kmemcheck: add hooks for page- and sg-dma-mappings
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
02af61bb 20#include <linux/kmemtrace.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
06f22f13 24#include <linux/kmemleak.h>
81819f0f
CL
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
81819f0f
CL
32
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
5577bd8a 111#ifdef CONFIG_SLUB_DEBUG
8a38082d 112#define SLABDEBUG 1
5577bd8a
CL
113#else
114#define SLABDEBUG 0
115#endif
116
81819f0f
CL
117/*
118 * Issues still to be resolved:
119 *
81819f0f
CL
120 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 *
81819f0f
CL
122 * - Variable sizing of the per node arrays
123 */
124
125/* Enable to test recovery from slab corruption on boot */
126#undef SLUB_RESILIENCY_TEST
127
2086d26a
CL
128/*
129 * Mininum number of partial slabs. These will be left on the partial
130 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 */
76be8950 132#define MIN_PARTIAL 5
e95eed57 133
2086d26a
CL
134/*
135 * Maximum number of desirable partial slabs.
136 * The existence of more partial slabs makes kmem_cache_shrink
137 * sort the partial list by the number of objects in the.
138 */
139#define MAX_PARTIAL 10
140
81819f0f
CL
141#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
142 SLAB_POISON | SLAB_STORE_USER)
672bba3a 143
81819f0f
CL
144/*
145 * Set of flags that will prevent slab merging
146 */
147#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
06f22f13 148 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
81819f0f
CL
149
150#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 151 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f
CL
152
153#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 154#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 158#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
159#endif
160
210b5c06
CG
161#define OO_SHIFT 16
162#define OO_MASK ((1 << OO_SHIFT) - 1)
163#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
164
81819f0f 165/* Internal SLUB flags */
1ceef402
CL
166#define __OBJECT_POISON 0x80000000 /* Poison object */
167#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
168
169static int kmem_size = sizeof(struct kmem_cache);
170
171#ifdef CONFIG_SMP
172static struct notifier_block slab_notifier;
173#endif
174
175static enum {
176 DOWN, /* No slab functionality available */
177 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 178 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
179 SYSFS /* Sysfs up */
180} slab_state = DOWN;
181
182/* A list of all slab caches on the system */
183static DECLARE_RWSEM(slub_lock);
5af328a5 184static LIST_HEAD(slab_caches);
81819f0f 185
02cbc874
CL
186/*
187 * Tracking user of a slab.
188 */
189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
02cbc874
CL
191 int cpu; /* Was running on cpu */
192 int pid; /* Pid context */
193 unsigned long when; /* When did the operation occur */
194};
195
196enum track_item { TRACK_ALLOC, TRACK_FREE };
197
f6acb635 198#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
199static int sysfs_slab_add(struct kmem_cache *);
200static int sysfs_slab_alias(struct kmem_cache *, const char *);
201static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 202
81819f0f 203#else
0c710013
CL
204static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
205static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
206 { return 0; }
151c602f
CL
207static inline void sysfs_slab_remove(struct kmem_cache *s)
208{
209 kfree(s);
210}
8ff12cfc 211
81819f0f
CL
212#endif
213
8ff12cfc
CL
214static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
215{
216#ifdef CONFIG_SLUB_STATS
217 c->stat[si]++;
218#endif
219}
220
81819f0f
CL
221/********************************************************************
222 * Core slab cache functions
223 *******************************************************************/
224
225int slab_is_available(void)
226{
227 return slab_state >= UP;
228}
229
230static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
231{
232#ifdef CONFIG_NUMA
233 return s->node[node];
234#else
235 return &s->local_node;
236#endif
237}
238
dfb4f096
CL
239static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
240{
4c93c355
CL
241#ifdef CONFIG_SMP
242 return s->cpu_slab[cpu];
243#else
244 return &s->cpu_slab;
245#endif
dfb4f096
CL
246}
247
6446faa2 248/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
249static inline int check_valid_pointer(struct kmem_cache *s,
250 struct page *page, const void *object)
251{
252 void *base;
253
a973e9dd 254 if (!object)
02cbc874
CL
255 return 1;
256
a973e9dd 257 base = page_address(page);
39b26464 258 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
259 (object - base) % s->size) {
260 return 0;
261 }
262
263 return 1;
264}
265
7656c72b
CL
266/*
267 * Slow version of get and set free pointer.
268 *
269 * This version requires touching the cache lines of kmem_cache which
270 * we avoid to do in the fast alloc free paths. There we obtain the offset
271 * from the page struct.
272 */
273static inline void *get_freepointer(struct kmem_cache *s, void *object)
274{
275 return *(void **)(object + s->offset);
276}
277
278static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
279{
280 *(void **)(object + s->offset) = fp;
281}
282
283/* Loop over all objects in a slab */
224a88be
CL
284#define for_each_object(__p, __s, __addr, __objects) \
285 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
286 __p += (__s)->size)
287
288/* Scan freelist */
289#define for_each_free_object(__p, __s, __free) \
a973e9dd 290 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
291
292/* Determine object index from a given position */
293static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
294{
295 return (p - addr) / s->size;
296}
297
834f3d11
CL
298static inline struct kmem_cache_order_objects oo_make(int order,
299 unsigned long size)
300{
301 struct kmem_cache_order_objects x = {
210b5c06 302 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
303 };
304
305 return x;
306}
307
308static inline int oo_order(struct kmem_cache_order_objects x)
309{
210b5c06 310 return x.x >> OO_SHIFT;
834f3d11
CL
311}
312
313static inline int oo_objects(struct kmem_cache_order_objects x)
314{
210b5c06 315 return x.x & OO_MASK;
834f3d11
CL
316}
317
41ecc55b
CL
318#ifdef CONFIG_SLUB_DEBUG
319/*
320 * Debug settings:
321 */
f0630fff
CL
322#ifdef CONFIG_SLUB_DEBUG_ON
323static int slub_debug = DEBUG_DEFAULT_FLAGS;
324#else
41ecc55b 325static int slub_debug;
f0630fff 326#endif
41ecc55b
CL
327
328static char *slub_debug_slabs;
329
81819f0f
CL
330/*
331 * Object debugging
332 */
333static void print_section(char *text, u8 *addr, unsigned int length)
334{
335 int i, offset;
336 int newline = 1;
337 char ascii[17];
338
339 ascii[16] = 0;
340
341 for (i = 0; i < length; i++) {
342 if (newline) {
24922684 343 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
344 newline = 0;
345 }
06428780 346 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
347 offset = i % 16;
348 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
349 if (offset == 15) {
06428780 350 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
351 newline = 1;
352 }
353 }
354 if (!newline) {
355 i %= 16;
356 while (i < 16) {
06428780 357 printk(KERN_CONT " ");
81819f0f
CL
358 ascii[i] = ' ';
359 i++;
360 }
06428780 361 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
362 }
363}
364
81819f0f
CL
365static struct track *get_track(struct kmem_cache *s, void *object,
366 enum track_item alloc)
367{
368 struct track *p;
369
370 if (s->offset)
371 p = object + s->offset + sizeof(void *);
372 else
373 p = object + s->inuse;
374
375 return p + alloc;
376}
377
378static void set_track(struct kmem_cache *s, void *object,
ce71e27c 379 enum track_item alloc, unsigned long addr)
81819f0f 380{
1a00df4a 381 struct track *p = get_track(s, object, alloc);
81819f0f 382
81819f0f
CL
383 if (addr) {
384 p->addr = addr;
385 p->cpu = smp_processor_id();
88e4ccf2 386 p->pid = current->pid;
81819f0f
CL
387 p->when = jiffies;
388 } else
389 memset(p, 0, sizeof(struct track));
390}
391
81819f0f
CL
392static void init_tracking(struct kmem_cache *s, void *object)
393{
24922684
CL
394 if (!(s->flags & SLAB_STORE_USER))
395 return;
396
ce71e27c
EGM
397 set_track(s, object, TRACK_FREE, 0UL);
398 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
399}
400
401static void print_track(const char *s, struct track *t)
402{
403 if (!t->addr)
404 return;
405
7daf705f 406 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 407 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
408}
409
410static void print_tracking(struct kmem_cache *s, void *object)
411{
412 if (!(s->flags & SLAB_STORE_USER))
413 return;
414
415 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
416 print_track("Freed", get_track(s, object, TRACK_FREE));
417}
418
419static void print_page_info(struct page *page)
420{
39b26464
CL
421 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
422 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
423
424}
425
426static void slab_bug(struct kmem_cache *s, char *fmt, ...)
427{
428 va_list args;
429 char buf[100];
430
431 va_start(args, fmt);
432 vsnprintf(buf, sizeof(buf), fmt, args);
433 va_end(args);
434 printk(KERN_ERR "========================================"
435 "=====================================\n");
436 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
437 printk(KERN_ERR "----------------------------------------"
438 "-------------------------------------\n\n");
81819f0f
CL
439}
440
24922684
CL
441static void slab_fix(struct kmem_cache *s, char *fmt, ...)
442{
443 va_list args;
444 char buf[100];
445
446 va_start(args, fmt);
447 vsnprintf(buf, sizeof(buf), fmt, args);
448 va_end(args);
449 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
450}
451
452static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
453{
454 unsigned int off; /* Offset of last byte */
a973e9dd 455 u8 *addr = page_address(page);
24922684
CL
456
457 print_tracking(s, p);
458
459 print_page_info(page);
460
461 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
462 p, p - addr, get_freepointer(s, p));
463
464 if (p > addr + 16)
465 print_section("Bytes b4", p - 16, 16);
466
0ebd652b 467 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
468
469 if (s->flags & SLAB_RED_ZONE)
470 print_section("Redzone", p + s->objsize,
471 s->inuse - s->objsize);
472
81819f0f
CL
473 if (s->offset)
474 off = s->offset + sizeof(void *);
475 else
476 off = s->inuse;
477
24922684 478 if (s->flags & SLAB_STORE_USER)
81819f0f 479 off += 2 * sizeof(struct track);
81819f0f
CL
480
481 if (off != s->size)
482 /* Beginning of the filler is the free pointer */
24922684
CL
483 print_section("Padding", p + off, s->size - off);
484
485 dump_stack();
81819f0f
CL
486}
487
488static void object_err(struct kmem_cache *s, struct page *page,
489 u8 *object, char *reason)
490{
3dc50637 491 slab_bug(s, "%s", reason);
24922684 492 print_trailer(s, page, object);
81819f0f
CL
493}
494
24922684 495static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
496{
497 va_list args;
498 char buf[100];
499
24922684
CL
500 va_start(args, fmt);
501 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 502 va_end(args);
3dc50637 503 slab_bug(s, "%s", buf);
24922684 504 print_page_info(page);
81819f0f
CL
505 dump_stack();
506}
507
508static void init_object(struct kmem_cache *s, void *object, int active)
509{
510 u8 *p = object;
511
512 if (s->flags & __OBJECT_POISON) {
513 memset(p, POISON_FREE, s->objsize - 1);
06428780 514 p[s->objsize - 1] = POISON_END;
81819f0f
CL
515 }
516
517 if (s->flags & SLAB_RED_ZONE)
518 memset(p + s->objsize,
519 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
520 s->inuse - s->objsize);
521}
522
24922684 523static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
524{
525 while (bytes) {
526 if (*start != (u8)value)
24922684 527 return start;
81819f0f
CL
528 start++;
529 bytes--;
530 }
24922684
CL
531 return NULL;
532}
533
534static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
535 void *from, void *to)
536{
537 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
538 memset(from, data, to - from);
539}
540
541static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
542 u8 *object, char *what,
06428780 543 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
544{
545 u8 *fault;
546 u8 *end;
547
548 fault = check_bytes(start, value, bytes);
549 if (!fault)
550 return 1;
551
552 end = start + bytes;
553 while (end > fault && end[-1] == value)
554 end--;
555
556 slab_bug(s, "%s overwritten", what);
557 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
558 fault, end - 1, fault[0], value);
559 print_trailer(s, page, object);
560
561 restore_bytes(s, what, value, fault, end);
562 return 0;
81819f0f
CL
563}
564
81819f0f
CL
565/*
566 * Object layout:
567 *
568 * object address
569 * Bytes of the object to be managed.
570 * If the freepointer may overlay the object then the free
571 * pointer is the first word of the object.
672bba3a 572 *
81819f0f
CL
573 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
574 * 0xa5 (POISON_END)
575 *
576 * object + s->objsize
577 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
578 * Padding is extended by another word if Redzoning is enabled and
579 * objsize == inuse.
580 *
81819f0f
CL
581 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
582 * 0xcc (RED_ACTIVE) for objects in use.
583 *
584 * object + s->inuse
672bba3a
CL
585 * Meta data starts here.
586 *
81819f0f
CL
587 * A. Free pointer (if we cannot overwrite object on free)
588 * B. Tracking data for SLAB_STORE_USER
672bba3a 589 * C. Padding to reach required alignment boundary or at mininum
6446faa2 590 * one word if debugging is on to be able to detect writes
672bba3a
CL
591 * before the word boundary.
592 *
593 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
594 *
595 * object + s->size
672bba3a 596 * Nothing is used beyond s->size.
81819f0f 597 *
672bba3a
CL
598 * If slabcaches are merged then the objsize and inuse boundaries are mostly
599 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
600 * may be used with merged slabcaches.
601 */
602
81819f0f
CL
603static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
604{
605 unsigned long off = s->inuse; /* The end of info */
606
607 if (s->offset)
608 /* Freepointer is placed after the object. */
609 off += sizeof(void *);
610
611 if (s->flags & SLAB_STORE_USER)
612 /* We also have user information there */
613 off += 2 * sizeof(struct track);
614
615 if (s->size == off)
616 return 1;
617
24922684
CL
618 return check_bytes_and_report(s, page, p, "Object padding",
619 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
620}
621
39b26464 622/* Check the pad bytes at the end of a slab page */
81819f0f
CL
623static int slab_pad_check(struct kmem_cache *s, struct page *page)
624{
24922684
CL
625 u8 *start;
626 u8 *fault;
627 u8 *end;
628 int length;
629 int remainder;
81819f0f
CL
630
631 if (!(s->flags & SLAB_POISON))
632 return 1;
633
a973e9dd 634 start = page_address(page);
834f3d11 635 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
636 end = start + length;
637 remainder = length % s->size;
81819f0f
CL
638 if (!remainder)
639 return 1;
640
39b26464 641 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
642 if (!fault)
643 return 1;
644 while (end > fault && end[-1] == POISON_INUSE)
645 end--;
646
647 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 648 print_section("Padding", end - remainder, remainder);
24922684
CL
649
650 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
651 return 0;
81819f0f
CL
652}
653
654static int check_object(struct kmem_cache *s, struct page *page,
655 void *object, int active)
656{
657 u8 *p = object;
658 u8 *endobject = object + s->objsize;
659
660 if (s->flags & SLAB_RED_ZONE) {
661 unsigned int red =
662 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
663
24922684
CL
664 if (!check_bytes_and_report(s, page, object, "Redzone",
665 endobject, red, s->inuse - s->objsize))
81819f0f 666 return 0;
81819f0f 667 } else {
3adbefee
IM
668 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
669 check_bytes_and_report(s, page, p, "Alignment padding",
670 endobject, POISON_INUSE, s->inuse - s->objsize);
671 }
81819f0f
CL
672 }
673
674 if (s->flags & SLAB_POISON) {
675 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
676 (!check_bytes_and_report(s, page, p, "Poison", p,
677 POISON_FREE, s->objsize - 1) ||
678 !check_bytes_and_report(s, page, p, "Poison",
06428780 679 p + s->objsize - 1, POISON_END, 1)))
81819f0f 680 return 0;
81819f0f
CL
681 /*
682 * check_pad_bytes cleans up on its own.
683 */
684 check_pad_bytes(s, page, p);
685 }
686
687 if (!s->offset && active)
688 /*
689 * Object and freepointer overlap. Cannot check
690 * freepointer while object is allocated.
691 */
692 return 1;
693
694 /* Check free pointer validity */
695 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
696 object_err(s, page, p, "Freepointer corrupt");
697 /*
9f6c708e 698 * No choice but to zap it and thus lose the remainder
81819f0f 699 * of the free objects in this slab. May cause
672bba3a 700 * another error because the object count is now wrong.
