mm, slub: fix the typo in include/linux/slub_def.h
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in the.
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
81819f0f
CL
172/*
173 * Set of flags that will prevent slab merging
174 */
175#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
81819f0f
CL
178
179#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 180 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 181
210b5c06
CG
182#define OO_SHIFT 16
183#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 184#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 185
81819f0f 186/* Internal SLUB flags */
f90ec390 187#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 188#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 189
81819f0f
CL
190#ifdef CONFIG_SMP
191static struct notifier_block slab_notifier;
192#endif
193
02cbc874
CL
194/*
195 * Tracking user of a slab.
196 */
d6543e39 197#define TRACK_ADDRS_COUNT 16
02cbc874 198struct track {
ce71e27c 199 unsigned long addr; /* Called from address */
d6543e39
BG
200#ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202#endif
02cbc874
CL
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206};
207
208enum track_item { TRACK_ALLOC, TRACK_FREE };
209
ab4d5ed5 210#ifdef CONFIG_SYSFS
81819f0f
CL
211static int sysfs_slab_add(struct kmem_cache *);
212static int sysfs_slab_alias(struct kmem_cache *, const char *);
213static void sysfs_slab_remove(struct kmem_cache *);
107dab5c 214static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 215#else
0c710013
CL
216static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 { return 0; }
db265eca 219static inline void sysfs_slab_remove(struct kmem_cache *s) { }
8ff12cfc 220
107dab5c 221static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
222#endif
223
4fdccdfb 224static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
225{
226#ifdef CONFIG_SLUB_STATS
84e554e6 227 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
228#endif
229}
230
81819f0f
CL
231/********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
81819f0f
CL
235static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236{
81819f0f 237 return s->node[node];
81819f0f
CL
238}
239
6446faa2 240/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
241static inline int check_valid_pointer(struct kmem_cache *s,
242 struct page *page, const void *object)
243{
244 void *base;
245
a973e9dd 246 if (!object)
02cbc874
CL
247 return 1;
248
a973e9dd 249 base = page_address(page);
39b26464 250 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
251 (object - base) % s->size) {
252 return 0;
253 }
254
255 return 1;
256}
257
7656c72b
CL
258static inline void *get_freepointer(struct kmem_cache *s, void *object)
259{
260 return *(void **)(object + s->offset);
261}
262
0ad9500e
ED
263static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264{
265 prefetch(object + s->offset);
266}
267
1393d9a1
CL
268static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269{
270 void *p;
271
272#ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274#else
275 p = get_freepointer(s, object);
276#endif
277 return p;
278}
279
7656c72b
CL
280static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281{
282 *(void **)(object + s->offset) = fp;
283}
284
285/* Loop over all objects in a slab */
224a88be
CL
286#define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
288 __p += (__s)->size)
289
7656c72b
CL
290/* Determine object index from a given position */
291static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292{
293 return (p - addr) / s->size;
294}
295
d71f606f
MK
296static inline size_t slab_ksize(const struct kmem_cache *s)
297{
298#ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 304 return s->object_size;
d71f606f
MK
305
306#endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318}
319
ab9a0f19
LJ
320static inline int order_objects(int order, unsigned long size, int reserved)
321{
322 return ((PAGE_SIZE << order) - reserved) / size;
323}
324
834f3d11 325static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 326 unsigned long size, int reserved)
834f3d11
CL
327{
328 struct kmem_cache_order_objects x = {
ab9a0f19 329 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
330 };
331
332 return x;
333}
334
335static inline int oo_order(struct kmem_cache_order_objects x)
336{
210b5c06 337 return x.x >> OO_SHIFT;
834f3d11
CL
338}
339
340static inline int oo_objects(struct kmem_cache_order_objects x)
341{
210b5c06 342 return x.x & OO_MASK;
834f3d11
CL
343}
344
881db7fb
CL
345/*
346 * Per slab locking using the pagelock
347 */
348static __always_inline void slab_lock(struct page *page)
349{
350 bit_spin_lock(PG_locked, &page->flags);
351}
352
353static __always_inline void slab_unlock(struct page *page)
354{
355 __bit_spin_unlock(PG_locked, &page->flags);
356}
357
1d07171c
CL
358/* Interrupts must be disabled (for the fallback code to work right) */
359static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
360 void *freelist_old, unsigned long counters_old,
361 void *freelist_new, unsigned long counters_new,
362 const char *n)
363{
364 VM_BUG_ON(!irqs_disabled());
2565409f
HC
365#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
366 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 367 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 368 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
369 freelist_old, counters_old,
370 freelist_new, counters_new))
371 return 1;
372 } else
373#endif
374 {
375 slab_lock(page);
376 if (page->freelist == freelist_old && page->counters == counters_old) {
377 page->freelist = freelist_new;
378 page->counters = counters_new;
379 slab_unlock(page);
380 return 1;
381 }
382 slab_unlock(page);
383 }
384
385 cpu_relax();
386 stat(s, CMPXCHG_DOUBLE_FAIL);
387
388#ifdef SLUB_DEBUG_CMPXCHG
389 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
390#endif
391
392 return 0;
393}
394
b789ef51
CL
395static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
396 void *freelist_old, unsigned long counters_old,
397 void *freelist_new, unsigned long counters_new,
398 const char *n)
399{
2565409f
HC
400#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
401 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 402 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 403 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
404 freelist_old, counters_old,
405 freelist_new, counters_new))
406 return 1;
407 } else
408#endif
409 {
1d07171c
CL
410 unsigned long flags;
411
412 local_irq_save(flags);
881db7fb 413 slab_lock(page);
b789ef51
CL
414 if (page->freelist == freelist_old && page->counters == counters_old) {
415 page->freelist = freelist_new;
416 page->counters = counters_new;
881db7fb 417 slab_unlock(page);
1d07171c 418 local_irq_restore(flags);
b789ef51
CL
419 return 1;
420 }
881db7fb 421 slab_unlock(page);
1d07171c 422 local_irq_restore(flags);
b789ef51
CL
423 }
424
425 cpu_relax();
426 stat(s, CMPXCHG_DOUBLE_FAIL);
427
428#ifdef SLUB_DEBUG_CMPXCHG
429 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
430#endif
431
432 return 0;
433}
434
41ecc55b 435#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
436/*
437 * Determine a map of object in use on a page.
438 *
881db7fb 439 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
440 * not vanish from under us.
441 */
442static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
443{
444 void *p;
445 void *addr = page_address(page);
446
447 for (p = page->freelist; p; p = get_freepointer(s, p))
448 set_bit(slab_index(p, s, addr), map);
449}
450
41ecc55b
CL
451/*
452 * Debug settings:
453 */
f0630fff
CL
454#ifdef CONFIG_SLUB_DEBUG_ON
455static int slub_debug = DEBUG_DEFAULT_FLAGS;
456#else
41ecc55b 457static int slub_debug;
f0630fff 458#endif
41ecc55b
CL
459
460static char *slub_debug_slabs;
fa5ec8a1 461static int disable_higher_order_debug;
41ecc55b 462
81819f0f
CL
463/*
464 * Object debugging
465 */
466static void print_section(char *text, u8 *addr, unsigned int length)
467{
ffc79d28
SAS
468 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
469 length, 1);
81819f0f
CL
470}
471
81819f0f
CL
472static struct track *get_track(struct kmem_cache *s, void *object,
473 enum track_item alloc)
474{
475 struct track *p;
476
477 if (s->offset)
478 p = object + s->offset + sizeof(void *);
479 else
480 p = object + s->inuse;
481
482 return p + alloc;
483}
484
485static void set_track(struct kmem_cache *s, void *object,
ce71e27c 486 enum track_item alloc, unsigned long addr)
81819f0f 487{
1a00df4a 488 struct track *p = get_track(s, object, alloc);
81819f0f 489
81819f0f 490 if (addr) {
d6543e39
BG
491#ifdef CONFIG_STACKTRACE
492 struct stack_trace trace;
493 int i;
494
495 trace.nr_entries = 0;
496 trace.max_entries = TRACK_ADDRS_COUNT;
497 trace.entries = p->addrs;
498 trace.skip = 3;
499 save_stack_trace(&trace);
500
501 /* See rant in lockdep.c */
502 if (trace.nr_entries != 0 &&
503 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
504 trace.nr_entries--;
505
506 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
507 p->addrs[i] = 0;
508#endif
81819f0f
CL
509 p->addr = addr;
510 p->cpu = smp_processor_id();
88e4ccf2 511 p->pid = current->pid;
81819f0f
CL
512 p->when = jiffies;
513 } else
514 memset(p, 0, sizeof(struct track));
515}
516
81819f0f
CL
517static void init_tracking(struct kmem_cache *s, void *object)
518{
24922684
CL
519 if (!(s->flags & SLAB_STORE_USER))
520 return;
521
ce71e27c
EGM
522 set_track(s, object, TRACK_FREE, 0UL);
523 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
524}
525
526static void print_track(const char *s, struct track *t)
527{
528 if (!t->addr)
529 return;
530
7daf705f 531 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 532 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
533#ifdef CONFIG_STACKTRACE
534 {
535 int i;
536 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
537 if (t->addrs[i])
538 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
539 else
540 break;
541 }
542#endif
24922684
CL
543}
544
545static void print_tracking(struct kmem_cache *s, void *object)
546{
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
550 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
551 print_track("Freed", get_track(s, object, TRACK_FREE));
552}
553
554static void print_page_info(struct page *page)
555{
39b26464
CL
556 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
557 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
558
559}
560
561static void slab_bug(struct kmem_cache *s, char *fmt, ...)
562{
563 va_list args;
564 char buf[100];
565
566 va_start(args, fmt);
567 vsnprintf(buf, sizeof(buf), fmt, args);
568 va_end(args);
569 printk(KERN_ERR "========================================"
570 "=====================================\n");
265d47e7 571 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
572 printk(KERN_ERR "----------------------------------------"
573 "-------------------------------------\n\n");
645df230 574
373d4d09 575 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
81819f0f
CL
576}
577
24922684
CL
578static void slab_fix(struct kmem_cache *s, char *fmt, ...)
579{
580 va_list args;
581 char buf[100];
582
583 va_start(args, fmt);
584 vsnprintf(buf, sizeof(buf), fmt, args);
585 va_end(args);
586 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
587}
588
589static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
590{
591 unsigned int off; /* Offset of last byte */
a973e9dd 592 u8 *addr = page_address(page);
24922684
CL
593
594 print_tracking(s, p);
595
596 print_page_info(page);
597
598 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
599 p, p - addr, get_freepointer(s, p));
600
601 if (p > addr + 16)
ffc79d28 602 print_section("Bytes b4 ", p - 16, 16);
81819f0f 603
3b0efdfa 604 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 605 PAGE_SIZE));
81819f0f 606 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
607 print_section("Redzone ", p + s->object_size,
608 s->inuse - s->object_size);
81819f0f 609
81819f0f
CL
610 if (s->offset)
611 off = s->offset + sizeof(void *);
612 else
613 off = s->inuse;
614
24922684 615 if (s->flags & SLAB_STORE_USER)
81819f0f 616 off += 2 * sizeof(struct track);
81819f0f
CL
617
618 if (off != s->size)
619 /* Beginning of the filler is the free pointer */
ffc79d28 620 print_section("Padding ", p + off, s->size - off);
24922684
CL
621
622 dump_stack();
81819f0f
CL
623}
624
625static void object_err(struct kmem_cache *s, struct page *page,
626 u8 *object, char *reason)
627{
3dc50637 628 slab_bug(s, "%s", reason);
24922684 629 print_trailer(s, page, object);
81819f0f
CL
630}
631
945cf2b6 632static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
81819f0f
CL
633{
634 va_list args;
635 char buf[100];
636
24922684
CL
637 va_start(args, fmt);
638 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 639 va_end(args);
3dc50637 640 slab_bug(s, "%s", buf);
24922684 641 print_page_info(page);
81819f0f
CL
642 dump_stack();
643}
644
f7cb1933 645static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
646{
647 u8 *p = object;
648
649 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
650 memset(p, POISON_FREE, s->object_size - 1);
651 p[s->object_size - 1] = POISON_END;
81819f0f
CL
652 }
653
654 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 655 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
656}
657
24922684
CL
658static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
659 void *from, void *to)
660{
661 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
662 memset(from, data, to - from);
663}
664
665static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
666 u8 *object, char *what,
06428780 667 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
668{
669 u8 *fault;
670 u8 *end;
671
79824820 672 fault = memchr_inv(start, value, bytes);
24922684
CL
673 if (!fault)
674 return 1;
675
676 end = start + bytes;
677 while (end > fault && end[-1] == value)
678 end--;
679
680 slab_bug(s, "%s overwritten", what);
681 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
682 fault, end - 1, fault[0], value);
683 print_trailer(s, page, object);
684
685 restore_bytes(s, what, value, fault, end);
686 return 0;
81819f0f
CL
687}
688
81819f0f
CL
689/*
690 * Object layout:
691 *
692 * object address
693 * Bytes of the object to be managed.
694 * If the freepointer may overlay the object then the free
695 * pointer is the first word of the object.
672bba3a 696 *
81819f0f
CL
697 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
698 * 0xa5 (POISON_END)
699 *
3b0efdfa 700 * object + s->object_size
81819f0f 701 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 702 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 703 * object_size == inuse.
672bba3a 704 *
81819f0f
CL
705 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
706 * 0xcc (RED_ACTIVE) for objects in use.
707 *
708 * object + s->inuse
672bba3a
CL
709 * Meta data starts here.
710 *
81819f0f
CL
711 * A. Free pointer (if we cannot overwrite object on free)
712 * B. Tracking data for SLAB_STORE_USER
672bba3a 713 * C. Padding to reach required alignment boundary or at mininum
6446faa2 714 * one word if debugging is on to be able to detect writes
672bba3a
CL
715 * before the word boundary.
716 *
717 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
718 *
719 * object + s->size
672bba3a 720 * Nothing is used beyond s->size.
81819f0f 721 *
3b0efdfa 722 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 723 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
724 * may be used with merged slabcaches.
725 */
726
81819f0f
CL
727static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
728{
729 unsigned long off = s->inuse; /* The end of info */
730
731 if (s->offset)
732 /* Freepointer is placed after the object. */
733 off += sizeof(void *);
734
735 if (s->flags & SLAB_STORE_USER)
736 /* We also have user information there */
737 off += 2 * sizeof(struct track);
738
739 if (s->size == off)
740 return 1;
741
24922684
CL
742 return check_bytes_and_report(s, page, p, "Object padding",
743 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
744}
745
39b26464 746/* Check the pad bytes at the end of a slab page */
81819f0f
CL
747static int slab_pad_check(struct kmem_cache *s, struct page *page)
748{
24922684
CL
749 u8 *start;
750 u8 *fault;
751 u8 *end;
752 int length;
753 int remainder;
81819f0f
CL
754
755 if (!(s->flags & SLAB_POISON))
756 return 1;
757
a973e9dd 758 start = page_address(page);
ab9a0f19 759 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
760 end = start + length;
761 remainder = length % s->size;
81819f0f
CL
762 if (!remainder)
763 return 1;
764
79824820 765 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
766 if (!fault)
767 return 1;
768 while (end > fault && end[-1] == POISON_INUSE)
769 end--;
770
771 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 772 print_section("Padding ", end - remainder, remainder);
24922684 773
8a3d271d 774 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 775 return 0;
81819f0f
CL
776}
777
778static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 779 void *object, u8 val)
81819f0f
CL
780{
781 u8 *p = object;
3b0efdfa 782 u8 *endobject = object + s->object_size;
81819f0f
CL
783
784 if (s->flags & SLAB_RED_ZONE) {
24922684 785 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 786 endobject, val, s->inuse - s->object_size))
81819f0f 787 return 0;
81819f0f 788 } else {
3b0efdfa 789 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 790 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 791 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 792 }
81819f0f
CL
793 }
794
795 if (s->flags & SLAB_POISON) {
f7cb1933 796 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 797 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 798 POISON_FREE, s->object_size - 1) ||
24922684 799 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 800 p + s->object_size - 1, POISON_END, 1)))
81819f0f 801 return 0;
81819f0f
CL
802 /*
803 * check_pad_bytes cleans up on its own.
804 */
805 check_pad_bytes(s, page, p);
806 }
807
f7cb1933 808 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
809 /*
810 * Object and freepointer overlap. Cannot check
811 * freepointer while object is allocated.
812 */
813 return 1;
814
815 /* Check free pointer validity */
816 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
817 object_err(s, page, p, "Freepointer corrupt");
818 /*
9f6c708e 819 * No choice but to zap it and thus lose the remainder
81819f0f 820 * of the free objects in this slab. May cause
672bba3a 821 * another error because the object count is now wrong.
81819f0f 822 */
a973e9dd 823 set_freepointer(s, p, NULL);
81819f0f
CL
824 return 0;
825 }
826 return 1;
827}
828
829static int check_slab(struct kmem_cache *s, struct page *page)
830{
39b26464
CL
831 int maxobj;
832
81819f0f
CL
833 VM_BUG_ON(!irqs_disabled());
834
835 if (!PageSlab(page)) {
24922684 836 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
837 return 0;
838 }
39b26464 839
ab9a0f19 840 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
841 if (page->objects > maxobj) {
842 slab_err(s, page, "objects %u > max %u",
843 s->name, page->objects, maxobj);
844 return 0;
845 }
846 if (page->inuse > page->objects) {
24922684 847 slab_err(s, page, "inuse %u > max %u",
39b26464 848 s->name, page->inuse, page->objects);
81819f0f
CL
849 return 0;
850 }
851 /* Slab_pad_check fixes things up after itself */
852 slab_pad_check(s, page);
853 return 1;
854}
855
856/*
672bba3a
CL
857 * Determine if a certain object on a page is on the freelist. Must hold the
858 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
859 */
860static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
861{
862 int nr = 0;
881db7fb 863 void *fp;
81819f0f 864 void *object = NULL;
224a88be 865 unsigned long max_objects;
81819f0f 866
881db7fb 867 fp = page->freelist;
39b26464 868 while (fp && nr <= page->objects) {
81819f0f
CL
869 if (fp == search)
870 return 1;
871 if (!check_valid_pointer(s, page, fp)) {
872 if (object) {
873 object_err(s, page, object,
874 "Freechain corrupt");
a973e9dd 875 set_freepointer(s, object, NULL);
81819f0f
CL
876 break;
877 } else {
24922684 878 slab_err(s, page, "Freepointer corrupt");
a973e9dd 879 page->freelist = NULL;
39b26464 880 page->inuse = page->objects;
24922684 881 slab_fix(s, "Freelist cleared");
81819f0f
CL
882 return 0;
883 }
884 break;
885 }
886 object = fp;
887 fp = get_freepointer(s, object);
888 nr++;
889 }
890
ab9a0f19 891 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
892 if (max_objects > MAX_OBJS_PER_PAGE)
893 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
894
895 if (page->objects != max_objects) {
896 slab_err(s, page, "Wrong number of objects. Found %d but "
897 "should be %d", page->objects, max_objects);
898 page->objects = max_objects;
899 slab_fix(s, "Number of objects adjusted.");
900 }
39b26464 901 if (page->inuse != page->objects - nr) {
70d71228 902 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
903 "counted were %d", page->inuse, page->objects - nr);
904 page->inuse = page->objects - nr;
24922684 905 slab_fix(s, "Object count adjusted.");
81819f0f
CL
906 }
907 return search == NULL;
908}
909
0121c619
CL
910static void trace(struct kmem_cache *s, struct page *page, void *object,
911 int alloc)
3ec09742
CL
912{
913 if (s->flags & SLAB_TRACE) {
914 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
915 s->name,
916 alloc ? "alloc" : "free",
917 object, page->inuse,
918 page->freelist);
919
920 if (!alloc)
3b0efdfa 921 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
922
923 dump_stack();
924 }
925}
926
c016b0bd
CL
927/*
928 * Hooks for other subsystems that check memory allocations. In a typical
929 * production configuration these hooks all should produce no code at all.
