slab: propagate tunable values
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
81819f0f 21#include <linux/seq_file.h>
5a896d9e 22#include <linux/kmemcheck.h>
81819f0f
CL
23#include <linux/cpu.h>
24#include <linux/cpuset.h>
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
bfa71457 32#include <linux/stacktrace.h>
4de900b4 33#include <linux/prefetch.h>
2633d7a0 34#include <linux/memcontrol.h>
81819f0f 35
4a92379b
RK
36#include <trace/events/kmem.h>
37
072bb0aa
MG
38#include "internal.h"
39
81819f0f
CL
40/*
41 * Lock order:
18004c5d 42 * 1. slab_mutex (Global Mutex)
881db7fb
CL
43 * 2. node->list_lock
44 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 45 *
18004c5d 46 * slab_mutex
881db7fb 47 *
18004c5d 48 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
49 * and to synchronize major metadata changes to slab cache structures.
50 *
51 * The slab_lock is only used for debugging and on arches that do not
52 * have the ability to do a cmpxchg_double. It only protects the second
53 * double word in the page struct. Meaning
54 * A. page->freelist -> List of object free in a page
55 * B. page->counters -> Counters of objects
56 * C. page->frozen -> frozen state
57 *
58 * If a slab is frozen then it is exempt from list management. It is not
59 * on any list. The processor that froze the slab is the one who can
60 * perform list operations on the page. Other processors may put objects
61 * onto the freelist but the processor that froze the slab is the only
62 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
63 *
64 * The list_lock protects the partial and full list on each node and
65 * the partial slab counter. If taken then no new slabs may be added or
66 * removed from the lists nor make the number of partial slabs be modified.
67 * (Note that the total number of slabs is an atomic value that may be
68 * modified without taking the list lock).
69 *
70 * The list_lock is a centralized lock and thus we avoid taking it as
71 * much as possible. As long as SLUB does not have to handle partial
72 * slabs, operations can continue without any centralized lock. F.e.
73 * allocating a long series of objects that fill up slabs does not require
74 * the list lock.
81819f0f
CL
75 * Interrupts are disabled during allocation and deallocation in order to
76 * make the slab allocator safe to use in the context of an irq. In addition
77 * interrupts are disabled to ensure that the processor does not change
78 * while handling per_cpu slabs, due to kernel preemption.
79 *
80 * SLUB assigns one slab for allocation to each processor.
81 * Allocations only occur from these slabs called cpu slabs.
82 *
672bba3a
CL
83 * Slabs with free elements are kept on a partial list and during regular
84 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 85 * freed then the slab will show up again on the partial lists.
672bba3a
CL
86 * We track full slabs for debugging purposes though because otherwise we
87 * cannot scan all objects.
81819f0f
CL
88 *
89 * Slabs are freed when they become empty. Teardown and setup is
90 * minimal so we rely on the page allocators per cpu caches for
91 * fast frees and allocs.
92 *
93 * Overloading of page flags that are otherwise used for LRU management.
94 *
4b6f0750
CL
95 * PageActive The slab is frozen and exempt from list processing.
96 * This means that the slab is dedicated to a purpose
97 * such as satisfying allocations for a specific
98 * processor. Objects may be freed in the slab while
99 * it is frozen but slab_free will then skip the usual
100 * list operations. It is up to the processor holding
101 * the slab to integrate the slab into the slab lists
102 * when the slab is no longer needed.
103 *
104 * One use of this flag is to mark slabs that are
105 * used for allocations. Then such a slab becomes a cpu
106 * slab. The cpu slab may be equipped with an additional
dfb4f096 107 * freelist that allows lockless access to
894b8788
CL
108 * free objects in addition to the regular freelist
109 * that requires the slab lock.
81819f0f
CL
110 *
111 * PageError Slab requires special handling due to debug
112 * options set. This moves slab handling out of
894b8788 113 * the fast path and disables lockless freelists.
81819f0f
CL
114 */
115
af537b0a
CL
116static inline int kmem_cache_debug(struct kmem_cache *s)
117{
5577bd8a 118#ifdef CONFIG_SLUB_DEBUG
af537b0a 119 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 120#else
af537b0a 121 return 0;
5577bd8a 122#endif
af537b0a 123}
5577bd8a 124
81819f0f
CL
125/*
126 * Issues still to be resolved:
127 *
81819f0f
CL
128 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
129 *
81819f0f
CL
130 * - Variable sizing of the per node arrays
131 */
132
133/* Enable to test recovery from slab corruption on boot */
134#undef SLUB_RESILIENCY_TEST
135
b789ef51
CL
136/* Enable to log cmpxchg failures */
137#undef SLUB_DEBUG_CMPXCHG
138
2086d26a
CL
139/*
140 * Mininum number of partial slabs. These will be left on the partial
141 * lists even if they are empty. kmem_cache_shrink may reclaim them.
142 */
76be8950 143#define MIN_PARTIAL 5
e95eed57 144
2086d26a
CL
145/*
146 * Maximum number of desirable partial slabs.
147 * The existence of more partial slabs makes kmem_cache_shrink
148 * sort the partial list by the number of objects in the.
149 */
150#define MAX_PARTIAL 10
151
81819f0f
CL
152#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
153 SLAB_POISON | SLAB_STORE_USER)
672bba3a 154
fa5ec8a1 155/*
3de47213
DR
156 * Debugging flags that require metadata to be stored in the slab. These get
157 * disabled when slub_debug=O is used and a cache's min order increases with
158 * metadata.
fa5ec8a1 159 */
3de47213 160#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 161
81819f0f
CL
162/*
163 * Set of flags that will prevent slab merging
164 */
165#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
166 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
167 SLAB_FAILSLAB)
81819f0f
CL
168
169#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 170 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 171
210b5c06
CG
172#define OO_SHIFT 16
173#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 174#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 175
81819f0f 176/* Internal SLUB flags */
f90ec390 177#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 178#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 179
81819f0f
CL
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
02cbc874
CL
184/*
185 * Tracking user of a slab.
186 */
d6543e39 187#define TRACK_ADDRS_COUNT 16
02cbc874 188struct track {
ce71e27c 189 unsigned long addr; /* Called from address */
d6543e39
BG
190#ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192#endif
02cbc874
CL
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196};
197
198enum track_item { TRACK_ALLOC, TRACK_FREE };
199
ab4d5ed5 200#ifdef CONFIG_SYSFS
81819f0f
CL
201static int sysfs_slab_add(struct kmem_cache *);
202static int sysfs_slab_alias(struct kmem_cache *, const char *);
203static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 204
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
db265eca 209static inline void sysfs_slab_remove(struct kmem_cache *s) { }
8ff12cfc 210
81819f0f
CL
211#endif
212
4fdccdfb 213static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
214{
215#ifdef CONFIG_SLUB_STATS
84e554e6 216 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
217#endif
218}
219
81819f0f
CL
220/********************************************************************
221 * Core slab cache functions
222 *******************************************************************/
223
81819f0f
CL
224static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
225{
81819f0f 226 return s->node[node];
81819f0f
CL
227}
228
6446faa2 229/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
230static inline int check_valid_pointer(struct kmem_cache *s,
231 struct page *page, const void *object)
232{
233 void *base;
234
a973e9dd 235 if (!object)
02cbc874
CL
236 return 1;
237
a973e9dd 238 base = page_address(page);
39b26464 239 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
240 (object - base) % s->size) {
241 return 0;
242 }
243
244 return 1;
245}
246
7656c72b
CL
247static inline void *get_freepointer(struct kmem_cache *s, void *object)
248{
249 return *(void **)(object + s->offset);
250}
251
0ad9500e
ED
252static void prefetch_freepointer(const struct kmem_cache *s, void *object)
253{
254 prefetch(object + s->offset);
255}
256
1393d9a1
CL
257static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
258{
259 void *p;
260
261#ifdef CONFIG_DEBUG_PAGEALLOC
262 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
263#else
264 p = get_freepointer(s, object);
265#endif
266 return p;
267}
268
7656c72b
CL
269static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
270{
271 *(void **)(object + s->offset) = fp;
272}
273
274/* Loop over all objects in a slab */
224a88be
CL
275#define for_each_object(__p, __s, __addr, __objects) \
276 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
277 __p += (__s)->size)
278
7656c72b
CL
279/* Determine object index from a given position */
280static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
281{
282 return (p - addr) / s->size;
283}
284
d71f606f
MK
285static inline size_t slab_ksize(const struct kmem_cache *s)
286{
287#ifdef CONFIG_SLUB_DEBUG
288 /*
289 * Debugging requires use of the padding between object
290 * and whatever may come after it.
291 */
292 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 293 return s->object_size;
d71f606f
MK
294
295#endif
296 /*
297 * If we have the need to store the freelist pointer
298 * back there or track user information then we can
299 * only use the space before that information.
300 */
301 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
302 return s->inuse;
303 /*
304 * Else we can use all the padding etc for the allocation
305 */
306 return s->size;
307}
308
ab9a0f19
LJ
309static inline int order_objects(int order, unsigned long size, int reserved)
310{
311 return ((PAGE_SIZE << order) - reserved) / size;
312}
313
834f3d11 314static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 315 unsigned long size, int reserved)
834f3d11
CL
316{
317 struct kmem_cache_order_objects x = {
ab9a0f19 318 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
319 };
320
321 return x;
322}
323
324static inline int oo_order(struct kmem_cache_order_objects x)
325{
210b5c06 326 return x.x >> OO_SHIFT;
834f3d11
CL
327}
328
329static inline int oo_objects(struct kmem_cache_order_objects x)
330{
210b5c06 331 return x.x & OO_MASK;
834f3d11
CL
332}
333
881db7fb
CL
334/*
335 * Per slab locking using the pagelock
336 */
337static __always_inline void slab_lock(struct page *page)
338{
339 bit_spin_lock(PG_locked, &page->flags);
340}
341
342static __always_inline void slab_unlock(struct page *page)
343{
344 __bit_spin_unlock(PG_locked, &page->flags);
345}
346
1d07171c
CL
347/* Interrupts must be disabled (for the fallback code to work right) */
348static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
349 void *freelist_old, unsigned long counters_old,
350 void *freelist_new, unsigned long counters_new,
351 const char *n)
352{
353 VM_BUG_ON(!irqs_disabled());
2565409f
HC
354#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
355 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 356 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 357 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
358 freelist_old, counters_old,
359 freelist_new, counters_new))
360 return 1;
361 } else
362#endif
363 {
364 slab_lock(page);
365 if (page->freelist == freelist_old && page->counters == counters_old) {
366 page->freelist = freelist_new;
367 page->counters = counters_new;
368 slab_unlock(page);
369 return 1;
370 }
371 slab_unlock(page);
372 }
373
374 cpu_relax();
375 stat(s, CMPXCHG_DOUBLE_FAIL);
376
377#ifdef SLUB_DEBUG_CMPXCHG
378 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
379#endif
380
381 return 0;
382}
383
b789ef51
CL
384static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
385 void *freelist_old, unsigned long counters_old,
386 void *freelist_new, unsigned long counters_new,
387 const char *n)
388{
2565409f
HC
389#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
390 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 391 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 392 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
393 freelist_old, counters_old,
394 freelist_new, counters_new))
395 return 1;
396 } else
397#endif
398 {
1d07171c
CL
399 unsigned long flags;
400
401 local_irq_save(flags);
881db7fb 402 slab_lock(page);
b789ef51
CL
403 if (page->freelist == freelist_old && page->counters == counters_old) {
404 page->freelist = freelist_new;
405 page->counters = counters_new;
881db7fb 406 slab_unlock(page);
1d07171c 407 local_irq_restore(flags);
b789ef51
CL
408 return 1;
409 }
881db7fb 410 slab_unlock(page);
1d07171c 411 local_irq_restore(flags);
b789ef51
CL
412 }
413
414 cpu_relax();
415 stat(s, CMPXCHG_DOUBLE_FAIL);
416
417#ifdef SLUB_DEBUG_CMPXCHG
418 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
419#endif
420
421 return 0;
422}
423
41ecc55b 424#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
425/*
426 * Determine a map of object in use on a page.
427 *
881db7fb 428 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
429 * not vanish from under us.
430 */
431static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
432{
433 void *p;
434 void *addr = page_address(page);
435
436 for (p = page->freelist; p; p = get_freepointer(s, p))
437 set_bit(slab_index(p, s, addr), map);
438}
439
41ecc55b
CL
440/*
441 * Debug settings:
442 */
f0630fff
CL
443#ifdef CONFIG_SLUB_DEBUG_ON
444static int slub_debug = DEBUG_DEFAULT_FLAGS;
445#else
41ecc55b 446static int slub_debug;
f0630fff 447#endif
41ecc55b
CL
448
449static char *slub_debug_slabs;
fa5ec8a1 450static int disable_higher_order_debug;
41ecc55b 451
81819f0f
CL
452/*
453 * Object debugging
454 */
455static void print_section(char *text, u8 *addr, unsigned int length)
456{
ffc79d28
SAS
457 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
458 length, 1);
81819f0f
CL
459}
460
81819f0f
CL
461static struct track *get_track(struct kmem_cache *s, void *object,
462 enum track_item alloc)
463{
464 struct track *p;
465
466 if (s->offset)
467 p = object + s->offset + sizeof(void *);
468 else
469 p = object + s->inuse;
470
471 return p + alloc;
472}
473
474static void set_track(struct kmem_cache *s, void *object,
ce71e27c 475 enum track_item alloc, unsigned long addr)
81819f0f 476{
1a00df4a 477 struct track *p = get_track(s, object, alloc);
81819f0f 478
81819f0f 479 if (addr) {
d6543e39
BG
480#ifdef CONFIG_STACKTRACE
481 struct stack_trace trace;
482 int i;
483
484 trace.nr_entries = 0;
485 trace.max_entries = TRACK_ADDRS_COUNT;
486 trace.entries = p->addrs;
487 trace.skip = 3;
488 save_stack_trace(&trace);
489
490 /* See rant in lockdep.c */
491 if (trace.nr_entries != 0 &&
492 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
493 trace.nr_entries--;
494
495 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
496 p->addrs[i] = 0;
497#endif
81819f0f
CL
498 p->addr = addr;
499 p->cpu = smp_processor_id();
88e4ccf2 500 p->pid = current->pid;
81819f0f
CL
501 p->when = jiffies;
502 } else
503 memset(p, 0, sizeof(struct track));
504}
505
81819f0f
CL
506static void init_tracking(struct kmem_cache *s, void *object)
507{
24922684
CL
508 if (!(s->flags & SLAB_STORE_USER))
509 return;
510
ce71e27c
EGM
511 set_track(s, object, TRACK_FREE, 0UL);
512 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
513}
514
515static void print_track(const char *s, struct track *t)
516{
517 if (!t->addr)
518 return;
519
7daf705f 520 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 521 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
522#ifdef CONFIG_STACKTRACE
523 {
524 int i;
525 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
526 if (t->addrs[i])
527 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
528 else
529 break;
530 }
531#endif
24922684
CL
532}
533
534static void print_tracking(struct kmem_cache *s, void *object)
535{
536 if (!(s->flags & SLAB_STORE_USER))
537 return;
538
539 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
540 print_track("Freed", get_track(s, object, TRACK_FREE));
541}
542
543static void print_page_info(struct page *page)
544{
39b26464
CL
545 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
546 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
547
548}
549
550static void slab_bug(struct kmem_cache *s, char *fmt, ...)
551{
552 va_list args;
553 char buf[100];
554
555 va_start(args, fmt);
556 vsnprintf(buf, sizeof(buf), fmt, args);
557 va_end(args);
558 printk(KERN_ERR "========================================"
559 "=====================================\n");
265d47e7 560 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
561 printk(KERN_ERR "----------------------------------------"
562 "-------------------------------------\n\n");
645df230
DJ
563
564 add_taint(TAINT_BAD_PAGE);
81819f0f
CL
565}
566
24922684
CL
567static void slab_fix(struct kmem_cache *s, char *fmt, ...)
568{
569 va_list args;
570 char buf[100];
571
572 va_start(args, fmt);
573 vsnprintf(buf, sizeof(buf), fmt, args);
574 va_end(args);
575 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
576}
577
578static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
579{
580 unsigned int off; /* Offset of last byte */
a973e9dd 581 u8 *addr = page_address(page);
24922684
CL
582
583 print_tracking(s, p);
584
585 print_page_info(page);
586
587 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
588 p, p - addr, get_freepointer(s, p));
589
590 if (p > addr + 16)
ffc79d28 591 print_section("Bytes b4 ", p - 16, 16);
81819f0f 592
3b0efdfa 593 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 594 PAGE_SIZE));
81819f0f 595 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
596 print_section("Redzone ", p + s->object_size,
597 s->inuse - s->object_size);
81819f0f 598
81819f0f
CL
599 if (s->offset)
600 off = s->offset + sizeof(void *);
601 else
602 off = s->inuse;
603
24922684 604 if (s->flags & SLAB_STORE_USER)
81819f0f 605 off += 2 * sizeof(struct track);
81819f0f
CL
606
607 if (off != s->size)
608 /* Beginning of the filler is the free pointer */
ffc79d28 609 print_section("Padding ", p + off, s->size - off);
24922684
CL
610
611 dump_stack();
81819f0f
CL
612}
613
614static void object_err(struct kmem_cache *s, struct page *page,
615 u8 *object, char *reason)
616{
3dc50637 617 slab_bug(s, "%s", reason);
24922684 618 print_trailer(s, page, object);
81819f0f
CL
619}
620
945cf2b6 621static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
81819f0f
CL
622{
623 va_list args;
624 char buf[100];
625
24922684
CL
626 va_start(args, fmt);
627 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 628 va_end(args);
3dc50637 629 slab_bug(s, "%s", buf);
24922684 630 print_page_info(page);
81819f0f
CL
631 dump_stack();
632}
633
f7cb1933 634static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
635{
636 u8 *p = object;
637
638 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
639 memset(p, POISON_FREE, s->object_size - 1);
640 p[s->object_size - 1] = POISON_END;
81819f0f
CL
641 }
642
643 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 644 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
645}
646
24922684
CL
647static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
648 void *from, void *to)
649{
650 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
651 memset(from, data, to - from);
652}
653
654static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
655 u8 *object, char *what,
06428780 656 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
657{
658 u8 *fault;
659 u8 *end;
660
79824820 661 fault = memchr_inv(start, value, bytes);
24922684
CL
662 if (!fault)
663 return 1;
664
665 end = start + bytes;
666 while (end > fault && end[-1] == value)
667 end--;
668
669 slab_bug(s, "%s overwritten", what);
670 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
671 fault, end - 1, fault[0], value);
672 print_trailer(s, page, object);
673
674 restore_bytes(s, what, value, fault, end);
675 return 0;
81819f0f
CL
676}
677
81819f0f
CL
678/*
679 * Object layout:
680 *
681 * object address
682 * Bytes of the object to be managed.
683 * If the freepointer may overlay the object then the free
684 * pointer is the first word of the object.
672bba3a 685 *
81819f0f
CL
686 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
687 * 0xa5 (POISON_END)
688 *
3b0efdfa 689 * object + s->object_size
81819f0f 690 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 691 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 692 * object_size == inuse.
672bba3a 693 *
81819f0f
CL
694 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
695 * 0xcc (RED_ACTIVE) for objects in use.
696 *
697 * object + s->inuse
672bba3a
CL
698 * Meta data starts here.
699 *
81819f0f
CL
700 * A. Free pointer (if we cannot overwrite object on free)
701 * B. Tracking data for SLAB_STORE_USER
672bba3a 702 * C. Padding to reach required alignment boundary or at mininum
6446faa2 703 * one word if debugging is on to be able to detect writes
672bba3a
CL
704 * before the word boundary.
705 *
706 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
707 *
708 * object + s->size
672bba3a 709 * Nothing is used beyond s->size.
81819f0f 710 *
3b0efdfa 711 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 712 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
713 * may be used with merged slabcaches.
