slub: pass kmem_cache_cpu pointer to get_partial()
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
81819f0f 32
4a92379b
RK
33#include <trace/events/kmem.h>
34
81819f0f
CL
35/*
36 * Lock order:
881db7fb
CL
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 40 *
881db7fb
CL
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
81819f0f
CL
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
b789ef51
CL
134/* Enable to log cmpxchg failures */
135#undef SLUB_DEBUG_CMPXCHG
136
2086d26a
CL
137/*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
76be8950 141#define MIN_PARTIAL 5
e95eed57 142
2086d26a
CL
143/*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148#define MAX_PARTIAL 10
149
81819f0f
CL
150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
672bba3a 152
fa5ec8a1 153/*
3de47213
DR
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
fa5ec8a1 157 */
3de47213 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 159
81819f0f
CL
160/*
161 * Set of flags that will prevent slab merging
162 */
163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
81819f0f
CL
166
167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 168 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 169
210b5c06
CG
170#define OO_SHIFT 16
171#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 172#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 173
81819f0f 174/* Internal SLUB flags */
f90ec390 175#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 176#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
177
178static int kmem_size = sizeof(struct kmem_cache);
179
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
184static enum {
185 DOWN, /* No slab functionality available */
51df1142 186 PARTIAL, /* Kmem_cache_node works */
672bba3a 187 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
188 SYSFS /* Sysfs up */
189} slab_state = DOWN;
190
191/* A list of all slab caches on the system */
192static DECLARE_RWSEM(slub_lock);
5af328a5 193static LIST_HEAD(slab_caches);
81819f0f 194
02cbc874
CL
195/*
196 * Tracking user of a slab.
197 */
d6543e39 198#define TRACK_ADDRS_COUNT 16
02cbc874 199struct track {
ce71e27c 200 unsigned long addr; /* Called from address */
d6543e39
BG
201#ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203#endif
02cbc874
CL
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207};
208
209enum track_item { TRACK_ALLOC, TRACK_FREE };
210
ab4d5ed5 211#ifdef CONFIG_SYSFS
81819f0f
CL
212static int sysfs_slab_add(struct kmem_cache *);
213static int sysfs_slab_alias(struct kmem_cache *, const char *);
214static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 215
81819f0f 216#else
0c710013
CL
217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
151c602f
CL
220static inline void sysfs_slab_remove(struct kmem_cache *s)
221{
84c1cf62 222 kfree(s->name);
151c602f
CL
223 kfree(s);
224}
8ff12cfc 225
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
84e554e6 231 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
232#endif
233}
234
81819f0f
CL
235/********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239int slab_is_available(void)
240{
241 return slab_state >= UP;
242}
243
244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245{
81819f0f 246 return s->node[node];
81819f0f
CL
247}
248
6446faa2 249/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
250static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252{
253 void *base;
254
a973e9dd 255 if (!object)
02cbc874
CL
256 return 1;
257
a973e9dd 258 base = page_address(page);
39b26464 259 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265}
266
7656c72b
CL
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
269 return *(void **)(object + s->offset);
270}
271
1393d9a1
CL
272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273{
274 void *p;
275
276#ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278#else
279 p = get_freepointer(s, object);
280#endif
281 return p;
282}
283
7656c72b
CL
284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285{
286 *(void **)(object + s->offset) = fp;
287}
288
289/* Loop over all objects in a slab */
224a88be
CL
290#define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
292 __p += (__s)->size)
293
7656c72b
CL
294/* Determine object index from a given position */
295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296{
297 return (p - addr) / s->size;
298}
299
d71f606f
MK
300static inline size_t slab_ksize(const struct kmem_cache *s)
301{
302#ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310#endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322}
323
ab9a0f19
LJ
324static inline int order_objects(int order, unsigned long size, int reserved)
325{
326 return ((PAGE_SIZE << order) - reserved) / size;
327}
328
834f3d11 329static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 330 unsigned long size, int reserved)
834f3d11
CL
331{
332 struct kmem_cache_order_objects x = {
ab9a0f19 333 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
334 };
335
336 return x;
337}
338
339static inline int oo_order(struct kmem_cache_order_objects x)
340{
210b5c06 341 return x.x >> OO_SHIFT;
834f3d11
CL
342}
343
344static inline int oo_objects(struct kmem_cache_order_objects x)
345{
210b5c06 346 return x.x & OO_MASK;
834f3d11
CL
347}
348
881db7fb
CL
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
354 bit_spin_lock(PG_locked, &page->flags);
355}
356
357static __always_inline void slab_unlock(struct page *page)
358{
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
369#ifdef CONFIG_CMPXCHG_DOUBLE
370 if (s->flags & __CMPXCHG_DOUBLE) {
371 if (cmpxchg_double(&page->freelist,
372 freelist_old, counters_old,
373 freelist_new, counters_new))
374 return 1;
375 } else
376#endif
377 {
378 slab_lock(page);
379 if (page->freelist == freelist_old && page->counters == counters_old) {
380 page->freelist = freelist_new;
381 page->counters = counters_new;
382 slab_unlock(page);
383 return 1;
384 }
385 slab_unlock(page);
386 }
387
388 cpu_relax();
389 stat(s, CMPXCHG_DOUBLE_FAIL);
390
391#ifdef SLUB_DEBUG_CMPXCHG
392 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393#endif
394
395 return 0;
396}
397
b789ef51
CL
398static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 void *freelist_old, unsigned long counters_old,
400 void *freelist_new, unsigned long counters_new,
401 const char *n)
402{
403#ifdef CONFIG_CMPXCHG_DOUBLE
404 if (s->flags & __CMPXCHG_DOUBLE) {
405 if (cmpxchg_double(&page->freelist,
406 freelist_old, counters_old,
407 freelist_new, counters_new))
408 return 1;
409 } else
410#endif
411 {
1d07171c
CL
412 unsigned long flags;
413
414 local_irq_save(flags);
881db7fb 415 slab_lock(page);
b789ef51
CL
416 if (page->freelist == freelist_old && page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
881db7fb 419 slab_unlock(page);
1d07171c 420 local_irq_restore(flags);
b789ef51
CL
421 return 1;
422 }
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
b789ef51
CL
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430#ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432#endif
433
434 return 0;
435}
436
41ecc55b 437#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
438/*
439 * Determine a map of object in use on a page.
440 *
881db7fb 441 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
442 * not vanish from under us.
443 */
444static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445{
446 void *p;
447 void *addr = page_address(page);
448
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
451}
452
41ecc55b
CL
453/*
454 * Debug settings:
455 */
f0630fff
CL
456#ifdef CONFIG_SLUB_DEBUG_ON
457static int slub_debug = DEBUG_DEFAULT_FLAGS;
458#else
41ecc55b 459static int slub_debug;
f0630fff 460#endif
41ecc55b
CL
461
462static char *slub_debug_slabs;
fa5ec8a1 463static int disable_higher_order_debug;
41ecc55b 464
81819f0f
CL
465/*
466 * Object debugging
467 */
468static void print_section(char *text, u8 *addr, unsigned int length)
469{
470 int i, offset;
471 int newline = 1;
472 char ascii[17];
473
474 ascii[16] = 0;
475
476 for (i = 0; i < length; i++) {
477 if (newline) {
24922684 478 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
479 newline = 0;
480 }
06428780 481 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
482 offset = i % 16;
483 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
484 if (offset == 15) {
06428780 485 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
486 newline = 1;
487 }
488 }
489 if (!newline) {
490 i %= 16;
491 while (i < 16) {
06428780 492 printk(KERN_CONT " ");
81819f0f
CL
493 ascii[i] = ' ';
494 i++;
495 }
06428780 496 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
497 }
498}
499
81819f0f
CL
500static struct track *get_track(struct kmem_cache *s, void *object,
501 enum track_item alloc)
502{
503 struct track *p;
504
505 if (s->offset)
506 p = object + s->offset + sizeof(void *);
507 else
508 p = object + s->inuse;
509
510 return p + alloc;
511}
512
513static void set_track(struct kmem_cache *s, void *object,
ce71e27c 514 enum track_item alloc, unsigned long addr)
81819f0f 515{
1a00df4a 516 struct track *p = get_track(s, object, alloc);
81819f0f 517
81819f0f 518 if (addr) {
d6543e39
BG
519#ifdef CONFIG_STACKTRACE
520 struct stack_trace trace;
521 int i;
522
523 trace.nr_entries = 0;
524 trace.max_entries = TRACK_ADDRS_COUNT;
525 trace.entries = p->addrs;
526 trace.skip = 3;
527 save_stack_trace(&trace);
528
529 /* See rant in lockdep.c */
530 if (trace.nr_entries != 0 &&
531 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 trace.nr_entries--;
533
534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 p->addrs[i] = 0;
536#endif
81819f0f
CL
537 p->addr = addr;
538 p->cpu = smp_processor_id();
88e4ccf2 539 p->pid = current->pid;
81819f0f
CL
540 p->when = jiffies;
541 } else
542 memset(p, 0, sizeof(struct track));
543}
544
81819f0f
CL
545static void init_tracking(struct kmem_cache *s, void *object)
546{
24922684
CL
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
ce71e27c
EGM
550 set_track(s, object, TRACK_FREE, 0UL);
551 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
552}
553
554static void print_track(const char *s, struct track *t)
555{
556 if (!t->addr)
557 return;
558
7daf705f 559 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
561#ifdef CONFIG_STACKTRACE
562 {
563 int i;
564 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 if (t->addrs[i])
566 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
567 else
568 break;
569 }
570#endif
24922684
CL
571}
572
573static void print_tracking(struct kmem_cache *s, void *object)
574{
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
577
578 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 print_track("Freed", get_track(s, object, TRACK_FREE));
580}
581
582static void print_page_info(struct page *page)
583{
39b26464
CL
584 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
586
587}
588
589static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590{
591 va_list args;
592 char buf[100];
593
594 va_start(args, fmt);
595 vsnprintf(buf, sizeof(buf), fmt, args);
596 va_end(args);
597 printk(KERN_ERR "========================================"
598 "=====================================\n");
599 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
600 printk(KERN_ERR "----------------------------------------"
601 "-------------------------------------\n\n");
81819f0f
CL
602}
603
24922684
CL
604static void slab_fix(struct kmem_cache *s, char *fmt, ...)
605{
606 va_list args;
607 char buf[100];
608
609 va_start(args, fmt);
610 vsnprintf(buf, sizeof(buf), fmt, args);
611 va_end(args);
612 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
613}
614
615static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
616{
617 unsigned int off; /* Offset of last byte */
a973e9dd 618 u8 *addr = page_address(page);
24922684
CL
619
620 print_tracking(s, p);
621
622 print_page_info(page);
623
624 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
625 p, p - addr, get_freepointer(s, p));
626
627 if (p > addr + 16)
628 print_section("Bytes b4", p - 16, 16);
629
0ebd652b 630 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
631
632 if (s->flags & SLAB_RED_ZONE)
633 print_section("Redzone", p + s->objsize,
634 s->inuse - s->objsize);
635
81819f0f
CL
636 if (s->offset)
637 off = s->offset + sizeof(void *);
638 else
639 off = s->inuse;
640
24922684 641 if (s->flags & SLAB_STORE_USER)
81819f0f 642 off += 2 * sizeof(struct track);
81819f0f
CL
643
644 if (off != s->size)
645 /* Beginning of the filler is the free pointer */
24922684
CL
646 print_section("Padding", p + off, s->size - off);
647
648 dump_stack();
81819f0f
CL
649}
650
651static void object_err(struct kmem_cache *s, struct page *page,
652 u8 *object, char *reason)
653{
3dc50637 654 slab_bug(s, "%s", reason);
24922684 655 print_trailer(s, page, object);
81819f0f
CL
656}
657
24922684 658static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
659{
660 va_list args;
661 char buf[100];
662
24922684
CL
663 va_start(args, fmt);
664 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 665 va_end(args);
3dc50637 666 slab_bug(s, "%s", buf);
24922684 667 print_page_info(page);
81819f0f
CL
668 dump_stack();
669}
670
f7cb1933 671static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
672{
673 u8 *p = object;
674
675 if (s->flags & __OBJECT_POISON) {
676 memset(p, POISON_FREE, s->objsize - 1);
06428780 677 p[s->objsize - 1] = POISON_END;
81819f0f
CL
678 }
679
680 if (s->flags & SLAB_RED_ZONE)
f7cb1933 681 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
682}
683
c4089f98 684static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
81819f0f
CL
685{
686 while (bytes) {
c4089f98 687 if (*start != value)
24922684 688 return start;
81819f0f
CL
689 start++;
690 bytes--;
691 }
24922684
CL
692 return NULL;
693}
694
c4089f98
MS
695static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
696{
697 u64 value64;
698 unsigned int words, prefix;
699
700 if (bytes <= 16)
701 return check_bytes8(start, value, bytes);
702
703 value64 = value | value << 8 | value << 16 | value << 24;
ef62fb32 704 value64 = (value64 & 0xffffffff) | value64 << 32;
c4089f98
MS
705 prefix = 8 - ((unsigned long)start) % 8;
706
707 if (prefix) {
708 u8 *r = check_bytes8(start, value, prefix);
709 if (r)
710 return r;
711 start += prefix;
712 bytes -= prefix;
713 }
714
715 words = bytes / 8;
716
717 while (words) {
718 if (*(u64 *)start != value64)
719 return check_bytes8(start, value, 8);
720 start += 8;
721 words--;
722 }
723
724 return check_bytes8(start, value, bytes % 8);
725}
726
24922684
CL
727static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
728 void *from, void *to)
729{
730 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
731 memset(from, data, to - from);
732}
733
734static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
735 u8 *object, char *what,
06428780 736 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
737{
738 u8 *fault;
739 u8 *end;
740
741 fault = check_bytes(start, value, bytes);
742 if (!fault)
743 return 1;
744
745 end = start + bytes;
746 while (end > fault && end[-1] == value)
747 end--;
748
749 slab_bug(s, "%s overwritten", what);
750 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
751 fault, end - 1, fault[0], value);
752 print_trailer(s, page, object);
753
754 restore_bytes(s, what, value, fault, end);
755 return 0;
81819f0f
CL
756}
757
81819f0f
CL
758/*
759 * Object layout:
760 *
761 * object address
762 * Bytes of the object to be managed.
763 * If the freepointer may overlay the object then the free
764 * pointer is the first word of the object.
672bba3a 765 *
81819f0f
CL
766 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
767 * 0xa5 (POISON_END)
768 *
769 * object + s->objsize
770 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
771 * Padding is extended by another word if Redzoning is enabled and
772 * objsize == inuse.
773 *
81819f0f
CL
774 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
775 * 0xcc (RED_ACTIVE) for objects in use.
776 *
777 * object + s->inuse
672bba3a
CL
778 * Meta data starts here.
779 *
81819f0f
CL
780 * A. Free pointer (if we cannot overwrite object on free)
781 * B. Tracking data for SLAB_STORE_USER
672bba3a 782 * C. Padding to reach required alignment boundary or at mininum
6446faa2 783 * one word if debugging is on to be able to detect writes
672bba3a
CL
784 * before the word boundary.
785 *
786 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
787 *
788 * object + s->size
672bba3a 789 * Nothing is used beyond s->size.
81819f0f 790 *
672bba3a
CL
791 * If slabcaches are merged then the objsize and inuse boundaries are mostly
792 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
793 * may be used with merged slabcaches.
794 */
795
81819f0f
CL
796static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
797{
798 unsigned long off = s->inuse; /* The end of info */
799
800 if (s->offset)
801 /* Freepointer is placed after the object. */
802 off += sizeof(void *);
803
804 if (s->flags & SLAB_STORE_USER)
805 /* We also have user information there */
806 off += 2 * sizeof(struct track);
807
808 if (s->size == off)
809 return 1;
810
24922684
CL
811 return check_bytes_and_report(s, page, p, "Object padding",
812 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
813}
814
39b26464 815/* Check the pad bytes at the end of a slab page */
81819f0f
CL
816static int slab_pad_check(struct kmem_cache *s, struct page *page)
817{
24922684
CL
818 u8 *start;
819 u8 *fault;
820 u8 *end;
821 int length;
822 int remainder;
81819f0f
CL
823
824 if (!(s->flags & SLAB_POISON))
825 return 1;
826
a973e9dd 827 start = page_address(page);
ab9a0f19 828 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
829 end = start + length;
830 remainder = length % s->size;
81819f0f
CL
831 if (!remainder)
832 return 1;
833
39b26464 834 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
835 if (!fault)
836 return 1;
837 while (end > fault && end[-1] == POISON_INUSE)
838 end--;
839
840 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 841 print_section("Padding", end - remainder, remainder);
24922684 842
8a3d271d 843 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 844 return 0;
81819f0f
CL
845}
846
847static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 848 void *object, u8 val)
81819f0f
CL
849{
850 u8 *p = object;
851 u8 *endobject = object + s->objsize;
852
853 if (s->flags & SLAB_RED_ZONE) {
24922684 854 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 855 endobject, val, s->inuse - s->objsize))
81819f0f 856 return 0;
81819f0f 857 } else {
3adbefee
IM
858 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
859 check_bytes_and_report(s, page, p, "Alignment padding",
860 endobject, POISON_INUSE, s->inuse - s->objsize);
861 }
81819f0f
CL
862 }
863
864 if (s->flags & SLAB_POISON) {
f7cb1933 865 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
866 (!check_bytes_and_report(s, page, p, "Poison", p,
867 POISON_FREE, s->objsize - 1) ||
868 !check_bytes_and_report(s, page, p, "Poison",
06428780 869 p + s->objsize - 1, POISON_END, 1)))
81819f0f 870 return 0;
81819f0f
CL
871 /*
872 * check_pad_bytes cleans up on its own.
873 */
874 check_pad_bytes(s, page, p);
875 }
876
f7cb1933 877 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
878 /*
879 * Object and freepointer overlap. Cannot check
880 * freepointer while object is allocated.
881 */
882 return 1;
883
884 /* Check free pointer validity */
885 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
886 object_err(s, page, p, "Freepointer corrupt");
887 /*
9f6c708e 888 * No choice but to zap it and thus lose the remainder
81819f0f 889 * of the free objects in this slab. May cause
672bba3a 890 * another error because the object count is now wrong.
