned long addr)
894b8788
CL
2645{
2646 void **object = (void *)x;
dfb4f096 2647 struct kmem_cache_cpu *c;
8a5ec0ba 2648 unsigned long tid;
1f84260c 2649
c016b0bd
CL
2650 slab_free_hook(s, x);
2651
8a5ec0ba
CL
2652redo:
2653 /*
2654 * Determine the currently cpus per cpu slab.
2655 * The cpu may change afterward. However that does not matter since
2656 * data is retrieved via this pointer. If we are on the same cpu
2657 * during the cmpxchg then the free will succedd.
2658 */
7cccd80b 2659 preempt_disable();
7c8e0181 2660 c = this_cpu_ptr(s->cpu_slab);
c016b0bd 2661
8a5ec0ba 2662 tid = c->tid;
7cccd80b 2663 preempt_enable();
c016b0bd 2664
442b06bc 2665 if (likely(page == c->page)) {
ff12059e 2666 set_freepointer(s, object, c->freelist);
8a5ec0ba 2667
933393f5 2668 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2669 s->cpu_slab->freelist, s->cpu_slab->tid,
2670 c->freelist, tid,
2671 object, next_tid(tid)))) {
2672
2673 note_cmpxchg_failure("slab_free", s, tid);
2674 goto redo;
2675 }
84e554e6 2676 stat(s, FREE_FASTPATH);
894b8788 2677 } else
ff12059e 2678 __slab_free(s, page, x, addr);
894b8788 2679
894b8788
CL
2680}
2681
81819f0f
CL
2682void kmem_cache_free(struct kmem_cache *s, void *x)
2683{
b9ce5ef4
GC
2684 s = cache_from_obj(s, x);
2685 if (!s)
79576102 2686 return;
b9ce5ef4 2687 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2688 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2689}
2690EXPORT_SYMBOL(kmem_cache_free);
2691
81819f0f 2692/*
672bba3a
CL
2693 * Object placement in a slab is made very easy because we always start at
2694 * offset 0. If we tune the size of the object to the alignment then we can
2695 * get the required alignment by putting one properly sized object after
2696 * another.
81819f0f
CL
2697 *
2698 * Notice that the allocation order determines the sizes of the per cpu
2699 * caches. Each processor has always one slab available for allocations.
2700 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2701 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2702 * locking overhead.
81819f0f
CL
2703 */
2704
2705/*
2706 * Mininum / Maximum order of slab pages. This influences locking overhead
2707 * and slab fragmentation. A higher order reduces the number of partial slabs
2708 * and increases the number of allocations possible without having to
2709 * take the list_lock.
2710 */
2711static int slub_min_order;
114e9e89 2712static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2713static int slub_min_objects;
81819f0f 2714
81819f0f
CL
2715/*
2716 * Calculate the order of allocation given an slab object size.
2717 *
672bba3a
CL
2718 * The order of allocation has significant impact on performance and other
2719 * system components. Generally order 0 allocations should be preferred since
2720 * order 0 does not cause fragmentation in the page allocator. Larger objects
2721 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2722 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2723 * would be wasted.
2724 *
2725 * In order to reach satisfactory performance we must ensure that a minimum
2726 * number of objects is in one slab. Otherwise we may generate too much
2727 * activity on the partial lists which requires taking the list_lock. This is
2728 * less a concern for large slabs though which are rarely used.
81819f0f 2729 *
672bba3a
CL
2730 * slub_max_order specifies the order where we begin to stop considering the
2731 * number of objects in a slab as critical. If we reach slub_max_order then
2732 * we try to keep the page order as low as possible. So we accept more waste
2733 * of space in favor of a small page order.
81819f0f 2734 *
672bba3a
CL
2735 * Higher order allocations also allow the placement of more objects in a
2736 * slab and thereby reduce object handling overhead. If the user has
2737 * requested a higher mininum order then we start with that one instead of
2738 * the smallest order which will fit the object.
81819f0f 2739 */
5e6d444e 2740static inline int slab_order(int size, int min_objects,
ab9a0f19 2741 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2742{
2743 int order;
2744 int rem;
6300ea75 2745 int min_order = slub_min_order;
81819f0f 2746
ab9a0f19 2747 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2748 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2749
6300ea75 2750 for (order = max(min_order,
5e6d444e
CL
2751 fls(min_objects * size - 1) - PAGE_SHIFT);
2752 order <= max_order; order++) {
81819f0f 2753
5e6d444e 2754 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2755
ab9a0f19 2756 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2757 continue;
2758
ab9a0f19 2759 rem = (slab_size - reserved) % size;
81819f0f 2760
5e6d444e 2761 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2762 break;
2763
2764 }
672bba3a 2765
81819f0f
CL
2766 return order;
2767}
2768
ab9a0f19 2769static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2770{
2771 int order;
2772 int min_objects;
2773 int fraction;
e8120ff1 2774 int max_objects;
5e6d444e
CL
2775
2776 /*
2777 * Attempt to find best configuration for a slab. This
2778 * works by first attempting to generate a layout with
2779 * the best configuration and backing off gradually.
2780 *
2781 * First we reduce the acceptable waste in a slab. Then
2782 * we reduce the minimum objects required in a slab.
2783 */
2784 min_objects = slub_min_objects;
9b2cd506
CL
2785 if (!min_objects)
2786 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2787 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2788 min_objects = min(min_objects, max_objects);
2789
5e6d444e 2790 while (min_objects > 1) {
c124f5b5 2791 fraction = 16;
5e6d444e
CL
2792 while (fraction >= 4) {
2793 order = slab_order(size, min_objects,
ab9a0f19 2794 slub_max_order, fraction, reserved);
5e6d444e
CL
2795 if (order <= slub_max_order)
2796 return order;
2797 fraction /= 2;
2798 }
5086c389 2799 min_objects--;
5e6d444e
CL
2800 }
2801
2802 /*
2803 * We were unable to place multiple objects in a slab. Now
2804 * lets see if we can place a single object there.
2805 */
ab9a0f19 2806 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2807 if (order <= slub_max_order)
2808 return order;
2809
2810 /*
2811 * Doh this slab cannot be placed using slub_max_order.
2812 */
ab9a0f19 2813 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2814 if (order < MAX_ORDER)
5e6d444e
CL
2815 return order;
2816 return -ENOSYS;
2817}
2818
5595cffc 2819static void
4053497d 2820init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2821{
2822 n->nr_partial = 0;
81819f0f
CL
2823 spin_lock_init(&n->list_lock);
2824 INIT_LIST_HEAD(&n->partial);
8ab1372f 2825#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2826 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2827 atomic_long_set(&n->total_objects, 0);
643b1138 2828 INIT_LIST_HEAD(&n->full);
8ab1372f 2829#endif
81819f0f
CL
2830}
2831
55136592 2832static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2833{
6c182dc0 2834 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2835 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2836
8a5ec0ba 2837 /*
d4d84fef
CM
2838 * Must align to double word boundary for the double cmpxchg
2839 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2840 */
d4d84fef
CM
2841 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2842 2 * sizeof(void *));
8a5ec0ba
CL
2843
2844 if (!s->cpu_slab)
2845 return 0;
2846
2847 init_kmem_cache_cpus(s);
4c93c355 2848
8a5ec0ba 2849 return 1;
4c93c355 2850}
4c93c355 2851
51df1142
CL
2852static struct kmem_cache *kmem_cache_node;
2853
81819f0f
CL
2854/*
2855 * No kmalloc_node yet so do it by hand. We know that this is the first
2856 * slab on the node for this slabcache. There are no concurrent accesses
2857 * possible.
2858 *
721ae22a
ZYW
2859 * Note that this function only works on the kmem_cache_node
2860 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2861 * memory on a fresh node that has no slab structures yet.
81819f0f 2862 */
55136592 2863static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2864{
2865 struct page *page;
2866 struct kmem_cache_node *n;
2867
51df1142 2868 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2869
51df1142 2870 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2871
2872 BUG_ON(!page);
a2f92ee7 2873 if (page_to_nid(page) != node) {
f9f58285
FF
2874 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2875 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
2876 }
2877
81819f0f
CL
2878 n = page->freelist;
2879 BUG_ON(!n);
51df1142 2880 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2881 page->inuse = 1;
8cb0a506 2882 page->frozen = 0;
51df1142 2883 kmem_cache_node->node[node] = n;
8ab1372f 2884#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2885 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2886 init_tracking(kmem_cache_node, n);
8ab1372f 2887#endif
4053497d 2888 init_kmem_cache_node(n);
51df1142 2889 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2890
67b6c900 2891 /*
1e4dd946
SR
2892 * No locks need to be taken here as it has just been
2893 * initialized and there is no concurrent access.
67b6c900 2894 */
1e4dd946 2895 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2896}
2897
2898static void free_kmem_cache_nodes(struct kmem_cache *s)
2899{
2900 int node;
fa45dc25 2901 struct kmem_cache_node *n;
81819f0f 2902
fa45dc25
CL
2903 for_each_kmem_cache_node(s, node, n) {
2904 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
2905 s->node[node] = NULL;
2906 }
2907}
2908
55136592 2909static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2910{
2911 int node;
81819f0f 2912
f64dc58c 2913 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2914 struct kmem_cache_node *n;
2915
73367bd8 2916 if (slab_state == DOWN) {
55136592 2917 early_kmem_cache_node_alloc(node);
73367bd8
AD
2918 continue;
2919 }
51df1142 2920 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2921 GFP_KERNEL, node);
81819f0f 2922
73367bd8
AD
2923 if (!n) {
2924 free_kmem_cache_nodes(s);
2925 return 0;
81819f0f 2926 }
73367bd8 2927
81819f0f 2928 s->node[node] = n;
4053497d 2929 init_kmem_cache_node(n);
81819f0f
CL
2930 }
2931 return 1;
2932}
81819f0f 2933
c0bdb232 2934static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2935{
2936 if (min < MIN_PARTIAL)
2937 min = MIN_PARTIAL;
2938 else if (min > MAX_PARTIAL)
2939 min = MAX_PARTIAL;
2940 s->min_partial = min;
2941}
2942
81819f0f
CL
2943/*
2944 * calculate_sizes() determines the order and the distribution of data within
2945 * a slab object.