714 */
715
81819f0f
CL
716static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
717{
718 unsigned long off = s->inuse; /* The end of info */
719
720 if (s->offset)
721 /* Freepointer is placed after the object. */
722 off += sizeof(void *);
723
724 if (s->flags & SLAB_STORE_USER)
725 /* We also have user information there */
726 off += 2 * sizeof(struct track);
727
728 if (s->size == off)
729 return 1;
730
24922684
CL
731 return check_bytes_and_report(s, page, p, "Object padding",
732 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
733}
734
39b26464 735/* Check the pad bytes at the end of a slab page */
81819f0f
CL
736static int slab_pad_check(struct kmem_cache *s, struct page *page)
737{
24922684
CL
738 u8 *start;
739 u8 *fault;
740 u8 *end;
741 int length;
742 int remainder;
81819f0f
CL
743
744 if (!(s->flags & SLAB_POISON))
745 return 1;
746
a973e9dd 747 start = page_address(page);
ab9a0f19 748 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
749 end = start + length;
750 remainder = length % s->size;
81819f0f
CL
751 if (!remainder)
752 return 1;
753
79824820 754 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
755 if (!fault)
756 return 1;
757 while (end > fault && end[-1] == POISON_INUSE)
758 end--;
759
760 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 761 print_section("Padding ", end - remainder, remainder);
24922684 762
8a3d271d 763 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 764 return 0;
81819f0f
CL
765}
766
767static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 768 void *object, u8 val)
81819f0f
CL
769{
770 u8 *p = object;
3b0efdfa 771 u8 *endobject = object + s->object_size;
81819f0f
CL
772
773 if (s->flags & SLAB_RED_ZONE) {
24922684 774 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 775 endobject, val, s->inuse - s->object_size))
81819f0f 776 return 0;
81819f0f 777 } else {
3b0efdfa 778 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 779 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 780 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 781 }
81819f0f
CL
782 }
783
784 if (s->flags & SLAB_POISON) {
f7cb1933 785 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 786 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 787 POISON_FREE, s->object_size - 1) ||
24922684 788 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 789 p + s->object_size - 1, POISON_END, 1)))
81819f0f 790 return 0;
81819f0f
CL
791 /*
792 * check_pad_bytes cleans up on its own.
793 */
794 check_pad_bytes(s, page, p);
795 }
796
f7cb1933 797 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
798 /*
799 * Object and freepointer overlap. Cannot check
800 * freepointer while object is allocated.
801 */
802 return 1;
803
804 /* Check free pointer validity */
805 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
806 object_err(s, page, p, "Freepointer corrupt");
807 /*
9f6c708e 808 * No choice but to zap it and thus lose the remainder
81819f0f 809 * of the free objects in this slab. May cause
672bba3a 810 * another error because the object count is now wrong.
81819f0f 811 */
a973e9dd 812 set_freepointer(s, p, NULL);
81819f0f
CL
813 return 0;
814 }
815 return 1;
816}
817
818static int check_slab(struct kmem_cache *s, struct page *page)
819{
39b26464
CL
820 int maxobj;
821
81819f0f
CL
822 VM_BUG_ON(!irqs_disabled());
823
824 if (!PageSlab(page)) {
24922684 825 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
826 return 0;
827 }
39b26464 828
ab9a0f19 829 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
830 if (page->objects > maxobj) {
831 slab_err(s, page, "objects %u > max %u",
832 s->name, page->objects, maxobj);
833 return 0;
834 }
835 if (page->inuse > page->objects) {
24922684 836 slab_err(s, page, "inuse %u > max %u",
39b26464 837 s->name, page->inuse, page->objects);
81819f0f
CL
838 return 0;
839 }
840 /* Slab_pad_check fixes things up after itself */
841 slab_pad_check(s, page);
842 return 1;
843}
844
845/*
672bba3a
CL
846 * Determine if a certain object on a page is on the freelist. Must hold the
847 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
848 */
849static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
850{
851 int nr = 0;
881db7fb 852 void *fp;
81819f0f 853 void *object = NULL;
224a88be 854 unsigned long max_objects;
81819f0f 855
881db7fb 856 fp = page->freelist;
39b26464 857 while (fp && nr <= page->objects) {
81819f0f
CL
858 if (fp == search)
859 return 1;
860 if (!check_valid_pointer(s, page, fp)) {
861 if (object) {
862 object_err(s, page, object,
863 "Freechain corrupt");
a973e9dd 864 set_freepointer(s, object, NULL);
81819f0f
CL
865 break;
866 } else {
24922684 867 slab_err(s, page, "Freepointer corrupt");
a973e9dd 868 page->freelist = NULL;
39b26464 869 page->inuse = page->objects;
24922684 870 slab_fix(s, "Freelist cleared");
81819f0f
CL
871 return 0;
872 }
873 break;
874 }
875 object = fp;
876 fp = get_freepointer(s, object);
877 nr++;
878 }
879
ab9a0f19 880 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
881 if (max_objects > MAX_OBJS_PER_PAGE)
882 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
883
884 if (page->objects != max_objects) {
885 slab_err(s, page, "Wrong number of objects. Found %d but "
886 "should be %d", page->objects, max_objects);
887 page->objects = max_objects;
888 slab_fix(s, "Number of objects adjusted.");
889 }
39b26464 890 if (page->inuse != page->objects - nr) {
70d71228 891 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
892 "counted were %d", page->inuse, page->objects - nr);
893 page->inuse = page->objects - nr;
24922684 894 slab_fix(s, "Object count adjusted.");
81819f0f
CL
895 }
896 return search == NULL;
897}
898
0121c619
CL
899static void trace(struct kmem_cache *s, struct page *page, void *object,
900 int alloc)
3ec09742
CL
901{
902 if (s->flags & SLAB_TRACE) {
903 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
904 s->name,
905 alloc ? "alloc" : "free",
906 object, page->inuse,
907 page->freelist);
908
909 if (!alloc)
3b0efdfa 910 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
911
912 dump_stack();
913 }
914}
915
c016b0bd
CL
916/*
917 * Hooks for other subsystems that check memory allocations. In a typical
918 * production configuration these hooks all should produce no code at all.
919 */
920static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
921{
c1d50836 922 flags &= gfp_allowed_mask;
c016b0bd
CL
923 lockdep_trace_alloc(flags);
924 might_sleep_if(flags & __GFP_WAIT);
925
3b0efdfa 926 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
927}
928
929static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
930{
c1d50836 931 flags &= gfp_allowed_mask;
b3d41885 932 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 933 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
934}
935
936static inline void slab_free_hook(struct kmem_cache *s, void *x)
937{
938 kmemleak_free_recursive(x, s->flags);
c016b0bd 939
d3f661d6
CL
940 /*
941 * Trouble is that we may no longer disable interupts in the fast path
942 * So in order to make the debug calls that expect irqs to be
943 * disabled we need to disable interrupts temporarily.
944 */
945#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
946 {
947 unsigned long flags;
948
949 local_irq_save(flags);
3b0efdfa
CL
950 kmemcheck_slab_free(s, x, s->object_size);
951 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
952 local_irq_restore(flags);
953 }
954#endif
f9b615de 955 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 956 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
957}
958
643b1138 959/*
672bba3a 960 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
961 *
962 * list_lock must be held.
643b1138 963 */
5cc6eee8
CL
964static void add_full(struct kmem_cache *s,
965 struct kmem_cache_node *n, struct page *page)
643b1138 966{
5cc6eee8
CL
967 if (!(s->flags & SLAB_STORE_USER))
968 return;
969
643b1138 970 list_add(&page->lru, &n->full);
643b1138
CL
971}
972
5cc6eee8
CL
973/*
974 * list_lock must be held.
975 */
643b1138
CL
976static void remove_full(struct kmem_cache *s, struct page *page)
977{
643b1138
CL
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
643b1138 981 list_del(&page->lru);
643b1138
CL
982}
983
0f389ec6
CL
984/* Tracking of the number of slabs for debugging purposes */
985static inline unsigned long slabs_node(struct kmem_cache *s, int node)
986{
987 struct kmem_cache_node *n = get_node(s, node);
988
989 return atomic_long_read(&n->nr_slabs);
990}
991
26c02cf0
AB
992static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
993{
994 return atomic_long_read(&n->nr_slabs);
995}
996
205ab99d 997static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
998{
999 struct kmem_cache_node *n = get_node(s, node);
1000
1001 /*
1002 * May be called early in order to allocate a slab for the
1003 * kmem_cache_node structure. Solve the chicken-egg
1004 * dilemma by deferring the increment of the count during
1005 * bootstrap (see early_kmem_cache_node_alloc).
1006 */
7340cc84 1007 if (n) {
0f389ec6 1008 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1009 atomic_long_add(objects, &n->total_objects);
1010 }
0f389ec6 1011}
205ab99d 1012static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1013{
1014 struct kmem_cache_node *n = get_node(s, node);
1015
1016 atomic_long_dec(&n->nr_slabs);
205ab99d 1017 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1018}
1019
1020/* Object debug checks for alloc/free paths */
3ec09742
CL
1021static void setup_object_debug(struct kmem_cache *s, struct page *page,
1022 void *object)
1023{
1024 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1025 return;
1026
f7cb1933 1027 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1028 init_tracking(s, object);
1029}
1030
1537066c 1031static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1032 void *object, unsigned long addr)
81819f0f
CL
1033{
1034 if (!check_slab(s, page))
1035 goto bad;
1036
81819f0f
CL
1037 if (!check_valid_pointer(s, page, object)) {
1038 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1039 goto bad;
81819f0f
CL
1040 }
1041
f7cb1933 1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1043 goto bad;
81819f0f 1044
3ec09742
CL
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
f7cb1933 1049 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1050 return 1;
3ec09742 1051
81819f0f
CL
1052bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
672bba3a 1057 * as used avoids touching the remaining objects.
81819f0f 1058 */
24922684 1059 slab_fix(s, "Marking all objects used");
39b26464 1060 page->inuse = page->objects;
a973e9dd 1061 page->freelist = NULL;
81819f0f
CL
1062 }
1063 return 0;
1064}
1065
19c7ff9e
CL
1066static noinline struct kmem_cache_node *free_debug_processing(
1067 struct kmem_cache *s, struct page *page, void *object,
1068 unsigned long addr, unsigned long *flags)
81819f0f 1069{
19c7ff9e 1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1071
19c7ff9e 1072 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1073 slab_lock(page);
1074
81819f0f
CL
1075 if (!check_slab(s, page))
1076 goto fail;
1077
1078 if (!check_valid_pointer(s, page, object)) {
70d71228 1079 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1080 goto fail;
1081 }
1082
1083 if (on_freelist(s, page, object)) {
24922684 1084 object_err(s, page, object, "Object already free");
81819f0f
CL
1085 goto fail;
1086 }
1087
f7cb1933 1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1089 goto out;
81819f0f 1090
1b4f59e3 1091 if (unlikely(s != page->slab_cache)) {
3adbefee 1092 if (!PageSlab(page)) {
70d71228
CL
1093 slab_err(s, page, "Attempt to free object(0x%p) "
1094 "outside of slab", object);
1b4f59e3 1095 } else if (!page->slab_cache) {
81819f0f 1096 printk(KERN_ERR
70d71228 1097 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1098 object);
70d71228 1099 dump_stack();
06428780 1100 } else
24922684
CL
1101 object_err(s, page, object,
1102 "page slab pointer corrupt.");
81819f0f
CL
1103 goto fail;
1104 }
3ec09742 1105
3ec09742
CL
1106 if (s->flags & SLAB_STORE_USER)
1107 set_track(s, object, TRACK_FREE, addr);
1108 trace(s, page, object, 0);
f7cb1933 1109 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1110out:
881db7fb 1111 slab_unlock(page);
19c7ff9e
CL
1112 /*
1113 * Keep node_lock to preserve integrity
1114 * until the object is actually freed
1115 */
1116 return n;
3ec09742 1117
81819f0f 1118fail:
19c7ff9e
CL
1119 slab_unlock(page);
1120 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1121 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1122 return NULL;
81819f0f
CL
1123}
1124
41ecc55b
CL
1125static int __init setup_slub_debug(char *str)
1126{
f0630fff
CL
1127 slub_debug = DEBUG_DEFAULT_FLAGS;
1128 if (*str++ != '=' || !*str)
1129 /*
1130 * No options specified. Switch on full debugging.
1131 */
1132 goto out;
1133
1134 if (*str == ',')
1135 /*
1136 * No options but restriction on slabs. This means full
1137 * debugging for slabs matching a pattern.
1138 */
1139 goto check_slabs;
1140
fa5ec8a1
DR
1141 if (tolower(*str) == 'o') {
1142 /*
1143 * Avoid enabling debugging on caches if its minimum order
1144 * would increase as a result.
1145 */
1146 disable_higher_order_debug = 1;
1147 goto out;
1148 }
1149
f0630fff
CL
1150 slub_debug = 0;
1151 if (*str == '-')
1152 /*
1153 * Switch off all debugging measures.
1154 */
1155 goto out;
1156
1157 /*
1158 * Determine which debug features should be switched on
1159 */
06428780 1160 for (; *str && *str != ','; str++) {
f0630fff
CL
1161 switch (tolower(*str)) {
1162 case 'f':
1163 slub_debug |= SLAB_DEBUG_FREE;
1164 break;
1165 case 'z':
1166 slub_debug |= SLAB_RED_ZONE;
1167 break;
1168 case 'p':
1169 slub_debug |= SLAB_POISON;
1170 break;
1171 case 'u':
1172 slub_debug |= SLAB_STORE_USER;
1173 break;
1174 case 't':
1175 slub_debug |= SLAB_TRACE;
1176 break;
4c13dd3b
DM
1177 case 'a':
1178 slub_debug |= SLAB_FAILSLAB;
1179 break;
f0630fff
CL
1180 default:
1181 printk(KERN_ERR "slub_debug option '%c' "
06428780 1182 "unknown. skipped\n", *str);
f0630fff 1183 }
41ecc55b
CL
1184 }
1185
f0630fff 1186check_slabs:
41ecc55b
CL
1187 if (*str == ',')
1188 slub_debug_slabs = str + 1;
f0630fff 1189out:
41ecc55b
CL
1190 return 1;
1191}
1192
1193__setup("slub_debug", setup_slub_debug);
1194
3b0efdfa 1195static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1196 unsigned long flags, const char *name,
51cc5068 1197 void (*ctor)(void *))
41ecc55b
CL
1198{
1199 /*
e153362a 1200 * Enable debugging if selected on the kernel commandline.
41ecc55b 1201 */
e153362a 1202 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1203 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1204 flags |= slub_debug;
ba0268a8
CL
1205
1206 return flags;
41ecc55b
CL
1207}
1208#else
3ec09742
CL
1209static inline void setup_object_debug(struct kmem_cache *s,
1210 struct page *page, void *object) {}
41ecc55b 1211
3ec09742 1212static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1213 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1214
19c7ff9e
CL
1215static inline struct kmem_cache_node *free_debug_processing(
1216 struct kmem_cache *s, struct page *page, void *object,
1217 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1218
41ecc55b
CL
1219static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1220 { return 1; }
1221static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1222 void *object, u8 val) { return 1; }
5cc6eee8
CL
1223static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1224 struct page *page) {}
2cfb7455 1225static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1226static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1227 unsigned long flags, const char *name,
51cc5068 1228 void (*ctor)(void *))
ba0268a8
CL
1229{
1230 return flags;
1231}
41ecc55b 1232#define slub_debug 0
0f389ec6 1233
fdaa45e9
IM
1234#define disable_higher_order_debug 0
1235
0f389ec6
CL
1236static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1237 { return 0; }
26c02cf0
AB
1238static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 { return 0; }
205ab99d
CL
1240static inline void inc_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242static inline void dec_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
7d550c56
CL
1244
1245static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1246 { return 0; }
1247
1248static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1249 void *object) {}
1250
1251static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1252
ab4d5ed5 1253#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1254
81819f0f
CL
1255/*
1256 * Slab allocation and freeing
1257 */
65c3376a
CL
1258static inline struct page *alloc_slab_page(gfp_t flags, int node,
1259 struct kmem_cache_order_objects oo)
1260{
1261 int order = oo_order(oo);
1262
b1eeab67
VN
1263 flags |= __GFP_NOTRACK;
1264
2154a336 1265 if (node == NUMA_NO_NODE)
65c3376a
CL
1266 return alloc_pages(flags, order);
1267 else
6b65aaf3 1268 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1269}
1270
81819f0f
CL
1271static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1272{
06428780 1273 struct page *page;
834f3d11 1274 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1275 gfp_t alloc_gfp;
81819f0f 1276
7e0528da
CL
1277 flags &= gfp_allowed_mask;
1278
1279 if (flags & __GFP_WAIT)
1280 local_irq_enable();
1281
b7a49f0d 1282 flags |= s->allocflags;
e12ba74d 1283
ba52270d
PE
1284 /*
1285 * Let the initial higher-order allocation fail under memory pressure
1286 * so we fall-back to the minimum order allocation.
1287 */
1288 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1289
1290 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1291 if (unlikely(!page)) {
1292 oo = s->min;
1293 /*
1294 * Allocation may have failed due to fragmentation.
1295 * Try a lower order alloc if possible
1296 */
1297 page = alloc_slab_page(flags, node, oo);
81819f0f 1298
7e0528da
CL
1299 if (page)
1300 stat(s, ORDER_FALLBACK);
65c3376a 1301 }
5a896d9e 1302
737b719e 1303 if (kmemcheck_enabled && page
5086c389 1304 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1305 int pages = 1 << oo_order(oo);
1306
1307 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1308
1309 /*
1310 * Objects from caches that have a constructor don't get
1311 * cleared when they're allocated, so we need to do it here.
1312 */
1313 if (s->ctor)
1314 kmemcheck_mark_uninitialized_pages(page, pages);
1315 else
1316 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1317 }
1318
737b719e
DR
1319 if (flags & __GFP_WAIT)
1320 local_irq_disable();
1321 if (!page)
1322 return NULL;
1323
834f3d11 1324 page->objects = oo_objects(oo);
81819f0f
CL
1325 mod_zone_page_state(page_zone(page),
1326 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1327 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1328 1 << oo_order(oo));
81819f0f
CL
1329
1330 return page;
1331}
1332
1333static void setup_object(struct kmem_cache *s, struct page *page,
1334 void *object)
1335{
3ec09742 1336 setup_object_debug(s, page, object);
4f104934 1337 if (unlikely(s->ctor))
51cc5068 1338 s->ctor(object);
81819f0f
CL
1339}
1340
1341static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1342{
1343 struct page *page;
81819f0f 1344 void *start;
81819f0f
CL
1345 void *last;
1346 void *p;
1f458cbf 1347 int order;
81819f0f 1348
6cb06229 1349 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1350
6cb06229
CL
1351 page = allocate_slab(s,
1352 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1353 if (!page)
1354 goto out;
1355
1f458cbf 1356 order = compound_order(page);
205ab99d 1357 inc_slabs_node(s, page_to_nid(page), page->objects);
1f458cbf 1358 memcg_bind_pages(s, order);
1b4f59e3 1359 page->slab_cache = s;
c03f94cc 1360 __SetPageSlab(page);
072bb0aa
MG
1361 if (page->pfmemalloc)
1362 SetPageSlabPfmemalloc(page);
81819f0f
CL
1363
1364 start = page_address(page);
81819f0f
CL
1365
1366 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1367 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f
CL
1368
1369 last = start;
224a88be 1370 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1371 setup_object(s, page, last);
1372 set_freepointer(s, last, p);
1373 last = p;
1374 }
1375 setup_object(s, page, last);
a973e9dd 1376 set_freepointer(s, last, NULL);
81819f0f
CL
1377
1378 page->freelist = start;
e6e82ea1 1379 page->inuse = page->objects;
8cb0a506 1380 page->frozen = 1;
81819f0f 1381out:
81819f0f
CL
1382 return page;
1383}
1384
1385static void __free_slab(struct kmem_cache *s, struct page *page)
1386{
834f3d11
CL
1387 int order = compound_order(page);
1388 int pages = 1 << order;
81819f0f 1389
af537b0a 1390 if (kmem_cache_debug(s)) {
81819f0f
CL
1391 void *p;
1392
1393 slab_pad_check(s, page);
224a88be
CL
1394 for_each_object(p, s, page_address(page),
1395 page->objects)
f7cb1933 1396 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1397 }
1398
b1eeab67 1399 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1400
81819f0f
CL
1401 mod_zone_page_state(page_zone(page),
1402 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1403 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1404 -pages);
81819f0f 1405
072bb0aa 1406 __ClearPageSlabPfmemalloc(page);
49bd5221 1407 __ClearPageSlab(page);
1f458cbf
GC
1408
1409 memcg_release_pages(s, order);
49bd5221 1410 reset_page_mapcount(page);
1eb5ac64
NP
1411 if (current->reclaim_state)
1412 current->reclaim_state->reclaimed_slab += pages;
d79923fa 1413 __free_memcg_kmem_pages(page, order);
81819f0f
CL
1414}
1415
da9a638c
LJ
1416#define need_reserve_slab_rcu \
1417 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1418
81819f0f
CL
1419static void rcu_free_slab(struct rcu_head *h)
1420{
1421 struct page *page;
1422
da9a638c
LJ
1423 if (need_reserve_slab_rcu)
1424 page = virt_to_head_page(h);
1425 else
1426 page = container_of((struct list_head *)h, struct page, lru);
1427
1b4f59e3 1428 __free_slab(page->slab_cache, page);
81819f0f
CL
1429}
1430
1431static void free_slab(struct kmem_cache *s, struct page *page)
1432{
1433 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1434 struct rcu_head *head;
1435
1436 if (need_reserve_slab_rcu) {
1437 int order = compound_order(page);
1438 int offset = (PAGE_SIZE << order) - s->reserved;
1439
1440 VM_BUG_ON(s->reserved != sizeof(*head));
1441 head = page_address(page) + offset;
1442 } else {
1443 /*
1444 * RCU free overloads the RCU head over the LRU
1445 */
1446 head = (void *)&page->lru;
1447 }
81819f0f
CL
1448
1449 call_rcu(head, rcu_free_slab);
1450 } else
1451 __free_slab(s, page);
1452}
1453
1454static void discard_slab(struct kmem_cache *s, struct page *page)
1455{
205ab99d 1456 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1457 free_slab(s, page);
1458}
1459
1460/*
5cc6eee8
CL
1461 * Management of partially allocated slabs.