81819f0f 891 */
a973e9dd 892 set_freepointer(s, p, NULL);
81819f0f
CL
893 return 0;
894 }
895 return 1;
896}
897
898static int check_slab(struct kmem_cache *s, struct page *page)
899{
39b26464
CL
900 int maxobj;
901
81819f0f
CL
902 VM_BUG_ON(!irqs_disabled());
903
904 if (!PageSlab(page)) {
24922684 905 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
906 return 0;
907 }
39b26464 908
ab9a0f19 909 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
910 if (page->objects > maxobj) {
911 slab_err(s, page, "objects %u > max %u",
912 s->name, page->objects, maxobj);
913 return 0;
914 }
915 if (page->inuse > page->objects) {
24922684 916 slab_err(s, page, "inuse %u > max %u",
39b26464 917 s->name, page->inuse, page->objects);
81819f0f
CL
918 return 0;
919 }
920 /* Slab_pad_check fixes things up after itself */
921 slab_pad_check(s, page);
922 return 1;
923}
924
925/*
672bba3a
CL
926 * Determine if a certain object on a page is on the freelist. Must hold the
927 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
928 */
929static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
930{
931 int nr = 0;
881db7fb 932 void *fp;
81819f0f 933 void *object = NULL;
224a88be 934 unsigned long max_objects;
81819f0f 935
881db7fb 936 fp = page->freelist;
39b26464 937 while (fp && nr <= page->objects) {
81819f0f
CL
938 if (fp == search)
939 return 1;
940 if (!check_valid_pointer(s, page, fp)) {
941 if (object) {
942 object_err(s, page, object,
943 "Freechain corrupt");
a973e9dd 944 set_freepointer(s, object, NULL);
81819f0f
CL
945 break;
946 } else {
24922684 947 slab_err(s, page, "Freepointer corrupt");
a973e9dd 948 page->freelist = NULL;
39b26464 949 page->inuse = page->objects;
24922684 950 slab_fix(s, "Freelist cleared");
81819f0f
CL
951 return 0;
952 }
953 break;
954 }
955 object = fp;
956 fp = get_freepointer(s, object);
957 nr++;
958 }
959
ab9a0f19 960 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
961 if (max_objects > MAX_OBJS_PER_PAGE)
962 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
963
964 if (page->objects != max_objects) {
965 slab_err(s, page, "Wrong number of objects. Found %d but "
966 "should be %d", page->objects, max_objects);
967 page->objects = max_objects;
968 slab_fix(s, "Number of objects adjusted.");
969 }
39b26464 970 if (page->inuse != page->objects - nr) {
70d71228 971 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
972 "counted were %d", page->inuse, page->objects - nr);
973 page->inuse = page->objects - nr;
24922684 974 slab_fix(s, "Object count adjusted.");
81819f0f
CL
975 }
976 return search == NULL;
977}
978
0121c619
CL
979static void trace(struct kmem_cache *s, struct page *page, void *object,
980 int alloc)
3ec09742
CL
981{
982 if (s->flags & SLAB_TRACE) {
983 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
984 s->name,
985 alloc ? "alloc" : "free",
986 object, page->inuse,
987 page->freelist);
988
989 if (!alloc)
990 print_section("Object", (void *)object, s->objsize);
991
992 dump_stack();
993 }
994}
995
c016b0bd
CL
996/*
997 * Hooks for other subsystems that check memory allocations. In a typical
998 * production configuration these hooks all should produce no code at all.
999 */
1000static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1001{
c1d50836 1002 flags &= gfp_allowed_mask;
c016b0bd
CL
1003 lockdep_trace_alloc(flags);
1004 might_sleep_if(flags & __GFP_WAIT);
1005
1006 return should_failslab(s->objsize, flags, s->flags);
1007}
1008
1009static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
1010{
c1d50836 1011 flags &= gfp_allowed_mask;
b3d41885 1012 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
1013 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
1014}
1015
1016static inline void slab_free_hook(struct kmem_cache *s, void *x)
1017{
1018 kmemleak_free_recursive(x, s->flags);
c016b0bd 1019
d3f661d6
CL
1020 /*
1021 * Trouble is that we may no longer disable interupts in the fast path
1022 * So in order to make the debug calls that expect irqs to be
1023 * disabled we need to disable interrupts temporarily.
1024 */
1025#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1026 {
1027 unsigned long flags;
1028
1029 local_irq_save(flags);
1030 kmemcheck_slab_free(s, x, s->objsize);
1031 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
1032 local_irq_restore(flags);
1033 }
1034#endif
f9b615de
TG
1035 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1036 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
1037}
1038
643b1138 1039/*
672bba3a 1040 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
1041 *
1042 * list_lock must be held.
643b1138 1043 */
5cc6eee8
CL
1044static void add_full(struct kmem_cache *s,
1045 struct kmem_cache_node *n, struct page *page)
643b1138 1046{
5cc6eee8
CL
1047 if (!(s->flags & SLAB_STORE_USER))
1048 return;
1049
643b1138 1050 list_add(&page->lru, &n->full);
643b1138
CL
1051}
1052
5cc6eee8
CL
1053/*
1054 * list_lock must be held.
1055 */
643b1138
CL
1056static void remove_full(struct kmem_cache *s, struct page *page)
1057{
643b1138
CL
1058 if (!(s->flags & SLAB_STORE_USER))
1059 return;
1060
643b1138 1061 list_del(&page->lru);
643b1138
CL
1062}
1063
0f389ec6
CL
1064/* Tracking of the number of slabs for debugging purposes */
1065static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1066{
1067 struct kmem_cache_node *n = get_node(s, node);
1068
1069 return atomic_long_read(&n->nr_slabs);
1070}
1071
26c02cf0
AB
1072static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1073{
1074 return atomic_long_read(&n->nr_slabs);
1075}
1076
205ab99d 1077static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1078{
1079 struct kmem_cache_node *n = get_node(s, node);
1080
1081 /*
1082 * May be called early in order to allocate a slab for the
1083 * kmem_cache_node structure. Solve the chicken-egg
1084 * dilemma by deferring the increment of the count during
1085 * bootstrap (see early_kmem_cache_node_alloc).
1086 */
7340cc84 1087 if (n) {
0f389ec6 1088 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1089 atomic_long_add(objects, &n->total_objects);
1090 }
0f389ec6 1091}
205ab99d 1092static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1093{
1094 struct kmem_cache_node *n = get_node(s, node);
1095
1096 atomic_long_dec(&n->nr_slabs);
205ab99d 1097 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1098}
1099
1100/* Object debug checks for alloc/free paths */
3ec09742
CL
1101static void setup_object_debug(struct kmem_cache *s, struct page *page,
1102 void *object)
1103{
1104 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1105 return;
1106
f7cb1933 1107 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1108 init_tracking(s, object);
1109}
1110
1537066c 1111static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1112 void *object, unsigned long addr)
81819f0f
CL
1113{
1114 if (!check_slab(s, page))
1115 goto bad;
1116
81819f0f
CL
1117 if (!check_valid_pointer(s, page, object)) {
1118 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1119 goto bad;
81819f0f
CL
1120 }
1121
f7cb1933 1122 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1123 goto bad;
81819f0f 1124
3ec09742
CL
1125 /* Success perform special debug activities for allocs */
1126 if (s->flags & SLAB_STORE_USER)
1127 set_track(s, object, TRACK_ALLOC, addr);
1128 trace(s, page, object, 1);
f7cb1933 1129 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1130 return 1;
3ec09742 1131
81819f0f
CL
1132bad:
1133 if (PageSlab(page)) {
1134 /*
1135 * If this is a slab page then lets do the best we can
1136 * to avoid issues in the future. Marking all objects
672bba3a 1137 * as used avoids touching the remaining objects.
81819f0f 1138 */
24922684 1139 slab_fix(s, "Marking all objects used");
39b26464 1140 page->inuse = page->objects;
a973e9dd 1141 page->freelist = NULL;
81819f0f
CL
1142 }
1143 return 0;
1144}
1145
1537066c
CL
1146static noinline int free_debug_processing(struct kmem_cache *s,
1147 struct page *page, void *object, unsigned long addr)
81819f0f 1148{
5c2e4bbb
CL
1149 unsigned long flags;
1150 int rc = 0;
1151
1152 local_irq_save(flags);
881db7fb
CL
1153 slab_lock(page);
1154
81819f0f
CL
1155 if (!check_slab(s, page))
1156 goto fail;
1157
1158 if (!check_valid_pointer(s, page, object)) {
70d71228 1159 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1160 goto fail;
1161 }
1162
1163 if (on_freelist(s, page, object)) {
24922684 1164 object_err(s, page, object, "Object already free");
81819f0f
CL
1165 goto fail;
1166 }
1167
f7cb1933 1168 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1169 goto out;
81819f0f
CL
1170
1171 if (unlikely(s != page->slab)) {
3adbefee 1172 if (!PageSlab(page)) {
70d71228
CL
1173 slab_err(s, page, "Attempt to free object(0x%p) "
1174 "outside of slab", object);
3adbefee 1175 } else if (!page->slab) {
81819f0f 1176 printk(KERN_ERR
70d71228 1177 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1178 object);
70d71228 1179 dump_stack();
06428780 1180 } else
24922684
CL
1181 object_err(s, page, object,
1182 "page slab pointer corrupt.");
81819f0f
CL
1183 goto fail;
1184 }
3ec09742 1185
3ec09742
CL
1186 if (s->flags & SLAB_STORE_USER)
1187 set_track(s, object, TRACK_FREE, addr);
1188 trace(s, page, object, 0);
f7cb1933 1189 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1190 rc = 1;
1191out:
881db7fb 1192 slab_unlock(page);
5c2e4bbb
CL
1193 local_irq_restore(flags);
1194 return rc;
3ec09742 1195
81819f0f 1196fail:
24922684 1197 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1198 goto out;
81819f0f
CL
1199}
1200
41ecc55b
CL
1201static int __init setup_slub_debug(char *str)
1202{
f0630fff
CL
1203 slub_debug = DEBUG_DEFAULT_FLAGS;
1204 if (*str++ != '=' || !*str)
1205 /*
1206 * No options specified. Switch on full debugging.
1207 */
1208 goto out;
1209
1210 if (*str == ',')
1211 /*
1212 * No options but restriction on slabs. This means full
1213 * debugging for slabs matching a pattern.
1214 */
1215 goto check_slabs;
1216
fa5ec8a1
DR
1217 if (tolower(*str) == 'o') {
1218 /*
1219 * Avoid enabling debugging on caches if its minimum order
1220 * would increase as a result.
1221 */
1222 disable_higher_order_debug = 1;
1223 goto out;
1224 }
1225
f0630fff
CL
1226 slub_debug = 0;
1227 if (*str == '-')
1228 /*
1229 * Switch off all debugging measures.
1230 */
1231 goto out;
1232
1233 /*
1234 * Determine which debug features should be switched on
1235 */
06428780 1236 for (; *str && *str != ','; str++) {
f0630fff
CL
1237 switch (tolower(*str)) {
1238 case 'f':
1239 slub_debug |= SLAB_DEBUG_FREE;
1240 break;
1241 case 'z':
1242 slub_debug |= SLAB_RED_ZONE;
1243 break;
1244 case 'p':
1245 slub_debug |= SLAB_POISON;
1246 break;
1247 case 'u':
1248 slub_debug |= SLAB_STORE_USER;
1249 break;
1250 case 't':
1251 slub_debug |= SLAB_TRACE;
1252 break;
4c13dd3b
DM
1253 case 'a':
1254 slub_debug |= SLAB_FAILSLAB;
1255 break;
f0630fff
CL
1256 default:
1257 printk(KERN_ERR "slub_debug option '%c' "
06428780 1258 "unknown. skipped\n", *str);
f0630fff 1259 }
41ecc55b
CL
1260 }
1261
f0630fff 1262check_slabs:
41ecc55b
CL
1263 if (*str == ',')
1264 slub_debug_slabs = str + 1;
f0630fff 1265out:
41ecc55b
CL
1266 return 1;
1267}
1268
1269__setup("slub_debug", setup_slub_debug);
1270
ba0268a8
CL
1271static unsigned long kmem_cache_flags(unsigned long objsize,
1272 unsigned long flags, const char *name,
51cc5068 1273 void (*ctor)(void *))
41ecc55b
CL
1274{
1275 /*
e153362a 1276 * Enable debugging if selected on the kernel commandline.
41ecc55b 1277 */
e153362a 1278 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1279 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1280 flags |= slub_debug;
ba0268a8
CL
1281
1282 return flags;
41ecc55b
CL
1283}
1284#else
3ec09742
CL
1285static inline void setup_object_debug(struct kmem_cache *s,
1286 struct page *page, void *object) {}
41ecc55b 1287
3ec09742 1288static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1289 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1290
3ec09742 1291static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1292 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1293
41ecc55b
CL
1294static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1295 { return 1; }
1296static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1297 void *object, u8 val) { return 1; }
5cc6eee8
CL
1298static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1299 struct page *page) {}
2cfb7455 1300static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1301static inline unsigned long kmem_cache_flags(unsigned long objsize,
1302 unsigned long flags, const char *name,
51cc5068 1303 void (*ctor)(void *))
ba0268a8
CL
1304{
1305 return flags;
1306}
41ecc55b 1307#define slub_debug 0
0f389ec6 1308
fdaa45e9
IM
1309#define disable_higher_order_debug 0
1310
0f389ec6
CL
1311static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1312 { return 0; }
26c02cf0
AB
1313static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1314 { return 0; }
205ab99d
CL
1315static inline void inc_slabs_node(struct kmem_cache *s, int node,
1316 int objects) {}
1317static inline void dec_slabs_node(struct kmem_cache *s, int node,
1318 int objects) {}
7d550c56
CL
1319
1320static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1321 { return 0; }
1322
1323static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1324 void *object) {}
1325
1326static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1327
ab4d5ed5 1328#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1329
81819f0f
CL
1330/*
1331 * Slab allocation and freeing
1332 */
65c3376a
CL
1333static inline struct page *alloc_slab_page(gfp_t flags, int node,
1334 struct kmem_cache_order_objects oo)
1335{
1336 int order = oo_order(oo);
1337
b1eeab67
VN
1338 flags |= __GFP_NOTRACK;
1339
2154a336 1340 if (node == NUMA_NO_NODE)
65c3376a
CL
1341 return alloc_pages(flags, order);
1342 else
6b65aaf3 1343 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1344}
1345
81819f0f
CL
1346static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1347{
06428780 1348 struct page *page;
834f3d11 1349 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1350 gfp_t alloc_gfp;
81819f0f 1351
7e0528da
CL
1352 flags &= gfp_allowed_mask;
1353
1354 if (flags & __GFP_WAIT)
1355 local_irq_enable();
1356
b7a49f0d 1357 flags |= s->allocflags;
e12ba74d 1358
ba52270d
PE
1359 /*
1360 * Let the initial higher-order allocation fail under memory pressure
1361 * so we fall-back to the minimum order allocation.
1362 */
1363 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1364
1365 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1366 if (unlikely(!page)) {
1367 oo = s->min;
1368 /*
1369 * Allocation may have failed due to fragmentation.
1370 * Try a lower order alloc if possible
1371 */
1372 page = alloc_slab_page(flags, node, oo);
81819f0f 1373
7e0528da
CL
1374 if (page)
1375 stat(s, ORDER_FALLBACK);
65c3376a 1376 }
5a896d9e 1377
7e0528da
CL
1378 if (flags & __GFP_WAIT)
1379 local_irq_disable();
1380
1381 if (!page)
1382 return NULL;
1383
5a896d9e 1384 if (kmemcheck_enabled
5086c389 1385 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1386 int pages = 1 << oo_order(oo);
1387
1388 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1389
1390 /*
1391 * Objects from caches that have a constructor don't get
1392 * cleared when they're allocated, so we need to do it here.
1393 */
1394 if (s->ctor)
1395 kmemcheck_mark_uninitialized_pages(page, pages);
1396 else
1397 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1398 }
1399
834f3d11 1400 page->objects = oo_objects(oo);
81819f0f
CL
1401 mod_zone_page_state(page_zone(page),
1402 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1403 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1404 1 << oo_order(oo));
81819f0f
CL
1405
1406 return page;
1407}
1408
1409static void setup_object(struct kmem_cache *s, struct page *page,
1410 void *object)
1411{
3ec09742 1412 setup_object_debug(s, page, object);
4f104934 1413 if (unlikely(s->ctor))
51cc5068 1414 s->ctor(object);
81819f0f
CL
1415}
1416
1417static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1418{
1419 struct page *page;
81819f0f 1420 void *start;
81819f0f
CL
1421 void *last;
1422 void *p;
1423
6cb06229 1424 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1425
6cb06229
CL
1426 page = allocate_slab(s,
1427 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1428 if (!page)
1429 goto out;
1430
205ab99d 1431 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1432 page->slab = s;
1433 page->flags |= 1 << PG_slab;
81819f0f
CL
1434
1435 start = page_address(page);
81819f0f
CL
1436
1437 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1438 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1439
1440 last = start;
224a88be 1441 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1442 setup_object(s, page, last);
1443 set_freepointer(s, last, p);
1444 last = p;
1445 }
1446 setup_object(s, page, last);
a973e9dd 1447 set_freepointer(s, last, NULL);
81819f0f
CL
1448
1449 page->freelist = start;
e6e82ea1 1450 page->inuse = page->objects;
8cb0a506 1451 page->frozen = 1;
81819f0f 1452out:
81819f0f
CL
1453 return page;
1454}
1455
1456static void __free_slab(struct kmem_cache *s, struct page *page)
1457{
834f3d11
CL
1458 int order = compound_order(page);
1459 int pages = 1 << order;
81819f0f 1460
af537b0a 1461 if (kmem_cache_debug(s)) {
81819f0f
CL
1462 void *p;
1463
1464 slab_pad_check(s, page);
224a88be
CL
1465 for_each_object(p, s, page_address(page),
1466 page->objects)
f7cb1933 1467 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1468 }
1469
b1eeab67 1470 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1471
81819f0f
CL
1472 mod_zone_page_state(page_zone(page),
1473 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1474 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1475 -pages);
81819f0f 1476
49bd5221
CL
1477 __ClearPageSlab(page);
1478 reset_page_mapcount(page);
1eb5ac64
NP
1479 if (current->reclaim_state)
1480 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1481 __free_pages(page, order);
81819f0f
CL
1482}
1483
da9a638c
LJ
1484#define need_reserve_slab_rcu \
1485 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1486
81819f0f
CL
1487static void rcu_free_slab(struct rcu_head *h)
1488{
1489 struct page *page;
1490
da9a638c
LJ
1491 if (need_reserve_slab_rcu)
1492 page = virt_to_head_page(h);
1493 else
1494 page = container_of((struct list_head *)h, struct page, lru);
1495
81819f0f
CL
1496 __free_slab(page->slab, page);
1497}
1498
1499static void free_slab(struct kmem_cache *s, struct page *page)
1500{
1501 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1502 struct rcu_head *head;
1503
1504 if (need_reserve_slab_rcu) {
1505 int order = compound_order(page);
1506 int offset = (PAGE_SIZE << order) - s->reserved;
1507
1508 VM_BUG_ON(s->reserved != sizeof(*head));
1509 head = page_address(page) + offset;
1510 } else {
1511 /*
1512 * RCU free overloads the RCU head over the LRU
1513 */
1514 head = (void *)&page->lru;
1515 }
81819f0f
CL
1516
1517 call_rcu(head, rcu_free_slab);
1518 } else
1519 __free_slab(s, page);
1520}
1521
1522static void discard_slab(struct kmem_cache *s, struct page *page)
1523{
205ab99d 1524 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1525 free_slab(s, page);
1526}
1527
1528/*
5cc6eee8
CL
1529 * Management of partially allocated slabs.
1530 *
1531 * list_lock must be held.
81819f0f 1532 */
5cc6eee8 1533static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1534 struct page *page, int tail)
81819f0f 1535{
e95eed57 1536 n->nr_partial++;
7c2e132c
CL
1537 if (tail)
1538 list_add_tail(&page->lru, &n->partial);
1539 else
1540 list_add(&page->lru, &n->partial);
81819f0f
CL
1541}
1542
5cc6eee8
CL
1543/*
1544 * list_lock must be held.