930 */
d56791b3
RB
931static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
932{
933 kmemleak_alloc(ptr, size, 1, flags);
934}
935
936static inline void kfree_hook(const void *x)
937{
938 kmemleak_free(x);
939}
940
c016b0bd
CL
941static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
942{
c1d50836 943 flags &= gfp_allowed_mask;
c016b0bd
CL
944 lockdep_trace_alloc(flags);
945 might_sleep_if(flags & __GFP_WAIT);
946
3b0efdfa 947 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
948}
949
950static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
951{
c1d50836 952 flags &= gfp_allowed_mask;
b3d41885 953 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 954 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
955}
956
957static inline void slab_free_hook(struct kmem_cache *s, void *x)
958{
959 kmemleak_free_recursive(x, s->flags);
c016b0bd 960
d3f661d6
CL
961 /*
962 * Trouble is that we may no longer disable interupts in the fast path
963 * So in order to make the debug calls that expect irqs to be
964 * disabled we need to disable interrupts temporarily.
965 */
966#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
967 {
968 unsigned long flags;
969
970 local_irq_save(flags);
3b0efdfa
CL
971 kmemcheck_slab_free(s, x, s->object_size);
972 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
973 local_irq_restore(flags);
974 }
975#endif
f9b615de 976 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 977 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
978}
979
643b1138 980/*
672bba3a 981 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
982 *
983 * list_lock must be held.
643b1138 984 */
5cc6eee8
CL
985static void add_full(struct kmem_cache *s,
986 struct kmem_cache_node *n, struct page *page)
643b1138 987{
5cc6eee8
CL
988 if (!(s->flags & SLAB_STORE_USER))
989 return;
990
643b1138 991 list_add(&page->lru, &n->full);
643b1138
CL
992}
993
5cc6eee8
CL
994/*
995 * list_lock must be held.
996 */
643b1138
CL
997static void remove_full(struct kmem_cache *s, struct page *page)
998{
643b1138
CL
999 if (!(s->flags & SLAB_STORE_USER))
1000 return;
1001
643b1138 1002 list_del(&page->lru);
643b1138
CL
1003}
1004
0f389ec6
CL
1005/* Tracking of the number of slabs for debugging purposes */
1006static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1007{
1008 struct kmem_cache_node *n = get_node(s, node);
1009
1010 return atomic_long_read(&n->nr_slabs);
1011}
1012
26c02cf0
AB
1013static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1014{
1015 return atomic_long_read(&n->nr_slabs);
1016}
1017
205ab99d 1018static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1019{
1020 struct kmem_cache_node *n = get_node(s, node);
1021
1022 /*
1023 * May be called early in order to allocate a slab for the
1024 * kmem_cache_node structure. Solve the chicken-egg
1025 * dilemma by deferring the increment of the count during
1026 * bootstrap (see early_kmem_cache_node_alloc).
1027 */
338b2642 1028 if (likely(n)) {
0f389ec6 1029 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1030 atomic_long_add(objects, &n->total_objects);
1031 }
0f389ec6 1032}
205ab99d 1033static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1034{
1035 struct kmem_cache_node *n = get_node(s, node);
1036
1037 atomic_long_dec(&n->nr_slabs);
205ab99d 1038 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1039}
1040
1041/* Object debug checks for alloc/free paths */
3ec09742
CL
1042static void setup_object_debug(struct kmem_cache *s, struct page *page,
1043 void *object)
1044{
1045 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1046 return;
1047
f7cb1933 1048 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1049 init_tracking(s, object);
1050}
1051
1537066c 1052static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1053 void *object, unsigned long addr)
81819f0f
CL
1054{
1055 if (!check_slab(s, page))
1056 goto bad;
1057
81819f0f
CL
1058 if (!check_valid_pointer(s, page, object)) {
1059 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1060 goto bad;
81819f0f
CL
1061 }
1062
f7cb1933 1063 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1064 goto bad;
81819f0f 1065
3ec09742
CL
1066 /* Success perform special debug activities for allocs */
1067 if (s->flags & SLAB_STORE_USER)
1068 set_track(s, object, TRACK_ALLOC, addr);
1069 trace(s, page, object, 1);
f7cb1933 1070 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1071 return 1;
3ec09742 1072
81819f0f
CL
1073bad:
1074 if (PageSlab(page)) {
1075 /*
1076 * If this is a slab page then lets do the best we can
1077 * to avoid issues in the future. Marking all objects
672bba3a 1078 * as used avoids touching the remaining objects.
81819f0f 1079 */
24922684 1080 slab_fix(s, "Marking all objects used");
39b26464 1081 page->inuse = page->objects;
a973e9dd 1082 page->freelist = NULL;
81819f0f
CL
1083 }
1084 return 0;
1085}
1086
19c7ff9e
CL
1087static noinline struct kmem_cache_node *free_debug_processing(
1088 struct kmem_cache *s, struct page *page, void *object,
1089 unsigned long addr, unsigned long *flags)
81819f0f 1090{
19c7ff9e 1091 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1092
19c7ff9e 1093 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1094 slab_lock(page);
1095
81819f0f
CL
1096 if (!check_slab(s, page))
1097 goto fail;
1098
1099 if (!check_valid_pointer(s, page, object)) {
70d71228 1100 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1101 goto fail;
1102 }
1103
1104 if (on_freelist(s, page, object)) {
24922684 1105 object_err(s, page, object, "Object already free");
81819f0f
CL
1106 goto fail;
1107 }
1108
f7cb1933 1109 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1110 goto out;
81819f0f 1111
1b4f59e3 1112 if (unlikely(s != page->slab_cache)) {
3adbefee 1113 if (!PageSlab(page)) {
70d71228
CL
1114 slab_err(s, page, "Attempt to free object(0x%p) "
1115 "outside of slab", object);
1b4f59e3 1116 } else if (!page->slab_cache) {
81819f0f 1117 printk(KERN_ERR
70d71228 1118 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1119 object);
70d71228 1120 dump_stack();
06428780 1121 } else
24922684
CL
1122 object_err(s, page, object,
1123 "page slab pointer corrupt.");
81819f0f
CL
1124 goto fail;
1125 }
3ec09742 1126
3ec09742
CL
1127 if (s->flags & SLAB_STORE_USER)
1128 set_track(s, object, TRACK_FREE, addr);
1129 trace(s, page, object, 0);
f7cb1933 1130 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1131out:
881db7fb 1132 slab_unlock(page);
19c7ff9e
CL
1133 /*
1134 * Keep node_lock to preserve integrity
1135 * until the object is actually freed
1136 */
1137 return n;
3ec09742 1138
81819f0f 1139fail:
19c7ff9e
CL
1140 slab_unlock(page);
1141 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1142 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1143 return NULL;
81819f0f
CL
1144}
1145
41ecc55b
CL
1146static int __init setup_slub_debug(char *str)
1147{
f0630fff
CL
1148 slub_debug = DEBUG_DEFAULT_FLAGS;
1149 if (*str++ != '=' || !*str)
1150 /*
1151 * No options specified. Switch on full debugging.
1152 */
1153 goto out;
1154
1155 if (*str == ',')
1156 /*
1157 * No options but restriction on slabs. This means full
1158 * debugging for slabs matching a pattern.
1159 */
1160 goto check_slabs;
1161
fa5ec8a1
DR
1162 if (tolower(*str) == 'o') {
1163 /*
1164 * Avoid enabling debugging on caches if its minimum order
1165 * would increase as a result.
1166 */
1167 disable_higher_order_debug = 1;
1168 goto out;
1169 }
1170
f0630fff
CL
1171 slub_debug = 0;
1172 if (*str == '-')
1173 /*
1174 * Switch off all debugging measures.
1175 */
1176 goto out;
1177
1178 /*
1179 * Determine which debug features should be switched on
1180 */
06428780 1181 for (; *str && *str != ','; str++) {
f0630fff
CL
1182 switch (tolower(*str)) {
1183 case 'f':
1184 slub_debug |= SLAB_DEBUG_FREE;
1185 break;
1186 case 'z':
1187 slub_debug |= SLAB_RED_ZONE;
1188 break;
1189 case 'p':
1190 slub_debug |= SLAB_POISON;
1191 break;
1192 case 'u':
1193 slub_debug |= SLAB_STORE_USER;
1194 break;
1195 case 't':
1196 slub_debug |= SLAB_TRACE;
1197 break;
4c13dd3b
DM
1198 case 'a':
1199 slub_debug |= SLAB_FAILSLAB;
1200 break;
f0630fff
CL
1201 default:
1202 printk(KERN_ERR "slub_debug option '%c' "
06428780 1203 "unknown. skipped\n", *str);
f0630fff 1204 }
41ecc55b
CL
1205 }
1206
f0630fff 1207check_slabs:
41ecc55b
CL
1208 if (*str == ',')
1209 slub_debug_slabs = str + 1;
f0630fff 1210out:
41ecc55b
CL
1211 return 1;
1212}
1213
1214__setup("slub_debug", setup_slub_debug);
1215
3b0efdfa 1216static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1217 unsigned long flags, const char *name,
51cc5068 1218 void (*ctor)(void *))
41ecc55b
CL
1219{
1220 /*
e153362a 1221 * Enable debugging if selected on the kernel commandline.
41ecc55b 1222 */
c6f58d9b
CL
1223 if (slub_debug && (!slub_debug_slabs || (name &&
1224 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1225 flags |= slub_debug;
ba0268a8
CL
1226
1227 return flags;
41ecc55b
CL
1228}
1229#else
3ec09742
CL
1230static inline void setup_object_debug(struct kmem_cache *s,
1231 struct page *page, void *object) {}
41ecc55b 1232
3ec09742 1233static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1234 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1235
19c7ff9e
CL
1236static inline struct kmem_cache_node *free_debug_processing(
1237 struct kmem_cache *s, struct page *page, void *object,
1238 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1239
41ecc55b
CL
1240static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1241 { return 1; }
1242static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1243 void *object, u8 val) { return 1; }
5cc6eee8
CL
1244static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1245 struct page *page) {}
2cfb7455 1246static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1247static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1248 unsigned long flags, const char *name,
51cc5068 1249 void (*ctor)(void *))
ba0268a8
CL
1250{
1251 return flags;
1252}
41ecc55b 1253#define slub_debug 0
0f389ec6 1254
fdaa45e9
IM
1255#define disable_higher_order_debug 0
1256
0f389ec6
CL
1257static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1258 { return 0; }
26c02cf0
AB
1259static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1260 { return 0; }
205ab99d
CL
1261static inline void inc_slabs_node(struct kmem_cache *s, int node,
1262 int objects) {}
1263static inline void dec_slabs_node(struct kmem_cache *s, int node,
1264 int objects) {}
7d550c56 1265
d56791b3
RB
1266static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1267{
1268 kmemleak_alloc(ptr, size, 1, flags);
1269}
1270
1271static inline void kfree_hook(const void *x)
1272{
1273 kmemleak_free(x);
1274}
1275
7d550c56
CL
1276static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1277 { return 0; }
1278
1279static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
d56791b3
RB
1280 void *object)
1281{
1282 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1283 flags & gfp_allowed_mask);
1284}
7d550c56 1285
d56791b3
RB
1286static inline void slab_free_hook(struct kmem_cache *s, void *x)
1287{
1288 kmemleak_free_recursive(x, s->flags);
1289}
7d550c56 1290
ab4d5ed5 1291#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1292
81819f0f
CL
1293/*
1294 * Slab allocation and freeing
1295 */
65c3376a
CL
1296static inline struct page *alloc_slab_page(gfp_t flags, int node,
1297 struct kmem_cache_order_objects oo)
1298{
1299 int order = oo_order(oo);
1300
b1eeab67
VN
1301 flags |= __GFP_NOTRACK;
1302
2154a336 1303 if (node == NUMA_NO_NODE)
65c3376a
CL
1304 return alloc_pages(flags, order);
1305 else
6b65aaf3 1306 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1307}
1308
81819f0f
CL
1309static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1310{
06428780 1311 struct page *page;
834f3d11 1312 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1313 gfp_t alloc_gfp;
81819f0f 1314
7e0528da
CL
1315 flags &= gfp_allowed_mask;
1316
1317 if (flags & __GFP_WAIT)
1318 local_irq_enable();
1319
b7a49f0d 1320 flags |= s->allocflags;
e12ba74d 1321
ba52270d
PE
1322 /*
1323 * Let the initial higher-order allocation fail under memory pressure
1324 * so we fall-back to the minimum order allocation.
1325 */
1326 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1327
1328 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1329 if (unlikely(!page)) {
1330 oo = s->min;
1331 /*
1332 * Allocation may have failed due to fragmentation.
1333 * Try a lower order alloc if possible
1334 */
1335 page = alloc_slab_page(flags, node, oo);
81819f0f 1336
7e0528da
CL
1337 if (page)
1338 stat(s, ORDER_FALLBACK);
65c3376a 1339 }
5a896d9e 1340
737b719e 1341 if (kmemcheck_enabled && page
5086c389 1342 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1343 int pages = 1 << oo_order(oo);
1344
1345 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1346
1347 /*
1348 * Objects from caches that have a constructor don't get
1349 * cleared when they're allocated, so we need to do it here.
1350 */
1351 if (s->ctor)
1352 kmemcheck_mark_uninitialized_pages(page, pages);
1353 else
1354 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1355 }
1356
737b719e
DR
1357 if (flags & __GFP_WAIT)
1358 local_irq_disable();
1359 if (!page)
1360 return NULL;
1361
834f3d11 1362 page->objects = oo_objects(oo);
81819f0f
CL
1363 mod_zone_page_state(page_zone(page),
1364 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1365 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1366 1 << oo_order(oo));
81819f0f
CL
1367
1368 return page;
1369}
1370
1371static void setup_object(struct kmem_cache *s, struct page *page,
1372 void *object)
1373{
3ec09742 1374 setup_object_debug(s, page, object);
4f104934 1375 if (unlikely(s->ctor))
51cc5068 1376 s->ctor(object);
81819f0f
CL
1377}
1378
1379static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1380{
1381 struct page *page;
81819f0f 1382 void *start;
81819f0f
CL
1383 void *last;
1384 void *p;
1f458cbf 1385 int order;
81819f0f 1386
6cb06229 1387 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1388
6cb06229
CL
1389 page = allocate_slab(s,
1390 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1391 if (!page)
1392 goto out;
1393
1f458cbf 1394 order = compound_order(page);
205ab99d 1395 inc_slabs_node(s, page_to_nid(page), page->objects);
1f458cbf 1396 memcg_bind_pages(s, order);
1b4f59e3 1397 page->slab_cache = s;
c03f94cc 1398 __SetPageSlab(page);
072bb0aa
MG
1399 if (page->pfmemalloc)
1400 SetPageSlabPfmemalloc(page);
81819f0f
CL
1401
1402 start = page_address(page);
81819f0f
CL
1403
1404 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1405 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f
CL
1406
1407 last = start;
224a88be 1408 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1409 setup_object(s, page, last);
1410 set_freepointer(s, last, p);
1411 last = p;
1412 }
1413 setup_object(s, page, last);
a973e9dd 1414 set_freepointer(s, last, NULL);
81819f0f
CL
1415
1416 page->freelist = start;
e6e82ea1 1417 page->inuse = page->objects;
8cb0a506 1418 page->frozen = 1;
81819f0f 1419out:
81819f0f
CL
1420 return page;
1421}
1422
1423static void __free_slab(struct kmem_cache *s, struct page *page)
1424{
834f3d11
CL
1425 int order = compound_order(page);
1426 int pages = 1 << order;
81819f0f 1427
af537b0a 1428 if (kmem_cache_debug(s)) {
81819f0f
CL
1429 void *p;
1430
1431 slab_pad_check(s, page);
224a88be
CL
1432 for_each_object(p, s, page_address(page),
1433 page->objects)
f7cb1933 1434 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1435 }
1436
b1eeab67 1437 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1438
81819f0f
CL
1439 mod_zone_page_state(page_zone(page),
1440 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1441 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1442 -pages);
81819f0f 1443
072bb0aa 1444 __ClearPageSlabPfmemalloc(page);
49bd5221 1445 __ClearPageSlab(page);
1f458cbf
GC
1446
1447 memcg_release_pages(s, order);
22b751c3 1448 page_mapcount_reset(page);
1eb5ac64
NP
1449 if (current->reclaim_state)
1450 current->reclaim_state->reclaimed_slab += pages;
d79923fa 1451 __free_memcg_kmem_pages(page, order);
81819f0f
CL
1452}
1453
da9a638c
LJ
1454#define need_reserve_slab_rcu \
1455 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1456
81819f0f
CL
1457static void rcu_free_slab(struct rcu_head *h)
1458{
1459 struct page *page;
1460
da9a638c
LJ
1461 if (need_reserve_slab_rcu)
1462 page = virt_to_head_page(h);
1463 else
1464 page = container_of((struct list_head *)h, struct page, lru);
1465
1b4f59e3 1466 __free_slab(page->slab_cache, page);
81819f0f
CL
1467}
1468
1469static void free_slab(struct kmem_cache *s, struct page *page)
1470{
1471 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1472 struct rcu_head *head;
1473
1474 if (need_reserve_slab_rcu) {
1475 int order = compound_order(page);
1476 int offset = (PAGE_SIZE << order) - s->reserved;
1477
1478 VM_BUG_ON(s->reserved != sizeof(*head));
1479 head = page_address(page) + offset;
1480 } else {
1481 /*
1482 * RCU free overloads the RCU head over the LRU
1483 */
1484 head = (void *)&page->lru;
1485 }
81819f0f
CL
1486
1487 call_rcu(head, rcu_free_slab);
1488 } else
1489 __free_slab(s, page);
1490}
1491
1492static void discard_slab(struct kmem_cache *s, struct page *page)
1493{
205ab99d 1494 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1495 free_slab(s, page);
1496}
1497
1498/*
5cc6eee8
CL
1499 * Management of partially allocated slabs.
1500 *
1501 * list_lock must be held.
81819f0f 1502 */
5cc6eee8 1503static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1504 struct page *page, int tail)
81819f0f 1505{
e95eed57 1506 n->nr_partial++;
136333d1 1507 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1508 list_add_tail(&page->lru, &n->partial);
1509 else
1510 list_add(&page->lru, &n->partial);
81819f0f
CL
1511}
1512
5cc6eee8
CL
1513/*
1514 * list_lock must be held.
1515 */
1516static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1517 struct page *page)
1518{
1519 list_del(&page->lru);
1520 n->nr_partial--;
1521}
1522
81819f0f 1523/*
7ced3719
CL
1524 * Remove slab from the partial list, freeze it and
1525 * return the pointer to the freelist.
81819f0f 1526 *
497b66f2
CL
1527 * Returns a list of objects or NULL if it fails.
1528 *
7ced3719 1529 * Must hold list_lock since we modify the partial list.
81819f0f 1530 */
497b66f2 1531static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1532 struct kmem_cache_node *n, struct page *page,
633b0764 1533 int mode, int *objects)
81819f0f 1534{
2cfb7455
CL
1535 void *freelist;
1536 unsigned long counters;
1537 struct page new;
1538
2cfb7455
CL
1539 /*
1540 * Zap the freelist and set the frozen bit.
1541 * The old freelist is the list of objects for the
1542 * per cpu allocation list.