2946 */
06b285dc 2947static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2948{
2949 unsigned long flags = s->flags;
3b0efdfa 2950 unsigned long size = s->object_size;
834f3d11 2951 int order;
81819f0f 2952
d8b42bf5
CL
2953 /*
2954 * Round up object size to the next word boundary. We can only
2955 * place the free pointer at word boundaries and this determines
2956 * the possible location of the free pointer.
2957 */
2958 size = ALIGN(size, sizeof(void *));
2959
2960#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2961 /*
2962 * Determine if we can poison the object itself. If the user of
2963 * the slab may touch the object after free or before allocation
2964 * then we should never poison the object itself.
2965 */
2966 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2967 !s->ctor)
81819f0f
CL
2968 s->flags |= __OBJECT_POISON;
2969 else
2970 s->flags &= ~__OBJECT_POISON;
2971
81819f0f
CL
2972
2973 /*
672bba3a 2974 * If we are Redzoning then check if there is some space between the
81819f0f 2975 * end of the object and the free pointer. If not then add an
672bba3a 2976 * additional word to have some bytes to store Redzone information.
81819f0f 2977 */
3b0efdfa 2978 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2979 size += sizeof(void *);
41ecc55b 2980#endif
81819f0f
CL
2981
2982 /*
672bba3a
CL
2983 * With that we have determined the number of bytes in actual use
2984 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2985 */
2986 s->inuse = size;
2987
2988 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2989 s->ctor)) {
81819f0f
CL
2990 /*
2991 * Relocate free pointer after the object if it is not
2992 * permitted to overwrite the first word of the object on
2993 * kmem_cache_free.
2994 *
2995 * This is the case if we do RCU, have a constructor or
2996 * destructor or are poisoning the objects.
2997 */
2998 s->offset = size;
2999 size += sizeof(void *);
3000 }
3001
c12b3c62 3002#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3003 if (flags & SLAB_STORE_USER)
3004 /*
3005 * Need to store information about allocs and frees after
3006 * the object.
3007 */
3008 size += 2 * sizeof(struct track);
3009
be7b3fbc 3010 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3011 /*
3012 * Add some empty padding so that we can catch
3013 * overwrites from earlier objects rather than let
3014 * tracking information or the free pointer be
0211a9c8 3015 * corrupted if a user writes before the start
81819f0f
CL
3016 * of the object.
3017 */
3018 size += sizeof(void *);
41ecc55b 3019#endif
672bba3a 3020
81819f0f
CL
3021 /*
3022 * SLUB stores one object immediately after another beginning from
3023 * offset 0. In order to align the objects we have to simply size
3024 * each object to conform to the alignment.
3025 */
45906855 3026 size = ALIGN(size, s->align);
81819f0f 3027 s->size = size;
06b285dc
CL
3028 if (forced_order >= 0)
3029 order = forced_order;
3030 else
ab9a0f19 3031 order = calculate_order(size, s->reserved);
81819f0f 3032
834f3d11 3033 if (order < 0)
81819f0f
CL
3034 return 0;
3035
b7a49f0d 3036 s->allocflags = 0;
834f3d11 3037 if (order)
b7a49f0d
CL
3038 s->allocflags |= __GFP_COMP;
3039
3040 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3041 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3042
3043 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3044 s->allocflags |= __GFP_RECLAIMABLE;
3045
81819f0f
CL
3046 /*
3047 * Determine the number of objects per slab
3048 */
ab9a0f19
LJ
3049 s->oo = oo_make(order, size, s->reserved);
3050 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3051 if (oo_objects(s->oo) > oo_objects(s->max))
3052 s->max = s->oo;
81819f0f 3053
834f3d11 3054 return !!oo_objects(s->oo);
81819f0f
CL
3055}
3056
8a13a4cc 3057static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3058{
8a13a4cc 3059 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3060 s->reserved = 0;
81819f0f 3061
da9a638c
LJ
3062 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3063 s->reserved = sizeof(struct rcu_head);
81819f0f 3064
06b285dc 3065 if (!calculate_sizes(s, -1))
81819f0f 3066 goto error;
3de47213
DR
3067 if (disable_higher_order_debug) {
3068 /*
3069 * Disable debugging flags that store metadata if the min slab
3070 * order increased.
3071 */
3b0efdfa 3072 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3073 s->flags &= ~DEBUG_METADATA_FLAGS;
3074 s->offset = 0;
3075 if (!calculate_sizes(s, -1))
3076 goto error;
3077 }
3078 }
81819f0f 3079
2565409f
HC
3080#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3081 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3082 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3083 /* Enable fast mode */
3084 s->flags |= __CMPXCHG_DOUBLE;
3085#endif
3086
3b89d7d8
DR
3087 /*
3088 * The larger the object size is, the more pages we want on the partial
3089 * list to avoid pounding the page allocator excessively.
3090 */
49e22585
CL
3091 set_min_partial(s, ilog2(s->size) / 2);
3092
3093 /*
3094 * cpu_partial determined the maximum number of objects kept in the
3095 * per cpu partial lists of a processor.
3096 *
3097 * Per cpu partial lists mainly contain slabs that just have one
3098 * object freed. If they are used for allocation then they can be
3099 * filled up again with minimal effort. The slab will never hit the
3100 * per node partial lists and therefore no locking will be required.
3101 *
3102 * This setting also determines
3103 *
3104 * A) The number of objects from per cpu partial slabs dumped to the
3105 * per node list when we reach the limit.
9f264904 3106 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3107 * per node list when we run out of per cpu objects. We only fetch
3108 * 50% to keep some capacity around for frees.
49e22585 3109 */
345c905d 3110 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3111 s->cpu_partial = 0;
3112 else if (s->size >= PAGE_SIZE)
49e22585
CL
3113 s->cpu_partial = 2;
3114 else if (s->size >= 1024)
3115 s->cpu_partial = 6;
3116 else if (s->size >= 256)
3117 s->cpu_partial = 13;
3118 else
3119 s->cpu_partial = 30;
3120
81819f0f 3121#ifdef CONFIG_NUMA
e2cb96b7 3122 s->remote_node_defrag_ratio = 1000;
81819f0f 3123#endif
55136592 3124 if (!init_kmem_cache_nodes(s))
dfb4f096 3125 goto error;
81819f0f 3126
55136592 3127 if (alloc_kmem_cache_cpus(s))
278b1bb1 3128 return 0;
ff12059e 3129
4c93c355 3130 free_kmem_cache_nodes(s);
81819f0f
CL
3131error:
3132 if (flags & SLAB_PANIC)
3133 panic("Cannot create slab %s size=%lu realsize=%u "
3134 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3135 s->name, (unsigned long)s->size, s->size,
3136 oo_order(s->oo), s->offset, flags);
278b1bb1 3137 return -EINVAL;
81819f0f 3138}
81819f0f 3139
33b12c38
CL
3140static void list_slab_objects(struct kmem_cache *s, struct page *page,
3141 const char *text)
3142{
3143#ifdef CONFIG_SLUB_DEBUG
3144 void *addr = page_address(page);
3145 void *p;
a5dd5c11
NK
3146 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3147 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3148 if (!map)
3149 return;
945cf2b6 3150 slab_err(s, page, text, s->name);
33b12c38 3151 slab_lock(page);
33b12c38 3152
5f80b13a 3153 get_map(s, page, map);
33b12c38
CL
3154 for_each_object(p, s, addr, page->objects) {
3155
3156 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3157 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3158 print_tracking(s, p);
3159 }
3160 }
3161 slab_unlock(page);
bbd7d57b 3162 kfree(map);
33b12c38
CL
3163#endif
3164}
3165
81819f0f 3166/*
599870b1 3167 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3168 * This is called from kmem_cache_close(). We must be the last thread
3169 * using the cache and therefore we do not need to lock anymore.
81819f0f 3170 */
599870b1 3171static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3172{
81819f0f
CL
3173 struct page *page, *h;
3174
33b12c38 3175 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3176 if (!page->inuse) {
1e4dd946 3177 __remove_partial(n, page);
81819f0f 3178 discard_slab(s, page);
33b12c38
CL
3179 } else {
3180 list_slab_objects(s, page,
945cf2b6 3181 "Objects remaining in %s on kmem_cache_close()");
599870b1 3182 }
33b12c38 3183 }
81819f0f
CL
3184}
3185
3186/*
672bba3a 3187 * Release all resources used by a slab cache.