1462 *
1463 * list_lock must be held.
81819f0f 1464 */
5cc6eee8 1465static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1466 struct page *page, int tail)
81819f0f 1467{
e95eed57 1468 n->nr_partial++;
136333d1 1469 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1470 list_add_tail(&page->lru, &n->partial);
1471 else
1472 list_add(&page->lru, &n->partial);
81819f0f
CL
1473}
1474
5cc6eee8
CL
1475/*
1476 * list_lock must be held.
1477 */
1478static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1479 struct page *page)
1480{
1481 list_del(&page->lru);
1482 n->nr_partial--;
1483}
1484
81819f0f 1485/*
7ced3719
CL
1486 * Remove slab from the partial list, freeze it and
1487 * return the pointer to the freelist.
81819f0f 1488 *
497b66f2
CL
1489 * Returns a list of objects or NULL if it fails.
1490 *
7ced3719 1491 * Must hold list_lock since we modify the partial list.
81819f0f 1492 */
497b66f2 1493static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1494 struct kmem_cache_node *n, struct page *page,
49e22585 1495 int mode)
81819f0f 1496{
2cfb7455
CL
1497 void *freelist;
1498 unsigned long counters;
1499 struct page new;
1500
2cfb7455
CL
1501 /*
1502 * Zap the freelist and set the frozen bit.
1503 * The old freelist is the list of objects for the
1504 * per cpu allocation list.
1505 */
7ced3719
CL
1506 freelist = page->freelist;
1507 counters = page->counters;
1508 new.counters = counters;
23910c50 1509 if (mode) {
7ced3719 1510 new.inuse = page->objects;
23910c50
PE
1511 new.freelist = NULL;
1512 } else {
1513 new.freelist = freelist;
1514 }
2cfb7455 1515
7ced3719
CL
1516 VM_BUG_ON(new.frozen);
1517 new.frozen = 1;
2cfb7455 1518
7ced3719 1519 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1520 freelist, counters,
02d7633f 1521 new.freelist, new.counters,
7ced3719 1522 "acquire_slab"))
7ced3719 1523 return NULL;
2cfb7455
CL
1524
1525 remove_partial(n, page);
7ced3719 1526 WARN_ON(!freelist);
49e22585 1527 return freelist;
81819f0f
CL
1528}
1529
49e22585 1530static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1531static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1532
81819f0f 1533/*
672bba3a 1534 * Try to allocate a partial slab from a specific node.
81819f0f 1535 */
8ba00bb6
JK
1536static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1537 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1538{
49e22585
CL
1539 struct page *page, *page2;
1540 void *object = NULL;
81819f0f
CL
1541
1542 /*
1543 * Racy check. If we mistakenly see no partial slabs then we
1544 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1545 * partial slab and there is none available then get_partials()
1546 * will return NULL.
81819f0f
CL
1547 */
1548 if (!n || !n->nr_partial)
1549 return NULL;
1550
1551 spin_lock(&n->list_lock);
49e22585 1552 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1553 void *t;
49e22585
CL
1554 int available;
1555
8ba00bb6
JK
1556 if (!pfmemalloc_match(page, flags))
1557 continue;
1558
1559 t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1560 if (!t)
1561 break;
1562
12d79634 1563 if (!object) {
49e22585 1564 c->page = page;
49e22585 1565 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1566 object = t;
1567 available = page->objects - page->inuse;
1568 } else {
49e22585 1569 available = put_cpu_partial(s, page, 0);
8028dcea 1570 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1571 }
1572 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1573 break;
1574
497b66f2 1575 }
81819f0f 1576 spin_unlock(&n->list_lock);
497b66f2 1577 return object;
81819f0f
CL
1578}
1579
1580/*
672bba3a 1581 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1582 */
de3ec035 1583static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1584 struct kmem_cache_cpu *c)
81819f0f
CL
1585{
1586#ifdef CONFIG_NUMA
1587 struct zonelist *zonelist;
dd1a239f 1588 struct zoneref *z;
54a6eb5c
MG
1589 struct zone *zone;
1590 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1591 void *object;
cc9a6c87 1592 unsigned int cpuset_mems_cookie;
81819f0f
CL
1593
1594 /*
672bba3a
CL
1595 * The defrag ratio allows a configuration of the tradeoffs between
1596 * inter node defragmentation and node local allocations. A lower
1597 * defrag_ratio increases the tendency to do local allocations
1598 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1599 *
672bba3a
CL
1600 * If the defrag_ratio is set to 0 then kmalloc() always
1601 * returns node local objects. If the ratio is higher then kmalloc()
1602 * may return off node objects because partial slabs are obtained
1603 * from other nodes and filled up.
81819f0f 1604 *
6446faa2 1605 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1606 * defrag_ratio = 1000) then every (well almost) allocation will
1607 * first attempt to defrag slab caches on other nodes. This means
1608 * scanning over all nodes to look for partial slabs which may be
1609 * expensive if we do it every time we are trying to find a slab
1610 * with available objects.
81819f0f 1611 */
9824601e
CL
1612 if (!s->remote_node_defrag_ratio ||
1613 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1614 return NULL;
1615
cc9a6c87
MG
1616 do {
1617 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1618 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1619 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1620 struct kmem_cache_node *n;
1621
1622 n = get_node(s, zone_to_nid(zone));
1623
1624 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1625 n->nr_partial > s->min_partial) {
8ba00bb6 1626 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1627 if (object) {
1628 /*
1629 * Return the object even if
1630 * put_mems_allowed indicated that
1631 * the cpuset mems_allowed was
1632 * updated in parallel. It's a
1633 * harmless race between the alloc
1634 * and the cpuset update.
1635 */
1636 put_mems_allowed(cpuset_mems_cookie);
1637 return object;
1638 }
c0ff7453 1639 }
81819f0f 1640 }
cc9a6c87 1641 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1642#endif
1643 return NULL;
1644}
1645
1646/*
1647 * Get a partial page, lock it and return it.
1648 */
497b66f2 1649static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1650 struct kmem_cache_cpu *c)
81819f0f 1651{
497b66f2 1652 void *object;
2154a336 1653 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1654
8ba00bb6 1655 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1656 if (object || node != NUMA_NO_NODE)
1657 return object;
81819f0f 1658
acd19fd1 1659 return get_any_partial(s, flags, c);
81819f0f
CL
1660}
1661
8a5ec0ba
CL
1662#ifdef CONFIG_PREEMPT
1663/*
1664 * Calculate the next globally unique transaction for disambiguiation
1665 * during cmpxchg. The transactions start with the cpu number and are then
1666 * incremented by CONFIG_NR_CPUS.
1667 */
1668#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1669#else
1670/*
1671 * No preemption supported therefore also no need to check for
1672 * different cpus.
1673 */
1674#define TID_STEP 1
1675#endif
1676
1677static inline unsigned long next_tid(unsigned long tid)
1678{
1679 return tid + TID_STEP;
1680}
1681
1682static inline unsigned int tid_to_cpu(unsigned long tid)
1683{
1684 return tid % TID_STEP;
1685}
1686
1687static inline unsigned long tid_to_event(unsigned long tid)
1688{
1689 return tid / TID_STEP;
1690}
1691
1692static inline unsigned int init_tid(int cpu)
1693{
1694 return cpu;
1695}
1696
1697static inline void note_cmpxchg_failure(const char *n,
1698 const struct kmem_cache *s, unsigned long tid)
1699{
1700#ifdef SLUB_DEBUG_CMPXCHG
1701 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1702
1703 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1704
1705#ifdef CONFIG_PREEMPT
1706 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1707 printk("due to cpu change %d -> %d\n",
1708 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1709 else
1710#endif
1711 if (tid_to_event(tid) != tid_to_event(actual_tid))
1712 printk("due to cpu running other code. Event %ld->%ld\n",
1713 tid_to_event(tid), tid_to_event(actual_tid));
1714 else
1715 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1716 actual_tid, tid, next_tid(tid));
1717#endif
4fdccdfb 1718 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1719}
1720
788e1aad 1721static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1722{
8a5ec0ba
CL
1723 int cpu;
1724
1725 for_each_possible_cpu(cpu)
1726 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1727}
2cfb7455 1728
81819f0f
CL
1729/*
1730 * Remove the cpu slab
1731 */
c17dda40 1732static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1733{
2cfb7455 1734 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1735 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1736 int lock = 0;
1737 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1738 void *nextfree;
136333d1 1739 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1740 struct page new;
1741 struct page old;
1742
1743 if (page->freelist) {
84e554e6 1744 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1745 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1746 }
1747
894b8788 1748 /*
2cfb7455
CL
1749 * Stage one: Free all available per cpu objects back
1750 * to the page freelist while it is still frozen. Leave the
1751 * last one.
1752 *
1753 * There is no need to take the list->lock because the page
1754 * is still frozen.
1755 */
1756 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1757 void *prior;
1758 unsigned long counters;
1759
1760 do {
1761 prior = page->freelist;
1762 counters = page->counters;
1763 set_freepointer(s, freelist, prior);
1764 new.counters = counters;
1765 new.inuse--;
1766 VM_BUG_ON(!new.frozen);
1767
1d07171c 1768 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1769 prior, counters,
1770 freelist, new.counters,
1771 "drain percpu freelist"));
1772
1773 freelist = nextfree;
1774 }
1775
894b8788 1776 /*
2cfb7455
CL
1777 * Stage two: Ensure that the page is unfrozen while the
1778 * list presence reflects the actual number of objects
1779 * during unfreeze.
1780 *
1781 * We setup the list membership and then perform a cmpxchg
1782 * with the count. If there is a mismatch then the page
1783 * is not unfrozen but the page is on the wrong list.
1784 *
1785 * Then we restart the process which may have to remove
1786 * the page from the list that we just put it on again
1787 * because the number of objects in the slab may have
1788 * changed.
894b8788 1789 */
2cfb7455 1790redo:
894b8788 1791
2cfb7455
CL
1792 old.freelist = page->freelist;
1793 old.counters = page->counters;
1794 VM_BUG_ON(!old.frozen);
7c2e132c 1795
2cfb7455
CL
1796 /* Determine target state of the slab */
1797 new.counters = old.counters;
1798 if (freelist) {
1799 new.inuse--;
1800 set_freepointer(s, freelist, old.freelist);
1801 new.freelist = freelist;
1802 } else
1803 new.freelist = old.freelist;
1804
1805 new.frozen = 0;
1806
81107188 1807 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1808 m = M_FREE;
1809 else if (new.freelist) {
1810 m = M_PARTIAL;
1811 if (!lock) {
1812 lock = 1;
1813 /*
1814 * Taking the spinlock removes the possiblity
1815 * that acquire_slab() will see a slab page that
1816 * is frozen
1817 */
1818 spin_lock(&n->list_lock);
1819 }
1820 } else {
1821 m = M_FULL;
1822 if (kmem_cache_debug(s) && !lock) {
1823 lock = 1;
1824 /*
1825 * This also ensures that the scanning of full
1826 * slabs from diagnostic functions will not see
1827 * any frozen slabs.
1828 */
1829 spin_lock(&n->list_lock);
1830 }
1831 }
1832
1833 if (l != m) {
1834
1835 if (l == M_PARTIAL)
1836
1837 remove_partial(n, page);
1838
1839 else if (l == M_FULL)
894b8788 1840
2cfb7455
CL
1841 remove_full(s, page);
1842
1843 if (m == M_PARTIAL) {
1844
1845 add_partial(n, page, tail);
136333d1 1846 stat(s, tail);
2cfb7455
CL
1847
1848 } else if (m == M_FULL) {
894b8788 1849
2cfb7455
CL
1850 stat(s, DEACTIVATE_FULL);
1851 add_full(s, n, page);
1852
1853 }
1854 }
1855
1856 l = m;
1d07171c 1857 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1858 old.freelist, old.counters,
1859 new.freelist, new.counters,
1860 "unfreezing slab"))
1861 goto redo;
1862
2cfb7455
CL
1863 if (lock)
1864 spin_unlock(&n->list_lock);
1865
1866 if (m == M_FREE) {
1867 stat(s, DEACTIVATE_EMPTY);
1868 discard_slab(s, page);
1869 stat(s, FREE_SLAB);
894b8788 1870 }
81819f0f
CL
1871}
1872
d24ac77f
JK
1873/*
1874 * Unfreeze all the cpu partial slabs.
1875 *
59a09917
CL
1876 * This function must be called with interrupts disabled
1877 * for the cpu using c (or some other guarantee must be there
1878 * to guarantee no concurrent accesses).
d24ac77f 1879 */
59a09917
CL
1880static void unfreeze_partials(struct kmem_cache *s,
1881 struct kmem_cache_cpu *c)
49e22585 1882{
43d77867 1883 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1884 struct page *page, *discard_page = NULL;
49e22585
CL
1885
1886 while ((page = c->partial)) {
49e22585
CL
1887 struct page new;
1888 struct page old;
1889
1890 c->partial = page->next;
43d77867
JK
1891
1892 n2 = get_node(s, page_to_nid(page));
1893 if (n != n2) {
1894 if (n)
1895 spin_unlock(&n->list_lock);
1896
1897 n = n2;
1898 spin_lock(&n->list_lock);
1899 }
49e22585
CL
1900
1901 do {
1902
1903 old.freelist = page->freelist;
1904 old.counters = page->counters;
1905 VM_BUG_ON(!old.frozen);
1906
1907 new.counters = old.counters;
1908 new.freelist = old.freelist;
1909
1910 new.frozen = 0;
1911
d24ac77f 1912 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1913 old.freelist, old.counters,
1914 new.freelist, new.counters,
1915 "unfreezing slab"));
1916
43d77867 1917 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1918 page->next = discard_page;
1919 discard_page = page;
43d77867
JK
1920 } else {
1921 add_partial(n, page, DEACTIVATE_TO_TAIL);
1922 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1923 }
1924 }
1925
1926 if (n)
1927 spin_unlock(&n->list_lock);
9ada1934
SL
1928
1929 while (discard_page) {
1930 page = discard_page;
1931 discard_page = discard_page->next;
1932
1933 stat(s, DEACTIVATE_EMPTY);
1934 discard_slab(s, page);
1935 stat(s, FREE_SLAB);
1936 }
49e22585
CL
1937}
1938
1939/*
1940 * Put a page that was just frozen (in __slab_free) into a partial page
1941 * slot if available. This is done without interrupts disabled and without
1942 * preemption disabled. The cmpxchg is racy and may put the partial page
1943 * onto a random cpus partial slot.
1944 *
1945 * If we did not find a slot then simply move all the partials to the
1946 * per node partial list.
1947 */
788e1aad 1948static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585
CL
1949{
1950 struct page *oldpage;
1951 int pages;
1952 int pobjects;
1953
1954 do {
1955 pages = 0;
1956 pobjects = 0;
1957 oldpage = this_cpu_read(s->cpu_slab->partial);
1958
1959 if (oldpage) {
1960 pobjects = oldpage->pobjects;
1961 pages = oldpage->pages;
1962 if (drain && pobjects > s->cpu_partial) {
1963 unsigned long flags;
1964 /*
1965 * partial array is full. Move the existing
1966 * set to the per node partial list.
1967 */
1968 local_irq_save(flags);
59a09917 1969 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 1970 local_irq_restore(flags);
e24fc410 1971 oldpage = NULL;
49e22585
CL
1972 pobjects = 0;
1973 pages = 0;
8028dcea 1974 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1975 }
1976 }
1977
1978 pages++;
1979 pobjects += page->objects - page->inuse;
1980
1981 page->pages = pages;
1982 page->pobjects = pobjects;
1983 page->next = oldpage;
1984
933393f5 1985 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1986 return pobjects;
1987}
1988
dfb4f096 1989static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1990{
84e554e6 1991 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
1992 deactivate_slab(s, c->page, c->freelist);
1993
1994 c->tid = next_tid(c->tid);
1995 c->page = NULL;
1996 c->freelist = NULL;
81819f0f
CL
1997}
1998
1999/*
2000 * Flush cpu slab.
6446faa2 2001 *
81819f0f
CL
2002 * Called from IPI handler with interrupts disabled.
2003 */
0c710013 2004static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2005{
9dfc6e68 2006 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2007
49e22585
CL
2008 if (likely(c)) {
2009 if (c->page)
2010 flush_slab(s, c);
2011
59a09917 2012 unfreeze_partials(s, c);
49e22585 2013 }
81819f0f
CL
2014}
2015
2016static void flush_cpu_slab(void *d)
2017{
2018 struct kmem_cache *s = d;
81819f0f 2019
dfb4f096 2020 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2021}
2022
a8364d55
GBY
2023static bool has_cpu_slab(int cpu, void *info)
2024{
2025 struct kmem_cache *s = info;
2026 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2027
02e1a9cd 2028 return c->page || c->partial;
a8364d55
GBY
2029}
2030
81819f0f
CL
2031static void flush_all(struct kmem_cache *s)
2032{
a8364d55 2033 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2034}
2035
dfb4f096
CL
2036/*
2037 * Check if the objects in a per cpu structure fit numa
2038 * locality expectations.