1545 */
1546static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1547 struct page *page)
1548{
1549 list_del(&page->lru);
1550 n->nr_partial--;
1551}
1552
81819f0f 1553/*
5cc6eee8
CL
1554 * Lock slab, remove from the partial list and put the object into the
1555 * per cpu freelist.
81819f0f 1556 *
672bba3a 1557 * Must hold list_lock.
81819f0f 1558 */
881db7fb 1559static inline int acquire_slab(struct kmem_cache *s,
acd19fd1
CL
1560 struct kmem_cache_node *n, struct page *page,
1561 struct kmem_cache_cpu *c)
81819f0f 1562{
2cfb7455
CL
1563 void *freelist;
1564 unsigned long counters;
1565 struct page new;
1566
2cfb7455
CL
1567 /*
1568 * Zap the freelist and set the frozen bit.
1569 * The old freelist is the list of objects for the
1570 * per cpu allocation list.
1571 */
1572 do {
1573 freelist = page->freelist;
1574 counters = page->counters;
1575 new.counters = counters;
1576 new.inuse = page->objects;
1577
1578 VM_BUG_ON(new.frozen);
1579 new.frozen = 1;
1580
1d07171c 1581 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1582 freelist, counters,
1583 NULL, new.counters,
1584 "lock and freeze"));
1585
1586 remove_partial(n, page);
1587
1588 if (freelist) {
1589 /* Populate the per cpu freelist */
acd19fd1
CL
1590 c->freelist = freelist;
1591 c->page = page;
1592 c->node = page_to_nid(page);
81819f0f 1593 return 1;
2cfb7455
CL
1594 } else {
1595 /*
1596 * Slab page came from the wrong list. No object to allocate
1597 * from. Put it onto the correct list and continue partial
1598 * scan.
1599 */
1600 printk(KERN_ERR "SLUB: %s : Page without available objects on"
1601 " partial list\n", s->name);
2cfb7455 1602 return 0;
81819f0f 1603 }
81819f0f
CL
1604}
1605
1606/*
672bba3a 1607 * Try to allocate a partial slab from a specific node.
81819f0f 1608 */
61728d1e 1609static struct page *get_partial_node(struct kmem_cache *s,
acd19fd1 1610 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f
CL
1611{
1612 struct page *page;
1613
1614 /*
1615 * Racy check. If we mistakenly see no partial slabs then we
1616 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1617 * partial slab and there is none available then get_partials()
1618 * will return NULL.
81819f0f
CL
1619 */
1620 if (!n || !n->nr_partial)
1621 return NULL;
1622
1623 spin_lock(&n->list_lock);
1624 list_for_each_entry(page, &n->partial, lru)
acd19fd1 1625 if (acquire_slab(s, n, page, c))
81819f0f
CL
1626 goto out;
1627 page = NULL;
1628out:
1629 spin_unlock(&n->list_lock);
1630 return page;
1631}
1632
1633/*
672bba3a 1634 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1635 */
acd19fd1
CL
1636static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1637 struct kmem_cache_cpu *c)
81819f0f
CL
1638{
1639#ifdef CONFIG_NUMA
1640 struct zonelist *zonelist;
dd1a239f 1641 struct zoneref *z;
54a6eb5c
MG
1642 struct zone *zone;
1643 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1644 struct page *page;
1645
1646 /*
672bba3a
CL
1647 * The defrag ratio allows a configuration of the tradeoffs between
1648 * inter node defragmentation and node local allocations. A lower
1649 * defrag_ratio increases the tendency to do local allocations
1650 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1651 *
672bba3a
CL
1652 * If the defrag_ratio is set to 0 then kmalloc() always
1653 * returns node local objects. If the ratio is higher then kmalloc()
1654 * may return off node objects because partial slabs are obtained
1655 * from other nodes and filled up.
81819f0f 1656 *
6446faa2 1657 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1658 * defrag_ratio = 1000) then every (well almost) allocation will
1659 * first attempt to defrag slab caches on other nodes. This means
1660 * scanning over all nodes to look for partial slabs which may be
1661 * expensive if we do it every time we are trying to find a slab
1662 * with available objects.
81819f0f 1663 */
9824601e
CL
1664 if (!s->remote_node_defrag_ratio ||
1665 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1666 return NULL;
1667
c0ff7453 1668 get_mems_allowed();
0e88460d 1669 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1670 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1671 struct kmem_cache_node *n;
1672
54a6eb5c 1673 n = get_node(s, zone_to_nid(zone));
81819f0f 1674
54a6eb5c 1675 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1676 n->nr_partial > s->min_partial) {
acd19fd1 1677 page = get_partial_node(s, n, c);
c0ff7453
MX
1678 if (page) {
1679 put_mems_allowed();
81819f0f 1680 return page;
c0ff7453 1681 }
81819f0f
CL
1682 }
1683 }
c0ff7453 1684 put_mems_allowed();
81819f0f
CL
1685#endif
1686 return NULL;
1687}
1688
1689/*
1690 * Get a partial page, lock it and return it.
1691 */
acd19fd1
CL
1692static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1693 struct kmem_cache_cpu *c)
81819f0f
CL
1694{
1695 struct page *page;
2154a336 1696 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1697
acd19fd1 1698 page = get_partial_node(s, get_node(s, searchnode), c);
33de04ec 1699 if (page || node != NUMA_NO_NODE)
81819f0f
CL
1700 return page;
1701
acd19fd1 1702 return get_any_partial(s, flags, c);
81819f0f
CL
1703}
1704
8a5ec0ba
CL
1705#ifdef CONFIG_PREEMPT
1706/*
1707 * Calculate the next globally unique transaction for disambiguiation
1708 * during cmpxchg. The transactions start with the cpu number and are then
1709 * incremented by CONFIG_NR_CPUS.
1710 */
1711#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1712#else
1713/*
1714 * No preemption supported therefore also no need to check for
1715 * different cpus.
1716 */
1717#define TID_STEP 1
1718#endif
1719
1720static inline unsigned long next_tid(unsigned long tid)
1721{
1722 return tid + TID_STEP;
1723}
1724
1725static inline unsigned int tid_to_cpu(unsigned long tid)
1726{
1727 return tid % TID_STEP;
1728}
1729
1730static inline unsigned long tid_to_event(unsigned long tid)
1731{
1732 return tid / TID_STEP;
1733}
1734
1735static inline unsigned int init_tid(int cpu)
1736{
1737 return cpu;
1738}
1739
1740static inline void note_cmpxchg_failure(const char *n,
1741 const struct kmem_cache *s, unsigned long tid)
1742{
1743#ifdef SLUB_DEBUG_CMPXCHG
1744 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1745
1746 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1747
1748#ifdef CONFIG_PREEMPT
1749 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1750 printk("due to cpu change %d -> %d\n",
1751 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1752 else
1753#endif
1754 if (tid_to_event(tid) != tid_to_event(actual_tid))
1755 printk("due to cpu running other code. Event %ld->%ld\n",
1756 tid_to_event(tid), tid_to_event(actual_tid));
1757 else
1758 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1759 actual_tid, tid, next_tid(tid));
1760#endif
4fdccdfb 1761 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1762}
1763
8a5ec0ba
CL
1764void init_kmem_cache_cpus(struct kmem_cache *s)
1765{
8a5ec0ba
CL
1766 int cpu;
1767
1768 for_each_possible_cpu(cpu)
1769 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1770}
2cfb7455 1771
81819f0f
CL
1772/*
1773 * Remove the cpu slab
1774 */
dfb4f096 1775static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1776{
2cfb7455 1777 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1778 struct page *page = c->page;
2cfb7455
CL
1779 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1780 int lock = 0;
1781 enum slab_modes l = M_NONE, m = M_NONE;
1782 void *freelist;
1783 void *nextfree;
1784 int tail = 0;
1785 struct page new;
1786 struct page old;
1787
1788 if (page->freelist) {
84e554e6 1789 stat(s, DEACTIVATE_REMOTE_FREES);
2cfb7455
CL
1790 tail = 1;
1791 }
1792
1793 c->tid = next_tid(c->tid);
1794 c->page = NULL;
1795 freelist = c->freelist;
1796 c->freelist = NULL;
1797
894b8788 1798 /*
2cfb7455
CL
1799 * Stage one: Free all available per cpu objects back
1800 * to the page freelist while it is still frozen. Leave the
1801 * last one.
1802 *
1803 * There is no need to take the list->lock because the page
1804 * is still frozen.
1805 */
1806 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1807 void *prior;
1808 unsigned long counters;
1809
1810 do {
1811 prior = page->freelist;
1812 counters = page->counters;
1813 set_freepointer(s, freelist, prior);
1814 new.counters = counters;
1815 new.inuse--;
1816 VM_BUG_ON(!new.frozen);
1817
1d07171c 1818 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1819 prior, counters,
1820 freelist, new.counters,
1821 "drain percpu freelist"));
1822
1823 freelist = nextfree;
1824 }
1825
894b8788 1826 /*
2cfb7455
CL
1827 * Stage two: Ensure that the page is unfrozen while the
1828 * list presence reflects the actual number of objects
1829 * during unfreeze.
1830 *
1831 * We setup the list membership and then perform a cmpxchg
1832 * with the count. If there is a mismatch then the page
1833 * is not unfrozen but the page is on the wrong list.
1834 *
1835 * Then we restart the process which may have to remove
1836 * the page from the list that we just put it on again
1837 * because the number of objects in the slab may have
1838 * changed.
894b8788 1839 */
2cfb7455 1840redo:
894b8788 1841
2cfb7455
CL
1842 old.freelist = page->freelist;
1843 old.counters = page->counters;
1844 VM_BUG_ON(!old.frozen);
7c2e132c 1845
2cfb7455
CL
1846 /* Determine target state of the slab */
1847 new.counters = old.counters;
1848 if (freelist) {
1849 new.inuse--;
1850 set_freepointer(s, freelist, old.freelist);
1851 new.freelist = freelist;
1852 } else
1853 new.freelist = old.freelist;
1854
1855 new.frozen = 0;
1856
81107188 1857 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1858 m = M_FREE;
1859 else if (new.freelist) {
1860 m = M_PARTIAL;
1861 if (!lock) {
1862 lock = 1;
1863 /*
1864 * Taking the spinlock removes the possiblity
1865 * that acquire_slab() will see a slab page that
1866 * is frozen
1867 */
1868 spin_lock(&n->list_lock);
1869 }
1870 } else {
1871 m = M_FULL;
1872 if (kmem_cache_debug(s) && !lock) {
1873 lock = 1;
1874 /*
1875 * This also ensures that the scanning of full
1876 * slabs from diagnostic functions will not see
1877 * any frozen slabs.
1878 */
1879 spin_lock(&n->list_lock);
1880 }
1881 }
1882
1883 if (l != m) {
1884
1885 if (l == M_PARTIAL)
1886
1887 remove_partial(n, page);
1888
1889 else if (l == M_FULL)
894b8788 1890
2cfb7455
CL
1891 remove_full(s, page);
1892
1893 if (m == M_PARTIAL) {
1894
1895 add_partial(n, page, tail);
1896 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1897
1898 } else if (m == M_FULL) {
894b8788 1899
2cfb7455
CL
1900 stat(s, DEACTIVATE_FULL);
1901 add_full(s, n, page);
1902
1903 }
1904 }
1905
1906 l = m;
1d07171c 1907 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1908 old.freelist, old.counters,
1909 new.freelist, new.counters,
1910 "unfreezing slab"))
1911 goto redo;
1912
2cfb7455
CL
1913 if (lock)
1914 spin_unlock(&n->list_lock);
1915
1916 if (m == M_FREE) {
1917 stat(s, DEACTIVATE_EMPTY);
1918 discard_slab(s, page);
1919 stat(s, FREE_SLAB);
894b8788 1920 }
81819f0f
CL
1921}
1922
dfb4f096 1923static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1924{
84e554e6 1925 stat(s, CPUSLAB_FLUSH);
dfb4f096 1926 deactivate_slab(s, c);
81819f0f
CL
1927}
1928
1929/*
1930 * Flush cpu slab.
6446faa2 1931 *
81819f0f
CL
1932 * Called from IPI handler with interrupts disabled.
1933 */
0c710013 1934static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1935{
9dfc6e68 1936 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1937
dfb4f096
CL
1938 if (likely(c && c->page))
1939 flush_slab(s, c);
81819f0f
CL
1940}
1941
1942static void flush_cpu_slab(void *d)
1943{
1944 struct kmem_cache *s = d;
81819f0f 1945
dfb4f096 1946 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1947}
1948
1949static void flush_all(struct kmem_cache *s)
1950{
15c8b6c1 1951 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1952}
1953
dfb4f096
CL
1954/*
1955 * Check if the objects in a per cpu structure fit numa
1956 * locality expectations.
1957 */
1958static inline int node_match(struct kmem_cache_cpu *c, int node)
1959{
1960#ifdef CONFIG_NUMA
2154a336 1961 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1962 return 0;
1963#endif
1964 return 1;
1965}
1966
781b2ba6
PE
1967static int count_free(struct page *page)
1968{
1969 return page->objects - page->inuse;
1970}
1971
1972static unsigned long count_partial(struct kmem_cache_node *n,
1973 int (*get_count)(struct page *))
1974{
1975 unsigned long flags;
1976 unsigned long x = 0;
1977 struct page *page;
1978
1979 spin_lock_irqsave(&n->list_lock, flags);
1980 list_for_each_entry(page, &n->partial, lru)
1981 x += get_count(page);
1982 spin_unlock_irqrestore(&n->list_lock, flags);
1983 return x;
1984}
1985
26c02cf0
AB
1986static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1987{
1988#ifdef CONFIG_SLUB_DEBUG
1989 return atomic_long_read(&n->total_objects);
1990#else
1991 return 0;
1992#endif
1993}
1994
781b2ba6
PE
1995static noinline void
1996slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1997{
1998 int node;
1999
2000 printk(KERN_WARNING
2001 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2002 nid, gfpflags);
2003 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2004 "default order: %d, min order: %d\n", s->name, s->objsize,
2005 s->size, oo_order(s->oo), oo_order(s->min));
2006
fa5ec8a1
DR
2007 if (oo_order(s->min) > get_order(s->objsize))
2008 printk(KERN_WARNING " %s debugging increased min order, use "
2009 "slub_debug=O to disable.\n", s->name);
2010
781b2ba6
PE
2011 for_each_online_node(node) {
2012 struct kmem_cache_node *n = get_node(s, node);
2013 unsigned long nr_slabs;
2014 unsigned long nr_objs;
2015 unsigned long nr_free;
2016
2017 if (!n)
2018 continue;
2019
26c02cf0
AB
2020 nr_free = count_partial(n, count_free);
2021 nr_slabs = node_nr_slabs(n);
2022 nr_objs = node_nr_objs(n);
781b2ba6
PE
2023
2024 printk(KERN_WARNING
2025 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2026 node, nr_slabs, nr_objs, nr_free);
2027 }
2028}
2029
81819f0f 2030/*
894b8788
CL
2031 * Slow path. The lockless freelist is empty or we need to perform
2032 * debugging duties.
2033 *
2034 * Interrupts are disabled.
81819f0f 2035 *
894b8788
CL
2036 * Processing is still very fast if new objects have been freed to the
2037 * regular freelist. In that case we simply take over the regular freelist
2038 * as the lockless freelist and zap the regular freelist.
81819f0f 2039 *
894b8788
CL
2040 * If that is not working then we fall back to the partial lists. We take the
2041 * first element of the freelist as the object to allocate now and move the
2042 * rest of the freelist to the lockless freelist.
81819f0f 2043 *
894b8788 2044 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2045 * we need to allocate a new slab. This is the slowest path since it involves
2046 * a call to the page allocator and the setup of a new slab.
81819f0f 2047 */
ce71e27c
EGM
2048static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2049 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2050{
81819f0f 2051 void **object;
01ad8a7b 2052 struct page *page;
8a5ec0ba 2053 unsigned long flags;
2cfb7455
CL
2054 struct page new;
2055 unsigned long counters;
8a5ec0ba
CL
2056
2057 local_irq_save(flags);
2058#ifdef CONFIG_PREEMPT
2059 /*
2060 * We may have been preempted and rescheduled on a different
2061 * cpu before disabling interrupts. Need to reload cpu area
2062 * pointer.
2063 */
2064 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2065#endif
81819f0f 2066
01ad8a7b
CL
2067 page = c->page;
2068 if (!page)
81819f0f
CL
2069 goto new_slab;
2070
fc59c053 2071 if (unlikely(!node_match(c, node))) {
e36a2652 2072 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2073 deactivate_slab(s, c);
2074 goto new_slab;
2075 }
6446faa2 2076
2cfb7455
CL
2077 stat(s, ALLOC_SLOWPATH);
2078
2079 do {
2080 object = page->freelist;
2081 counters = page->counters;
2082 new.counters = counters;
2cfb7455
CL
2083 VM_BUG_ON(!new.frozen);
2084
03e404af
CL
2085 /*
2086 * If there is no object left then we use this loop to
2087 * deactivate the slab which is simple since no objects
2088 * are left in the slab and therefore we do not need to
2089 * put the page back onto the partial list.
2090 *
2091 * If there are objects left then we retrieve them
2092 * and use them to refill the per cpu queue.
2093 */
2094
2095 new.inuse = page->objects;
2096 new.frozen = object != NULL;
2097
1d07171c 2098 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2099 object, counters,
2100 NULL, new.counters,
2101 "__slab_alloc"));
6446faa2 2102
03e404af
CL
2103 if (unlikely(!object)) {
2104 c->page = NULL;
2105 stat(s, DEACTIVATE_BYPASS);
fc59c053 2106 goto new_slab;
03e404af 2107 }
6446faa2 2108
84e554e6 2109 stat(s, ALLOC_REFILL);
6446faa2 2110
894b8788 2111load_freelist:
4eade540 2112 VM_BUG_ON(!page->frozen);
ff12059e 2113 c->freelist = get_freepointer(s, object);
8a5ec0ba
CL
2114 c->tid = next_tid(c->tid);
2115 local_irq_restore(flags);
81819f0f
CL
2116 return object;
2117
81819f0f 2118new_slab:
acd19fd1 2119 page = get_partial(s, gfpflags, node, c);
01ad8a7b 2120 if (page) {
84e554e6 2121 stat(s, ALLOC_FROM_PARTIAL);
2cfb7455
CL
2122 object = c->freelist;
2123
2124 if (kmem_cache_debug(s))
2125 goto debug;
894b8788 2126 goto load_freelist;
81819f0f
CL
2127 }
2128
01ad8a7b 2129 page = new_slab(s, gfpflags, node);
b811c202 2130
01ad8a7b 2131 if (page) {
9dfc6e68 2132 c = __this_cpu_ptr(s->cpu_slab);
05aa3450 2133 if (c->page)
dfb4f096 2134 flush_slab(s, c);
01ad8a7b 2135
2cfb7455
CL
2136 /*
2137 * No other reference to the page yet so we can
2138 * muck around with it freely without cmpxchg
2139 */
2140 object = page->freelist;
2141 page->freelist = NULL;
2cfb7455
CL
2142
2143 stat(s, ALLOC_SLAB);
bd07d87f
DR
2144 c->node = page_to_nid(page);
2145 c->page = page;
9e577e8b
CL
2146
2147 if (kmem_cache_debug(s))
2148 goto debug;
4b6f0750 2149 goto load_freelist;
81819f0f 2150 }
95f85989
PE
2151 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2152 slab_out_of_memory(s, gfpflags, node);
2fd66c51 2153 local_irq_restore(flags);
71c7a06f 2154 return NULL;
2cfb7455 2155
81819f0f 2156debug:
2cfb7455
CL
2157 if (!object || !alloc_debug_processing(s, page, object, addr))
2158 goto new_slab;
894b8788 2159
2cfb7455 2160 c->freelist = get_freepointer(s, object);
442b06bc 2161 deactivate_slab(s, c);
15b7c514 2162 c->node = NUMA_NO_NODE;
a71ae47a
CL
2163 local_irq_restore(flags);
2164 return object;
894b8788
CL
2165}
2166
2167/*
2168 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2169 * have the fastpath folded into their functions. So no function call
2170 * overhead for requests that can be satisfied on the fastpath.