81819f0f 3188 */
0c710013 3189static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3190{
3191 int node;
fa45dc25 3192 struct kmem_cache_node *n;
81819f0f
CL
3193
3194 flush_all(s);
81819f0f 3195 /* Attempt to free all objects */
fa45dc25 3196 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3197 free_partial(s, n);
3198 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3199 return 1;
3200 }
945cf2b6 3201 free_percpu(s->cpu_slab);
81819f0f
CL
3202 free_kmem_cache_nodes(s);
3203 return 0;
3204}
3205
945cf2b6 3206int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3207{
41a21285 3208 return kmem_cache_close(s);
81819f0f 3209}
81819f0f
CL
3210
3211/********************************************************************
3212 * Kmalloc subsystem
3213 *******************************************************************/
3214
81819f0f
CL
3215static int __init setup_slub_min_order(char *str)
3216{
06428780 3217 get_option(&str, &slub_min_order);
81819f0f
CL
3218
3219 return 1;
3220}
3221
3222__setup("slub_min_order=", setup_slub_min_order);
3223
3224static int __init setup_slub_max_order(char *str)
3225{
06428780 3226 get_option(&str, &slub_max_order);
818cf590 3227 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3228
3229 return 1;
3230}
3231
3232__setup("slub_max_order=", setup_slub_max_order);
3233
3234static int __init setup_slub_min_objects(char *str)
3235{
06428780 3236 get_option(&str, &slub_min_objects);
81819f0f
CL
3237
3238 return 1;
3239}
3240
3241__setup("slub_min_objects=", setup_slub_min_objects);
3242
81819f0f
CL
3243void *__kmalloc(size_t size, gfp_t flags)
3244{
aadb4bc4 3245 struct kmem_cache *s;
5b882be4 3246 void *ret;
81819f0f 3247
95a05b42 3248 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3249 return kmalloc_large(size, flags);
aadb4bc4 3250
2c59dd65 3251 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3252
3253 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3254 return s;
3255
2b847c3c 3256 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3257
ca2b84cb 3258 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3259
3260 return ret;
81819f0f
CL
3261}
3262EXPORT_SYMBOL(__kmalloc);
3263
5d1f57e4 3264#ifdef CONFIG_NUMA
f619cfe1
CL
3265static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3266{
b1eeab67 3267 struct page *page;
e4f7c0b4 3268 void *ptr = NULL;
f619cfe1 3269
52383431
VD
3270 flags |= __GFP_COMP | __GFP_NOTRACK;
3271 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3272 if (page)
e4f7c0b4
CM
3273 ptr = page_address(page);
3274
d56791b3 3275 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3276 return ptr;
f619cfe1
CL
3277}
3278
81819f0f
CL
3279void *__kmalloc_node(size_t size, gfp_t flags, int node)
3280{
aadb4bc4 3281 struct kmem_cache *s;
5b882be4 3282 void *ret;
81819f0f 3283
95a05b42 3284 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3285 ret = kmalloc_large_node(size, flags, node);
3286
ca2b84cb
EGM
3287 trace_kmalloc_node(_RET_IP_, ret,
3288 size, PAGE_SIZE << get_order(size),
3289 flags, node);
5b882be4
EGM
3290
3291 return ret;
3292 }
aadb4bc4 3293
2c59dd65 3294 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3295
3296 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3297 return s;
3298
2b847c3c 3299 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3300
ca2b84cb 3301 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3302
3303 return ret;
81819f0f
CL
3304}
3305EXPORT_SYMBOL(__kmalloc_node);
3306#endif
3307
3308size_t ksize(const void *object)
3309{
272c1d21 3310 struct page *page;
81819f0f 3311
ef8b4520 3312 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3313 return 0;
3314
294a80a8 3315 page = virt_to_head_page(object);
294a80a8 3316
76994412
PE
3317 if (unlikely(!PageSlab(page))) {
3318 WARN_ON(!PageCompound(page));
294a80a8 3319 return PAGE_SIZE << compound_order(page);
76994412 3320 }
81819f0f 3321
1b4f59e3 3322 return slab_ksize(page->slab_cache);
81819f0f 3323}
b1aabecd 3324EXPORT_SYMBOL(ksize);
81819f0f
CL
3325
3326void kfree(const void *x)
3327{
81819f0f 3328 struct page *page;
5bb983b0 3329 void *object = (void *)x;
81819f0f 3330
2121db74
PE
3331 trace_kfree(_RET_IP_, x);
3332
2408c550 3333 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3334 return;
3335
b49af68f 3336 page = virt_to_head_page(x);
aadb4bc4 3337 if (unlikely(!PageSlab(page))) {
0937502a 3338 BUG_ON(!PageCompound(page));
d56791b3 3339 kfree_hook(x);
52383431 3340 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3341 return;
3342 }
1b4f59e3 3343 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3344}
3345EXPORT_SYMBOL(kfree);
3346
2086d26a 3347/*
672bba3a
CL
3348 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3349 * the remaining slabs by the number of items in use. The slabs with the
3350 * most items in use come first. New allocations will then fill those up
3351 * and thus they can be removed from the partial lists.
3352 *
3353 * The slabs with the least items are placed last. This results in them
3354 * being allocated from last increasing the chance that the last objects
3355 * are freed in them.
2086d26a 3356 */
03afc0e2 3357int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3358{
3359 int node;
3360 int i;
3361 struct kmem_cache_node *n;
3362 struct page *page;
3363 struct page *t;
205ab99d 3364 int objects = oo_objects(s->max);
2086d26a 3365 struct list_head *slabs_by_inuse =
834f3d11 3366 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3367 unsigned long flags;
3368
3369 if (!slabs_by_inuse)
3370 return -ENOMEM;
3371
3372 flush_all(s);
fa45dc25 3373 for_each_kmem_cache_node(s, node, n) {
2086d26a
CL
3374 if (!n->nr_partial)
3375 continue;
3376
834f3d11 3377 for (i = 0; i < objects; i++)
2086d26a
CL
3378 INIT_LIST_HEAD(slabs_by_inuse + i);
3379
3380 spin_lock_irqsave(&n->list_lock, flags);
3381
3382 /*
672bba3a 3383 * Build lists indexed by the items in use in each slab.
2086d26a 3384 *
672bba3a
CL
3385 * Note that concurrent frees may occur while we hold the
3386 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3387 */
3388 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3389 list_move(&page->lru, slabs_by_inuse + page->inuse);
3390 if (!page->inuse)
3391 n->nr_partial--;
2086d26a
CL
3392 }
3393
2086d26a 3394 /*
672bba3a
CL
3395 * Rebuild the partial list with the slabs filled up most
3396 * first and the least used slabs at the end.
2086d26a 3397 */
69cb8e6b 3398 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3399 list_splice(slabs_by_inuse + i, n->partial.prev);
3400
2086d26a 3401 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3402
3403 /* Release empty slabs */
3404 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3405 discard_slab(s, page);
2086d26a
CL
3406 }
3407
3408 kfree(slabs_by_inuse);
3409 return 0;
3410}
2086d26a 3411
b9049e23
YG
3412static int slab_mem_going_offline_callback(void *arg)
3413{
3414 struct kmem_cache *s;
3415
18004c5d 3416 mutex_lock(&slab_mutex);
b9049e23 3417 list_for_each_entry(s, &slab_caches, list)
03afc0e2 3418 __kmem_cache_shrink(s);
18004c5d 3419 mutex_unlock(&slab_mutex);
b9049e23
YG
3420
3421 return 0;
3422}
3423
3424static void slab_mem_offline_callback(void *arg)
3425{
3426 struct kmem_cache_node *n;
3427 struct kmem_cache *s;
3428 struct memory_notify *marg = arg;
3429 int offline_node;
3430
b9d5ab25 3431 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3432
3433 /*
3434 * If the node still has available memory. we need kmem_cache_node
3435 * for it yet.
3436 */
3437 if (offline_node < 0)
3438 return;
3439
18004c5d 3440 mutex_lock(&slab_mutex);
b9049e23
YG
3441 list_for_each_entry(s, &slab_caches, list) {
3442 n = get_node(s, offline_node);
3443 if (n) {
3444 /*
3445 * if n->nr_slabs > 0, slabs still exist on the node
3446 * that is going down. We were unable to free them,
c9404c9c 3447 * and offline_pages() function shouldn't call this
b9049e23
YG
3448 * callback. So, we must fail.
3449 */
0f389ec6 3450 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3451
3452 s->node[offline_node] = NULL;
8de66a0c 3453 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3454 }
3455 }
18004c5d 3456 mutex_unlock(&slab_mutex);
b9049e23
YG
3457}
3458
3459static int slab_mem_going_online_callback(void *arg)
3460{
3461 struct kmem_cache_node *n;
3462 struct kmem_cache *s;
3463 struct memory_notify *marg = arg;
b9d5ab25 3464 int nid = marg->status_change_nid_normal;
b9049e23
YG
3465 int ret = 0;
3466
3467 /*
3468 * If the node's memory is already available, then kmem_cache_node is
3469 * already created. Nothing to do.
3470 */
3471 if (nid < 0)
3472 return 0;
3473
3474 /*
0121c619 3475 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3476 * allocate a kmem_cache_node structure in order to bring the node
3477 * online.
3478 */
18004c5d 3479 mutex_lock(&slab_mutex);
b9049e23
YG
3480 list_for_each_entry(s, &slab_caches, list) {
3481 /*
3482 * XXX: kmem_cache_alloc_node will fallback to other nodes
3483 * since memory is not yet available from the node that
3484 * is brought up.
3485 */
8de66a0c 3486 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3487 if (!n) {
3488 ret = -ENOMEM;
3489 goto out;
3490 }
4053497d 3491 init_kmem_cache_node(n);
b9049e23
YG
3492 s->node[nid] = n;
3493 }
3494out:
18004c5d 3495 mutex_unlock(&slab_mutex);
b9049e23
YG
3496 return ret;
3497}
3498
3499static int slab_memory_callback(struct notifier_block *self,
3500 unsigned long action, void *arg)
3501{
3502 int ret = 0;
3503
3504 switch (action) {
3505 case MEM_GOING_ONLINE:
3506 ret = slab_mem_going_online_callback(arg);
3507 break;
3508 case MEM_GOING_OFFLINE:
3509 ret = slab_mem_going_offline_callback(arg);
3510 break;
3511 case MEM_OFFLINE:
3512 case MEM_CANCEL_ONLINE:
3513 slab_mem_offline_callback(arg);
3514 break;
3515 case MEM_ONLINE:
3516 case MEM_CANCEL_OFFLINE:
3517 break;
3518 }
dc19f9db
KH
3519 if (ret)
3520 ret = notifier_from_errno(ret);
3521 else
3522 ret = NOTIFY_OK;
b9049e23
YG
3523 return ret;
3524}
3525
3ac38faa
AM
3526static struct notifier_block slab_memory_callback_nb = {
3527 .notifier_call = slab_memory_callback,
3528 .priority = SLAB_CALLBACK_PRI,
3529};
b9049e23 3530
81819f0f
CL
3531/********************************************************************
3532 * Basic setup of slabs
3533 *******************************************************************/
3534
51df1142
CL
3535/*
3536 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3537 * the page allocator. Allocate them properly then fix up the pointers
3538 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3539 */
3540
dffb4d60 3541static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3542{
3543 int node;
dffb4d60 3544 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3545 struct kmem_cache_node *n;
51df1142 3546
dffb4d60 3547 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3548
7d557b3c
GC
3549 /*
3550 * This runs very early, and only the boot processor is supposed to be
3551 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3552 * IPIs around.