2039 */
57d437d2 2040static inline int node_match(struct page *page, int node)
dfb4f096
CL
2041{
2042#ifdef CONFIG_NUMA
57d437d2 2043 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2044 return 0;
2045#endif
2046 return 1;
2047}
2048
781b2ba6
PE
2049static int count_free(struct page *page)
2050{
2051 return page->objects - page->inuse;
2052}
2053
2054static unsigned long count_partial(struct kmem_cache_node *n,
2055 int (*get_count)(struct page *))
2056{
2057 unsigned long flags;
2058 unsigned long x = 0;
2059 struct page *page;
2060
2061 spin_lock_irqsave(&n->list_lock, flags);
2062 list_for_each_entry(page, &n->partial, lru)
2063 x += get_count(page);
2064 spin_unlock_irqrestore(&n->list_lock, flags);
2065 return x;
2066}
2067
26c02cf0
AB
2068static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2069{
2070#ifdef CONFIG_SLUB_DEBUG
2071 return atomic_long_read(&n->total_objects);
2072#else
2073 return 0;
2074#endif
2075}
2076
781b2ba6
PE
2077static noinline void
2078slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2079{
2080 int node;
2081
2082 printk(KERN_WARNING
2083 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2084 nid, gfpflags);
2085 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2086 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2087 s->size, oo_order(s->oo), oo_order(s->min));
2088
3b0efdfa 2089 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2090 printk(KERN_WARNING " %s debugging increased min order, use "
2091 "slub_debug=O to disable.\n", s->name);
2092
781b2ba6
PE
2093 for_each_online_node(node) {
2094 struct kmem_cache_node *n = get_node(s, node);
2095 unsigned long nr_slabs;
2096 unsigned long nr_objs;
2097 unsigned long nr_free;
2098
2099 if (!n)
2100 continue;
2101
26c02cf0
AB
2102 nr_free = count_partial(n, count_free);
2103 nr_slabs = node_nr_slabs(n);
2104 nr_objs = node_nr_objs(n);
781b2ba6
PE
2105
2106 printk(KERN_WARNING
2107 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2108 node, nr_slabs, nr_objs, nr_free);
2109 }
2110}
2111
497b66f2
CL
2112static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2113 int node, struct kmem_cache_cpu **pc)
2114{
6faa6833 2115 void *freelist;
188fd063
CL
2116 struct kmem_cache_cpu *c = *pc;
2117 struct page *page;
497b66f2 2118
188fd063 2119 freelist = get_partial(s, flags, node, c);
497b66f2 2120
188fd063
CL
2121 if (freelist)
2122 return freelist;
2123
2124 page = new_slab(s, flags, node);
497b66f2
CL
2125 if (page) {
2126 c = __this_cpu_ptr(s->cpu_slab);
2127 if (c->page)
2128 flush_slab(s, c);
2129
2130 /*
2131 * No other reference to the page yet so we can
2132 * muck around with it freely without cmpxchg
2133 */
6faa6833 2134 freelist = page->freelist;
497b66f2
CL
2135 page->freelist = NULL;
2136
2137 stat(s, ALLOC_SLAB);
497b66f2
CL
2138 c->page = page;
2139 *pc = c;
2140 } else
6faa6833 2141 freelist = NULL;
497b66f2 2142
6faa6833 2143 return freelist;
497b66f2
CL
2144}
2145
072bb0aa
MG
2146static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2147{
2148 if (unlikely(PageSlabPfmemalloc(page)))
2149 return gfp_pfmemalloc_allowed(gfpflags);
2150
2151 return true;
2152}
2153
213eeb9f
CL
2154/*
2155 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2156 * or deactivate the page.
2157 *
2158 * The page is still frozen if the return value is not NULL.
2159 *
2160 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2161 *
2162 * This function must be called with interrupt disabled.
213eeb9f
CL
2163 */
2164static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2165{
2166 struct page new;
2167 unsigned long counters;
2168 void *freelist;
2169
2170 do {
2171 freelist = page->freelist;
2172 counters = page->counters;
6faa6833 2173
213eeb9f
CL
2174 new.counters = counters;
2175 VM_BUG_ON(!new.frozen);
2176
2177 new.inuse = page->objects;
2178 new.frozen = freelist != NULL;
2179
d24ac77f 2180 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2181 freelist, counters,
2182 NULL, new.counters,
2183 "get_freelist"));
2184
2185 return freelist;
2186}
2187
81819f0f 2188/*
894b8788
CL
2189 * Slow path. The lockless freelist is empty or we need to perform
2190 * debugging duties.
2191 *
894b8788
CL
2192 * Processing is still very fast if new objects have been freed to the
2193 * regular freelist. In that case we simply take over the regular freelist
2194 * as the lockless freelist and zap the regular freelist.
81819f0f 2195 *
894b8788
CL
2196 * If that is not working then we fall back to the partial lists. We take the
2197 * first element of the freelist as the object to allocate now and move the
2198 * rest of the freelist to the lockless freelist.
81819f0f 2199 *
894b8788 2200 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2201 * we need to allocate a new slab. This is the slowest path since it involves
2202 * a call to the page allocator and the setup of a new slab.
81819f0f 2203 */
ce71e27c
EGM
2204static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2205 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2206{
6faa6833 2207 void *freelist;
f6e7def7 2208 struct page *page;
8a5ec0ba
CL
2209 unsigned long flags;
2210
2211 local_irq_save(flags);
2212#ifdef CONFIG_PREEMPT
2213 /*
2214 * We may have been preempted and rescheduled on a different
2215 * cpu before disabling interrupts. Need to reload cpu area
2216 * pointer.
2217 */
2218 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2219#endif
81819f0f 2220
f6e7def7
CL
2221 page = c->page;
2222 if (!page)
81819f0f 2223 goto new_slab;
49e22585 2224redo:
6faa6833 2225
57d437d2 2226 if (unlikely(!node_match(page, node))) {
e36a2652 2227 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2228 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2229 c->page = NULL;
2230 c->freelist = NULL;
fc59c053
CL
2231 goto new_slab;
2232 }
6446faa2 2233
072bb0aa
MG
2234 /*
2235 * By rights, we should be searching for a slab page that was
2236 * PFMEMALLOC but right now, we are losing the pfmemalloc
2237 * information when the page leaves the per-cpu allocator
2238 */
2239 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2240 deactivate_slab(s, page, c->freelist);
2241 c->page = NULL;
2242 c->freelist = NULL;
2243 goto new_slab;
2244 }
2245
73736e03 2246 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2247 freelist = c->freelist;
2248 if (freelist)
73736e03 2249 goto load_freelist;
03e404af 2250
2cfb7455 2251 stat(s, ALLOC_SLOWPATH);
03e404af 2252
f6e7def7 2253 freelist = get_freelist(s, page);
6446faa2 2254
6faa6833 2255 if (!freelist) {
03e404af
CL
2256 c->page = NULL;
2257 stat(s, DEACTIVATE_BYPASS);
fc59c053 2258 goto new_slab;
03e404af 2259 }
6446faa2 2260
84e554e6 2261 stat(s, ALLOC_REFILL);
6446faa2 2262
894b8788 2263load_freelist:
507effea
CL
2264 /*
2265 * freelist is pointing to the list of objects to be used.
2266 * page is pointing to the page from which the objects are obtained.
2267 * That page must be frozen for per cpu allocations to work.
2268 */
2269 VM_BUG_ON(!c->page->frozen);
6faa6833 2270 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2271 c->tid = next_tid(c->tid);
2272 local_irq_restore(flags);
6faa6833 2273 return freelist;
81819f0f 2274
81819f0f 2275new_slab:
2cfb7455 2276
49e22585 2277 if (c->partial) {
f6e7def7
CL
2278 page = c->page = c->partial;
2279 c->partial = page->next;
49e22585
CL
2280 stat(s, CPU_PARTIAL_ALLOC);
2281 c->freelist = NULL;
2282 goto redo;
81819f0f
CL
2283 }
2284
188fd063 2285 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2286
f4697436
CL
2287 if (unlikely(!freelist)) {
2288 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2289 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2290
f4697436
CL
2291 local_irq_restore(flags);
2292 return NULL;
81819f0f 2293 }
2cfb7455 2294
f6e7def7 2295 page = c->page;
5091b74a 2296 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2297 goto load_freelist;
2cfb7455 2298
497b66f2 2299 /* Only entered in the debug case */
5091b74a 2300 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2301 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2302
f6e7def7 2303 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2304 c->page = NULL;
2305 c->freelist = NULL;
a71ae47a 2306 local_irq_restore(flags);
6faa6833 2307 return freelist;
894b8788
CL
2308}
2309
2310/*
2311 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2312 * have the fastpath folded into their functions. So no function call
2313 * overhead for requests that can be satisfied on the fastpath.
2314 *
2315 * The fastpath works by first checking if the lockless freelist can be used.
2316 * If not then __slab_alloc is called for slow processing.
2317 *
2318 * Otherwise we can simply pick the next object from the lockless free list.
2319 */
2b847c3c 2320static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2321 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2322{
894b8788 2323 void **object;
dfb4f096 2324 struct kmem_cache_cpu *c;
57d437d2 2325 struct page *page;
8a5ec0ba 2326 unsigned long tid;
1f84260c 2327
c016b0bd 2328 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2329 return NULL;
1f84260c 2330
d79923fa 2331 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2332redo:
8a5ec0ba
CL
2333
2334 /*
2335 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2336 * enabled. We may switch back and forth between cpus while
2337 * reading from one cpu area. That does not matter as long
2338 * as we end up on the original cpu again when doing the cmpxchg.
2339 */
9dfc6e68 2340 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2341
8a5ec0ba
CL
2342 /*
2343 * The transaction ids are globally unique per cpu and per operation on
2344 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2345 * occurs on the right processor and that there was no operation on the
2346 * linked list in between.
2347 */
2348 tid = c->tid;
2349 barrier();
8a5ec0ba 2350
9dfc6e68 2351 object = c->freelist;
57d437d2 2352 page = c->page;
5091b74a 2353 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2354 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2355
2356 else {
0ad9500e
ED
2357 void *next_object = get_freepointer_safe(s, object);
2358
8a5ec0ba 2359 /*
25985edc 2360 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2361 * operation and if we are on the right processor.
2362 *
2363 * The cmpxchg does the following atomically (without lock semantics!)
2364 * 1. Relocate first pointer to the current per cpu area.
2365 * 2. Verify that tid and freelist have not been changed
2366 * 3. If they were not changed replace tid and freelist
2367 *
2368 * Since this is without lock semantics the protection is only against
2369 * code executing on this cpu *not* from access by other cpus.
2370 */
933393f5 2371 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2372 s->cpu_slab->freelist, s->cpu_slab->tid,
2373 object, tid,
0ad9500e 2374 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2375
2376 note_cmpxchg_failure("slab_alloc", s, tid);
2377 goto redo;
2378 }
0ad9500e 2379 prefetch_freepointer(s, next_object);
84e554e6 2380 stat(s, ALLOC_FASTPATH);
894b8788 2381 }
8a5ec0ba 2382
74e2134f 2383 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2384 memset(object, 0, s->object_size);
d07dbea4 2385
c016b0bd 2386 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2387
894b8788 2388 return object;
81819f0f
CL
2389}
2390
2b847c3c
EG
2391static __always_inline void *slab_alloc(struct kmem_cache *s,
2392 gfp_t gfpflags, unsigned long addr)
2393{
2394 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2395}
2396
81819f0f
CL
2397void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2398{
2b847c3c 2399 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2400
3b0efdfa 2401 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2402
2403 return ret;
81819f0f
CL
2404}
2405EXPORT_SYMBOL(kmem_cache_alloc);
2406
0f24f128 2407#ifdef CONFIG_TRACING
4a92379b
RK
2408void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2409{
2b847c3c 2410 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2411 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2412 return ret;
2413}
2414EXPORT_SYMBOL(kmem_cache_alloc_trace);
2415
2416void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2417{
4a92379b
RK
2418 void *ret = kmalloc_order(size, flags, order);
2419 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2420 return ret;
5b882be4 2421}
4a92379b 2422EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2423#endif
2424
81819f0f
CL
2425#ifdef CONFIG_NUMA
2426void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2427{
2b847c3c 2428 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2429
ca2b84cb 2430 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2431 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2432
2433 return ret;
81819f0f
CL
2434}
2435EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2436
0f24f128 2437#ifdef CONFIG_TRACING
4a92379b 2438void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2439 gfp_t gfpflags,
4a92379b 2440 int node, size_t size)
5b882be4 2441{
2b847c3c 2442 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2443
2444 trace_kmalloc_node(_RET_IP_, ret,
2445 size, s->size, gfpflags, node);
2446 return ret;
5b882be4 2447}
4a92379b 2448EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2449#endif
5d1f57e4 2450#endif
5b882be4 2451
81819f0f 2452/*
894b8788
CL
2453 * Slow patch handling. This may still be called frequently since objects
2454 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2455 *
894b8788
CL
2456 * So we still attempt to reduce cache line usage. Just take the slab
2457 * lock and free the item. If there is no additional partial page
2458 * handling required then we can return immediately.
81819f0f 2459 */
894b8788 2460static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2461 void *x, unsigned long addr)
81819f0f
CL
2462{
2463 void *prior;
2464 void **object = (void *)x;
2cfb7455 2465 int was_frozen;
2cfb7455
CL
2466 struct page new;
2467 unsigned long counters;
2468 struct kmem_cache_node *n = NULL;
61728d1e 2469 unsigned long uninitialized_var(flags);
81819f0f 2470
8a5ec0ba 2471 stat(s, FREE_SLOWPATH);
81819f0f 2472
19c7ff9e
CL
2473 if (kmem_cache_debug(s) &&
2474 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2475 return;
6446faa2 2476
2cfb7455 2477 do {
837d678d
JK
2478 if (unlikely(n)) {
2479 spin_unlock_irqrestore(&n->list_lock, flags);
2480 n = NULL;
2481 }
2cfb7455
CL
2482 prior = page->freelist;
2483 counters = page->counters;
2484 set_freepointer(s, object, prior);
2485 new.counters = counters;
2486 was_frozen = new.frozen;
2487 new.inuse--;
837d678d 2488 if ((!new.inuse || !prior) && !was_frozen) {
49e22585
CL
2489
2490 if (!kmem_cache_debug(s) && !prior)
2491
2492 /*
2493 * Slab was on no list before and will be partially empty
2494 * We can defer the list move and instead freeze it.
2495 */
2496 new.frozen = 1;
2497
2498 else { /* Needs to be taken off a list */
2499
2500 n = get_node(s, page_to_nid(page));
2501 /*
2502 * Speculatively acquire the list_lock.
2503 * If the cmpxchg does not succeed then we may
2504 * drop the list_lock without any processing.
2505 *
2506 * Otherwise the list_lock will synchronize with
2507 * other processors updating the list of slabs.
2508 */
2509 spin_lock_irqsave(&n->list_lock, flags);
2510
2511 }
2cfb7455 2512 }
81819f0f 2513
2cfb7455
CL
2514 } while (!cmpxchg_double_slab(s, page,
2515 prior, counters,
2516 object, new.counters,
2517 "__slab_free"));
81819f0f 2518
2cfb7455 2519 if (likely(!n)) {
49e22585
CL
2520
2521 /*
2522 * If we just froze the page then put it onto the
2523 * per cpu partial list.
2524 */
8028dcea 2525 if (new.frozen && !was_frozen) {
49e22585 2526 put_cpu_partial(s, page, 1);
8028dcea
AS
2527 stat(s, CPU_PARTIAL_FREE);
2528 }
49e22585 2529 /*
2cfb7455
CL
2530 * The list lock was not taken therefore no list
2531 * activity can be necessary.
2532 */
2533 if (was_frozen)
2534 stat(s, FREE_FROZEN);
80f08c19 2535 return;
2cfb7455 2536 }
81819f0f 2537
837d678d
JK
2538 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2539 goto slab_empty;
2540
81819f0f 2541 /*
837d678d
JK
2542 * Objects left in the slab. If it was not on the partial list before
2543 * then add it.
81819f0f 2544 */
837d678d
JK
2545 if (kmem_cache_debug(s) && unlikely(!prior)) {
2546 remove_full(s, page);
2547 add_partial(n, page, DEACTIVATE_TO_TAIL);
2548 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2549 }
80f08c19 2550 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2551 return;
2552
2553slab_empty:
a973e9dd 2554 if (prior) {
81819f0f 2555 /*
6fbabb20 2556 * Slab on the partial list.
81819f0f 2557 */
5cc6eee8 2558 remove_partial(n, page);
84e554e6 2559 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2560 } else
2561 /* Slab must be on the full list */
2562 remove_full(s, page);
2cfb7455 2563
80f08c19 2564 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2565 stat(s, FREE_SLAB);
81819f0f 2566 discard_slab(s, page);
81819f0f
CL
2567}
2568
894b8788
CL
2569/*
2570 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2571 * can perform fastpath freeing without additional function calls.
2572 *
2573 * The fastpath is only possible if we are freeing to the current cpu slab
2574 * of this processor. This typically the case if we have just allocated
2575 * the item before.
2576 *
2577 * If fastpath is not possible then fall back to __slab_free where we deal
2578 * with all sorts of special processing.
2579 */
06428780 2580static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2581 struct page *page, void *x, unsigned long addr)
894b8788
CL
2582{
2583 void **object = (void *)x;
dfb4f096 2584 struct kmem_cache_cpu *c;
8a5ec0ba 2585 unsigned long tid;
1f84260c 2586
c016b0bd
CL
2587 slab_free_hook(s, x);
2588
8a5ec0ba
CL
2589redo:
2590 /*
2591 * Determine the currently cpus per cpu slab.
2592 * The cpu may change afterward. However that does not matter since
2593 * data is retrieved via this pointer. If we are on the same cpu
2594 * during the cmpxchg then the free will succedd.
2595 */
9dfc6e68 2596 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2597
8a5ec0ba
CL
2598 tid = c->tid;
2599 barrier();
c016b0bd 2600
442b06bc 2601 if (likely(page == c->page)) {
ff12059e 2602 set_freepointer(s, object, c->freelist);
8a5ec0ba 2603
933393f5 2604 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2605 s->cpu_slab->freelist, s->cpu_slab->tid,
2606 c->freelist, tid,
2607 object, next_tid(tid)))) {
2608
2609 note_cmpxchg_failure("slab_free", s, tid);
2610 goto redo;
2611 }
84e554e6 2612 stat(s, FREE_FASTPATH);
894b8788 2613 } else
ff12059e 2614 __slab_free(s, page, x, addr);
894b8788 2615
894b8788
CL
2616}
2617
81819f0f
CL
2618void kmem_cache_free(struct kmem_cache *s, void *x)
2619{
b9ce5ef4
GC
2620 s = cache_from_obj(s, x);
2621 if (!s)
79576102 2622 return;
b9ce5ef4 2623 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2624 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2625}
2626EXPORT_SYMBOL(kmem_cache_free);
2627
81819f0f 2628/*
672bba3a
CL
2629 * Object placement in a slab is made very easy because we always start at
2630 * offset 0. If we tune the size of the object to the alignment then we can
2631 * get the required alignment by putting one properly sized object after
2632 * another.
81819f0f
CL
2633 *
2634 * Notice that the allocation order determines the sizes of the per cpu
2635 * caches. Each processor has always one slab available for allocations.
2636 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2637 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2638 * locking overhead.
81819f0f
CL
2639 */
2640
2641/*
2642 * Mininum / Maximum order of slab pages. This influences locking overhead
2643 * and slab fragmentation. A higher order reduces the number of partial slabs
2644 * and increases the number of allocations possible without having to
2645 * take the list_lock.
2646 */
2647static int slub_min_order;
114e9e89 2648static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2649static int slub_min_objects;
81819f0f
CL
2650
2651/*
2652 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2653 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2654 */
2655static int slub_nomerge;
2656
81819f0f
CL
2657/*
2658 * Calculate the order of allocation given an slab object size.
2659 *
672bba3a
CL
2660 * The order of allocation has significant impact on performance and other
2661 * system components. Generally order 0 allocations should be preferred since
2662 * order 0 does not cause fragmentation in the page allocator. Larger objects
2663 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2664 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2665 * would be wasted.
2666 *
2667 * In order to reach satisfactory performance we must ensure that a minimum
2668 * number of objects is in one slab. Otherwise we may generate too much
2669 * activity on the partial lists which requires taking the list_lock. This is
2670 * less a concern for large slabs though which are rarely used.
81819f0f 2671 *
672bba3a
CL
2672 * slub_max_order specifies the order where we begin to stop considering the
2673 * number of objects in a slab as critical. If we reach slub_max_order then
2674 * we try to keep the page order as low as possible. So we accept more waste
2675 * of space in favor of a small page order.
81819f0f 2676 *
672bba3a
CL
2677 * Higher order allocations also allow the placement of more objects in a
2678 * slab and thereby reduce object handling overhead. If the user has
2679 * requested a higher mininum order then we start with that one instead of
2680 * the smallest order which will fit the object.
81819f0f 2681 */
5e6d444e 2682static inline int slab_order(int size, int min_objects,
ab9a0f19 2683 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2684{
2685 int order;
2686 int rem;
6300ea75 2687 int min_order = slub_min_order;
81819f0f 2688
ab9a0f19 2689 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2690 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2691
6300ea75 2692 for (order = max(min_order,
5e6d444e
CL
2693 fls(min_objects * size - 1) - PAGE_SHIFT);
2694 order <= max_order; order++) {
81819f0f 2695
5e6d444e 2696 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2697
ab9a0f19 2698 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2699 continue;
2700
ab9a0f19 2701 rem = (slab_size - reserved) % size;
81819f0f 2702
5e6d444e 2703 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2704 break;
2705
2706 }
672bba3a 2707
81819f0f
CL
2708 return order;
2709}
2710
ab9a0f19 2711static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2712{
2713 int order;
2714 int min_objects;
2715 int fraction;
e8120ff1 2716 int max_objects;
5e6d444e
CL
2717
2718 /*
2719 * Attempt to find best configuration for a slab. This
2720 * works by first attempting to generate a layout with
2721 * the best configuration and backing off gradually.
