mm: clean up and kernelify shrinker registration
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
672bba3a
CL
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 71 * freed then the slab will show up again on the partial lists.
672bba3a
CL
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
81819f0f
CL
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
4b6f0750
CL
81 * PageActive The slab is frozen and exempt from list processing.
82 * This means that the slab is dedicated to a purpose
83 * such as satisfying allocations for a specific
84 * processor. Objects may be freed in the slab while
85 * it is frozen but slab_free will then skip the usual
86 * list operations. It is up to the processor holding
87 * the slab to integrate the slab into the slab lists
88 * when the slab is no longer needed.
89 *
90 * One use of this flag is to mark slabs that are
91 * used for allocations. Then such a slab becomes a cpu
92 * slab. The cpu slab may be equipped with an additional
894b8788
CL
93 * lockless_freelist that allows lockless access to
94 * free objects in addition to the regular freelist
95 * that requires the slab lock.
81819f0f
CL
96 *
97 * PageError Slab requires special handling due to debug
98 * options set. This moves slab handling out of
894b8788 99 * the fast path and disables lockless freelists.
81819f0f
CL
100 */
101
5577bd8a
CL
102#define FROZEN (1 << PG_active)
103
104#ifdef CONFIG_SLUB_DEBUG
105#define SLABDEBUG (1 << PG_error)
106#else
107#define SLABDEBUG 0
108#endif
109
4b6f0750
CL
110static inline int SlabFrozen(struct page *page)
111{
5577bd8a 112 return page->flags & FROZEN;
4b6f0750
CL
113}
114
115static inline void SetSlabFrozen(struct page *page)
116{
5577bd8a 117 page->flags |= FROZEN;
4b6f0750
CL
118}
119
120static inline void ClearSlabFrozen(struct page *page)
121{
5577bd8a 122 page->flags &= ~FROZEN;
4b6f0750
CL
123}
124
35e5d7ee
CL
125static inline int SlabDebug(struct page *page)
126{
5577bd8a 127 return page->flags & SLABDEBUG;
35e5d7ee
CL
128}
129
130static inline void SetSlabDebug(struct page *page)
131{
5577bd8a 132 page->flags |= SLABDEBUG;
35e5d7ee
CL
133}
134
135static inline void ClearSlabDebug(struct page *page)
136{
5577bd8a 137 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
138}
139
81819f0f
CL
140/*
141 * Issues still to be resolved:
142 *
143 * - The per cpu array is updated for each new slab and and is a remote
144 * cacheline for most nodes. This could become a bouncing cacheline given
672bba3a
CL
145 * enough frequent updates. There are 16 pointers in a cacheline, so at
146 * max 16 cpus could compete for the cacheline which may be okay.
81819f0f
CL
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
81819f0f
CL
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
156#if PAGE_SHIFT <= 12
157
158/*
159 * Small page size. Make sure that we do not fragment memory
160 */
161#define DEFAULT_MAX_ORDER 1
162#define DEFAULT_MIN_OBJECTS 4
163
164#else
165
166/*
167 * Large page machines are customarily able to handle larger
168 * page orders.
169 */
170#define DEFAULT_MAX_ORDER 2
171#define DEFAULT_MIN_OBJECTS 8
172
173#endif
174
2086d26a
CL
175/*
176 * Mininum number of partial slabs. These will be left on the partial
177 * lists even if they are empty. kmem_cache_shrink may reclaim them.
178 */
e95eed57
CL
179#define MIN_PARTIAL 2
180
2086d26a
CL
181/*
182 * Maximum number of desirable partial slabs.
183 * The existence of more partial slabs makes kmem_cache_shrink
184 * sort the partial list by the number of objects in the.
185 */
186#define MAX_PARTIAL 10
187
81819f0f
CL
188#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
189 SLAB_POISON | SLAB_STORE_USER)
672bba3a 190
81819f0f
CL
191/*
192 * Set of flags that will prevent slab merging
193 */
194#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
195 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
196
197#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
198 SLAB_CACHE_DMA)
199
200#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 201#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
202#endif
203
204#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 205#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
206#endif
207
208/* Internal SLUB flags */
209#define __OBJECT_POISON 0x80000000 /* Poison object */
210
65c02d4c
CL
211/* Not all arches define cache_line_size */
212#ifndef cache_line_size
213#define cache_line_size() L1_CACHE_BYTES
214#endif
215
81819f0f
CL
216static int kmem_size = sizeof(struct kmem_cache);
217
218#ifdef CONFIG_SMP
219static struct notifier_block slab_notifier;
220#endif
221
222static enum {
223 DOWN, /* No slab functionality available */
224 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 225 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
226 SYSFS /* Sysfs up */
227} slab_state = DOWN;
228
229/* A list of all slab caches on the system */
230static DECLARE_RWSEM(slub_lock);
231LIST_HEAD(slab_caches);
232
02cbc874
CL
233/*
234 * Tracking user of a slab.