3553 */
3554 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3555 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3556 struct page *p;
3557
fa45dc25
CL
3558 list_for_each_entry(p, &n->partial, lru)
3559 p->slab_cache = s;
51df1142 3560
607bf324 3561#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3562 list_for_each_entry(p, &n->full, lru)
3563 p->slab_cache = s;
51df1142 3564#endif
51df1142 3565 }
dffb4d60
CL
3566 list_add(&s->list, &slab_caches);
3567 return s;
51df1142
CL
3568}
3569
81819f0f
CL
3570void __init kmem_cache_init(void)
3571{
dffb4d60
CL
3572 static __initdata struct kmem_cache boot_kmem_cache,
3573 boot_kmem_cache_node;
51df1142 3574
fc8d8620
SG
3575 if (debug_guardpage_minorder())
3576 slub_max_order = 0;
3577
dffb4d60
CL
3578 kmem_cache_node = &boot_kmem_cache_node;
3579 kmem_cache = &boot_kmem_cache;
51df1142 3580
dffb4d60
CL
3581 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3582 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3583
3ac38faa 3584 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3585
3586 /* Able to allocate the per node structures */
3587 slab_state = PARTIAL;
3588
dffb4d60
CL
3589 create_boot_cache(kmem_cache, "kmem_cache",
3590 offsetof(struct kmem_cache, node) +
3591 nr_node_ids * sizeof(struct kmem_cache_node *),
3592 SLAB_HWCACHE_ALIGN);
8a13a4cc 3593
dffb4d60 3594 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3595
51df1142
CL
3596 /*
3597 * Allocate kmem_cache_node properly from the kmem_cache slab.
3598 * kmem_cache_node is separately allocated so no need to
3599 * update any list pointers.
3600 */
dffb4d60 3601 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3602
3603 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3604 create_kmalloc_caches(0);
81819f0f
CL
3605
3606#ifdef CONFIG_SMP
3607 register_cpu_notifier(&slab_notifier);
9dfc6e68 3608#endif
81819f0f 3609
f9f58285 3610 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3611 cache_line_size(),
81819f0f
CL
3612 slub_min_order, slub_max_order, slub_min_objects,
3613 nr_cpu_ids, nr_node_ids);
3614}
3615
7e85ee0c
PE
3616void __init kmem_cache_init_late(void)
3617{
7e85ee0c
PE
3618}
3619
2633d7a0 3620struct kmem_cache *
a44cb944
VD
3621__kmem_cache_alias(const char *name, size_t size, size_t align,
3622 unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3623{
3624 struct kmem_cache *s;
3625
a44cb944 3626 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3627 if (s) {
84d0ddd6
VD
3628 int i;
3629 struct kmem_cache *c;
3630
81819f0f 3631 s->refcount++;
84d0ddd6 3632
81819f0f
CL
3633 /*
3634 * Adjust the object sizes so that we clear
3635 * the complete object on kzalloc.
3636 */
3b0efdfa 3637 s->object_size = max(s->object_size, (int)size);
81819f0f 3638 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3639
84d0ddd6
VD
3640 for_each_memcg_cache_index(i) {
3641 c = cache_from_memcg_idx(s, i);
3642 if (!c)
3643 continue;
3644 c->object_size = s->object_size;
3645 c->inuse = max_t(int, c->inuse,
3646 ALIGN(size, sizeof(void *)));
3647 }
3648
7b8f3b66 3649 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3650 s->refcount--;
cbb79694 3651 s = NULL;
7b8f3b66 3652 }
a0e1d1be 3653 }
6446faa2 3654
cbb79694
CL
3655 return s;
3656}
84c1cf62 3657
8a13a4cc 3658int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3659{
aac3a166
PE
3660 int err;
3661
3662 err = kmem_cache_open(s, flags);
3663 if (err)
3664 return err;
20cea968 3665
45530c44
CL
3666 /* Mutex is not taken during early boot */
3667 if (slab_state <= UP)
3668 return 0;
3669
107dab5c 3670 memcg_propagate_slab_attrs(s);
aac3a166 3671 err = sysfs_slab_add(s);
aac3a166
PE
3672 if (err)
3673 kmem_cache_close(s);
20cea968 3674
aac3a166 3675 return err;
81819f0f 3676}
81819f0f 3677
81819f0f 3678#ifdef CONFIG_SMP
81819f0f 3679/*
672bba3a
CL
3680 * Use the cpu notifier to insure that the cpu slabs are flushed when
3681 * necessary.
81819f0f 3682 */
0db0628d 3683static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3684 unsigned long action, void *hcpu)
3685{
3686 long cpu = (long)hcpu;
5b95a4ac
CL
3687 struct kmem_cache *s;
3688 unsigned long flags;
81819f0f
CL
3689
3690 switch (action) {
3691 case CPU_UP_CANCELED:
8bb78442 3692 case CPU_UP_CANCELED_FROZEN:
81819f0f 3693 case CPU_DEAD:
8bb78442 3694 case CPU_DEAD_FROZEN:
18004c5d 3695 mutex_lock(&slab_mutex);
5b95a4ac
CL
3696 list_for_each_entry(s, &slab_caches, list) {
3697 local_irq_save(flags);
3698 __flush_cpu_slab(s, cpu);
3699 local_irq_restore(flags);
3700 }
18004c5d 3701 mutex_unlock(&slab_mutex);
81819f0f
CL
3702 break;
3703 default:
3704 break;
3705 }
3706 return NOTIFY_OK;
3707}
3708
0db0628d 3709static struct notifier_block slab_notifier = {
3adbefee 3710 .notifier_call = slab_cpuup_callback
06428780 3711};
81819f0f
CL
3712
3713#endif
3714
ce71e27c 3715void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3716{
aadb4bc4 3717 struct kmem_cache *s;
94b528d0 3718 void *ret;
aadb4bc4 3719
95a05b42 3720 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3721 return kmalloc_large(size, gfpflags);
3722
2c59dd65 3723 s = kmalloc_slab(size, gfpflags);
81819f0f 3724
2408c550 3725 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3726 return s;
81819f0f 3727
2b847c3c 3728 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3729
25985edc 3730 /* Honor the call site pointer we received. */
ca2b84cb 3731 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3732
3733 return ret;
81819f0f
CL
3734}
3735
5d1f57e4 3736#ifdef CONFIG_NUMA
81819f0f 3737void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3738 int node, unsigned long caller)
81819f0f 3739{
aadb4bc4 3740 struct kmem_cache *s;
94b528d0 3741 void *ret;
aadb4bc4 3742
95a05b42 3743 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3744 ret = kmalloc_large_node(size, gfpflags, node);
3745
3746 trace_kmalloc_node(caller, ret,
3747 size, PAGE_SIZE << get_order(size),
3748 gfpflags, node);
3749
3750 return ret;
3751 }
eada35ef 3752
2c59dd65 3753 s = kmalloc_slab(size, gfpflags);
81819f0f 3754
2408c550 3755 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3756 return s;
81819f0f 3757
2b847c3c 3758 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3759
25985edc 3760 /* Honor the call site pointer we received. */
ca2b84cb 3761 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3762
3763 return ret;
81819f0f 3764}
5d1f57e4 3765#endif
81819f0f 3766
ab4d5ed5 3767#ifdef CONFIG_SYSFS
205ab99d
CL
3768static int count_inuse(struct page *page)
3769{
3770 return page->inuse;
3771}
3772
3773static int count_total(struct page *page)
3774{
3775 return page->objects;
3776}
ab4d5ed5 3777#endif
205ab99d 3778
ab4d5ed5 3779#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3780static int validate_slab(struct kmem_cache *s, struct page *page,
3781 unsigned long *map)
53e15af0
CL
3782{
3783 void *p;
a973e9dd 3784 void *addr = page_address(page);
53e15af0
CL
3785
3786 if (!check_slab(s, page) ||
3787 !on_freelist(s, page, NULL))
3788 return 0;
3789
3790 /* Now we know that a valid freelist exists */
39b26464 3791 bitmap_zero(map, page->objects);
53e15af0 3792
5f80b13a
CL
3793 get_map(s, page, map);
3794 for_each_object(p, s, addr, page->objects) {
3795 if (test_bit(slab_index(p, s, addr), map))
3796 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3797 return 0;
53e15af0
CL
3798 }
3799
224a88be 3800 for_each_object(p, s, addr, page->objects)
7656c72b 3801 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3802 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3803 return 0;
3804 return 1;
3805}
3806
434e245d
CL
3807static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3808 unsigned long *map)
53e15af0 3809{
881db7fb
CL
3810 slab_lock(page);
3811 validate_slab(s, page, map);
3812 slab_unlock(page);
53e15af0
CL
3813}
3814
434e245d
CL
3815static int validate_slab_node(struct kmem_cache *s,
3816 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3817{
3818 unsigned long count = 0;
3819 struct page *page;
3820 unsigned long flags;
3821
3822 spin_lock_irqsave(&n->list_lock, flags);
3823
3824 list_for_each_entry(page, &n->partial, lru) {
434e245d 3825 validate_slab_slab(s, page, map);
53e15af0
CL
3826 count++;
3827 }
3828 if (count != n->nr_partial)
f9f58285
FF
3829 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3830 s->name, count, n->nr_partial);
53e15af0
CL
3831
3832 if (!(s->flags & SLAB_STORE_USER))
3833 goto out;
3834
3835 list_for_each_entry(page, &n->full, lru) {
434e245d 3836 validate_slab_slab(s, page, map);
53e15af0
CL
3837 count++;
3838 }
3839 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3840 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3841 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
3842
3843out:
3844 spin_unlock_irqrestore(&n->list_lock, flags);
3845 return count;
3846}
3847
434e245d 3848static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3849{
3850 int node;
3851 unsigned long count = 0;
205ab99d 3852 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 3853 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 3854 struct kmem_cache_node *n;
434e245d
CL
3855
3856 if (!map)
3857 return -ENOMEM;
53e15af0
CL
3858
3859 flush_all(s);
fa45dc25 3860 for_each_kmem_cache_node(s, node, n)
434e245d 3861 count += validate_slab_node(s, n, map);
434e245d 3862 kfree(map);
53e15af0
CL
3863 return count;
3864}
88a420e4 3865/*
672bba3a 3866 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3867 * and freed.