2722 *
2723 * First we reduce the acceptable waste in a slab. Then
2724 * we reduce the minimum objects required in a slab.
2725 */
2726 min_objects = slub_min_objects;
9b2cd506
CL
2727 if (!min_objects)
2728 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2729 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2730 min_objects = min(min_objects, max_objects);
2731
5e6d444e 2732 while (min_objects > 1) {
c124f5b5 2733 fraction = 16;
5e6d444e
CL
2734 while (fraction >= 4) {
2735 order = slab_order(size, min_objects,
ab9a0f19 2736 slub_max_order, fraction, reserved);
5e6d444e
CL
2737 if (order <= slub_max_order)
2738 return order;
2739 fraction /= 2;
2740 }
5086c389 2741 min_objects--;
5e6d444e
CL
2742 }
2743
2744 /*
2745 * We were unable to place multiple objects in a slab. Now
2746 * lets see if we can place a single object there.
2747 */
ab9a0f19 2748 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2749 if (order <= slub_max_order)
2750 return order;
2751
2752 /*
2753 * Doh this slab cannot be placed using slub_max_order.
2754 */
ab9a0f19 2755 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2756 if (order < MAX_ORDER)
5e6d444e
CL
2757 return order;
2758 return -ENOSYS;
2759}
2760
5595cffc 2761static void
4053497d 2762init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2763{
2764 n->nr_partial = 0;
81819f0f
CL
2765 spin_lock_init(&n->list_lock);
2766 INIT_LIST_HEAD(&n->partial);
8ab1372f 2767#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2768 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2769 atomic_long_set(&n->total_objects, 0);
643b1138 2770 INIT_LIST_HEAD(&n->full);
8ab1372f 2771#endif
81819f0f
CL
2772}
2773
55136592 2774static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2775{
6c182dc0
CL
2776 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2777 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2778
8a5ec0ba 2779 /*
d4d84fef
CM
2780 * Must align to double word boundary for the double cmpxchg
2781 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2782 */
d4d84fef
CM
2783 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2784 2 * sizeof(void *));
8a5ec0ba
CL
2785
2786 if (!s->cpu_slab)
2787 return 0;
2788
2789 init_kmem_cache_cpus(s);
4c93c355 2790
8a5ec0ba 2791 return 1;
4c93c355 2792}
4c93c355 2793
51df1142
CL
2794static struct kmem_cache *kmem_cache_node;
2795
81819f0f
CL
2796/*
2797 * No kmalloc_node yet so do it by hand. We know that this is the first
2798 * slab on the node for this slabcache. There are no concurrent accesses
2799 * possible.
2800 *
2801 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2802 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2803 * memory on a fresh node that has no slab structures yet.
81819f0f 2804 */
55136592 2805static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2806{
2807 struct page *page;
2808 struct kmem_cache_node *n;
2809
51df1142 2810 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2811
51df1142 2812 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2813
2814 BUG_ON(!page);
a2f92ee7
CL
2815 if (page_to_nid(page) != node) {
2816 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2817 "node %d\n", node);
2818 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2819 "in order to be able to continue\n");
2820 }
2821
81819f0f
CL
2822 n = page->freelist;
2823 BUG_ON(!n);
51df1142 2824 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2825 page->inuse = 1;
8cb0a506 2826 page->frozen = 0;
51df1142 2827 kmem_cache_node->node[node] = n;
8ab1372f 2828#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2829 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2830 init_tracking(kmem_cache_node, n);
8ab1372f 2831#endif
4053497d 2832 init_kmem_cache_node(n);
51df1142 2833 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2834
136333d1 2835 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2836}
2837
2838static void free_kmem_cache_nodes(struct kmem_cache *s)
2839{
2840 int node;
2841
f64dc58c 2842 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2843 struct kmem_cache_node *n = s->node[node];
51df1142 2844
73367bd8 2845 if (n)
51df1142
CL
2846 kmem_cache_free(kmem_cache_node, n);
2847
81819f0f
CL
2848 s->node[node] = NULL;
2849 }
2850}
2851
55136592 2852static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2853{
2854 int node;
81819f0f 2855
f64dc58c 2856 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2857 struct kmem_cache_node *n;
2858
73367bd8 2859 if (slab_state == DOWN) {
55136592 2860 early_kmem_cache_node_alloc(node);
73367bd8
AD
2861 continue;
2862 }
51df1142 2863 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2864 GFP_KERNEL, node);
81819f0f 2865
73367bd8
AD
2866 if (!n) {
2867 free_kmem_cache_nodes(s);
2868 return 0;
81819f0f 2869 }
73367bd8 2870
81819f0f 2871 s->node[node] = n;
4053497d 2872 init_kmem_cache_node(n);
81819f0f
CL
2873 }
2874 return 1;
2875}
81819f0f 2876
c0bdb232 2877static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2878{
2879 if (min < MIN_PARTIAL)
2880 min = MIN_PARTIAL;
2881 else if (min > MAX_PARTIAL)
2882 min = MAX_PARTIAL;
2883 s->min_partial = min;
2884}
2885
81819f0f
CL
2886/*
2887 * calculate_sizes() determines the order and the distribution of data within
2888 * a slab object.
2889 */
06b285dc 2890static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2891{
2892 unsigned long flags = s->flags;
3b0efdfa 2893 unsigned long size = s->object_size;
834f3d11 2894 int order;
81819f0f 2895
d8b42bf5
CL
2896 /*
2897 * Round up object size to the next word boundary. We can only
2898 * place the free pointer at word boundaries and this determines
2899 * the possible location of the free pointer.
2900 */
2901 size = ALIGN(size, sizeof(void *));
2902
2903#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2904 /*
2905 * Determine if we can poison the object itself. If the user of
2906 * the slab may touch the object after free or before allocation
2907 * then we should never poison the object itself.
2908 */
2909 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2910 !s->ctor)
81819f0f
CL
2911 s->flags |= __OBJECT_POISON;
2912 else
2913 s->flags &= ~__OBJECT_POISON;
2914
81819f0f
CL
2915
2916 /*
672bba3a 2917 * If we are Redzoning then check if there is some space between the
81819f0f 2918 * end of the object and the free pointer. If not then add an
672bba3a 2919 * additional word to have some bytes to store Redzone information.
81819f0f 2920 */
3b0efdfa 2921 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2922 size += sizeof(void *);
41ecc55b 2923#endif
81819f0f
CL
2924
2925 /*
672bba3a
CL
2926 * With that we have determined the number of bytes in actual use
2927 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2928 */
2929 s->inuse = size;
2930
2931 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2932 s->ctor)) {
81819f0f
CL
2933 /*
2934 * Relocate free pointer after the object if it is not
2935 * permitted to overwrite the first word of the object on
2936 * kmem_cache_free.
2937 *
2938 * This is the case if we do RCU, have a constructor or
2939 * destructor or are poisoning the objects.
2940 */
2941 s->offset = size;
2942 size += sizeof(void *);
2943 }
2944
c12b3c62 2945#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2946 if (flags & SLAB_STORE_USER)
2947 /*
2948 * Need to store information about allocs and frees after
2949 * the object.
2950 */
2951 size += 2 * sizeof(struct track);
2952
be7b3fbc 2953 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2954 /*
2955 * Add some empty padding so that we can catch
2956 * overwrites from earlier objects rather than let
2957 * tracking information or the free pointer be
0211a9c8 2958 * corrupted if a user writes before the start
81819f0f
CL
2959 * of the object.
2960 */
2961 size += sizeof(void *);
41ecc55b 2962#endif
672bba3a 2963
81819f0f
CL
2964 /*
2965 * SLUB stores one object immediately after another beginning from
2966 * offset 0. In order to align the objects we have to simply size
2967 * each object to conform to the alignment.
2968 */
45906855 2969 size = ALIGN(size, s->align);
81819f0f 2970 s->size = size;
06b285dc
CL
2971 if (forced_order >= 0)
2972 order = forced_order;
2973 else
ab9a0f19 2974 order = calculate_order(size, s->reserved);
81819f0f 2975
834f3d11 2976 if (order < 0)
81819f0f
CL
2977 return 0;
2978
b7a49f0d 2979 s->allocflags = 0;
834f3d11 2980 if (order)
b7a49f0d
CL
2981 s->allocflags |= __GFP_COMP;
2982
2983 if (s->flags & SLAB_CACHE_DMA)
2984 s->allocflags |= SLUB_DMA;
2985
2986 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2987 s->allocflags |= __GFP_RECLAIMABLE;
2988
81819f0f
CL
2989 /*
2990 * Determine the number of objects per slab
2991 */
ab9a0f19
LJ
2992 s->oo = oo_make(order, size, s->reserved);
2993 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2994 if (oo_objects(s->oo) > oo_objects(s->max))
2995 s->max = s->oo;
81819f0f 2996
834f3d11 2997 return !!oo_objects(s->oo);
81819f0f
CL
2998}
2999
8a13a4cc 3000static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3001{
8a13a4cc 3002 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3003 s->reserved = 0;
81819f0f 3004
da9a638c
LJ
3005 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3006 s->reserved = sizeof(struct rcu_head);
81819f0f 3007
06b285dc 3008 if (!calculate_sizes(s, -1))
81819f0f 3009 goto error;
3de47213
DR
3010 if (disable_higher_order_debug) {
3011 /*
3012 * Disable debugging flags that store metadata if the min slab
3013 * order increased.
3014 */
3b0efdfa 3015 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3016 s->flags &= ~DEBUG_METADATA_FLAGS;
3017 s->offset = 0;
3018 if (!calculate_sizes(s, -1))
3019 goto error;
3020 }
3021 }
81819f0f 3022
2565409f
HC
3023#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3024 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3025 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3026 /* Enable fast mode */
3027 s->flags |= __CMPXCHG_DOUBLE;
3028#endif
3029
3b89d7d8
DR
3030 /*
3031 * The larger the object size is, the more pages we want on the partial
3032 * list to avoid pounding the page allocator excessively.
3033 */
49e22585
CL
3034 set_min_partial(s, ilog2(s->size) / 2);
3035
3036 /*
3037 * cpu_partial determined the maximum number of objects kept in the
3038 * per cpu partial lists of a processor.
3039 *
3040 * Per cpu partial lists mainly contain slabs that just have one
3041 * object freed. If they are used for allocation then they can be
3042 * filled up again with minimal effort. The slab will never hit the
3043 * per node partial lists and therefore no locking will be required.
3044 *
3045 * This setting also determines
3046 *
3047 * A) The number of objects from per cpu partial slabs dumped to the
3048 * per node list when we reach the limit.
9f264904 3049 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3050 * per node list when we run out of per cpu objects. We only fetch 50%
3051 * to keep some capacity around for frees.
3052 */
8f1e33da
CL
3053 if (kmem_cache_debug(s))
3054 s->cpu_partial = 0;
3055 else if (s->size >= PAGE_SIZE)
49e22585
CL
3056 s->cpu_partial = 2;
3057 else if (s->size >= 1024)
3058 s->cpu_partial = 6;
3059 else if (s->size >= 256)
3060 s->cpu_partial = 13;
3061 else
3062 s->cpu_partial = 30;
3063
81819f0f 3064#ifdef CONFIG_NUMA
e2cb96b7 3065 s->remote_node_defrag_ratio = 1000;
81819f0f 3066#endif
55136592 3067 if (!init_kmem_cache_nodes(s))
dfb4f096 3068 goto error;
81819f0f 3069
55136592 3070 if (alloc_kmem_cache_cpus(s))
278b1bb1 3071 return 0;
ff12059e 3072
4c93c355 3073 free_kmem_cache_nodes(s);
81819f0f
CL
3074error:
3075 if (flags & SLAB_PANIC)
3076 panic("Cannot create slab %s size=%lu realsize=%u "
3077 "order=%u offset=%u flags=%lx\n",
8a13a4cc 3078 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
81819f0f 3079 s->offset, flags);
278b1bb1 3080 return -EINVAL;
81819f0f 3081}
81819f0f 3082
33b12c38
CL
3083static void list_slab_objects(struct kmem_cache *s, struct page *page,
3084 const char *text)
3085{
3086#ifdef CONFIG_SLUB_DEBUG
3087 void *addr = page_address(page);
3088 void *p;
a5dd5c11
NK
3089 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3090 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3091 if (!map)
3092 return;
945cf2b6 3093 slab_err(s, page, text, s->name);
33b12c38 3094 slab_lock(page);
33b12c38 3095
5f80b13a 3096 get_map(s, page, map);
33b12c38
CL
3097 for_each_object(p, s, addr, page->objects) {
3098
3099 if (!test_bit(slab_index(p, s, addr), map)) {
3100 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3101 p, p - addr);
3102 print_tracking(s, p);
3103 }
3104 }
3105 slab_unlock(page);
bbd7d57b 3106 kfree(map);
33b12c38
CL
3107#endif
3108}
3109
81819f0f 3110/*
599870b1 3111 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3112 * This is called from kmem_cache_close(). We must be the last thread
3113 * using the cache and therefore we do not need to lock anymore.
81819f0f 3114 */
599870b1 3115static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3116{
81819f0f
CL
3117 struct page *page, *h;
3118
33b12c38 3119 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3120 if (!page->inuse) {
5cc6eee8 3121 remove_partial(n, page);
81819f0f 3122 discard_slab(s, page);
33b12c38
CL
3123 } else {
3124 list_slab_objects(s, page,
945cf2b6 3125 "Objects remaining in %s on kmem_cache_close()");
599870b1 3126 }
33b12c38 3127 }
81819f0f
CL
3128}
3129
3130/*
672bba3a 3131 * Release all resources used by a slab cache.
81819f0f 3132 */
0c710013 3133static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3134{
3135 int node;
3136
3137 flush_all(s);
81819f0f 3138 /* Attempt to free all objects */
f64dc58c 3139 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3140 struct kmem_cache_node *n = get_node(s, node);
3141
599870b1
CL
3142 free_partial(s, n);
3143 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3144 return 1;
3145 }
945cf2b6 3146 free_percpu(s->cpu_slab);
81819f0f
CL
3147 free_kmem_cache_nodes(s);
3148 return 0;
3149}
3150
945cf2b6 3151int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3152{
12c3667f 3153 int rc = kmem_cache_close(s);
945cf2b6 3154
12c3667f 3155 if (!rc)
81819f0f 3156 sysfs_slab_remove(s);
12c3667f
CL
3157
3158 return rc;
81819f0f 3159}
81819f0f
CL
3160
3161/********************************************************************
3162 * Kmalloc subsystem
3163 *******************************************************************/
3164
51df1142 3165struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3166EXPORT_SYMBOL(kmalloc_caches);
3167
55136592 3168#ifdef CONFIG_ZONE_DMA
51df1142 3169static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3170#endif
3171
81819f0f
CL
3172static int __init setup_slub_min_order(char *str)
3173{
06428780 3174 get_option(&str, &slub_min_order);
81819f0f
CL
3175
3176 return 1;
3177}
3178
3179__setup("slub_min_order=", setup_slub_min_order);
3180
3181static int __init setup_slub_max_order(char *str)
3182{
06428780 3183 get_option(&str, &slub_max_order);
818cf590 3184 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3185
3186 return 1;
3187}
3188
3189__setup("slub_max_order=", setup_slub_max_order);
3190
3191static int __init setup_slub_min_objects(char *str)
3192{
06428780 3193 get_option(&str, &slub_min_objects);
81819f0f
CL
3194
3195 return 1;
3196}
3197
3198__setup("slub_min_objects=", setup_slub_min_objects);
3199
3200static int __init setup_slub_nomerge(char *str)
3201{
3202 slub_nomerge = 1;
3203 return 1;
3204}
3205
3206__setup("slub_nomerge", setup_slub_nomerge);
3207
f1b26339
CL
3208/*
3209 * Conversion table for small slabs sizes / 8 to the index in the
3210 * kmalloc array. This is necessary for slabs < 192 since we have non power
3211 * of two cache sizes there. The size of larger slabs can be determined using
3212 * fls.
3213 */
3214static s8 size_index[24] = {
3215 3, /* 8 */
3216 4, /* 16 */
3217 5, /* 24 */
3218 5, /* 32 */
3219 6, /* 40 */
3220 6, /* 48 */
3221 6, /* 56 */
3222 6, /* 64 */
3223 1, /* 72 */
3224 1, /* 80 */
3225 1, /* 88 */
3226 1, /* 96 */
3227 7, /* 104 */
3228 7, /* 112 */
3229 7, /* 120 */
3230 7, /* 128 */
3231 2, /* 136 */
3232 2, /* 144 */
3233 2, /* 152 */
3234 2, /* 160 */
3235 2, /* 168 */
3236 2, /* 176 */
3237 2, /* 184 */
3238 2 /* 192 */
3239};
3240
acdfcd04
AK
3241static inline int size_index_elem(size_t bytes)
3242{
3243 return (bytes - 1) / 8;
3244}
3245
81819f0f
CL
3246static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3247{
f1b26339 3248 int index;
81819f0f 3249
f1b26339
CL
3250 if (size <= 192) {
3251 if (!size)
3252 return ZERO_SIZE_PTR;
81819f0f 3253
acdfcd04 3254 index = size_index[size_index_elem(size)];
aadb4bc4 3255 } else
f1b26339 3256 index = fls(size - 1);
81819f0f
CL
3257
3258#ifdef CONFIG_ZONE_DMA
f1b26339 3259 if (unlikely((flags & SLUB_DMA)))
51df1142 3260 return kmalloc_dma_caches[index];
f1b26339 3261
81819f0f 3262#endif
51df1142 3263 return kmalloc_caches[index];
81819f0f
CL
3264}
3265
3266void *__kmalloc(size_t size, gfp_t flags)
3267{
aadb4bc4 3268 struct kmem_cache *s;
5b882be4 3269 void *ret;
81819f0f 3270
ffadd4d0 3271 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3272 return kmalloc_large(size, flags);
aadb4bc4
CL
3273
3274 s = get_slab(size, flags);
3275
3276 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3277 return s;
3278
2b847c3c 3279 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3280
ca2b84cb 3281 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3282
3283 return ret;
81819f0f
CL
3284}
3285EXPORT_SYMBOL(__kmalloc);
3286
5d1f57e4 3287#ifdef CONFIG_NUMA
f619cfe1
CL
3288static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3289{
b1eeab67 3290 struct page *page;
e4f7c0b4 3291 void *ptr = NULL;
f619cfe1 3292
d79923fa 3293 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
b1eeab67 3294 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3295 if (page)
e4f7c0b4
CM
3296 ptr = page_address(page);
3297
3298 kmemleak_alloc(ptr, size, 1, flags);
3299 return ptr;
f619cfe1
CL
3300}
3301
81819f0f
CL
3302void *__kmalloc_node(size_t size, gfp_t flags, int node)
3303{
aadb4bc4 3304 struct kmem_cache *s;
5b882be4 3305 void *ret;
81819f0f 3306
057685cf 3307 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3308 ret = kmalloc_large_node(size, flags, node);
3309
ca2b84cb
EGM
3310 trace_kmalloc_node(_RET_IP_, ret,
3311 size, PAGE_SIZE << get_order(size),
3312 flags, node);
5b882be4
EGM
3313
3314 return ret;
3315 }
aadb4bc4
CL
3316
3317 s = get_slab(size, flags);
3318
3319 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3320 return s;
3321
2b847c3c 3322 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3323
ca2b84cb 3324 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3325
3326 return ret;
81819f0f
CL
3327}
3328EXPORT_SYMBOL(__kmalloc_node);
3329#endif
3330
3331size_t ksize(const void *object)
3332{
272c1d21 3333 struct page *page;
81819f0f 3334
ef8b4520 3335 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3336 return 0;
3337
294a80a8 3338 page = virt_to_head_page(object);
294a80a8 3339
76994412
PE
3340 if (unlikely(!PageSlab(page))) {
3341 WARN_ON(!PageCompound(page));
294a80a8 3342 return PAGE_SIZE << compound_order(page);
76994412 3343 }
81819f0f 3344
1b4f59e3 3345 return slab_ksize(page->slab_cache);
81819f0f 3346}
b1aabecd 3347EXPORT_SYMBOL(ksize);
81819f0f 3348
d18a90dd
BG
3349#ifdef CONFIG_SLUB_DEBUG
3350bool verify_mem_not_deleted(const void *x)
3351{
3352 struct page *page;
3353 void *object = (void *)x;
3354 unsigned long flags;
3355 bool rv;
3356
3357 if (unlikely(ZERO_OR_NULL_PTR(x)))
3358 return false;
3359
3360 local_irq_save(flags);
3361
3362 page = virt_to_head_page(x);
3363 if (unlikely(!PageSlab(page))) {
3364 /* maybe it was from stack? */
3365 rv = true;
3366 goto out_unlock;
3367 }
3368
3369 slab_lock(page);
1b4f59e3
GC
3370 if (on_freelist(page->slab_cache, page, object)) {
3371 object_err(page->slab_cache, page, object, "Object is on free-list");
d18a90dd
BG
3372 rv = false;
3373 } else {
3374 rv = true;
3375 }
3376 slab_unlock(page);
3377
3378out_unlock:
3379 local_irq_restore(flags);
3380 return rv;
3381}
3382EXPORT_SYMBOL(verify_mem_not_deleted);
3383#endif
3384
81819f0f
CL
3385void kfree(const void *x)
3386{
81819f0f 3387 struct page *page;
5bb983b0 3388 void *object = (void *)x;
81819f0f 3389
2121db74
PE
3390 trace_kfree(_RET_IP_, x);
3391
2408c550 3392 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3393 return;
3394
b49af68f 3395 page = virt_to_head_page(x);
aadb4bc4 3396 if (unlikely(!PageSlab(page))) {
0937502a 3397 BUG_ON(!PageCompound(page));
e4f7c0b4 3398 kmemleak_free(x);
d79923fa 3399 __free_memcg_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3400 return;
3401 }
1b4f59e3 3402 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3403}
3404EXPORT_SYMBOL(kfree);
3405
2086d26a 3406/*
672bba3a
CL
3407 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3408 * the remaining slabs by the number of items in use. The slabs with the
3409 * most items in use come first. New allocations will then fill those up
3410 * and thus they can be removed from the partial lists.