81819f0f 701 */
a973e9dd 702 set_freepointer(s, p, NULL);
81819f0f
CL
703 return 0;
704 }
705 return 1;
706}
707
708static int check_slab(struct kmem_cache *s, struct page *page)
709{
39b26464
CL
710 int maxobj;
711
81819f0f
CL
712 VM_BUG_ON(!irqs_disabled());
713
714 if (!PageSlab(page)) {
24922684 715 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
716 return 0;
717 }
39b26464
CL
718
719 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
720 if (page->objects > maxobj) {
721 slab_err(s, page, "objects %u > max %u",
722 s->name, page->objects, maxobj);
723 return 0;
724 }
725 if (page->inuse > page->objects) {
24922684 726 slab_err(s, page, "inuse %u > max %u",
39b26464 727 s->name, page->inuse, page->objects);
81819f0f
CL
728 return 0;
729 }
730 /* Slab_pad_check fixes things up after itself */
731 slab_pad_check(s, page);
732 return 1;
733}
734
735/*
672bba3a
CL
736 * Determine if a certain object on a page is on the freelist. Must hold the
737 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
738 */
739static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
740{
741 int nr = 0;
742 void *fp = page->freelist;
743 void *object = NULL;
224a88be 744 unsigned long max_objects;
81819f0f 745
39b26464 746 while (fp && nr <= page->objects) {
81819f0f
CL
747 if (fp == search)
748 return 1;
749 if (!check_valid_pointer(s, page, fp)) {
750 if (object) {
751 object_err(s, page, object,
752 "Freechain corrupt");
a973e9dd 753 set_freepointer(s, object, NULL);
81819f0f
CL
754 break;
755 } else {
24922684 756 slab_err(s, page, "Freepointer corrupt");
a973e9dd 757 page->freelist = NULL;
39b26464 758 page->inuse = page->objects;
24922684 759 slab_fix(s, "Freelist cleared");
81819f0f
CL
760 return 0;
761 }
762 break;
763 }
764 object = fp;
765 fp = get_freepointer(s, object);
766 nr++;
767 }
768
224a88be 769 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
770 if (max_objects > MAX_OBJS_PER_PAGE)
771 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
772
773 if (page->objects != max_objects) {
774 slab_err(s, page, "Wrong number of objects. Found %d but "
775 "should be %d", page->objects, max_objects);
776 page->objects = max_objects;
777 slab_fix(s, "Number of objects adjusted.");
778 }
39b26464 779 if (page->inuse != page->objects - nr) {
70d71228 780 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
781 "counted were %d", page->inuse, page->objects - nr);
782 page->inuse = page->objects - nr;
24922684 783 slab_fix(s, "Object count adjusted.");
81819f0f
CL
784 }
785 return search == NULL;
786}
787
0121c619
CL
788static void trace(struct kmem_cache *s, struct page *page, void *object,
789 int alloc)
3ec09742
CL
790{
791 if (s->flags & SLAB_TRACE) {
792 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
793 s->name,
794 alloc ? "alloc" : "free",
795 object, page->inuse,
796 page->freelist);
797
798 if (!alloc)
799 print_section("Object", (void *)object, s->objsize);
800
801 dump_stack();
802 }
803}
804
643b1138 805/*
672bba3a 806 * Tracking of fully allocated slabs for debugging purposes.
643b1138 807 */
e95eed57 808static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 809{
643b1138
CL
810 spin_lock(&n->list_lock);
811 list_add(&page->lru, &n->full);
812 spin_unlock(&n->list_lock);
813}
814
815static void remove_full(struct kmem_cache *s, struct page *page)
816{
817 struct kmem_cache_node *n;
818
819 if (!(s->flags & SLAB_STORE_USER))
820 return;
821
822 n = get_node(s, page_to_nid(page));
823
824 spin_lock(&n->list_lock);
825 list_del(&page->lru);
826 spin_unlock(&n->list_lock);
827}
828
0f389ec6
CL
829/* Tracking of the number of slabs for debugging purposes */
830static inline unsigned long slabs_node(struct kmem_cache *s, int node)
831{
832 struct kmem_cache_node *n = get_node(s, node);
833
834 return atomic_long_read(&n->nr_slabs);
835}
836
205ab99d 837static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
838{
839 struct kmem_cache_node *n = get_node(s, node);
840
841 /*
842 * May be called early in order to allocate a slab for the
843 * kmem_cache_node structure. Solve the chicken-egg
844 * dilemma by deferring the increment of the count during
845 * bootstrap (see early_kmem_cache_node_alloc).
846 */
205ab99d 847 if (!NUMA_BUILD || n) {
0f389ec6 848 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
849 atomic_long_add(objects, &n->total_objects);
850 }
0f389ec6 851}
205ab99d 852static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
853{
854 struct kmem_cache_node *n = get_node(s, node);
855
856 atomic_long_dec(&n->nr_slabs);
205ab99d 857 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
858}
859
860/* Object debug checks for alloc/free paths */
3ec09742
CL
861static void setup_object_debug(struct kmem_cache *s, struct page *page,
862 void *object)
863{
864 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
865 return;
866
867 init_object(s, object, 0);
868 init_tracking(s, object);
869}
870
871static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 872 void *object, unsigned long addr)
81819f0f
CL
873{
874 if (!check_slab(s, page))
875 goto bad;
876
d692ef6d 877 if (!on_freelist(s, page, object)) {
24922684 878 object_err(s, page, object, "Object already allocated");
70d71228 879 goto bad;
81819f0f
CL
880 }
881
882 if (!check_valid_pointer(s, page, object)) {
883 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 884 goto bad;
81819f0f
CL
885 }
886
d692ef6d 887 if (!check_object(s, page, object, 0))
81819f0f 888 goto bad;
81819f0f 889
3ec09742
CL
890 /* Success perform special debug activities for allocs */
891 if (s->flags & SLAB_STORE_USER)
892 set_track(s, object, TRACK_ALLOC, addr);
893 trace(s, page, object, 1);
894 init_object(s, object, 1);
81819f0f 895 return 1;
3ec09742 896
81819f0f
CL
897bad:
898 if (PageSlab(page)) {
899 /*
900 * If this is a slab page then lets do the best we can
901 * to avoid issues in the future. Marking all objects
672bba3a 902 * as used avoids touching the remaining objects.
81819f0f 903 */
24922684 904 slab_fix(s, "Marking all objects used");
39b26464 905 page->inuse = page->objects;
a973e9dd 906 page->freelist = NULL;
81819f0f
CL
907 }
908 return 0;
909}
910
3ec09742 911static int free_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 912 void *object, unsigned long addr)
81819f0f
CL
913{
914 if (!check_slab(s, page))
915 goto fail;
916
917 if (!check_valid_pointer(s, page, object)) {
70d71228 918 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
919 goto fail;
920 }
921
922 if (on_freelist(s, page, object)) {
24922684 923 object_err(s, page, object, "Object already free");
81819f0f
CL
924 goto fail;
925 }
926
927 if (!check_object(s, page, object, 1))
928 return 0;
929
930 if (unlikely(s != page->slab)) {
3adbefee 931 if (!PageSlab(page)) {
70d71228
CL
932 slab_err(s, page, "Attempt to free object(0x%p) "
933 "outside of slab", object);
3adbefee 934 } else if (!page->slab) {
81819f0f 935 printk(KERN_ERR
70d71228 936 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 937 object);
70d71228 938 dump_stack();
06428780 939 } else
24922684
CL
940 object_err(s, page, object,
941 "page slab pointer corrupt.");
81819f0f
CL
942 goto fail;
943 }
3ec09742
CL
944
945 /* Special debug activities for freeing objects */
8a38082d 946 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
947 remove_full(s, page);
948 if (s->flags & SLAB_STORE_USER)
949 set_track(s, object, TRACK_FREE, addr);
950 trace(s, page, object, 0);
951 init_object(s, object, 0);
81819f0f 952 return 1;
3ec09742 953
81819f0f 954fail:
24922684 955 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
956 return 0;
957}
958
41ecc55b
CL
959static int __init setup_slub_debug(char *str)
960{
f0630fff
CL
961 slub_debug = DEBUG_DEFAULT_FLAGS;
962 if (*str++ != '=' || !*str)
963 /*
964 * No options specified. Switch on full debugging.
965 */
966 goto out;
967
968 if (*str == ',')
969 /*
970 * No options but restriction on slabs. This means full
971 * debugging for slabs matching a pattern.
972 */
973 goto check_slabs;
974
975 slub_debug = 0;
976 if (*str == '-')
977 /*
978 * Switch off all debugging measures.
979 */
980 goto out;
981
982 /*
983 * Determine which debug features should be switched on
984 */
06428780 985 for (; *str && *str != ','; str++) {
f0630fff
CL
986 switch (tolower(*str)) {
987 case 'f':
988 slub_debug |= SLAB_DEBUG_FREE;
989 break;
990 case 'z':
991 slub_debug |= SLAB_RED_ZONE;
992 break;
993 case 'p':
994 slub_debug |= SLAB_POISON;
995 break;
996 case 'u':
997 slub_debug |= SLAB_STORE_USER;
998 break;
999 case 't':
1000 slub_debug |= SLAB_TRACE;
1001 break;
1002 default:
1003 printk(KERN_ERR "slub_debug option '%c' "
06428780 1004 "unknown. skipped\n", *str);
f0630fff 1005 }
41ecc55b
CL
1006 }
1007
f0630fff 1008check_slabs:
41ecc55b
CL
1009 if (*str == ',')
1010 slub_debug_slabs = str + 1;
f0630fff 1011out:
41ecc55b
CL
1012 return 1;
1013}
1014
1015__setup("slub_debug", setup_slub_debug);
1016
ba0268a8
CL
1017static unsigned long kmem_cache_flags(unsigned long objsize,
1018 unsigned long flags, const char *name,
51cc5068 1019 void (*ctor)(void *))
41ecc55b
CL
1020{
1021 /*
e153362a 1022 * Enable debugging if selected on the kernel commandline.
41ecc55b 1023 */
e153362a
CL
1024 if (slub_debug && (!slub_debug_slabs ||
1025 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1026 flags |= slub_debug;
ba0268a8
CL
1027
1028 return flags;
41ecc55b
CL
1029}
1030#else
3ec09742
CL
1031static inline void setup_object_debug(struct kmem_cache *s,
1032 struct page *page, void *object) {}
41ecc55b 1033
3ec09742 1034static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1035 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1036
3ec09742 1037static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1038 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1039
41ecc55b
CL
1040static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1041 { return 1; }
1042static inline int check_object(struct kmem_cache *s, struct page *page,
1043 void *object, int active) { return 1; }
3ec09742 1044static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1045static inline unsigned long kmem_cache_flags(unsigned long objsize,
1046 unsigned long flags, const char *name,
51cc5068 1047 void (*ctor)(void *))
ba0268a8
CL
1048{
1049 return flags;
1050}
41ecc55b 1051#define slub_debug 0
0f389ec6
CL
1052
1053static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1054 { return 0; }
205ab99d
CL
1055static inline void inc_slabs_node(struct kmem_cache *s, int node,
1056 int objects) {}
1057static inline void dec_slabs_node(struct kmem_cache *s, int node,
1058 int objects) {}
41ecc55b 1059#endif
205ab99d 1060
81819f0f
CL
1061/*
1062 * Slab allocation and freeing
1063 */
65c3376a
CL
1064static inline struct page *alloc_slab_page(gfp_t flags, int node,
1065 struct kmem_cache_order_objects oo)
1066{
1067 int order = oo_order(oo);
1068
1069 if (node == -1)
1070 return alloc_pages(flags, order);
1071 else
1072 return alloc_pages_node(node, flags, order);
1073}
1074
81819f0f
CL
1075static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1076{
06428780 1077 struct page *page;
834f3d11 1078 struct kmem_cache_order_objects oo = s->oo;
81819f0f 1079
b7a49f0d 1080 flags |= s->allocflags;
e12ba74d 1081
65c3376a
CL
1082 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1083 oo);
1084 if (unlikely(!page)) {
1085 oo = s->min;
1086 /*
1087 * Allocation may have failed due to fragmentation.
1088 * Try a lower order alloc if possible
1089 */
1090 page = alloc_slab_page(flags, node, oo);
1091 if (!page)
1092 return NULL;
81819f0f 1093
65c3376a
CL
1094 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1095 }
5a896d9e
VN
1096
1097 if (kmemcheck_enabled
1098 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS)))
1099 {
1100 kmemcheck_alloc_shadow(s, flags, node, page, compound_order(page));
1101 }
1102
834f3d11 1103 page->objects = oo_objects(oo);
81819f0f
CL
1104 mod_zone_page_state(page_zone(page),
1105 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1106 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1107 1 << oo_order(oo));
81819f0f
CL
1108
1109 return page;
1110}
1111
1112static void setup_object(struct kmem_cache *s, struct page *page,
1113 void *object)
1114{
3ec09742 1115 setup_object_debug(s, page, object);
4f104934 1116 if (unlikely(s->ctor))
51cc5068 1117 s->ctor(object);
81819f0f
CL
1118}
1119
1120static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1121{
1122 struct page *page;
81819f0f 1123 void *start;
81819f0f
CL
1124 void *last;
1125 void *p;
1126
6cb06229 1127 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1128
6cb06229
CL
1129 page = allocate_slab(s,
1130 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1131 if (!page)
1132 goto out;
1133
205ab99d 1134 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1135 page->slab = s;
1136 page->flags |= 1 << PG_slab;
1137 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1138 SLAB_STORE_USER | SLAB_TRACE))
8a38082d 1139 __SetPageSlubDebug(page);
81819f0f
CL
1140
1141 start = page_address(page);
81819f0f
CL
1142
1143 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1144 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1145
1146 last = start;
224a88be 1147 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1148 setup_object(s, page, last);
1149 set_freepointer(s, last, p);
1150 last = p;
1151 }
1152 setup_object(s, page, last);
a973e9dd 1153 set_freepointer(s, last, NULL);
81819f0f
CL
1154
1155 page->freelist = start;
1156 page->inuse = 0;
1157out:
81819f0f
CL
1158 return page;
1159}
1160
1161static void __free_slab(struct kmem_cache *s, struct page *page)
1162{
834f3d11
CL
1163 int order = compound_order(page);
1164 int pages = 1 << order;
81819f0f 1165
8a38082d 1166 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
81819f0f
CL
1167 void *p;
1168
1169 slab_pad_check(s, page);
224a88be
CL
1170 for_each_object(p, s, page_address(page),
1171 page->objects)
81819f0f 1172 check_object(s, page, p, 0);
8a38082d 1173 __ClearPageSlubDebug(page);
81819f0f
CL
1174 }
1175
5a896d9e
VN
1176 if (kmemcheck_page_is_tracked(page))
1177 kmemcheck_free_shadow(s, page, compound_order(page));
1178
81819f0f
CL
1179 mod_zone_page_state(page_zone(page),
1180 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1181 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1182 -pages);
81819f0f 1183
49bd5221
CL
1184 __ClearPageSlab(page);
1185 reset_page_mapcount(page);
1eb5ac64
NP
1186 if (current->reclaim_state)
1187 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1188 __free_pages(page, order);
81819f0f
CL
1189}
1190
1191static void rcu_free_slab(struct rcu_head *h)
1192{
1193 struct page *page;
1194
1195 page = container_of((struct list_head *)h, struct page, lru);
1196 __free_slab(page->slab, page);
1197}
1198
1199static void free_slab(struct kmem_cache *s, struct page *page)
1200{
1201 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1202 /*
1203 * RCU free overloads the RCU head over the LRU
1204 */
1205 struct rcu_head *head = (void *)&page->lru;
1206
1207 call_rcu(head, rcu_free_slab);
1208 } else
1209 __free_slab(s, page);
1210}
1211
1212static void discard_slab(struct kmem_cache *s, struct page *page)
1213{
205ab99d 1214 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1215 free_slab(s, page);
1216}
1217
1218/*
1219 * Per slab locking using the pagelock
1220 */
1221static __always_inline void slab_lock(struct page *page)
1222{
1223 bit_spin_lock(PG_locked, &page->flags);
1224}
1225
1226static __always_inline void slab_unlock(struct page *page)
1227{
a76d3546 1228 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1229}
1230
1231static __always_inline int slab_trylock(struct page *page)
1232{
1233 int rc = 1;
1234
1235 rc = bit_spin_trylock(PG_locked, &page->flags);
1236 return rc;
1237}
1238
1239/*
1240 * Management of partially allocated slabs
1241 */
7c2e132c
CL
1242static void add_partial(struct kmem_cache_node *n,
1243 struct page *page, int tail)
81819f0f 1244{
e95eed57
CL
1245 spin_lock(&n->list_lock);
1246 n->nr_partial++;
7c2e132c
CL
1247 if (tail)
1248 list_add_tail(&page->lru, &n->partial);
1249 else
1250 list_add(&page->lru, &n->partial);
81819f0f
CL
1251 spin_unlock(&n->list_lock);
1252}
1253
0121c619 1254static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1255{
1256 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1257
1258 spin_lock(&n->list_lock);
1259 list_del(&page->lru);
1260 n->nr_partial--;
1261 spin_unlock(&n->list_lock);
1262}
1263
1264/*
672bba3a 1265 * Lock slab and remove from the partial list.
81819f0f 1266 *
672bba3a 1267 * Must hold list_lock.
81819f0f 1268 */
0121c619
CL
1269static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1270 struct page *page)
81819f0f
CL
1271{
1272 if (slab_trylock(page)) {
1273 list_del(&page->lru);
1274 n->nr_partial--;
8a38082d 1275 __SetPageSlubFrozen(page);
81819f0f
CL
1276 return 1;
1277 }
1278 return 0;
1279}
1280
1281/*
672bba3a 1282 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1283 */
1284static struct page *get_partial_node(struct kmem_cache_node *n)
1285{
1286 struct page *page;
1287
1288 /*
1289 * Racy check. If we mistakenly see no partial slabs then we
1290 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1291 * partial slab and there is none available then get_partials()
1292 * will return NULL.