3868 */
3869
3870struct location {
3871 unsigned long count;
ce71e27c 3872 unsigned long addr;
45edfa58
CL
3873 long long sum_time;
3874 long min_time;
3875 long max_time;
3876 long min_pid;
3877 long max_pid;
174596a0 3878 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3879 nodemask_t nodes;
88a420e4
CL
3880};
3881
3882struct loc_track {
3883 unsigned long max;
3884 unsigned long count;
3885 struct location *loc;
3886};
3887
3888static void free_loc_track(struct loc_track *t)
3889{
3890 if (t->max)
3891 free_pages((unsigned long)t->loc,
3892 get_order(sizeof(struct location) * t->max));
3893}
3894
68dff6a9 3895static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3896{
3897 struct location *l;
3898 int order;
3899
88a420e4
CL
3900 order = get_order(sizeof(struct location) * max);
3901
68dff6a9 3902 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3903 if (!l)
3904 return 0;
3905
3906 if (t->count) {
3907 memcpy(l, t->loc, sizeof(struct location) * t->count);
3908 free_loc_track(t);
3909 }
3910 t->max = max;
3911 t->loc = l;
3912 return 1;
3913}
3914
3915static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3916 const struct track *track)
88a420e4
CL
3917{
3918 long start, end, pos;
3919 struct location *l;
ce71e27c 3920 unsigned long caddr;
45edfa58 3921 unsigned long age = jiffies - track->when;
88a420e4
CL
3922
3923 start = -1;
3924 end = t->count;
3925
3926 for ( ; ; ) {
3927 pos = start + (end - start + 1) / 2;
3928
3929 /*
3930 * There is nothing at "end". If we end up there
3931 * we need to add something to before end.
3932 */
3933 if (pos == end)
3934 break;
3935
3936 caddr = t->loc[pos].addr;
45edfa58
CL
3937 if (track->addr == caddr) {
3938
3939 l = &t->loc[pos];
3940 l->count++;
3941 if (track->when) {
3942 l->sum_time += age;
3943 if (age < l->min_time)
3944 l->min_time = age;
3945 if (age > l->max_time)
3946 l->max_time = age;
3947
3948 if (track->pid < l->min_pid)
3949 l->min_pid = track->pid;
3950 if (track->pid > l->max_pid)
3951 l->max_pid = track->pid;
3952
174596a0
RR
3953 cpumask_set_cpu(track->cpu,
3954 to_cpumask(l->cpus));
45edfa58
CL
3955 }
3956 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3957 return 1;
3958 }
3959
45edfa58 3960 if (track->addr < caddr)
88a420e4
CL
3961 end = pos;
3962 else
3963 start = pos;
3964 }
3965
3966 /*
672bba3a 3967 * Not found. Insert new tracking element.
88a420e4 3968 */
68dff6a9 3969 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3970 return 0;
3971
3972 l = t->loc + pos;
3973 if (pos < t->count)
3974 memmove(l + 1, l,
3975 (t->count - pos) * sizeof(struct location));
3976 t->count++;
3977 l->count = 1;
45edfa58
CL
3978 l->addr = track->addr;
3979 l->sum_time = age;
3980 l->min_time = age;
3981 l->max_time = age;
3982 l->min_pid = track->pid;
3983 l->max_pid = track->pid;
174596a0
RR
3984 cpumask_clear(to_cpumask(l->cpus));
3985 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3986 nodes_clear(l->nodes);
3987 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3988 return 1;
3989}
3990
3991static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3992 struct page *page, enum track_item alloc,
a5dd5c11 3993 unsigned long *map)
88a420e4 3994{
a973e9dd 3995 void *addr = page_address(page);
88a420e4
CL
3996 void *p;
3997
39b26464 3998 bitmap_zero(map, page->objects);
5f80b13a 3999 get_map(s, page, map);
88a420e4 4000
224a88be 4001 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4002 if (!test_bit(slab_index(p, s, addr), map))
4003 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4004}
4005
4006static int list_locations(struct kmem_cache *s, char *buf,
4007 enum track_item alloc)
4008{
e374d483 4009 int len = 0;
88a420e4 4010 unsigned long i;
68dff6a9 4011 struct loc_track t = { 0, 0, NULL };
88a420e4 4012 int node;
bbd7d57b
ED
4013 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4014 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4015 struct kmem_cache_node *n;
88a420e4 4016
bbd7d57b
ED
4017 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4018 GFP_TEMPORARY)) {
4019 kfree(map);
68dff6a9 4020 return sprintf(buf, "Out of memory\n");
bbd7d57b 4021 }
88a420e4
CL
4022 /* Push back cpu slabs */
4023 flush_all(s);
4024
fa45dc25 4025 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4026 unsigned long flags;
4027 struct page *page;
4028
9e86943b 4029 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4030 continue;
4031
4032 spin_lock_irqsave(&n->list_lock, flags);
4033 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4034 process_slab(&t, s, page, alloc, map);
88a420e4 4035 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4036 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4037 spin_unlock_irqrestore(&n->list_lock, flags);
4038 }
4039
4040 for (i = 0; i < t.count; i++) {
45edfa58 4041 struct location *l = &t.loc[i];
88a420e4 4042
9c246247 4043 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4044 break;
e374d483 4045 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4046
4047 if (l->addr)
62c70bce 4048 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4049 else
e374d483 4050 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4051
4052 if (l->sum_time != l->min_time) {
e374d483 4053 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4054 l->min_time,
4055 (long)div_u64(l->sum_time, l->count),
4056 l->max_time);
45edfa58 4057 } else
e374d483 4058 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4059 l->min_time);
4060
4061 if (l->min_pid != l->max_pid)
e374d483 4062 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4063 l->min_pid, l->max_pid);
4064 else
e374d483 4065 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4066 l->min_pid);
4067
174596a0
RR
4068 if (num_online_cpus() > 1 &&
4069 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4070 len < PAGE_SIZE - 60) {
4071 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4072 len += cpulist_scnprintf(buf + len,
4073 PAGE_SIZE - len - 50,
174596a0 4074 to_cpumask(l->cpus));
45edfa58
CL
4075 }
4076
62bc62a8 4077 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4078 len < PAGE_SIZE - 60) {
4079 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4080 len += nodelist_scnprintf(buf + len,
4081 PAGE_SIZE - len - 50,
4082 l->nodes);
45edfa58
CL
4083 }
4084
e374d483 4085 len += sprintf(buf + len, "\n");
88a420e4
CL
4086 }
4087
4088 free_loc_track(&t);
bbd7d57b 4089 kfree(map);
88a420e4 4090 if (!t.count)
e374d483
HH
4091 len += sprintf(buf, "No data\n");
4092 return len;
88a420e4 4093}
ab4d5ed5 4094#endif
88a420e4 4095
a5a84755 4096#ifdef SLUB_RESILIENCY_TEST
c07b8183 4097static void __init resiliency_test(void)
a5a84755
CL
4098{
4099 u8 *p;
4100
95a05b42 4101 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4102
f9f58285
FF
4103 pr_err("SLUB resiliency testing\n");
4104 pr_err("-----------------------\n");
4105 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4106
4107 p = kzalloc(16, GFP_KERNEL);
4108 p[16] = 0x12;
f9f58285
FF
4109 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4110 p + 16);
a5a84755
CL
4111
4112 validate_slab_cache(kmalloc_caches[4]);
4113
4114 /* Hmmm... The next two are dangerous */
4115 p = kzalloc(32, GFP_KERNEL);
4116 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4117 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4118 p);
4119 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4120
4121 validate_slab_cache(kmalloc_caches[5]);
4122 p = kzalloc(64, GFP_KERNEL);
4123 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4124 *p = 0x56;
f9f58285
FF
4125 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4126 p);
4127 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4128 validate_slab_cache(kmalloc_caches[6]);
4129
f9f58285 4130 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4131 p = kzalloc(128, GFP_KERNEL);
4132 kfree(p);
4133 *p = 0x78;
f9f58285 4134 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4135 validate_slab_cache(kmalloc_caches[7]);
4136
4137 p = kzalloc(256, GFP_KERNEL);
4138 kfree(p);
4139 p[50] = 0x9a;
f9f58285 4140 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4141 validate_slab_cache(kmalloc_caches[8]);
4142
4143 p = kzalloc(512, GFP_KERNEL);
4144 kfree(p);
4145 p[512] = 0xab;
f9f58285 4146 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4147 validate_slab_cache(kmalloc_caches[9]);
4148}
4149#else
4150#ifdef CONFIG_SYSFS
4151static void resiliency_test(void) {};
4152#endif
4153#endif
4154
ab4d5ed5 4155#ifdef CONFIG_SYSFS
81819f0f 4156enum slab_stat_type {
205ab99d
CL
4157 SL_ALL, /* All slabs */
4158 SL_PARTIAL, /* Only partially allocated slabs */
4159 SL_CPU, /* Only slabs used for cpu caches */
4160 SL_OBJECTS, /* Determine allocated objects not slabs */
4161 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4162};
4163
205ab99d 4164#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4165#define SO_PARTIAL (1 << SL_PARTIAL)
4166#define SO_CPU (1 << SL_CPU)
4167#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4168#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4169
62e5c4b4
CG
4170static ssize_t show_slab_objects(struct kmem_cache *s,
4171 char *buf, unsigned long flags)
81819f0f
CL
4172{
4173 unsigned long total = 0;
81819f0f
CL
4174 int node;
4175 int x;
4176 unsigned long *nodes;
81819f0f 4177
e35e1a97 4178 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4179 if (!nodes)
4180 return -ENOMEM;
81819f0f 4181
205ab99d
CL
4182 if (flags & SO_CPU) {
4183 int cpu;
81819f0f 4184
205ab99d 4185 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4186 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4187 cpu);
ec3ab083 4188 int node;
49e22585 4189 struct page *page;
dfb4f096 4190
bc6697d8 4191 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4192 if (!page)