2171 *
2172 * The fastpath works by first checking if the lockless freelist can be used.
2173 * If not then __slab_alloc is called for slow processing.
2174 *
2175 * Otherwise we can simply pick the next object from the lockless free list.
2176 */
06428780 2177static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2178 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2179{
894b8788 2180 void **object;
dfb4f096 2181 struct kmem_cache_cpu *c;
8a5ec0ba 2182 unsigned long tid;
1f84260c 2183
c016b0bd 2184 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2185 return NULL;
1f84260c 2186
8a5ec0ba 2187redo:
8a5ec0ba
CL
2188
2189 /*
2190 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2191 * enabled. We may switch back and forth between cpus while
2192 * reading from one cpu area. That does not matter as long
2193 * as we end up on the original cpu again when doing the cmpxchg.
2194 */
9dfc6e68 2195 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2196
8a5ec0ba
CL
2197 /*
2198 * The transaction ids are globally unique per cpu and per operation on
2199 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2200 * occurs on the right processor and that there was no operation on the
2201 * linked list in between.
2202 */
2203 tid = c->tid;
2204 barrier();
8a5ec0ba 2205
9dfc6e68 2206 object = c->freelist;
9dfc6e68 2207 if (unlikely(!object || !node_match(c, node)))
894b8788 2208
dfb4f096 2209 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2210
2211 else {
8a5ec0ba 2212 /*
25985edc 2213 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2214 * operation and if we are on the right processor.
2215 *
2216 * The cmpxchg does the following atomically (without lock semantics!)
2217 * 1. Relocate first pointer to the current per cpu area.
2218 * 2. Verify that tid and freelist have not been changed
2219 * 3. If they were not changed replace tid and freelist
2220 *
2221 * Since this is without lock semantics the protection is only against
2222 * code executing on this cpu *not* from access by other cpus.
2223 */
30106b8c 2224 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2225 s->cpu_slab->freelist, s->cpu_slab->tid,
2226 object, tid,
1393d9a1 2227 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
2228
2229 note_cmpxchg_failure("slab_alloc", s, tid);
2230 goto redo;
2231 }
84e554e6 2232 stat(s, ALLOC_FASTPATH);
894b8788 2233 }
8a5ec0ba 2234
74e2134f 2235 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2236 memset(object, 0, s->objsize);
d07dbea4 2237
c016b0bd 2238 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2239
894b8788 2240 return object;
81819f0f
CL
2241}
2242
2243void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2244{
2154a336 2245 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2246
ca2b84cb 2247 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2248
2249 return ret;
81819f0f
CL
2250}
2251EXPORT_SYMBOL(kmem_cache_alloc);
2252
0f24f128 2253#ifdef CONFIG_TRACING
4a92379b
RK
2254void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2255{
2256 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2257 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2258 return ret;
2259}
2260EXPORT_SYMBOL(kmem_cache_alloc_trace);
2261
2262void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2263{
4a92379b
RK
2264 void *ret = kmalloc_order(size, flags, order);
2265 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2266 return ret;
5b882be4 2267}
4a92379b 2268EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2269#endif
2270
81819f0f
CL
2271#ifdef CONFIG_NUMA
2272void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2273{
5b882be4
EGM
2274 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2275
ca2b84cb
EGM
2276 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2277 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2278
2279 return ret;
81819f0f
CL
2280}
2281EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2282
0f24f128 2283#ifdef CONFIG_TRACING
4a92379b 2284void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2285 gfp_t gfpflags,
4a92379b 2286 int node, size_t size)
5b882be4 2287{
4a92379b
RK
2288 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2289
2290 trace_kmalloc_node(_RET_IP_, ret,
2291 size, s->size, gfpflags, node);
2292 return ret;
5b882be4 2293}
4a92379b 2294EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2295#endif
5d1f57e4 2296#endif
5b882be4 2297
81819f0f 2298/*
894b8788
CL
2299 * Slow patch handling. This may still be called frequently since objects
2300 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2301 *
894b8788
CL
2302 * So we still attempt to reduce cache line usage. Just take the slab
2303 * lock and free the item. If there is no additional partial page
2304 * handling required then we can return immediately.
81819f0f 2305 */
894b8788 2306static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2307 void *x, unsigned long addr)
81819f0f
CL
2308{
2309 void *prior;
2310 void **object = (void *)x;
2cfb7455
CL
2311 int was_frozen;
2312 int inuse;
2313 struct page new;
2314 unsigned long counters;
2315 struct kmem_cache_node *n = NULL;
61728d1e 2316 unsigned long uninitialized_var(flags);
81819f0f 2317
8a5ec0ba 2318 stat(s, FREE_SLOWPATH);
81819f0f 2319
8dc16c6c 2320 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2321 return;
6446faa2 2322
2cfb7455
CL
2323 do {
2324 prior = page->freelist;
2325 counters = page->counters;
2326 set_freepointer(s, object, prior);
2327 new.counters = counters;
2328 was_frozen = new.frozen;
2329 new.inuse--;
2330 if ((!new.inuse || !prior) && !was_frozen && !n) {
2331 n = get_node(s, page_to_nid(page));
2332 /*
2333 * Speculatively acquire the list_lock.
2334 * If the cmpxchg does not succeed then we may
2335 * drop the list_lock without any processing.
2336 *
2337 * Otherwise the list_lock will synchronize with
2338 * other processors updating the list of slabs.
2339 */
80f08c19 2340 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455
CL
2341 }
2342 inuse = new.inuse;
81819f0f 2343
2cfb7455
CL
2344 } while (!cmpxchg_double_slab(s, page,
2345 prior, counters,
2346 object, new.counters,
2347 "__slab_free"));
81819f0f 2348
2cfb7455
CL
2349 if (likely(!n)) {
2350 /*
2351 * The list lock was not taken therefore no list
2352 * activity can be necessary.
2353 */
2354 if (was_frozen)
2355 stat(s, FREE_FROZEN);
80f08c19 2356 return;
2cfb7455 2357 }
81819f0f
CL
2358
2359 /*
2cfb7455
CL
2360 * was_frozen may have been set after we acquired the list_lock in
2361 * an earlier loop. So we need to check it here again.
81819f0f 2362 */
2cfb7455
CL
2363 if (was_frozen)
2364 stat(s, FREE_FROZEN);
2365 else {
2366 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2367 goto slab_empty;
81819f0f 2368
2cfb7455
CL
2369 /*
2370 * Objects left in the slab. If it was not on the partial list before
2371 * then add it.
2372 */
2373 if (unlikely(!prior)) {
2374 remove_full(s, page);
2375 add_partial(n, page, 0);
2376 stat(s, FREE_ADD_PARTIAL);
2377 }
8ff12cfc 2378 }
80f08c19 2379 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2380 return;
2381
2382slab_empty:
a973e9dd 2383 if (prior) {
81819f0f 2384 /*
6fbabb20 2385 * Slab on the partial list.
81819f0f 2386 */
5cc6eee8 2387 remove_partial(n, page);
84e554e6 2388 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2389 } else
2390 /* Slab must be on the full list */
2391 remove_full(s, page);
2cfb7455 2392
80f08c19 2393 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2394 stat(s, FREE_SLAB);
81819f0f 2395 discard_slab(s, page);
81819f0f
CL
2396}
2397
894b8788
CL
2398/*
2399 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2400 * can perform fastpath freeing without additional function calls.
2401 *
2402 * The fastpath is only possible if we are freeing to the current cpu slab
2403 * of this processor. This typically the case if we have just allocated
2404 * the item before.
2405 *
2406 * If fastpath is not possible then fall back to __slab_free where we deal
2407 * with all sorts of special processing.
2408 */
06428780 2409static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2410 struct page *page, void *x, unsigned long addr)
894b8788
CL
2411{
2412 void **object = (void *)x;
dfb4f096 2413 struct kmem_cache_cpu *c;
8a5ec0ba 2414 unsigned long tid;
1f84260c 2415
c016b0bd
CL
2416 slab_free_hook(s, x);
2417
8a5ec0ba 2418redo:
a24c5a0e 2419
8a5ec0ba
CL
2420 /*
2421 * Determine the currently cpus per cpu slab.
2422 * The cpu may change afterward. However that does not matter since
2423 * data is retrieved via this pointer. If we are on the same cpu
2424 * during the cmpxchg then the free will succedd.
2425 */
9dfc6e68 2426 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2427
8a5ec0ba
CL
2428 tid = c->tid;
2429 barrier();
c016b0bd 2430
442b06bc 2431 if (likely(page == c->page)) {
ff12059e 2432 set_freepointer(s, object, c->freelist);
8a5ec0ba 2433
30106b8c 2434 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2435 s->cpu_slab->freelist, s->cpu_slab->tid,
2436 c->freelist, tid,
2437 object, next_tid(tid)))) {
2438
2439 note_cmpxchg_failure("slab_free", s, tid);
2440 goto redo;
2441 }
84e554e6 2442 stat(s, FREE_FASTPATH);
894b8788 2443 } else
ff12059e 2444 __slab_free(s, page, x, addr);
894b8788 2445
894b8788
CL
2446}
2447
81819f0f
CL
2448void kmem_cache_free(struct kmem_cache *s, void *x)
2449{
77c5e2d0 2450 struct page *page;
81819f0f 2451
b49af68f 2452 page = virt_to_head_page(x);
81819f0f 2453
ce71e27c 2454 slab_free(s, page, x, _RET_IP_);
5b882be4 2455
ca2b84cb 2456 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2457}
2458EXPORT_SYMBOL(kmem_cache_free);
2459
81819f0f 2460/*
672bba3a
CL
2461 * Object placement in a slab is made very easy because we always start at
2462 * offset 0. If we tune the size of the object to the alignment then we can
2463 * get the required alignment by putting one properly sized object after
2464 * another.
81819f0f
CL
2465 *
2466 * Notice that the allocation order determines the sizes of the per cpu
2467 * caches. Each processor has always one slab available for allocations.
2468 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2469 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2470 * locking overhead.
81819f0f
CL
2471 */
2472
2473/*
2474 * Mininum / Maximum order of slab pages. This influences locking overhead
2475 * and slab fragmentation. A higher order reduces the number of partial slabs
2476 * and increases the number of allocations possible without having to
2477 * take the list_lock.
2478 */
2479static int slub_min_order;
114e9e89 2480static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2481static int slub_min_objects;
81819f0f
CL
2482
2483/*
2484 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2485 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2486 */
2487static int slub_nomerge;
2488
81819f0f
CL
2489/*
2490 * Calculate the order of allocation given an slab object size.
2491 *
672bba3a
CL
2492 * The order of allocation has significant impact on performance and other
2493 * system components. Generally order 0 allocations should be preferred since
2494 * order 0 does not cause fragmentation in the page allocator. Larger objects
2495 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2496 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2497 * would be wasted.
2498 *
2499 * In order to reach satisfactory performance we must ensure that a minimum
2500 * number of objects is in one slab. Otherwise we may generate too much
2501 * activity on the partial lists which requires taking the list_lock. This is
2502 * less a concern for large slabs though which are rarely used.
81819f0f 2503 *
672bba3a
CL
2504 * slub_max_order specifies the order where we begin to stop considering the
2505 * number of objects in a slab as critical. If we reach slub_max_order then
2506 * we try to keep the page order as low as possible. So we accept more waste
2507 * of space in favor of a small page order.
81819f0f 2508 *
672bba3a
CL
2509 * Higher order allocations also allow the placement of more objects in a
2510 * slab and thereby reduce object handling overhead. If the user has
2511 * requested a higher mininum order then we start with that one instead of
2512 * the smallest order which will fit the object.
81819f0f 2513 */
5e6d444e 2514static inline int slab_order(int size, int min_objects,
ab9a0f19 2515 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2516{
2517 int order;
2518 int rem;
6300ea75 2519 int min_order = slub_min_order;
81819f0f 2520
ab9a0f19 2521 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2522 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2523
6300ea75 2524 for (order = max(min_order,
5e6d444e
CL
2525 fls(min_objects * size - 1) - PAGE_SHIFT);
2526 order <= max_order; order++) {
81819f0f 2527
5e6d444e 2528 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2529
ab9a0f19 2530 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2531 continue;
2532
ab9a0f19 2533 rem = (slab_size - reserved) % size;
81819f0f 2534
5e6d444e 2535 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2536 break;
2537
2538 }
672bba3a 2539
81819f0f
CL
2540 return order;
2541}
2542
ab9a0f19 2543static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2544{
2545 int order;
2546 int min_objects;
2547 int fraction;
e8120ff1 2548 int max_objects;
5e6d444e
CL
2549
2550 /*
2551 * Attempt to find best configuration for a slab. This
2552 * works by first attempting to generate a layout with
2553 * the best configuration and backing off gradually.
2554 *
2555 * First we reduce the acceptable waste in a slab. Then
2556 * we reduce the minimum objects required in a slab.
2557 */
2558 min_objects = slub_min_objects;
9b2cd506
CL
2559 if (!min_objects)
2560 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2561 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2562 min_objects = min(min_objects, max_objects);
2563
5e6d444e 2564 while (min_objects > 1) {
c124f5b5 2565 fraction = 16;
5e6d444e
CL
2566 while (fraction >= 4) {
2567 order = slab_order(size, min_objects,
ab9a0f19 2568 slub_max_order, fraction, reserved);
5e6d444e
CL
2569 if (order <= slub_max_order)
2570 return order;
2571 fraction /= 2;
2572 }
5086c389 2573 min_objects--;
5e6d444e
CL
2574 }
2575
2576 /*
2577 * We were unable to place multiple objects in a slab. Now
2578 * lets see if we can place a single object there.
2579 */
ab9a0f19 2580 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2581 if (order <= slub_max_order)
2582 return order;
2583
2584 /*
2585 * Doh this slab cannot be placed using slub_max_order.
2586 */
ab9a0f19 2587 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2588 if (order < MAX_ORDER)
5e6d444e
CL
2589 return order;
2590 return -ENOSYS;
2591}
2592
81819f0f 2593/*
672bba3a 2594 * Figure out what the alignment of the objects will be.
81819f0f
CL
2595 */
2596static unsigned long calculate_alignment(unsigned long flags,
2597 unsigned long align, unsigned long size)
2598{
2599 /*
6446faa2
CL
2600 * If the user wants hardware cache aligned objects then follow that
2601 * suggestion if the object is sufficiently large.
81819f0f 2602 *
6446faa2
CL
2603 * The hardware cache alignment cannot override the specified
2604 * alignment though. If that is greater then use it.
81819f0f 2605 */
b6210386
NP
2606 if (flags & SLAB_HWCACHE_ALIGN) {
2607 unsigned long ralign = cache_line_size();
2608 while (size <= ralign / 2)
2609 ralign /= 2;
2610 align = max(align, ralign);
2611 }
81819f0f
CL
2612
2613 if (align < ARCH_SLAB_MINALIGN)
b6210386 2614 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2615
2616 return ALIGN(align, sizeof(void *));
2617}
2618
5595cffc
PE
2619static void
2620init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2621{
2622 n->nr_partial = 0;
81819f0f
CL
2623 spin_lock_init(&n->list_lock);
2624 INIT_LIST_HEAD(&n->partial);
8ab1372f 2625#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2626 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2627 atomic_long_set(&n->total_objects, 0);
643b1138 2628 INIT_LIST_HEAD(&n->full);
8ab1372f 2629#endif
81819f0f
CL
2630}
2631
55136592 2632static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2633{
6c182dc0
CL
2634 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2635 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2636
8a5ec0ba 2637 /*
d4d84fef
CM
2638 * Must align to double word boundary for the double cmpxchg
2639 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2640 */
d4d84fef
CM
2641 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2642 2 * sizeof(void *));
8a5ec0ba
CL
2643
2644 if (!s->cpu_slab)
2645 return 0;
2646
2647 init_kmem_cache_cpus(s);
4c93c355 2648
8a5ec0ba 2649 return 1;
4c93c355 2650}
4c93c355 2651
51df1142
CL
2652static struct kmem_cache *kmem_cache_node;
2653
81819f0f
CL
2654/*
2655 * No kmalloc_node yet so do it by hand. We know that this is the first
2656 * slab on the node for this slabcache. There are no concurrent accesses
2657 * possible.
2658 *
2659 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2660 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2661 * memory on a fresh node that has no slab structures yet.
81819f0f 2662 */
55136592 2663static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2664{
2665 struct page *page;
2666 struct kmem_cache_node *n;
2667
51df1142 2668 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2669
51df1142 2670 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2671
2672 BUG_ON(!page);
a2f92ee7
CL
2673 if (page_to_nid(page) != node) {
2674 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2675 "node %d\n", node);
2676 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2677 "in order to be able to continue\n");
2678 }
2679
81819f0f
CL
2680 n = page->freelist;
2681 BUG_ON(!n);
51df1142 2682 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2683 page->inuse = 1;
8cb0a506 2684 page->frozen = 0;
51df1142 2685 kmem_cache_node->node[node] = n;
8ab1372f 2686#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2687 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2688 init_tracking(kmem_cache_node, n);
8ab1372f 2689#endif
51df1142
CL
2690 init_kmem_cache_node(n, kmem_cache_node);
2691 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2692
7c2e132c 2693 add_partial(n, page, 0);
81819f0f
CL
2694}
2695
2696static void free_kmem_cache_nodes(struct kmem_cache *s)
2697{
2698 int node;
2699
f64dc58c 2700 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2701 struct kmem_cache_node *n = s->node[node];
51df1142 2702
73367bd8 2703 if (n)
51df1142
CL
2704 kmem_cache_free(kmem_cache_node, n);
2705
81819f0f
CL
2706 s->node[node] = NULL;
2707 }
2708}
2709
55136592 2710static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2711{
2712 int node;
81819f0f 2713
f64dc58c 2714 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2715 struct kmem_cache_node *n;
2716
73367bd8 2717 if (slab_state == DOWN) {
55136592 2718 early_kmem_cache_node_alloc(node);
73367bd8
AD
2719 continue;
2720 }
51df1142 2721 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2722 GFP_KERNEL, node);
81819f0f 2723
73367bd8
AD
2724 if (!n) {
2725 free_kmem_cache_nodes(s);
2726 return 0;
81819f0f 2727 }
73367bd8 2728
81819f0f 2729 s->node[node] = n;
5595cffc 2730 init_kmem_cache_node(n, s);
81819f0f
CL
2731 }
2732 return 1;
2733}
81819f0f 2734
c0bdb232 2735static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2736{
2737 if (min < MIN_PARTIAL)
2738 min = MIN_PARTIAL;
2739 else if (min > MAX_PARTIAL)
2740 min = MAX_PARTIAL;
2741 s->min_partial = min;
2742}
2743
81819f0f
CL
2744/*
2745 * calculate_sizes() determines the order and the distribution of data within
2746 * a slab object.