81819f0f
CL
1293 */
1294 if (!n || !n->nr_partial)
1295 return NULL;
1296
1297 spin_lock(&n->list_lock);
1298 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1299 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1300 goto out;
1301 page = NULL;
1302out:
1303 spin_unlock(&n->list_lock);
1304 return page;
1305}
1306
1307/*
672bba3a 1308 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1309 */
1310static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1311{
1312#ifdef CONFIG_NUMA
1313 struct zonelist *zonelist;
dd1a239f 1314 struct zoneref *z;
54a6eb5c
MG
1315 struct zone *zone;
1316 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1317 struct page *page;
1318
1319 /*
672bba3a
CL
1320 * The defrag ratio allows a configuration of the tradeoffs between
1321 * inter node defragmentation and node local allocations. A lower
1322 * defrag_ratio increases the tendency to do local allocations
1323 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1324 *
672bba3a
CL
1325 * If the defrag_ratio is set to 0 then kmalloc() always
1326 * returns node local objects. If the ratio is higher then kmalloc()
1327 * may return off node objects because partial slabs are obtained
1328 * from other nodes and filled up.
81819f0f 1329 *
6446faa2 1330 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1331 * defrag_ratio = 1000) then every (well almost) allocation will
1332 * first attempt to defrag slab caches on other nodes. This means
1333 * scanning over all nodes to look for partial slabs which may be
1334 * expensive if we do it every time we are trying to find a slab
1335 * with available objects.
81819f0f 1336 */
9824601e
CL
1337 if (!s->remote_node_defrag_ratio ||
1338 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1339 return NULL;
1340
0e88460d 1341 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1342 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1343 struct kmem_cache_node *n;
1344
54a6eb5c 1345 n = get_node(s, zone_to_nid(zone));
81819f0f 1346
54a6eb5c 1347 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1348 n->nr_partial > s->min_partial) {
81819f0f
CL
1349 page = get_partial_node(n);
1350 if (page)
1351 return page;
1352 }
1353 }
1354#endif
1355 return NULL;
1356}
1357
1358/*
1359 * Get a partial page, lock it and return it.
1360 */
1361static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1362{
1363 struct page *page;
1364 int searchnode = (node == -1) ? numa_node_id() : node;
1365
1366 page = get_partial_node(get_node(s, searchnode));
1367 if (page || (flags & __GFP_THISNODE))
1368 return page;
1369
1370 return get_any_partial(s, flags);
1371}
1372
1373/*
1374 * Move a page back to the lists.
1375 *
1376 * Must be called with the slab lock held.
1377 *
1378 * On exit the slab lock will have been dropped.
1379 */
7c2e132c 1380static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1381{
e95eed57 1382 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1383 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1384
8a38082d 1385 __ClearPageSlubFrozen(page);
81819f0f 1386 if (page->inuse) {
e95eed57 1387
a973e9dd 1388 if (page->freelist) {
7c2e132c 1389 add_partial(n, page, tail);
8ff12cfc
CL
1390 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1391 } else {
1392 stat(c, DEACTIVATE_FULL);
8a38082d
AW
1393 if (SLABDEBUG && PageSlubDebug(page) &&
1394 (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1395 add_full(n, page);
1396 }
81819f0f
CL
1397 slab_unlock(page);
1398 } else {
8ff12cfc 1399 stat(c, DEACTIVATE_EMPTY);
3b89d7d8 1400 if (n->nr_partial < s->min_partial) {
e95eed57 1401 /*
672bba3a
CL
1402 * Adding an empty slab to the partial slabs in order
1403 * to avoid page allocator overhead. This slab needs
1404 * to come after the other slabs with objects in
6446faa2
CL
1405 * so that the others get filled first. That way the
1406 * size of the partial list stays small.
1407 *
0121c619
CL
1408 * kmem_cache_shrink can reclaim any empty slabs from
1409 * the partial list.
e95eed57 1410 */
7c2e132c 1411 add_partial(n, page, 1);
e95eed57
CL
1412 slab_unlock(page);
1413 } else {
1414 slab_unlock(page);
8ff12cfc 1415 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1416 discard_slab(s, page);
1417 }
81819f0f
CL
1418 }
1419}
1420
1421/*
1422 * Remove the cpu slab
1423 */
dfb4f096 1424static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1425{
dfb4f096 1426 struct page *page = c->page;
7c2e132c 1427 int tail = 1;
8ff12cfc 1428
b773ad73 1429 if (page->freelist)
8ff12cfc 1430 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1431 /*
6446faa2 1432 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1433 * because both freelists are empty. So this is unlikely
1434 * to occur.
1435 */
a973e9dd 1436 while (unlikely(c->freelist)) {
894b8788
CL
1437 void **object;
1438
7c2e132c
CL
1439 tail = 0; /* Hot objects. Put the slab first */
1440
894b8788 1441 /* Retrieve object from cpu_freelist */
dfb4f096 1442 object = c->freelist;
b3fba8da 1443 c->freelist = c->freelist[c->offset];
894b8788
CL
1444
1445 /* And put onto the regular freelist */
b3fba8da 1446 object[c->offset] = page->freelist;
894b8788
CL
1447 page->freelist = object;
1448 page->inuse--;
1449 }
dfb4f096 1450 c->page = NULL;
7c2e132c 1451 unfreeze_slab(s, page, tail);
81819f0f
CL
1452}
1453
dfb4f096 1454static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1455{
8ff12cfc 1456 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1457 slab_lock(c->page);
1458 deactivate_slab(s, c);
81819f0f
CL
1459}
1460
1461/*
1462 * Flush cpu slab.
6446faa2 1463 *
81819f0f
CL
1464 * Called from IPI handler with interrupts disabled.
1465 */
0c710013 1466static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1467{
dfb4f096 1468 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1469
dfb4f096
CL
1470 if (likely(c && c->page))
1471 flush_slab(s, c);
81819f0f
CL
1472}
1473
1474static void flush_cpu_slab(void *d)
1475{
1476 struct kmem_cache *s = d;
81819f0f 1477
dfb4f096 1478 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1479}
1480
1481static void flush_all(struct kmem_cache *s)
1482{
15c8b6c1 1483 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1484}
1485
dfb4f096
CL
1486/*
1487 * Check if the objects in a per cpu structure fit numa
1488 * locality expectations.
1489 */
1490static inline int node_match(struct kmem_cache_cpu *c, int node)
1491{
1492#ifdef CONFIG_NUMA
1493 if (node != -1 && c->node != node)
1494 return 0;
1495#endif
1496 return 1;
1497}
1498
81819f0f 1499/*
894b8788
CL
1500 * Slow path. The lockless freelist is empty or we need to perform
1501 * debugging duties.
1502 *
1503 * Interrupts are disabled.
81819f0f 1504 *
894b8788
CL
1505 * Processing is still very fast if new objects have been freed to the
1506 * regular freelist. In that case we simply take over the regular freelist
1507 * as the lockless freelist and zap the regular freelist.
81819f0f 1508 *
894b8788
CL
1509 * If that is not working then we fall back to the partial lists. We take the
1510 * first element of the freelist as the object to allocate now and move the
1511 * rest of the freelist to the lockless freelist.
81819f0f 1512 *
894b8788 1513 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1514 * we need to allocate a new slab. This is the slowest path since it involves
1515 * a call to the page allocator and the setup of a new slab.
81819f0f 1516 */
ce71e27c
EGM
1517static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1518 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1519{
81819f0f 1520 void **object;
dfb4f096 1521 struct page *new;
81819f0f 1522
e72e9c23
LT
1523 /* We handle __GFP_ZERO in the caller */
1524 gfpflags &= ~__GFP_ZERO;
1525
dfb4f096 1526 if (!c->page)
81819f0f
CL
1527 goto new_slab;
1528
dfb4f096
CL
1529 slab_lock(c->page);
1530 if (unlikely(!node_match(c, node)))
81819f0f 1531 goto another_slab;
6446faa2 1532
8ff12cfc 1533 stat(c, ALLOC_REFILL);
6446faa2 1534
894b8788 1535load_freelist:
dfb4f096 1536 object = c->page->freelist;
a973e9dd 1537 if (unlikely(!object))
81819f0f 1538 goto another_slab;
8a38082d 1539 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
81819f0f
CL
1540 goto debug;
1541
b3fba8da 1542 c->freelist = object[c->offset];
39b26464 1543 c->page->inuse = c->page->objects;
a973e9dd 1544 c->page->freelist = NULL;
dfb4f096 1545 c->node = page_to_nid(c->page);
1f84260c 1546unlock_out:
dfb4f096 1547 slab_unlock(c->page);
8ff12cfc 1548 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1549 return object;
1550
1551another_slab:
dfb4f096 1552 deactivate_slab(s, c);
81819f0f
CL
1553
1554new_slab:
dfb4f096
CL
1555 new = get_partial(s, gfpflags, node);
1556 if (new) {
1557 c->page = new;
8ff12cfc 1558 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1559 goto load_freelist;
81819f0f
CL
1560 }
1561
b811c202
CL
1562 if (gfpflags & __GFP_WAIT)
1563 local_irq_enable();
1564
dfb4f096 1565 new = new_slab(s, gfpflags, node);
b811c202
CL
1566
1567 if (gfpflags & __GFP_WAIT)
1568 local_irq_disable();
1569
dfb4f096
CL
1570 if (new) {
1571 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1572 stat(c, ALLOC_SLAB);
05aa3450 1573 if (c->page)
dfb4f096 1574 flush_slab(s, c);
dfb4f096 1575 slab_lock(new);
8a38082d 1576 __SetPageSlubFrozen(new);
dfb4f096 1577 c->page = new;
4b6f0750 1578 goto load_freelist;
81819f0f 1579 }
71c7a06f 1580 return NULL;
81819f0f 1581debug:
dfb4f096 1582 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1583 goto another_slab;
894b8788 1584
dfb4f096 1585 c->page->inuse++;
b3fba8da 1586 c->page->freelist = object[c->offset];
ee3c72a1 1587 c->node = -1;
1f84260c 1588 goto unlock_out;
894b8788
CL
1589}
1590
1591/*
1592 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1593 * have the fastpath folded into their functions. So no function call
1594 * overhead for requests that can be satisfied on the fastpath.
1595 *
1596 * The fastpath works by first checking if the lockless freelist can be used.
1597 * If not then __slab_alloc is called for slow processing.
1598 *
1599 * Otherwise we can simply pick the next object from the lockless free list.
1600 */
06428780 1601static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1602 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1603{
894b8788 1604 void **object;
dfb4f096 1605 struct kmem_cache_cpu *c;
1f84260c 1606 unsigned long flags;
bdb21928 1607 unsigned int objsize;
1f84260c 1608
cf40bd16 1609 lockdep_trace_alloc(gfpflags);
89124d70 1610 might_sleep_if(gfpflags & __GFP_WAIT);
3c506efd 1611
773ff60e
AM
1612 if (should_failslab(s->objsize, gfpflags))
1613 return NULL;
1f84260c 1614
894b8788 1615 local_irq_save(flags);
dfb4f096 1616 c = get_cpu_slab(s, smp_processor_id());
bdb21928 1617 objsize = c->objsize;
a973e9dd 1618 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1619
dfb4f096 1620 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1621
1622 else {
dfb4f096 1623 object = c->freelist;
b3fba8da 1624 c->freelist = object[c->offset];
8ff12cfc 1625 stat(c, ALLOC_FASTPATH);
894b8788
CL
1626 }
1627 local_irq_restore(flags);
d07dbea4
CL
1628
1629 if (unlikely((gfpflags & __GFP_ZERO) && object))
bdb21928 1630 memset(object, 0, objsize);
d07dbea4 1631
5a896d9e 1632 kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
06f22f13 1633 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
5a896d9e 1634
894b8788 1635 return object;
81819f0f
CL
1636}
1637
1638void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1639{
5b882be4
EGM
1640 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1641
ca2b84cb 1642 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1643
1644 return ret;
81819f0f
CL
1645}
1646EXPORT_SYMBOL(kmem_cache_alloc);
1647
5b882be4
EGM
1648#ifdef CONFIG_KMEMTRACE
1649void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1650{
1651 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1652}
1653EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1654#endif
1655
81819f0f
CL
1656#ifdef CONFIG_NUMA
1657void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1658{
5b882be4
EGM
1659 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1660
ca2b84cb
EGM
1661 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1662 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1663
1664 return ret;
81819f0f
CL
1665}
1666EXPORT_SYMBOL(kmem_cache_alloc_node);
1667#endif
1668
5b882be4
EGM
1669#ifdef CONFIG_KMEMTRACE
1670void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1671 gfp_t gfpflags,
1672 int node)
1673{
1674 return slab_alloc(s, gfpflags, node, _RET_IP_);
1675}
1676EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1677#endif
1678
81819f0f 1679/*
894b8788
CL
1680 * Slow patch handling. This may still be called frequently since objects
1681 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1682 *
894b8788
CL
1683 * So we still attempt to reduce cache line usage. Just take the slab
1684 * lock and free the item. If there is no additional partial page
1685 * handling required then we can return immediately.
81819f0f 1686 */
894b8788 1687static void __slab_free(struct kmem_cache *s, struct page *page,
ce71e27c 1688 void *x, unsigned long addr, unsigned int offset)
81819f0f
CL
1689{
1690 void *prior;
1691 void **object = (void *)x;
8ff12cfc 1692 struct kmem_cache_cpu *c;
81819f0f 1693
8ff12cfc
CL
1694 c = get_cpu_slab(s, raw_smp_processor_id());
1695 stat(c, FREE_SLOWPATH);
81819f0f
CL
1696 slab_lock(page);
1697
8a38082d 1698 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
81819f0f 1699 goto debug;
6446faa2 1700
81819f0f 1701checks_ok:
b3fba8da 1702 prior = object[offset] = page->freelist;
81819f0f
CL
1703 page->freelist = object;
1704 page->inuse--;
1705
8a38082d 1706 if (unlikely(PageSlubFrozen(page))) {
8ff12cfc 1707 stat(c, FREE_FROZEN);
81819f0f 1708 goto out_unlock;
8ff12cfc 1709 }
81819f0f
CL
1710
1711 if (unlikely(!page->inuse))
1712 goto slab_empty;
1713
1714 /*
6446faa2 1715 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1716 * then add it.
1717 */
a973e9dd 1718 if (unlikely(!prior)) {
7c2e132c 1719 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1720 stat(c, FREE_ADD_PARTIAL);
1721 }
81819f0f
CL
1722
1723out_unlock:
1724 slab_unlock(page);
81819f0f
CL
1725 return;
1726
1727slab_empty:
a973e9dd 1728 if (prior) {
81819f0f 1729 /*
672bba3a 1730 * Slab still on the partial list.
81819f0f
CL
1731 */
1732 remove_partial(s, page);
8ff12cfc
CL
1733 stat(c, FREE_REMOVE_PARTIAL);
1734 }
81819f0f 1735 slab_unlock(page);
8ff12cfc 1736 stat(c, FREE_SLAB);
81819f0f 1737 discard_slab(s, page);
81819f0f
CL
1738 return;
1739
1740debug:
3ec09742 1741 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1742 goto out_unlock;
77c5e2d0 1743 goto checks_ok;
81819f0f
CL
1744}
1745
894b8788
CL
1746/*
1747 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1748 * can perform fastpath freeing without additional function calls.
1749 *
1750 * The fastpath is only possible if we are freeing to the current cpu slab
1751 * of this processor. This typically the case if we have just allocated
1752 * the item before.
1753 *
1754 * If fastpath is not possible then fall back to __slab_free where we deal
1755 * with all sorts of special processing.
1756 */
06428780 1757static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1758 struct page *page, void *x, unsigned long addr)
894b8788
CL
1759{
1760 void **object = (void *)x;
dfb4f096 1761 struct kmem_cache_cpu *c;
1f84260c
CL
1762 unsigned long flags;
1763
06f22f13 1764 kmemleak_free_recursive(x, s->flags);
894b8788 1765 local_irq_save(flags);
dfb4f096 1766 c = get_cpu_slab(s, smp_processor_id());
5a896d9e 1767 kmemcheck_slab_free(s, object, c->objsize);
27d9e4e9 1768 debug_check_no_locks_freed(object, c->objsize);
3ac7fe5a 1769 if (!(s->flags & SLAB_DEBUG_OBJECTS))
6047a007 1770 debug_check_no_obj_freed(object, c->objsize);
ee3c72a1 1771 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1772 object[c->offset] = c->freelist;
dfb4f096 1773 c->freelist = object;
8ff12cfc 1774 stat(c, FREE_FASTPATH);
894b8788 1775 } else
b3fba8da 1776 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1777
1778 local_irq_restore(flags);
1779}
1780
81819f0f
CL
1781void kmem_cache_free(struct kmem_cache *s, void *x)
1782{
77c5e2d0 1783 struct page *page;
81819f0f 1784
b49af68f 1785 page = virt_to_head_page(x);
81819f0f 1786
ce71e27c 1787 slab_free(s, page, x, _RET_IP_);
5b882be4 1788
ca2b84cb 1789 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1790}
1791EXPORT_SYMBOL(kmem_cache_free);
1792
e9beef18 1793/* Figure out on which slab page the object resides */
81819f0f
CL
1794static struct page *get_object_page(const void *x)
1795{
b49af68f 1796 struct page *page = virt_to_head_page(x);
81819f0f
CL
1797
1798 if (!PageSlab(page))
1799 return NULL;
1800
1801 return page;
1802}
1803
1804/*
672bba3a
CL
1805 * Object placement in a slab is made very easy because we always start at
1806 * offset 0. If we tune the size of the object to the alignment then we can
1807 * get the required alignment by putting one properly sized object after
1808 * another.