4193 continue;
205ab99d 4194
ec3ab083
CL
4195 node = page_to_nid(page);
4196 if (flags & SO_TOTAL)
4197 x = page->objects;
4198 else if (flags & SO_OBJECTS)
4199 x = page->inuse;
4200 else
4201 x = 1;
49e22585 4202
ec3ab083
CL
4203 total += x;
4204 nodes[node] += x;
4205
4206 page = ACCESS_ONCE(c->partial);
49e22585 4207 if (page) {
8afb1474
LZ
4208 node = page_to_nid(page);
4209 if (flags & SO_TOTAL)
4210 WARN_ON_ONCE(1);
4211 else if (flags & SO_OBJECTS)
4212 WARN_ON_ONCE(1);
4213 else
4214 x = page->pages;
bc6697d8
ED
4215 total += x;
4216 nodes[node] += x;
49e22585 4217 }
81819f0f
CL
4218 }
4219 }
4220
bfc8c901 4221 get_online_mems();
ab4d5ed5 4222#ifdef CONFIG_SLUB_DEBUG
205ab99d 4223 if (flags & SO_ALL) {
fa45dc25
CL
4224 struct kmem_cache_node *n;
4225
4226 for_each_kmem_cache_node(s, node, n) {
205ab99d 4227
d0e0ac97
CG
4228 if (flags & SO_TOTAL)
4229 x = atomic_long_read(&n->total_objects);
4230 else if (flags & SO_OBJECTS)
4231 x = atomic_long_read(&n->total_objects) -
4232 count_partial(n, count_free);
81819f0f 4233 else
205ab99d 4234 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4235 total += x;
4236 nodes[node] += x;
4237 }
4238
ab4d5ed5
CL
4239 } else
4240#endif
4241 if (flags & SO_PARTIAL) {
fa45dc25 4242 struct kmem_cache_node *n;
81819f0f 4243
fa45dc25 4244 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4245 if (flags & SO_TOTAL)
4246 x = count_partial(n, count_total);
4247 else if (flags & SO_OBJECTS)
4248 x = count_partial(n, count_inuse);
81819f0f 4249 else
205ab99d 4250 x = n->nr_partial;
81819f0f
CL
4251 total += x;
4252 nodes[node] += x;
4253 }
4254 }
81819f0f
CL
4255 x = sprintf(buf, "%lu", total);
4256#ifdef CONFIG_NUMA
fa45dc25 4257 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4258 if (nodes[node])
4259 x += sprintf(buf + x, " N%d=%lu",
4260 node, nodes[node]);
4261#endif
bfc8c901 4262 put_online_mems();
81819f0f
CL
4263 kfree(nodes);
4264 return x + sprintf(buf + x, "\n");
4265}
4266
ab4d5ed5 4267#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4268static int any_slab_objects(struct kmem_cache *s)
4269{
4270 int node;
fa45dc25 4271 struct kmem_cache_node *n;
81819f0f 4272
fa45dc25 4273 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4274 if (atomic_long_read(&n->total_objects))
81819f0f 4275 return 1;
fa45dc25 4276
81819f0f
CL
4277 return 0;
4278}
ab4d5ed5 4279#endif
81819f0f
CL
4280
4281#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4282#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4283
4284struct slab_attribute {
4285 struct attribute attr;
4286 ssize_t (*show)(struct kmem_cache *s, char *buf);
4287 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4288};
4289
4290#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4291 static struct slab_attribute _name##_attr = \
4292 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4293
4294#define SLAB_ATTR(_name) \
4295 static struct slab_attribute _name##_attr = \
ab067e99 4296 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4297
81819f0f
CL
4298static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4299{
4300 return sprintf(buf, "%d\n", s->size);
4301}
4302SLAB_ATTR_RO(slab_size);
4303
4304static ssize_t align_show(struct kmem_cache *s, char *buf)
4305{
4306 return sprintf(buf, "%d\n", s->align);
4307}
4308SLAB_ATTR_RO(align);
4309
4310static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4311{
3b0efdfa 4312 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4313}
4314SLAB_ATTR_RO(object_size);
4315
4316static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4317{
834f3d11 4318 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4319}
4320SLAB_ATTR_RO(objs_per_slab);
4321
06b285dc
CL
4322static ssize_t order_store(struct kmem_cache *s,
4323 const char *buf, size_t length)
4324{
0121c619
CL
4325 unsigned long order;
4326 int err;
4327
3dbb95f7 4328 err = kstrtoul(buf, 10, &order);
0121c619
CL
4329 if (err)
4330 return err;
06b285dc
CL
4331
4332 if (order > slub_max_order || order < slub_min_order)
4333 return -EINVAL;
4334
4335 calculate_sizes(s, order);
4336 return length;
4337}
4338
81819f0f
CL
4339static ssize_t order_show(struct kmem_cache *s, char *buf)
4340{
834f3d11 4341 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4342}
06b285dc 4343SLAB_ATTR(order);
81819f0f 4344
73d342b1
DR
4345static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4346{
4347 return sprintf(buf, "%lu\n", s->min_partial);
4348}
4349
4350static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4351 size_t length)
4352{
4353 unsigned long min;
4354 int err;
4355
3dbb95f7 4356 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4357 if (err)
4358 return err;
4359
c0bdb232 4360 set_min_partial(s, min);
73d342b1
DR
4361 return length;
4362}
4363SLAB_ATTR(min_partial);
4364
49e22585
CL
4365static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4366{
4367 return sprintf(buf, "%u\n", s->cpu_partial);
4368}
4369
4370static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4371 size_t length)
4372{
4373 unsigned long objects;
4374 int err;
4375
3dbb95f7 4376 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4377 if (err)
4378 return err;
345c905d 4379 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4380 return -EINVAL;
49e22585
CL
4381
4382 s->cpu_partial = objects;
4383 flush_all(s);
4384 return length;
4385}
4386SLAB_ATTR(cpu_partial);
4387
81819f0f
CL
4388static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4389{
62c70bce
JP
4390 if (!s->ctor)
4391 return 0;
4392 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4393}
4394SLAB_ATTR_RO(ctor);
4395
81819f0f
CL
4396static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4397{
4307c14f 4398 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4399}
4400SLAB_ATTR_RO(aliases);
4401
81819f0f
CL
4402static ssize_t partial_show(struct kmem_cache *s, char *buf)
4403{
d9acf4b7 4404 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4405}
4406SLAB_ATTR_RO(partial);
4407
4408static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4409{
d9acf4b7 4410 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4411}
4412SLAB_ATTR_RO(cpu_slabs);
4413
4414static ssize_t objects_show(struct kmem_cache *s, char *buf)
4415{
205ab99d 4416 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4417}
4418SLAB_ATTR_RO(objects);
4419
205ab99d
CL
4420static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4421{
4422 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4423}
4424SLAB_ATTR_RO(objects_partial);
4425
49e22585
CL
4426static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4427{
4428 int objects = 0;
4429 int pages = 0;
4430 int cpu;
4431 int len;
4432
4433 for_each_online_cpu(cpu) {
4434 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4435
4436 if (page) {
4437 pages += page->pages;
4438 objects += page->pobjects;
4439 }
4440 }
4441
4442 len = sprintf(buf, "%d(%d)", objects, pages);
4443
4444#ifdef CONFIG_SMP
4445 for_each_online_cpu(cpu) {
4446 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4447
4448 if (page && len < PAGE_SIZE - 20)
4449 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4450 page->pobjects, page->pages);
4451 }
4452#endif
4453 return len + sprintf(buf + len, "\n");
4454}
4455SLAB_ATTR_RO(slabs_cpu_partial);
4456
a5a84755
CL
4457static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4458{
4459 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4460}
4461
4462static ssize_t reclaim_account_store(struct kmem_cache *s,
4463 const char *buf, size_t length)
4464{
4465 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4466 if (buf[0] == '1')
4467 s->flags |= SLAB_RECLAIM_ACCOUNT;
4468 return length;
4469}
4470SLAB_ATTR(reclaim_account);
4471
4472static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4473{
4474 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4475}
4476SLAB_ATTR_RO(hwcache_align);
4477
4478#ifdef CONFIG_ZONE_DMA
4479static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4480{
4481 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4482}
4483SLAB_ATTR_RO(cache_dma);
4484#endif
4485
4486static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4487{
4488 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4489}
4490SLAB_ATTR_RO(destroy_by_rcu);
4491
ab9a0f19
LJ
4492static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4493{
4494 return sprintf(buf, "%d\n", s->reserved);
4495}
4496SLAB_ATTR_RO(reserved);
4497
ab4d5ed5 4498#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4499static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4500{
4501 return show_slab_objects(s, buf, SO_ALL);
4502}
4503SLAB_ATTR_RO(slabs);
4504
205ab99d
CL
4505static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4506{
4507 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4508}
4509SLAB_ATTR_RO(total_objects);
4510
81819f0f
CL
4511static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4512{
4513 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4514}
4515
4516static ssize_t sanity_checks_store(struct kmem_cache *s,
4517 const char *buf, size_t length)
4518{
4519 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4520 if (buf[0] == '1') {
4521 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4522 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4523 }
81819f0f
CL
4524 return length;
4525}
4526SLAB_ATTR(sanity_checks);
4527
4528static ssize_t trace_show(struct kmem_cache *s, char *buf)
4529{
4530 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4531}
4532
4533static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4534 size_t length)
4535{
c9e16131
CL
4536 /*
4537 * Tracing a merged cache is going to give confusing results
4538 * as well as cause other issues like converting a mergeable
4539 * cache into an umergeable one.