1543 */
7ced3719
CL
1544 freelist = page->freelist;
1545 counters = page->counters;
1546 new.counters = counters;
633b0764 1547 *objects = new.objects - new.inuse;
23910c50 1548 if (mode) {
7ced3719 1549 new.inuse = page->objects;
23910c50
PE
1550 new.freelist = NULL;
1551 } else {
1552 new.freelist = freelist;
1553 }
2cfb7455 1554
7ced3719
CL
1555 VM_BUG_ON(new.frozen);
1556 new.frozen = 1;
2cfb7455 1557
7ced3719 1558 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1559 freelist, counters,
02d7633f 1560 new.freelist, new.counters,
7ced3719 1561 "acquire_slab"))
7ced3719 1562 return NULL;
2cfb7455
CL
1563
1564 remove_partial(n, page);
7ced3719 1565 WARN_ON(!freelist);
49e22585 1566 return freelist;
81819f0f
CL
1567}
1568
633b0764 1569static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1570static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1571
81819f0f 1572/*
672bba3a 1573 * Try to allocate a partial slab from a specific node.
81819f0f 1574 */
8ba00bb6
JK
1575static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1576 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1577{
49e22585
CL
1578 struct page *page, *page2;
1579 void *object = NULL;
633b0764
JK
1580 int available = 0;
1581 int objects;
81819f0f
CL
1582
1583 /*
1584 * Racy check. If we mistakenly see no partial slabs then we
1585 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1586 * partial slab and there is none available then get_partials()
1587 * will return NULL.
81819f0f
CL
1588 */
1589 if (!n || !n->nr_partial)
1590 return NULL;
1591
1592 spin_lock(&n->list_lock);
49e22585 1593 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1594 void *t;
49e22585 1595
8ba00bb6
JK
1596 if (!pfmemalloc_match(page, flags))
1597 continue;
1598
633b0764 1599 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1600 if (!t)
1601 break;
1602
633b0764 1603 available += objects;
12d79634 1604 if (!object) {
49e22585 1605 c->page = page;
49e22585 1606 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1607 object = t;
49e22585 1608 } else {
633b0764 1609 put_cpu_partial(s, page, 0);
8028dcea 1610 stat(s, CPU_PARTIAL_NODE);
49e22585 1611 }
345c905d
JK
1612 if (!kmem_cache_has_cpu_partial(s)
1613 || available > s->cpu_partial / 2)
49e22585
CL
1614 break;
1615
497b66f2 1616 }
81819f0f 1617 spin_unlock(&n->list_lock);
497b66f2 1618 return object;
81819f0f
CL
1619}
1620
1621/*
672bba3a 1622 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1623 */
de3ec035 1624static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1625 struct kmem_cache_cpu *c)
81819f0f
CL
1626{
1627#ifdef CONFIG_NUMA
1628 struct zonelist *zonelist;
dd1a239f 1629 struct zoneref *z;
54a6eb5c
MG
1630 struct zone *zone;
1631 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1632 void *object;
cc9a6c87 1633 unsigned int cpuset_mems_cookie;
81819f0f
CL
1634
1635 /*
672bba3a
CL
1636 * The defrag ratio allows a configuration of the tradeoffs between
1637 * inter node defragmentation and node local allocations. A lower
1638 * defrag_ratio increases the tendency to do local allocations
1639 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1640 *
672bba3a
CL
1641 * If the defrag_ratio is set to 0 then kmalloc() always
1642 * returns node local objects. If the ratio is higher then kmalloc()
1643 * may return off node objects because partial slabs are obtained
1644 * from other nodes and filled up.
81819f0f 1645 *
6446faa2 1646 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1647 * defrag_ratio = 1000) then every (well almost) allocation will
1648 * first attempt to defrag slab caches on other nodes. This means
1649 * scanning over all nodes to look for partial slabs which may be
1650 * expensive if we do it every time we are trying to find a slab
1651 * with available objects.
81819f0f 1652 */
9824601e
CL
1653 if (!s->remote_node_defrag_ratio ||
1654 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1655 return NULL;
1656
cc9a6c87
MG
1657 do {
1658 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1659 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1660 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1661 struct kmem_cache_node *n;
1662
1663 n = get_node(s, zone_to_nid(zone));
1664
1665 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1666 n->nr_partial > s->min_partial) {
8ba00bb6 1667 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1668 if (object) {
1669 /*
1670 * Return the object even if
1671 * put_mems_allowed indicated that
1672 * the cpuset mems_allowed was
1673 * updated in parallel. It's a
1674 * harmless race between the alloc
1675 * and the cpuset update.
1676 */
1677 put_mems_allowed(cpuset_mems_cookie);
1678 return object;
1679 }
c0ff7453 1680 }
81819f0f 1681 }
cc9a6c87 1682 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1683#endif
1684 return NULL;
1685}
1686
1687/*
1688 * Get a partial page, lock it and return it.
1689 */
497b66f2 1690static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1691 struct kmem_cache_cpu *c)
81819f0f 1692{
497b66f2 1693 void *object;
2154a336 1694 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1695
8ba00bb6 1696 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1697 if (object || node != NUMA_NO_NODE)
1698 return object;
81819f0f 1699
acd19fd1 1700 return get_any_partial(s, flags, c);
81819f0f
CL
1701}
1702
8a5ec0ba
CL
1703#ifdef CONFIG_PREEMPT
1704/*
1705 * Calculate the next globally unique transaction for disambiguiation
1706 * during cmpxchg. The transactions start with the cpu number and are then
1707 * incremented by CONFIG_NR_CPUS.
1708 */
1709#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1710#else
1711/*
1712 * No preemption supported therefore also no need to check for
1713 * different cpus.
1714 */
1715#define TID_STEP 1
1716#endif
1717
1718static inline unsigned long next_tid(unsigned long tid)
1719{
1720 return tid + TID_STEP;
1721}
1722
1723static inline unsigned int tid_to_cpu(unsigned long tid)
1724{
1725 return tid % TID_STEP;
1726}
1727
1728static inline unsigned long tid_to_event(unsigned long tid)
1729{
1730 return tid / TID_STEP;
1731}
1732
1733static inline unsigned int init_tid(int cpu)
1734{
1735 return cpu;
1736}
1737
1738static inline void note_cmpxchg_failure(const char *n,
1739 const struct kmem_cache *s, unsigned long tid)
1740{
1741#ifdef SLUB_DEBUG_CMPXCHG
1742 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1743
1744 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1745
1746#ifdef CONFIG_PREEMPT
1747 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1748 printk("due to cpu change %d -> %d\n",
1749 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1750 else
1751#endif
1752 if (tid_to_event(tid) != tid_to_event(actual_tid))
1753 printk("due to cpu running other code. Event %ld->%ld\n",
1754 tid_to_event(tid), tid_to_event(actual_tid));
1755 else
1756 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1757 actual_tid, tid, next_tid(tid));
1758#endif
4fdccdfb 1759 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1760}
1761
788e1aad 1762static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1763{
8a5ec0ba
CL
1764 int cpu;
1765
1766 for_each_possible_cpu(cpu)
1767 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1768}
2cfb7455 1769
81819f0f
CL
1770/*
1771 * Remove the cpu slab
1772 */
c17dda40 1773static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1774{
2cfb7455 1775 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1776 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1777 int lock = 0;
1778 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1779 void *nextfree;
136333d1 1780 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1781 struct page new;
1782 struct page old;
1783
1784 if (page->freelist) {
84e554e6 1785 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1786 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1787 }
1788
894b8788 1789 /*
2cfb7455
CL
1790 * Stage one: Free all available per cpu objects back
1791 * to the page freelist while it is still frozen. Leave the
1792 * last one.
1793 *
1794 * There is no need to take the list->lock because the page
1795 * is still frozen.
1796 */
1797 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1798 void *prior;
1799 unsigned long counters;
1800
1801 do {
1802 prior = page->freelist;
1803 counters = page->counters;
1804 set_freepointer(s, freelist, prior);
1805 new.counters = counters;
1806 new.inuse--;
1807 VM_BUG_ON(!new.frozen);
1808
1d07171c 1809 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1810 prior, counters,
1811 freelist, new.counters,
1812 "drain percpu freelist"));
1813
1814 freelist = nextfree;
1815 }
1816
894b8788 1817 /*
2cfb7455
CL
1818 * Stage two: Ensure that the page is unfrozen while the
1819 * list presence reflects the actual number of objects
1820 * during unfreeze.
1821 *
1822 * We setup the list membership and then perform a cmpxchg
1823 * with the count. If there is a mismatch then the page
1824 * is not unfrozen but the page is on the wrong list.
1825 *
1826 * Then we restart the process which may have to remove
1827 * the page from the list that we just put it on again
1828 * because the number of objects in the slab may have
1829 * changed.
894b8788 1830 */
2cfb7455 1831redo:
894b8788 1832
2cfb7455
CL
1833 old.freelist = page->freelist;
1834 old.counters = page->counters;
1835 VM_BUG_ON(!old.frozen);
7c2e132c 1836
2cfb7455
CL
1837 /* Determine target state of the slab */
1838 new.counters = old.counters;
1839 if (freelist) {
1840 new.inuse--;
1841 set_freepointer(s, freelist, old.freelist);
1842 new.freelist = freelist;
1843 } else
1844 new.freelist = old.freelist;
1845
1846 new.frozen = 0;
1847
81107188 1848 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1849 m = M_FREE;
1850 else if (new.freelist) {
1851 m = M_PARTIAL;
1852 if (!lock) {
1853 lock = 1;
1854 /*
1855 * Taking the spinlock removes the possiblity
1856 * that acquire_slab() will see a slab page that
1857 * is frozen
1858 */
1859 spin_lock(&n->list_lock);
1860 }
1861 } else {
1862 m = M_FULL;
1863 if (kmem_cache_debug(s) && !lock) {
1864 lock = 1;
1865 /*
1866 * This also ensures that the scanning of full
1867 * slabs from diagnostic functions will not see
1868 * any frozen slabs.
1869 */
1870 spin_lock(&n->list_lock);
1871 }
1872 }
1873
1874 if (l != m) {
1875
1876 if (l == M_PARTIAL)
1877
1878 remove_partial(n, page);
1879
1880 else if (l == M_FULL)
894b8788 1881
2cfb7455
CL
1882 remove_full(s, page);
1883
1884 if (m == M_PARTIAL) {
1885
1886 add_partial(n, page, tail);
136333d1 1887 stat(s, tail);
2cfb7455
CL
1888
1889 } else if (m == M_FULL) {
894b8788 1890
2cfb7455
CL
1891 stat(s, DEACTIVATE_FULL);
1892 add_full(s, n, page);
1893
1894 }
1895 }
1896
1897 l = m;
1d07171c 1898 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1899 old.freelist, old.counters,
1900 new.freelist, new.counters,
1901 "unfreezing slab"))
1902 goto redo;
1903
2cfb7455
CL
1904 if (lock)
1905 spin_unlock(&n->list_lock);
1906
1907 if (m == M_FREE) {
1908 stat(s, DEACTIVATE_EMPTY);
1909 discard_slab(s, page);
1910 stat(s, FREE_SLAB);
894b8788 1911 }
81819f0f
CL
1912}
1913
d24ac77f
JK
1914/*
1915 * Unfreeze all the cpu partial slabs.
1916 *
59a09917
CL
1917 * This function must be called with interrupts disabled
1918 * for the cpu using c (or some other guarantee must be there
1919 * to guarantee no concurrent accesses).
d24ac77f 1920 */
59a09917
CL
1921static void unfreeze_partials(struct kmem_cache *s,
1922 struct kmem_cache_cpu *c)
49e22585 1923{
345c905d 1924#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1925 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1926 struct page *page, *discard_page = NULL;
49e22585
CL
1927
1928 while ((page = c->partial)) {
49e22585
CL
1929 struct page new;
1930 struct page old;
1931
1932 c->partial = page->next;
43d77867
JK
1933
1934 n2 = get_node(s, page_to_nid(page));
1935 if (n != n2) {
1936 if (n)
1937 spin_unlock(&n->list_lock);
1938
1939 n = n2;
1940 spin_lock(&n->list_lock);
1941 }
49e22585
CL
1942
1943 do {
1944
1945 old.freelist = page->freelist;
1946 old.counters = page->counters;
1947 VM_BUG_ON(!old.frozen);
1948
1949 new.counters = old.counters;
1950 new.freelist = old.freelist;
1951
1952 new.frozen = 0;
1953
d24ac77f 1954 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1955 old.freelist, old.counters,
1956 new.freelist, new.counters,
1957 "unfreezing slab"));
1958
43d77867 1959 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1960 page->next = discard_page;
1961 discard_page = page;
43d77867
JK
1962 } else {
1963 add_partial(n, page, DEACTIVATE_TO_TAIL);
1964 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1965 }
1966 }
1967
1968 if (n)
1969 spin_unlock(&n->list_lock);
9ada1934
SL
1970
1971 while (discard_page) {
1972 page = discard_page;
1973 discard_page = discard_page->next;
1974
1975 stat(s, DEACTIVATE_EMPTY);
1976 discard_slab(s, page);
1977 stat(s, FREE_SLAB);
1978 }
345c905d 1979#endif
49e22585
CL
1980}
1981
1982/*
1983 * Put a page that was just frozen (in __slab_free) into a partial page
1984 * slot if available. This is done without interrupts disabled and without
1985 * preemption disabled. The cmpxchg is racy and may put the partial page
1986 * onto a random cpus partial slot.
1987 *
1988 * If we did not find a slot then simply move all the partials to the
1989 * per node partial list.
1990 */
633b0764 1991static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 1992{
345c905d 1993#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
1994 struct page *oldpage;
1995 int pages;
1996 int pobjects;
1997
1998 do {
1999 pages = 0;
2000 pobjects = 0;
2001 oldpage = this_cpu_read(s->cpu_slab->partial);
2002
2003 if (oldpage) {
2004 pobjects = oldpage->pobjects;
2005 pages = oldpage->pages;
2006 if (drain && pobjects > s->cpu_partial) {
2007 unsigned long flags;
2008 /*
2009 * partial array is full. Move the existing
2010 * set to the per node partial list.
2011 */
2012 local_irq_save(flags);
59a09917 2013 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2014 local_irq_restore(flags);
e24fc410 2015 oldpage = NULL;
49e22585
CL
2016 pobjects = 0;
2017 pages = 0;
8028dcea 2018 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2019 }
2020 }
2021
2022 pages++;
2023 pobjects += page->objects - page->inuse;
2024
2025 page->pages = pages;
2026 page->pobjects = pobjects;
2027 page->next = oldpage;
2028
933393f5 2029 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
345c905d 2030#endif
49e22585
CL
2031}
2032
dfb4f096 2033static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2034{
84e554e6 2035 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2036 deactivate_slab(s, c->page, c->freelist);
2037
2038 c->tid = next_tid(c->tid);
2039 c->page = NULL;
2040 c->freelist = NULL;
81819f0f
CL
2041}
2042
2043/*
2044 * Flush cpu slab.
6446faa2 2045 *
81819f0f
CL
2046 * Called from IPI handler with interrupts disabled.
2047 */
0c710013 2048static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2049{
9dfc6e68 2050 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2051
49e22585
CL
2052 if (likely(c)) {
2053 if (c->page)
2054 flush_slab(s, c);
2055
59a09917 2056 unfreeze_partials(s, c);
49e22585 2057 }
81819f0f
CL
2058}
2059
2060static void flush_cpu_slab(void *d)
2061{
2062 struct kmem_cache *s = d;
81819f0f 2063
dfb4f096 2064 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2065}
2066
a8364d55
GBY
2067static bool has_cpu_slab(int cpu, void *info)
2068{
2069 struct kmem_cache *s = info;
2070 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2071
02e1a9cd 2072 return c->page || c->partial;
a8364d55
GBY
2073}
2074
81819f0f
CL
2075static void flush_all(struct kmem_cache *s)
2076{
a8364d55 2077 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2078}
2079
dfb4f096
CL
2080/*
2081 * Check if the objects in a per cpu structure fit numa
2082 * locality expectations.
2083 */
57d437d2 2084static inline int node_match(struct page *page, int node)
dfb4f096
CL
2085{
2086#ifdef CONFIG_NUMA
4d7868e6 2087 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2088 return 0;
2089#endif
2090 return 1;
2091}
2092
781b2ba6
PE
2093static int count_free(struct page *page)
2094{
2095 return page->objects - page->inuse;
2096}
2097
2098static unsigned long count_partial(struct kmem_cache_node *n,
2099 int (*get_count)(struct page *))
2100{
2101 unsigned long flags;
2102 unsigned long x = 0;
2103 struct page *page;
2104
2105 spin_lock_irqsave(&n->list_lock, flags);
2106 list_for_each_entry(page, &n->partial, lru)
2107 x += get_count(page);
2108 spin_unlock_irqrestore(&n->list_lock, flags);
2109 return x;
2110}
2111
26c02cf0
AB
2112static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2113{
2114#ifdef CONFIG_SLUB_DEBUG
2115 return atomic_long_read(&n->total_objects);
2116#else
2117 return 0;
2118#endif
2119}
2120
781b2ba6
PE
2121static noinline void
2122slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2123{
2124 int node;
2125
2126 printk(KERN_WARNING
2127 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2128 nid, gfpflags);
2129 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2130 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2131 s->size, oo_order(s->oo), oo_order(s->min));
2132
3b0efdfa 2133 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2134 printk(KERN_WARNING " %s debugging increased min order, use "
2135 "slub_debug=O to disable.\n", s->name);
2136
781b2ba6
PE
2137 for_each_online_node(node) {
2138 struct kmem_cache_node *n = get_node(s, node);
2139 unsigned long nr_slabs;
2140 unsigned long nr_objs;
2141 unsigned long nr_free;
2142
2143 if (!n)
2144 continue;
2145
26c02cf0
AB
2146 nr_free = count_partial(n, count_free);
2147 nr_slabs = node_nr_slabs(n);
2148 nr_objs = node_nr_objs(n);
781b2ba6
PE
2149
2150 printk(KERN_WARNING
2151 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2152 node, nr_slabs, nr_objs, nr_free);
2153 }
2154}
2155
497b66f2
CL
2156static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2157 int node, struct kmem_cache_cpu **pc)
2158{
6faa6833 2159 void *freelist;
188fd063
CL
2160 struct kmem_cache_cpu *c = *pc;
2161 struct page *page;
497b66f2 2162
188fd063 2163 freelist = get_partial(s, flags, node, c);
497b66f2 2164
188fd063
CL
2165 if (freelist)
2166 return freelist;
2167
2168 page = new_slab(s, flags, node);
497b66f2
CL
2169 if (page) {
2170 c = __this_cpu_ptr(s->cpu_slab);
2171 if (c->page)
2172 flush_slab(s, c);
2173
2174 /*
2175 * No other reference to the page yet so we can
2176 * muck around with it freely without cmpxchg
2177 */
6faa6833 2178 freelist = page->freelist;
497b66f2
CL
2179 page->freelist = NULL;
2180
2181 stat(s, ALLOC_SLAB);
497b66f2
CL
2182 c->page = page;
2183 *pc = c;
2184 } else
6faa6833 2185 freelist = NULL;
497b66f2 2186
6faa6833 2187 return freelist;
497b66f2
CL
2188}
2189
072bb0aa
MG
2190static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2191{
2192 if (unlikely(PageSlabPfmemalloc(page)))
2193 return gfp_pfmemalloc_allowed(gfpflags);
2194
2195 return true;
2196}
2197
213eeb9f
CL
2198/*
2199 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2200 * or deactivate the page.
2201 *
2202 * The page is still frozen if the return value is not NULL.