3411 *
3412 * The slabs with the least items are placed last. This results in them
3413 * being allocated from last increasing the chance that the last objects
3414 * are freed in them.
2086d26a
CL
3415 */
3416int kmem_cache_shrink(struct kmem_cache *s)
3417{
3418 int node;
3419 int i;
3420 struct kmem_cache_node *n;
3421 struct page *page;
3422 struct page *t;
205ab99d 3423 int objects = oo_objects(s->max);
2086d26a 3424 struct list_head *slabs_by_inuse =
834f3d11 3425 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3426 unsigned long flags;
3427
3428 if (!slabs_by_inuse)
3429 return -ENOMEM;
3430
3431 flush_all(s);
f64dc58c 3432 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3433 n = get_node(s, node);
3434
3435 if (!n->nr_partial)
3436 continue;
3437
834f3d11 3438 for (i = 0; i < objects; i++)
2086d26a
CL
3439 INIT_LIST_HEAD(slabs_by_inuse + i);
3440
3441 spin_lock_irqsave(&n->list_lock, flags);
3442
3443 /*
672bba3a 3444 * Build lists indexed by the items in use in each slab.
2086d26a 3445 *
672bba3a
CL
3446 * Note that concurrent frees may occur while we hold the
3447 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3448 */
3449 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3450 list_move(&page->lru, slabs_by_inuse + page->inuse);
3451 if (!page->inuse)
3452 n->nr_partial--;
2086d26a
CL
3453 }
3454
2086d26a 3455 /*
672bba3a
CL
3456 * Rebuild the partial list with the slabs filled up most
3457 * first and the least used slabs at the end.
2086d26a 3458 */
69cb8e6b 3459 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3460 list_splice(slabs_by_inuse + i, n->partial.prev);
3461
2086d26a 3462 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3463
3464 /* Release empty slabs */
3465 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3466 discard_slab(s, page);
2086d26a
CL
3467 }
3468
3469 kfree(slabs_by_inuse);
3470 return 0;
3471}
3472EXPORT_SYMBOL(kmem_cache_shrink);
3473
92a5bbc1 3474#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3475static int slab_mem_going_offline_callback(void *arg)
3476{
3477 struct kmem_cache *s;
3478
18004c5d 3479 mutex_lock(&slab_mutex);
b9049e23
YG
3480 list_for_each_entry(s, &slab_caches, list)
3481 kmem_cache_shrink(s);
18004c5d 3482 mutex_unlock(&slab_mutex);
b9049e23
YG
3483
3484 return 0;
3485}
3486
3487static void slab_mem_offline_callback(void *arg)
3488{
3489 struct kmem_cache_node *n;
3490 struct kmem_cache *s;
3491 struct memory_notify *marg = arg;
3492 int offline_node;
3493
b9d5ab25 3494 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3495
3496 /*
3497 * If the node still has available memory. we need kmem_cache_node
3498 * for it yet.
3499 */
3500 if (offline_node < 0)
3501 return;
3502
18004c5d 3503 mutex_lock(&slab_mutex);
b9049e23
YG
3504 list_for_each_entry(s, &slab_caches, list) {
3505 n = get_node(s, offline_node);
3506 if (n) {
3507 /*
3508 * if n->nr_slabs > 0, slabs still exist on the node
3509 * that is going down. We were unable to free them,
c9404c9c 3510 * and offline_pages() function shouldn't call this
b9049e23
YG
3511 * callback. So, we must fail.
3512 */
0f389ec6 3513 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3514
3515 s->node[offline_node] = NULL;
8de66a0c 3516 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3517 }
3518 }
18004c5d 3519 mutex_unlock(&slab_mutex);
b9049e23
YG
3520}
3521
3522static int slab_mem_going_online_callback(void *arg)
3523{
3524 struct kmem_cache_node *n;
3525 struct kmem_cache *s;
3526 struct memory_notify *marg = arg;
b9d5ab25 3527 int nid = marg->status_change_nid_normal;
b9049e23
YG
3528 int ret = 0;
3529
3530 /*
3531 * If the node's memory is already available, then kmem_cache_node is
3532 * already created. Nothing to do.
3533 */
3534 if (nid < 0)
3535 return 0;
3536
3537 /*
0121c619 3538 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3539 * allocate a kmem_cache_node structure in order to bring the node
3540 * online.
3541 */
18004c5d 3542 mutex_lock(&slab_mutex);
b9049e23
YG
3543 list_for_each_entry(s, &slab_caches, list) {
3544 /*
3545 * XXX: kmem_cache_alloc_node will fallback to other nodes
3546 * since memory is not yet available from the node that
3547 * is brought up.
3548 */
8de66a0c 3549 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3550 if (!n) {
3551 ret = -ENOMEM;
3552 goto out;
3553 }
4053497d 3554 init_kmem_cache_node(n);
b9049e23
YG
3555 s->node[nid] = n;
3556 }
3557out:
18004c5d 3558 mutex_unlock(&slab_mutex);
b9049e23
YG
3559 return ret;
3560}
3561
3562static int slab_memory_callback(struct notifier_block *self,
3563 unsigned long action, void *arg)
3564{
3565 int ret = 0;
3566
3567 switch (action) {
3568 case MEM_GOING_ONLINE:
3569 ret = slab_mem_going_online_callback(arg);
3570 break;
3571 case MEM_GOING_OFFLINE:
3572 ret = slab_mem_going_offline_callback(arg);
3573 break;
3574 case MEM_OFFLINE:
3575 case MEM_CANCEL_ONLINE:
3576 slab_mem_offline_callback(arg);
3577 break;
3578 case MEM_ONLINE:
3579 case MEM_CANCEL_OFFLINE:
3580 break;
3581 }
dc19f9db
KH
3582 if (ret)
3583 ret = notifier_from_errno(ret);
3584 else
3585 ret = NOTIFY_OK;
b9049e23
YG
3586 return ret;
3587}
3588
3589#endif /* CONFIG_MEMORY_HOTPLUG */
3590
81819f0f
CL
3591/********************************************************************
3592 * Basic setup of slabs
3593 *******************************************************************/
3594
51df1142
CL
3595/*
3596 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3597 * the page allocator. Allocate them properly then fix up the pointers
3598 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3599 */
3600
dffb4d60 3601static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3602{
3603 int node;
dffb4d60 3604 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
51df1142 3605
dffb4d60 3606 memcpy(s, static_cache, kmem_cache->object_size);
51df1142
CL
3607
3608 for_each_node_state(node, N_NORMAL_MEMORY) {
3609 struct kmem_cache_node *n = get_node(s, node);
3610 struct page *p;
3611
3612 if (n) {
3613 list_for_each_entry(p, &n->partial, lru)
1b4f59e3 3614 p->slab_cache = s;
51df1142 3615
607bf324 3616#ifdef CONFIG_SLUB_DEBUG
51df1142 3617 list_for_each_entry(p, &n->full, lru)
1b4f59e3 3618 p->slab_cache = s;
51df1142
CL
3619#endif
3620 }
3621 }
dffb4d60
CL
3622 list_add(&s->list, &slab_caches);
3623 return s;
51df1142
CL
3624}
3625
81819f0f
CL
3626void __init kmem_cache_init(void)
3627{
dffb4d60
CL
3628 static __initdata struct kmem_cache boot_kmem_cache,
3629 boot_kmem_cache_node;
81819f0f 3630 int i;
dffb4d60 3631 int caches = 2;
51df1142 3632
fc8d8620
SG
3633 if (debug_guardpage_minorder())
3634 slub_max_order = 0;
3635
dffb4d60
CL
3636 kmem_cache_node = &boot_kmem_cache_node;
3637 kmem_cache = &boot_kmem_cache;
51df1142 3638
dffb4d60
CL
3639 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3640 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3641
0c40ba4f 3642 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3643
3644 /* Able to allocate the per node structures */
3645 slab_state = PARTIAL;
3646
dffb4d60
CL
3647 create_boot_cache(kmem_cache, "kmem_cache",
3648 offsetof(struct kmem_cache, node) +
3649 nr_node_ids * sizeof(struct kmem_cache_node *),
3650 SLAB_HWCACHE_ALIGN);
8a13a4cc 3651
dffb4d60 3652 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3653
51df1142
CL
3654 /*
3655 * Allocate kmem_cache_node properly from the kmem_cache slab.
3656 * kmem_cache_node is separately allocated so no need to
3657 * update any list pointers.
3658 */
dffb4d60 3659 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3660
3661 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3662
3663 /*
3664 * Patch up the size_index table if we have strange large alignment
3665 * requirements for the kmalloc array. This is only the case for
6446faa2 3666 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3667 *
3668 * Largest permitted alignment is 256 bytes due to the way we
3669 * handle the index determination for the smaller caches.
3670 *
3671 * Make sure that nothing crazy happens if someone starts tinkering
3672 * around with ARCH_KMALLOC_MINALIGN
3673 */
3674 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3675 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3676
acdfcd04
AK
3677 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3678 int elem = size_index_elem(i);
3679 if (elem >= ARRAY_SIZE(size_index))
3680 break;
3681 size_index[elem] = KMALLOC_SHIFT_LOW;
3682 }
f1b26339 3683
acdfcd04
AK
3684 if (KMALLOC_MIN_SIZE == 64) {
3685 /*
3686 * The 96 byte size cache is not used if the alignment
3687 * is 64 byte.
3688 */
3689 for (i = 64 + 8; i <= 96; i += 8)
3690 size_index[size_index_elem(i)] = 7;
3691 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3692 /*
3693 * The 192 byte sized cache is not used if the alignment
3694 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3695 * instead.
3696 */
3697 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3698 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3699 }
3700
51df1142
CL
3701 /* Caches that are not of the two-to-the-power-of size */
3702 if (KMALLOC_MIN_SIZE <= 32) {
3703 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3704 caches++;
3705 }
3706
3707 if (KMALLOC_MIN_SIZE <= 64) {
3708 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3709 caches++;
3710 }
3711
3712 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3713 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3714 caches++;
3715 }
3716
81819f0f
CL
3717 slab_state = UP;
3718
3719 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3720 if (KMALLOC_MIN_SIZE <= 32) {
3721 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3722 BUG_ON(!kmalloc_caches[1]->name);
3723 }
3724
3725 if (KMALLOC_MIN_SIZE <= 64) {
3726 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3727 BUG_ON(!kmalloc_caches[2]->name);
3728 }
3729
d7278bd7
CL
3730 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3731 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3732
3733 BUG_ON(!s);
51df1142 3734 kmalloc_caches[i]->name = s;
d7278bd7 3735 }
81819f0f
CL
3736
3737#ifdef CONFIG_SMP
3738 register_cpu_notifier(&slab_notifier);
9dfc6e68 3739#endif
81819f0f 3740
55136592 3741#ifdef CONFIG_ZONE_DMA
51df1142
CL
3742 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3743 struct kmem_cache *s = kmalloc_caches[i];
55136592 3744
51df1142 3745 if (s && s->size) {
55136592 3746 char *name = kasprintf(GFP_NOWAIT,
3b0efdfa 3747 "dma-kmalloc-%d", s->object_size);
55136592
CL
3748
3749 BUG_ON(!name);
51df1142 3750 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3b0efdfa 3751 s->object_size, SLAB_CACHE_DMA);
55136592
CL
3752 }
3753 }
3754#endif
3adbefee
IM
3755 printk(KERN_INFO
3756 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3757 " CPUs=%d, Nodes=%d\n",
3758 caches, cache_line_size(),
81819f0f
CL
3759 slub_min_order, slub_max_order, slub_min_objects,
3760 nr_cpu_ids, nr_node_ids);
3761}
3762
7e85ee0c
PE
3763void __init kmem_cache_init_late(void)
3764{
7e85ee0c
PE
3765}
3766
81819f0f
CL
3767/*
3768 * Find a mergeable slab cache
3769 */
3770static int slab_unmergeable(struct kmem_cache *s)
3771{
3772 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3773 return 1;
3774
c59def9f 3775 if (s->ctor)
81819f0f
CL
3776 return 1;
3777
8ffa6875
CL
3778 /*
3779 * We may have set a slab to be unmergeable during bootstrap.
3780 */
3781 if (s->refcount < 0)
3782 return 1;
3783
81819f0f
CL
3784 return 0;
3785}
3786
2633d7a0 3787static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
ba0268a8 3788 size_t align, unsigned long flags, const char *name,
51cc5068 3789 void (*ctor)(void *))
81819f0f 3790{
5b95a4ac 3791 struct kmem_cache *s;
81819f0f
CL
3792
3793 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3794 return NULL;
3795
c59def9f 3796 if (ctor)
81819f0f
CL
3797 return NULL;
3798
3799 size = ALIGN(size, sizeof(void *));
3800 align = calculate_alignment(flags, align, size);
3801 size = ALIGN(size, align);
ba0268a8 3802 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3803
5b95a4ac 3804 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3805 if (slab_unmergeable(s))
3806 continue;
3807
3808 if (size > s->size)
3809 continue;
3810
ba0268a8 3811 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3812 continue;
3813 /*
3814 * Check if alignment is compatible.
3815 * Courtesy of Adrian Drzewiecki
3816 */
06428780 3817 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3818 continue;
3819
3820 if (s->size - size >= sizeof(void *))
3821 continue;
3822
2633d7a0
GC
3823 if (!cache_match_memcg(s, memcg))
3824 continue;
3825
81819f0f
CL
3826 return s;
3827 }
3828 return NULL;
3829}
3830
2633d7a0
GC
3831struct kmem_cache *
3832__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3833 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3834{
3835 struct kmem_cache *s;
3836
2633d7a0 3837 s = find_mergeable(memcg, size, align, flags, name, ctor);
81819f0f
CL
3838 if (s) {
3839 s->refcount++;
3840 /*
3841 * Adjust the object sizes so that we clear
3842 * the complete object on kzalloc.
3843 */
3b0efdfa 3844 s->object_size = max(s->object_size, (int)size);
81819f0f 3845 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3846
7b8f3b66 3847 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3848 s->refcount--;
cbb79694 3849 s = NULL;
7b8f3b66 3850 }
a0e1d1be 3851 }
6446faa2 3852
cbb79694
CL
3853 return s;
3854}
84c1cf62 3855
8a13a4cc 3856int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3857{
aac3a166
PE
3858 int err;
3859
3860 err = kmem_cache_open(s, flags);
3861 if (err)
3862 return err;
20cea968 3863
45530c44
CL
3864 /* Mutex is not taken during early boot */
3865 if (slab_state <= UP)
3866 return 0;
3867
aac3a166
PE
3868 mutex_unlock(&slab_mutex);
3869 err = sysfs_slab_add(s);
3870 mutex_lock(&slab_mutex);
20cea968 3871
aac3a166
PE
3872 if (err)
3873 kmem_cache_close(s);
20cea968 3874
aac3a166 3875 return err;
81819f0f 3876}
81819f0f 3877
81819f0f 3878#ifdef CONFIG_SMP
81819f0f 3879/*
672bba3a
CL
3880 * Use the cpu notifier to insure that the cpu slabs are flushed when
3881 * necessary.
81819f0f
CL
3882 */
3883static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3884 unsigned long action, void *hcpu)
3885{
3886 long cpu = (long)hcpu;
5b95a4ac
CL
3887 struct kmem_cache *s;
3888 unsigned long flags;
81819f0f
CL
3889
3890 switch (action) {
3891 case CPU_UP_CANCELED:
8bb78442 3892 case CPU_UP_CANCELED_FROZEN:
81819f0f 3893 case CPU_DEAD:
8bb78442 3894 case CPU_DEAD_FROZEN:
18004c5d 3895 mutex_lock(&slab_mutex);
5b95a4ac
CL
3896 list_for_each_entry(s, &slab_caches, list) {
3897 local_irq_save(flags);
3898 __flush_cpu_slab(s, cpu);
3899 local_irq_restore(flags);
3900 }
18004c5d 3901 mutex_unlock(&slab_mutex);
81819f0f
CL
3902 break;
3903 default:
3904 break;
3905 }
3906 return NOTIFY_OK;
3907}
3908
06428780 3909static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3910 .notifier_call = slab_cpuup_callback
06428780 3911};
81819f0f
CL
3912
3913#endif
3914
ce71e27c 3915void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3916{
aadb4bc4 3917 struct kmem_cache *s;
94b528d0 3918 void *ret;
aadb4bc4 3919
ffadd4d0 3920 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3921 return kmalloc_large(size, gfpflags);
3922
aadb4bc4 3923 s = get_slab(size, gfpflags);
81819f0f 3924
2408c550 3925 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3926 return s;
81819f0f 3927
2b847c3c 3928 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3929
25985edc 3930 /* Honor the call site pointer we received. */
ca2b84cb 3931 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3932
3933 return ret;
81819f0f
CL
3934}
3935
5d1f57e4 3936#ifdef CONFIG_NUMA
81819f0f 3937void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3938 int node, unsigned long caller)
81819f0f 3939{
aadb4bc4 3940 struct kmem_cache *s;
94b528d0 3941 void *ret;
aadb4bc4 3942
d3e14aa3
XF
3943 if (unlikely(size > SLUB_MAX_SIZE)) {
3944 ret = kmalloc_large_node(size, gfpflags, node);
3945
3946 trace_kmalloc_node(caller, ret,
3947 size, PAGE_SIZE << get_order(size),
3948 gfpflags, node);
3949
3950 return ret;
3951 }
eada35ef 3952
aadb4bc4 3953 s = get_slab(size, gfpflags);
81819f0f 3954
2408c550 3955 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3956 return s;
81819f0f 3957
2b847c3c 3958 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3959
25985edc 3960 /* Honor the call site pointer we received. */
ca2b84cb 3961 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3962
3963 return ret;
81819f0f 3964}
5d1f57e4 3965#endif
81819f0f 3966
ab4d5ed5 3967#ifdef CONFIG_SYSFS
205ab99d
CL
3968static int count_inuse(struct page *page)
3969{
3970 return page->inuse;
3971}
3972
3973static int count_total(struct page *page)
3974{
3975 return page->objects;
3976}
ab4d5ed5 3977#endif
205ab99d 3978
ab4d5ed5 3979#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3980static int validate_slab(struct kmem_cache *s, struct page *page,
3981 unsigned long *map)
53e15af0
CL
3982{
3983 void *p;
a973e9dd 3984 void *addr = page_address(page);
53e15af0
CL
3985
3986 if (!check_slab(s, page) ||
3987 !on_freelist(s, page, NULL))
3988 return 0;
3989
3990 /* Now we know that a valid freelist exists */
39b26464 3991 bitmap_zero(map, page->objects);
53e15af0 3992
5f80b13a
CL
3993 get_map(s, page, map);
3994 for_each_object(p, s, addr, page->objects) {
3995 if (test_bit(slab_index(p, s, addr), map))
3996 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3997 return 0;
53e15af0
CL
3998 }
3999
224a88be 4000 for_each_object(p, s, addr, page->objects)
7656c72b 4001 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4002 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4003 return 0;
4004 return 1;
4005}
4006
434e245d
CL
4007static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4008 unsigned long *map)
53e15af0 4009{
881db7fb
CL
4010 slab_lock(page);
4011 validate_slab(s, page, map);
4012 slab_unlock(page);
53e15af0
CL
4013}
4014
434e245d
CL
4015static int validate_slab_node(struct kmem_cache *s,
4016 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4017{
4018 unsigned long count = 0;
4019 struct page *page;
4020 unsigned long flags;
4021
4022 spin_lock_irqsave(&n->list_lock, flags);
4023
4024 list_for_each_entry(page, &n->partial, lru) {
434e245d 4025 validate_slab_slab(s, page, map);
53e15af0
CL
4026 count++;
4027 }
4028 if (count != n->nr_partial)
4029 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4030 "counter=%ld\n", s->name, count, n->nr_partial);
4031
4032 if (!(s->flags & SLAB_STORE_USER))
4033 goto out;
4034
4035 list_for_each_entry(page, &n->full, lru) {
434e245d 4036 validate_slab_slab(s, page, map);
53e15af0
CL
4037 count++;
4038 }
4039 if (count != atomic_long_read(&n->nr_slabs))
4040 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4041 "counter=%ld\n", s->name, count,
4042 atomic_long_read(&n->nr_slabs));
4043
4044out:
4045 spin_unlock_irqrestore(&n->list_lock, flags);
4046 return count;
4047}
4048
434e245d 4049static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4050{
4051 int node;
4052 unsigned long count = 0;
205ab99d 4053 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4054 sizeof(unsigned long), GFP_KERNEL);
4055
4056 if (!map)
4057 return -ENOMEM;
53e15af0
CL
4058
4059 flush_all(s);
f64dc58c 4060 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4061 struct kmem_cache_node *n = get_node(s, node);
4062
434e245d 4063 count += validate_slab_node(s, n, map);
53e15af0 4064 }
434e245d 4065 kfree(map);
53e15af0
CL
4066 return count;
4067}
88a420e4 4068/*
672bba3a 4069 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4070 * and freed.