2747 */
06b285dc 2748static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2749{
2750 unsigned long flags = s->flags;
2751 unsigned long size = s->objsize;
2752 unsigned long align = s->align;
834f3d11 2753 int order;
81819f0f 2754
d8b42bf5
CL
2755 /*
2756 * Round up object size to the next word boundary. We can only
2757 * place the free pointer at word boundaries and this determines
2758 * the possible location of the free pointer.
2759 */
2760 size = ALIGN(size, sizeof(void *));
2761
2762#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2763 /*
2764 * Determine if we can poison the object itself. If the user of
2765 * the slab may touch the object after free or before allocation
2766 * then we should never poison the object itself.
2767 */
2768 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2769 !s->ctor)
81819f0f
CL
2770 s->flags |= __OBJECT_POISON;
2771 else
2772 s->flags &= ~__OBJECT_POISON;
2773
81819f0f
CL
2774
2775 /*
672bba3a 2776 * If we are Redzoning then check if there is some space between the
81819f0f 2777 * end of the object and the free pointer. If not then add an
672bba3a 2778 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2779 */
2780 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2781 size += sizeof(void *);
41ecc55b 2782#endif
81819f0f
CL
2783
2784 /*
672bba3a
CL
2785 * With that we have determined the number of bytes in actual use
2786 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2787 */
2788 s->inuse = size;
2789
2790 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2791 s->ctor)) {
81819f0f
CL
2792 /*
2793 * Relocate free pointer after the object if it is not
2794 * permitted to overwrite the first word of the object on
2795 * kmem_cache_free.
2796 *
2797 * This is the case if we do RCU, have a constructor or
2798 * destructor or are poisoning the objects.
2799 */
2800 s->offset = size;
2801 size += sizeof(void *);
2802 }
2803
c12b3c62 2804#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2805 if (flags & SLAB_STORE_USER)
2806 /*
2807 * Need to store information about allocs and frees after
2808 * the object.
2809 */
2810 size += 2 * sizeof(struct track);
2811
be7b3fbc 2812 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2813 /*
2814 * Add some empty padding so that we can catch
2815 * overwrites from earlier objects rather than let
2816 * tracking information or the free pointer be
0211a9c8 2817 * corrupted if a user writes before the start
81819f0f
CL
2818 * of the object.
2819 */
2820 size += sizeof(void *);
41ecc55b 2821#endif
672bba3a 2822
81819f0f
CL
2823 /*
2824 * Determine the alignment based on various parameters that the
65c02d4c
CL
2825 * user specified and the dynamic determination of cache line size
2826 * on bootup.
81819f0f
CL
2827 */
2828 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2829 s->align = align;
81819f0f
CL
2830
2831 /*
2832 * SLUB stores one object immediately after another beginning from
2833 * offset 0. In order to align the objects we have to simply size
2834 * each object to conform to the alignment.
2835 */
2836 size = ALIGN(size, align);
2837 s->size = size;
06b285dc
CL
2838 if (forced_order >= 0)
2839 order = forced_order;
2840 else
ab9a0f19 2841 order = calculate_order(size, s->reserved);
81819f0f 2842
834f3d11 2843 if (order < 0)
81819f0f
CL
2844 return 0;
2845
b7a49f0d 2846 s->allocflags = 0;
834f3d11 2847 if (order)
b7a49f0d
CL
2848 s->allocflags |= __GFP_COMP;
2849
2850 if (s->flags & SLAB_CACHE_DMA)
2851 s->allocflags |= SLUB_DMA;
2852
2853 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2854 s->allocflags |= __GFP_RECLAIMABLE;
2855
81819f0f
CL
2856 /*
2857 * Determine the number of objects per slab
2858 */
ab9a0f19
LJ
2859 s->oo = oo_make(order, size, s->reserved);
2860 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2861 if (oo_objects(s->oo) > oo_objects(s->max))
2862 s->max = s->oo;
81819f0f 2863
834f3d11 2864 return !!oo_objects(s->oo);
81819f0f
CL
2865
2866}
2867
55136592 2868static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2869 const char *name, size_t size,
2870 size_t align, unsigned long flags,
51cc5068 2871 void (*ctor)(void *))
81819f0f
CL
2872{
2873 memset(s, 0, kmem_size);
2874 s->name = name;
2875 s->ctor = ctor;
81819f0f 2876 s->objsize = size;
81819f0f 2877 s->align = align;
ba0268a8 2878 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2879 s->reserved = 0;
81819f0f 2880
da9a638c
LJ
2881 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2882 s->reserved = sizeof(struct rcu_head);
81819f0f 2883
06b285dc 2884 if (!calculate_sizes(s, -1))
81819f0f 2885 goto error;
3de47213
DR
2886 if (disable_higher_order_debug) {
2887 /*
2888 * Disable debugging flags that store metadata if the min slab
2889 * order increased.
2890 */
2891 if (get_order(s->size) > get_order(s->objsize)) {
2892 s->flags &= ~DEBUG_METADATA_FLAGS;
2893 s->offset = 0;
2894 if (!calculate_sizes(s, -1))
2895 goto error;
2896 }
2897 }
81819f0f 2898
b789ef51
CL
2899#ifdef CONFIG_CMPXCHG_DOUBLE
2900 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
2901 /* Enable fast mode */
2902 s->flags |= __CMPXCHG_DOUBLE;
2903#endif
2904
3b89d7d8
DR
2905 /*
2906 * The larger the object size is, the more pages we want on the partial
2907 * list to avoid pounding the page allocator excessively.
2908 */
c0bdb232 2909 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2910 s->refcount = 1;
2911#ifdef CONFIG_NUMA
e2cb96b7 2912 s->remote_node_defrag_ratio = 1000;
81819f0f 2913#endif
55136592 2914 if (!init_kmem_cache_nodes(s))
dfb4f096 2915 goto error;
81819f0f 2916
55136592 2917 if (alloc_kmem_cache_cpus(s))
81819f0f 2918 return 1;
ff12059e 2919
4c93c355 2920 free_kmem_cache_nodes(s);
81819f0f
CL
2921error:
2922 if (flags & SLAB_PANIC)
2923 panic("Cannot create slab %s size=%lu realsize=%u "
2924 "order=%u offset=%u flags=%lx\n",
834f3d11 2925 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2926 s->offset, flags);
2927 return 0;
2928}
81819f0f 2929
81819f0f
CL
2930/*
2931 * Determine the size of a slab object
2932 */
2933unsigned int kmem_cache_size(struct kmem_cache *s)
2934{
2935 return s->objsize;
2936}
2937EXPORT_SYMBOL(kmem_cache_size);
2938
33b12c38
CL
2939static void list_slab_objects(struct kmem_cache *s, struct page *page,
2940 const char *text)
2941{
2942#ifdef CONFIG_SLUB_DEBUG
2943 void *addr = page_address(page);
2944 void *p;
a5dd5c11
NK
2945 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2946 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2947 if (!map)
2948 return;
33b12c38
CL
2949 slab_err(s, page, "%s", text);
2950 slab_lock(page);
33b12c38 2951
5f80b13a 2952 get_map(s, page, map);
33b12c38
CL
2953 for_each_object(p, s, addr, page->objects) {
2954
2955 if (!test_bit(slab_index(p, s, addr), map)) {
2956 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2957 p, p - addr);
2958 print_tracking(s, p);
2959 }
2960 }
2961 slab_unlock(page);
bbd7d57b 2962 kfree(map);
33b12c38
CL
2963#endif
2964}
2965
81819f0f 2966/*
599870b1 2967 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
2968 * This is called from kmem_cache_close(). We must be the last thread
2969 * using the cache and therefore we do not need to lock anymore.
81819f0f 2970 */
599870b1 2971static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2972{
81819f0f
CL
2973 struct page *page, *h;
2974
33b12c38 2975 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2976 if (!page->inuse) {
5cc6eee8 2977 remove_partial(n, page);
81819f0f 2978 discard_slab(s, page);
33b12c38
CL
2979 } else {
2980 list_slab_objects(s, page,
2981 "Objects remaining on kmem_cache_close()");
599870b1 2982 }
33b12c38 2983 }
81819f0f
CL
2984}
2985
2986/*
672bba3a 2987 * Release all resources used by a slab cache.
81819f0f 2988 */
0c710013 2989static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2990{
2991 int node;
2992
2993 flush_all(s);
9dfc6e68 2994 free_percpu(s->cpu_slab);
81819f0f 2995 /* Attempt to free all objects */
f64dc58c 2996 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2997 struct kmem_cache_node *n = get_node(s, node);
2998
599870b1
CL
2999 free_partial(s, n);
3000 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3001 return 1;
3002 }
3003 free_kmem_cache_nodes(s);
3004 return 0;
3005}
3006
3007/*
3008 * Close a cache and release the kmem_cache structure
3009 * (must be used for caches created using kmem_cache_create)
3010 */
3011void kmem_cache_destroy(struct kmem_cache *s)
3012{
3013 down_write(&slub_lock);
3014 s->refcount--;
3015 if (!s->refcount) {
3016 list_del(&s->list);
69cb8e6b 3017 up_write(&slub_lock);
d629d819
PE
3018 if (kmem_cache_close(s)) {
3019 printk(KERN_ERR "SLUB %s: %s called for cache that "
3020 "still has objects.\n", s->name, __func__);
3021 dump_stack();
3022 }
d76b1590
ED
3023 if (s->flags & SLAB_DESTROY_BY_RCU)
3024 rcu_barrier();
81819f0f 3025 sysfs_slab_remove(s);
69cb8e6b
CL
3026 } else
3027 up_write(&slub_lock);
81819f0f
CL
3028}
3029EXPORT_SYMBOL(kmem_cache_destroy);
3030
3031/********************************************************************
3032 * Kmalloc subsystem
3033 *******************************************************************/
3034
51df1142 3035struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3036EXPORT_SYMBOL(kmalloc_caches);
3037
51df1142
CL
3038static struct kmem_cache *kmem_cache;
3039
55136592 3040#ifdef CONFIG_ZONE_DMA
51df1142 3041static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3042#endif
3043
81819f0f
CL
3044static int __init setup_slub_min_order(char *str)
3045{
06428780 3046 get_option(&str, &slub_min_order);
81819f0f
CL
3047
3048 return 1;
3049}
3050
3051__setup("slub_min_order=", setup_slub_min_order);
3052
3053static int __init setup_slub_max_order(char *str)
3054{
06428780 3055 get_option(&str, &slub_max_order);
818cf590 3056 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3057
3058 return 1;
3059}
3060
3061__setup("slub_max_order=", setup_slub_max_order);
3062
3063static int __init setup_slub_min_objects(char *str)
3064{
06428780 3065 get_option(&str, &slub_min_objects);
81819f0f
CL
3066
3067 return 1;
3068}
3069
3070__setup("slub_min_objects=", setup_slub_min_objects);
3071
3072static int __init setup_slub_nomerge(char *str)
3073{
3074 slub_nomerge = 1;
3075 return 1;
3076}
3077
3078__setup("slub_nomerge", setup_slub_nomerge);
3079
51df1142
CL
3080static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3081 int size, unsigned int flags)
81819f0f 3082{
51df1142
CL
3083 struct kmem_cache *s;
3084
3085 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3086
83b519e8
PE
3087 /*
3088 * This function is called with IRQs disabled during early-boot on
3089 * single CPU so there's no need to take slub_lock here.
3090 */
55136592 3091 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3092 flags, NULL))
81819f0f
CL
3093 goto panic;
3094
3095 list_add(&s->list, &slab_caches);
51df1142 3096 return s;
81819f0f
CL
3097
3098panic:
3099 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3100 return NULL;
81819f0f
CL
3101}
3102
f1b26339
CL
3103/*
3104 * Conversion table for small slabs sizes / 8 to the index in the
3105 * kmalloc array. This is necessary for slabs < 192 since we have non power
3106 * of two cache sizes there. The size of larger slabs can be determined using
3107 * fls.
3108 */
3109static s8 size_index[24] = {
3110 3, /* 8 */
3111 4, /* 16 */
3112 5, /* 24 */
3113 5, /* 32 */
3114 6, /* 40 */
3115 6, /* 48 */
3116 6, /* 56 */
3117 6, /* 64 */
3118 1, /* 72 */
3119 1, /* 80 */
3120 1, /* 88 */
3121 1, /* 96 */
3122 7, /* 104 */
3123 7, /* 112 */
3124 7, /* 120 */
3125 7, /* 128 */
3126 2, /* 136 */
3127 2, /* 144 */
3128 2, /* 152 */
3129 2, /* 160 */
3130 2, /* 168 */
3131 2, /* 176 */
3132 2, /* 184 */
3133 2 /* 192 */
3134};
3135
acdfcd04
AK
3136static inline int size_index_elem(size_t bytes)
3137{
3138 return (bytes - 1) / 8;
3139}
3140
81819f0f
CL
3141static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3142{
f1b26339 3143 int index;
81819f0f 3144
f1b26339
CL
3145 if (size <= 192) {
3146 if (!size)
3147 return ZERO_SIZE_PTR;
81819f0f 3148
acdfcd04 3149 index = size_index[size_index_elem(size)];
aadb4bc4 3150 } else
f1b26339 3151 index = fls(size - 1);
81819f0f
CL
3152
3153#ifdef CONFIG_ZONE_DMA
f1b26339 3154 if (unlikely((flags & SLUB_DMA)))
51df1142 3155 return kmalloc_dma_caches[index];
f1b26339 3156
81819f0f 3157#endif
51df1142 3158 return kmalloc_caches[index];
81819f0f
CL
3159}
3160
3161void *__kmalloc(size_t size, gfp_t flags)
3162{
aadb4bc4 3163 struct kmem_cache *s;
5b882be4 3164 void *ret;
81819f0f 3165
ffadd4d0 3166 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3167 return kmalloc_large(size, flags);
aadb4bc4
CL
3168
3169 s = get_slab(size, flags);
3170
3171 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3172 return s;
3173
2154a336 3174 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3175
ca2b84cb 3176 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3177
3178 return ret;
81819f0f
CL
3179}
3180EXPORT_SYMBOL(__kmalloc);
3181
5d1f57e4 3182#ifdef CONFIG_NUMA
f619cfe1
CL
3183static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3184{
b1eeab67 3185 struct page *page;
e4f7c0b4 3186 void *ptr = NULL;
f619cfe1 3187
b1eeab67
VN
3188 flags |= __GFP_COMP | __GFP_NOTRACK;
3189 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3190 if (page)
e4f7c0b4
CM
3191 ptr = page_address(page);
3192
3193 kmemleak_alloc(ptr, size, 1, flags);
3194 return ptr;
f619cfe1
CL
3195}
3196
81819f0f
CL
3197void *__kmalloc_node(size_t size, gfp_t flags, int node)
3198{
aadb4bc4 3199 struct kmem_cache *s;
5b882be4 3200 void *ret;
81819f0f 3201
057685cf 3202 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3203 ret = kmalloc_large_node(size, flags, node);
3204
ca2b84cb
EGM
3205 trace_kmalloc_node(_RET_IP_, ret,
3206 size, PAGE_SIZE << get_order(size),
3207 flags, node);
5b882be4
EGM
3208
3209 return ret;
3210 }
aadb4bc4
CL
3211
3212 s = get_slab(size, flags);
3213
3214 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3215 return s;
3216
5b882be4
EGM
3217 ret = slab_alloc(s, flags, node, _RET_IP_);
3218
ca2b84cb 3219 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3220
3221 return ret;
81819f0f
CL
3222}
3223EXPORT_SYMBOL(__kmalloc_node);
3224#endif
3225
3226size_t ksize(const void *object)
3227{
272c1d21 3228 struct page *page;
81819f0f 3229
ef8b4520 3230 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3231 return 0;
3232
294a80a8 3233 page = virt_to_head_page(object);
294a80a8 3234
76994412
PE
3235 if (unlikely(!PageSlab(page))) {
3236 WARN_ON(!PageCompound(page));
294a80a8 3237 return PAGE_SIZE << compound_order(page);
76994412 3238 }
81819f0f 3239
b3d41885 3240 return slab_ksize(page->slab);
81819f0f 3241}
b1aabecd 3242EXPORT_SYMBOL(ksize);
81819f0f 3243
d18a90dd
BG
3244#ifdef CONFIG_SLUB_DEBUG
3245bool verify_mem_not_deleted(const void *x)
3246{
3247 struct page *page;
3248 void *object = (void *)x;
3249 unsigned long flags;
3250 bool rv;
3251
3252 if (unlikely(ZERO_OR_NULL_PTR(x)))
3253 return false;
3254
3255 local_irq_save(flags);
3256
3257 page = virt_to_head_page(x);
3258 if (unlikely(!PageSlab(page))) {
3259 /* maybe it was from stack? */
3260 rv = true;
3261 goto out_unlock;
3262 }
3263
3264 slab_lock(page);
3265 if (on_freelist(page->slab, page, object)) {
3266 object_err(page->slab, page, object, "Object is on free-list");
3267 rv = false;
3268 } else {
3269 rv = true;
3270 }
3271 slab_unlock(page);
3272
3273out_unlock:
3274 local_irq_restore(flags);
3275 return rv;
3276}
3277EXPORT_SYMBOL(verify_mem_not_deleted);
3278#endif
3279
81819f0f
CL
3280void kfree(const void *x)
3281{
81819f0f 3282 struct page *page;
5bb983b0 3283 void *object = (void *)x;
81819f0f 3284
2121db74
PE
3285 trace_kfree(_RET_IP_, x);
3286
2408c550 3287 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3288 return;
3289
b49af68f 3290 page = virt_to_head_page(x);
aadb4bc4 3291 if (unlikely(!PageSlab(page))) {
0937502a 3292 BUG_ON(!PageCompound(page));
e4f7c0b4 3293 kmemleak_free(x);
aadb4bc4
CL
3294 put_page(page);
3295 return;
3296 }
ce71e27c 3297 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3298}
3299EXPORT_SYMBOL(kfree);
3300
2086d26a 3301/*
672bba3a
CL
3302 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3303 * the remaining slabs by the number of items in use. The slabs with the
3304 * most items in use come first. New allocations will then fill those up
3305 * and thus they can be removed from the partial lists.
3306 *
3307 * The slabs with the least items are placed last. This results in them
3308 * being allocated from last increasing the chance that the last objects
3309 * are freed in them.