2203 *
2204 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2205 *
2206 * This function must be called with interrupt disabled.
213eeb9f
CL
2207 */
2208static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2209{
2210 struct page new;
2211 unsigned long counters;
2212 void *freelist;
2213
2214 do {
2215 freelist = page->freelist;
2216 counters = page->counters;
6faa6833 2217
213eeb9f
CL
2218 new.counters = counters;
2219 VM_BUG_ON(!new.frozen);
2220
2221 new.inuse = page->objects;
2222 new.frozen = freelist != NULL;
2223
d24ac77f 2224 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2225 freelist, counters,
2226 NULL, new.counters,
2227 "get_freelist"));
2228
2229 return freelist;
2230}
2231
81819f0f 2232/*
894b8788
CL
2233 * Slow path. The lockless freelist is empty or we need to perform
2234 * debugging duties.
2235 *
894b8788
CL
2236 * Processing is still very fast if new objects have been freed to the
2237 * regular freelist. In that case we simply take over the regular freelist
2238 * as the lockless freelist and zap the regular freelist.
81819f0f 2239 *
894b8788
CL
2240 * If that is not working then we fall back to the partial lists. We take the
2241 * first element of the freelist as the object to allocate now and move the
2242 * rest of the freelist to the lockless freelist.
81819f0f 2243 *
894b8788 2244 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2245 * we need to allocate a new slab. This is the slowest path since it involves
2246 * a call to the page allocator and the setup of a new slab.
81819f0f 2247 */
ce71e27c
EGM
2248static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2249 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2250{
6faa6833 2251 void *freelist;
f6e7def7 2252 struct page *page;
8a5ec0ba
CL
2253 unsigned long flags;
2254
2255 local_irq_save(flags);
2256#ifdef CONFIG_PREEMPT
2257 /*
2258 * We may have been preempted and rescheduled on a different
2259 * cpu before disabling interrupts. Need to reload cpu area
2260 * pointer.
2261 */
2262 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2263#endif
81819f0f 2264
f6e7def7
CL
2265 page = c->page;
2266 if (!page)
81819f0f 2267 goto new_slab;
49e22585 2268redo:
6faa6833 2269
57d437d2 2270 if (unlikely(!node_match(page, node))) {
e36a2652 2271 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2272 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2273 c->page = NULL;
2274 c->freelist = NULL;
fc59c053
CL
2275 goto new_slab;
2276 }
6446faa2 2277
072bb0aa
MG
2278 /*
2279 * By rights, we should be searching for a slab page that was
2280 * PFMEMALLOC but right now, we are losing the pfmemalloc
2281 * information when the page leaves the per-cpu allocator
2282 */
2283 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2284 deactivate_slab(s, page, c->freelist);
2285 c->page = NULL;
2286 c->freelist = NULL;
2287 goto new_slab;
2288 }
2289
73736e03 2290 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2291 freelist = c->freelist;
2292 if (freelist)
73736e03 2293 goto load_freelist;
03e404af 2294
2cfb7455 2295 stat(s, ALLOC_SLOWPATH);
03e404af 2296
f6e7def7 2297 freelist = get_freelist(s, page);
6446faa2 2298
6faa6833 2299 if (!freelist) {
03e404af
CL
2300 c->page = NULL;
2301 stat(s, DEACTIVATE_BYPASS);
fc59c053 2302 goto new_slab;
03e404af 2303 }
6446faa2 2304
84e554e6 2305 stat(s, ALLOC_REFILL);
6446faa2 2306
894b8788 2307load_freelist:
507effea
CL
2308 /*
2309 * freelist is pointing to the list of objects to be used.
2310 * page is pointing to the page from which the objects are obtained.
2311 * That page must be frozen for per cpu allocations to work.
2312 */
2313 VM_BUG_ON(!c->page->frozen);
6faa6833 2314 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2315 c->tid = next_tid(c->tid);
2316 local_irq_restore(flags);
6faa6833 2317 return freelist;
81819f0f 2318
81819f0f 2319new_slab:
2cfb7455 2320
49e22585 2321 if (c->partial) {
f6e7def7
CL
2322 page = c->page = c->partial;
2323 c->partial = page->next;
49e22585
CL
2324 stat(s, CPU_PARTIAL_ALLOC);
2325 c->freelist = NULL;
2326 goto redo;
81819f0f
CL
2327 }
2328
188fd063 2329 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2330
f4697436
CL
2331 if (unlikely(!freelist)) {
2332 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2333 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2334
f4697436
CL
2335 local_irq_restore(flags);
2336 return NULL;
81819f0f 2337 }
2cfb7455 2338
f6e7def7 2339 page = c->page;
5091b74a 2340 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2341 goto load_freelist;
2cfb7455 2342
497b66f2 2343 /* Only entered in the debug case */
5091b74a 2344 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2345 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2346
f6e7def7 2347 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2348 c->page = NULL;
2349 c->freelist = NULL;
a71ae47a 2350 local_irq_restore(flags);
6faa6833 2351 return freelist;
894b8788
CL
2352}
2353
2354/*
2355 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2356 * have the fastpath folded into their functions. So no function call
2357 * overhead for requests that can be satisfied on the fastpath.
2358 *
2359 * The fastpath works by first checking if the lockless freelist can be used.
2360 * If not then __slab_alloc is called for slow processing.
2361 *
2362 * Otherwise we can simply pick the next object from the lockless free list.
2363 */
2b847c3c 2364static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2365 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2366{
894b8788 2367 void **object;
dfb4f096 2368 struct kmem_cache_cpu *c;
57d437d2 2369 struct page *page;
8a5ec0ba 2370 unsigned long tid;
1f84260c 2371
c016b0bd 2372 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2373 return NULL;
1f84260c 2374
d79923fa 2375 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2376redo:
8a5ec0ba
CL
2377 /*
2378 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2379 * enabled. We may switch back and forth between cpus while
2380 * reading from one cpu area. That does not matter as long
2381 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2382 *
2383 * Preemption is disabled for the retrieval of the tid because that
2384 * must occur from the current processor. We cannot allow rescheduling
2385 * on a different processor between the determination of the pointer
2386 * and the retrieval of the tid.
8a5ec0ba 2387 */
7cccd80b 2388 preempt_disable();
9dfc6e68 2389 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2390
8a5ec0ba
CL
2391 /*
2392 * The transaction ids are globally unique per cpu and per operation on
2393 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2394 * occurs on the right processor and that there was no operation on the
2395 * linked list in between.
2396 */
2397 tid = c->tid;
7cccd80b 2398 preempt_enable();
8a5ec0ba 2399
9dfc6e68 2400 object = c->freelist;
57d437d2 2401 page = c->page;
c25f195e 2402 if (unlikely(!object || !page || !node_match(page, node)))
dfb4f096 2403 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2404
2405 else {
0ad9500e
ED
2406 void *next_object = get_freepointer_safe(s, object);
2407
8a5ec0ba 2408 /*
25985edc 2409 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2410 * operation and if we are on the right processor.
2411 *
2412 * The cmpxchg does the following atomically (without lock semantics!)
2413 * 1. Relocate first pointer to the current per cpu area.
2414 * 2. Verify that tid and freelist have not been changed
2415 * 3. If they were not changed replace tid and freelist
2416 *
2417 * Since this is without lock semantics the protection is only against
2418 * code executing on this cpu *not* from access by other cpus.
2419 */
933393f5 2420 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2421 s->cpu_slab->freelist, s->cpu_slab->tid,
2422 object, tid,
0ad9500e 2423 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2424
2425 note_cmpxchg_failure("slab_alloc", s, tid);
2426 goto redo;
2427 }
0ad9500e 2428 prefetch_freepointer(s, next_object);
84e554e6 2429 stat(s, ALLOC_FASTPATH);
894b8788 2430 }
8a5ec0ba 2431
74e2134f 2432 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2433 memset(object, 0, s->object_size);
d07dbea4 2434
c016b0bd 2435 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2436
894b8788 2437 return object;
81819f0f
CL
2438}
2439
2b847c3c
EG
2440static __always_inline void *slab_alloc(struct kmem_cache *s,
2441 gfp_t gfpflags, unsigned long addr)
2442{
2443 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2444}
2445
81819f0f
CL
2446void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2447{
2b847c3c 2448 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2449
3b0efdfa 2450 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2451
2452 return ret;
81819f0f
CL
2453}
2454EXPORT_SYMBOL(kmem_cache_alloc);
2455
0f24f128 2456#ifdef CONFIG_TRACING
4a92379b
RK
2457void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2458{
2b847c3c 2459 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2460 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2461 return ret;
2462}
2463EXPORT_SYMBOL(kmem_cache_alloc_trace);
2464
2465void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2466{
4a92379b
RK
2467 void *ret = kmalloc_order(size, flags, order);
2468 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2469 return ret;
5b882be4 2470}
4a92379b 2471EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2472#endif
2473
81819f0f
CL
2474#ifdef CONFIG_NUMA
2475void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2476{
2b847c3c 2477 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2478
ca2b84cb 2479 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2480 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2481
2482 return ret;
81819f0f
CL
2483}
2484EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2485
0f24f128 2486#ifdef CONFIG_TRACING
4a92379b 2487void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2488 gfp_t gfpflags,
4a92379b 2489 int node, size_t size)
5b882be4 2490{
2b847c3c 2491 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2492
2493 trace_kmalloc_node(_RET_IP_, ret,
2494 size, s->size, gfpflags, node);
2495 return ret;
5b882be4 2496}
4a92379b 2497EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2498#endif
5d1f57e4 2499#endif
5b882be4 2500
81819f0f 2501/*
894b8788
CL
2502 * Slow patch handling. This may still be called frequently since objects
2503 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2504 *
894b8788
CL
2505 * So we still attempt to reduce cache line usage. Just take the slab
2506 * lock and free the item. If there is no additional partial page
2507 * handling required then we can return immediately.
81819f0f 2508 */
894b8788 2509static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2510 void *x, unsigned long addr)
81819f0f
CL
2511{
2512 void *prior;
2513 void **object = (void *)x;
2cfb7455 2514 int was_frozen;
2cfb7455
CL
2515 struct page new;
2516 unsigned long counters;
2517 struct kmem_cache_node *n = NULL;
61728d1e 2518 unsigned long uninitialized_var(flags);
81819f0f 2519
8a5ec0ba 2520 stat(s, FREE_SLOWPATH);
81819f0f 2521
19c7ff9e
CL
2522 if (kmem_cache_debug(s) &&
2523 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2524 return;
6446faa2 2525
2cfb7455 2526 do {
837d678d
JK
2527 if (unlikely(n)) {
2528 spin_unlock_irqrestore(&n->list_lock, flags);
2529 n = NULL;
2530 }
2cfb7455
CL
2531 prior = page->freelist;
2532 counters = page->counters;
2533 set_freepointer(s, object, prior);
2534 new.counters = counters;
2535 was_frozen = new.frozen;
2536 new.inuse--;
837d678d 2537 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2538
345c905d 2539 if (kmem_cache_has_cpu_partial(s) && !prior)
49e22585
CL
2540
2541 /*
2542 * Slab was on no list before and will be partially empty
2543 * We can defer the list move and instead freeze it.
2544 */
2545 new.frozen = 1;
2546
2547 else { /* Needs to be taken off a list */
2548
2549 n = get_node(s, page_to_nid(page));
2550 /*
2551 * Speculatively acquire the list_lock.
2552 * If the cmpxchg does not succeed then we may
2553 * drop the list_lock without any processing.
2554 *
2555 * Otherwise the list_lock will synchronize with
2556 * other processors updating the list of slabs.
2557 */
2558 spin_lock_irqsave(&n->list_lock, flags);
2559
2560 }
2cfb7455 2561 }
81819f0f 2562
2cfb7455
CL
2563 } while (!cmpxchg_double_slab(s, page,
2564 prior, counters,
2565 object, new.counters,
2566 "__slab_free"));
81819f0f 2567
2cfb7455 2568 if (likely(!n)) {
49e22585
CL
2569
2570 /*
2571 * If we just froze the page then put it onto the
2572 * per cpu partial list.
2573 */
8028dcea 2574 if (new.frozen && !was_frozen) {
49e22585 2575 put_cpu_partial(s, page, 1);
8028dcea
AS
2576 stat(s, CPU_PARTIAL_FREE);
2577 }
49e22585 2578 /*
2cfb7455
CL
2579 * The list lock was not taken therefore no list
2580 * activity can be necessary.
2581 */
2582 if (was_frozen)
2583 stat(s, FREE_FROZEN);
80f08c19 2584 return;
2cfb7455 2585 }
81819f0f 2586
837d678d
JK
2587 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2588 goto slab_empty;
2589
81819f0f 2590 /*
837d678d
JK
2591 * Objects left in the slab. If it was not on the partial list before
2592 * then add it.
81819f0f 2593 */
345c905d
JK
2594 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2595 if (kmem_cache_debug(s))
2596 remove_full(s, page);
837d678d
JK
2597 add_partial(n, page, DEACTIVATE_TO_TAIL);
2598 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2599 }
80f08c19 2600 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2601 return;
2602
2603slab_empty:
a973e9dd 2604 if (prior) {
81819f0f 2605 /*
6fbabb20 2606 * Slab on the partial list.
81819f0f 2607 */
5cc6eee8 2608 remove_partial(n, page);
84e554e6 2609 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2610 } else
2611 /* Slab must be on the full list */
2612 remove_full(s, page);
2cfb7455 2613
80f08c19 2614 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2615 stat(s, FREE_SLAB);
81819f0f 2616 discard_slab(s, page);
81819f0f
CL
2617}
2618
894b8788
CL
2619/*
2620 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2621 * can perform fastpath freeing without additional function calls.
2622 *
2623 * The fastpath is only possible if we are freeing to the current cpu slab
2624 * of this processor. This typically the case if we have just allocated
2625 * the item before.
2626 *
2627 * If fastpath is not possible then fall back to __slab_free where we deal
2628 * with all sorts of special processing.
2629 */
06428780 2630static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2631 struct page *page, void *x, unsigned long addr)
894b8788
CL
2632{
2633 void **object = (void *)x;
dfb4f096 2634 struct kmem_cache_cpu *c;
8a5ec0ba 2635 unsigned long tid;
1f84260c 2636
c016b0bd
CL
2637 slab_free_hook(s, x);
2638
8a5ec0ba
CL
2639redo:
2640 /*
2641 * Determine the currently cpus per cpu slab.
2642 * The cpu may change afterward. However that does not matter since
2643 * data is retrieved via this pointer. If we are on the same cpu
2644 * during the cmpxchg then the free will succedd.
2645 */
7cccd80b 2646 preempt_disable();
9dfc6e68 2647 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2648
8a5ec0ba 2649 tid = c->tid;
7cccd80b 2650 preempt_enable();
c016b0bd 2651
442b06bc 2652 if (likely(page == c->page)) {
ff12059e 2653 set_freepointer(s, object, c->freelist);
8a5ec0ba 2654
933393f5 2655 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2656 s->cpu_slab->freelist, s->cpu_slab->tid,
2657 c->freelist, tid,
2658 object, next_tid(tid)))) {
2659
2660 note_cmpxchg_failure("slab_free", s, tid);
2661 goto redo;
2662 }
84e554e6 2663 stat(s, FREE_FASTPATH);
894b8788 2664 } else
ff12059e 2665 __slab_free(s, page, x, addr);
894b8788 2666
894b8788
CL
2667}
2668
81819f0f
CL
2669void kmem_cache_free(struct kmem_cache *s, void *x)
2670{
b9ce5ef4
GC
2671 s = cache_from_obj(s, x);
2672 if (!s)
79576102 2673 return;
b9ce5ef4 2674 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2675 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2676}
2677EXPORT_SYMBOL(kmem_cache_free);
2678
81819f0f 2679/*
672bba3a
CL
2680 * Object placement in a slab is made very easy because we always start at
2681 * offset 0. If we tune the size of the object to the alignment then we can
2682 * get the required alignment by putting one properly sized object after
2683 * another.
81819f0f
CL
2684 *
2685 * Notice that the allocation order determines the sizes of the per cpu
2686 * caches. Each processor has always one slab available for allocations.
2687 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2688 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2689 * locking overhead.
81819f0f
CL
2690 */
2691
2692/*
2693 * Mininum / Maximum order of slab pages. This influences locking overhead
2694 * and slab fragmentation. A higher order reduces the number of partial slabs
2695 * and increases the number of allocations possible without having to
2696 * take the list_lock.
2697 */
2698static int slub_min_order;
114e9e89 2699static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2700static int slub_min_objects;
81819f0f
CL
2701
2702/*
2703 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2704 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2705 */
2706static int slub_nomerge;
2707
81819f0f
CL
2708/*
2709 * Calculate the order of allocation given an slab object size.
2710 *
672bba3a
CL
2711 * The order of allocation has significant impact on performance and other
2712 * system components. Generally order 0 allocations should be preferred since
2713 * order 0 does not cause fragmentation in the page allocator. Larger objects
2714 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2715 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2716 * would be wasted.
2717 *
2718 * In order to reach satisfactory performance we must ensure that a minimum
2719 * number of objects is in one slab. Otherwise we may generate too much
2720 * activity on the partial lists which requires taking the list_lock. This is
2721 * less a concern for large slabs though which are rarely used.
81819f0f 2722 *
672bba3a
CL
2723 * slub_max_order specifies the order where we begin to stop considering the
2724 * number of objects in a slab as critical. If we reach slub_max_order then
2725 * we try to keep the page order as low as possible. So we accept more waste
2726 * of space in favor of a small page order.
81819f0f 2727 *
672bba3a
CL
2728 * Higher order allocations also allow the placement of more objects in a
2729 * slab and thereby reduce object handling overhead. If the user has
2730 * requested a higher mininum order then we start with that one instead of
2731 * the smallest order which will fit the object.
81819f0f 2732 */
5e6d444e 2733static inline int slab_order(int size, int min_objects,
ab9a0f19 2734 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2735{
2736 int order;
2737 int rem;
6300ea75 2738 int min_order = slub_min_order;
81819f0f 2739
ab9a0f19 2740 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2741 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2742
6300ea75 2743 for (order = max(min_order,
5e6d444e
CL
2744 fls(min_objects * size - 1) - PAGE_SHIFT);
2745 order <= max_order; order++) {
81819f0f 2746
5e6d444e 2747 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2748
ab9a0f19 2749 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2750 continue;
2751
ab9a0f19 2752 rem = (slab_size - reserved) % size;
81819f0f 2753
5e6d444e 2754 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2755 break;
2756
2757 }
672bba3a 2758
81819f0f
CL
2759 return order;
2760}
2761
ab9a0f19 2762static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2763{
2764 int order;
2765 int min_objects;
2766 int fraction;
e8120ff1 2767 int max_objects;
5e6d444e
CL
2768
2769 /*
2770 * Attempt to find best configuration for a slab. This
2771 * works by first attempting to generate a layout with
2772 * the best configuration and backing off gradually.
2773 *
2774 * First we reduce the acceptable waste in a slab. Then
2775 * we reduce the minimum objects required in a slab.
2776 */
2777 min_objects = slub_min_objects;
9b2cd506
CL
2778 if (!min_objects)
2779 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2780 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2781 min_objects = min(min_objects, max_objects);
2782
5e6d444e 2783 while (min_objects > 1) {
c124f5b5 2784 fraction = 16;
5e6d444e
CL
2785 while (fraction >= 4) {
2786 order = slab_order(size, min_objects,
ab9a0f19 2787 slub_max_order, fraction, reserved);
5e6d444e
CL
2788 if (order <= slub_max_order)
2789 return order;
2790 fraction /= 2;
2791 }
5086c389 2792 min_objects--;
5e6d444e
CL
2793 }
2794
2795 /*
2796 * We were unable to place multiple objects in a slab. Now
2797 * lets see if we can place a single object there.