235 */
236struct track {
237 void *addr; /* Called from address */
238 int cpu; /* Was running on cpu */
239 int pid; /* Pid context */
240 unsigned long when; /* When did the operation occur */
241};
242
243enum track_item { TRACK_ALLOC, TRACK_FREE };
244
41ecc55b 245#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
246static int sysfs_slab_add(struct kmem_cache *);
247static int sysfs_slab_alias(struct kmem_cache *, const char *);
248static void sysfs_slab_remove(struct kmem_cache *);
249#else
250static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
252static void sysfs_slab_remove(struct kmem_cache *s) {}
253#endif
254
255/********************************************************************
256 * Core slab cache functions
257 *******************************************************************/
258
259int slab_is_available(void)
260{
261 return slab_state >= UP;
262}
263
264static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
265{
266#ifdef CONFIG_NUMA
267 return s->node[node];
268#else
269 return &s->local_node;
270#endif
271}
272
02cbc874
CL
273static inline int check_valid_pointer(struct kmem_cache *s,
274 struct page *page, const void *object)
275{
276 void *base;
277
278 if (!object)
279 return 1;
280
281 base = page_address(page);
282 if (object < base || object >= base + s->objects * s->size ||
283 (object - base) % s->size) {
284 return 0;
285 }
286
287 return 1;
288}
289
7656c72b
CL
290/*
291 * Slow version of get and set free pointer.
292 *
293 * This version requires touching the cache lines of kmem_cache which
294 * we avoid to do in the fast alloc free paths. There we obtain the offset
295 * from the page struct.
296 */
297static inline void *get_freepointer(struct kmem_cache *s, void *object)
298{
299 return *(void **)(object + s->offset);
300}
301
302static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
303{
304 *(void **)(object + s->offset) = fp;
305}
306
307/* Loop over all objects in a slab */
308#define for_each_object(__p, __s, __addr) \
309 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
310 __p += (__s)->size)
311
312/* Scan freelist */
313#define for_each_free_object(__p, __s, __free) \
314 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
315
316/* Determine object index from a given position */
317static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
318{
319 return (p - addr) / s->size;
320}
321
41ecc55b
CL
322#ifdef CONFIG_SLUB_DEBUG
323/*
324 * Debug settings:
325 */
f0630fff
CL
326#ifdef CONFIG_SLUB_DEBUG_ON
327static int slub_debug = DEBUG_DEFAULT_FLAGS;
328#else
41ecc55b 329static int slub_debug;
f0630fff 330#endif
41ecc55b
CL
331
332static char *slub_debug_slabs;
333
81819f0f
CL
334/*
335 * Object debugging
336 */
337static void print_section(char *text, u8 *addr, unsigned int length)
338{
339 int i, offset;
340 int newline = 1;
341 char ascii[17];
342
343 ascii[16] = 0;
344
345 for (i = 0; i < length; i++) {
346 if (newline) {
347 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
348 newline = 0;
349 }
350 printk(" %02x", addr[i]);
351 offset = i % 16;
352 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
353 if (offset == 15) {
354 printk(" %s\n",ascii);
355 newline = 1;
356 }
357 }
358 if (!newline) {
359 i %= 16;
360 while (i < 16) {
361 printk(" ");
362 ascii[i] = ' ';
363 i++;
364 }
365 printk(" %s\n", ascii);
366 }
367}
368
81819f0f
CL
369static struct track *get_track(struct kmem_cache *s, void *object,
370 enum track_item alloc)
371{
372 struct track *p;
373
374 if (s->offset)
375 p = object + s->offset + sizeof(void *);
376 else
377 p = object + s->inuse;
378
379 return p + alloc;
380}
381
382static void set_track(struct kmem_cache *s, void *object,
383 enum track_item alloc, void *addr)
384{
385 struct track *p;
386
387 if (s->offset)
388 p = object + s->offset + sizeof(void *);
389 else
390 p = object + s->inuse;
391
392 p += alloc;
393 if (addr) {
394 p->addr = addr;
395 p->cpu = smp_processor_id();
396 p->pid = current ? current->pid : -1;
397 p->when = jiffies;
398 } else
399 memset(p, 0, sizeof(struct track));
400}
401
81819f0f
CL
402static void init_tracking(struct kmem_cache *s, void *object)
403{
404 if (s->flags & SLAB_STORE_USER) {
405 set_track(s, object, TRACK_FREE, NULL);
406 set_track(s, object, TRACK_ALLOC, NULL);
407 }
408}
409
410static void print_track(const char *s, struct track *t)
411{
412 if (!t->addr)
413 return;
414
415 printk(KERN_ERR "%s: ", s);
416 __print_symbol("%s", (unsigned long)t->addr);
417 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
418}
419
420static void print_trailer(struct kmem_cache *s, u8 *p)
421{
422 unsigned int off; /* Offset of last byte */
423
424 if (s->flags & SLAB_RED_ZONE)
425 print_section("Redzone", p + s->objsize,
426 s->inuse - s->objsize);
427
428 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
429 p + s->offset,
430 get_freepointer(s, p));
431
432 if (s->offset)
433 off = s->offset + sizeof(void *);
434 else
435 off = s->inuse;
436
437 if (s->flags & SLAB_STORE_USER) {
438 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
439 print_track("Last free ", get_track(s, p, TRACK_FREE));
440 off += 2 * sizeof(struct track);
441 }
442
443 if (off != s->size)
444 /* Beginning of the filler is the free pointer */
445 print_section("Filler", p + off, s->size - off);
446}
447
448static void object_err(struct kmem_cache *s, struct page *page,
449 u8 *object, char *reason)
450{
451 u8 *addr = page_address(page);
452
453 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
454 s->name, reason, object, page);
455 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
456 object - addr, page->flags, page->inuse, page->freelist);
457 if (object > addr + 16)
458 print_section("Bytes b4", object - 16, 16);
459 print_section("Object", object, min(s->objsize, 128));
460 print_trailer(s, object);
461 dump_stack();
462}
463
464static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
465{
466 va_list args;
467 char buf[100];
468
469 va_start(args, reason);
470 vsnprintf(buf, sizeof(buf), reason, args);
471 va_end(args);
472 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
473 page);
474 dump_stack();
475}
476
477static void init_object(struct kmem_cache *s, void *object, int active)
478{
479 u8 *p = object;
480
481 if (s->flags & __OBJECT_POISON) {
482 memset(p, POISON_FREE, s->objsize - 1);
483 p[s->objsize -1] = POISON_END;
484 }
485
486 if (s->flags & SLAB_RED_ZONE)
487 memset(p + s->objsize,
488 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
489 s->inuse - s->objsize);
490}
491
492static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
493{
494 while (bytes) {
495 if (*start != (u8)value)
496 return 0;
497 start++;
498 bytes--;
499 }
500 return 1;
501}
502
81819f0f
CL
503/*
504 * Object layout:
505 *
506 * object address
507 * Bytes of the object to be managed.