2086d26a
CL
3310 */
3311int kmem_cache_shrink(struct kmem_cache *s)
3312{
3313 int node;
3314 int i;
3315 struct kmem_cache_node *n;
3316 struct page *page;
3317 struct page *t;
205ab99d 3318 int objects = oo_objects(s->max);
2086d26a 3319 struct list_head *slabs_by_inuse =
834f3d11 3320 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3321 unsigned long flags;
3322
3323 if (!slabs_by_inuse)
3324 return -ENOMEM;
3325
3326 flush_all(s);
f64dc58c 3327 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3328 n = get_node(s, node);
3329
3330 if (!n->nr_partial)
3331 continue;
3332
834f3d11 3333 for (i = 0; i < objects; i++)
2086d26a
CL
3334 INIT_LIST_HEAD(slabs_by_inuse + i);
3335
3336 spin_lock_irqsave(&n->list_lock, flags);
3337
3338 /*
672bba3a 3339 * Build lists indexed by the items in use in each slab.
2086d26a 3340 *
672bba3a
CL
3341 * Note that concurrent frees may occur while we hold the
3342 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3343 */
3344 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3345 list_move(&page->lru, slabs_by_inuse + page->inuse);
3346 if (!page->inuse)
3347 n->nr_partial--;
2086d26a
CL
3348 }
3349
2086d26a 3350 /*
672bba3a
CL
3351 * Rebuild the partial list with the slabs filled up most
3352 * first and the least used slabs at the end.
2086d26a 3353 */
69cb8e6b 3354 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3355 list_splice(slabs_by_inuse + i, n->partial.prev);
3356
2086d26a 3357 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3358
3359 /* Release empty slabs */
3360 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3361 discard_slab(s, page);
2086d26a
CL
3362 }
3363
3364 kfree(slabs_by_inuse);
3365 return 0;
3366}
3367EXPORT_SYMBOL(kmem_cache_shrink);
3368
92a5bbc1 3369#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3370static int slab_mem_going_offline_callback(void *arg)
3371{
3372 struct kmem_cache *s;
3373
3374 down_read(&slub_lock);
3375 list_for_each_entry(s, &slab_caches, list)
3376 kmem_cache_shrink(s);
3377 up_read(&slub_lock);
3378
3379 return 0;
3380}
3381
3382static void slab_mem_offline_callback(void *arg)
3383{
3384 struct kmem_cache_node *n;
3385 struct kmem_cache *s;
3386 struct memory_notify *marg = arg;
3387 int offline_node;
3388
3389 offline_node = marg->status_change_nid;
3390
3391 /*
3392 * If the node still has available memory. we need kmem_cache_node
3393 * for it yet.
3394 */
3395 if (offline_node < 0)
3396 return;
3397
3398 down_read(&slub_lock);
3399 list_for_each_entry(s, &slab_caches, list) {
3400 n = get_node(s, offline_node);
3401 if (n) {
3402 /*
3403 * if n->nr_slabs > 0, slabs still exist on the node
3404 * that is going down. We were unable to free them,
c9404c9c 3405 * and offline_pages() function shouldn't call this
b9049e23
YG
3406 * callback. So, we must fail.
3407 */
0f389ec6 3408 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3409
3410 s->node[offline_node] = NULL;
8de66a0c 3411 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3412 }
3413 }
3414 up_read(&slub_lock);
3415}
3416
3417static int slab_mem_going_online_callback(void *arg)
3418{
3419 struct kmem_cache_node *n;
3420 struct kmem_cache *s;
3421 struct memory_notify *marg = arg;
3422 int nid = marg->status_change_nid;
3423 int ret = 0;
3424
3425 /*
3426 * If the node's memory is already available, then kmem_cache_node is
3427 * already created. Nothing to do.
3428 */
3429 if (nid < 0)
3430 return 0;
3431
3432 /*
0121c619 3433 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3434 * allocate a kmem_cache_node structure in order to bring the node
3435 * online.
3436 */
3437 down_read(&slub_lock);
3438 list_for_each_entry(s, &slab_caches, list) {
3439 /*
3440 * XXX: kmem_cache_alloc_node will fallback to other nodes
3441 * since memory is not yet available from the node that
3442 * is brought up.
3443 */
8de66a0c 3444 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3445 if (!n) {
3446 ret = -ENOMEM;
3447 goto out;
3448 }
5595cffc 3449 init_kmem_cache_node(n, s);
b9049e23
YG
3450 s->node[nid] = n;
3451 }
3452out:
3453 up_read(&slub_lock);
3454 return ret;
3455}
3456
3457static int slab_memory_callback(struct notifier_block *self,
3458 unsigned long action, void *arg)
3459{
3460 int ret = 0;
3461
3462 switch (action) {
3463 case MEM_GOING_ONLINE:
3464 ret = slab_mem_going_online_callback(arg);
3465 break;
3466 case MEM_GOING_OFFLINE:
3467 ret = slab_mem_going_offline_callback(arg);
3468 break;
3469 case MEM_OFFLINE:
3470 case MEM_CANCEL_ONLINE:
3471 slab_mem_offline_callback(arg);
3472 break;
3473 case MEM_ONLINE:
3474 case MEM_CANCEL_OFFLINE:
3475 break;
3476 }
dc19f9db
KH
3477 if (ret)
3478 ret = notifier_from_errno(ret);
3479 else
3480 ret = NOTIFY_OK;
b9049e23
YG
3481 return ret;
3482}
3483
3484#endif /* CONFIG_MEMORY_HOTPLUG */
3485
81819f0f
CL
3486/********************************************************************
3487 * Basic setup of slabs
3488 *******************************************************************/
3489
51df1142
CL
3490/*
3491 * Used for early kmem_cache structures that were allocated using
3492 * the page allocator
3493 */
3494
3495static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3496{
3497 int node;
3498
3499 list_add(&s->list, &slab_caches);
3500 s->refcount = -1;
3501
3502 for_each_node_state(node, N_NORMAL_MEMORY) {
3503 struct kmem_cache_node *n = get_node(s, node);
3504 struct page *p;
3505
3506 if (n) {
3507 list_for_each_entry(p, &n->partial, lru)
3508 p->slab = s;
3509
607bf324 3510#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3511 list_for_each_entry(p, &n->full, lru)
3512 p->slab = s;
3513#endif
3514 }
3515 }
3516}
3517
81819f0f
CL
3518void __init kmem_cache_init(void)
3519{
3520 int i;
4b356be0 3521 int caches = 0;
51df1142
CL
3522 struct kmem_cache *temp_kmem_cache;
3523 int order;
51df1142
CL
3524 struct kmem_cache *temp_kmem_cache_node;
3525 unsigned long kmalloc_size;
3526
3527 kmem_size = offsetof(struct kmem_cache, node) +
3528 nr_node_ids * sizeof(struct kmem_cache_node *);
3529
3530 /* Allocate two kmem_caches from the page allocator */
3531 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3532 order = get_order(2 * kmalloc_size);
3533 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3534
81819f0f
CL
3535 /*
3536 * Must first have the slab cache available for the allocations of the
672bba3a 3537 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3538 * kmem_cache_open for slab_state == DOWN.
3539 */
51df1142
CL
3540 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3541
3542 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3543 sizeof(struct kmem_cache_node),
3544 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3545
0c40ba4f 3546 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3547
3548 /* Able to allocate the per node structures */
3549 slab_state = PARTIAL;
3550
51df1142
CL
3551 temp_kmem_cache = kmem_cache;
3552 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3553 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3554 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3555 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3556
51df1142
CL
3557 /*
3558 * Allocate kmem_cache_node properly from the kmem_cache slab.
3559 * kmem_cache_node is separately allocated so no need to
3560 * update any list pointers.
3561 */
3562 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3563
51df1142
CL
3564 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3565 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3566
3567 kmem_cache_bootstrap_fixup(kmem_cache_node);
3568
3569 caches++;
51df1142
CL
3570 kmem_cache_bootstrap_fixup(kmem_cache);
3571 caches++;
3572 /* Free temporary boot structure */
3573 free_pages((unsigned long)temp_kmem_cache, order);
3574
3575 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3576
3577 /*
3578 * Patch up the size_index table if we have strange large alignment
3579 * requirements for the kmalloc array. This is only the case for
6446faa2 3580 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3581 *
3582 * Largest permitted alignment is 256 bytes due to the way we
3583 * handle the index determination for the smaller caches.
3584 *
3585 * Make sure that nothing crazy happens if someone starts tinkering
3586 * around with ARCH_KMALLOC_MINALIGN
3587 */
3588 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3589 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3590
acdfcd04
AK
3591 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3592 int elem = size_index_elem(i);
3593 if (elem >= ARRAY_SIZE(size_index))
3594 break;
3595 size_index[elem] = KMALLOC_SHIFT_LOW;
3596 }
f1b26339 3597
acdfcd04
AK
3598 if (KMALLOC_MIN_SIZE == 64) {
3599 /*
3600 * The 96 byte size cache is not used if the alignment
3601 * is 64 byte.
3602 */
3603 for (i = 64 + 8; i <= 96; i += 8)
3604 size_index[size_index_elem(i)] = 7;
3605 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3606 /*
3607 * The 192 byte sized cache is not used if the alignment
3608 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3609 * instead.
3610 */
3611 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3612 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3613 }
3614
51df1142
CL
3615 /* Caches that are not of the two-to-the-power-of size */
3616 if (KMALLOC_MIN_SIZE <= 32) {
3617 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3618 caches++;
3619 }
3620
3621 if (KMALLOC_MIN_SIZE <= 64) {
3622 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3623 caches++;
3624 }
3625
3626 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3627 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3628 caches++;
3629 }
3630
81819f0f
CL
3631 slab_state = UP;
3632
3633 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3634 if (KMALLOC_MIN_SIZE <= 32) {
3635 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3636 BUG_ON(!kmalloc_caches[1]->name);
3637 }
3638
3639 if (KMALLOC_MIN_SIZE <= 64) {
3640 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3641 BUG_ON(!kmalloc_caches[2]->name);
3642 }
3643
d7278bd7
CL
3644 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3645 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3646
3647 BUG_ON(!s);
51df1142 3648 kmalloc_caches[i]->name = s;
d7278bd7 3649 }
81819f0f
CL
3650
3651#ifdef CONFIG_SMP
3652 register_cpu_notifier(&slab_notifier);
9dfc6e68 3653#endif
81819f0f 3654
55136592 3655#ifdef CONFIG_ZONE_DMA
51df1142
CL
3656 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3657 struct kmem_cache *s = kmalloc_caches[i];
55136592 3658
51df1142 3659 if (s && s->size) {
55136592
CL
3660 char *name = kasprintf(GFP_NOWAIT,
3661 "dma-kmalloc-%d", s->objsize);
3662
3663 BUG_ON(!name);
51df1142
CL
3664 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3665 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3666 }
3667 }
3668#endif
3adbefee
IM
3669 printk(KERN_INFO
3670 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3671 " CPUs=%d, Nodes=%d\n",
3672 caches, cache_line_size(),
81819f0f
CL
3673 slub_min_order, slub_max_order, slub_min_objects,
3674 nr_cpu_ids, nr_node_ids);
3675}
3676
7e85ee0c
PE
3677void __init kmem_cache_init_late(void)
3678{
7e85ee0c
PE
3679}
3680
81819f0f
CL
3681/*
3682 * Find a mergeable slab cache
3683 */
3684static int slab_unmergeable(struct kmem_cache *s)
3685{
3686 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3687 return 1;
3688
c59def9f 3689 if (s->ctor)
81819f0f
CL
3690 return 1;
3691
8ffa6875
CL
3692 /*
3693 * We may have set a slab to be unmergeable during bootstrap.
3694 */
3695 if (s->refcount < 0)
3696 return 1;
3697
81819f0f
CL
3698 return 0;
3699}
3700
3701static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3702 size_t align, unsigned long flags, const char *name,
51cc5068 3703 void (*ctor)(void *))
81819f0f 3704{
5b95a4ac 3705 struct kmem_cache *s;
81819f0f
CL
3706
3707 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3708 return NULL;
3709
c59def9f 3710 if (ctor)
81819f0f
CL
3711 return NULL;
3712
3713 size = ALIGN(size, sizeof(void *));
3714 align = calculate_alignment(flags, align, size);
3715 size = ALIGN(size, align);
ba0268a8 3716 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3717
5b95a4ac 3718 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3719 if (slab_unmergeable(s))
3720 continue;
3721
3722 if (size > s->size)
3723 continue;
3724
ba0268a8 3725 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3726 continue;
3727 /*
3728 * Check if alignment is compatible.
3729 * Courtesy of Adrian Drzewiecki
3730 */
06428780 3731 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3732 continue;
3733
3734 if (s->size - size >= sizeof(void *))
3735 continue;
3736
3737 return s;
3738 }
3739 return NULL;
3740}
3741
3742struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3743 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3744{
3745 struct kmem_cache *s;
84c1cf62 3746 char *n;
81819f0f 3747
fe1ff49d
BH
3748 if (WARN_ON(!name))
3749 return NULL;
3750
81819f0f 3751 down_write(&slub_lock);
ba0268a8 3752 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3753 if (s) {
3754 s->refcount++;
3755 /*
3756 * Adjust the object sizes so that we clear
3757 * the complete object on kzalloc.
3758 */
3759 s->objsize = max(s->objsize, (int)size);
3760 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3761
7b8f3b66 3762 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3763 s->refcount--;
81819f0f 3764 goto err;
7b8f3b66 3765 }
2bce6485 3766 up_write(&slub_lock);
a0e1d1be
CL
3767 return s;
3768 }
6446faa2 3769
84c1cf62
PE
3770 n = kstrdup(name, GFP_KERNEL);
3771 if (!n)
3772 goto err;
3773
a0e1d1be
CL
3774 s = kmalloc(kmem_size, GFP_KERNEL);
3775 if (s) {
84c1cf62 3776 if (kmem_cache_open(s, n,
c59def9f 3777 size, align, flags, ctor)) {
81819f0f 3778 list_add(&s->list, &slab_caches);
7b8f3b66 3779 if (sysfs_slab_add(s)) {
7b8f3b66 3780 list_del(&s->list);
84c1cf62 3781 kfree(n);
7b8f3b66 3782 kfree(s);
a0e1d1be 3783 goto err;
7b8f3b66 3784 }
2bce6485 3785 up_write(&slub_lock);
a0e1d1be
CL
3786 return s;
3787 }
84c1cf62 3788 kfree(n);
a0e1d1be 3789 kfree(s);
81819f0f 3790 }
68cee4f1 3791err:
81819f0f 3792 up_write(&slub_lock);
81819f0f 3793
81819f0f
CL
3794 if (flags & SLAB_PANIC)
3795 panic("Cannot create slabcache %s\n", name);
3796 else
3797 s = NULL;
3798 return s;
3799}
3800EXPORT_SYMBOL(kmem_cache_create);
3801
81819f0f 3802#ifdef CONFIG_SMP
81819f0f 3803/*
672bba3a
CL
3804 * Use the cpu notifier to insure that the cpu slabs are flushed when
3805 * necessary.
81819f0f
CL
3806 */
3807static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3808 unsigned long action, void *hcpu)
3809{
3810 long cpu = (long)hcpu;
5b95a4ac
CL
3811 struct kmem_cache *s;
3812 unsigned long flags;
81819f0f
CL
3813
3814 switch (action) {
3815 case CPU_UP_CANCELED:
8bb78442 3816 case CPU_UP_CANCELED_FROZEN:
81819f0f 3817 case CPU_DEAD:
8bb78442 3818 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3819 down_read(&slub_lock);
3820 list_for_each_entry(s, &slab_caches, list) {
3821 local_irq_save(flags);
3822 __flush_cpu_slab(s, cpu);
3823 local_irq_restore(flags);
3824 }
3825 up_read(&slub_lock);
81819f0f
CL
3826 break;
3827 default:
3828 break;
3829 }
3830 return NOTIFY_OK;
3831}
3832
06428780 3833static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3834 .notifier_call = slab_cpuup_callback
06428780 3835};
81819f0f
CL
3836
3837#endif
3838
ce71e27c 3839void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3840{
aadb4bc4 3841 struct kmem_cache *s;
94b528d0 3842 void *ret;
aadb4bc4 3843
ffadd4d0 3844 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3845 return kmalloc_large(size, gfpflags);
3846
aadb4bc4 3847 s = get_slab(size, gfpflags);
81819f0f 3848
2408c550 3849 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3850 return s;
81819f0f 3851
2154a336 3852 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 3853
25985edc 3854 /* Honor the call site pointer we received. */
ca2b84cb 3855 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3856
3857 return ret;
81819f0f
CL
3858}
3859
5d1f57e4 3860#ifdef CONFIG_NUMA
81819f0f 3861void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3862 int node, unsigned long caller)
81819f0f 3863{
aadb4bc4 3864 struct kmem_cache *s;
94b528d0 3865 void *ret;
aadb4bc4 3866
d3e14aa3
XF
3867 if (unlikely(size > SLUB_MAX_SIZE)) {
3868 ret = kmalloc_large_node(size, gfpflags, node);
3869
3870 trace_kmalloc_node(caller, ret,
3871 size, PAGE_SIZE << get_order(size),
3872 gfpflags, node);
3873
3874 return ret;
3875 }
eada35ef 3876
aadb4bc4 3877 s = get_slab(size, gfpflags);
81819f0f 3878
2408c550 3879 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3880 return s;
81819f0f 3881
94b528d0
EGM
3882 ret = slab_alloc(s, gfpflags, node, caller);
3883
25985edc 3884 /* Honor the call site pointer we received. */
ca2b84cb 3885 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3886
3887 return ret;
81819f0f 3888}
5d1f57e4 3889#endif
81819f0f 3890
ab4d5ed5 3891#ifdef CONFIG_SYSFS
205ab99d
CL
3892static int count_inuse(struct page *page)
3893{
3894 return page->inuse;
3895}
3896
3897static int count_total(struct page *page)
3898{
3899 return page->objects;
3900}
ab4d5ed5 3901#endif
205ab99d 3902
ab4d5ed5 3903#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3904static int validate_slab(struct kmem_cache *s, struct page *page,
3905 unsigned long *map)
53e15af0
CL
3906{
3907 void *p;
a973e9dd 3908 void *addr = page_address(page);
53e15af0
CL
3909
3910 if (!check_slab(s, page) ||
3911 !on_freelist(s, page, NULL))
3912 return 0;
3913
3914 /* Now we know that a valid freelist exists */
39b26464 3915 bitmap_zero(map, page->objects);
53e15af0 3916
5f80b13a
CL
3917 get_map(s, page, map);
3918 for_each_object(p, s, addr, page->objects) {
3919 if (test_bit(slab_index(p, s, addr), map))
3920 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3921 return 0;
53e15af0
CL
3922 }
3923
224a88be 3924 for_each_object(p, s, addr, page->objects)
7656c72b 3925 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3926 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3927 return 0;
3928 return 1;
3929}
3930
434e245d
CL
3931static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3932 unsigned long *map)
53e15af0 3933{
881db7fb
CL
3934 slab_lock(page);
3935 validate_slab(s, page, map);
3936 slab_unlock(page);
53e15af0
CL
3937}
3938
434e245d
CL
3939static int validate_slab_node(struct kmem_cache *s,
3940 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3941{
3942 unsigned long count = 0;
3943 struct page *page;
3944 unsigned long flags;
3945
3946 spin_lock_irqsave(&n->list_lock, flags);
3947
3948 list_for_each_entry(page, &n->partial, lru) {
434e245d 3949 validate_slab_slab(s, page, map);
53e15af0
CL
3950 count++;
3951 }
3952 if (count != n->nr_partial)
3953 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3954 "counter=%ld\n", s->name, count, n->nr_partial);
3955
3956 if (!(s->flags & SLAB_STORE_USER))
3957 goto out;
3958
3959 list_for_each_entry(page, &n->full, lru) {
434e245d 3960 validate_slab_slab(s, page, map);
53e15af0
CL
3961 count++;
3962 }
3963 if (count != atomic_long_read(&n->nr_slabs))
3964 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3965 "counter=%ld\n", s->name, count,
3966 atomic_long_read(&n->nr_slabs));
3967
3968out:
3969 spin_unlock_irqrestore(&n->list_lock, flags);
3970 return count;
3971}
3972
434e245d 3973static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3974{
3975 int node;
3976 unsigned long count = 0;
205ab99d 3977 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3978 sizeof(unsigned long), GFP_KERNEL);
3979
3980 if (!map)
3981 return -ENOMEM;
53e15af0
CL
3982
3983 flush_all(s);
f64dc58c 3984 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3985 struct kmem_cache_node *n = get_node(s, node);
3986
434e245d 3987 count += validate_slab_node(s, n, map);
53e15af0 3988 }
434e245d 3989 kfree(map);
53e15af0
CL
3990 return count;
3991}
88a420e4 3992/*
672bba3a 3993 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3994 * and freed.