81819f0f
CL
1809 *
1810 * Notice that the allocation order determines the sizes of the per cpu
1811 * caches. Each processor has always one slab available for allocations.
1812 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1813 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1814 * locking overhead.
81819f0f
CL
1815 */
1816
1817/*
1818 * Mininum / Maximum order of slab pages. This influences locking overhead
1819 * and slab fragmentation. A higher order reduces the number of partial slabs
1820 * and increases the number of allocations possible without having to
1821 * take the list_lock.
1822 */
1823static int slub_min_order;
114e9e89 1824static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1825static int slub_min_objects;
81819f0f
CL
1826
1827/*
1828 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1829 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1830 */
1831static int slub_nomerge;
1832
81819f0f
CL
1833/*
1834 * Calculate the order of allocation given an slab object size.
1835 *
672bba3a
CL
1836 * The order of allocation has significant impact on performance and other
1837 * system components. Generally order 0 allocations should be preferred since
1838 * order 0 does not cause fragmentation in the page allocator. Larger objects
1839 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1840 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1841 * would be wasted.
1842 *
1843 * In order to reach satisfactory performance we must ensure that a minimum
1844 * number of objects is in one slab. Otherwise we may generate too much
1845 * activity on the partial lists which requires taking the list_lock. This is
1846 * less a concern for large slabs though which are rarely used.
81819f0f 1847 *
672bba3a
CL
1848 * slub_max_order specifies the order where we begin to stop considering the
1849 * number of objects in a slab as critical. If we reach slub_max_order then
1850 * we try to keep the page order as low as possible. So we accept more waste
1851 * of space in favor of a small page order.
81819f0f 1852 *
672bba3a
CL
1853 * Higher order allocations also allow the placement of more objects in a
1854 * slab and thereby reduce object handling overhead. If the user has
1855 * requested a higher mininum order then we start with that one instead of
1856 * the smallest order which will fit the object.
81819f0f 1857 */
5e6d444e
CL
1858static inline int slab_order(int size, int min_objects,
1859 int max_order, int fract_leftover)
81819f0f
CL
1860{
1861 int order;
1862 int rem;
6300ea75 1863 int min_order = slub_min_order;
81819f0f 1864
210b5c06
CG
1865 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1866 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1867
6300ea75 1868 for (order = max(min_order,
5e6d444e
CL
1869 fls(min_objects * size - 1) - PAGE_SHIFT);
1870 order <= max_order; order++) {
81819f0f 1871
5e6d444e 1872 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1873
5e6d444e 1874 if (slab_size < min_objects * size)
81819f0f
CL
1875 continue;
1876
1877 rem = slab_size % size;
1878
5e6d444e 1879 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1880 break;
1881
1882 }
672bba3a 1883
81819f0f
CL
1884 return order;
1885}
1886
5e6d444e
CL
1887static inline int calculate_order(int size)
1888{
1889 int order;
1890 int min_objects;
1891 int fraction;
e8120ff1 1892 int max_objects;
5e6d444e
CL
1893
1894 /*
1895 * Attempt to find best configuration for a slab. This
1896 * works by first attempting to generate a layout with
1897 * the best configuration and backing off gradually.
1898 *
1899 * First we reduce the acceptable waste in a slab. Then
1900 * we reduce the minimum objects required in a slab.
1901 */
1902 min_objects = slub_min_objects;
9b2cd506
CL
1903 if (!min_objects)
1904 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
1905 max_objects = (PAGE_SIZE << slub_max_order)/size;
1906 min_objects = min(min_objects, max_objects);
1907
5e6d444e 1908 while (min_objects > 1) {
c124f5b5 1909 fraction = 16;
5e6d444e
CL
1910 while (fraction >= 4) {
1911 order = slab_order(size, min_objects,
1912 slub_max_order, fraction);
1913 if (order <= slub_max_order)
1914 return order;
1915 fraction /= 2;
1916 }
e8120ff1 1917 min_objects --;
5e6d444e
CL
1918 }
1919
1920 /*
1921 * We were unable to place multiple objects in a slab. Now
1922 * lets see if we can place a single object there.
1923 */
1924 order = slab_order(size, 1, slub_max_order, 1);
1925 if (order <= slub_max_order)
1926 return order;
1927
1928 /*
1929 * Doh this slab cannot be placed using slub_max_order.
1930 */
1931 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 1932 if (order < MAX_ORDER)
5e6d444e
CL
1933 return order;
1934 return -ENOSYS;
1935}
1936
81819f0f 1937/*
672bba3a 1938 * Figure out what the alignment of the objects will be.
81819f0f
CL
1939 */
1940static unsigned long calculate_alignment(unsigned long flags,
1941 unsigned long align, unsigned long size)
1942{
1943 /*
6446faa2
CL
1944 * If the user wants hardware cache aligned objects then follow that
1945 * suggestion if the object is sufficiently large.
81819f0f 1946 *
6446faa2
CL
1947 * The hardware cache alignment cannot override the specified
1948 * alignment though. If that is greater then use it.
81819f0f 1949 */
b6210386
NP
1950 if (flags & SLAB_HWCACHE_ALIGN) {
1951 unsigned long ralign = cache_line_size();
1952 while (size <= ralign / 2)
1953 ralign /= 2;
1954 align = max(align, ralign);
1955 }
81819f0f
CL
1956
1957 if (align < ARCH_SLAB_MINALIGN)
b6210386 1958 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1959
1960 return ALIGN(align, sizeof(void *));
1961}
1962
dfb4f096
CL
1963static void init_kmem_cache_cpu(struct kmem_cache *s,
1964 struct kmem_cache_cpu *c)
1965{
1966 c->page = NULL;
a973e9dd 1967 c->freelist = NULL;
dfb4f096 1968 c->node = 0;
42a9fdbb
CL
1969 c->offset = s->offset / sizeof(void *);
1970 c->objsize = s->objsize;
62f75532
PE
1971#ifdef CONFIG_SLUB_STATS
1972 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1973#endif
dfb4f096
CL
1974}
1975
5595cffc
PE
1976static void
1977init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
1978{
1979 n->nr_partial = 0;
81819f0f
CL
1980 spin_lock_init(&n->list_lock);
1981 INIT_LIST_HEAD(&n->partial);
8ab1372f 1982#ifdef CONFIG_SLUB_DEBUG
0f389ec6 1983 atomic_long_set(&n->nr_slabs, 0);
02b71b70 1984 atomic_long_set(&n->total_objects, 0);
643b1138 1985 INIT_LIST_HEAD(&n->full);
8ab1372f 1986#endif
81819f0f
CL
1987}
1988
4c93c355
CL
1989#ifdef CONFIG_SMP
1990/*
1991 * Per cpu array for per cpu structures.
1992 *
1993 * The per cpu array places all kmem_cache_cpu structures from one processor
1994 * close together meaning that it becomes possible that multiple per cpu
1995 * structures are contained in one cacheline. This may be particularly
1996 * beneficial for the kmalloc caches.
1997 *
1998 * A desktop system typically has around 60-80 slabs. With 100 here we are
1999 * likely able to get per cpu structures for all caches from the array defined
2000 * here. We must be able to cover all kmalloc caches during bootstrap.
2001 *
2002 * If the per cpu array is exhausted then fall back to kmalloc
2003 * of individual cachelines. No sharing is possible then.
2004 */
2005#define NR_KMEM_CACHE_CPU 100
2006
2007static DEFINE_PER_CPU(struct kmem_cache_cpu,
2008 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2009
2010static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
174596a0 2011static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
4c93c355
CL
2012
2013static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2014 int cpu, gfp_t flags)
2015{
2016 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2017
2018 if (c)
2019 per_cpu(kmem_cache_cpu_free, cpu) =
2020 (void *)c->freelist;
2021 else {
2022 /* Table overflow: So allocate ourselves */
2023 c = kmalloc_node(
2024 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2025 flags, cpu_to_node(cpu));
2026 if (!c)
2027 return NULL;
2028 }
2029
2030 init_kmem_cache_cpu(s, c);
2031 return c;
2032}
2033
2034static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2035{
2036 if (c < per_cpu(kmem_cache_cpu, cpu) ||
37189094 2037 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
4c93c355
CL
2038 kfree(c);
2039 return;
2040 }
2041 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2042 per_cpu(kmem_cache_cpu_free, cpu) = c;
2043}
2044
2045static void free_kmem_cache_cpus(struct kmem_cache *s)
2046{
2047 int cpu;
2048
2049 for_each_online_cpu(cpu) {
2050 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2051
2052 if (c) {
2053 s->cpu_slab[cpu] = NULL;
2054 free_kmem_cache_cpu(c, cpu);
2055 }
2056 }
2057}
2058
2059static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2060{
2061 int cpu;
2062
2063 for_each_online_cpu(cpu) {
2064 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2065
2066 if (c)
2067 continue;
2068
2069 c = alloc_kmem_cache_cpu(s, cpu, flags);
2070 if (!c) {
2071 free_kmem_cache_cpus(s);
2072 return 0;
2073 }
2074 s->cpu_slab[cpu] = c;
2075 }
2076 return 1;
2077}
2078
2079/*
2080 * Initialize the per cpu array.
2081 */
2082static void init_alloc_cpu_cpu(int cpu)
2083{
2084 int i;
2085
174596a0 2086 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
4c93c355
CL
2087 return;
2088
2089 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2090 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2091
174596a0 2092 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
4c93c355
CL
2093}
2094
2095static void __init init_alloc_cpu(void)
2096{
2097 int cpu;
2098
2099 for_each_online_cpu(cpu)
2100 init_alloc_cpu_cpu(cpu);
2101 }
2102
2103#else
2104static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2105static inline void init_alloc_cpu(void) {}
2106
2107static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2108{
2109 init_kmem_cache_cpu(s, &s->cpu_slab);
2110 return 1;
2111}
2112#endif
2113
81819f0f
CL
2114#ifdef CONFIG_NUMA
2115/*
2116 * No kmalloc_node yet so do it by hand. We know that this is the first
2117 * slab on the node for this slabcache. There are no concurrent accesses
2118 * possible.
2119 *
2120 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2121 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2122 * memory on a fresh node that has no slab structures yet.
81819f0f 2123 */
0094de92 2124static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
81819f0f
CL
2125{
2126 struct page *page;
2127 struct kmem_cache_node *n;
ba84c73c 2128 unsigned long flags;
81819f0f
CL
2129
2130 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2131
a2f92ee7 2132 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2133
2134 BUG_ON(!page);
a2f92ee7
CL
2135 if (page_to_nid(page) != node) {
2136 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2137 "node %d\n", node);
2138 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2139 "in order to be able to continue\n");
2140 }
2141
81819f0f
CL
2142 n = page->freelist;
2143 BUG_ON(!n);
2144 page->freelist = get_freepointer(kmalloc_caches, n);
2145 page->inuse++;
2146 kmalloc_caches->node[node] = n;
8ab1372f 2147#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2148 init_object(kmalloc_caches, n, 1);
2149 init_tracking(kmalloc_caches, n);
8ab1372f 2150#endif
5595cffc 2151 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2152 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2153
ba84c73c 2154 /*
2155 * lockdep requires consistent irq usage for each lock
2156 * so even though there cannot be a race this early in
2157 * the boot sequence, we still disable irqs.
2158 */
2159 local_irq_save(flags);
7c2e132c 2160 add_partial(n, page, 0);
ba84c73c 2161 local_irq_restore(flags);
81819f0f
CL
2162}
2163
2164static void free_kmem_cache_nodes(struct kmem_cache *s)
2165{
2166 int node;
2167
f64dc58c 2168 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2169 struct kmem_cache_node *n = s->node[node];
2170 if (n && n != &s->local_node)
2171 kmem_cache_free(kmalloc_caches, n);
2172 s->node[node] = NULL;
2173 }
2174}
2175
2176static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2177{
2178 int node;
2179 int local_node;
2180
2181 if (slab_state >= UP)
2182 local_node = page_to_nid(virt_to_page(s));
2183 else
2184 local_node = 0;
2185
f64dc58c 2186 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2187 struct kmem_cache_node *n;
2188
2189 if (local_node == node)
2190 n = &s->local_node;
2191 else {
2192 if (slab_state == DOWN) {
0094de92 2193 early_kmem_cache_node_alloc(gfpflags, node);
81819f0f
CL
2194 continue;
2195 }
2196 n = kmem_cache_alloc_node(kmalloc_caches,
2197 gfpflags, node);
2198
2199 if (!n) {
2200 free_kmem_cache_nodes(s);
2201 return 0;
2202 }
2203
2204 }
2205 s->node[node] = n;
5595cffc 2206 init_kmem_cache_node(n, s);
81819f0f
CL
2207 }
2208 return 1;
2209}
2210#else
2211static void free_kmem_cache_nodes(struct kmem_cache *s)
2212{
2213}
2214
2215static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2216{
5595cffc 2217 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2218 return 1;
2219}
2220#endif
2221
c0bdb232 2222static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2223{
2224 if (min < MIN_PARTIAL)
2225 min = MIN_PARTIAL;
2226 else if (min > MAX_PARTIAL)
2227 min = MAX_PARTIAL;
2228 s->min_partial = min;
2229}
2230
81819f0f
CL
2231/*
2232 * calculate_sizes() determines the order and the distribution of data within
2233 * a slab object.
2234 */
06b285dc 2235static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2236{
2237 unsigned long flags = s->flags;
2238 unsigned long size = s->objsize;
2239 unsigned long align = s->align;
834f3d11 2240 int order;
81819f0f 2241
d8b42bf5
CL
2242 /*
2243 * Round up object size to the next word boundary. We can only
2244 * place the free pointer at word boundaries and this determines
2245 * the possible location of the free pointer.
2246 */
2247 size = ALIGN(size, sizeof(void *));
2248
2249#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2250 /*
2251 * Determine if we can poison the object itself. If the user of
2252 * the slab may touch the object after free or before allocation
2253 * then we should never poison the object itself.
2254 */
2255 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2256 !s->ctor)
81819f0f
CL
2257 s->flags |= __OBJECT_POISON;
2258 else
2259 s->flags &= ~__OBJECT_POISON;
2260
81819f0f
CL
2261
2262 /*
672bba3a 2263 * If we are Redzoning then check if there is some space between the
81819f0f 2264 * end of the object and the free pointer. If not then add an
672bba3a 2265 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2266 */
2267 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2268 size += sizeof(void *);
41ecc55b 2269#endif
81819f0f
CL
2270
2271 /*
672bba3a
CL
2272 * With that we have determined the number of bytes in actual use
2273 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2274 */
2275 s->inuse = size;
2276
2277 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2278 s->ctor)) {
81819f0f
CL
2279 /*
2280 * Relocate free pointer after the object if it is not
2281 * permitted to overwrite the first word of the object on
2282 * kmem_cache_free.
2283 *
2284 * This is the case if we do RCU, have a constructor or
2285 * destructor or are poisoning the objects.
2286 */
2287 s->offset = size;
2288 size += sizeof(void *);
2289 }
2290
c12b3c62 2291#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2292 if (flags & SLAB_STORE_USER)
2293 /*
2294 * Need to store information about allocs and frees after
2295 * the object.
2296 */
2297 size += 2 * sizeof(struct track);
2298
be7b3fbc 2299 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2300 /*
2301 * Add some empty padding so that we can catch
2302 * overwrites from earlier objects rather than let
2303 * tracking information or the free pointer be
0211a9c8 2304 * corrupted if a user writes before the start
81819f0f
CL
2305 * of the object.
2306 */
2307 size += sizeof(void *);
41ecc55b 2308#endif
672bba3a 2309
81819f0f
CL
2310 /*
2311 * Determine the alignment based on various parameters that the
65c02d4c
CL
2312 * user specified and the dynamic determination of cache line size
2313 * on bootup.
81819f0f
CL
2314 */
2315 align = calculate_alignment(flags, align, s->objsize);
2316
2317 /*
2318 * SLUB stores one object immediately after another beginning from
2319 * offset 0. In order to align the objects we have to simply size
2320 * each object to conform to the alignment.
2321 */
2322 size = ALIGN(size, align);
2323 s->size = size;
06b285dc
CL
2324 if (forced_order >= 0)
2325 order = forced_order;
2326 else
2327 order = calculate_order(size);
81819f0f 2328
834f3d11 2329 if (order < 0)
81819f0f
CL
2330 return 0;
2331
b7a49f0d 2332 s->allocflags = 0;
834f3d11 2333 if (order)
b7a49f0d
CL
2334 s->allocflags |= __GFP_COMP;
2335
2336 if (s->flags & SLAB_CACHE_DMA)
2337 s->allocflags |= SLUB_DMA;
2338
2339 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2340 s->allocflags |= __GFP_RECLAIMABLE;
2341
81819f0f
CL
2342 /*
2343 * Determine the number of objects per slab
2344 */
834f3d11 2345 s->oo = oo_make(order, size);
65c3376a 2346 s->min = oo_make(get_order(size), size);
205ab99d
CL
2347 if (oo_objects(s->oo) > oo_objects(s->max))
2348 s->max = s->oo;
81819f0f 2349
834f3d11 2350 return !!oo_objects(s->oo);
81819f0f
CL
2351
2352}
2353
81819f0f
CL
2354static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2355 const char *name, size_t size,
2356 size_t align, unsigned long flags,
51cc5068 2357 void (*ctor)(void *))
81819f0f
CL
2358{
2359 memset(s, 0, kmem_size);
2360 s->name = name;
2361 s->ctor = ctor;
81819f0f 2362 s->objsize = size;
81819f0f 2363 s->align = align;
ba0268a8 2364 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2365
06b285dc 2366 if (!calculate_sizes(s, -1))
81819f0f
CL
2367 goto error;
2368
3b89d7d8
DR
2369 /*
2370 * The larger the object size is, the more pages we want on the partial
2371 * list to avoid pounding the page allocator excessively.