2798 */
ab9a0f19 2799 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2800 if (order <= slub_max_order)
2801 return order;
2802
2803 /*
2804 * Doh this slab cannot be placed using slub_max_order.
2805 */
ab9a0f19 2806 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2807 if (order < MAX_ORDER)
5e6d444e
CL
2808 return order;
2809 return -ENOSYS;
2810}
2811
5595cffc 2812static void
4053497d 2813init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2814{
2815 n->nr_partial = 0;
81819f0f
CL
2816 spin_lock_init(&n->list_lock);
2817 INIT_LIST_HEAD(&n->partial);
8ab1372f 2818#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2819 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2820 atomic_long_set(&n->total_objects, 0);
643b1138 2821 INIT_LIST_HEAD(&n->full);
8ab1372f 2822#endif
81819f0f
CL
2823}
2824
55136592 2825static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2826{
6c182dc0 2827 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2828 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2829
8a5ec0ba 2830 /*
d4d84fef
CM
2831 * Must align to double word boundary for the double cmpxchg
2832 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2833 */
d4d84fef
CM
2834 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2835 2 * sizeof(void *));
8a5ec0ba
CL
2836
2837 if (!s->cpu_slab)
2838 return 0;
2839
2840 init_kmem_cache_cpus(s);
4c93c355 2841
8a5ec0ba 2842 return 1;
4c93c355 2843}
4c93c355 2844
51df1142
CL
2845static struct kmem_cache *kmem_cache_node;
2846
81819f0f
CL
2847/*
2848 * No kmalloc_node yet so do it by hand. We know that this is the first
2849 * slab on the node for this slabcache. There are no concurrent accesses
2850 * possible.
2851 *
2852 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2853 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2854 * memory on a fresh node that has no slab structures yet.
81819f0f 2855 */
55136592 2856static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2857{
2858 struct page *page;
2859 struct kmem_cache_node *n;
2860
51df1142 2861 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2862
51df1142 2863 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2864
2865 BUG_ON(!page);
a2f92ee7
CL
2866 if (page_to_nid(page) != node) {
2867 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2868 "node %d\n", node);
2869 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2870 "in order to be able to continue\n");
2871 }
2872
81819f0f
CL
2873 n = page->freelist;
2874 BUG_ON(!n);
51df1142 2875 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2876 page->inuse = 1;
8cb0a506 2877 page->frozen = 0;
51df1142 2878 kmem_cache_node->node[node] = n;
8ab1372f 2879#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2880 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2881 init_tracking(kmem_cache_node, n);
8ab1372f 2882#endif
4053497d 2883 init_kmem_cache_node(n);
51df1142 2884 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2885
136333d1 2886 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2887}
2888
2889static void free_kmem_cache_nodes(struct kmem_cache *s)
2890{
2891 int node;
2892
f64dc58c 2893 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2894 struct kmem_cache_node *n = s->node[node];
51df1142 2895
73367bd8 2896 if (n)
51df1142
CL
2897 kmem_cache_free(kmem_cache_node, n);
2898
81819f0f
CL
2899 s->node[node] = NULL;
2900 }
2901}
2902
55136592 2903static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2904{
2905 int node;
81819f0f 2906
f64dc58c 2907 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2908 struct kmem_cache_node *n;
2909
73367bd8 2910 if (slab_state == DOWN) {
55136592 2911 early_kmem_cache_node_alloc(node);
73367bd8
AD
2912 continue;
2913 }
51df1142 2914 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2915 GFP_KERNEL, node);
81819f0f 2916
73367bd8
AD
2917 if (!n) {
2918 free_kmem_cache_nodes(s);
2919 return 0;
81819f0f 2920 }
73367bd8 2921
81819f0f 2922 s->node[node] = n;
4053497d 2923 init_kmem_cache_node(n);
81819f0f
CL
2924 }
2925 return 1;
2926}
81819f0f 2927
c0bdb232 2928static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2929{
2930 if (min < MIN_PARTIAL)
2931 min = MIN_PARTIAL;
2932 else if (min > MAX_PARTIAL)
2933 min = MAX_PARTIAL;
2934 s->min_partial = min;
2935}
2936
81819f0f
CL
2937/*
2938 * calculate_sizes() determines the order and the distribution of data within
2939 * a slab object.
2940 */
06b285dc 2941static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2942{
2943 unsigned long flags = s->flags;
3b0efdfa 2944 unsigned long size = s->object_size;
834f3d11 2945 int order;
81819f0f 2946
d8b42bf5
CL
2947 /*
2948 * Round up object size to the next word boundary. We can only
2949 * place the free pointer at word boundaries and this determines
2950 * the possible location of the free pointer.
2951 */
2952 size = ALIGN(size, sizeof(void *));
2953
2954#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2955 /*
2956 * Determine if we can poison the object itself. If the user of
2957 * the slab may touch the object after free or before allocation
2958 * then we should never poison the object itself.
2959 */
2960 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2961 !s->ctor)
81819f0f
CL
2962 s->flags |= __OBJECT_POISON;
2963 else
2964 s->flags &= ~__OBJECT_POISON;
2965
81819f0f
CL
2966
2967 /*
672bba3a 2968 * If we are Redzoning then check if there is some space between the
81819f0f 2969 * end of the object and the free pointer. If not then add an
672bba3a 2970 * additional word to have some bytes to store Redzone information.
81819f0f 2971 */
3b0efdfa 2972 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2973 size += sizeof(void *);
41ecc55b 2974#endif
81819f0f
CL
2975
2976 /*
672bba3a
CL
2977 * With that we have determined the number of bytes in actual use
2978 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2979 */
2980 s->inuse = size;
2981
2982 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2983 s->ctor)) {
81819f0f
CL
2984 /*
2985 * Relocate free pointer after the object if it is not
2986 * permitted to overwrite the first word of the object on
2987 * kmem_cache_free.
2988 *
2989 * This is the case if we do RCU, have a constructor or
2990 * destructor or are poisoning the objects.
2991 */
2992 s->offset = size;
2993 size += sizeof(void *);
2994 }
2995
c12b3c62 2996#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2997 if (flags & SLAB_STORE_USER)
2998 /*
2999 * Need to store information about allocs and frees after
3000 * the object.
3001 */
3002 size += 2 * sizeof(struct track);
3003
be7b3fbc 3004 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3005 /*
3006 * Add some empty padding so that we can catch
3007 * overwrites from earlier objects rather than let
3008 * tracking information or the free pointer be
0211a9c8 3009 * corrupted if a user writes before the start
81819f0f
CL
3010 * of the object.
3011 */
3012 size += sizeof(void *);
41ecc55b 3013#endif
672bba3a 3014
81819f0f
CL
3015 /*
3016 * SLUB stores one object immediately after another beginning from
3017 * offset 0. In order to align the objects we have to simply size
3018 * each object to conform to the alignment.
3019 */
45906855 3020 size = ALIGN(size, s->align);
81819f0f 3021 s->size = size;
06b285dc
CL
3022 if (forced_order >= 0)
3023 order = forced_order;
3024 else
ab9a0f19 3025 order = calculate_order(size, s->reserved);
81819f0f 3026
834f3d11 3027 if (order < 0)
81819f0f
CL
3028 return 0;
3029
b7a49f0d 3030 s->allocflags = 0;
834f3d11 3031 if (order)
b7a49f0d
CL
3032 s->allocflags |= __GFP_COMP;
3033
3034 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3035 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3036
3037 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3038 s->allocflags |= __GFP_RECLAIMABLE;
3039
81819f0f
CL
3040 /*
3041 * Determine the number of objects per slab
3042 */
ab9a0f19
LJ
3043 s->oo = oo_make(order, size, s->reserved);
3044 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3045 if (oo_objects(s->oo) > oo_objects(s->max))
3046 s->max = s->oo;
81819f0f 3047
834f3d11 3048 return !!oo_objects(s->oo);
81819f0f
CL
3049}
3050
8a13a4cc 3051static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3052{
8a13a4cc 3053 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3054 s->reserved = 0;
81819f0f 3055
da9a638c
LJ
3056 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3057 s->reserved = sizeof(struct rcu_head);
81819f0f 3058
06b285dc 3059 if (!calculate_sizes(s, -1))
81819f0f 3060 goto error;
3de47213
DR
3061 if (disable_higher_order_debug) {
3062 /*
3063 * Disable debugging flags that store metadata if the min slab
3064 * order increased.
3065 */
3b0efdfa 3066 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3067 s->flags &= ~DEBUG_METADATA_FLAGS;
3068 s->offset = 0;
3069 if (!calculate_sizes(s, -1))
3070 goto error;
3071 }
3072 }
81819f0f 3073
2565409f
HC
3074#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3075 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3076 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3077 /* Enable fast mode */
3078 s->flags |= __CMPXCHG_DOUBLE;
3079#endif
3080
3b89d7d8
DR
3081 /*
3082 * The larger the object size is, the more pages we want on the partial
3083 * list to avoid pounding the page allocator excessively.
3084 */
49e22585
CL
3085 set_min_partial(s, ilog2(s->size) / 2);
3086
3087 /*
3088 * cpu_partial determined the maximum number of objects kept in the
3089 * per cpu partial lists of a processor.
3090 *
3091 * Per cpu partial lists mainly contain slabs that just have one
3092 * object freed. If they are used for allocation then they can be
3093 * filled up again with minimal effort. The slab will never hit the
3094 * per node partial lists and therefore no locking will be required.
3095 *
3096 * This setting also determines
3097 *
3098 * A) The number of objects from per cpu partial slabs dumped to the
3099 * per node list when we reach the limit.
9f264904 3100 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3101 * per node list when we run out of per cpu objects. We only fetch 50%
3102 * to keep some capacity around for frees.
3103 */
345c905d 3104 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3105 s->cpu_partial = 0;
3106 else if (s->size >= PAGE_SIZE)
49e22585
CL
3107 s->cpu_partial = 2;
3108 else if (s->size >= 1024)
3109 s->cpu_partial = 6;
3110 else if (s->size >= 256)
3111 s->cpu_partial = 13;
3112 else
3113 s->cpu_partial = 30;
3114
81819f0f 3115#ifdef CONFIG_NUMA
e2cb96b7 3116 s->remote_node_defrag_ratio = 1000;
81819f0f 3117#endif
55136592 3118 if (!init_kmem_cache_nodes(s))
dfb4f096 3119 goto error;
81819f0f 3120
55136592 3121 if (alloc_kmem_cache_cpus(s))
278b1bb1 3122 return 0;
ff12059e 3123
4c93c355 3124 free_kmem_cache_nodes(s);
81819f0f
CL
3125error:
3126 if (flags & SLAB_PANIC)
3127 panic("Cannot create slab %s size=%lu realsize=%u "
3128 "order=%u offset=%u flags=%lx\n",
8a13a4cc 3129 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
81819f0f 3130 s->offset, flags);
278b1bb1 3131 return -EINVAL;
81819f0f 3132}
81819f0f 3133
33b12c38
CL
3134static void list_slab_objects(struct kmem_cache *s, struct page *page,
3135 const char *text)
3136{
3137#ifdef CONFIG_SLUB_DEBUG
3138 void *addr = page_address(page);
3139 void *p;
a5dd5c11
NK
3140 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3141 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3142 if (!map)
3143 return;
945cf2b6 3144 slab_err(s, page, text, s->name);
33b12c38 3145 slab_lock(page);
33b12c38 3146
5f80b13a 3147 get_map(s, page, map);
33b12c38
CL
3148 for_each_object(p, s, addr, page->objects) {
3149
3150 if (!test_bit(slab_index(p, s, addr), map)) {
3151 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3152 p, p - addr);
3153 print_tracking(s, p);
3154 }
3155 }
3156 slab_unlock(page);
bbd7d57b 3157 kfree(map);
33b12c38
CL
3158#endif
3159}
3160
81819f0f 3161/*
599870b1 3162 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3163 * This is called from kmem_cache_close(). We must be the last thread
3164 * using the cache and therefore we do not need to lock anymore.
81819f0f 3165 */
599870b1 3166static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3167{
81819f0f
CL
3168 struct page *page, *h;
3169
33b12c38 3170 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3171 if (!page->inuse) {
5cc6eee8 3172 remove_partial(n, page);
81819f0f 3173 discard_slab(s, page);
33b12c38
CL
3174 } else {
3175 list_slab_objects(s, page,
945cf2b6 3176 "Objects remaining in %s on kmem_cache_close()");
599870b1 3177 }
33b12c38 3178 }
81819f0f
CL
3179}
3180
3181/*
672bba3a 3182 * Release all resources used by a slab cache.
81819f0f 3183 */
0c710013 3184static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3185{
3186 int node;
3187
3188 flush_all(s);
81819f0f 3189 /* Attempt to free all objects */
f64dc58c 3190 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3191 struct kmem_cache_node *n = get_node(s, node);
3192
599870b1
CL
3193 free_partial(s, n);
3194 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3195 return 1;
3196 }
945cf2b6 3197 free_percpu(s->cpu_slab);
81819f0f
CL
3198 free_kmem_cache_nodes(s);
3199 return 0;
3200}
3201
945cf2b6 3202int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3203{
12c3667f 3204 int rc = kmem_cache_close(s);
945cf2b6 3205
5413dfba
GC
3206 if (!rc) {
3207 /*
3208 * We do the same lock strategy around sysfs_slab_add, see
3209 * __kmem_cache_create. Because this is pretty much the last
3210 * operation we do and the lock will be released shortly after
3211 * that in slab_common.c, we could just move sysfs_slab_remove
3212 * to a later point in common code. We should do that when we
3213 * have a common sysfs framework for all allocators.
3214 */
3215 mutex_unlock(&slab_mutex);
81819f0f 3216 sysfs_slab_remove(s);
5413dfba
GC
3217 mutex_lock(&slab_mutex);
3218 }
12c3667f
CL
3219
3220 return rc;
81819f0f 3221}
81819f0f
CL
3222
3223/********************************************************************
3224 * Kmalloc subsystem
3225 *******************************************************************/
3226
81819f0f
CL
3227static int __init setup_slub_min_order(char *str)
3228{
06428780 3229 get_option(&str, &slub_min_order);
81819f0f
CL
3230
3231 return 1;
3232}
3233
3234__setup("slub_min_order=", setup_slub_min_order);
3235
3236static int __init setup_slub_max_order(char *str)
3237{
06428780 3238 get_option(&str, &slub_max_order);
818cf590 3239 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3240
3241 return 1;
3242}
3243
3244__setup("slub_max_order=", setup_slub_max_order);
3245
3246static int __init setup_slub_min_objects(char *str)
3247{
06428780 3248 get_option(&str, &slub_min_objects);
81819f0f
CL
3249
3250 return 1;
3251}
3252
3253__setup("slub_min_objects=", setup_slub_min_objects);
3254
3255static int __init setup_slub_nomerge(char *str)
3256{
3257 slub_nomerge = 1;
3258 return 1;
3259}
3260
3261__setup("slub_nomerge", setup_slub_nomerge);
3262
81819f0f
CL
3263void *__kmalloc(size_t size, gfp_t flags)
3264{
aadb4bc4 3265 struct kmem_cache *s;
5b882be4 3266 void *ret;
81819f0f 3267
95a05b42 3268 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3269 return kmalloc_large(size, flags);
aadb4bc4 3270
2c59dd65 3271 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3272
3273 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3274 return s;
3275
2b847c3c 3276 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3277
ca2b84cb 3278 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3279
3280 return ret;
81819f0f
CL
3281}
3282EXPORT_SYMBOL(__kmalloc);
3283
5d1f57e4 3284#ifdef CONFIG_NUMA
f619cfe1
CL
3285static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3286{
b1eeab67 3287 struct page *page;
e4f7c0b4 3288 void *ptr = NULL;
f619cfe1 3289
d79923fa 3290 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
b1eeab67 3291 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3292 if (page)
e4f7c0b4
CM
3293 ptr = page_address(page);
3294
d56791b3 3295 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3296 return ptr;
f619cfe1
CL
3297}
3298
81819f0f
CL
3299void *__kmalloc_node(size_t size, gfp_t flags, int node)
3300{
aadb4bc4 3301 struct kmem_cache *s;
5b882be4 3302 void *ret;
81819f0f 3303
95a05b42 3304 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3305 ret = kmalloc_large_node(size, flags, node);
3306
ca2b84cb
EGM
3307 trace_kmalloc_node(_RET_IP_, ret,
3308 size, PAGE_SIZE << get_order(size),
3309 flags, node);
5b882be4
EGM
3310
3311 return ret;
3312 }
aadb4bc4 3313
2c59dd65 3314 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3315
3316 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3317 return s;
3318
2b847c3c 3319 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3320
ca2b84cb 3321 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3322
3323 return ret;
81819f0f
CL
3324}
3325EXPORT_SYMBOL(__kmalloc_node);
3326#endif
3327
3328size_t ksize(const void *object)
3329{
272c1d21 3330 struct page *page;
81819f0f 3331
ef8b4520 3332 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3333 return 0;
3334
294a80a8 3335 page = virt_to_head_page(object);
294a80a8 3336
76994412
PE
3337 if (unlikely(!PageSlab(page))) {
3338 WARN_ON(!PageCompound(page));
294a80a8 3339 return PAGE_SIZE << compound_order(page);
76994412 3340 }
81819f0f 3341
1b4f59e3 3342 return slab_ksize(page->slab_cache);
81819f0f 3343}
b1aabecd 3344EXPORT_SYMBOL(ksize);
81819f0f 3345
d18a90dd
BG
3346#ifdef CONFIG_SLUB_DEBUG
3347bool verify_mem_not_deleted(const void *x)
3348{
3349 struct page *page;
3350 void *object = (void *)x;
3351 unsigned long flags;
3352 bool rv;
3353
3354 if (unlikely(ZERO_OR_NULL_PTR(x)))
3355 return false;
3356
3357 local_irq_save(flags);
3358
3359 page = virt_to_head_page(x);
3360 if (unlikely(!PageSlab(page))) {
3361 /* maybe it was from stack? */
3362 rv = true;
3363 goto out_unlock;
3364 }
3365
3366 slab_lock(page);
1b4f59e3
GC
3367 if (on_freelist(page->slab_cache, page, object)) {
3368 object_err(page->slab_cache, page, object, "Object is on free-list");
d18a90dd
BG
3369 rv = false;
3370 } else {
3371 rv = true;
3372 }
3373 slab_unlock(page);
3374
3375out_unlock:
3376 local_irq_restore(flags);
3377 return rv;
3378}
3379EXPORT_SYMBOL(verify_mem_not_deleted);
3380#endif
3381
81819f0f
CL
3382void kfree(const void *x)
3383{
81819f0f 3384 struct page *page;
5bb983b0 3385 void *object = (void *)x;
81819f0f 3386
2121db74
PE
3387 trace_kfree(_RET_IP_, x);
3388
2408c550 3389 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3390 return;
3391
b49af68f 3392 page = virt_to_head_page(x);
aadb4bc4 3393 if (unlikely(!PageSlab(page))) {
0937502a 3394 BUG_ON(!PageCompound(page));
d56791b3 3395 kfree_hook(x);
d79923fa 3396 __free_memcg_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3397 return;
3398 }
1b4f59e3 3399 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3400}
3401EXPORT_SYMBOL(kfree);
3402
2086d26a 3403/*
672bba3a
CL
3404 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3405 * the remaining slabs by the number of items in use. The slabs with the
3406 * most items in use come first. New allocations will then fill those up
3407 * and thus they can be removed from the partial lists.