3995 */
3996
3997struct location {
3998 unsigned long count;
ce71e27c 3999 unsigned long addr;
45edfa58
CL
4000 long long sum_time;
4001 long min_time;
4002 long max_time;
4003 long min_pid;
4004 long max_pid;
174596a0 4005 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4006 nodemask_t nodes;
88a420e4
CL
4007};
4008
4009struct loc_track {
4010 unsigned long max;
4011 unsigned long count;
4012 struct location *loc;
4013};
4014
4015static void free_loc_track(struct loc_track *t)
4016{
4017 if (t->max)
4018 free_pages((unsigned long)t->loc,
4019 get_order(sizeof(struct location) * t->max));
4020}
4021
68dff6a9 4022static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4023{
4024 struct location *l;
4025 int order;
4026
88a420e4
CL
4027 order = get_order(sizeof(struct location) * max);
4028
68dff6a9 4029 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4030 if (!l)
4031 return 0;
4032
4033 if (t->count) {
4034 memcpy(l, t->loc, sizeof(struct location) * t->count);
4035 free_loc_track(t);
4036 }
4037 t->max = max;
4038 t->loc = l;
4039 return 1;
4040}
4041
4042static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4043 const struct track *track)
88a420e4
CL
4044{
4045 long start, end, pos;
4046 struct location *l;
ce71e27c 4047 unsigned long caddr;
45edfa58 4048 unsigned long age = jiffies - track->when;
88a420e4
CL
4049
4050 start = -1;
4051 end = t->count;
4052
4053 for ( ; ; ) {
4054 pos = start + (end - start + 1) / 2;
4055
4056 /*
4057 * There is nothing at "end". If we end up there
4058 * we need to add something to before end.
4059 */
4060 if (pos == end)
4061 break;
4062
4063 caddr = t->loc[pos].addr;
45edfa58
CL
4064 if (track->addr == caddr) {
4065
4066 l = &t->loc[pos];
4067 l->count++;
4068 if (track->when) {
4069 l->sum_time += age;
4070 if (age < l->min_time)
4071 l->min_time = age;
4072 if (age > l->max_time)
4073 l->max_time = age;
4074
4075 if (track->pid < l->min_pid)
4076 l->min_pid = track->pid;
4077 if (track->pid > l->max_pid)
4078 l->max_pid = track->pid;
4079
174596a0
RR
4080 cpumask_set_cpu(track->cpu,
4081 to_cpumask(l->cpus));
45edfa58
CL
4082 }
4083 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4084 return 1;
4085 }
4086
45edfa58 4087 if (track->addr < caddr)
88a420e4
CL
4088 end = pos;
4089 else
4090 start = pos;
4091 }
4092
4093 /*
672bba3a 4094 * Not found. Insert new tracking element.
88a420e4 4095 */
68dff6a9 4096 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4097 return 0;
4098
4099 l = t->loc + pos;
4100 if (pos < t->count)
4101 memmove(l + 1, l,
4102 (t->count - pos) * sizeof(struct location));
4103 t->count++;
4104 l->count = 1;
45edfa58
CL
4105 l->addr = track->addr;
4106 l->sum_time = age;
4107 l->min_time = age;
4108 l->max_time = age;
4109 l->min_pid = track->pid;
4110 l->max_pid = track->pid;
174596a0
RR
4111 cpumask_clear(to_cpumask(l->cpus));
4112 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4113 nodes_clear(l->nodes);
4114 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4115 return 1;
4116}
4117
4118static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4119 struct page *page, enum track_item alloc,
a5dd5c11 4120 unsigned long *map)
88a420e4 4121{
a973e9dd 4122 void *addr = page_address(page);
88a420e4
CL
4123 void *p;
4124
39b26464 4125 bitmap_zero(map, page->objects);
5f80b13a 4126 get_map(s, page, map);
88a420e4 4127
224a88be 4128 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4129 if (!test_bit(slab_index(p, s, addr), map))
4130 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4131}
4132
4133static int list_locations(struct kmem_cache *s, char *buf,
4134 enum track_item alloc)
4135{
e374d483 4136 int len = 0;
88a420e4 4137 unsigned long i;
68dff6a9 4138 struct loc_track t = { 0, 0, NULL };
88a420e4 4139 int node;
bbd7d57b
ED
4140 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4141 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4142
bbd7d57b
ED
4143 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4144 GFP_TEMPORARY)) {
4145 kfree(map);
68dff6a9 4146 return sprintf(buf, "Out of memory\n");
bbd7d57b 4147 }
88a420e4
CL
4148 /* Push back cpu slabs */
4149 flush_all(s);
4150
f64dc58c 4151 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4152 struct kmem_cache_node *n = get_node(s, node);
4153 unsigned long flags;
4154 struct page *page;
4155
9e86943b 4156 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4157 continue;
4158
4159 spin_lock_irqsave(&n->list_lock, flags);
4160 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4161 process_slab(&t, s, page, alloc, map);
88a420e4 4162 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4163 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4164 spin_unlock_irqrestore(&n->list_lock, flags);
4165 }
4166
4167 for (i = 0; i < t.count; i++) {
45edfa58 4168 struct location *l = &t.loc[i];
88a420e4 4169
9c246247 4170 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4171 break;
e374d483 4172 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4173
4174 if (l->addr)
62c70bce 4175 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4176 else
e374d483 4177 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4178
4179 if (l->sum_time != l->min_time) {
e374d483 4180 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4181 l->min_time,
4182 (long)div_u64(l->sum_time, l->count),
4183 l->max_time);
45edfa58 4184 } else
e374d483 4185 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4186 l->min_time);
4187
4188 if (l->min_pid != l->max_pid)
e374d483 4189 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4190 l->min_pid, l->max_pid);
4191 else
e374d483 4192 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4193 l->min_pid);
4194
174596a0
RR
4195 if (num_online_cpus() > 1 &&
4196 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4197 len < PAGE_SIZE - 60) {
4198 len += sprintf(buf + len, " cpus=");
4199 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4200 to_cpumask(l->cpus));
45edfa58
CL
4201 }
4202
62bc62a8 4203 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4204 len < PAGE_SIZE - 60) {
4205 len += sprintf(buf + len, " nodes=");
4206 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4207 l->nodes);
4208 }
4209
e374d483 4210 len += sprintf(buf + len, "\n");
88a420e4
CL
4211 }
4212
4213 free_loc_track(&t);
bbd7d57b 4214 kfree(map);
88a420e4 4215 if (!t.count)
e374d483
HH
4216 len += sprintf(buf, "No data\n");
4217 return len;
88a420e4 4218}
ab4d5ed5 4219#endif
88a420e4 4220
a5a84755
CL
4221#ifdef SLUB_RESILIENCY_TEST
4222static void resiliency_test(void)
4223{
4224 u8 *p;
4225
4226 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4227
4228 printk(KERN_ERR "SLUB resiliency testing\n");
4229 printk(KERN_ERR "-----------------------\n");
4230 printk(KERN_ERR "A. Corruption after allocation\n");
4231
4232 p = kzalloc(16, GFP_KERNEL);
4233 p[16] = 0x12;
4234 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4235 " 0x12->0x%p\n\n", p + 16);
4236
4237 validate_slab_cache(kmalloc_caches[4]);
4238
4239 /* Hmmm... The next two are dangerous */
4240 p = kzalloc(32, GFP_KERNEL);
4241 p[32 + sizeof(void *)] = 0x34;
4242 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4243 " 0x34 -> -0x%p\n", p);
4244 printk(KERN_ERR
4245 "If allocated object is overwritten then not detectable\n\n");
4246
4247 validate_slab_cache(kmalloc_caches[5]);
4248 p = kzalloc(64, GFP_KERNEL);
4249 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4250 *p = 0x56;
4251 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4252 p);
4253 printk(KERN_ERR
4254 "If allocated object is overwritten then not detectable\n\n");
4255 validate_slab_cache(kmalloc_caches[6]);
4256
4257 printk(KERN_ERR "\nB. Corruption after free\n");
4258 p = kzalloc(128, GFP_KERNEL);
4259 kfree(p);
4260 *p = 0x78;
4261 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4262 validate_slab_cache(kmalloc_caches[7]);
4263
4264 p = kzalloc(256, GFP_KERNEL);
4265 kfree(p);
4266 p[50] = 0x9a;
4267 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4268 p);
4269 validate_slab_cache(kmalloc_caches[8]);
4270
4271 p = kzalloc(512, GFP_KERNEL);
4272 kfree(p);
4273 p[512] = 0xab;
4274 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4275 validate_slab_cache(kmalloc_caches[9]);
4276}
4277#else
4278#ifdef CONFIG_SYSFS
4279static void resiliency_test(void) {};
4280#endif
4281#endif
4282
ab4d5ed5 4283#ifdef CONFIG_SYSFS
81819f0f 4284enum slab_stat_type {
205ab99d
CL
4285 SL_ALL, /* All slabs */
4286 SL_PARTIAL, /* Only partially allocated slabs */
4287 SL_CPU, /* Only slabs used for cpu caches */
4288 SL_OBJECTS, /* Determine allocated objects not slabs */
4289 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4290};
4291
205ab99d 4292#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4293#define SO_PARTIAL (1 << SL_PARTIAL)
4294#define SO_CPU (1 << SL_CPU)
4295#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4296#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4297
62e5c4b4
CG
4298static ssize_t show_slab_objects(struct kmem_cache *s,
4299 char *buf, unsigned long flags)
81819f0f
CL
4300{
4301 unsigned long total = 0;
81819f0f
CL
4302 int node;
4303 int x;
4304 unsigned long *nodes;
4305 unsigned long *per_cpu;
4306
4307 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4308 if (!nodes)
4309 return -ENOMEM;
81819f0f
CL
4310 per_cpu = nodes + nr_node_ids;
4311
205ab99d
CL
4312 if (flags & SO_CPU) {
4313 int cpu;
81819f0f 4314
205ab99d 4315 for_each_possible_cpu(cpu) {
9dfc6e68 4316 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 4317
205ab99d
CL
4318 if (!c || c->node < 0)
4319 continue;
4320
4321 if (c->page) {
4322 if (flags & SO_TOTAL)
4323 x = c->page->objects;
4324 else if (flags & SO_OBJECTS)
4325 x = c->page->inuse;
81819f0f
CL
4326 else
4327 x = 1;
205ab99d 4328
81819f0f 4329 total += x;
205ab99d 4330 nodes[c->node] += x;
81819f0f 4331 }
205ab99d 4332 per_cpu[c->node]++;
81819f0f
CL
4333 }
4334 }
4335
04d94879 4336 lock_memory_hotplug();
ab4d5ed5 4337#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4338 if (flags & SO_ALL) {
4339 for_each_node_state(node, N_NORMAL_MEMORY) {
4340 struct kmem_cache_node *n = get_node(s, node);
4341
4342 if (flags & SO_TOTAL)
4343 x = atomic_long_read(&n->total_objects);
4344 else if (flags & SO_OBJECTS)
4345 x = atomic_long_read(&n->total_objects) -
4346 count_partial(n, count_free);
81819f0f 4347
81819f0f 4348 else
205ab99d 4349 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4350 total += x;
4351 nodes[node] += x;
4352 }
4353
ab4d5ed5
CL
4354 } else
4355#endif
4356 if (flags & SO_PARTIAL) {
205ab99d
CL
4357 for_each_node_state(node, N_NORMAL_MEMORY) {
4358 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4359
205ab99d
CL
4360 if (flags & SO_TOTAL)
4361 x = count_partial(n, count_total);
4362 else if (flags & SO_OBJECTS)
4363 x = count_partial(n, count_inuse);
81819f0f 4364 else
205ab99d 4365 x = n->nr_partial;
81819f0f
CL
4366 total += x;
4367 nodes[node] += x;
4368 }
4369 }
81819f0f
CL
4370 x = sprintf(buf, "%lu", total);
4371#ifdef CONFIG_NUMA
f64dc58c 4372 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4373 if (nodes[node])
4374 x += sprintf(buf + x, " N%d=%lu",
4375 node, nodes[node]);
4376#endif
04d94879 4377 unlock_memory_hotplug();
81819f0f
CL
4378 kfree(nodes);
4379 return x + sprintf(buf + x, "\n");
4380}
4381
ab4d5ed5 4382#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4383static int any_slab_objects(struct kmem_cache *s)
4384{
4385 int node;
81819f0f 4386
dfb4f096 4387 for_each_online_node(node) {
81819f0f
CL
4388 struct kmem_cache_node *n = get_node(s, node);
4389
dfb4f096
CL
4390 if (!n)
4391 continue;
4392
4ea33e2d 4393 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4394 return 1;
4395 }
4396 return 0;
4397}
ab4d5ed5 4398#endif
81819f0f
CL
4399
4400#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4401#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4402
4403struct slab_attribute {
4404 struct attribute attr;
4405 ssize_t (*show)(struct kmem_cache *s, char *buf);
4406 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4407};
4408
4409#define SLAB_ATTR_RO(_name) \
4410 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4411
4412#define SLAB_ATTR(_name) \
4413 static struct slab_attribute _name##_attr = \
4414 __ATTR(_name, 0644, _name##_show, _name##_store)
4415
81819f0f
CL
4416static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4417{
4418 return sprintf(buf, "%d\n", s->size);
4419}
4420SLAB_ATTR_RO(slab_size);
4421
4422static ssize_t align_show(struct kmem_cache *s, char *buf)
4423{
4424 return sprintf(buf, "%d\n", s->align);
4425}
4426SLAB_ATTR_RO(align);
4427
4428static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4429{
4430 return sprintf(buf, "%d\n", s->objsize);
4431}
4432SLAB_ATTR_RO(object_size);
4433
4434static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4435{
834f3d11 4436 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4437}
4438SLAB_ATTR_RO(objs_per_slab);
4439
06b285dc
CL
4440static ssize_t order_store(struct kmem_cache *s,
4441 const char *buf, size_t length)
4442{
0121c619
CL
4443 unsigned long order;
4444 int err;
4445
4446 err = strict_strtoul(buf, 10, &order);
4447 if (err)
4448 return err;
06b285dc
CL
4449
4450 if (order > slub_max_order || order < slub_min_order)
4451 return -EINVAL;
4452
4453 calculate_sizes(s, order);
4454 return length;
4455}
4456
81819f0f
CL
4457static ssize_t order_show(struct kmem_cache *s, char *buf)
4458{
834f3d11 4459 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4460}
06b285dc 4461SLAB_ATTR(order);
81819f0f 4462
73d342b1
DR
4463static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4464{
4465 return sprintf(buf, "%lu\n", s->min_partial);
4466}
4467
4468static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4469 size_t length)
4470{
4471 unsigned long min;
4472 int err;
4473
4474 err = strict_strtoul(buf, 10, &min);
4475 if (err)
4476 return err;
4477
c0bdb232 4478 set_min_partial(s, min);
73d342b1
DR
4479 return length;
4480}
4481SLAB_ATTR(min_partial);
4482
81819f0f
CL
4483static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4484{
62c70bce
JP
4485 if (!s->ctor)
4486 return 0;
4487 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4488}
4489SLAB_ATTR_RO(ctor);
4490
81819f0f
CL
4491static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4492{
4493 return sprintf(buf, "%d\n", s->refcount - 1);
4494}
4495SLAB_ATTR_RO(aliases);
4496
81819f0f
CL
4497static ssize_t partial_show(struct kmem_cache *s, char *buf)
4498{
d9acf4b7 4499 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4500}
4501SLAB_ATTR_RO(partial);
4502
4503static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4504{
d9acf4b7 4505 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4506}
4507SLAB_ATTR_RO(cpu_slabs);
4508
4509static ssize_t objects_show(struct kmem_cache *s, char *buf)
4510{
205ab99d 4511 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4512}
4513SLAB_ATTR_RO(objects);
4514
205ab99d
CL
4515static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4516{
4517 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4518}
4519SLAB_ATTR_RO(objects_partial);
4520
a5a84755
CL
4521static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4522{
4523 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4524}
4525
4526static ssize_t reclaim_account_store(struct kmem_cache *s,
4527 const char *buf, size_t length)
4528{
4529 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4530 if (buf[0] == '1')
4531 s->flags |= SLAB_RECLAIM_ACCOUNT;
4532 return length;
4533}
4534SLAB_ATTR(reclaim_account);
4535
4536static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4537{
4538 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4539}
4540SLAB_ATTR_RO(hwcache_align);
4541
4542#ifdef CONFIG_ZONE_DMA
4543static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4544{
4545 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4546}
4547SLAB_ATTR_RO(cache_dma);
4548#endif
4549
4550static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4551{
4552 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4553}
4554SLAB_ATTR_RO(destroy_by_rcu);
4555
ab9a0f19
LJ
4556static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4557{
4558 return sprintf(buf, "%d\n", s->reserved);
4559}
4560SLAB_ATTR_RO(reserved);
4561
ab4d5ed5 4562#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4563static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4564{
4565 return show_slab_objects(s, buf, SO_ALL);
4566}
4567SLAB_ATTR_RO(slabs);
4568
205ab99d
CL
4569static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4570{
4571 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4572}
4573SLAB_ATTR_RO(total_objects);
4574
81819f0f
CL
4575static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4576{
4577 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4578}
4579
4580static ssize_t sanity_checks_store(struct kmem_cache *s,
4581 const char *buf, size_t length)
4582{
4583 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4584 if (buf[0] == '1') {
4585 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4586 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4587 }
81819f0f
CL
4588 return length;
4589}
4590SLAB_ATTR(sanity_checks);
4591
4592static ssize_t trace_show(struct kmem_cache *s, char *buf)
4593{
4594 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4595}
4596
4597static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4598 size_t length)
4599{
4600 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4601 if (buf[0] == '1') {
4602 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4603 s->flags |= SLAB_TRACE;
b789ef51 4604 }
81819f0f
CL
4605 return length;
4606}
4607SLAB_ATTR(trace);
4608
81819f0f
CL
4609static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4610{
4611 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4612}
4613
4614static ssize_t red_zone_store(struct kmem_cache *s,