4540 */
4541 if (s->refcount > 1)
4542 return -EINVAL;
4543
81819f0f 4544 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4545 if (buf[0] == '1') {
4546 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4547 s->flags |= SLAB_TRACE;
b789ef51 4548 }
81819f0f
CL
4549 return length;
4550}
4551SLAB_ATTR(trace);
4552
81819f0f
CL
4553static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4554{
4555 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4556}
4557
4558static ssize_t red_zone_store(struct kmem_cache *s,
4559 const char *buf, size_t length)
4560{
4561 if (any_slab_objects(s))
4562 return -EBUSY;
4563
4564 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4565 if (buf[0] == '1') {
4566 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4567 s->flags |= SLAB_RED_ZONE;
b789ef51 4568 }
06b285dc 4569 calculate_sizes(s, -1);
81819f0f
CL
4570 return length;
4571}
4572SLAB_ATTR(red_zone);
4573
4574static ssize_t poison_show(struct kmem_cache *s, char *buf)
4575{
4576 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4577}
4578
4579static ssize_t poison_store(struct kmem_cache *s,
4580 const char *buf, size_t length)
4581{
4582 if (any_slab_objects(s))
4583 return -EBUSY;
4584
4585 s->flags &= ~SLAB_POISON;
b789ef51
CL
4586 if (buf[0] == '1') {
4587 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4588 s->flags |= SLAB_POISON;
b789ef51 4589 }
06b285dc 4590 calculate_sizes(s, -1);
81819f0f
CL
4591 return length;
4592}
4593SLAB_ATTR(poison);
4594
4595static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4596{
4597 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4598}
4599
4600static ssize_t store_user_store(struct kmem_cache *s,
4601 const char *buf, size_t length)
4602{
4603 if (any_slab_objects(s))
4604 return -EBUSY;
4605
4606 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4607 if (buf[0] == '1') {
4608 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4609 s->flags |= SLAB_STORE_USER;
b789ef51 4610 }
06b285dc 4611 calculate_sizes(s, -1);
81819f0f
CL
4612 return length;
4613}
4614SLAB_ATTR(store_user);
4615
53e15af0
CL
4616static ssize_t validate_show(struct kmem_cache *s, char *buf)
4617{
4618 return 0;
4619}
4620
4621static ssize_t validate_store(struct kmem_cache *s,
4622 const char *buf, size_t length)
4623{
434e245d
CL
4624 int ret = -EINVAL;
4625
4626 if (buf[0] == '1') {
4627 ret = validate_slab_cache(s);
4628 if (ret >= 0)
4629 ret = length;
4630 }
4631 return ret;
53e15af0
CL
4632}
4633SLAB_ATTR(validate);
a5a84755
CL
4634
4635static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4636{
4637 if (!(s->flags & SLAB_STORE_USER))
4638 return -ENOSYS;
4639 return list_locations(s, buf, TRACK_ALLOC);
4640}
4641SLAB_ATTR_RO(alloc_calls);
4642
4643static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4644{
4645 if (!(s->flags & SLAB_STORE_USER))
4646 return -ENOSYS;
4647 return list_locations(s, buf, TRACK_FREE);
4648}
4649SLAB_ATTR_RO(free_calls);
4650#endif /* CONFIG_SLUB_DEBUG */
4651
4652#ifdef CONFIG_FAILSLAB
4653static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4654{
4655 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4656}
4657
4658static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4659 size_t length)
4660{
c9e16131
CL
4661 if (s->refcount > 1)
4662 return -EINVAL;
4663
a5a84755
CL
4664 s->flags &= ~SLAB_FAILSLAB;
4665 if (buf[0] == '1')
4666 s->flags |= SLAB_FAILSLAB;
4667 return length;
4668}
4669SLAB_ATTR(failslab);
ab4d5ed5 4670#endif
53e15af0 4671
2086d26a
CL
4672static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4673{
4674 return 0;
4675}
4676
4677static ssize_t shrink_store(struct kmem_cache *s,
4678 const char *buf, size_t length)
4679{
4680 if (buf[0] == '1') {
4681 int rc = kmem_cache_shrink(s);
4682
4683 if (rc)
4684 return rc;
4685 } else
4686 return -EINVAL;
4687 return length;
4688}
4689SLAB_ATTR(shrink);
4690
81819f0f 4691#ifdef CONFIG_NUMA
9824601e 4692static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4693{
9824601e 4694 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4695}
4696
9824601e 4697static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4698 const char *buf, size_t length)
4699{
0121c619
CL
4700 unsigned long ratio;
4701 int err;
4702
3dbb95f7 4703 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4704 if (err)
4705 return err;
4706
e2cb96b7 4707 if (ratio <= 100)
0121c619 4708 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4709
81819f0f
CL
4710 return length;
4711}
9824601e 4712SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4713#endif
4714
8ff12cfc 4715#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4716static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4717{
4718 unsigned long sum = 0;
4719 int cpu;
4720 int len;
4721 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4722
4723 if (!data)
4724 return -ENOMEM;
4725
4726 for_each_online_cpu(cpu) {
9dfc6e68 4727 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4728
4729 data[cpu] = x;
4730 sum += x;
4731 }
4732
4733 len = sprintf(buf, "%lu", sum);
4734
50ef37b9 4735#ifdef CONFIG_SMP
8ff12cfc
CL
4736 for_each_online_cpu(cpu) {
4737 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4738 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4739 }
50ef37b9 4740#endif
8ff12cfc
CL
4741 kfree(data);
4742 return len + sprintf(buf + len, "\n");
4743}
4744
78eb00cc
DR
4745static void clear_stat(struct kmem_cache *s, enum stat_item si)
4746{
4747 int cpu;
4748
4749 for_each_online_cpu(cpu)
9dfc6e68 4750 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4751}
4752
8ff12cfc
CL
4753#define STAT_ATTR(si, text) \
4754static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4755{ \
4756 return show_stat(s, buf, si); \
4757} \
78eb00cc
DR
4758static ssize_t text##_store(struct kmem_cache *s, \
4759 const char *buf, size_t length) \
4760{ \
4761 if (buf[0] != '0') \
4762 return -EINVAL; \
4763 clear_stat(s, si); \
4764 return length; \
4765} \
4766SLAB_ATTR(text); \
8ff12cfc
CL
4767
4768STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4769STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4770STAT_ATTR(FREE_FASTPATH, free_fastpath);
4771STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4772STAT_ATTR(FREE_FROZEN, free_frozen);
4773STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4774STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4775STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4776STAT_ATTR(ALLOC_SLAB, alloc_slab);
4777STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4778STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4779STAT_ATTR(FREE_SLAB, free_slab);
4780STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4781STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4782STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4783STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4784STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4785STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4786STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4787STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4788STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4789STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4790STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4791STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4792STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4793STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4794#endif
4795
06428780 4796static struct attribute *slab_attrs[] = {
81819f0f
CL
4797 &slab_size_attr.attr,
4798 &object_size_attr.attr,
4799 &objs_per_slab_attr.attr,
4800 &order_attr.attr,
73d342b1 4801 &min_partial_attr.attr,
49e22585 4802 &cpu_partial_attr.attr,
81819f0f 4803 &objects_attr.attr,
205ab99d 4804 &objects_partial_attr.attr,
81819f0f
CL
4805 &partial_attr.attr,
4806 &cpu_slabs_attr.attr,
4807 &ctor_attr.attr,
81819f0f
CL
4808 &aliases_attr.attr,
4809 &align_attr.attr,
81819f0f
CL
4810 &hwcache_align_attr.attr,
4811 &reclaim_account_attr.attr,
4812 &destroy_by_rcu_attr.attr,
a5a84755 4813 &shrink_attr.attr,
ab9a0f19 4814 &reserved_attr.attr,
49e22585 4815 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4816#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4817 &total_objects_attr.attr,
4818 &slabs_attr.attr,
4819 &sanity_checks_attr.attr,
4820 &trace_attr.attr,
81819f0f
CL
4821 &red_zone_attr.attr,
4822 &poison_attr.attr,
4823 &store_user_attr.attr,
53e15af0 4824 &validate_attr.attr,
88a420e4
CL
4825 &alloc_calls_attr.attr,
4826 &free_calls_attr.attr,
ab4d5ed5 4827#endif
81819f0f
CL
4828#ifdef CONFIG_ZONE_DMA
4829 &cache_dma_attr.attr,
4830#endif
4831#ifdef CONFIG_NUMA
9824601e 4832 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4833#endif
4834#ifdef CONFIG_SLUB_STATS
4835 &alloc_fastpath_attr.attr,
4836 &alloc_slowpath_attr.attr,
4837 &free_fastpath_attr.attr,
4838 &free_slowpath_attr.attr,
4839 &free_frozen_attr.attr,
4840 &free_add_partial_attr.attr,
4841 &free_remove_partial_attr.attr,
4842 &alloc_from_partial_attr.attr,
4843 &alloc_slab_attr.attr,
4844 &alloc_refill_attr.attr,
e36a2652 4845 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4846 &free_slab_attr.attr,
4847 &cpuslab_flush_attr.attr,
4848 &deactivate_full_attr.attr,
4849 &deactivate_empty_attr.attr,
4850 &deactivate_to_head_attr.attr,
4851 &deactivate_to_tail_attr.attr,
4852 &deactivate_remote_frees_attr.attr,
03e404af 4853 &deactivate_bypass_attr.attr,
65c3376a 4854 &order_fallback_attr.attr,
b789ef51
CL
4855 &cmpxchg_double_fail_attr.attr,
4856 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4857 &cpu_partial_alloc_attr.attr,
4858 &cpu_partial_free_attr.attr,
8028dcea
AS
4859 &cpu_partial_node_attr.attr,
4860 &cpu_partial_drain_attr.attr,
81819f0f 4861#endif
4c13dd3b
DM
4862#ifdef CONFIG_FAILSLAB
4863 &failslab_attr.attr,
4864#endif
4865
81819f0f
CL
4866 NULL
4867};
4868
4869static struct attribute_group slab_attr_group = {
4870 .attrs = slab_attrs,
4871};
4872
4873static ssize_t slab_attr_show(struct kobject *kobj,
4874 struct attribute *attr,
4875 char *buf)
4876{
4877 struct slab_attribute *attribute;
4878 struct kmem_cache *s;
4879 int err;
4880
4881 attribute = to_slab_attr(attr);
4882 s = to_slab(kobj);
4883
4884 if (!attribute->show)
4885 return -EIO;
4886
4887 err = attribute->show(s, buf);
4888
4889 return err;
4890}
4891
4892static ssize_t slab_attr_store(struct kobject *kobj,
4893 struct attribute *attr,
4894 const char *buf, size_t len)
4895{
4896 struct slab_attribute *attribute;
4897 struct kmem_cache *s;
4898 int err;
4899
4900 attribute = to_slab_attr(attr);
4901 s = to_slab(kobj);
4902
4903 if (!attribute->store)
4904 return -EIO;
4905
4906 err = attribute->store(s, buf, len);
107dab5c
GC
4907#ifdef CONFIG_MEMCG_KMEM
4908 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4909 int i;
81819f0f 4910
107dab5c
GC
4911 mutex_lock(&slab_mutex);
4912 if (s->max_attr_size < len)
4913 s->max_attr_size = len;
4914
ebe945c2
GC
4915 /*
4916 * This is a best effort propagation, so this function's return
4917 * value will be determined by the parent cache only. This is
4918 * basically because not all attributes will have a well
4919 * defined semantics for rollbacks - most of the actions will
4920 * have permanent effects.
4921 *
4922 * Returning the error value of any of the children that fail
4923 * is not 100 % defined, in the sense that users seeing the
4924 * error code won't be able to know anything about the state of
4925 * the cache.
4926 *
4927 * Only returning the error code for the parent cache at least
4928 * has well defined semantics. The cache being written to
4929 * directly either failed or succeeded, in which case we loop
4930 * through the descendants with best-effort propagation.