3408 *
3409 * The slabs with the least items are placed last. This results in them
3410 * being allocated from last increasing the chance that the last objects
3411 * are freed in them.
2086d26a
CL
3412 */
3413int kmem_cache_shrink(struct kmem_cache *s)
3414{
3415 int node;
3416 int i;
3417 struct kmem_cache_node *n;
3418 struct page *page;
3419 struct page *t;
205ab99d 3420 int objects = oo_objects(s->max);
2086d26a 3421 struct list_head *slabs_by_inuse =
834f3d11 3422 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3423 unsigned long flags;
3424
3425 if (!slabs_by_inuse)
3426 return -ENOMEM;
3427
3428 flush_all(s);
f64dc58c 3429 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3430 n = get_node(s, node);
3431
3432 if (!n->nr_partial)
3433 continue;
3434
834f3d11 3435 for (i = 0; i < objects; i++)
2086d26a
CL
3436 INIT_LIST_HEAD(slabs_by_inuse + i);
3437
3438 spin_lock_irqsave(&n->list_lock, flags);
3439
3440 /*
672bba3a 3441 * Build lists indexed by the items in use in each slab.
2086d26a 3442 *
672bba3a
CL
3443 * Note that concurrent frees may occur while we hold the
3444 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3445 */
3446 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3447 list_move(&page->lru, slabs_by_inuse + page->inuse);
3448 if (!page->inuse)
3449 n->nr_partial--;
2086d26a
CL
3450 }
3451
2086d26a 3452 /*
672bba3a
CL
3453 * Rebuild the partial list with the slabs filled up most
3454 * first and the least used slabs at the end.
2086d26a 3455 */
69cb8e6b 3456 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3457 list_splice(slabs_by_inuse + i, n->partial.prev);
3458
2086d26a 3459 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3460
3461 /* Release empty slabs */
3462 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3463 discard_slab(s, page);
2086d26a
CL
3464 }
3465
3466 kfree(slabs_by_inuse);
3467 return 0;
3468}
3469EXPORT_SYMBOL(kmem_cache_shrink);
3470
b9049e23
YG
3471static int slab_mem_going_offline_callback(void *arg)
3472{
3473 struct kmem_cache *s;
3474
18004c5d 3475 mutex_lock(&slab_mutex);
b9049e23
YG
3476 list_for_each_entry(s, &slab_caches, list)
3477 kmem_cache_shrink(s);
18004c5d 3478 mutex_unlock(&slab_mutex);
b9049e23
YG
3479
3480 return 0;
3481}
3482
3483static void slab_mem_offline_callback(void *arg)
3484{
3485 struct kmem_cache_node *n;
3486 struct kmem_cache *s;
3487 struct memory_notify *marg = arg;
3488 int offline_node;
3489
b9d5ab25 3490 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3491
3492 /*
3493 * If the node still has available memory. we need kmem_cache_node
3494 * for it yet.
3495 */
3496 if (offline_node < 0)
3497 return;
3498
18004c5d 3499 mutex_lock(&slab_mutex);
b9049e23
YG
3500 list_for_each_entry(s, &slab_caches, list) {
3501 n = get_node(s, offline_node);
3502 if (n) {
3503 /*
3504 * if n->nr_slabs > 0, slabs still exist on the node
3505 * that is going down. We were unable to free them,
c9404c9c 3506 * and offline_pages() function shouldn't call this
b9049e23
YG
3507 * callback. So, we must fail.
3508 */
0f389ec6 3509 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3510
3511 s->node[offline_node] = NULL;
8de66a0c 3512 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3513 }
3514 }
18004c5d 3515 mutex_unlock(&slab_mutex);
b9049e23
YG
3516}
3517
3518static int slab_mem_going_online_callback(void *arg)
3519{
3520 struct kmem_cache_node *n;
3521 struct kmem_cache *s;
3522 struct memory_notify *marg = arg;
b9d5ab25 3523 int nid = marg->status_change_nid_normal;
b9049e23
YG
3524 int ret = 0;
3525
3526 /*
3527 * If the node's memory is already available, then kmem_cache_node is
3528 * already created. Nothing to do.
3529 */
3530 if (nid < 0)
3531 return 0;
3532
3533 /*
0121c619 3534 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3535 * allocate a kmem_cache_node structure in order to bring the node
3536 * online.
3537 */
18004c5d 3538 mutex_lock(&slab_mutex);
b9049e23
YG
3539 list_for_each_entry(s, &slab_caches, list) {
3540 /*
3541 * XXX: kmem_cache_alloc_node will fallback to other nodes
3542 * since memory is not yet available from the node that
3543 * is brought up.
3544 */
8de66a0c 3545 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3546 if (!n) {
3547 ret = -ENOMEM;
3548 goto out;
3549 }
4053497d 3550 init_kmem_cache_node(n);
b9049e23
YG
3551 s->node[nid] = n;
3552 }
3553out:
18004c5d 3554 mutex_unlock(&slab_mutex);
b9049e23
YG
3555 return ret;
3556}
3557
3558static int slab_memory_callback(struct notifier_block *self,
3559 unsigned long action, void *arg)
3560{
3561 int ret = 0;
3562
3563 switch (action) {
3564 case MEM_GOING_ONLINE:
3565 ret = slab_mem_going_online_callback(arg);
3566 break;
3567 case MEM_GOING_OFFLINE:
3568 ret = slab_mem_going_offline_callback(arg);
3569 break;
3570 case MEM_OFFLINE:
3571 case MEM_CANCEL_ONLINE:
3572 slab_mem_offline_callback(arg);
3573 break;
3574 case MEM_ONLINE:
3575 case MEM_CANCEL_OFFLINE:
3576 break;
3577 }
dc19f9db
KH
3578 if (ret)
3579 ret = notifier_from_errno(ret);
3580 else
3581 ret = NOTIFY_OK;
b9049e23
YG
3582 return ret;
3583}
3584
3ac38faa
AM
3585static struct notifier_block slab_memory_callback_nb = {
3586 .notifier_call = slab_memory_callback,
3587 .priority = SLAB_CALLBACK_PRI,
3588};
b9049e23 3589
81819f0f
CL
3590/********************************************************************
3591 * Basic setup of slabs
3592 *******************************************************************/
3593
51df1142
CL
3594/*
3595 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3596 * the page allocator. Allocate them properly then fix up the pointers
3597 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3598 */
3599
dffb4d60 3600static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3601{
3602 int node;
dffb4d60 3603 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
51df1142 3604
dffb4d60 3605 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3606
7d557b3c
GC
3607 /*
3608 * This runs very early, and only the boot processor is supposed to be
3609 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3610 * IPIs around.
3611 */
3612 __flush_cpu_slab(s, smp_processor_id());
51df1142
CL
3613 for_each_node_state(node, N_NORMAL_MEMORY) {
3614 struct kmem_cache_node *n = get_node(s, node);
3615 struct page *p;
3616
3617 if (n) {
3618 list_for_each_entry(p, &n->partial, lru)
1b4f59e3 3619 p->slab_cache = s;
51df1142 3620
607bf324 3621#ifdef CONFIG_SLUB_DEBUG
51df1142 3622 list_for_each_entry(p, &n->full, lru)
1b4f59e3 3623 p->slab_cache = s;
51df1142
CL
3624#endif
3625 }
3626 }
dffb4d60
CL
3627 list_add(&s->list, &slab_caches);
3628 return s;
51df1142
CL
3629}
3630
81819f0f
CL
3631void __init kmem_cache_init(void)
3632{
dffb4d60
CL
3633 static __initdata struct kmem_cache boot_kmem_cache,
3634 boot_kmem_cache_node;
51df1142 3635
fc8d8620
SG
3636 if (debug_guardpage_minorder())
3637 slub_max_order = 0;
3638
dffb4d60
CL
3639 kmem_cache_node = &boot_kmem_cache_node;
3640 kmem_cache = &boot_kmem_cache;
51df1142 3641
dffb4d60
CL
3642 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3643 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3644
3ac38faa 3645 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3646
3647 /* Able to allocate the per node structures */
3648 slab_state = PARTIAL;
3649
dffb4d60
CL
3650 create_boot_cache(kmem_cache, "kmem_cache",
3651 offsetof(struct kmem_cache, node) +
3652 nr_node_ids * sizeof(struct kmem_cache_node *),
3653 SLAB_HWCACHE_ALIGN);
8a13a4cc 3654
dffb4d60 3655 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3656
51df1142
CL
3657 /*
3658 * Allocate kmem_cache_node properly from the kmem_cache slab.
3659 * kmem_cache_node is separately allocated so no need to
3660 * update any list pointers.
3661 */
dffb4d60 3662 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3663
3664 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3665 create_kmalloc_caches(0);
81819f0f
CL
3666
3667#ifdef CONFIG_SMP
3668 register_cpu_notifier(&slab_notifier);
9dfc6e68 3669#endif
81819f0f 3670
3adbefee 3671 printk(KERN_INFO
f97d5f63 3672 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0 3673 " CPUs=%d, Nodes=%d\n",
f97d5f63 3674 cache_line_size(),
81819f0f
CL
3675 slub_min_order, slub_max_order, slub_min_objects,
3676 nr_cpu_ids, nr_node_ids);
3677}
3678
7e85ee0c
PE
3679void __init kmem_cache_init_late(void)
3680{
7e85ee0c
PE
3681}
3682
81819f0f
CL
3683/*
3684 * Find a mergeable slab cache
3685 */
3686static int slab_unmergeable(struct kmem_cache *s)
3687{
3688 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3689 return 1;
3690
c59def9f 3691 if (s->ctor)
81819f0f
CL
3692 return 1;
3693
8ffa6875
CL
3694 /*
3695 * We may have set a slab to be unmergeable during bootstrap.
3696 */
3697 if (s->refcount < 0)
3698 return 1;
3699
81819f0f
CL
3700 return 0;
3701}
3702
2633d7a0 3703static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
ba0268a8 3704 size_t align, unsigned long flags, const char *name,
51cc5068 3705 void (*ctor)(void *))
81819f0f 3706{
5b95a4ac 3707 struct kmem_cache *s;
81819f0f
CL
3708
3709 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3710 return NULL;
3711
c59def9f 3712 if (ctor)
81819f0f
CL
3713 return NULL;
3714
3715 size = ALIGN(size, sizeof(void *));
3716 align = calculate_alignment(flags, align, size);
3717 size = ALIGN(size, align);
ba0268a8 3718 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3719
5b95a4ac 3720 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3721 if (slab_unmergeable(s))
3722 continue;
3723
3724 if (size > s->size)
3725 continue;
3726
ba0268a8 3727 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3728 continue;
3729 /*
3730 * Check if alignment is compatible.
3731 * Courtesy of Adrian Drzewiecki
3732 */
06428780 3733 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3734 continue;
3735
3736 if (s->size - size >= sizeof(void *))
3737 continue;
3738
2633d7a0
GC
3739 if (!cache_match_memcg(s, memcg))
3740 continue;
3741
81819f0f
CL
3742 return s;
3743 }
3744 return NULL;
3745}
3746
2633d7a0
GC
3747struct kmem_cache *
3748__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3749 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3750{
3751 struct kmem_cache *s;
3752
2633d7a0 3753 s = find_mergeable(memcg, size, align, flags, name, ctor);
81819f0f
CL
3754 if (s) {
3755 s->refcount++;
3756 /*
3757 * Adjust the object sizes so that we clear
3758 * the complete object on kzalloc.
3759 */
3b0efdfa 3760 s->object_size = max(s->object_size, (int)size);
81819f0f 3761 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3762
7b8f3b66 3763 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3764 s->refcount--;
cbb79694 3765 s = NULL;
7b8f3b66 3766 }
a0e1d1be 3767 }
6446faa2 3768
cbb79694
CL
3769 return s;
3770}
84c1cf62 3771
8a13a4cc 3772int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3773{
aac3a166
PE
3774 int err;
3775
3776 err = kmem_cache_open(s, flags);
3777 if (err)
3778 return err;
20cea968 3779
45530c44
CL
3780 /* Mutex is not taken during early boot */
3781 if (slab_state <= UP)
3782 return 0;
3783
107dab5c 3784 memcg_propagate_slab_attrs(s);
aac3a166
PE
3785 mutex_unlock(&slab_mutex);
3786 err = sysfs_slab_add(s);
3787 mutex_lock(&slab_mutex);
20cea968 3788
aac3a166
PE
3789 if (err)
3790 kmem_cache_close(s);
20cea968 3791
aac3a166 3792 return err;
81819f0f 3793}
81819f0f 3794
81819f0f 3795#ifdef CONFIG_SMP
81819f0f 3796/*
672bba3a
CL
3797 * Use the cpu notifier to insure that the cpu slabs are flushed when
3798 * necessary.
81819f0f 3799 */
0db0628d 3800static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3801 unsigned long action, void *hcpu)
3802{
3803 long cpu = (long)hcpu;
5b95a4ac
CL
3804 struct kmem_cache *s;
3805 unsigned long flags;
81819f0f
CL
3806
3807 switch (action) {
3808 case CPU_UP_CANCELED:
8bb78442 3809 case CPU_UP_CANCELED_FROZEN:
81819f0f 3810 case CPU_DEAD:
8bb78442 3811 case CPU_DEAD_FROZEN:
18004c5d 3812 mutex_lock(&slab_mutex);
5b95a4ac
CL
3813 list_for_each_entry(s, &slab_caches, list) {
3814 local_irq_save(flags);
3815 __flush_cpu_slab(s, cpu);
3816 local_irq_restore(flags);
3817 }
18004c5d 3818 mutex_unlock(&slab_mutex);
81819f0f
CL
3819 break;
3820 default:
3821 break;
3822 }
3823 return NOTIFY_OK;
3824}
3825
0db0628d 3826static struct notifier_block slab_notifier = {
3adbefee 3827 .notifier_call = slab_cpuup_callback
06428780 3828};
81819f0f
CL
3829
3830#endif
3831
ce71e27c 3832void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3833{
aadb4bc4 3834 struct kmem_cache *s;
94b528d0 3835 void *ret;
aadb4bc4 3836
95a05b42 3837 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3838 return kmalloc_large(size, gfpflags);
3839
2c59dd65 3840 s = kmalloc_slab(size, gfpflags);
81819f0f 3841
2408c550 3842 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3843 return s;
81819f0f 3844
2b847c3c 3845 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3846
25985edc 3847 /* Honor the call site pointer we received. */
ca2b84cb 3848 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3849
3850 return ret;
81819f0f
CL
3851}
3852
5d1f57e4 3853#ifdef CONFIG_NUMA
81819f0f 3854void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3855 int node, unsigned long caller)
81819f0f 3856{
aadb4bc4 3857 struct kmem_cache *s;
94b528d0 3858 void *ret;
aadb4bc4 3859
95a05b42 3860 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3861 ret = kmalloc_large_node(size, gfpflags, node);
3862
3863 trace_kmalloc_node(caller, ret,
3864 size, PAGE_SIZE << get_order(size),
3865 gfpflags, node);
3866
3867 return ret;
3868 }
eada35ef 3869
2c59dd65 3870 s = kmalloc_slab(size, gfpflags);
81819f0f 3871
2408c550 3872 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3873 return s;
81819f0f 3874
2b847c3c 3875 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3876
25985edc 3877 /* Honor the call site pointer we received. */
ca2b84cb 3878 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3879
3880 return ret;
81819f0f 3881}
5d1f57e4 3882#endif
81819f0f 3883
ab4d5ed5 3884#ifdef CONFIG_SYSFS
205ab99d
CL
3885static int count_inuse(struct page *page)
3886{
3887 return page->inuse;
3888}
3889
3890static int count_total(struct page *page)
3891{
3892 return page->objects;
3893}
ab4d5ed5 3894#endif
205ab99d 3895
ab4d5ed5 3896#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3897static int validate_slab(struct kmem_cache *s, struct page *page,
3898 unsigned long *map)
53e15af0
CL
3899{
3900 void *p;
a973e9dd 3901 void *addr = page_address(page);
53e15af0
CL
3902
3903 if (!check_slab(s, page) ||
3904 !on_freelist(s, page, NULL))
3905 return 0;
3906
3907 /* Now we know that a valid freelist exists */
39b26464 3908 bitmap_zero(map, page->objects);
53e15af0 3909
5f80b13a
CL
3910 get_map(s, page, map);
3911 for_each_object(p, s, addr, page->objects) {
3912 if (test_bit(slab_index(p, s, addr), map))
3913 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3914 return 0;
53e15af0
CL
3915 }
3916
224a88be 3917 for_each_object(p, s, addr, page->objects)
7656c72b 3918 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3919 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3920 return 0;
3921 return 1;
3922}
3923
434e245d
CL
3924static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3925 unsigned long *map)
53e15af0 3926{
881db7fb
CL
3927 slab_lock(page);
3928 validate_slab(s, page, map);
3929 slab_unlock(page);
53e15af0
CL
3930}
3931
434e245d
CL
3932static int validate_slab_node(struct kmem_cache *s,
3933 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3934{
3935 unsigned long count = 0;
3936 struct page *page;
3937 unsigned long flags;
3938
3939 spin_lock_irqsave(&n->list_lock, flags);
3940
3941 list_for_each_entry(page, &n->partial, lru) {
434e245d 3942 validate_slab_slab(s, page, map);
53e15af0
CL
3943 count++;
3944 }
3945 if (count != n->nr_partial)
3946 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3947 "counter=%ld\n", s->name, count, n->nr_partial);
3948
3949 if (!(s->flags & SLAB_STORE_USER))
3950 goto out;
3951
3952 list_for_each_entry(page, &n->full, lru) {
434e245d 3953 validate_slab_slab(s, page, map);
53e15af0
CL
3954 count++;
3955 }
3956 if (count != atomic_long_read(&n->nr_slabs))
3957 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3958 "counter=%ld\n", s->name, count,
3959 atomic_long_read(&n->nr_slabs));
3960
3961out:
3962 spin_unlock_irqrestore(&n->list_lock, flags);
3963 return count;
3964}
3965
434e245d 3966static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3967{
3968 int node;
3969 unsigned long count = 0;
205ab99d 3970 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3971 sizeof(unsigned long), GFP_KERNEL);
3972
3973 if (!map)
3974 return -ENOMEM;
53e15af0
CL
3975
3976 flush_all(s);
f64dc58c 3977 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3978 struct kmem_cache_node *n = get_node(s, node);
3979
434e245d 3980 count += validate_slab_node(s, n, map);
53e15af0 3981 }
434e245d 3982 kfree(map);
53e15af0
CL
3983 return count;
3984}
88a420e4 3985/*
672bba3a 3986 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3987 * and freed.
3988 */
3989
3990struct location {
3991 unsigned long count;
ce71e27c 3992 unsigned long addr;
45edfa58
CL
3993 long long sum_time;
3994 long min_time;
3995 long max_time;
3996 long min_pid;
3997 long max_pid;
174596a0 3998 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3999 nodemask_t nodes;
88a420e4
CL
4000};
4001
4002struct loc_track {
4003 unsigned long max;
4004 unsigned long count;
4005 struct location *loc;
4006};
4007
4008static void free_loc_track(struct loc_track *t)
4009{
4010 if (t->max)
4011 free_pages((unsigned long)t->loc,
4012 get_order(sizeof(struct location) * t->max));
4013}
4014
68dff6a9 4015static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4016{
4017 struct location *l;
4018 int order;
4019
88a420e4
CL
4020 order = get_order(sizeof(struct location) * max);
4021
68dff6a9 4022 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4023 if (!l)
4024 return 0;
4025
4026 if (t->count) {
4027 memcpy(l, t->loc, sizeof(struct location) * t->count);
4028 free_loc_track(t);
4029 }
4030 t->max = max;
4031 t->loc = l;
4032 return 1;
4033}
4034
4035static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4036 const struct track *track)
88a420e4
CL
4037{
4038 long start, end, pos;
4039 struct location *l;
ce71e27c 4040 unsigned long caddr;
45edfa58 4041 unsigned long age = jiffies - track->when;
88a420e4
CL
4042
4043 start = -1;
4044 end = t->count;
4045
4046 for ( ; ; ) {
4047 pos = start + (end - start + 1) / 2;
4048
4049 /*
4050 * There is nothing at "end". If we end up there
4051 * we need to add something to before end.