508 * If the freepointer may overlay the object then the free
509 * pointer is the first word of the object.
672bba3a 510 *
81819f0f
CL
511 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
512 * 0xa5 (POISON_END)
513 *
514 * object + s->objsize
515 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
516 * Padding is extended by another word if Redzoning is enabled and
517 * objsize == inuse.
518 *
81819f0f
CL
519 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
520 * 0xcc (RED_ACTIVE) for objects in use.
521 *
522 * object + s->inuse
672bba3a
CL
523 * Meta data starts here.
524 *
81819f0f
CL
525 * A. Free pointer (if we cannot overwrite object on free)
526 * B. Tracking data for SLAB_STORE_USER
672bba3a
CL
527 * C. Padding to reach required alignment boundary or at mininum
528 * one word if debuggin is on to be able to detect writes
529 * before the word boundary.
530 *
531 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
532 *
533 * object + s->size
672bba3a 534 * Nothing is used beyond s->size.
81819f0f 535 *
672bba3a
CL
536 * If slabcaches are merged then the objsize and inuse boundaries are mostly
537 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
538 * may be used with merged slabcaches.
539 */
540
541static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
542 void *from, void *to)
543{
70d71228 544 printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
81819f0f
CL
545 s->name, message, data, from, to - 1);
546 memset(from, data, to - from);
547}
548
549static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
550{
551 unsigned long off = s->inuse; /* The end of info */
552
553 if (s->offset)
554 /* Freepointer is placed after the object. */
555 off += sizeof(void *);
556
557 if (s->flags & SLAB_STORE_USER)
558 /* We also have user information there */
559 off += 2 * sizeof(struct track);
560
561 if (s->size == off)
562 return 1;
563
564 if (check_bytes(p + off, POISON_INUSE, s->size - off))
565 return 1;
566
567 object_err(s, page, p, "Object padding check fails");
568
569 /*
570 * Restore padding
571 */
572 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
573 return 0;
574}
575
576static int slab_pad_check(struct kmem_cache *s, struct page *page)
577{
578 u8 *p;
579 int length, remainder;
580
581 if (!(s->flags & SLAB_POISON))
582 return 1;
583
584 p = page_address(page);
585 length = s->objects * s->size;
586 remainder = (PAGE_SIZE << s->order) - length;
587 if (!remainder)
588 return 1;
589
590 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
70d71228 591 slab_err(s, page, "Padding check failed");
81819f0f
CL
592 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
593 p + length + remainder);
594 return 0;
595 }
596 return 1;
597}
598
599static int check_object(struct kmem_cache *s, struct page *page,
600 void *object, int active)
601{
602 u8 *p = object;
603 u8 *endobject = object + s->objsize;
604
605 if (s->flags & SLAB_RED_ZONE) {
606 unsigned int red =
607 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
608
609 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
610 object_err(s, page, object,
611 active ? "Redzone Active" : "Redzone Inactive");
612 restore_bytes(s, "redzone", red,
613 endobject, object + s->inuse);
614 return 0;
615 }
616 } else {
617 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
618 !check_bytes(endobject, POISON_INUSE,
619 s->inuse - s->objsize)) {
620 object_err(s, page, p, "Alignment padding check fails");
621 /*
622 * Fix it so that there will not be another report.
623 *
624 * Hmmm... We may be corrupting an object that now expects
625 * to be longer than allowed.
626 */
627 restore_bytes(s, "alignment padding", POISON_INUSE,
628 endobject, object + s->inuse);
629 }
630 }
631
632 if (s->flags & SLAB_POISON) {
633 if (!active && (s->flags & __OBJECT_POISON) &&
634 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
635 p[s->objsize - 1] != POISON_END)) {
636
637 object_err(s, page, p, "Poison check failed");
638 restore_bytes(s, "Poison", POISON_FREE,
639 p, p + s->objsize -1);
640 restore_bytes(s, "Poison", POISON_END,
641 p + s->objsize - 1, p + s->objsize);
642 return 0;
643 }
644 /*
645 * check_pad_bytes cleans up on its own.
646 */
647 check_pad_bytes(s, page, p);
648 }
649
650 if (!s->offset && active)
651 /*
652 * Object and freepointer overlap. Cannot check
653 * freepointer while object is allocated.