2372 */
c0bdb232 2373 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2374 s->refcount = 1;
2375#ifdef CONFIG_NUMA
e2cb96b7 2376 s->remote_node_defrag_ratio = 1000;
81819f0f 2377#endif
dfb4f096
CL
2378 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2379 goto error;
81819f0f 2380
dfb4f096 2381 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2382 return 1;
4c93c355 2383 free_kmem_cache_nodes(s);
81819f0f
CL
2384error:
2385 if (flags & SLAB_PANIC)
2386 panic("Cannot create slab %s size=%lu realsize=%u "
2387 "order=%u offset=%u flags=%lx\n",
834f3d11 2388 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2389 s->offset, flags);
2390 return 0;
2391}
81819f0f
CL
2392
2393/*
2394 * Check if a given pointer is valid
2395 */
2396int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2397{
06428780 2398 struct page *page;
81819f0f
CL
2399
2400 page = get_object_page(object);
2401
2402 if (!page || s != page->slab)
2403 /* No slab or wrong slab */
2404 return 0;
2405
abcd08a6 2406 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2407 return 0;
2408
2409 /*
2410 * We could also check if the object is on the slabs freelist.
2411 * But this would be too expensive and it seems that the main
6446faa2 2412 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2413 * to a certain slab.
2414 */
2415 return 1;
2416}
2417EXPORT_SYMBOL(kmem_ptr_validate);
2418
2419/*
2420 * Determine the size of a slab object
2421 */
2422unsigned int kmem_cache_size(struct kmem_cache *s)
2423{
2424 return s->objsize;
2425}
2426EXPORT_SYMBOL(kmem_cache_size);
2427
2428const char *kmem_cache_name(struct kmem_cache *s)
2429{
2430 return s->name;
2431}
2432EXPORT_SYMBOL(kmem_cache_name);
2433
33b12c38
CL
2434static void list_slab_objects(struct kmem_cache *s, struct page *page,
2435 const char *text)
2436{
2437#ifdef CONFIG_SLUB_DEBUG
2438 void *addr = page_address(page);
2439 void *p;
2440 DECLARE_BITMAP(map, page->objects);
2441
2442 bitmap_zero(map, page->objects);
2443 slab_err(s, page, "%s", text);
2444 slab_lock(page);
2445 for_each_free_object(p, s, page->freelist)
2446 set_bit(slab_index(p, s, addr), map);
2447
2448 for_each_object(p, s, addr, page->objects) {
2449
2450 if (!test_bit(slab_index(p, s, addr), map)) {
2451 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2452 p, p - addr);
2453 print_tracking(s, p);
2454 }
2455 }
2456 slab_unlock(page);
2457#endif
2458}
2459
81819f0f 2460/*
599870b1 2461 * Attempt to free all partial slabs on a node.
81819f0f 2462 */
599870b1 2463static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2464{
81819f0f
CL
2465 unsigned long flags;
2466 struct page *page, *h;
2467
2468 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2469 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2470 if (!page->inuse) {
2471 list_del(&page->lru);
2472 discard_slab(s, page);
599870b1 2473 n->nr_partial--;
33b12c38
CL
2474 } else {
2475 list_slab_objects(s, page,
2476 "Objects remaining on kmem_cache_close()");
599870b1 2477 }
33b12c38 2478 }
81819f0f 2479 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2480}
2481
2482/*
672bba3a 2483 * Release all resources used by a slab cache.
81819f0f 2484 */
0c710013 2485static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2486{
2487 int node;
2488
2489 flush_all(s);
2490
2491 /* Attempt to free all objects */
4c93c355 2492 free_kmem_cache_cpus(s);
f64dc58c 2493 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2494 struct kmem_cache_node *n = get_node(s, node);
2495
599870b1
CL
2496 free_partial(s, n);
2497 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2498 return 1;
2499 }
2500 free_kmem_cache_nodes(s);
2501 return 0;
2502}
2503
2504/*
2505 * Close a cache and release the kmem_cache structure
2506 * (must be used for caches created using kmem_cache_create)
2507 */
2508void kmem_cache_destroy(struct kmem_cache *s)
2509{
2510 down_write(&slub_lock);
2511 s->refcount--;
2512 if (!s->refcount) {
2513 list_del(&s->list);
a0e1d1be 2514 up_write(&slub_lock);
d629d819
PE
2515 if (kmem_cache_close(s)) {
2516 printk(KERN_ERR "SLUB %s: %s called for cache that "
2517 "still has objects.\n", s->name, __func__);
2518 dump_stack();
2519 }
81819f0f 2520 sysfs_slab_remove(s);
a0e1d1be
CL
2521 } else
2522 up_write(&slub_lock);
81819f0f
CL
2523}
2524EXPORT_SYMBOL(kmem_cache_destroy);
2525
2526/********************************************************************
2527 * Kmalloc subsystem
2528 *******************************************************************/
2529
ffadd4d0 2530struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
81819f0f
CL
2531EXPORT_SYMBOL(kmalloc_caches);
2532
81819f0f
CL
2533static int __init setup_slub_min_order(char *str)
2534{
06428780 2535 get_option(&str, &slub_min_order);
81819f0f
CL
2536
2537 return 1;
2538}
2539
2540__setup("slub_min_order=", setup_slub_min_order);
2541
2542static int __init setup_slub_max_order(char *str)
2543{
06428780 2544 get_option(&str, &slub_max_order);
818cf590 2545 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2546
2547 return 1;
2548}
2549
2550__setup("slub_max_order=", setup_slub_max_order);
2551
2552static int __init setup_slub_min_objects(char *str)
2553{
06428780 2554 get_option(&str, &slub_min_objects);
81819f0f
CL
2555
2556 return 1;
2557}
2558
2559__setup("slub_min_objects=", setup_slub_min_objects);
2560
2561static int __init setup_slub_nomerge(char *str)
2562{
2563 slub_nomerge = 1;
2564 return 1;
2565}
2566
2567__setup("slub_nomerge", setup_slub_nomerge);
2568
81819f0f
CL
2569static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2570 const char *name, int size, gfp_t gfp_flags)
2571{
2572 unsigned int flags = 0;
2573
2574 if (gfp_flags & SLUB_DMA)
2575 flags = SLAB_CACHE_DMA;
2576
83b519e8
PE
2577 /*
2578 * This function is called with IRQs disabled during early-boot on
2579 * single CPU so there's no need to take slub_lock here.
2580 */
81819f0f 2581 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2582 flags, NULL))
81819f0f
CL
2583 goto panic;
2584
2585 list_add(&s->list, &slab_caches);
83b519e8 2586
81819f0f
CL
2587 if (sysfs_slab_add(s))
2588 goto panic;
2589 return s;
2590
2591panic:
2592 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2593}
2594
2e443fd0 2595#ifdef CONFIG_ZONE_DMA
ffadd4d0 2596static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
1ceef402
CL
2597
2598static void sysfs_add_func(struct work_struct *w)
2599{
2600 struct kmem_cache *s;
2601
2602 down_write(&slub_lock);
2603 list_for_each_entry(s, &slab_caches, list) {
2604 if (s->flags & __SYSFS_ADD_DEFERRED) {
2605 s->flags &= ~__SYSFS_ADD_DEFERRED;
2606 sysfs_slab_add(s);
2607 }
2608 }
2609 up_write(&slub_lock);
2610}
2611
2612static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2613
2e443fd0
CL
2614static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2615{
2616 struct kmem_cache *s;
2e443fd0
CL
2617 char *text;
2618 size_t realsize;
2619
2620 s = kmalloc_caches_dma[index];
2621 if (s)
2622 return s;
2623
2624 /* Dynamically create dma cache */
1ceef402
CL
2625 if (flags & __GFP_WAIT)
2626 down_write(&slub_lock);
2627 else {
2628 if (!down_write_trylock(&slub_lock))
2629 goto out;
2630 }
2631
2632 if (kmalloc_caches_dma[index])
2633 goto unlock_out;
2e443fd0 2634
7b55f620 2635 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2636 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2637 (unsigned int)realsize);
1ceef402
CL
2638 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2639
2640 if (!s || !text || !kmem_cache_open(s, flags, text,
2641 realsize, ARCH_KMALLOC_MINALIGN,
5a896d9e
VN
2642 SLAB_CACHE_DMA|SLAB_NOTRACK|__SYSFS_ADD_DEFERRED,
2643 NULL)) {
1ceef402
CL
2644 kfree(s);
2645 kfree(text);
2646 goto unlock_out;
dfce8648 2647 }
1ceef402
CL
2648
2649 list_add(&s->list, &slab_caches);
2650 kmalloc_caches_dma[index] = s;
2651
2652 schedule_work(&sysfs_add_work);
2653
2654unlock_out:
dfce8648 2655 up_write(&slub_lock);
1ceef402 2656out:
dfce8648 2657 return kmalloc_caches_dma[index];
2e443fd0
CL
2658}
2659#endif
2660
f1b26339
CL
2661/*
2662 * Conversion table for small slabs sizes / 8 to the index in the
2663 * kmalloc array. This is necessary for slabs < 192 since we have non power
2664 * of two cache sizes there. The size of larger slabs can be determined using
2665 * fls.
2666 */
2667static s8 size_index[24] = {
2668 3, /* 8 */
2669 4, /* 16 */
2670 5, /* 24 */
2671 5, /* 32 */
2672 6, /* 40 */
2673 6, /* 48 */
2674 6, /* 56 */
2675 6, /* 64 */
2676 1, /* 72 */
2677 1, /* 80 */
2678 1, /* 88 */
2679 1, /* 96 */
2680 7, /* 104 */
2681 7, /* 112 */
2682 7, /* 120 */
2683 7, /* 128 */
2684 2, /* 136 */
2685 2, /* 144 */
2686 2, /* 152 */
2687 2, /* 160 */
2688 2, /* 168 */
2689 2, /* 176 */
2690 2, /* 184 */
2691 2 /* 192 */
2692};
2693
81819f0f
CL
2694static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2695{
f1b26339 2696 int index;
81819f0f 2697
f1b26339
CL
2698 if (size <= 192) {
2699 if (!size)
2700 return ZERO_SIZE_PTR;
81819f0f 2701
f1b26339 2702 index = size_index[(size - 1) / 8];
aadb4bc4 2703 } else
f1b26339 2704 index = fls(size - 1);
81819f0f
CL
2705
2706#ifdef CONFIG_ZONE_DMA
f1b26339 2707 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2708 return dma_kmalloc_cache(index, flags);
f1b26339 2709
81819f0f
CL
2710#endif
2711 return &kmalloc_caches[index];
2712}
2713
2714void *__kmalloc(size_t size, gfp_t flags)
2715{
aadb4bc4 2716 struct kmem_cache *s;
5b882be4 2717 void *ret;
81819f0f 2718
ffadd4d0 2719 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2720 return kmalloc_large(size, flags);
aadb4bc4
CL
2721
2722 s = get_slab(size, flags);
2723
2724 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2725 return s;
2726
5b882be4
EGM
2727 ret = slab_alloc(s, flags, -1, _RET_IP_);
2728
ca2b84cb 2729 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2730
2731 return ret;
81819f0f
CL
2732}
2733EXPORT_SYMBOL(__kmalloc);
2734
f619cfe1
CL
2735static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2736{
2737 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2738 get_order(size));
2739
2740 if (page)
2741 return page_address(page);
2742 else
2743 return NULL;
2744}
2745
81819f0f
CL
2746#ifdef CONFIG_NUMA
2747void *__kmalloc_node(size_t size, gfp_t flags, int node)
2748{
aadb4bc4 2749 struct kmem_cache *s;
5b882be4 2750 void *ret;
81819f0f 2751
057685cf 2752 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2753 ret = kmalloc_large_node(size, flags, node);
2754
ca2b84cb
EGM
2755 trace_kmalloc_node(_RET_IP_, ret,
2756 size, PAGE_SIZE << get_order(size),
2757 flags, node);
5b882be4
EGM
2758
2759 return ret;
2760 }
aadb4bc4
CL
2761
2762 s = get_slab(size, flags);
2763
2764 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2765 return s;
2766
5b882be4
EGM
2767 ret = slab_alloc(s, flags, node, _RET_IP_);
2768
ca2b84cb 2769 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2770
2771 return ret;
81819f0f
CL
2772}
2773EXPORT_SYMBOL(__kmalloc_node);
2774#endif
2775
2776size_t ksize(const void *object)
2777{
272c1d21 2778 struct page *page;
81819f0f
CL
2779 struct kmem_cache *s;
2780
ef8b4520 2781 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2782 return 0;
2783
294a80a8 2784 page = virt_to_head_page(object);
294a80a8 2785
76994412
PE
2786 if (unlikely(!PageSlab(page))) {
2787 WARN_ON(!PageCompound(page));
294a80a8 2788 return PAGE_SIZE << compound_order(page);
76994412 2789 }
81819f0f 2790 s = page->slab;
81819f0f 2791
ae20bfda 2792#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2793 /*
2794 * Debugging requires use of the padding between object
2795 * and whatever may come after it.
2796 */
2797 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2798 return s->objsize;
2799
ae20bfda 2800#endif
81819f0f
CL
2801 /*
2802 * If we have the need to store the freelist pointer
2803 * back there or track user information then we can
2804 * only use the space before that information.
2805 */
2806 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2807 return s->inuse;
81819f0f
CL
2808 /*
2809 * Else we can use all the padding etc for the allocation
2810 */
2811 return s->size;
2812}
b1aabecd 2813EXPORT_SYMBOL(ksize);
81819f0f
CL
2814
2815void kfree(const void *x)
2816{
81819f0f 2817 struct page *page;
5bb983b0 2818 void *object = (void *)x;
81819f0f 2819
2121db74
PE
2820 trace_kfree(_RET_IP_, x);
2821
2408c550 2822 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2823 return;
2824
b49af68f 2825 page = virt_to_head_page(x);
aadb4bc4 2826 if (unlikely(!PageSlab(page))) {
0937502a 2827 BUG_ON(!PageCompound(page));
aadb4bc4
CL
2828 put_page(page);
2829 return;
2830 }
ce71e27c 2831 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2832}
2833EXPORT_SYMBOL(kfree);
2834
2086d26a 2835/*
672bba3a
CL
2836 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2837 * the remaining slabs by the number of items in use. The slabs with the
2838 * most items in use come first. New allocations will then fill those up
2839 * and thus they can be removed from the partial lists.
2840 *
2841 * The slabs with the least items are placed last. This results in them
2842 * being allocated from last increasing the chance that the last objects
2843 * are freed in them.
2086d26a
CL
2844 */
2845int kmem_cache_shrink(struct kmem_cache *s)
2846{
2847 int node;
2848 int i;
2849 struct kmem_cache_node *n;
2850 struct page *page;
2851 struct page *t;
205ab99d 2852 int objects = oo_objects(s->max);
2086d26a 2853 struct list_head *slabs_by_inuse =
834f3d11 2854 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2855 unsigned long flags;
2856
2857 if (!slabs_by_inuse)
2858 return -ENOMEM;
2859
2860 flush_all(s);
f64dc58c 2861 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2862 n = get_node(s, node);
2863
2864 if (!n->nr_partial)
2865 continue;
2866
834f3d11 2867 for (i = 0; i < objects; i++)
2086d26a
CL
2868 INIT_LIST_HEAD(slabs_by_inuse + i);
2869
2870 spin_lock_irqsave(&n->list_lock, flags);
2871
2872 /*
672bba3a 2873 * Build lists indexed by the items in use in each slab.
2086d26a 2874 *
672bba3a
CL
2875 * Note that concurrent frees may occur while we hold the
2876 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2877 */
2878 list_for_each_entry_safe(page, t, &n->partial, lru) {
2879 if (!page->inuse && slab_trylock(page)) {
2880 /*
2881 * Must hold slab lock here because slab_free
2882 * may have freed the last object and be
2883 * waiting to release the slab.
2884 */
2885 list_del(&page->lru);
2886 n->nr_partial--;
2887 slab_unlock(page);
2888 discard_slab(s, page);
2889 } else {
fcda3d89
CL
2890 list_move(&page->lru,
2891 slabs_by_inuse + page->inuse);
2086d26a
CL
2892 }
2893 }
2894
2086d26a 2895 /*
672bba3a
CL
2896 * Rebuild the partial list with the slabs filled up most
2897 * first and the least used slabs at the end.