4052 */
4053 if (pos == end)
4054 break;
4055
4056 caddr = t->loc[pos].addr;
45edfa58
CL
4057 if (track->addr == caddr) {
4058
4059 l = &t->loc[pos];
4060 l->count++;
4061 if (track->when) {
4062 l->sum_time += age;
4063 if (age < l->min_time)
4064 l->min_time = age;
4065 if (age > l->max_time)
4066 l->max_time = age;
4067
4068 if (track->pid < l->min_pid)
4069 l->min_pid = track->pid;
4070 if (track->pid > l->max_pid)
4071 l->max_pid = track->pid;
4072
174596a0
RR
4073 cpumask_set_cpu(track->cpu,
4074 to_cpumask(l->cpus));
45edfa58
CL
4075 }
4076 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4077 return 1;
4078 }
4079
45edfa58 4080 if (track->addr < caddr)
88a420e4
CL
4081 end = pos;
4082 else
4083 start = pos;
4084 }
4085
4086 /*
672bba3a 4087 * Not found. Insert new tracking element.
88a420e4 4088 */
68dff6a9 4089 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4090 return 0;
4091
4092 l = t->loc + pos;
4093 if (pos < t->count)
4094 memmove(l + 1, l,
4095 (t->count - pos) * sizeof(struct location));
4096 t->count++;
4097 l->count = 1;
45edfa58
CL
4098 l->addr = track->addr;
4099 l->sum_time = age;
4100 l->min_time = age;
4101 l->max_time = age;
4102 l->min_pid = track->pid;
4103 l->max_pid = track->pid;
174596a0
RR
4104 cpumask_clear(to_cpumask(l->cpus));
4105 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4106 nodes_clear(l->nodes);
4107 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4108 return 1;
4109}
4110
4111static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4112 struct page *page, enum track_item alloc,
a5dd5c11 4113 unsigned long *map)
88a420e4 4114{
a973e9dd 4115 void *addr = page_address(page);
88a420e4
CL
4116 void *p;
4117
39b26464 4118 bitmap_zero(map, page->objects);
5f80b13a 4119 get_map(s, page, map);
88a420e4 4120
224a88be 4121 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4122 if (!test_bit(slab_index(p, s, addr), map))
4123 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4124}
4125
4126static int list_locations(struct kmem_cache *s, char *buf,
4127 enum track_item alloc)
4128{
e374d483 4129 int len = 0;
88a420e4 4130 unsigned long i;
68dff6a9 4131 struct loc_track t = { 0, 0, NULL };
88a420e4 4132 int node;
bbd7d57b
ED
4133 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4134 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4135
bbd7d57b
ED
4136 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4137 GFP_TEMPORARY)) {
4138 kfree(map);
68dff6a9 4139 return sprintf(buf, "Out of memory\n");
bbd7d57b 4140 }
88a420e4
CL
4141 /* Push back cpu slabs */
4142 flush_all(s);
4143
f64dc58c 4144 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4145 struct kmem_cache_node *n = get_node(s, node);
4146 unsigned long flags;
4147 struct page *page;
4148
9e86943b 4149 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4150 continue;
4151
4152 spin_lock_irqsave(&n->list_lock, flags);
4153 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4154 process_slab(&t, s, page, alloc, map);
88a420e4 4155 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4156 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4157 spin_unlock_irqrestore(&n->list_lock, flags);
4158 }
4159
4160 for (i = 0; i < t.count; i++) {
45edfa58 4161 struct location *l = &t.loc[i];
88a420e4 4162
9c246247 4163 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4164 break;
e374d483 4165 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4166
4167 if (l->addr)
62c70bce 4168 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4169 else
e374d483 4170 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4171
4172 if (l->sum_time != l->min_time) {
e374d483 4173 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4174 l->min_time,
4175 (long)div_u64(l->sum_time, l->count),
4176 l->max_time);
45edfa58 4177 } else
e374d483 4178 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4179 l->min_time);
4180
4181 if (l->min_pid != l->max_pid)
e374d483 4182 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4183 l->min_pid, l->max_pid);
4184 else
e374d483 4185 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4186 l->min_pid);
4187
174596a0
RR
4188 if (num_online_cpus() > 1 &&
4189 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4190 len < PAGE_SIZE - 60) {
4191 len += sprintf(buf + len, " cpus=");
4192 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4193 to_cpumask(l->cpus));
45edfa58
CL
4194 }
4195
62bc62a8 4196 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4197 len < PAGE_SIZE - 60) {
4198 len += sprintf(buf + len, " nodes=");
4199 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4200 l->nodes);
4201 }
4202
e374d483 4203 len += sprintf(buf + len, "\n");
88a420e4
CL
4204 }
4205
4206 free_loc_track(&t);
bbd7d57b 4207 kfree(map);
88a420e4 4208 if (!t.count)
e374d483
HH
4209 len += sprintf(buf, "No data\n");
4210 return len;
88a420e4 4211}
ab4d5ed5 4212#endif
88a420e4 4213
a5a84755
CL
4214#ifdef SLUB_RESILIENCY_TEST
4215static void resiliency_test(void)
4216{
4217 u8 *p;
4218
95a05b42 4219 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755
CL
4220
4221 printk(KERN_ERR "SLUB resiliency testing\n");
4222 printk(KERN_ERR "-----------------------\n");
4223 printk(KERN_ERR "A. Corruption after allocation\n");
4224
4225 p = kzalloc(16, GFP_KERNEL);
4226 p[16] = 0x12;
4227 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4228 " 0x12->0x%p\n\n", p + 16);
4229
4230 validate_slab_cache(kmalloc_caches[4]);
4231
4232 /* Hmmm... The next two are dangerous */
4233 p = kzalloc(32, GFP_KERNEL);
4234 p[32 + sizeof(void *)] = 0x34;
4235 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4236 " 0x34 -> -0x%p\n", p);
4237 printk(KERN_ERR
4238 "If allocated object is overwritten then not detectable\n\n");
4239
4240 validate_slab_cache(kmalloc_caches[5]);
4241 p = kzalloc(64, GFP_KERNEL);
4242 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4243 *p = 0x56;
4244 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4245 p);
4246 printk(KERN_ERR
4247 "If allocated object is overwritten then not detectable\n\n");
4248 validate_slab_cache(kmalloc_caches[6]);
4249
4250 printk(KERN_ERR "\nB. Corruption after free\n");
4251 p = kzalloc(128, GFP_KERNEL);
4252 kfree(p);
4253 *p = 0x78;
4254 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4255 validate_slab_cache(kmalloc_caches[7]);
4256
4257 p = kzalloc(256, GFP_KERNEL);
4258 kfree(p);
4259 p[50] = 0x9a;
4260 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4261 p);
4262 validate_slab_cache(kmalloc_caches[8]);
4263
4264 p = kzalloc(512, GFP_KERNEL);
4265 kfree(p);
4266 p[512] = 0xab;
4267 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4268 validate_slab_cache(kmalloc_caches[9]);
4269}
4270#else
4271#ifdef CONFIG_SYSFS
4272static void resiliency_test(void) {};
4273#endif
4274#endif
4275
ab4d5ed5 4276#ifdef CONFIG_SYSFS
81819f0f 4277enum slab_stat_type {
205ab99d
CL
4278 SL_ALL, /* All slabs */
4279 SL_PARTIAL, /* Only partially allocated slabs */
4280 SL_CPU, /* Only slabs used for cpu caches */
4281 SL_OBJECTS, /* Determine allocated objects not slabs */
4282 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4283};
4284
205ab99d 4285#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4286#define SO_PARTIAL (1 << SL_PARTIAL)
4287#define SO_CPU (1 << SL_CPU)
4288#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4289#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4290
62e5c4b4
CG
4291static ssize_t show_slab_objects(struct kmem_cache *s,
4292 char *buf, unsigned long flags)
81819f0f
CL
4293{
4294 unsigned long total = 0;
81819f0f
CL
4295 int node;
4296 int x;
4297 unsigned long *nodes;
4298 unsigned long *per_cpu;
4299
4300 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4301 if (!nodes)
4302 return -ENOMEM;
81819f0f
CL
4303 per_cpu = nodes + nr_node_ids;
4304
205ab99d
CL
4305 if (flags & SO_CPU) {
4306 int cpu;
81819f0f 4307
205ab99d 4308 for_each_possible_cpu(cpu) {
9dfc6e68 4309 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4310 int node;
49e22585 4311 struct page *page;
dfb4f096 4312
bc6697d8 4313 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4314 if (!page)
4315 continue;
205ab99d 4316
ec3ab083
CL
4317 node = page_to_nid(page);
4318 if (flags & SO_TOTAL)
4319 x = page->objects;
4320 else if (flags & SO_OBJECTS)
4321 x = page->inuse;
4322 else
4323 x = 1;
49e22585 4324
ec3ab083
CL
4325 total += x;
4326 nodes[node] += x;
4327
4328 page = ACCESS_ONCE(c->partial);
49e22585
CL
4329 if (page) {
4330 x = page->pobjects;
bc6697d8
ED
4331 total += x;
4332 nodes[node] += x;
49e22585 4333 }
ec3ab083 4334
bc6697d8 4335 per_cpu[node]++;
81819f0f
CL
4336 }
4337 }
4338
04d94879 4339 lock_memory_hotplug();
ab4d5ed5 4340#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4341 if (flags & SO_ALL) {
4342 for_each_node_state(node, N_NORMAL_MEMORY) {
4343 struct kmem_cache_node *n = get_node(s, node);
4344
4345 if (flags & SO_TOTAL)
4346 x = atomic_long_read(&n->total_objects);
4347 else if (flags & SO_OBJECTS)
4348 x = atomic_long_read(&n->total_objects) -
4349 count_partial(n, count_free);
81819f0f 4350
81819f0f 4351 else
205ab99d 4352 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4353 total += x;
4354 nodes[node] += x;
4355 }
4356
ab4d5ed5
CL
4357 } else
4358#endif
4359 if (flags & SO_PARTIAL) {
205ab99d
CL
4360 for_each_node_state(node, N_NORMAL_MEMORY) {
4361 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4362
205ab99d
CL
4363 if (flags & SO_TOTAL)
4364 x = count_partial(n, count_total);
4365 else if (flags & SO_OBJECTS)
4366 x = count_partial(n, count_inuse);
81819f0f 4367 else
205ab99d 4368 x = n->nr_partial;
81819f0f
CL
4369 total += x;
4370 nodes[node] += x;
4371 }
4372 }
81819f0f
CL
4373 x = sprintf(buf, "%lu", total);
4374#ifdef CONFIG_NUMA
f64dc58c 4375 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4376 if (nodes[node])
4377 x += sprintf(buf + x, " N%d=%lu",
4378 node, nodes[node]);
4379#endif
04d94879 4380 unlock_memory_hotplug();
81819f0f
CL
4381 kfree(nodes);
4382 return x + sprintf(buf + x, "\n");
4383}
4384
ab4d5ed5 4385#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4386static int any_slab_objects(struct kmem_cache *s)
4387{
4388 int node;
81819f0f 4389
dfb4f096 4390 for_each_online_node(node) {
81819f0f
CL
4391 struct kmem_cache_node *n = get_node(s, node);
4392
dfb4f096
CL
4393 if (!n)
4394 continue;
4395
4ea33e2d 4396 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4397 return 1;
4398 }
4399 return 0;
4400}
ab4d5ed5 4401#endif
81819f0f
CL
4402
4403#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4404#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4405
4406struct slab_attribute {
4407 struct attribute attr;
4408 ssize_t (*show)(struct kmem_cache *s, char *buf);
4409 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4410};
4411
4412#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4413 static struct slab_attribute _name##_attr = \
4414 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4415
4416#define SLAB_ATTR(_name) \
4417 static struct slab_attribute _name##_attr = \
ab067e99 4418 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4419
81819f0f
CL
4420static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4421{
4422 return sprintf(buf, "%d\n", s->size);
4423}
4424SLAB_ATTR_RO(slab_size);
4425
4426static ssize_t align_show(struct kmem_cache *s, char *buf)
4427{
4428 return sprintf(buf, "%d\n", s->align);
4429}
4430SLAB_ATTR_RO(align);
4431
4432static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4433{
3b0efdfa 4434 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4435}
4436SLAB_ATTR_RO(object_size);
4437
4438static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4439{
834f3d11 4440 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4441}
4442SLAB_ATTR_RO(objs_per_slab);
4443
06b285dc
CL
4444static ssize_t order_store(struct kmem_cache *s,
4445 const char *buf, size_t length)
4446{
0121c619
CL
4447 unsigned long order;
4448 int err;
4449
4450 err = strict_strtoul(buf, 10, &order);
4451 if (err)
4452 return err;
06b285dc
CL
4453
4454 if (order > slub_max_order || order < slub_min_order)
4455 return -EINVAL;
4456
4457 calculate_sizes(s, order);
4458 return length;
4459}
4460
81819f0f
CL
4461static ssize_t order_show(struct kmem_cache *s, char *buf)
4462{
834f3d11 4463 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4464}
06b285dc 4465SLAB_ATTR(order);
81819f0f 4466
73d342b1
DR
4467static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4468{
4469 return sprintf(buf, "%lu\n", s->min_partial);
4470}
4471
4472static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4473 size_t length)
4474{
4475 unsigned long min;
4476 int err;
4477
4478 err = strict_strtoul(buf, 10, &min);
4479 if (err)
4480 return err;
4481
c0bdb232 4482 set_min_partial(s, min);
73d342b1
DR
4483 return length;
4484}
4485SLAB_ATTR(min_partial);
4486
49e22585
CL
4487static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4488{
4489 return sprintf(buf, "%u\n", s->cpu_partial);
4490}
4491
4492static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4493 size_t length)
4494{
4495 unsigned long objects;
4496 int err;
4497
4498 err = strict_strtoul(buf, 10, &objects);
4499 if (err)
4500 return err;
345c905d 4501 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4502 return -EINVAL;
49e22585
CL
4503
4504 s->cpu_partial = objects;
4505 flush_all(s);
4506 return length;
4507}
4508SLAB_ATTR(cpu_partial);
4509
81819f0f
CL
4510static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4511{
62c70bce
JP
4512 if (!s->ctor)
4513 return 0;
4514 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4515}
4516SLAB_ATTR_RO(ctor);
4517
81819f0f
CL
4518static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4519{
4520 return sprintf(buf, "%d\n", s->refcount - 1);
4521}
4522SLAB_ATTR_RO(aliases);
4523
81819f0f
CL
4524static ssize_t partial_show(struct kmem_cache *s, char *buf)
4525{
d9acf4b7 4526 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4527}
4528SLAB_ATTR_RO(partial);
4529
4530static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4531{
d9acf4b7 4532 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4533}
4534SLAB_ATTR_RO(cpu_slabs);
4535
4536static ssize_t objects_show(struct kmem_cache *s, char *buf)
4537{
205ab99d 4538 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4539}
4540SLAB_ATTR_RO(objects);
4541
205ab99d
CL
4542static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4543{
4544 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4545}
4546SLAB_ATTR_RO(objects_partial);
4547
49e22585
CL
4548static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4549{
4550 int objects = 0;
4551 int pages = 0;
4552 int cpu;
4553 int len;
4554
4555 for_each_online_cpu(cpu) {
4556 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4557
4558 if (page) {
4559 pages += page->pages;
4560 objects += page->pobjects;
4561 }
4562 }
4563
4564 len = sprintf(buf, "%d(%d)", objects, pages);
4565
4566#ifdef CONFIG_SMP
4567 for_each_online_cpu(cpu) {
4568 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4569
4570 if (page && len < PAGE_SIZE - 20)
4571 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4572 page->pobjects, page->pages);
4573 }
4574#endif
4575 return len + sprintf(buf + len, "\n");
4576}
4577SLAB_ATTR_RO(slabs_cpu_partial);
4578
a5a84755
CL
4579static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4580{
4581 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4582}
4583
4584static ssize_t reclaim_account_store(struct kmem_cache *s,
4585 const char *buf, size_t length)
4586{
4587 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4588 if (buf[0] == '1')
4589 s->flags |= SLAB_RECLAIM_ACCOUNT;
4590 return length;
4591}
4592SLAB_ATTR(reclaim_account);
4593
4594static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4595{
4596 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4597}
4598SLAB_ATTR_RO(hwcache_align);
4599
4600#ifdef CONFIG_ZONE_DMA
4601static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4602{
4603 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4604}
4605SLAB_ATTR_RO(cache_dma);
4606#endif
4607
4608static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4609{
4610 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4611}
4612SLAB_ATTR_RO(destroy_by_rcu);
4613
ab9a0f19
LJ
4614static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4615{
4616 return sprintf(buf, "%d\n", s->reserved);
4617}
4618SLAB_ATTR_RO(reserved);
4619
ab4d5ed5 4620#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4621static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4622{
4623 return show_slab_objects(s, buf, SO_ALL);
4624}
4625SLAB_ATTR_RO(slabs);
4626
205ab99d
CL
4627static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4628{
4629 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4630}
4631SLAB_ATTR_RO(total_objects);
4632
81819f0f
CL
4633static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4634{
4635 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4636}
4637
4638static ssize_t sanity_checks_store(struct kmem_cache *s,
4639 const char *buf, size_t length)
4640{
4641 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4642 if (buf[0] == '1') {
4643 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4644 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4645 }
81819f0f
CL
4646 return length;
4647}
4648SLAB_ATTR(sanity_checks);
4649
4650static ssize_t trace_show(struct kmem_cache *s, char *buf)
4651{
4652 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4653}
4654
4655static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4656 size_t length)
4657{
4658 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4659 if (buf[0] == '1') {
4660 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4661 s->flags |= SLAB_TRACE;
b789ef51 4662 }
81819f0f
CL
4663 return length;
4664}
4665SLAB_ATTR(trace);
4666
81819f0f
CL
4667static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4668{
4669 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4670}
4671
4672static ssize_t red_zone_store(struct kmem_cache *s,
4673 const char *buf, size_t length)
4674{
4675 if (any_slab_objects(s))
4676 return -EBUSY;
4677
4678 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4679 if (buf[0] == '1') {
4680 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4681 s->flags |= SLAB_RED_ZONE;
b789ef51 4682 }
06b285dc 4683 calculate_sizes(s, -1);
81819f0f
CL
4684 return length;
4685}
4686SLAB_ATTR(red_zone);
4687
4688static ssize_t poison_show(struct kmem_cache *s, char *buf)
4689{
4690 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4691}
4692
4693static ssize_t poison_store(struct kmem_cache *s,
4694 const char *buf, size_t length)
4695{
4696 if (any_slab_objects(s))
4697 return -EBUSY;
4698