654 */
655 return 1;
656
657 /* Check free pointer validity */
658 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
659 object_err(s, page, p, "Freepointer corrupt");
660 /*
661 * No choice but to zap it and thus loose the remainder
662 * of the free objects in this slab. May cause
672bba3a 663 * another error because the object count is now wrong.
81819f0f
CL
664 */
665 set_freepointer(s, p, NULL);
666 return 0;
667 }
668 return 1;
669}
670
671static int check_slab(struct kmem_cache *s, struct page *page)
672{
673 VM_BUG_ON(!irqs_disabled());
674
675 if (!PageSlab(page)) {
70d71228
CL
676 slab_err(s, page, "Not a valid slab page flags=%lx "
677 "mapping=0x%p count=%d", page->flags, page->mapping,
81819f0f
CL
678 page_count(page));
679 return 0;
680 }
681 if (page->offset * sizeof(void *) != s->offset) {
70d71228
CL
682 slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
683 "mapping=0x%p count=%d",
81819f0f 684 (unsigned long)(page->offset * sizeof(void *)),
81819f0f
CL
685 page->flags,
686 page->mapping,
687 page_count(page));
81819f0f
CL
688 return 0;
689 }
690 if (page->inuse > s->objects) {
70d71228
CL
691 slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
692 "mapping=0x%p count=%d",
693 s->name, page->inuse, s->objects, page->flags,
81819f0f 694 page->mapping, page_count(page));
81819f0f
CL
695 return 0;
696 }
697 /* Slab_pad_check fixes things up after itself */
698 slab_pad_check(s, page);
699 return 1;
700}
701
702/*
672bba3a
CL
703 * Determine if a certain object on a page is on the freelist. Must hold the
704 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
705 */
706static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
707{
708 int nr = 0;
709 void *fp = page->freelist;
710 void *object = NULL;
711
712 while (fp && nr <= s->objects) {
713 if (fp == search)
714 return 1;
715 if (!check_valid_pointer(s, page, fp)) {
716 if (object) {
717 object_err(s, page, object,
718 "Freechain corrupt");
719 set_freepointer(s, object, NULL);
720 break;
721 } else {
70d71228
CL
722 slab_err(s, page, "Freepointer 0x%p corrupt",
723 fp);
81819f0f
CL
724 page->freelist = NULL;
725 page->inuse = s->objects;
70d71228
CL
726 printk(KERN_ERR "@@@ SLUB %s: Freelist "
727 "cleared. Slab 0x%p\n",
728 s->name, page);
81819f0f
CL
729 return 0;
730 }
731 break;
732 }
733 object = fp;
734 fp = get_freepointer(s, object);
735 nr++;
736 }
737
738 if (page->inuse != s->objects - nr) {
70d71228
CL
739 slab_err(s, page, "Wrong object count. Counter is %d but "
740 "counted were %d", s, page, page->inuse,
741 s->objects - nr);
81819f0f 742 page->inuse = s->objects - nr;
70d71228
CL
743 printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
744 "Slab @0x%p\n", s->name, page);
81819f0f
CL
745 }
746 return search == NULL;
747}
748
3ec09742
CL
749static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
750{
751 if (s->flags & SLAB_TRACE) {
752 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
753 s->name,
754 alloc ? "alloc" : "free",
755 object, page->inuse,
756 page->freelist);
757
758 if (!alloc)
759 print_section("Object", (void *)object, s->objsize);
760
761 dump_stack();
762 }
763}
764
643b1138 765/*
672bba3a 766 * Tracking of fully allocated slabs for debugging purposes.
643b1138 767 */
e95eed57 768static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 769{
643b1138
CL
770 spin_lock(&n->list_lock);
771 list_add(&page->lru, &n->full);
772 spin_unlock(&n->list_lock);
773}
774
775static void remove_full(struct kmem_cache *s, struct page *page)
776{
777 struct kmem_cache_node *n;
778
779 if (!(s->flags & SLAB_STORE_USER))
780 return;
781
782 n = get_node(s, page_to_nid(page));
783
784 spin_lock(&n->list_lock);
785 list_del(&page->lru);
786 spin_unlock(&n->list_lock);
787}
788
3ec09742
CL
789static void setup_object_debug(struct kmem_cache *s, struct page *page,
790 void *object)
791{
792 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
793 return;
794
795 init_object(s, object, 0);
796 init_tracking(s, object);
797}
798
799static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
800 void *object, void *addr)
81819f0f
CL
801{
802 if (!check_slab(s, page))
803 goto bad;
804
805 if (object && !on_freelist(s, page, object)) {
70d71228
CL
806 slab_err(s, page, "Object 0x%p already allocated", object);
807 goto bad;
81819f0f
CL
808 }
809
810 if (!check_valid_pointer(s, page, object)) {
811 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 812 goto bad;
81819f0f
CL
813 }
814
3ec09742 815 if (object && !check_object(s, page, object, 0))
81819f0f 816 goto bad;
81819f0f 817
3ec09742
CL
818 /* Success perform special debug activities for allocs */
819 if (s->flags & SLAB_STORE_USER)
820 set_track(s, object, TRACK_ALLOC, addr);
821 trace(s, page, object, 1);
822 init_object(s, object, 1);
81819f0f 823 return 1;
3ec09742 824
81819f0f
CL
825bad:
826 if (PageSlab(page)) {
827 /*
828 * If this is a slab page then lets do the best we can
829 * to avoid issues in the future. Marking all objects
672bba3a 830 * as used avoids touching the remaining objects.