4071 */
4072
4073struct location {
4074 unsigned long count;
ce71e27c 4075 unsigned long addr;
45edfa58
CL
4076 long long sum_time;
4077 long min_time;
4078 long max_time;
4079 long min_pid;
4080 long max_pid;
174596a0 4081 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4082 nodemask_t nodes;
88a420e4
CL
4083};
4084
4085struct loc_track {
4086 unsigned long max;
4087 unsigned long count;
4088 struct location *loc;
4089};
4090
4091static void free_loc_track(struct loc_track *t)
4092{
4093 if (t->max)
4094 free_pages((unsigned long)t->loc,
4095 get_order(sizeof(struct location) * t->max));
4096}
4097
68dff6a9 4098static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4099{
4100 struct location *l;
4101 int order;
4102
88a420e4
CL
4103 order = get_order(sizeof(struct location) * max);
4104
68dff6a9 4105 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4106 if (!l)
4107 return 0;
4108
4109 if (t->count) {
4110 memcpy(l, t->loc, sizeof(struct location) * t->count);
4111 free_loc_track(t);
4112 }
4113 t->max = max;
4114 t->loc = l;
4115 return 1;
4116}
4117
4118static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4119 const struct track *track)
88a420e4
CL
4120{
4121 long start, end, pos;
4122 struct location *l;
ce71e27c 4123 unsigned long caddr;
45edfa58 4124 unsigned long age = jiffies - track->when;
88a420e4
CL
4125
4126 start = -1;
4127 end = t->count;
4128
4129 for ( ; ; ) {
4130 pos = start + (end - start + 1) / 2;
4131
4132 /*
4133 * There is nothing at "end". If we end up there
4134 * we need to add something to before end.
4135 */
4136 if (pos == end)
4137 break;
4138
4139 caddr = t->loc[pos].addr;
45edfa58
CL
4140 if (track->addr == caddr) {
4141
4142 l = &t->loc[pos];
4143 l->count++;
4144 if (track->when) {
4145 l->sum_time += age;
4146 if (age < l->min_time)
4147 l->min_time = age;
4148 if (age > l->max_time)
4149 l->max_time = age;
4150
4151 if (track->pid < l->min_pid)
4152 l->min_pid = track->pid;
4153 if (track->pid > l->max_pid)
4154 l->max_pid = track->pid;
4155
174596a0
RR
4156 cpumask_set_cpu(track->cpu,
4157 to_cpumask(l->cpus));
45edfa58
CL
4158 }
4159 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4160 return 1;
4161 }
4162
45edfa58 4163 if (track->addr < caddr)
88a420e4
CL
4164 end = pos;
4165 else
4166 start = pos;
4167 }
4168
4169 /*
672bba3a 4170 * Not found. Insert new tracking element.
88a420e4 4171 */
68dff6a9 4172 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4173 return 0;
4174
4175 l = t->loc + pos;
4176 if (pos < t->count)
4177 memmove(l + 1, l,
4178 (t->count - pos) * sizeof(struct location));
4179 t->count++;
4180 l->count = 1;
45edfa58
CL
4181 l->addr = track->addr;
4182 l->sum_time = age;
4183 l->min_time = age;
4184 l->max_time = age;
4185 l->min_pid = track->pid;
4186 l->max_pid = track->pid;
174596a0
RR
4187 cpumask_clear(to_cpumask(l->cpus));
4188 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4189 nodes_clear(l->nodes);
4190 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4191 return 1;
4192}
4193
4194static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4195 struct page *page, enum track_item alloc,
a5dd5c11 4196 unsigned long *map)
88a420e4 4197{
a973e9dd 4198 void *addr = page_address(page);
88a420e4
CL
4199 void *p;
4200
39b26464 4201 bitmap_zero(map, page->objects);
5f80b13a 4202 get_map(s, page, map);
88a420e4 4203
224a88be 4204 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4205 if (!test_bit(slab_index(p, s, addr), map))
4206 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4207}
4208
4209static int list_locations(struct kmem_cache *s, char *buf,
4210 enum track_item alloc)
4211{
e374d483 4212 int len = 0;
88a420e4 4213 unsigned long i;
68dff6a9 4214 struct loc_track t = { 0, 0, NULL };
88a420e4 4215 int node;
bbd7d57b
ED
4216 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4217 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4218
bbd7d57b
ED
4219 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4220 GFP_TEMPORARY)) {
4221 kfree(map);
68dff6a9 4222 return sprintf(buf, "Out of memory\n");
bbd7d57b 4223 }
88a420e4
CL
4224 /* Push back cpu slabs */
4225 flush_all(s);
4226
f64dc58c 4227 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4228 struct kmem_cache_node *n = get_node(s, node);
4229 unsigned long flags;
4230 struct page *page;
4231
9e86943b 4232 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4233 continue;
4234
4235 spin_lock_irqsave(&n->list_lock, flags);
4236 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4237 process_slab(&t, s, page, alloc, map);
88a420e4 4238 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4239 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4240 spin_unlock_irqrestore(&n->list_lock, flags);
4241 }
4242
4243 for (i = 0; i < t.count; i++) {
45edfa58 4244 struct location *l = &t.loc[i];
88a420e4 4245
9c246247 4246 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4247 break;
e374d483 4248 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4249
4250 if (l->addr)
62c70bce 4251 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4252 else
e374d483 4253 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4254
4255 if (l->sum_time != l->min_time) {
e374d483 4256 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4257 l->min_time,
4258 (long)div_u64(l->sum_time, l->count),
4259 l->max_time);
45edfa58 4260 } else
e374d483 4261 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4262 l->min_time);
4263
4264 if (l->min_pid != l->max_pid)
e374d483 4265 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4266 l->min_pid, l->max_pid);
4267 else
e374d483 4268 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4269 l->min_pid);
4270
174596a0
RR
4271 if (num_online_cpus() > 1 &&
4272 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4273 len < PAGE_SIZE - 60) {
4274 len += sprintf(buf + len, " cpus=");
4275 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4276 to_cpumask(l->cpus));
45edfa58
CL
4277 }
4278
62bc62a8 4279 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4280 len < PAGE_SIZE - 60) {
4281 len += sprintf(buf + len, " nodes=");
4282 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4283 l->nodes);
4284 }
4285
e374d483 4286 len += sprintf(buf + len, "\n");
88a420e4
CL
4287 }
4288
4289 free_loc_track(&t);
bbd7d57b 4290 kfree(map);
88a420e4 4291 if (!t.count)
e374d483
HH
4292 len += sprintf(buf, "No data\n");
4293 return len;
88a420e4 4294}
ab4d5ed5 4295#endif
88a420e4 4296
a5a84755
CL
4297#ifdef SLUB_RESILIENCY_TEST
4298static void resiliency_test(void)
4299{
4300 u8 *p;
4301
4302 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4303
4304 printk(KERN_ERR "SLUB resiliency testing\n");
4305 printk(KERN_ERR "-----------------------\n");
4306 printk(KERN_ERR "A. Corruption after allocation\n");
4307
4308 p = kzalloc(16, GFP_KERNEL);
4309 p[16] = 0x12;
4310 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4311 " 0x12->0x%p\n\n", p + 16);
4312
4313 validate_slab_cache(kmalloc_caches[4]);
4314
4315 /* Hmmm... The next two are dangerous */
4316 p = kzalloc(32, GFP_KERNEL);
4317 p[32 + sizeof(void *)] = 0x34;
4318 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4319 " 0x34 -> -0x%p\n", p);
4320 printk(KERN_ERR
4321 "If allocated object is overwritten then not detectable\n\n");
4322
4323 validate_slab_cache(kmalloc_caches[5]);
4324 p = kzalloc(64, GFP_KERNEL);
4325 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4326 *p = 0x56;
4327 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4328 p);
4329 printk(KERN_ERR
4330 "If allocated object is overwritten then not detectable\n\n");
4331 validate_slab_cache(kmalloc_caches[6]);
4332
4333 printk(KERN_ERR "\nB. Corruption after free\n");
4334 p = kzalloc(128, GFP_KERNEL);
4335 kfree(p);
4336 *p = 0x78;
4337 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4338 validate_slab_cache(kmalloc_caches[7]);
4339
4340 p = kzalloc(256, GFP_KERNEL);
4341 kfree(p);
4342 p[50] = 0x9a;
4343 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4344 p);
4345 validate_slab_cache(kmalloc_caches[8]);
4346
4347 p = kzalloc(512, GFP_KERNEL);
4348 kfree(p);
4349 p[512] = 0xab;
4350 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4351 validate_slab_cache(kmalloc_caches[9]);
4352}
4353#else
4354#ifdef CONFIG_SYSFS
4355static void resiliency_test(void) {};
4356#endif
4357#endif
4358
ab4d5ed5 4359#ifdef CONFIG_SYSFS
81819f0f 4360enum slab_stat_type {
205ab99d
CL
4361 SL_ALL, /* All slabs */
4362 SL_PARTIAL, /* Only partially allocated slabs */
4363 SL_CPU, /* Only slabs used for cpu caches */
4364 SL_OBJECTS, /* Determine allocated objects not slabs */
4365 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4366};
4367
205ab99d 4368#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4369#define SO_PARTIAL (1 << SL_PARTIAL)
4370#define SO_CPU (1 << SL_CPU)
4371#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4372#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4373
62e5c4b4
CG
4374static ssize_t show_slab_objects(struct kmem_cache *s,
4375 char *buf, unsigned long flags)
81819f0f
CL
4376{
4377 unsigned long total = 0;
81819f0f
CL
4378 int node;
4379 int x;
4380 unsigned long *nodes;
4381 unsigned long *per_cpu;
4382
4383 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4384 if (!nodes)
4385 return -ENOMEM;
81819f0f
CL
4386 per_cpu = nodes + nr_node_ids;
4387
205ab99d
CL
4388 if (flags & SO_CPU) {
4389 int cpu;
81819f0f 4390
205ab99d 4391 for_each_possible_cpu(cpu) {
9dfc6e68 4392 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4393 int node;
49e22585 4394 struct page *page;
dfb4f096 4395
bc6697d8 4396 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4397 if (!page)
4398 continue;
205ab99d 4399
ec3ab083
CL
4400 node = page_to_nid(page);
4401 if (flags & SO_TOTAL)
4402 x = page->objects;
4403 else if (flags & SO_OBJECTS)
4404 x = page->inuse;
4405 else
4406 x = 1;
49e22585 4407
ec3ab083
CL
4408 total += x;
4409 nodes[node] += x;
4410
4411 page = ACCESS_ONCE(c->partial);
49e22585
CL
4412 if (page) {
4413 x = page->pobjects;
bc6697d8
ED
4414 total += x;
4415 nodes[node] += x;
49e22585 4416 }
ec3ab083 4417
bc6697d8 4418 per_cpu[node]++;
81819f0f
CL
4419 }
4420 }
4421
04d94879 4422 lock_memory_hotplug();
ab4d5ed5 4423#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4424 if (flags & SO_ALL) {
4425 for_each_node_state(node, N_NORMAL_MEMORY) {
4426 struct kmem_cache_node *n = get_node(s, node);
4427
4428 if (flags & SO_TOTAL)
4429 x = atomic_long_read(&n->total_objects);
4430 else if (flags & SO_OBJECTS)
4431 x = atomic_long_read(&n->total_objects) -
4432 count_partial(n, count_free);
81819f0f 4433
81819f0f 4434 else
205ab99d 4435 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4436 total += x;
4437 nodes[node] += x;
4438 }
4439
ab4d5ed5
CL
4440 } else
4441#endif
4442 if (flags & SO_PARTIAL) {
205ab99d
CL
4443 for_each_node_state(node, N_NORMAL_MEMORY) {
4444 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4445
205ab99d
CL
4446 if (flags & SO_TOTAL)
4447 x = count_partial(n, count_total);
4448 else if (flags & SO_OBJECTS)
4449 x = count_partial(n, count_inuse);
81819f0f 4450 else
205ab99d 4451 x = n->nr_partial;
81819f0f
CL
4452 total += x;
4453 nodes[node] += x;
4454 }
4455 }
81819f0f
CL
4456 x = sprintf(buf, "%lu", total);
4457#ifdef CONFIG_NUMA
f64dc58c 4458 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4459 if (nodes[node])
4460 x += sprintf(buf + x, " N%d=%lu",
4461 node, nodes[node]);
4462#endif
04d94879 4463 unlock_memory_hotplug();
81819f0f
CL
4464 kfree(nodes);
4465 return x + sprintf(buf + x, "\n");
4466}
4467
ab4d5ed5 4468#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4469static int any_slab_objects(struct kmem_cache *s)
4470{
4471 int node;
81819f0f 4472
dfb4f096 4473 for_each_online_node(node) {
81819f0f
CL
4474 struct kmem_cache_node *n = get_node(s, node);
4475
dfb4f096
CL
4476 if (!n)
4477 continue;
4478
4ea33e2d 4479 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4480 return 1;
4481 }
4482 return 0;
4483}
ab4d5ed5 4484#endif
81819f0f
CL
4485
4486#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4487#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4488
4489struct slab_attribute {
4490 struct attribute attr;
4491 ssize_t (*show)(struct kmem_cache *s, char *buf);
4492 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4493};
4494
4495#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4496 static struct slab_attribute _name##_attr = \
4497 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4498
4499#define SLAB_ATTR(_name) \
4500 static struct slab_attribute _name##_attr = \
ab067e99 4501 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4502
81819f0f
CL
4503static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4504{
4505 return sprintf(buf, "%d\n", s->size);
4506}
4507SLAB_ATTR_RO(slab_size);
4508
4509static ssize_t align_show(struct kmem_cache *s, char *buf)
4510{
4511 return sprintf(buf, "%d\n", s->align);
4512}
4513SLAB_ATTR_RO(align);
4514
4515static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4516{
3b0efdfa 4517 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4518}
4519SLAB_ATTR_RO(object_size);
4520
4521static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4522{
834f3d11 4523 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4524}
4525SLAB_ATTR_RO(objs_per_slab);
4526
06b285dc
CL
4527static ssize_t order_store(struct kmem_cache *s,
4528 const char *buf, size_t length)
4529{
0121c619
CL
4530 unsigned long order;
4531 int err;
4532
4533 err = strict_strtoul(buf, 10, &order);
4534 if (err)
4535 return err;
06b285dc
CL
4536
4537 if (order > slub_max_order || order < slub_min_order)
4538 return -EINVAL;
4539
4540 calculate_sizes(s, order);
4541 return length;
4542}
4543
81819f0f
CL
4544static ssize_t order_show(struct kmem_cache *s, char *buf)
4545{
834f3d11 4546 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4547}
06b285dc 4548SLAB_ATTR(order);
81819f0f 4549
73d342b1
DR
4550static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4551{
4552 return sprintf(buf, "%lu\n", s->min_partial);
4553}
4554
4555static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4556 size_t length)
4557{
4558 unsigned long min;
4559 int err;
4560
4561 err = strict_strtoul(buf, 10, &min);
4562 if (err)
4563 return err;
4564
c0bdb232 4565 set_min_partial(s, min);
73d342b1
DR
4566 return length;
4567}
4568SLAB_ATTR(min_partial);
4569
49e22585
CL
4570static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4571{
4572 return sprintf(buf, "%u\n", s->cpu_partial);
4573}
4574
4575static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4576 size_t length)
4577{
4578 unsigned long objects;
4579 int err;
4580
4581 err = strict_strtoul(buf, 10, &objects);
4582 if (err)
4583 return err;
74ee4ef1
DR
4584 if (objects && kmem_cache_debug(s))
4585 return -EINVAL;
49e22585
CL
4586
4587 s->cpu_partial = objects;
4588 flush_all(s);
4589 return length;
4590}
4591SLAB_ATTR(cpu_partial);
4592
81819f0f
CL
4593static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4594{
62c70bce
JP
4595 if (!s->ctor)
4596 return 0;
4597 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4598}
4599SLAB_ATTR_RO(ctor);
4600
81819f0f
CL
4601static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4602{
4603 return sprintf(buf, "%d\n", s->refcount - 1);
4604}
4605SLAB_ATTR_RO(aliases);
4606
81819f0f
CL
4607static ssize_t partial_show(struct kmem_cache *s, char *buf)
4608{
d9acf4b7 4609 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4610}
4611SLAB_ATTR_RO(partial);
4612
4613static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4614{
d9acf4b7 4615 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4616}
4617SLAB_ATTR_RO(cpu_slabs);
4618
4619static ssize_t objects_show(struct kmem_cache *s, char *buf)
4620{
205ab99d 4621 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4622}
4623SLAB_ATTR_RO(objects);
4624
205ab99d
CL
4625static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4626{
4627 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4628}
4629SLAB_ATTR_RO(objects_partial);
4630
49e22585
CL
4631static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4632{
4633 int objects = 0;
4634 int pages = 0;
4635 int cpu;
4636 int len;
4637
4638 for_each_online_cpu(cpu) {
4639 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4640
4641 if (page) {
4642 pages += page->pages;
4643 objects += page->pobjects;
4644 }
4645 }
4646
4647 len = sprintf(buf, "%d(%d)", objects, pages);
4648
4649#ifdef CONFIG_SMP
4650 for_each_online_cpu(cpu) {
4651 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4652
4653 if (page && len < PAGE_SIZE - 20)
4654 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4655 page->pobjects, page->pages);
4656 }
4657#endif
4658 return len + sprintf(buf + len, "\n");
4659}
4660SLAB_ATTR_RO(slabs_cpu_partial);
4661
a5a84755
CL
4662static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4663{
4664 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4665}
4666
4667static ssize_t reclaim_account_store(struct kmem_cache *s,
4668 const char *buf, size_t length)
4669{
4670 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4671 if (buf[0] == '1')
4672 s->flags |= SLAB_RECLAIM_ACCOUNT;
4673 return length;
4674}
4675SLAB_ATTR(reclaim_account);
4676
4677static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4678{
4679 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4680}
4681SLAB_ATTR_RO(hwcache_align);
4682
4683#ifdef CONFIG_ZONE_DMA
4684static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4685{
4686 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4687}
4688SLAB_ATTR_RO(cache_dma);
4689#endif
4690
4691static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4692{
4693 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4694}
4695SLAB_ATTR_RO(destroy_by_rcu);
4696
ab9a0f19
LJ
4697static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4698{
4699 return sprintf(buf, "%d\n", s->reserved);
4700}
4701SLAB_ATTR_RO(reserved);
4702
ab4d5ed5 4703#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4704static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4705{
4706 return show_slab_objects(s, buf, SO_ALL);
4707}
4708SLAB_ATTR_RO(slabs);
4709
205ab99d
CL