4699 s->flags &= ~SLAB_POISON;
b789ef51
CL
4700 if (buf[0] == '1') {
4701 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4702 s->flags |= SLAB_POISON;
b789ef51 4703 }
06b285dc 4704 calculate_sizes(s, -1);
81819f0f
CL
4705 return length;
4706}
4707SLAB_ATTR(poison);
4708
4709static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4710{
4711 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4712}
4713
4714static ssize_t store_user_store(struct kmem_cache *s,
4715 const char *buf, size_t length)
4716{
4717 if (any_slab_objects(s))
4718 return -EBUSY;
4719
4720 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4721 if (buf[0] == '1') {
4722 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4723 s->flags |= SLAB_STORE_USER;
b789ef51 4724 }
06b285dc 4725 calculate_sizes(s, -1);
81819f0f
CL
4726 return length;
4727}
4728SLAB_ATTR(store_user);
4729
53e15af0
CL
4730static ssize_t validate_show(struct kmem_cache *s, char *buf)
4731{
4732 return 0;
4733}
4734
4735static ssize_t validate_store(struct kmem_cache *s,
4736 const char *buf, size_t length)
4737{
434e245d
CL
4738 int ret = -EINVAL;
4739
4740 if (buf[0] == '1') {
4741 ret = validate_slab_cache(s);
4742 if (ret >= 0)
4743 ret = length;
4744 }
4745 return ret;
53e15af0
CL
4746}
4747SLAB_ATTR(validate);
a5a84755
CL
4748
4749static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4750{
4751 if (!(s->flags & SLAB_STORE_USER))
4752 return -ENOSYS;
4753 return list_locations(s, buf, TRACK_ALLOC);
4754}
4755SLAB_ATTR_RO(alloc_calls);
4756
4757static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4758{
4759 if (!(s->flags & SLAB_STORE_USER))
4760 return -ENOSYS;
4761 return list_locations(s, buf, TRACK_FREE);
4762}
4763SLAB_ATTR_RO(free_calls);
4764#endif /* CONFIG_SLUB_DEBUG */
4765
4766#ifdef CONFIG_FAILSLAB
4767static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4768{
4769 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4770}
4771
4772static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4773 size_t length)
4774{
4775 s->flags &= ~SLAB_FAILSLAB;
4776 if (buf[0] == '1')
4777 s->flags |= SLAB_FAILSLAB;
4778 return length;
4779}
4780SLAB_ATTR(failslab);
ab4d5ed5 4781#endif
53e15af0 4782
2086d26a
CL
4783static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4784{
4785 return 0;
4786}
4787
4788static ssize_t shrink_store(struct kmem_cache *s,
4789 const char *buf, size_t length)
4790{
4791 if (buf[0] == '1') {
4792 int rc = kmem_cache_shrink(s);
4793
4794 if (rc)
4795 return rc;
4796 } else
4797 return -EINVAL;
4798 return length;
4799}
4800SLAB_ATTR(shrink);
4801
81819f0f 4802#ifdef CONFIG_NUMA
9824601e 4803static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4804{
9824601e 4805 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4806}
4807
9824601e 4808static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4809 const char *buf, size_t length)
4810{
0121c619
CL
4811 unsigned long ratio;
4812 int err;
4813
4814 err = strict_strtoul(buf, 10, &ratio);
4815 if (err)
4816 return err;
4817
e2cb96b7 4818 if (ratio <= 100)
0121c619 4819 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4820
81819f0f
CL
4821 return length;
4822}
9824601e 4823SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4824#endif
4825
8ff12cfc 4826#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4827static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4828{
4829 unsigned long sum = 0;
4830 int cpu;
4831 int len;
4832 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4833
4834 if (!data)
4835 return -ENOMEM;
4836
4837 for_each_online_cpu(cpu) {
9dfc6e68 4838 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4839
4840 data[cpu] = x;
4841 sum += x;
4842 }
4843
4844 len = sprintf(buf, "%lu", sum);
4845
50ef37b9 4846#ifdef CONFIG_SMP
8ff12cfc
CL
4847 for_each_online_cpu(cpu) {
4848 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4849 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4850 }
50ef37b9 4851#endif
8ff12cfc
CL
4852 kfree(data);
4853 return len + sprintf(buf + len, "\n");
4854}
4855
78eb00cc
DR
4856static void clear_stat(struct kmem_cache *s, enum stat_item si)
4857{
4858 int cpu;
4859
4860 for_each_online_cpu(cpu)
9dfc6e68 4861 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4862}
4863
8ff12cfc
CL
4864#define STAT_ATTR(si, text) \
4865static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4866{ \
4867 return show_stat(s, buf, si); \
4868} \
78eb00cc
DR
4869static ssize_t text##_store(struct kmem_cache *s, \
4870 const char *buf, size_t length) \
4871{ \
4872 if (buf[0] != '0') \
4873 return -EINVAL; \
4874 clear_stat(s, si); \
4875 return length; \
4876} \
4877SLAB_ATTR(text); \
8ff12cfc
CL
4878
4879STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4880STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4881STAT_ATTR(FREE_FASTPATH, free_fastpath);
4882STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4883STAT_ATTR(FREE_FROZEN, free_frozen);
4884STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4885STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4886STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4887STAT_ATTR(ALLOC_SLAB, alloc_slab);
4888STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4889STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4890STAT_ATTR(FREE_SLAB, free_slab);
4891STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4892STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4893STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4894STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4895STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4896STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4897STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4898STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4899STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4900STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4901STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4902STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4903STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4904STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4905#endif
4906
06428780 4907static struct attribute *slab_attrs[] = {
81819f0f
CL
4908 &slab_size_attr.attr,
4909 &object_size_attr.attr,
4910 &objs_per_slab_attr.attr,
4911 &order_attr.attr,
73d342b1 4912 &min_partial_attr.attr,
49e22585 4913 &cpu_partial_attr.attr,
81819f0f 4914 &objects_attr.attr,
205ab99d 4915 &objects_partial_attr.attr,
81819f0f
CL
4916 &partial_attr.attr,
4917 &cpu_slabs_attr.attr,
4918 &ctor_attr.attr,
81819f0f
CL
4919 &aliases_attr.attr,
4920 &align_attr.attr,
81819f0f
CL
4921 &hwcache_align_attr.attr,
4922 &reclaim_account_attr.attr,
4923 &destroy_by_rcu_attr.attr,
a5a84755 4924 &shrink_attr.attr,
ab9a0f19 4925 &reserved_attr.attr,
49e22585 4926 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4927#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4928 &total_objects_attr.attr,
4929 &slabs_attr.attr,
4930 &sanity_checks_attr.attr,
4931 &trace_attr.attr,
81819f0f
CL
4932 &red_zone_attr.attr,
4933 &poison_attr.attr,
4934 &store_user_attr.attr,
53e15af0 4935 &validate_attr.attr,
88a420e4
CL
4936 &alloc_calls_attr.attr,
4937 &free_calls_attr.attr,
ab4d5ed5 4938#endif
81819f0f
CL
4939#ifdef CONFIG_ZONE_DMA
4940 &cache_dma_attr.attr,
4941#endif
4942#ifdef CONFIG_NUMA
9824601e 4943 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4944#endif
4945#ifdef CONFIG_SLUB_STATS
4946 &alloc_fastpath_attr.attr,
4947 &alloc_slowpath_attr.attr,
4948 &free_fastpath_attr.attr,
4949 &free_slowpath_attr.attr,
4950 &free_frozen_attr.attr,
4951 &free_add_partial_attr.attr,
4952 &free_remove_partial_attr.attr,
4953 &alloc_from_partial_attr.attr,
4954 &alloc_slab_attr.attr,
4955 &alloc_refill_attr.attr,
e36a2652 4956 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4957 &free_slab_attr.attr,
4958 &cpuslab_flush_attr.attr,
4959 &deactivate_full_attr.attr,
4960 &deactivate_empty_attr.attr,
4961 &deactivate_to_head_attr.attr,
4962 &deactivate_to_tail_attr.attr,
4963 &deactivate_remote_frees_attr.attr,
03e404af 4964 &deactivate_bypass_attr.attr,
65c3376a 4965 &order_fallback_attr.attr,
b789ef51
CL
4966 &cmpxchg_double_fail_attr.attr,
4967 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4968 &cpu_partial_alloc_attr.attr,
4969 &cpu_partial_free_attr.attr,
8028dcea
AS
4970 &cpu_partial_node_attr.attr,
4971 &cpu_partial_drain_attr.attr,
81819f0f 4972#endif
4c13dd3b
DM
4973#ifdef CONFIG_FAILSLAB
4974 &failslab_attr.attr,
4975#endif
4976
81819f0f
CL
4977 NULL
4978};
4979
4980static struct attribute_group slab_attr_group = {
4981 .attrs = slab_attrs,
4982};
4983
4984static ssize_t slab_attr_show(struct kobject *kobj,
4985 struct attribute *attr,
4986 char *buf)
4987{
4988 struct slab_attribute *attribute;
4989 struct kmem_cache *s;
4990 int err;
4991
4992 attribute = to_slab_attr(attr);
4993 s = to_slab(kobj);
4994
4995 if (!attribute->show)
4996 return -EIO;
4997
4998 err = attribute->show(s, buf);
4999
5000 return err;
5001}
5002
5003static ssize_t slab_attr_store(struct kobject *kobj,
5004 struct attribute *attr,
5005 const char *buf, size_t len)
5006{
5007 struct slab_attribute *attribute;
5008 struct kmem_cache *s;
5009 int err;
5010
5011 attribute = to_slab_attr(attr);
5012 s = to_slab(kobj);
5013
5014 if (!attribute->store)
5015 return -EIO;
5016
5017 err = attribute->store(s, buf, len);
107dab5c
GC
5018#ifdef CONFIG_MEMCG_KMEM
5019 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5020 int i;
81819f0f 5021
107dab5c
GC
5022 mutex_lock(&slab_mutex);
5023 if (s->max_attr_size < len)
5024 s->max_attr_size = len;
5025
ebe945c2
GC
5026 /*
5027 * This is a best effort propagation, so this function's return
5028 * value will be determined by the parent cache only. This is
5029 * basically because not all attributes will have a well
5030 * defined semantics for rollbacks - most of the actions will
5031 * have permanent effects.
5032 *
5033 * Returning the error value of any of the children that fail
5034 * is not 100 % defined, in the sense that users seeing the
5035 * error code won't be able to know anything about the state of
5036 * the cache.
5037 *
5038 * Only returning the error code for the parent cache at least
5039 * has well defined semantics. The cache being written to
5040 * directly either failed or succeeded, in which case we loop
5041 * through the descendants with best-effort propagation.
5042 */
107dab5c
GC
5043 for_each_memcg_cache_index(i) {
5044 struct kmem_cache *c = cache_from_memcg(s, i);
107dab5c
GC
5045 if (c)
5046 attribute->store(c, buf, len);
5047 }
5048 mutex_unlock(&slab_mutex);
5049 }
5050#endif
81819f0f
CL
5051 return err;
5052}
5053
107dab5c
GC
5054static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5055{
5056#ifdef CONFIG_MEMCG_KMEM
5057 int i;
5058 char *buffer = NULL;
5059
5060 if (!is_root_cache(s))
5061 return;
5062
5063 /*
5064 * This mean this cache had no attribute written. Therefore, no point
5065 * in copying default values around
5066 */
5067 if (!s->max_attr_size)
5068 return;
5069
5070 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5071 char mbuf[64];
5072 char *buf;
5073 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5074
5075 if (!attr || !attr->store || !attr->show)
5076 continue;
5077
5078 /*
5079 * It is really bad that we have to allocate here, so we will
5080 * do it only as a fallback. If we actually allocate, though,
5081 * we can just use the allocated buffer until the end.
5082 *
5083 * Most of the slub attributes will tend to be very small in
5084 * size, but sysfs allows buffers up to a page, so they can
5085 * theoretically happen.
5086 */
5087 if (buffer)
5088 buf = buffer;
5089 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5090 buf = mbuf;
5091 else {
5092 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5093 if (WARN_ON(!buffer))
5094 continue;
5095 buf = buffer;
5096 }
5097
5098 attr->show(s->memcg_params->root_cache, buf);
5099 attr->store(s, buf, strlen(buf));
5100 }
5101
5102 if (buffer)
5103 free_page((unsigned long)buffer);
5104#endif
5105}
5106
52cf25d0 5107static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5108 .show = slab_attr_show,
5109 .store = slab_attr_store,
5110};
5111
5112static struct kobj_type slab_ktype = {
5113 .sysfs_ops = &slab_sysfs_ops,
5114};
5115
5116static int uevent_filter(struct kset *kset, struct kobject *kobj)
5117{
5118 struct kobj_type *ktype = get_ktype(kobj);
5119
5120 if (ktype == &slab_ktype)
5121 return 1;
5122 return 0;
5123}
5124
9cd43611 5125static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5126 .filter = uevent_filter,
5127};
5128
27c3a314 5129static struct kset *slab_kset;
81819f0f
CL
5130
5131#define ID_STR_LENGTH 64
5132
5133/* Create a unique string id for a slab cache:
6446faa2
CL
5134 *
5135 * Format :[flags-]size
81819f0f
CL
5136 */
5137static char *create_unique_id(struct kmem_cache *s)
5138{
5139 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5140 char *p = name;
5141
5142 BUG_ON(!name);
5143
5144 *p++ = ':';
5145 /*
5146 * First flags affecting slabcache operations. We will only
5147 * get here for aliasable slabs so we do not need to support
5148 * too many flags. The flags here must cover all flags that
5149 * are matched during merging to guarantee that the id is
5150 * unique.
5151 */
5152 if (s->flags & SLAB_CACHE_DMA)
5153 *p++ = 'd';
5154 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5155 *p++ = 'a';
5156 if (s->flags & SLAB_DEBUG_FREE)
5157 *p++ = 'F';
5a896d9e
VN
5158 if (!(s->flags & SLAB_NOTRACK))
5159 *p++ = 't';
81819f0f
CL
5160 if (p != name + 1)
5161 *p++ = '-';
5162 p += sprintf(p, "%07d", s->size);
2633d7a0
GC
5163
5164#ifdef CONFIG_MEMCG_KMEM
5165 if (!is_root_cache(s))
5166 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5167#endif
5168
81819f0f
CL
5169 BUG_ON(p > name + ID_STR_LENGTH - 1);
5170 return name;
5171}
5172
5173static int sysfs_slab_add(struct kmem_cache *s)
5174{
5175 int err;
5176 const char *name;
45530c44 5177 int unmergeable = slab_unmergeable(s);
81819f0f 5178
81819f0f
CL
5179 if (unmergeable) {
5180 /*
5181 * Slabcache can never be merged so we can use the name proper.
5182 * This is typically the case for debug situations. In that
5183 * case we can catch duplicate names easily.
5184 */
27c3a314 5185 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5186 name = s->name;
5187 } else {
5188 /*
5189 * Create a unique name for the slab as a target
5190 * for the symlinks.
5191 */
5192 name = create_unique_id(s);
5193 }
5194
27c3a314 5195 s->kobj.kset = slab_kset;
1eada11c
GKH
5196 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5197 if (err) {
5198 kobject_put(&s->kobj);
81819f0f 5199 return err;
1eada11c 5200 }
81819f0f
CL
5201
5202 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5203 if (err) {
5204 kobject_del(&s->kobj);
5205 kobject_put(&s->kobj);
81819f0f 5206 return err;
5788d8ad 5207 }
81819f0f
CL
5208 kobject_uevent(&s->kobj, KOBJ_ADD);
5209 if (!unmergeable) {
5210 /* Setup first alias */
5211 sysfs_slab_alias(s, s->name);
5212 kfree(name);
5213 }
5214 return 0;
5215}
5216
5217static void sysfs_slab_remove(struct kmem_cache *s)
5218{
97d06609 5219 if (slab_state < FULL)
2bce6485
CL
5220 /*
5221 * Sysfs has not been setup yet so no need to remove the
5222 * cache from sysfs.
5223 */
5224 return;
5225
81819f0f
CL
5226 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5227 kobject_del(&s->kobj);
151c602f 5228 kobject_put(&s->kobj);
81819f0f
CL
5229}
5230
5231/*
5232 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5233 * available lest we lose that information.
81819f0f
CL
5234 */
5235struct saved_alias {
5236 struct kmem_cache *s;
5237 const char *name;
5238 struct saved_alias *next;
5239};
5240
5af328a5 5241static struct saved_alias *alias_list;
81819f0f
CL
5242
5243static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5244{
5245 struct saved_alias *al;
5246
97d06609 5247 if (slab_state == FULL) {
81819f0f
CL
5248 /*
5249 * If we have a leftover link then remove it.
5250 */
27c3a314
GKH
5251 sysfs_remove_link(&slab_kset->kobj, name);
5252 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5253 }
5254
5255 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5256 if (!al)
5257 return -ENOMEM;
5258
5259 al->s = s;
5260 al->name = name;
5261 al->next = alias_list;
5262 alias_list = al;
5263 return 0;
5264}
5265
5266static int __init slab_sysfs_init(void)
5267{
5b95a4ac 5268 struct kmem_cache *s;
81819f0f
CL
5269 int err;
5270
18004c5d 5271 mutex_lock(&slab_mutex);
2bce6485 5272
0ff21e46 5273 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5274 if (!slab_kset) {
18004c5d 5275 mutex_unlock(&slab_mutex);
81819f0f
CL
5276 printk(KERN_ERR "Cannot register slab subsystem.\n");
5277 return -ENOSYS;
5278 }
5279
97d06609 5280 slab_state = FULL;
26a7bd03 5281
5b95a4ac 5282 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5283 err = sysfs_slab_add(s);
5d540fb7
CL
5284 if (err)
5285 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5286 " to sysfs\n", s->name);
26a7bd03 5287 }
81819f0f
CL
5288
5289 while (alias_list) {
5290 struct saved_alias *al = alias_list;
5291
5292 alias_list = alias_list->next;
5293 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5294 if (err)
5295 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5296 " %s to sysfs\n", al->name);
81819f0f
CL
5297 kfree(al);
5298 }
5299
18004c5d 5300 mutex_unlock(&slab_mutex);
81819f0f
CL
5301 resiliency_test();
5302 return 0;
5303}
5304
5305__initcall(slab_sysfs_init);
ab4d5ed5 5306#endif /* CONFIG_SYSFS */
57ed3eda
PE
5307
5308/*
5309 * The /proc/slabinfo ABI
5310 */
158a9624 5311#ifdef CONFIG_SLABINFO
0d7561c6 5312void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5313{
57ed3eda 5314 unsigned long nr_slabs = 0;
205ab99d
CL
5315 unsigned long nr_objs = 0;
5316 unsigned long nr_free = 0;
57ed3eda
PE
5317 int node;
5318
57ed3eda
PE
5319 for_each_online_node(node) {
5320 struct kmem_cache_node *n = get_node(s, node);
5321
5322 if (!n)
5323 continue;
5324
c17fd13e
WL
5325 nr_slabs += node_nr_slabs(n);
5326 nr_objs += node_nr_objs(n);
205ab99d 5327 nr_free += count_partial(n, count_free);
57ed3eda
PE
5328 }
5329
0d7561c6
GC
5330 sinfo->active_objs = nr_objs - nr_free;
5331 sinfo->num_objs = nr_objs;
5332 sinfo->active_slabs = nr_slabs;
5333 sinfo->num_slabs = nr_slabs;
5334 sinfo->objects_per_slab = oo_objects(s->oo);
5335 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5336}
5337
0d7561c6 5338void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5339{
7b3c3a50
AD
5340}
5341
b7454ad3
GC
5342ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5343 size_t count, loff_t *ppos)
7b3c3a50 5344{
b7454ad3 5345 return -EIO;
7b3c3a50 5346}
158a9624 5347#endif /* CONFIG_SLABINFO */