81819f0f
CL
831 */
832 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
833 s->name, page);
834 page->inuse = s->objects;
835 page->freelist = NULL;
836 /* Fix up fields that may be corrupted */
837 page->offset = s->offset / sizeof(void *);
838 }
839 return 0;
840}
841
3ec09742
CL
842static int free_debug_processing(struct kmem_cache *s, struct page *page,
843 void *object, void *addr)
81819f0f
CL
844{
845 if (!check_slab(s, page))
846 goto fail;
847
848 if (!check_valid_pointer(s, page, object)) {
70d71228 849 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
850 goto fail;
851 }
852
853 if (on_freelist(s, page, object)) {
70d71228 854 slab_err(s, page, "Object 0x%p already free", object);
81819f0f
CL
855 goto fail;
856 }
857
858 if (!check_object(s, page, object, 1))
859 return 0;
860
861 if (unlikely(s != page->slab)) {
862 if (!PageSlab(page))
70d71228
CL
863 slab_err(s, page, "Attempt to free object(0x%p) "
864 "outside of slab", object);
81819f0f 865 else
70d71228 866 if (!page->slab) {
81819f0f 867 printk(KERN_ERR
70d71228 868 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 869 object);
70d71228
CL
870 dump_stack();
871 }
81819f0f 872 else
70d71228
CL
873 slab_err(s, page, "object at 0x%p belongs "
874 "to slab %s", object, page->slab->name);
81819f0f
CL
875 goto fail;
876 }
3ec09742
CL
877
878 /* Special debug activities for freeing objects */
879 if (!SlabFrozen(page) && !page->freelist)
880 remove_full(s, page);
881 if (s->flags & SLAB_STORE_USER)
882 set_track(s, object, TRACK_FREE, addr);
883 trace(s, page, object, 0);
884 init_object(s, object, 0);
81819f0f 885 return 1;
3ec09742 886
81819f0f 887fail:
81819f0f
CL
888 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
889 s->name, page, object);
890 return 0;
891}
892
41ecc55b
CL
893static int __init setup_slub_debug(char *str)
894{
f0630fff
CL
895 slub_debug = DEBUG_DEFAULT_FLAGS;
896 if (*str++ != '=' || !*str)
897 /*
898 * No options specified. Switch on full debugging.
899 */
900 goto out;
901
902 if (*str == ',')
903 /*
904 * No options but restriction on slabs. This means full
905 * debugging for slabs matching a pattern.
906 */
907 goto check_slabs;
908
909 slub_debug = 0;
910 if (*str == '-')
911 /*
912 * Switch off all debugging measures.
913 */
914 goto out;
915
916 /*
917 * Determine which debug features should be switched on
918 */
919 for ( ;*str && *str != ','; str++) {
920 switch (tolower(*str)) {
921 case 'f':
922 slub_debug |= SLAB_DEBUG_FREE;
923 break;
924 case 'z':
925 slub_debug |= SLAB_RED_ZONE;
926 break;
927 case 'p':
928 slub_debug |= SLAB_POISON;
929 break;
930 case 'u':
931 slub_debug |= SLAB_STORE_USER;
932 break;
933 case 't':
934 slub_debug |= SLAB_TRACE;
935 break;
936 default:
937 printk(KERN_ERR "slub_debug option '%c' "
938 "unknown. skipped\n",*str);
939 }
41ecc55b
CL
940 }
941
f0630fff 942check_slabs:
41ecc55b
CL
943 if (*str == ',')
944 slub_debug_slabs = str + 1;
f0630fff 945out:
41ecc55b
CL
946 return 1;
947}
948
949__setup("slub_debug", setup_slub_debug);
950
951static void kmem_cache_open_debug_check(struct kmem_cache *s)
952{
953 /*
954 * The page->offset field is only 16 bit wide. This is an offset
955 * in units of words from the beginning of an object. If the slab
956 * size is bigger then we cannot move the free pointer behind the
957 * object anymore.
958 *
959 * On 32 bit platforms the limit is 256k. On 64bit platforms
960 * the limit is 512k.
961 *
c59def9f 962 * Debugging or ctor may create a need to move the free
41ecc55b
CL
963 * pointer. Fail if this happens.
964 */
33e9e241 965 if (s->objsize >= 65535 * sizeof(void *)) {
41ecc55b
CL
966 BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
967 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
c59def9f 968 BUG_ON(s->ctor);
41ecc55b
CL
969 }
970 else
971 /*
972 * Enable debugging if selected on the kernel commandline.