4931 */
107dab5c 4932 for_each_memcg_cache_index(i) {
2ade4de8 4933 struct kmem_cache *c = cache_from_memcg_idx(s, i);
107dab5c
GC
4934 if (c)
4935 attribute->store(c, buf, len);
4936 }
4937 mutex_unlock(&slab_mutex);
4938 }
4939#endif
81819f0f
CL
4940 return err;
4941}
4942
107dab5c
GC
4943static void memcg_propagate_slab_attrs(struct kmem_cache *s)
4944{
4945#ifdef CONFIG_MEMCG_KMEM
4946 int i;
4947 char *buffer = NULL;
93030d83 4948 struct kmem_cache *root_cache;
107dab5c 4949
93030d83 4950 if (is_root_cache(s))
107dab5c
GC
4951 return;
4952
93030d83
VD
4953 root_cache = s->memcg_params->root_cache;
4954
107dab5c
GC
4955 /*
4956 * This mean this cache had no attribute written. Therefore, no point
4957 * in copying default values around
4958 */
93030d83 4959 if (!root_cache->max_attr_size)
107dab5c
GC
4960 return;
4961
4962 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
4963 char mbuf[64];
4964 char *buf;
4965 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
4966
4967 if (!attr || !attr->store || !attr->show)
4968 continue;
4969
4970 /*
4971 * It is really bad that we have to allocate here, so we will
4972 * do it only as a fallback. If we actually allocate, though,
4973 * we can just use the allocated buffer until the end.
4974 *
4975 * Most of the slub attributes will tend to be very small in
4976 * size, but sysfs allows buffers up to a page, so they can
4977 * theoretically happen.
4978 */
4979 if (buffer)
4980 buf = buffer;
93030d83 4981 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
4982 buf = mbuf;
4983 else {
4984 buffer = (char *) get_zeroed_page(GFP_KERNEL);
4985 if (WARN_ON(!buffer))
4986 continue;
4987 buf = buffer;
4988 }
4989
93030d83 4990 attr->show(root_cache, buf);
107dab5c
GC
4991 attr->store(s, buf, strlen(buf));
4992 }
4993
4994 if (buffer)
4995 free_page((unsigned long)buffer);
4996#endif
4997}
4998
41a21285
CL
4999static void kmem_cache_release(struct kobject *k)
5000{
5001 slab_kmem_cache_release(to_slab(k));
5002}
5003
52cf25d0 5004static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5005 .show = slab_attr_show,
5006 .store = slab_attr_store,
5007};
5008
5009static struct kobj_type slab_ktype = {
5010 .sysfs_ops = &slab_sysfs_ops,
41a21285 5011 .release = kmem_cache_release,
81819f0f
CL
5012};
5013
5014static int uevent_filter(struct kset *kset, struct kobject *kobj)
5015{
5016 struct kobj_type *ktype = get_ktype(kobj);
5017
5018 if (ktype == &slab_ktype)
5019 return 1;
5020 return 0;
5021}
5022
9cd43611 5023static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5024 .filter = uevent_filter,
5025};
5026
27c3a314 5027static struct kset *slab_kset;
81819f0f 5028
9a41707b
VD
5029static inline struct kset *cache_kset(struct kmem_cache *s)
5030{
5031#ifdef CONFIG_MEMCG_KMEM
5032 if (!is_root_cache(s))
5033 return s->memcg_params->root_cache->memcg_kset;
5034#endif
5035 return slab_kset;
5036}
5037
81819f0f
CL
5038#define ID_STR_LENGTH 64
5039
5040/* Create a unique string id for a slab cache:
6446faa2
CL
5041 *
5042 * Format :[flags-]size
81819f0f
CL
5043 */
5044static char *create_unique_id(struct kmem_cache *s)
5045{
5046 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5047 char *p = name;
5048
5049 BUG_ON(!name);
5050
5051 *p++ = ':';
5052 /*
5053 * First flags affecting slabcache operations. We will only
5054 * get here for aliasable slabs so we do not need to support
5055 * too many flags. The flags here must cover all flags that
5056 * are matched during merging to guarantee that the id is
5057 * unique.
5058 */
5059 if (s->flags & SLAB_CACHE_DMA)
5060 *p++ = 'd';
5061 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5062 *p++ = 'a';
5063 if (s->flags & SLAB_DEBUG_FREE)
5064 *p++ = 'F';
5a896d9e
VN
5065 if (!(s->flags & SLAB_NOTRACK))
5066 *p++ = 't';
81819f0f
CL
5067 if (p != name + 1)
5068 *p++ = '-';
5069 p += sprintf(p, "%07d", s->size);
2633d7a0 5070
81819f0f
CL
5071 BUG_ON(p > name + ID_STR_LENGTH - 1);
5072 return name;
5073}
5074
5075static int sysfs_slab_add(struct kmem_cache *s)
5076{
5077 int err;
5078 const char *name;
45530c44 5079 int unmergeable = slab_unmergeable(s);
81819f0f 5080
81819f0f
CL
5081 if (unmergeable) {
5082 /*
5083 * Slabcache can never be merged so we can use the name proper.
5084 * This is typically the case for debug situations. In that
5085 * case we can catch duplicate names easily.
5086 */
27c3a314 5087 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5088 name = s->name;
5089 } else {
5090 /*
5091 * Create a unique name for the slab as a target
5092 * for the symlinks.
5093 */
5094 name = create_unique_id(s);
5095 }
5096
9a41707b 5097 s->kobj.kset = cache_kset(s);
26e4f205 5098 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5099 if (err)
5100 goto out_put_kobj;
81819f0f
CL
5101
5102 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5103 if (err)
5104 goto out_del_kobj;
9a41707b
VD
5105
5106#ifdef CONFIG_MEMCG_KMEM
5107 if (is_root_cache(s)) {
5108 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5109 if (!s->memcg_kset) {
54b6a731
DJ
5110 err = -ENOMEM;
5111 goto out_del_kobj;
9a41707b
VD
5112 }
5113 }
5114#endif
5115
81819f0f
CL
5116 kobject_uevent(&s->kobj, KOBJ_ADD);
5117 if (!unmergeable) {
5118 /* Setup first alias */
5119 sysfs_slab_alias(s, s->name);
81819f0f 5120 }
54b6a731
DJ
5121out:
5122 if (!unmergeable)
5123 kfree(name);
5124 return err;
5125out_del_kobj:
5126 kobject_del(&s->kobj);
5127out_put_kobj:
5128 kobject_put(&s->kobj);
5129 goto out;
81819f0f
CL
5130}
5131
41a21285 5132void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5133{
97d06609 5134 if (slab_state < FULL)
2bce6485
CL
5135 /*
5136 * Sysfs has not been setup yet so no need to remove the
5137 * cache from sysfs.
5138 */
5139 return;
5140
9a41707b
VD
5141#ifdef CONFIG_MEMCG_KMEM
5142 kset_unregister(s->memcg_kset);
5143#endif
81819f0f
CL
5144 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5145 kobject_del(&s->kobj);
151c602f 5146 kobject_put(&s->kobj);
81819f0f
CL
5147}
5148
5149/*
5150 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5151 * available lest we lose that information.
81819f0f
CL
5152 */
5153struct saved_alias {
5154 struct kmem_cache *s;
5155 const char *name;
5156 struct saved_alias *next;
5157};
5158
5af328a5 5159static struct saved_alias *alias_list;
81819f0f
CL
5160
5161static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5162{
5163 struct saved_alias *al;
5164
97d06609 5165 if (slab_state == FULL) {
81819f0f
CL
5166 /*
5167 * If we have a leftover link then remove it.
5168 */
27c3a314
GKH
5169 sysfs_remove_link(&slab_kset->kobj, name);
5170 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5171 }
5172
5173 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5174 if (!al)
5175 return -ENOMEM;
5176
5177 al->s = s;
5178 al->name = name;
5179 al->next = alias_list;
5180 alias_list = al;
5181 return 0;
5182}
5183
5184static int __init slab_sysfs_init(void)
5185{
5b95a4ac 5186 struct kmem_cache *s;
81819f0f
CL
5187 int err;
5188
18004c5d 5189 mutex_lock(&slab_mutex);
2bce6485 5190
0ff21e46 5191 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5192 if (!slab_kset) {
18004c5d 5193 mutex_unlock(&slab_mutex);
f9f58285 5194 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5195 return -ENOSYS;
5196 }
5197
97d06609 5198 slab_state = FULL;
26a7bd03 5199
5b95a4ac 5200 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5201 err = sysfs_slab_add(s);
5d540fb7 5202 if (err)
f9f58285
FF
5203 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5204 s->name);
26a7bd03 5205 }
81819f0f
CL
5206
5207 while (alias_list) {
5208 struct saved_alias *al = alias_list;
5209
5210 alias_list = alias_list->next;
5211 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5212 if (err)
f9f58285
FF
5213 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5214 al->name);
81819f0f
CL
5215 kfree(al);
5216 }
5217
18004c5d 5218 mutex_unlock(&slab_mutex);
81819f0f
CL
5219 resiliency_test();
5220 return 0;
5221}
5222
5223__initcall(slab_sysfs_init);
ab4d5ed5 5224#endif /* CONFIG_SYSFS */
57ed3eda
PE
5225
5226/*
5227 * The /proc/slabinfo ABI
5228 */
158a9624 5229#ifdef CONFIG_SLABINFO
0d7561c6 5230void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5231{
57ed3eda 5232 unsigned long nr_slabs = 0;
205ab99d
CL
5233 unsigned long nr_objs = 0;
5234 unsigned long nr_free = 0;
57ed3eda 5235 int node;
fa45dc25 5236 struct kmem_cache_node *n;
57ed3eda 5237
fa45dc25 5238 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5239 nr_slabs += node_nr_slabs(n);
5240 nr_objs += node_nr_objs(n);
205ab99d 5241 nr_free += count_partial(n, count_free);
57ed3eda
PE
5242 }
5243
0d7561c6
GC
5244 sinfo->active_objs = nr_objs - nr_free;
5245 sinfo->num_objs = nr_objs;
5246 sinfo->active_slabs = nr_slabs;
5247 sinfo->num_slabs = nr_slabs;
5248 sinfo->objects_per_slab = oo_objects(s->oo);
5249 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5250}
5251
0d7561c6 5252void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5253{
7b3c3a50
AD
5254}
5255
b7454ad3
GC
5256ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5257 size_t count, loff_t *ppos)
7b3c3a50 5258{
b7454ad3 5259 return -EIO;
7b3c3a50 5260}
158a9624 5261#endif /* CONFIG_SLABINFO */