2086d26a 2898 */
834f3d11 2899 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2900 list_splice(slabs_by_inuse + i, n->partial.prev);
2901
2086d26a
CL
2902 spin_unlock_irqrestore(&n->list_lock, flags);
2903 }
2904
2905 kfree(slabs_by_inuse);
2906 return 0;
2907}
2908EXPORT_SYMBOL(kmem_cache_shrink);
2909
b9049e23
YG
2910#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2911static int slab_mem_going_offline_callback(void *arg)
2912{
2913 struct kmem_cache *s;
2914
2915 down_read(&slub_lock);
2916 list_for_each_entry(s, &slab_caches, list)
2917 kmem_cache_shrink(s);
2918 up_read(&slub_lock);
2919
2920 return 0;
2921}
2922
2923static void slab_mem_offline_callback(void *arg)
2924{
2925 struct kmem_cache_node *n;
2926 struct kmem_cache *s;
2927 struct memory_notify *marg = arg;
2928 int offline_node;
2929
2930 offline_node = marg->status_change_nid;
2931
2932 /*
2933 * If the node still has available memory. we need kmem_cache_node
2934 * for it yet.
2935 */
2936 if (offline_node < 0)
2937 return;
2938
2939 down_read(&slub_lock);
2940 list_for_each_entry(s, &slab_caches, list) {
2941 n = get_node(s, offline_node);
2942 if (n) {
2943 /*
2944 * if n->nr_slabs > 0, slabs still exist on the node
2945 * that is going down. We were unable to free them,
2946 * and offline_pages() function shoudn't call this
2947 * callback. So, we must fail.
2948 */
0f389ec6 2949 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2950
2951 s->node[offline_node] = NULL;
2952 kmem_cache_free(kmalloc_caches, n);
2953 }
2954 }
2955 up_read(&slub_lock);
2956}
2957
2958static int slab_mem_going_online_callback(void *arg)
2959{
2960 struct kmem_cache_node *n;
2961 struct kmem_cache *s;
2962 struct memory_notify *marg = arg;
2963 int nid = marg->status_change_nid;
2964 int ret = 0;
2965
2966 /*
2967 * If the node's memory is already available, then kmem_cache_node is
2968 * already created. Nothing to do.
2969 */
2970 if (nid < 0)
2971 return 0;
2972
2973 /*
0121c619 2974 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2975 * allocate a kmem_cache_node structure in order to bring the node
2976 * online.
2977 */
2978 down_read(&slub_lock);
2979 list_for_each_entry(s, &slab_caches, list) {
2980 /*
2981 * XXX: kmem_cache_alloc_node will fallback to other nodes
2982 * since memory is not yet available from the node that
2983 * is brought up.
2984 */
2985 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2986 if (!n) {
2987 ret = -ENOMEM;
2988 goto out;
2989 }
5595cffc 2990 init_kmem_cache_node(n, s);
b9049e23
YG
2991 s->node[nid] = n;
2992 }
2993out:
2994 up_read(&slub_lock);
2995 return ret;
2996}
2997
2998static int slab_memory_callback(struct notifier_block *self,
2999 unsigned long action, void *arg)
3000{
3001 int ret = 0;
3002
3003 switch (action) {
3004 case MEM_GOING_ONLINE:
3005 ret = slab_mem_going_online_callback(arg);
3006 break;
3007 case MEM_GOING_OFFLINE:
3008 ret = slab_mem_going_offline_callback(arg);
3009 break;
3010 case MEM_OFFLINE:
3011 case MEM_CANCEL_ONLINE:
3012 slab_mem_offline_callback(arg);
3013 break;
3014 case MEM_ONLINE:
3015 case MEM_CANCEL_OFFLINE:
3016 break;
3017 }
dc19f9db
KH
3018 if (ret)
3019 ret = notifier_from_errno(ret);
3020 else
3021 ret = NOTIFY_OK;
b9049e23
YG
3022 return ret;
3023}
3024
3025#endif /* CONFIG_MEMORY_HOTPLUG */
3026
81819f0f
CL
3027/********************************************************************
3028 * Basic setup of slabs
3029 *******************************************************************/
3030
3031void __init kmem_cache_init(void)
3032{
3033 int i;
4b356be0 3034 int caches = 0;
81819f0f 3035
4c93c355
CL
3036 init_alloc_cpu();
3037
81819f0f
CL
3038#ifdef CONFIG_NUMA
3039 /*
3040 * Must first have the slab cache available for the allocations of the
672bba3a 3041 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3042 * kmem_cache_open for slab_state == DOWN.
3043 */
3044 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
83b519e8 3045 sizeof(struct kmem_cache_node), GFP_NOWAIT);
8ffa6875 3046 kmalloc_caches[0].refcount = -1;
4b356be0 3047 caches++;
b9049e23 3048
0c40ba4f 3049 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3050#endif
3051
3052 /* Able to allocate the per node structures */
3053 slab_state = PARTIAL;
3054
3055 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
3056 if (KMALLOC_MIN_SIZE <= 64) {
3057 create_kmalloc_cache(&kmalloc_caches[1],
83b519e8 3058 "kmalloc-96", 96, GFP_NOWAIT);
4b356be0 3059 caches++;
4b356be0 3060 create_kmalloc_cache(&kmalloc_caches[2],
83b519e8 3061 "kmalloc-192", 192, GFP_NOWAIT);
4b356be0
CL
3062 caches++;
3063 }
81819f0f 3064
ffadd4d0 3065 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
81819f0f 3066 create_kmalloc_cache(&kmalloc_caches[i],
83b519e8 3067 "kmalloc", 1 << i, GFP_NOWAIT);
4b356be0
CL
3068 caches++;
3069 }
81819f0f 3070
f1b26339
CL
3071
3072 /*
3073 * Patch up the size_index table if we have strange large alignment
3074 * requirements for the kmalloc array. This is only the case for
6446faa2 3075 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3076 *
3077 * Largest permitted alignment is 256 bytes due to the way we
3078 * handle the index determination for the smaller caches.
3079 *
3080 * Make sure that nothing crazy happens if someone starts tinkering
3081 * around with ARCH_KMALLOC_MINALIGN
3082 */
3083 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3084 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3085
12ad6843 3086 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3087 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3088
41d54d3b
CL
3089 if (KMALLOC_MIN_SIZE == 128) {
3090 /*
3091 * The 192 byte sized cache is not used if the alignment
3092 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3093 * instead.
3094 */
3095 for (i = 128 + 8; i <= 192; i += 8)
3096 size_index[(i - 1) / 8] = 8;
3097 }
3098
81819f0f
CL
3099 slab_state = UP;
3100
3101 /* Provide the correct kmalloc names now that the caches are up */
ffadd4d0 3102 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
81819f0f 3103 kmalloc_caches[i]. name =
83b519e8 3104 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
81819f0f
CL
3105
3106#ifdef CONFIG_SMP
3107 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3108 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3109 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3110#else
3111 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3112#endif
3113
3adbefee
IM
3114 printk(KERN_INFO
3115 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3116 " CPUs=%d, Nodes=%d\n",
3117 caches, cache_line_size(),
81819f0f
CL
3118 slub_min_order, slub_max_order, slub_min_objects,
3119 nr_cpu_ids, nr_node_ids);
3120}
3121
3122/*
3123 * Find a mergeable slab cache
3124 */
3125static int slab_unmergeable(struct kmem_cache *s)
3126{
3127 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3128 return 1;
3129
c59def9f 3130 if (s->ctor)
81819f0f
CL
3131 return 1;
3132
8ffa6875
CL
3133 /*
3134 * We may have set a slab to be unmergeable during bootstrap.
3135 */
3136 if (s->refcount < 0)
3137 return 1;
3138
81819f0f
CL
3139 return 0;
3140}
3141
3142static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3143 size_t align, unsigned long flags, const char *name,
51cc5068 3144 void (*ctor)(void *))
81819f0f 3145{
5b95a4ac 3146 struct kmem_cache *s;
81819f0f
CL
3147
3148 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3149 return NULL;
3150
c59def9f 3151 if (ctor)
81819f0f
CL
3152 return NULL;
3153
3154 size = ALIGN(size, sizeof(void *));
3155 align = calculate_alignment(flags, align, size);
3156 size = ALIGN(size, align);
ba0268a8 3157 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3158
5b95a4ac 3159 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3160 if (slab_unmergeable(s))
3161 continue;
3162
3163 if (size > s->size)
3164 continue;
3165
ba0268a8 3166 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3167 continue;
3168 /*
3169 * Check if alignment is compatible.
3170 * Courtesy of Adrian Drzewiecki
3171 */
06428780 3172 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3173 continue;
3174
3175 if (s->size - size >= sizeof(void *))
3176 continue;
3177
3178 return s;
3179 }
3180 return NULL;
3181}
3182
3183struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3184 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3185{
3186 struct kmem_cache *s;
3187
3188 down_write(&slub_lock);
ba0268a8 3189 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3190 if (s) {
42a9fdbb
CL
3191 int cpu;
3192
81819f0f
CL
3193 s->refcount++;
3194 /*
3195 * Adjust the object sizes so that we clear
3196 * the complete object on kzalloc.
3197 */
3198 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3199
3200 /*
3201 * And then we need to update the object size in the
3202 * per cpu structures
3203 */
3204 for_each_online_cpu(cpu)
3205 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3206
81819f0f 3207 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3208 up_write(&slub_lock);
6446faa2 3209
7b8f3b66
DR
3210 if (sysfs_slab_alias(s, name)) {
3211 down_write(&slub_lock);
3212 s->refcount--;
3213 up_write(&slub_lock);
81819f0f 3214 goto err;
7b8f3b66 3215 }
a0e1d1be
CL
3216 return s;
3217 }
6446faa2 3218
a0e1d1be
CL
3219 s = kmalloc(kmem_size, GFP_KERNEL);
3220 if (s) {
3221 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3222 size, align, flags, ctor)) {
81819f0f 3223 list_add(&s->list, &slab_caches);
a0e1d1be 3224 up_write(&slub_lock);
7b8f3b66
DR
3225 if (sysfs_slab_add(s)) {
3226 down_write(&slub_lock);
3227 list_del(&s->list);
3228 up_write(&slub_lock);
3229 kfree(s);
a0e1d1be 3230 goto err;
7b8f3b66 3231 }
a0e1d1be
CL
3232 return s;
3233 }
3234 kfree(s);
81819f0f
CL
3235 }
3236 up_write(&slub_lock);
81819f0f
CL
3237
3238err:
81819f0f
CL
3239 if (flags & SLAB_PANIC)
3240 panic("Cannot create slabcache %s\n", name);
3241 else
3242 s = NULL;
3243 return s;
3244}
3245EXPORT_SYMBOL(kmem_cache_create);
3246
81819f0f 3247#ifdef CONFIG_SMP
81819f0f 3248/*
672bba3a
CL
3249 * Use the cpu notifier to insure that the cpu slabs are flushed when
3250 * necessary.
81819f0f
CL
3251 */
3252static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3253 unsigned long action, void *hcpu)
3254{
3255 long cpu = (long)hcpu;
5b95a4ac
CL
3256 struct kmem_cache *s;
3257 unsigned long flags;
81819f0f
CL
3258
3259 switch (action) {
4c93c355
CL
3260 case CPU_UP_PREPARE:
3261 case CPU_UP_PREPARE_FROZEN:
3262 init_alloc_cpu_cpu(cpu);
3263 down_read(&slub_lock);
3264 list_for_each_entry(s, &slab_caches, list)
3265 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3266 GFP_KERNEL);
3267 up_read(&slub_lock);
3268 break;
3269
81819f0f 3270 case CPU_UP_CANCELED:
8bb78442 3271 case CPU_UP_CANCELED_FROZEN:
81819f0f 3272 case CPU_DEAD:
8bb78442 3273 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3274 down_read(&slub_lock);
3275 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3276 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3277
5b95a4ac
CL
3278 local_irq_save(flags);
3279 __flush_cpu_slab(s, cpu);
3280 local_irq_restore(flags);
4c93c355
CL
3281 free_kmem_cache_cpu(c, cpu);
3282 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3283 }
3284 up_read(&slub_lock);
81819f0f
CL
3285 break;
3286 default:
3287 break;
3288 }
3289 return NOTIFY_OK;
3290}
3291
06428780 3292static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3293 .notifier_call = slab_cpuup_callback
06428780 3294};
81819f0f
CL
3295
3296#endif
3297
ce71e27c 3298void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3299{
aadb4bc4 3300 struct kmem_cache *s;
94b528d0 3301 void *ret;
aadb4bc4 3302
ffadd4d0 3303 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3304 return kmalloc_large(size, gfpflags);
3305
aadb4bc4 3306 s = get_slab(size, gfpflags);
81819f0f 3307
2408c550 3308 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3309 return s;
81819f0f 3310
94b528d0
EGM
3311 ret = slab_alloc(s, gfpflags, -1, caller);
3312
3313 /* Honor the call site pointer we recieved. */
ca2b84cb 3314 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3315
3316 return ret;
81819f0f
CL
3317}
3318
3319void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3320 int node, unsigned long caller)
81819f0f 3321{
aadb4bc4 3322 struct kmem_cache *s;
94b528d0 3323 void *ret;
aadb4bc4 3324
ffadd4d0 3325 if (unlikely(size > SLUB_MAX_SIZE))
f619cfe1 3326 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3327
aadb4bc4 3328 s = get_slab(size, gfpflags);
81819f0f 3329
2408c550 3330 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3331 return s;
81819f0f 3332
94b528d0
EGM
3333 ret = slab_alloc(s, gfpflags, node, caller);
3334
3335 /* Honor the call site pointer we recieved. */
ca2b84cb 3336 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3337
3338 return ret;
81819f0f
CL
3339}
3340
f6acb635 3341#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3342static unsigned long count_partial(struct kmem_cache_node *n,
3343 int (*get_count)(struct page *))
5b06c853
CL
3344{
3345 unsigned long flags;
3346 unsigned long x = 0;
3347 struct page *page;
3348
3349 spin_lock_irqsave(&n->list_lock, flags);
3350 list_for_each_entry(page, &n->partial, lru)
205ab99d 3351 x += get_count(page);
5b06c853
CL
3352 spin_unlock_irqrestore(&n->list_lock, flags);
3353 return x;
3354}
205ab99d
CL
3355
3356static int count_inuse(struct page *page)
3357{
3358 return page->inuse;
3359}
3360
3361static int count_total(struct page *page)
3362{
3363 return page->objects;
3364}
3365
3366static int count_free(struct page *page)
3367{
3368 return page->objects - page->inuse;
3369}
5b06c853 3370
434e245d
CL
3371static int validate_slab(struct kmem_cache *s, struct page *page,
3372 unsigned long *map)
53e15af0
CL
3373{
3374 void *p;
a973e9dd 3375 void *addr = page_address(page);
53e15af0
CL
3376
3377 if (!check_slab(s, page) ||
3378 !on_freelist(s, page, NULL))
3379 return 0;
3380
3381 /* Now we know that a valid freelist exists */
39b26464 3382 bitmap_zero(map, page->objects);
53e15af0 3383
7656c72b
CL
3384 for_each_free_object(p, s, page->freelist) {
3385 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3386 if (!check_object(s, page, p, 0))
3387 return 0;
3388 }
3389
224a88be 3390 for_each_object(p, s, addr, page->objects)
7656c72b 3391 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3392 if (!check_object(s, page, p, 1))
3393 return 0;
3394 return 1;
3395}
3396
434e245d
CL
3397static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3398 unsigned long *map)
53e15af0
CL
3399{
3400 if (slab_trylock(page)) {
434e245d 3401 validate_slab(s, page, map);
53e15af0
CL
3402 slab_unlock(page);
3403 } else
3404 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3405 s->name, page);
3406
3407 if (s->flags & DEBUG_DEFAULT_FLAGS) {
8a38082d
AW
3408 if (!PageSlubDebug(page))
3409 printk(KERN_ERR "SLUB %s: SlubDebug not set "
53e15af0
CL
3410 "on slab 0x%p\n", s->name, page);
3411 } else {
8a38082d
AW
3412 if (PageSlubDebug(page))
3413 printk(KERN_ERR "SLUB %s: SlubDebug set on "
53e15af0
CL
3414 "slab 0x%p\n", s->name, page);
3415 }
3416}
3417
434e245d
CL
3418static int validate_slab_node(struct kmem_cache *s,
3419 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3420{
3421 unsigned long count = 0;
3422 struct page *page;
3423 unsigned long flags;
3424
3425 spin_lock_irqsave(&n->list_lock, flags);
3426
3427 list_for_each_entry(page, &n->partial, lru) {
434e245d 3428 validate_slab_slab(s, page, map);
53e15af0
CL
3429 count++;
3430 }
3431 if (count != n->nr_partial)
3432 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3433 "counter=%ld\n", s->name, count, n->nr_partial);
3434
3435 if (!(s->flags & SLAB_STORE_USER))
3436 goto out;
3437
3438 list_for_each_entry(page, &n->full, lru) {
434e245d 3439 validate_slab_slab(s, page, map);
53e15af0
CL
3440 count++;
3441 }
3442 if (count != atomic_long_read(&n->nr_slabs))
3443 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3444 "counter=%ld\n", s->name, count,
3445 atomic_long_read(&n->nr_slabs));
3446
3447out:
3448 spin_unlock_irqrestore(&n->list_lock, flags);
3449 return count;
3450}
3451
434e245d 3452static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3453{
3454 int node;
3455 unsigned long count = 0;
205ab99d 3456 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3457 sizeof(unsigned long), GFP_KERNEL);
3458
3459 if (!map)
3460 return -ENOMEM;
53e15af0
CL
3461
3462 flush_all(s);
f64dc58c 3463 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3464 struct kmem_cache_node *n = get_node(s, node);
3465
434e245d 3466 count += validate_slab_node(s, n, map);
53e15af0 3467 }
434e245d 3468 kfree(map);
53e15af0
CL
3469 return count;
3470}
3471
b3459709
CL
3472#ifdef SLUB_RESILIENCY_TEST
3473static void resiliency_test(void)
3474{
3475 u8 *p;
3476
3477 printk(KERN_ERR "SLUB resiliency testing\n");
3478 printk(KERN_ERR "-----------------------\n");
3479 printk(KERN_ERR "A. Corruption after allocation\n");
3480
3481 p = kzalloc(16, GFP_KERNEL);
3482 p[16] = 0x12;
3483 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3484 " 0x12->0x%p\n\n", p + 16);
3485
3486 validate_slab_cache(kmalloc_caches + 4);
3487
3488 /* Hmmm... The next two are dangerous */
3489 p = kzalloc(32, GFP_KERNEL);
3490 p[32 + sizeof(void *)] = 0x34;
3491 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3492 " 0x34 -> -0x%p\n", p);
3493 printk(KERN_ERR
3494 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3495
3496 validate_slab_cache(kmalloc_caches + 5);
3497 p = kzalloc(64, GFP_KERNEL);
3498 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3499 *p = 0x56;
3500 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3501 p);
3adbefee
IM
3502 printk(KERN_ERR
3503 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3504 validate_slab_cache(kmalloc_caches + 6);
3505
3506 printk(KERN_ERR "\nB. Corruption after free\n");
3507 p = kzalloc(128, GFP_KERNEL);
3508 kfree(p);
3509 *p = 0x78;
3510 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3511 validate_slab_cache(kmalloc_caches + 7);
3512
3513 p = kzalloc(256, GFP_KERNEL);
3514 kfree(p);
3515 p[50] = 0x9a;
3adbefee
IM
3516 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3517 p);
b3459709
CL
3518 validate_slab_cache(kmalloc_caches + 8);
3519
3520 p = kzalloc(512, GFP_KERNEL);
3521 kfree(p);
3522 p[512] = 0xab;
3523 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3524 validate_slab_cache(kmalloc_caches + 9);
3525}
3526#else
3527static void resiliency_test(void) {};
3528#endif
3529
88a420e4 3530/*
672bba3a 3531 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3532 * and freed.