4615 const char *buf, size_t length)
4616{
4617 if (any_slab_objects(s))
4618 return -EBUSY;
4619
4620 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4621 if (buf[0] == '1') {
4622 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4623 s->flags |= SLAB_RED_ZONE;
b789ef51 4624 }
06b285dc 4625 calculate_sizes(s, -1);
81819f0f
CL
4626 return length;
4627}
4628SLAB_ATTR(red_zone);
4629
4630static ssize_t poison_show(struct kmem_cache *s, char *buf)
4631{
4632 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4633}
4634
4635static ssize_t poison_store(struct kmem_cache *s,
4636 const char *buf, size_t length)
4637{
4638 if (any_slab_objects(s))
4639 return -EBUSY;
4640
4641 s->flags &= ~SLAB_POISON;
b789ef51
CL
4642 if (buf[0] == '1') {
4643 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4644 s->flags |= SLAB_POISON;
b789ef51 4645 }
06b285dc 4646 calculate_sizes(s, -1);
81819f0f
CL
4647 return length;
4648}
4649SLAB_ATTR(poison);
4650
4651static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4652{
4653 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4654}
4655
4656static ssize_t store_user_store(struct kmem_cache *s,
4657 const char *buf, size_t length)
4658{
4659 if (any_slab_objects(s))
4660 return -EBUSY;
4661
4662 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4663 if (buf[0] == '1') {
4664 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4665 s->flags |= SLAB_STORE_USER;
b789ef51 4666 }
06b285dc 4667 calculate_sizes(s, -1);
81819f0f
CL
4668 return length;
4669}
4670SLAB_ATTR(store_user);
4671
53e15af0
CL
4672static ssize_t validate_show(struct kmem_cache *s, char *buf)
4673{
4674 return 0;
4675}
4676
4677static ssize_t validate_store(struct kmem_cache *s,
4678 const char *buf, size_t length)
4679{
434e245d
CL
4680 int ret = -EINVAL;
4681
4682 if (buf[0] == '1') {
4683 ret = validate_slab_cache(s);
4684 if (ret >= 0)
4685 ret = length;
4686 }
4687 return ret;
53e15af0
CL
4688}
4689SLAB_ATTR(validate);
a5a84755
CL
4690
4691static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4692{
4693 if (!(s->flags & SLAB_STORE_USER))
4694 return -ENOSYS;
4695 return list_locations(s, buf, TRACK_ALLOC);
4696}
4697SLAB_ATTR_RO(alloc_calls);
4698
4699static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4700{
4701 if (!(s->flags & SLAB_STORE_USER))
4702 return -ENOSYS;
4703 return list_locations(s, buf, TRACK_FREE);
4704}
4705SLAB_ATTR_RO(free_calls);
4706#endif /* CONFIG_SLUB_DEBUG */
4707
4708#ifdef CONFIG_FAILSLAB
4709static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4710{
4711 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4712}
4713
4714static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4715 size_t length)
4716{
4717 s->flags &= ~SLAB_FAILSLAB;
4718 if (buf[0] == '1')
4719 s->flags |= SLAB_FAILSLAB;
4720 return length;
4721}
4722SLAB_ATTR(failslab);
ab4d5ed5 4723#endif
53e15af0 4724
2086d26a
CL
4725static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4726{
4727 return 0;
4728}
4729
4730static ssize_t shrink_store(struct kmem_cache *s,
4731 const char *buf, size_t length)
4732{
4733 if (buf[0] == '1') {
4734 int rc = kmem_cache_shrink(s);
4735
4736 if (rc)
4737 return rc;
4738 } else
4739 return -EINVAL;
4740 return length;
4741}
4742SLAB_ATTR(shrink);
4743
81819f0f 4744#ifdef CONFIG_NUMA
9824601e 4745static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4746{
9824601e 4747 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4748}
4749
9824601e 4750static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4751 const char *buf, size_t length)
4752{
0121c619
CL
4753 unsigned long ratio;
4754 int err;
4755
4756 err = strict_strtoul(buf, 10, &ratio);
4757 if (err)
4758 return err;
4759
e2cb96b7 4760 if (ratio <= 100)
0121c619 4761 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4762
81819f0f
CL
4763 return length;
4764}
9824601e 4765SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4766#endif
4767
8ff12cfc 4768#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4769static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4770{
4771 unsigned long sum = 0;
4772 int cpu;
4773 int len;
4774 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4775
4776 if (!data)
4777 return -ENOMEM;
4778
4779 for_each_online_cpu(cpu) {
9dfc6e68 4780 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4781
4782 data[cpu] = x;
4783 sum += x;
4784 }
4785
4786 len = sprintf(buf, "%lu", sum);
4787
50ef37b9 4788#ifdef CONFIG_SMP
8ff12cfc
CL
4789 for_each_online_cpu(cpu) {
4790 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4791 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4792 }
50ef37b9 4793#endif
8ff12cfc
CL
4794 kfree(data);
4795 return len + sprintf(buf + len, "\n");
4796}
4797
78eb00cc
DR
4798static void clear_stat(struct kmem_cache *s, enum stat_item si)
4799{
4800 int cpu;
4801
4802 for_each_online_cpu(cpu)
9dfc6e68 4803 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4804}
4805
8ff12cfc
CL
4806#define STAT_ATTR(si, text) \
4807static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4808{ \
4809 return show_stat(s, buf, si); \
4810} \
78eb00cc
DR
4811static ssize_t text##_store(struct kmem_cache *s, \
4812 const char *buf, size_t length) \
4813{ \
4814 if (buf[0] != '0') \
4815 return -EINVAL; \
4816 clear_stat(s, si); \
4817 return length; \
4818} \
4819SLAB_ATTR(text); \
8ff12cfc
CL
4820
4821STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4822STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4823STAT_ATTR(FREE_FASTPATH, free_fastpath);
4824STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4825STAT_ATTR(FREE_FROZEN, free_frozen);
4826STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4827STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4828STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4829STAT_ATTR(ALLOC_SLAB, alloc_slab);
4830STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4831STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4832STAT_ATTR(FREE_SLAB, free_slab);
4833STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4834STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4835STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4836STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4837STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4838STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4839STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4840STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4841STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4842STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
8ff12cfc
CL
4843#endif
4844
06428780 4845static struct attribute *slab_attrs[] = {
81819f0f
CL
4846 &slab_size_attr.attr,
4847 &object_size_attr.attr,
4848 &objs_per_slab_attr.attr,
4849 &order_attr.attr,
73d342b1 4850 &min_partial_attr.attr,
81819f0f 4851 &objects_attr.attr,
205ab99d 4852 &objects_partial_attr.attr,
81819f0f
CL
4853 &partial_attr.attr,
4854 &cpu_slabs_attr.attr,
4855 &ctor_attr.attr,
81819f0f
CL
4856 &aliases_attr.attr,
4857 &align_attr.attr,
81819f0f
CL
4858 &hwcache_align_attr.attr,
4859 &reclaim_account_attr.attr,
4860 &destroy_by_rcu_attr.attr,
a5a84755 4861 &shrink_attr.attr,
ab9a0f19 4862 &reserved_attr.attr,
ab4d5ed5 4863#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4864 &total_objects_attr.attr,
4865 &slabs_attr.attr,
4866 &sanity_checks_attr.attr,
4867 &trace_attr.attr,
81819f0f
CL
4868 &red_zone_attr.attr,
4869 &poison_attr.attr,
4870 &store_user_attr.attr,
53e15af0 4871 &validate_attr.attr,
88a420e4
CL
4872 &alloc_calls_attr.attr,
4873 &free_calls_attr.attr,
ab4d5ed5 4874#endif
81819f0f
CL
4875#ifdef CONFIG_ZONE_DMA
4876 &cache_dma_attr.attr,
4877#endif
4878#ifdef CONFIG_NUMA
9824601e 4879 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4880#endif
4881#ifdef CONFIG_SLUB_STATS
4882 &alloc_fastpath_attr.attr,
4883 &alloc_slowpath_attr.attr,
4884 &free_fastpath_attr.attr,
4885 &free_slowpath_attr.attr,
4886 &free_frozen_attr.attr,
4887 &free_add_partial_attr.attr,
4888 &free_remove_partial_attr.attr,
4889 &alloc_from_partial_attr.attr,
4890 &alloc_slab_attr.attr,
4891 &alloc_refill_attr.attr,
e36a2652 4892 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4893 &free_slab_attr.attr,
4894 &cpuslab_flush_attr.attr,
4895 &deactivate_full_attr.attr,
4896 &deactivate_empty_attr.attr,
4897 &deactivate_to_head_attr.attr,
4898 &deactivate_to_tail_attr.attr,
4899 &deactivate_remote_frees_attr.attr,
03e404af 4900 &deactivate_bypass_attr.attr,
65c3376a 4901 &order_fallback_attr.attr,
b789ef51
CL
4902 &cmpxchg_double_fail_attr.attr,
4903 &cmpxchg_double_cpu_fail_attr.attr,
81819f0f 4904#endif
4c13dd3b
DM
4905#ifdef CONFIG_FAILSLAB
4906 &failslab_attr.attr,
4907#endif
4908
81819f0f
CL
4909 NULL
4910};
4911
4912static struct attribute_group slab_attr_group = {
4913 .attrs = slab_attrs,
4914};
4915
4916static ssize_t slab_attr_show(struct kobject *kobj,
4917 struct attribute *attr,
4918 char *buf)
4919{
4920 struct slab_attribute *attribute;
4921 struct kmem_cache *s;
4922 int err;
4923
4924 attribute = to_slab_attr(attr);
4925 s = to_slab(kobj);
4926
4927 if (!attribute->show)
4928 return -EIO;
4929
4930 err = attribute->show(s, buf);
4931
4932 return err;
4933}
4934
4935static ssize_t slab_attr_store(struct kobject *kobj,
4936 struct attribute *attr,
4937 const char *buf, size_t len)
4938{
4939 struct slab_attribute *attribute;
4940 struct kmem_cache *s;
4941 int err;
4942
4943 attribute = to_slab_attr(attr);
4944 s = to_slab(kobj);
4945
4946 if (!attribute->store)
4947 return -EIO;
4948
4949 err = attribute->store(s, buf, len);
4950
4951 return err;
4952}
4953
151c602f
CL
4954static void kmem_cache_release(struct kobject *kobj)
4955{
4956 struct kmem_cache *s = to_slab(kobj);
4957
84c1cf62 4958 kfree(s->name);
151c602f
CL
4959 kfree(s);
4960}
4961
52cf25d0 4962static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4963 .show = slab_attr_show,
4964 .store = slab_attr_store,
4965};
4966
4967static struct kobj_type slab_ktype = {
4968 .sysfs_ops = &slab_sysfs_ops,
151c602f 4969 .release = kmem_cache_release
81819f0f
CL
4970};
4971
4972static int uevent_filter(struct kset *kset, struct kobject *kobj)
4973{
4974 struct kobj_type *ktype = get_ktype(kobj);
4975
4976 if (ktype == &slab_ktype)
4977 return 1;
4978 return 0;
4979}
4980
9cd43611 4981static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4982 .filter = uevent_filter,
4983};
4984
27c3a314 4985static struct kset *slab_kset;
81819f0f
CL
4986
4987#define ID_STR_LENGTH 64
4988
4989/* Create a unique string id for a slab cache:
6446faa2
CL
4990 *
4991 * Format :[flags-]size
81819f0f
CL
4992 */
4993static char *create_unique_id(struct kmem_cache *s)
4994{
4995 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4996 char *p = name;
4997
4998 BUG_ON(!name);
4999
5000 *p++ = ':';
5001 /*
5002 * First flags affecting slabcache operations. We will only
5003 * get here for aliasable slabs so we do not need to support
5004 * too many flags. The flags here must cover all flags that
5005 * are matched during merging to guarantee that the id is
5006 * unique.
5007 */
5008 if (s->flags & SLAB_CACHE_DMA)
5009 *p++ = 'd';
5010 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5011 *p++ = 'a';
5012 if (s->flags & SLAB_DEBUG_FREE)
5013 *p++ = 'F';
5a896d9e
VN
5014 if (!(s->flags & SLAB_NOTRACK))
5015 *p++ = 't';
81819f0f
CL
5016 if (p != name + 1)
5017 *p++ = '-';
5018 p += sprintf(p, "%07d", s->size);
5019 BUG_ON(p > name + ID_STR_LENGTH - 1);
5020 return name;
5021}
5022
5023static int sysfs_slab_add(struct kmem_cache *s)
5024{
5025 int err;
5026 const char *name;
5027 int unmergeable;
5028
5029 if (slab_state < SYSFS)
5030 /* Defer until later */
5031 return 0;
5032
5033 unmergeable = slab_unmergeable(s);
5034 if (unmergeable) {
5035 /*
5036 * Slabcache can never be merged so we can use the name proper.
5037 * This is typically the case for debug situations. In that
5038 * case we can catch duplicate names easily.
5039 */
27c3a314 5040 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5041 name = s->name;
5042 } else {
5043 /*
5044 * Create a unique name for the slab as a target
5045 * for the symlinks.
5046 */
5047 name = create_unique_id(s);
5048 }
5049
27c3a314 5050 s->kobj.kset = slab_kset;
1eada11c
GKH
5051 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5052 if (err) {
5053 kobject_put(&s->kobj);
81819f0f 5054 return err;
1eada11c 5055 }
81819f0f
CL
5056
5057 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5058 if (err) {
5059 kobject_del(&s->kobj);
5060 kobject_put(&s->kobj);
81819f0f 5061 return err;
5788d8ad 5062 }
81819f0f
CL
5063 kobject_uevent(&s->kobj, KOBJ_ADD);
5064 if (!unmergeable) {
5065 /* Setup first alias */
5066 sysfs_slab_alias(s, s->name);
5067 kfree(name);
5068 }
5069 return 0;
5070}
5071
5072static void sysfs_slab_remove(struct kmem_cache *s)
5073{
2bce6485
CL
5074 if (slab_state < SYSFS)
5075 /*
5076 * Sysfs has not been setup yet so no need to remove the
5077 * cache from sysfs.
5078 */
5079 return;
5080
81819f0f
CL
5081 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5082 kobject_del(&s->kobj);
151c602f 5083 kobject_put(&s->kobj);
81819f0f
CL
5084}
5085
5086/*
5087 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5088 * available lest we lose that information.
81819f0f
CL
5089 */
5090struct saved_alias {
5091 struct kmem_cache *s;
5092 const char *name;
5093 struct saved_alias *next;
5094};
5095
5af328a5 5096static struct saved_alias *alias_list;
81819f0f
CL
5097
5098static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5099{
5100 struct saved_alias *al;
5101
5102 if (slab_state == SYSFS) {
5103 /*
5104 * If we have a leftover link then remove it.
5105 */
27c3a314
GKH
5106 sysfs_remove_link(&slab_kset->kobj, name);
5107 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5108 }
5109
5110 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5111 if (!al)
5112 return -ENOMEM;
5113
5114 al->s = s;
5115 al->name = name;
5116 al->next = alias_list;
5117 alias_list = al;
5118 return 0;
5119}
5120
5121static int __init slab_sysfs_init(void)
5122{
5b95a4ac 5123 struct kmem_cache *s;
81819f0f
CL
5124 int err;
5125
2bce6485
CL
5126 down_write(&slub_lock);
5127
0ff21e46 5128 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5129 if (!slab_kset) {
2bce6485 5130 up_write(&slub_lock);
81819f0f
CL
5131 printk(KERN_ERR "Cannot register slab subsystem.\n");
5132 return -ENOSYS;
5133 }
5134
26a7bd03
CL
5135 slab_state = SYSFS;
5136
5b95a4ac 5137 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5138 err = sysfs_slab_add(s);
5d540fb7
CL
5139 if (err)
5140 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5141 " to sysfs\n", s->name);
26a7bd03 5142 }
81819f0f
CL
5143
5144 while (alias_list) {
5145 struct saved_alias *al = alias_list;
5146
5147 alias_list = alias_list->next;
5148 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5149 if (err)
5150 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5151 " %s to sysfs\n", s->name);
81819f0f
CL
5152 kfree(al);
5153 }
5154
2bce6485 5155 up_write(&slub_lock);
81819f0f
CL
5156 resiliency_test();
5157 return 0;
5158}
5159
5160__initcall(slab_sysfs_init);
ab4d5ed5 5161#endif /* CONFIG_SYSFS */
57ed3eda
PE
5162
5163/*
5164 * The /proc/slabinfo ABI
5165 */
158a9624 5166#ifdef CONFIG_SLABINFO
57ed3eda
PE
5167static void print_slabinfo_header(struct seq_file *m)
5168{
5169 seq_puts(m, "slabinfo - version: 2.1\n");
5170 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5171 "<objperslab> <pagesperslab>");
5172 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5173 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5174 seq_putc(m, '\n');
5175}
5176
5177static void *s_start(struct seq_file *m, loff_t *pos)
5178{
5179 loff_t n = *pos;
5180
5181 down_read(&slub_lock);
5182 if (!n)
5183 print_slabinfo_header(m);
5184
5185 return seq_list_start(&slab_caches, *pos);
5186}
5187
5188static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5189{
5190 return seq_list_next(p, &slab_caches, pos);
5191}
5192
5193static void s_stop(struct seq_file *m, void *p)
5194{
5195 up_read(&slub_lock);
5196}
5197
5198static int s_show(struct seq_file *m, void *p)
5199{
5200 unsigned long nr_partials = 0;
5201 unsigned long nr_slabs = 0;
5202 unsigned long nr_inuse = 0;
205ab99d
CL
5203 unsigned long nr_objs = 0;
5204 unsigned long nr_free = 0;
57ed3eda
PE
5205 struct kmem_cache *s;
5206 int node;
5207
5208 s = list_entry(p, struct kmem_cache, list);
5209
5210 for_each_online_node(node) {
5211 struct kmem_cache_node *n = get_node(s, node);
5212
5213 if (!n)
5214 continue;
5215
5216 nr_partials += n->nr_partial;
5217 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5218 nr_objs += atomic_long_read(&n->total_objects);
5219 nr_free += count_partial(n, count_free);
57ed3eda
PE
5220 }
5221
205ab99d 5222 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5223
5224 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5225 nr_objs, s->size, oo_objects(s->oo),
5226 (1 << oo_order(s->oo)));
57ed3eda
PE
5227 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5228 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5229 0UL);
5230 seq_putc(m, '\n');
5231 return 0;
5232}
5233
7b3c3a50 5234static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5235 .start = s_start,
5236 .next = s_next,
5237 .stop = s_stop,
5238 .show = s_show,
5239};
5240
7b3c3a50
AD
5241static int slabinfo_open(struct inode *inode, struct file *file)
5242{
5243 return seq_open(file, &slabinfo_op);
5244}
5245
5246static const struct file_operations proc_slabinfo_operations = {
5247 .open = slabinfo_open,
5248 .read = seq_read,
5249 .llseek = seq_lseek,
5250 .release = seq_release,
5251};
5252
5253static int __init slab_proc_init(void)
5254{
cf5d1131 5255 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5256 return 0;
5257}
5258module_init(slab_proc_init);
158a9624 5259#endif /* CONFIG_SLABINFO */