973 */
974 if (slub_debug && (!slub_debug_slabs ||
975 strncmp(slub_debug_slabs, s->name,
976 strlen(slub_debug_slabs)) == 0))
977 s->flags |= slub_debug;
978}
979#else
3ec09742
CL
980static inline void setup_object_debug(struct kmem_cache *s,
981 struct page *page, void *object) {}
41ecc55b 982
3ec09742
CL
983static inline int alloc_debug_processing(struct kmem_cache *s,
984 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 985
3ec09742
CL
986static inline int free_debug_processing(struct kmem_cache *s,
987 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 988
41ecc55b
CL
989static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
990 { return 1; }
991static inline int check_object(struct kmem_cache *s, struct page *page,
992 void *object, int active) { return 1; }
3ec09742 993static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
41ecc55b
CL
994static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
995#define slub_debug 0
996#endif
81819f0f
CL
997/*
998 * Slab allocation and freeing
999 */
1000static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1001{
1002 struct page * page;
1003 int pages = 1 << s->order;
1004
1005 if (s->order)
1006 flags |= __GFP_COMP;
1007
1008 if (s->flags & SLAB_CACHE_DMA)
1009 flags |= SLUB_DMA;
1010
1011 if (node == -1)
1012 page = alloc_pages(flags, s->order);
1013 else
1014 page = alloc_pages_node(node, flags, s->order);
1015
1016 if (!page)
1017 return NULL;
1018
1019 mod_zone_page_state(page_zone(page),
1020 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1021 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1022 pages);
1023
1024 return page;
1025}
1026
1027static void setup_object(struct kmem_cache *s, struct page *page,
1028 void *object)
1029{
3ec09742 1030 setup_object_debug(s, page, object);
4f104934 1031 if (unlikely(s->ctor))
a35afb83 1032 s->ctor(object, s, 0);
81819f0f
CL
1033}
1034
1035static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1036{
1037 struct page *page;
1038 struct kmem_cache_node *n;
1039 void *start;
1040 void *end;
1041 void *last;
1042 void *p;
1043
81819f0f
CL
1044 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
1045
1046 if (flags & __GFP_WAIT)
1047 local_irq_enable();
1048
1049 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
1050 if (!page)
1051 goto out;
1052
1053 n = get_node(s, page_to_nid(page));
1054 if (n)
1055 atomic_long_inc(&n->nr_slabs);
1056 page->offset = s->offset / sizeof(void *);
1057 page->slab = s;
1058 page->flags |= 1 << PG_slab;
1059 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1060 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1061 SetSlabDebug(page);
81819f0f
CL
1062
1063 start = page_address(page);
1064 end = start + s->objects * s->size;
1065
1066 if (unlikely(s->flags & SLAB_POISON))
1067 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1068
1069 last = start;
7656c72b 1070 for_each_object(p, s, start) {
81819f0f
CL
1071 setup_object(s, page, last);
1072 set_freepointer(s, last, p);
1073 last = p;
1074 }
1075 setup_object(s, page, last);
1076 set_freepointer(s, last, NULL);
1077
1078 page->freelist = start;
894b8788 1079 page->lockless_freelist = NULL;
81819f0f
CL
1080 page->inuse = 0;
1081out:
1082 if (flags & __GFP_WAIT)
1083 local_irq_disable();
1084 return page;
1085}
1086
1087static void __free_slab(struct kmem_cache *s, struct page *page)
1088{
1089 int pages = 1 << s->order;
1090
c59def9f 1091 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1092 void *p;
1093
1094 slab_pad_check(s, page);
c59def9f 1095 for_each_object(p, s, page_address(page))
81819f0f 1096 check_object(s, page, p, 0);
81819f0f
CL
1097 }
1098
1099 mod_zone_page_state(page_zone(page),
1100 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1101 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1102 - pages);
1103
1104 page->mapping = NULL;
1105 __free_pages(page, s->order);
1106}
1107
1108static void rcu_free_slab(struct rcu_head *h)
1109{
1110 struct page *page;
1111
1112 page = container_of((struct list_head *)h, struct page, lru);
1113 __free_slab(page->slab, page);
1114}
1115
1116static void free_slab(struct kmem_cache *s, struct page *page)
1117{
1118 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1119 /*
1120 * RCU free overloads the RCU head over the LRU
1121 */
1122 struct rcu_head *head = (void *)&page->lru;
1123
1124 call_rcu(head, rcu_free_slab);
1125 } else
1126 __free_slab(s, page);
1127}
1128
1129static void discard_slab(struct kmem_cache *s, struct page *page)
1130{
1131 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1132
1133 atomic_long_dec(&n->nr_slabs);
1134 reset_page_mapcount(page);
35e5d7ee
CL
1135 ClearSlabDebug(page);
1136 __ClearPageSlab(page);
81819f0f
CL
1137 free_slab(s, page);
1138}
1139
1140/*
1141 * Per slab locking using the pagelock
1142 */
1143static __always_inline void slab_lock(struct page *page)
1144{
1145 bit_spin_lock(PG_locked, &page->flags);
1146}
1147
1148static __always_inline void slab_unlock(struct page *page)
1149{
1150 bit_spin_unlock(PG_locked, &page->flags);
1151}
1152
1153static __always_inline int slab_trylock(struct page *page)
1154{
1155 int rc = 1;
1156
1157 rc = bit_spin_trylock(PG_locked, &page->flags);
1158 return rc;
1159}
1160
1161/*
1162 * Management of partially allocated slabs
1163 */
e95eed57 1164static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
81819f0f 1165{
e95eed57
CL
1166 spin_lock(&n->list_lock);
1167 n->nr_partial++;
1168 list_add_tail(&page->lru, &n->partial);
1169 spin_unlock(&n->list_lock);
1170}
81819f0f 1171
e95eed57
CL
1172static void add_partial(struct kmem_cache_node *n, struct page *page)
1173{
81819f0f
CL
1174 spin_lock(&n->list_lock);
1175 n->nr_partial++;
1176 list_add(&page->lru, &n->partial);
1177 spin_unlock(&n->list_lock);
1178}
1179
1180static void remove_partial(struct kmem_cache *s,
1181 struct page *page)
1182{
1183 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1184
1185 spin_lock(&n->list_lock);
1186 list_del(&page->lru);
1187 n->nr_partial--;
1188 spin_unlock(&n->list_lock);
1189}
1190
1191/*
672bba3a 1192 * Lock slab and remove from the partial list.