3533 */
3534
3535struct location {
3536 unsigned long count;
ce71e27c 3537 unsigned long addr;
45edfa58
CL
3538 long long sum_time;
3539 long min_time;
3540 long max_time;
3541 long min_pid;
3542 long max_pid;
174596a0 3543 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3544 nodemask_t nodes;
88a420e4
CL
3545};
3546
3547struct loc_track {
3548 unsigned long max;
3549 unsigned long count;
3550 struct location *loc;
3551};
3552
3553static void free_loc_track(struct loc_track *t)
3554{
3555 if (t->max)
3556 free_pages((unsigned long)t->loc,
3557 get_order(sizeof(struct location) * t->max));
3558}
3559
68dff6a9 3560static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3561{
3562 struct location *l;
3563 int order;
3564
88a420e4
CL
3565 order = get_order(sizeof(struct location) * max);
3566
68dff6a9 3567 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3568 if (!l)
3569 return 0;
3570
3571 if (t->count) {
3572 memcpy(l, t->loc, sizeof(struct location) * t->count);
3573 free_loc_track(t);
3574 }
3575 t->max = max;
3576 t->loc = l;
3577 return 1;
3578}
3579
3580static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3581 const struct track *track)
88a420e4
CL
3582{
3583 long start, end, pos;
3584 struct location *l;
ce71e27c 3585 unsigned long caddr;
45edfa58 3586 unsigned long age = jiffies - track->when;
88a420e4
CL
3587
3588 start = -1;
3589 end = t->count;
3590
3591 for ( ; ; ) {
3592 pos = start + (end - start + 1) / 2;
3593
3594 /*
3595 * There is nothing at "end". If we end up there
3596 * we need to add something to before end.
3597 */
3598 if (pos == end)
3599 break;
3600
3601 caddr = t->loc[pos].addr;
45edfa58
CL
3602 if (track->addr == caddr) {
3603
3604 l = &t->loc[pos];
3605 l->count++;
3606 if (track->when) {
3607 l->sum_time += age;
3608 if (age < l->min_time)
3609 l->min_time = age;
3610 if (age > l->max_time)
3611 l->max_time = age;
3612
3613 if (track->pid < l->min_pid)
3614 l->min_pid = track->pid;
3615 if (track->pid > l->max_pid)
3616 l->max_pid = track->pid;
3617
174596a0
RR
3618 cpumask_set_cpu(track->cpu,
3619 to_cpumask(l->cpus));
45edfa58
CL
3620 }
3621 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3622 return 1;
3623 }
3624
45edfa58 3625 if (track->addr < caddr)
88a420e4
CL
3626 end = pos;
3627 else
3628 start = pos;
3629 }
3630
3631 /*
672bba3a 3632 * Not found. Insert new tracking element.
88a420e4 3633 */
68dff6a9 3634 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3635 return 0;
3636
3637 l = t->loc + pos;
3638 if (pos < t->count)
3639 memmove(l + 1, l,
3640 (t->count - pos) * sizeof(struct location));
3641 t->count++;
3642 l->count = 1;
45edfa58
CL
3643 l->addr = track->addr;
3644 l->sum_time = age;
3645 l->min_time = age;
3646 l->max_time = age;
3647 l->min_pid = track->pid;
3648 l->max_pid = track->pid;
174596a0
RR
3649 cpumask_clear(to_cpumask(l->cpus));
3650 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3651 nodes_clear(l->nodes);
3652 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3653 return 1;
3654}
3655
3656static void process_slab(struct loc_track *t, struct kmem_cache *s,
3657 struct page *page, enum track_item alloc)
3658{
a973e9dd 3659 void *addr = page_address(page);
39b26464 3660 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3661 void *p;
3662
39b26464 3663 bitmap_zero(map, page->objects);
7656c72b
CL
3664 for_each_free_object(p, s, page->freelist)
3665 set_bit(slab_index(p, s, addr), map);
88a420e4 3666
224a88be 3667 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3668 if (!test_bit(slab_index(p, s, addr), map))
3669 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3670}
3671
3672static int list_locations(struct kmem_cache *s, char *buf,
3673 enum track_item alloc)
3674{
e374d483 3675 int len = 0;
88a420e4 3676 unsigned long i;
68dff6a9 3677 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3678 int node;
3679
68dff6a9 3680 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3681 GFP_TEMPORARY))
68dff6a9 3682 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3683
3684 /* Push back cpu slabs */
3685 flush_all(s);
3686
f64dc58c 3687 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3688 struct kmem_cache_node *n = get_node(s, node);
3689 unsigned long flags;
3690 struct page *page;
3691
9e86943b 3692 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3693 continue;
3694
3695 spin_lock_irqsave(&n->list_lock, flags);
3696 list_for_each_entry(page, &n->partial, lru)
3697 process_slab(&t, s, page, alloc);
3698 list_for_each_entry(page, &n->full, lru)
3699 process_slab(&t, s, page, alloc);
3700 spin_unlock_irqrestore(&n->list_lock, flags);
3701 }
3702
3703 for (i = 0; i < t.count; i++) {
45edfa58 3704 struct location *l = &t.loc[i];
88a420e4 3705
9c246247 3706 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3707 break;
e374d483 3708 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3709
3710 if (l->addr)
e374d483 3711 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3712 else
e374d483 3713 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3714
3715 if (l->sum_time != l->min_time) {
e374d483 3716 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3717 l->min_time,
3718 (long)div_u64(l->sum_time, l->count),
3719 l->max_time);
45edfa58 3720 } else
e374d483 3721 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3722 l->min_time);
3723
3724 if (l->min_pid != l->max_pid)
e374d483 3725 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3726 l->min_pid, l->max_pid);
3727 else
e374d483 3728 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3729 l->min_pid);
3730
174596a0
RR
3731 if (num_online_cpus() > 1 &&
3732 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3733 len < PAGE_SIZE - 60) {
3734 len += sprintf(buf + len, " cpus=");
3735 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3736 to_cpumask(l->cpus));
45edfa58
CL
3737 }
3738
84966343 3739 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3740 len < PAGE_SIZE - 60) {
3741 len += sprintf(buf + len, " nodes=");
3742 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3743 l->nodes);
3744 }
3745
e374d483 3746 len += sprintf(buf + len, "\n");
88a420e4
CL
3747 }
3748
3749 free_loc_track(&t);
3750 if (!t.count)
e374d483
HH
3751 len += sprintf(buf, "No data\n");
3752 return len;
88a420e4
CL
3753}
3754
81819f0f 3755enum slab_stat_type {
205ab99d
CL
3756 SL_ALL, /* All slabs */
3757 SL_PARTIAL, /* Only partially allocated slabs */
3758 SL_CPU, /* Only slabs used for cpu caches */
3759 SL_OBJECTS, /* Determine allocated objects not slabs */
3760 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3761};
3762
205ab99d 3763#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3764#define SO_PARTIAL (1 << SL_PARTIAL)
3765#define SO_CPU (1 << SL_CPU)
3766#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3767#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3768
62e5c4b4
CG
3769static ssize_t show_slab_objects(struct kmem_cache *s,
3770 char *buf, unsigned long flags)
81819f0f
CL
3771{
3772 unsigned long total = 0;
81819f0f
CL
3773 int node;
3774 int x;
3775 unsigned long *nodes;
3776 unsigned long *per_cpu;
3777
3778 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3779 if (!nodes)
3780 return -ENOMEM;
81819f0f
CL
3781 per_cpu = nodes + nr_node_ids;
3782
205ab99d
CL
3783 if (flags & SO_CPU) {
3784 int cpu;
81819f0f 3785
205ab99d
CL
3786 for_each_possible_cpu(cpu) {
3787 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3788
205ab99d
CL
3789 if (!c || c->node < 0)
3790 continue;
3791
3792 if (c->page) {
3793 if (flags & SO_TOTAL)
3794 x = c->page->objects;
3795 else if (flags & SO_OBJECTS)
3796 x = c->page->inuse;
81819f0f
CL
3797 else
3798 x = 1;
205ab99d 3799
81819f0f 3800 total += x;
205ab99d 3801 nodes[c->node] += x;
81819f0f 3802 }
205ab99d 3803 per_cpu[c->node]++;
81819f0f
CL
3804 }
3805 }
3806
205ab99d
CL
3807 if (flags & SO_ALL) {
3808 for_each_node_state(node, N_NORMAL_MEMORY) {
3809 struct kmem_cache_node *n = get_node(s, node);
3810
3811 if (flags & SO_TOTAL)
3812 x = atomic_long_read(&n->total_objects);
3813 else if (flags & SO_OBJECTS)
3814 x = atomic_long_read(&n->total_objects) -
3815 count_partial(n, count_free);
81819f0f 3816
81819f0f 3817 else
205ab99d 3818 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3819 total += x;
3820 nodes[node] += x;
3821 }
3822
205ab99d
CL
3823 } else if (flags & SO_PARTIAL) {
3824 for_each_node_state(node, N_NORMAL_MEMORY) {
3825 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3826
205ab99d
CL
3827 if (flags & SO_TOTAL)
3828 x = count_partial(n, count_total);
3829 else if (flags & SO_OBJECTS)
3830 x = count_partial(n, count_inuse);
81819f0f 3831 else
205ab99d 3832 x = n->nr_partial;
81819f0f
CL
3833 total += x;
3834 nodes[node] += x;
3835 }
3836 }
81819f0f
CL
3837 x = sprintf(buf, "%lu", total);
3838#ifdef CONFIG_NUMA
f64dc58c 3839 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3840 if (nodes[node])
3841 x += sprintf(buf + x, " N%d=%lu",
3842 node, nodes[node]);
3843#endif
3844 kfree(nodes);
3845 return x + sprintf(buf + x, "\n");
3846}
3847
3848static int any_slab_objects(struct kmem_cache *s)
3849{
3850 int node;
81819f0f 3851
dfb4f096 3852 for_each_online_node(node) {
81819f0f
CL
3853 struct kmem_cache_node *n = get_node(s, node);
3854
dfb4f096
CL
3855 if (!n)
3856 continue;
3857
4ea33e2d 3858 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3859 return 1;
3860 }
3861 return 0;
3862}
3863
3864#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3865#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3866
3867struct slab_attribute {
3868 struct attribute attr;
3869 ssize_t (*show)(struct kmem_cache *s, char *buf);
3870 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3871};
3872
3873#define SLAB_ATTR_RO(_name) \
3874 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3875
3876#define SLAB_ATTR(_name) \
3877 static struct slab_attribute _name##_attr = \
3878 __ATTR(_name, 0644, _name##_show, _name##_store)
3879
81819f0f
CL
3880static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3881{
3882 return sprintf(buf, "%d\n", s->size);
3883}
3884SLAB_ATTR_RO(slab_size);
3885
3886static ssize_t align_show(struct kmem_cache *s, char *buf)
3887{
3888 return sprintf(buf, "%d\n", s->align);
3889}
3890SLAB_ATTR_RO(align);
3891
3892static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3893{
3894 return sprintf(buf, "%d\n", s->objsize);
3895}
3896SLAB_ATTR_RO(object_size);
3897
3898static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3899{
834f3d11 3900 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3901}
3902SLAB_ATTR_RO(objs_per_slab);
3903
06b285dc
CL
3904static ssize_t order_store(struct kmem_cache *s,
3905 const char *buf, size_t length)
3906{
0121c619
CL
3907 unsigned long order;
3908 int err;
3909
3910 err = strict_strtoul(buf, 10, &order);
3911 if (err)
3912 return err;
06b285dc
CL
3913
3914 if (order > slub_max_order || order < slub_min_order)
3915 return -EINVAL;
3916
3917 calculate_sizes(s, order);
3918 return length;
3919}
3920
81819f0f
CL
3921static ssize_t order_show(struct kmem_cache *s, char *buf)
3922{
834f3d11 3923 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3924}
06b285dc 3925SLAB_ATTR(order);
81819f0f 3926
73d342b1
DR
3927static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3928{
3929 return sprintf(buf, "%lu\n", s->min_partial);
3930}
3931
3932static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3933 size_t length)
3934{
3935 unsigned long min;
3936 int err;
3937
3938 err = strict_strtoul(buf, 10, &min);
3939 if (err)
3940 return err;
3941
c0bdb232 3942 set_min_partial(s, min);
73d342b1
DR
3943 return length;
3944}
3945SLAB_ATTR(min_partial);
3946
81819f0f
CL
3947static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3948{
3949 if (s->ctor) {
3950 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3951
3952 return n + sprintf(buf + n, "\n");
3953 }
3954 return 0;
3955}
3956SLAB_ATTR_RO(ctor);
3957
81819f0f
CL
3958static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3959{
3960 return sprintf(buf, "%d\n", s->refcount - 1);
3961}
3962SLAB_ATTR_RO(aliases);
3963
3964static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3965{
205ab99d 3966 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3967}
3968SLAB_ATTR_RO(slabs);
3969
3970static ssize_t partial_show(struct kmem_cache *s, char *buf)
3971{
d9acf4b7 3972 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3973}
3974SLAB_ATTR_RO(partial);
3975
3976static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3977{
d9acf4b7 3978 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3979}
3980SLAB_ATTR_RO(cpu_slabs);
3981
3982static ssize_t objects_show(struct kmem_cache *s, char *buf)
3983{
205ab99d 3984 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3985}
3986SLAB_ATTR_RO(objects);
3987
205ab99d
CL
3988static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3989{
3990 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3991}
3992SLAB_ATTR_RO(objects_partial);
3993
3994static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3995{
3996 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3997}
3998SLAB_ATTR_RO(total_objects);
3999
81819f0f
CL
4000static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4001{
4002 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4003}
4004
4005static ssize_t sanity_checks_store(struct kmem_cache *s,
4006 const char *buf, size_t length)
4007{
4008 s->flags &= ~SLAB_DEBUG_FREE;
4009 if (buf[0] == '1')
4010 s->flags |= SLAB_DEBUG_FREE;
4011 return length;
4012}
4013SLAB_ATTR(sanity_checks);
4014
4015static ssize_t trace_show(struct kmem_cache *s, char *buf)
4016{
4017 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4018}
4019
4020static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4021 size_t length)
4022{
4023 s->flags &= ~SLAB_TRACE;
4024 if (buf[0] == '1')
4025 s->flags |= SLAB_TRACE;
4026 return length;
4027}
4028SLAB_ATTR(trace);
4029
4030static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4031{
4032 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4033}
4034
4035static ssize_t reclaim_account_store(struct kmem_cache *s,
4036 const char *buf, size_t length)
4037{
4038 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4039 if (buf[0] == '1')
4040 s->flags |= SLAB_RECLAIM_ACCOUNT;
4041 return length;
4042}
4043SLAB_ATTR(reclaim_account);
4044
4045static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4046{
5af60839 4047 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4048}
4049SLAB_ATTR_RO(hwcache_align);
4050
4051#ifdef CONFIG_ZONE_DMA
4052static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4053{
4054 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4055}
4056SLAB_ATTR_RO(cache_dma);
4057#endif
4058
4059static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4060{
4061 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4062}
4063SLAB_ATTR_RO(destroy_by_rcu);
4064
4065static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4066{
4067 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4068}
4069
4070static ssize_t red_zone_store(struct kmem_cache *s,
4071 const char *buf, size_t length)
4072{
4073 if (any_slab_objects(s))
4074 return -EBUSY;
4075
4076 s->flags &= ~SLAB_RED_ZONE;
4077 if (buf[0] == '1')
4078 s->flags |= SLAB_RED_ZONE;