4710static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4711{
4712 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4713}
4714SLAB_ATTR_RO(total_objects);
4715
81819f0f
CL
4716static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4717{
4718 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4719}
4720
4721static ssize_t sanity_checks_store(struct kmem_cache *s,
4722 const char *buf, size_t length)
4723{
4724 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4725 if (buf[0] == '1') {
4726 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4727 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4728 }
81819f0f
CL
4729 return length;
4730}
4731SLAB_ATTR(sanity_checks);
4732
4733static ssize_t trace_show(struct kmem_cache *s, char *buf)
4734{
4735 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4736}
4737
4738static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4739 size_t length)
4740{
4741 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4742 if (buf[0] == '1') {
4743 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4744 s->flags |= SLAB_TRACE;
b789ef51 4745 }
81819f0f
CL
4746 return length;
4747}
4748SLAB_ATTR(trace);
4749
81819f0f
CL
4750static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4751{
4752 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4753}
4754
4755static ssize_t red_zone_store(struct kmem_cache *s,
4756 const char *buf, size_t length)
4757{
4758 if (any_slab_objects(s))
4759 return -EBUSY;
4760
4761 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4762 if (buf[0] == '1') {
4763 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4764 s->flags |= SLAB_RED_ZONE;
b789ef51 4765 }
06b285dc 4766 calculate_sizes(s, -1);
81819f0f
CL
4767 return length;
4768}
4769SLAB_ATTR(red_zone);
4770
4771static ssize_t poison_show(struct kmem_cache *s, char *buf)
4772{
4773 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4774}
4775
4776static ssize_t poison_store(struct kmem_cache *s,
4777 const char *buf, size_t length)
4778{
4779 if (any_slab_objects(s))
4780 return -EBUSY;
4781
4782 s->flags &= ~SLAB_POISON;
b789ef51
CL
4783 if (buf[0] == '1') {
4784 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4785 s->flags |= SLAB_POISON;
b789ef51 4786 }
06b285dc 4787 calculate_sizes(s, -1);
81819f0f
CL
4788 return length;
4789}
4790SLAB_ATTR(poison);
4791
4792static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4793{
4794 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4795}
4796
4797static ssize_t store_user_store(struct kmem_cache *s,
4798 const char *buf, size_t length)
4799{
4800 if (any_slab_objects(s))
4801 return -EBUSY;
4802
4803 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4804 if (buf[0] == '1') {
4805 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4806 s->flags |= SLAB_STORE_USER;
b789ef51 4807 }
06b285dc 4808 calculate_sizes(s, -1);
81819f0f
CL
4809 return length;
4810}
4811SLAB_ATTR(store_user);
4812
53e15af0
CL
4813static ssize_t validate_show(struct kmem_cache *s, char *buf)
4814{
4815 return 0;
4816}
4817
4818static ssize_t validate_store(struct kmem_cache *s,
4819 const char *buf, size_t length)
4820{
434e245d
CL
4821 int ret = -EINVAL;
4822
4823 if (buf[0] == '1') {
4824 ret = validate_slab_cache(s);
4825 if (ret >= 0)
4826 ret = length;
4827 }
4828 return ret;
53e15af0
CL
4829}
4830SLAB_ATTR(validate);
a5a84755
CL
4831
4832static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4833{
4834 if (!(s->flags & SLAB_STORE_USER))
4835 return -ENOSYS;
4836 return list_locations(s, buf, TRACK_ALLOC);
4837}
4838SLAB_ATTR_RO(alloc_calls);
4839
4840static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4841{
4842 if (!(s->flags & SLAB_STORE_USER))
4843 return -ENOSYS;
4844 return list_locations(s, buf, TRACK_FREE);
4845}
4846SLAB_ATTR_RO(free_calls);
4847#endif /* CONFIG_SLUB_DEBUG */
4848
4849#ifdef CONFIG_FAILSLAB
4850static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4851{
4852 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4853}
4854
4855static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4856 size_t length)
4857{
4858 s->flags &= ~SLAB_FAILSLAB;
4859 if (buf[0] == '1')
4860 s->flags |= SLAB_FAILSLAB;
4861 return length;
4862}
4863SLAB_ATTR(failslab);
ab4d5ed5 4864#endif
53e15af0 4865
2086d26a
CL
4866static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4867{
4868 return 0;
4869}
4870
4871static ssize_t shrink_store(struct kmem_cache *s,
4872 const char *buf, size_t length)
4873{
4874 if (buf[0] == '1') {
4875 int rc = kmem_cache_shrink(s);
4876
4877 if (rc)
4878 return rc;
4879 } else
4880 return -EINVAL;
4881 return length;
4882}
4883SLAB_ATTR(shrink);
4884
81819f0f 4885#ifdef CONFIG_NUMA
9824601e 4886static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4887{
9824601e 4888 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4889}
4890
9824601e 4891static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4892 const char *buf, size_t length)
4893{
0121c619
CL
4894 unsigned long ratio;
4895 int err;
4896
4897 err = strict_strtoul(buf, 10, &ratio);
4898 if (err)
4899 return err;
4900
e2cb96b7 4901 if (ratio <= 100)
0121c619 4902 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4903
81819f0f
CL
4904 return length;
4905}
9824601e 4906SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4907#endif
4908
8ff12cfc 4909#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4910static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4911{
4912 unsigned long sum = 0;
4913 int cpu;
4914 int len;
4915 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4916
4917 if (!data)
4918 return -ENOMEM;
4919
4920 for_each_online_cpu(cpu) {
9dfc6e68 4921 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4922
4923 data[cpu] = x;
4924 sum += x;
4925 }
4926
4927 len = sprintf(buf, "%lu", sum);
4928
50ef37b9 4929#ifdef CONFIG_SMP
8ff12cfc
CL
4930 for_each_online_cpu(cpu) {
4931 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4932 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4933 }
50ef37b9 4934#endif
8ff12cfc
CL
4935 kfree(data);
4936 return len + sprintf(buf + len, "\n");
4937}
4938
78eb00cc
DR
4939static void clear_stat(struct kmem_cache *s, enum stat_item si)
4940{
4941 int cpu;
4942
4943 for_each_online_cpu(cpu)
9dfc6e68 4944 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4945}
4946
8ff12cfc
CL
4947#define STAT_ATTR(si, text) \
4948static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4949{ \
4950 return show_stat(s, buf, si); \
4951} \
78eb00cc
DR
4952static ssize_t text##_store(struct kmem_cache *s, \
4953 const char *buf, size_t length) \
4954{ \
4955 if (buf[0] != '0') \
4956 return -EINVAL; \
4957 clear_stat(s, si); \
4958 return length; \
4959} \
4960SLAB_ATTR(text); \
8ff12cfc
CL
4961
4962STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4963STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4964STAT_ATTR(FREE_FASTPATH, free_fastpath);
4965STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4966STAT_ATTR(FREE_FROZEN, free_frozen);
4967STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4968STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4969STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4970STAT_ATTR(ALLOC_SLAB, alloc_slab);
4971STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4972STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4973STAT_ATTR(FREE_SLAB, free_slab);
4974STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4975STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4976STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4977STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4978STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4979STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4980STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4981STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4982STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4983STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4984STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4985STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4986STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4987STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4988#endif
4989
06428780 4990static struct attribute *slab_attrs[] = {
81819f0f
CL
4991 &slab_size_attr.attr,
4992 &object_size_attr.attr,
4993 &objs_per_slab_attr.attr,
4994 &order_attr.attr,
73d342b1 4995 &min_partial_attr.attr,
49e22585 4996 &cpu_partial_attr.attr,
81819f0f 4997 &objects_attr.attr,
205ab99d 4998 &objects_partial_attr.attr,
81819f0f
CL
4999 &partial_attr.attr,
5000 &cpu_slabs_attr.attr,
5001 &ctor_attr.attr,
81819f0f
CL
5002 &aliases_attr.attr,
5003 &align_attr.attr,
81819f0f
CL
5004 &hwcache_align_attr.attr,
5005 &reclaim_account_attr.attr,
5006 &destroy_by_rcu_attr.attr,
a5a84755 5007 &shrink_attr.attr,
ab9a0f19 5008 &reserved_attr.attr,
49e22585 5009 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5010#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5011 &total_objects_attr.attr,
5012 &slabs_attr.attr,
5013 &sanity_checks_attr.attr,
5014 &trace_attr.attr,
81819f0f
CL
5015 &red_zone_attr.attr,
5016 &poison_attr.attr,
5017 &store_user_attr.attr,
53e15af0 5018 &validate_attr.attr,
88a420e4
CL
5019 &alloc_calls_attr.attr,
5020 &free_calls_attr.attr,
ab4d5ed5 5021#endif
81819f0f
CL
5022#ifdef CONFIG_ZONE_DMA
5023 &cache_dma_attr.attr,
5024#endif
5025#ifdef CONFIG_NUMA
9824601e 5026 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5027#endif
5028#ifdef CONFIG_SLUB_STATS
5029 &alloc_fastpath_attr.attr,
5030 &alloc_slowpath_attr.attr,
5031 &free_fastpath_attr.attr,
5032 &free_slowpath_attr.attr,
5033 &free_frozen_attr.attr,
5034 &free_add_partial_attr.attr,
5035 &free_remove_partial_attr.attr,
5036 &alloc_from_partial_attr.attr,
5037 &alloc_slab_attr.attr,
5038 &alloc_refill_attr.attr,
e36a2652 5039 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5040 &free_slab_attr.attr,
5041 &cpuslab_flush_attr.attr,
5042 &deactivate_full_attr.attr,
5043 &deactivate_empty_attr.attr,
5044 &deactivate_to_head_attr.attr,
5045 &deactivate_to_tail_attr.attr,
5046 &deactivate_remote_frees_attr.attr,
03e404af 5047 &deactivate_bypass_attr.attr,
65c3376a 5048 &order_fallback_attr.attr,
b789ef51
CL
5049 &cmpxchg_double_fail_attr.attr,
5050 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5051 &cpu_partial_alloc_attr.attr,
5052 &cpu_partial_free_attr.attr,
8028dcea
AS
5053 &cpu_partial_node_attr.attr,
5054 &cpu_partial_drain_attr.attr,
81819f0f 5055#endif
4c13dd3b
DM
5056#ifdef CONFIG_FAILSLAB
5057 &failslab_attr.attr,
5058#endif
5059
81819f0f
CL
5060 NULL
5061};
5062
5063static struct attribute_group slab_attr_group = {
5064 .attrs = slab_attrs,
5065};
5066
5067static ssize_t slab_attr_show(struct kobject *kobj,
5068 struct attribute *attr,
5069 char *buf)
5070{
5071 struct slab_attribute *attribute;
5072 struct kmem_cache *s;
5073 int err;
5074
5075 attribute = to_slab_attr(attr);
5076 s = to_slab(kobj);
5077
5078 if (!attribute->show)
5079 return -EIO;
5080
5081 err = attribute->show(s, buf);
5082
5083 return err;
5084}
5085
5086static ssize_t slab_attr_store(struct kobject *kobj,
5087 struct attribute *attr,
5088 const char *buf, size_t len)
5089{
5090 struct slab_attribute *attribute;
5091 struct kmem_cache *s;
5092 int err;
5093
5094 attribute = to_slab_attr(attr);
5095 s = to_slab(kobj);
5096
5097 if (!attribute->store)
5098 return -EIO;
5099
5100 err = attribute->store(s, buf, len);
5101
5102 return err;
5103}
5104
52cf25d0 5105static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5106 .show = slab_attr_show,
5107 .store = slab_attr_store,
5108};
5109
5110static struct kobj_type slab_ktype = {
5111 .sysfs_ops = &slab_sysfs_ops,
5112};
5113
5114static int uevent_filter(struct kset *kset, struct kobject *kobj)
5115{
5116 struct kobj_type *ktype = get_ktype(kobj);
5117
5118 if (ktype == &slab_ktype)
5119 return 1;
5120 return 0;
5121}
5122
9cd43611 5123static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5124 .filter = uevent_filter,
5125};
5126
27c3a314 5127static struct kset *slab_kset;
81819f0f
CL
5128
5129#define ID_STR_LENGTH 64
5130
5131/* Create a unique string id for a slab cache:
6446faa2
CL
5132 *
5133 * Format :[flags-]size
81819f0f
CL
5134 */
5135static char *create_unique_id(struct kmem_cache *s)
5136{
5137 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5138 char *p = name;
5139
5140 BUG_ON(!name);
5141
5142 *p++ = ':';
5143 /*
5144 * First flags affecting slabcache operations. We will only
5145 * get here for aliasable slabs so we do not need to support
5146 * too many flags. The flags here must cover all flags that
5147 * are matched during merging to guarantee that the id is
5148 * unique.
5149 */
5150 if (s->flags & SLAB_CACHE_DMA)
5151 *p++ = 'd';
5152 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5153 *p++ = 'a';
5154 if (s->flags & SLAB_DEBUG_FREE)
5155 *p++ = 'F';
5a896d9e
VN
5156 if (!(s->flags & SLAB_NOTRACK))
5157 *p++ = 't';
81819f0f
CL
5158 if (p != name + 1)
5159 *p++ = '-';
5160 p += sprintf(p, "%07d", s->size);
2633d7a0
GC
5161
5162#ifdef CONFIG_MEMCG_KMEM
5163 if (!is_root_cache(s))
5164 p += sprintf(p, "-%08d", memcg_cache_id(s->memcg_params->memcg));
5165#endif
5166
81819f0f
CL
5167 BUG_ON(p > name + ID_STR_LENGTH - 1);
5168 return name;
5169}
5170
5171static int sysfs_slab_add(struct kmem_cache *s)
5172{
5173 int err;
5174 const char *name;
45530c44 5175 int unmergeable = slab_unmergeable(s);
81819f0f 5176
81819f0f
CL
5177 if (unmergeable) {
5178 /*
5179 * Slabcache can never be merged so we can use the name proper.
5180 * This is typically the case for debug situations. In that
5181 * case we can catch duplicate names easily.
5182 */
27c3a314 5183 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5184 name = s->name;
5185 } else {
5186 /*
5187 * Create a unique name for the slab as a target
5188 * for the symlinks.
5189 */
5190 name = create_unique_id(s);
5191 }
5192
27c3a314 5193 s->kobj.kset = slab_kset;
1eada11c
GKH
5194 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5195 if (err) {
5196 kobject_put(&s->kobj);
81819f0f 5197 return err;
1eada11c 5198 }
81819f0f
CL
5199
5200 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5201 if (err) {
5202 kobject_del(&s->kobj);
5203 kobject_put(&s->kobj);
81819f0f 5204 return err;
5788d8ad 5205 }
81819f0f
CL
5206 kobject_uevent(&s->kobj, KOBJ_ADD);
5207 if (!unmergeable) {
5208 /* Setup first alias */
5209 sysfs_slab_alias(s, s->name);
5210 kfree(name);
5211 }
5212 return 0;
5213}
5214
5215static void sysfs_slab_remove(struct kmem_cache *s)
5216{
97d06609 5217 if (slab_state < FULL)
2bce6485
CL
5218 /*
5219 * Sysfs has not been setup yet so no need to remove the
5220 * cache from sysfs.
5221 */
5222 return;
5223
81819f0f
CL
5224 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5225 kobject_del(&s->kobj);
151c602f 5226 kobject_put(&s->kobj);
81819f0f
CL
5227}
5228
5229/*
5230 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5231 * available lest we lose that information.
81819f0f
CL
5232 */
5233struct saved_alias {
5234 struct kmem_cache *s;
5235 const char *name;
5236 struct saved_alias *next;
5237};
5238
5af328a5 5239static struct saved_alias *alias_list;
81819f0f
CL
5240
5241static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5242{
5243 struct saved_alias *al;
5244
97d06609 5245 if (slab_state == FULL) {
81819f0f
CL
5246 /*
5247 * If we have a leftover link then remove it.
5248 */
27c3a314
GKH
5249 sysfs_remove_link(&slab_kset->kobj, name);
5250 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5251 }
5252
5253 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5254 if (!al)
5255 return -ENOMEM;
5256
5257 al->s = s;
5258 al->name = name;
5259 al->next = alias_list;
5260 alias_list = al;
5261 return 0;
5262}
5263
5264static int __init slab_sysfs_init(void)
5265{
5b95a4ac 5266 struct kmem_cache *s;
81819f0f
CL
5267 int err;
5268
18004c5d 5269 mutex_lock(&slab_mutex);
2bce6485 5270
0ff21e46 5271 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5272 if (!slab_kset) {
18004c5d 5273 mutex_unlock(&slab_mutex);
81819f0f
CL
5274 printk(KERN_ERR "Cannot register slab subsystem.\n");
5275 return -ENOSYS;
5276 }
5277
97d06609 5278 slab_state = FULL;
26a7bd03 5279
5b95a4ac 5280 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5281 err = sysfs_slab_add(s);
5d540fb7
CL
5282 if (err)
5283 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5284 " to sysfs\n", s->name);
26a7bd03 5285 }
81819f0f
CL
5286
5287 while (alias_list) {
5288 struct saved_alias *al = alias_list;
5289
5290 alias_list = alias_list->next;
5291 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5292 if (err)
5293 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5294 " %s to sysfs\n", al->name);
81819f0f
CL
5295 kfree(al);
5296 }
5297
18004c5d 5298 mutex_unlock(&slab_mutex);
81819f0f
CL
5299 resiliency_test();
5300 return 0;
5301}
5302
5303__initcall(slab_sysfs_init);
ab4d5ed5 5304#endif /* CONFIG_SYSFS */
57ed3eda
PE
5305
5306/*
5307 * The /proc/slabinfo ABI
5308 */
158a9624 5309#ifdef CONFIG_SLABINFO
0d7561c6 5310void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda
PE
5311{
5312 unsigned long nr_partials = 0;
5313 unsigned long nr_slabs = 0;
205ab99d
CL
5314 unsigned long nr_objs = 0;
5315 unsigned long nr_free = 0;
57ed3eda
PE
5316 int node;
5317
57ed3eda
PE
5318 for_each_online_node(node) {
5319 struct kmem_cache_node *n = get_node(s, node);
5320
5321 if (!n)
5322 continue;
5323
5324 nr_partials += n->nr_partial;
5325 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5326 nr_objs += atomic_long_read(&n->total_objects);
5327 nr_free += count_partial(n, count_free);
57ed3eda
PE
5328 }
5329
0d7561c6
GC
5330 sinfo->active_objs = nr_objs - nr_free;
5331 sinfo->num_objs = nr_objs;
5332 sinfo->active_slabs = nr_slabs;
5333 sinfo->num_slabs = nr_slabs;
5334 sinfo->objects_per_slab = oo_objects(s->oo);
5335 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5336}
5337
0d7561c6 5338void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5339{
7b3c3a50
AD
5340}
5341
b7454ad3
GC
5342ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5343 size_t count, loff_t *ppos)
7b3c3a50 5344{
b7454ad3 5345 return -EIO;
7b3c3a50 5346}
158a9624 5347#endif /* CONFIG_SLABINFO */