81819f0f 1193 *
672bba3a 1194 * Must hold list_lock.
81819f0f 1195 */
4b6f0750 1196static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
81819f0f
CL
1197{
1198 if (slab_trylock(page)) {
1199 list_del(&page->lru);
1200 n->nr_partial--;
4b6f0750 1201 SetSlabFrozen(page);
81819f0f
CL
1202 return 1;
1203 }
1204 return 0;
1205}
1206
1207/*
672bba3a 1208 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1209 */
1210static struct page *get_partial_node(struct kmem_cache_node *n)
1211{
1212 struct page *page;
1213
1214 /*
1215 * Racy check. If we mistakenly see no partial slabs then we
1216 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1217 * partial slab and there is none available then get_partials()
1218 * will return NULL.
81819f0f
CL
1219 */
1220 if (!n || !n->nr_partial)
1221 return NULL;
1222
1223 spin_lock(&n->list_lock);
1224 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1225 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1226 goto out;
1227 page = NULL;
1228out:
1229 spin_unlock(&n->list_lock);
1230 return page;
1231}
1232
1233/*
672bba3a 1234 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1235 */
1236static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1237{
1238#ifdef CONFIG_NUMA
1239 struct zonelist *zonelist;
1240 struct zone **z;
1241 struct page *page;
1242
1243 /*
672bba3a
CL
1244 * The defrag ratio allows a configuration of the tradeoffs between
1245 * inter node defragmentation and node local allocations. A lower
1246 * defrag_ratio increases the tendency to do local allocations
1247 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1248 *
672bba3a
CL
1249 * If the defrag_ratio is set to 0 then kmalloc() always
1250 * returns node local objects. If the ratio is higher then kmalloc()
1251 * may return off node objects because partial slabs are obtained
1252 * from other nodes and filled up.
81819f0f
CL
1253 *
1254 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1255 * defrag_ratio = 1000) then every (well almost) allocation will
1256 * first attempt to defrag slab caches on other nodes. This means
1257 * scanning over all nodes to look for partial slabs which may be
1258 * expensive if we do it every time we are trying to find a slab
1259 * with available objects.
81819f0f
CL
1260 */
1261 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1262 return NULL;
1263
1264 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1265 ->node_zonelists[gfp_zone(flags)];
1266 for (z = zonelist->zones; *z; z++) {
1267 struct kmem_cache_node *n;
1268
1269 n = get_node(s, zone_to_nid(*z));
1270
1271 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1272 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1273 page = get_partial_node(n);
1274 if (page)
1275 return page;
1276 }
1277 }
1278#endif
1279 return NULL;
1280}
1281
1282/*
1283 * Get a partial page, lock it and return it.
1284 */
1285static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1286{
1287 struct page *page;
1288 int searchnode = (node == -1) ? numa_node_id() : node;
1289
1290 page = get_partial_node(get_node(s, searchnode));
1291 if (page || (flags & __GFP_THISNODE))
1292 return page;
1293
1294 return get_any_partial(s, flags);
1295}
1296
1297/*
1298 * Move a page back to the lists.
1299 *
1300 * Must be called with the slab lock held.
1301 *
1302 * On exit the slab lock will have been dropped.
1303 */
4b6f0750 1304static void unfreeze_slab(struct kmem_cache *s, struct page *page)
81819f0f 1305{
e95eed57
CL
1306 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1307
4b6f0750 1308 ClearSlabFrozen(page);
81819f0f 1309 if (page->inuse) {
e95eed57 1310
81819f0f 1311 if (page->freelist)
e95eed57 1312 add_partial(n, page);
35e5d7ee 1313 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
e95eed57 1314 add_full(n, page);
81819f0f 1315 slab_unlock(page);
e95eed57 1316
81819f0f 1317 } else {
e95eed57
CL
1318 if (n->nr_partial < MIN_PARTIAL) {
1319 /*
672bba3a
CL
1320 * Adding an empty slab to the partial slabs in order
1321 * to avoid page allocator overhead. This slab needs
1322 * to come after the other slabs with objects in
1323 * order to fill them up. That way the size of the
1324 * partial list stays small. kmem_cache_shrink can
1325 * reclaim empty slabs from the partial list.
e95eed57
CL
1326 */
1327 add_partial_tail(n, page);
1328 slab_unlock(page);
1329 } else {
1330 slab_unlock(page);
1331 discard_slab(s, page);
1332 }
81819f0f
CL
1333 }
1334}
1335
1336/*
1337 * Remove the cpu slab
1338 */
1339static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1340{
894b8788
CL
1341 /*
1342 * Merge cpu freelist into freelist. Typically we get here
1343 * because both freelists are empty. So this is unlikely
1344 * to occur.