06b285dc 4079 calculate_sizes(s, -1);
81819f0f
CL
4080 return length;
4081}
4082SLAB_ATTR(red_zone);
4083
4084static ssize_t poison_show(struct kmem_cache *s, char *buf)
4085{
4086 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4087}
4088
4089static ssize_t poison_store(struct kmem_cache *s,
4090 const char *buf, size_t length)
4091{
4092 if (any_slab_objects(s))
4093 return -EBUSY;
4094
4095 s->flags &= ~SLAB_POISON;
4096 if (buf[0] == '1')
4097 s->flags |= SLAB_POISON;
06b285dc 4098 calculate_sizes(s, -1);
81819f0f
CL
4099 return length;
4100}
4101SLAB_ATTR(poison);
4102
4103static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4104{
4105 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4106}
4107
4108static ssize_t store_user_store(struct kmem_cache *s,
4109 const char *buf, size_t length)
4110{
4111 if (any_slab_objects(s))
4112 return -EBUSY;
4113
4114 s->flags &= ~SLAB_STORE_USER;
4115 if (buf[0] == '1')
4116 s->flags |= SLAB_STORE_USER;
06b285dc 4117 calculate_sizes(s, -1);
81819f0f
CL
4118 return length;
4119}
4120SLAB_ATTR(store_user);
4121
53e15af0
CL
4122static ssize_t validate_show(struct kmem_cache *s, char *buf)
4123{
4124 return 0;
4125}
4126
4127static ssize_t validate_store(struct kmem_cache *s,
4128 const char *buf, size_t length)
4129{
434e245d
CL
4130 int ret = -EINVAL;
4131
4132 if (buf[0] == '1') {
4133 ret = validate_slab_cache(s);
4134 if (ret >= 0)
4135 ret = length;
4136 }
4137 return ret;
53e15af0
CL
4138}
4139SLAB_ATTR(validate);
4140
2086d26a
CL
4141static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4142{
4143 return 0;
4144}
4145
4146static ssize_t shrink_store(struct kmem_cache *s,
4147 const char *buf, size_t length)
4148{
4149 if (buf[0] == '1') {
4150 int rc = kmem_cache_shrink(s);
4151
4152 if (rc)
4153 return rc;
4154 } else
4155 return -EINVAL;
4156 return length;
4157}
4158SLAB_ATTR(shrink);
4159
88a420e4
CL
4160static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4161{
4162 if (!(s->flags & SLAB_STORE_USER))
4163 return -ENOSYS;
4164 return list_locations(s, buf, TRACK_ALLOC);
4165}
4166SLAB_ATTR_RO(alloc_calls);
4167
4168static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4169{
4170 if (!(s->flags & SLAB_STORE_USER))
4171 return -ENOSYS;
4172 return list_locations(s, buf, TRACK_FREE);
4173}
4174SLAB_ATTR_RO(free_calls);
4175
81819f0f 4176#ifdef CONFIG_NUMA
9824601e 4177static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4178{
9824601e 4179 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4180}
4181
9824601e 4182static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4183 const char *buf, size_t length)
4184{
0121c619
CL
4185 unsigned long ratio;
4186 int err;
4187
4188 err = strict_strtoul(buf, 10, &ratio);
4189 if (err)
4190 return err;
4191
e2cb96b7 4192 if (ratio <= 100)
0121c619 4193 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4194
81819f0f
CL
4195 return length;
4196}
9824601e 4197SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4198#endif
4199
8ff12cfc 4200#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4201static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4202{
4203 unsigned long sum = 0;
4204 int cpu;
4205 int len;
4206 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4207
4208 if (!data)
4209 return -ENOMEM;
4210
4211 for_each_online_cpu(cpu) {
4212 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4213
4214 data[cpu] = x;
4215 sum += x;
4216 }
4217
4218 len = sprintf(buf, "%lu", sum);
4219
50ef37b9 4220#ifdef CONFIG_SMP
8ff12cfc
CL
4221 for_each_online_cpu(cpu) {
4222 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4223 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4224 }
50ef37b9 4225#endif
8ff12cfc
CL
4226 kfree(data);
4227 return len + sprintf(buf + len, "\n");
4228}
4229
4230#define STAT_ATTR(si, text) \
4231static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4232{ \
4233 return show_stat(s, buf, si); \
4234} \
4235SLAB_ATTR_RO(text); \
4236
4237STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4238STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4239STAT_ATTR(FREE_FASTPATH, free_fastpath);
4240STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4241STAT_ATTR(FREE_FROZEN, free_frozen);
4242STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4243STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4244STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4245STAT_ATTR(ALLOC_SLAB, alloc_slab);
4246STAT_ATTR(ALLOC_REFILL, alloc_refill);
4247STAT_ATTR(FREE_SLAB, free_slab);
4248STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4249STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4250STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4251STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4252STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4253STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4254STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4255#endif
4256
06428780 4257static struct attribute *slab_attrs[] = {
81819f0f
CL
4258 &slab_size_attr.attr,
4259 &object_size_attr.attr,
4260 &objs_per_slab_attr.attr,
4261 &order_attr.attr,
73d342b1 4262 &min_partial_attr.attr,
81819f0f 4263 &objects_attr.attr,
205ab99d
CL
4264 &objects_partial_attr.attr,
4265 &total_objects_attr.attr,
81819f0f
CL
4266 &slabs_attr.attr,
4267 &partial_attr.attr,
4268 &cpu_slabs_attr.attr,
4269 &ctor_attr.attr,
81819f0f
CL
4270 &aliases_attr.attr,
4271 &align_attr.attr,
4272 &sanity_checks_attr.attr,
4273 &trace_attr.attr,
4274 &hwcache_align_attr.attr,
4275 &reclaim_account_attr.attr,
4276 &destroy_by_rcu_attr.attr,
4277 &red_zone_attr.attr,
4278 &poison_attr.attr,
4279 &store_user_attr.attr,
53e15af0 4280 &validate_attr.attr,
2086d26a 4281 &shrink_attr.attr,
88a420e4
CL
4282 &alloc_calls_attr.attr,
4283 &free_calls_attr.attr,
81819f0f
CL
4284#ifdef CONFIG_ZONE_DMA
4285 &cache_dma_attr.attr,
4286#endif
4287#ifdef CONFIG_NUMA
9824601e 4288 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4289#endif
4290#ifdef CONFIG_SLUB_STATS
4291 &alloc_fastpath_attr.attr,
4292 &alloc_slowpath_attr.attr,
4293 &free_fastpath_attr.attr,
4294 &free_slowpath_attr.attr,
4295 &free_frozen_attr.attr,
4296 &free_add_partial_attr.attr,
4297 &free_remove_partial_attr.attr,
4298 &alloc_from_partial_attr.attr,
4299 &alloc_slab_attr.attr,
4300 &alloc_refill_attr.attr,
4301 &free_slab_attr.attr,
4302 &cpuslab_flush_attr.attr,
4303 &deactivate_full_attr.attr,
4304 &deactivate_empty_attr.attr,
4305 &deactivate_to_head_attr.attr,
4306 &deactivate_to_tail_attr.attr,
4307 &deactivate_remote_frees_attr.attr,
65c3376a 4308 &order_fallback_attr.attr,
81819f0f
CL
4309#endif
4310 NULL
4311};
4312
4313static struct attribute_group slab_attr_group = {
4314 .attrs = slab_attrs,
4315};
4316
4317static ssize_t slab_attr_show(struct kobject *kobj,
4318 struct attribute *attr,
4319 char *buf)
4320{
4321 struct slab_attribute *attribute;
4322 struct kmem_cache *s;
4323 int err;
4324
4325 attribute = to_slab_attr(attr);
4326 s = to_slab(kobj);
4327
4328 if (!attribute->show)
4329 return -EIO;
4330
4331 err = attribute->show(s, buf);
4332
4333 return err;
4334}
4335
4336static ssize_t slab_attr_store(struct kobject *kobj,
4337 struct attribute *attr,
4338 const char *buf, size_t len)
4339{
4340 struct slab_attribute *attribute;
4341 struct kmem_cache *s;
4342 int err;
4343
4344 attribute = to_slab_attr(attr);
4345 s = to_slab(kobj);
4346
4347 if (!attribute->store)
4348 return -EIO;
4349
4350 err = attribute->store(s, buf, len);
4351
4352 return err;
4353}
4354
151c602f
CL
4355static void kmem_cache_release(struct kobject *kobj)
4356{
4357 struct kmem_cache *s = to_slab(kobj);
4358
4359 kfree(s);
4360}
4361
81819f0f
CL
4362static struct sysfs_ops slab_sysfs_ops = {
4363 .show = slab_attr_show,
4364 .store = slab_attr_store,
4365};
4366
4367static struct kobj_type slab_ktype = {
4368 .sysfs_ops = &slab_sysfs_ops,
151c602f 4369 .release = kmem_cache_release
81819f0f
CL
4370};
4371
4372static int uevent_filter(struct kset *kset, struct kobject *kobj)
4373{
4374 struct kobj_type *ktype = get_ktype(kobj);
4375
4376 if (ktype == &slab_ktype)
4377 return 1;
4378 return 0;
4379}
4380
4381static struct kset_uevent_ops slab_uevent_ops = {
4382 .filter = uevent_filter,
4383};
4384
27c3a314 4385static struct kset *slab_kset;
81819f0f
CL
4386
4387#define ID_STR_LENGTH 64
4388
4389/* Create a unique string id for a slab cache:
6446faa2
CL
4390 *
4391 * Format :[flags-]size
81819f0f
CL
4392 */
4393static char *create_unique_id(struct kmem_cache *s)
4394{
4395 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4396 char *p = name;
4397
4398 BUG_ON(!name);
4399
4400 *p++ = ':';
4401 /*
4402 * First flags affecting slabcache operations. We will only
4403 * get here for aliasable slabs so we do not need to support
4404 * too many flags. The flags here must cover all flags that
4405 * are matched during merging to guarantee that the id is
4406 * unique.
4407 */
4408 if (s->flags & SLAB_CACHE_DMA)
4409 *p++ = 'd';
4410 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4411 *p++ = 'a';
4412 if (s->flags & SLAB_DEBUG_FREE)
4413 *p++ = 'F';
5a896d9e
VN
4414 if (!(s->flags & SLAB_NOTRACK))
4415 *p++ = 't';
81819f0f
CL
4416 if (p != name + 1)
4417 *p++ = '-';
4418 p += sprintf(p, "%07d", s->size);
4419 BUG_ON(p > name + ID_STR_LENGTH - 1);
4420 return name;
4421}
4422
4423static int sysfs_slab_add(struct kmem_cache *s)
4424{
4425 int err;
4426 const char *name;
4427 int unmergeable;
4428
4429 if (slab_state < SYSFS)
4430 /* Defer until later */
4431 return 0;
4432
4433 unmergeable = slab_unmergeable(s);
4434 if (unmergeable) {
4435 /*
4436 * Slabcache can never be merged so we can use the name proper.
4437 * This is typically the case for debug situations. In that
4438 * case we can catch duplicate names easily.
4439 */
27c3a314 4440 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4441 name = s->name;
4442 } else {
4443 /*
4444 * Create a unique name for the slab as a target
4445 * for the symlinks.
4446 */
4447 name = create_unique_id(s);
4448 }
4449
27c3a314 4450 s->kobj.kset = slab_kset;
1eada11c
GKH
4451 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4452 if (err) {
4453 kobject_put(&s->kobj);
81819f0f 4454 return err;
1eada11c 4455 }
81819f0f
CL
4456
4457 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4458 if (err)
4459 return err;
4460 kobject_uevent(&s->kobj, KOBJ_ADD);
4461 if (!unmergeable) {
4462 /* Setup first alias */
4463 sysfs_slab_alias(s, s->name);
4464 kfree(name);
4465 }
4466 return 0;
4467}
4468
4469static void sysfs_slab_remove(struct kmem_cache *s)
4470{
4471 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4472 kobject_del(&s->kobj);
151c602f 4473 kobject_put(&s->kobj);
81819f0f
CL
4474}
4475
4476/*
4477 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4478 * available lest we lose that information.
81819f0f
CL
4479 */
4480struct saved_alias {
4481 struct kmem_cache *s;
4482 const char *name;
4483 struct saved_alias *next;
4484};
4485
5af328a5 4486static struct saved_alias *alias_list;
81819f0f
CL
4487
4488static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4489{
4490 struct saved_alias *al;
4491
4492 if (slab_state == SYSFS) {
4493 /*
4494 * If we have a leftover link then remove it.
4495 */
27c3a314
GKH
4496 sysfs_remove_link(&slab_kset->kobj, name);
4497 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4498 }
4499
4500 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4501 if (!al)
4502 return -ENOMEM;
4503
4504 al->s = s;
4505 al->name = name;
4506 al->next = alias_list;
4507 alias_list = al;
4508 return 0;
4509}
4510
4511static int __init slab_sysfs_init(void)
4512{
5b95a4ac 4513 struct kmem_cache *s;
81819f0f
CL
4514 int err;
4515
0ff21e46 4516 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4517 if (!slab_kset) {
81819f0f
CL
4518 printk(KERN_ERR "Cannot register slab subsystem.\n");
4519 return -ENOSYS;
4520 }
4521
26a7bd03
CL
4522 slab_state = SYSFS;
4523
5b95a4ac 4524 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4525 err = sysfs_slab_add(s);
5d540fb7
CL
4526 if (err)
4527 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4528 " to sysfs\n", s->name);
26a7bd03 4529 }
81819f0f
CL
4530
4531 while (alias_list) {
4532 struct saved_alias *al = alias_list;
4533
4534 alias_list = alias_list->next;
4535 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4536 if (err)
4537 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4538 " %s to sysfs\n", s->name);
81819f0f
CL
4539 kfree(al);
4540 }
4541
4542 resiliency_test();
4543 return 0;
4544}
4545
4546__initcall(slab_sysfs_init);
81819f0f 4547#endif
57ed3eda
PE
4548
4549/*
4550 * The /proc/slabinfo ABI
4551 */
158a9624 4552#ifdef CONFIG_SLABINFO
57ed3eda
PE
4553static void print_slabinfo_header(struct seq_file *m)
4554{
4555 seq_puts(m, "slabinfo - version: 2.1\n");
4556 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4557 "<objperslab> <pagesperslab>");
4558 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4559 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4560 seq_putc(m, '\n');
4561}
4562
4563static void *s_start(struct seq_file *m, loff_t *pos)
4564{
4565 loff_t n = *pos;
4566
4567 down_read(&slub_lock);
4568 if (!n)
4569 print_slabinfo_header(m);
4570
4571 return seq_list_start(&slab_caches, *pos);
4572}
4573
4574static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4575{
4576 return seq_list_next(p, &slab_caches, pos);
4577}
4578
4579static void s_stop(struct seq_file *m, void *p)
4580{
4581 up_read(&slub_lock);
4582}
4583
4584static int s_show(struct seq_file *m, void *p)
4585{
4586 unsigned long nr_partials = 0;
4587 unsigned long nr_slabs = 0;
4588 unsigned long nr_inuse = 0;
205ab99d
CL
4589 unsigned long nr_objs = 0;
4590 unsigned long nr_free = 0;
57ed3eda
PE
4591 struct kmem_cache *s;
4592 int node;
4593
4594 s = list_entry(p, struct kmem_cache, list);
4595
4596 for_each_online_node(node) {
4597 struct kmem_cache_node *n = get_node(s, node);
4598
4599 if (!n)
4600 continue;
4601
4602 nr_partials += n->nr_partial;
4603 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4604 nr_objs += atomic_long_read(&n->total_objects);
4605 nr_free += count_partial(n, count_free);
57ed3eda
PE
4606 }
4607
205ab99d 4608 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4609
4610 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4611 nr_objs, s->size, oo_objects(s->oo),
4612 (1 << oo_order(s->oo)));
57ed3eda
PE
4613 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4614 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4615 0UL);
4616 seq_putc(m, '\n');
4617 return 0;
4618}
4619
7b3c3a50 4620static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4621 .start = s_start,
4622 .next = s_next,
4623 .stop = s_stop,
4624 .show = s_show,
4625};
4626
7b3c3a50
AD
4627static int slabinfo_open(struct inode *inode, struct file *file)
4628{
4629 return seq_open(file, &slabinfo_op);
4630}
4631
4632static const struct file_operations proc_slabinfo_operations = {
4633 .open = slabinfo_open,
4634 .read = seq_read,
4635 .llseek = seq_lseek,
4636 .release = seq_release,
4637};
4638
4639static int __init slab_proc_init(void)
4640{
4641 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4642 return 0;
4643}
4644module_init(slab_proc_init);
158a9624 4645#endif /* CONFIG_SLABINFO */