1345 */
1346 while (unlikely(page->lockless_freelist)) {
1347 void **object;
1348
1349 /* Retrieve object from cpu_freelist */
1350 object = page->lockless_freelist;
1351 page->lockless_freelist = page->lockless_freelist[page->offset];
1352
1353 /* And put onto the regular freelist */
1354 object[page->offset] = page->freelist;
1355 page->freelist = object;
1356 page->inuse--;
1357 }
81819f0f 1358 s->cpu_slab[cpu] = NULL;
4b6f0750 1359 unfreeze_slab(s, page);
81819f0f
CL
1360}
1361
1362static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1363{
1364 slab_lock(page);
1365 deactivate_slab(s, page, cpu);
1366}
1367
1368/*
1369 * Flush cpu slab.
1370 * Called from IPI handler with interrupts disabled.
1371 */
1372static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1373{
1374 struct page *page = s->cpu_slab[cpu];
1375
1376 if (likely(page))
1377 flush_slab(s, page, cpu);
1378}
1379
1380static void flush_cpu_slab(void *d)
1381{
1382 struct kmem_cache *s = d;
1383 int cpu = smp_processor_id();
1384
1385 __flush_cpu_slab(s, cpu);
1386}
1387
1388static void flush_all(struct kmem_cache *s)
1389{
1390#ifdef CONFIG_SMP
1391 on_each_cpu(flush_cpu_slab, s, 1, 1);
1392#else
1393 unsigned long flags;
1394
1395 local_irq_save(flags);
1396 flush_cpu_slab(s);
1397 local_irq_restore(flags);
1398#endif
1399}
1400
1401/*
894b8788
CL
1402 * Slow path. The lockless freelist is empty or we need to perform
1403 * debugging duties.
1404 *
1405 * Interrupts are disabled.
81819f0f 1406 *
894b8788
CL
1407 * Processing is still very fast if new objects have been freed to the
1408 * regular freelist. In that case we simply take over the regular freelist
1409 * as the lockless freelist and zap the regular freelist.
81819f0f 1410 *
894b8788
CL
1411 * If that is not working then we fall back to the partial lists. We take the
1412 * first element of the freelist as the object to allocate now and move the
1413 * rest of the freelist to the lockless freelist.
81819f0f 1414 *
894b8788
CL
1415 * And if we were unable to get a new slab from the partial slab lists then
1416 * we need to allocate a new slab. This is slowest path since we may sleep.
81819f0f 1417 */
894b8788
CL
1418static void *__slab_alloc(struct kmem_cache *s,
1419 gfp_t gfpflags, int node, void *addr, struct page *page)
81819f0f 1420{
81819f0f 1421 void **object;
894b8788 1422 int cpu = smp_processor_id();
81819f0f 1423
81819f0f
CL
1424 if (!page)
1425 goto new_slab;
1426
1427 slab_lock(page);
1428 if (unlikely(node != -1 && page_to_nid(page) != node))
1429 goto another_slab;
894b8788 1430load_freelist:
81819f0f
CL
1431 object = page->freelist;
1432 if (unlikely(!object))
1433 goto another_slab;
35e5d7ee 1434 if (unlikely(SlabDebug(page)))
81819f0f
CL
1435 goto debug;
1436
894b8788
CL
1437 object = page->freelist;
1438 page->lockless_freelist = object[page->offset];
1439 page->inuse = s->objects;
1440 page->freelist = NULL;
81819f0f 1441 slab_unlock(page);
81819f0f
CL
1442 return object;
1443
1444another_slab:
1445 deactivate_slab(s, page, cpu);
1446
1447new_slab:
1448 page = get_partial(s, gfpflags, node);
894b8788 1449 if (page) {
81819f0f 1450 s->cpu_slab[cpu] = page;
894b8788 1451 goto load_freelist;
81819f0f
CL
1452 }
1453
1454 page = new_slab(s, gfpflags, node);
1455 if (page) {
1456 cpu = smp_processor_id();
1457 if (s->cpu_slab[cpu]) {
1458 /*
672bba3a
CL
1459 * Someone else populated the cpu_slab while we
1460 * enabled interrupts, or we have gotten scheduled
1461 * on another cpu. The page may not be on the
1462 * requested node even if __GFP_THISNODE was
1463 * specified. So we need to recheck.
81819f0f
CL
1464 */
1465 if (node == -1 ||
1466 page_to_nid(s->cpu_slab[cpu]) == node) {
1467 /*
1468 * Current cpuslab is acceptable and we
1469 * want the current one since its cache hot
1470 */
1471 discard_slab(s, page);
1472 page = s->cpu_slab[cpu];
1473 slab_lock(page);
894b8788 1474 goto load_freelist;
81819f0f 1475 }
672bba3a 1476 /* New slab does not fit our expectations */
81819f0f
CL
1477 flush_slab(s, s->cpu_slab[cpu], cpu);
1478 }
1479 slab_lock(page);
4b6f0750
CL
1480 SetSlabFrozen(page);
1481 s->cpu_slab[cpu] = page;
1482 goto load_freelist;
81819f0f 1483 }
81819f0f
CL
1484 return NULL;
1485debug:
894b8788 1486 object = page->freelist;
3ec09742 1487 if (!alloc_debug_processing(s, page, object, addr))
81819f0f 1488 goto another_slab;
894b8788
CL
1489
1490 page->inuse++;
1491 page->freelist = object[page->offset];
1492 slab_unlock(page);
1493 return object;
1494}
1495
1496/*
1497 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1498 * have the fastpath folded into their functions. So no function call
1499 * overhead for requests that can be satisfied on the fastpath.
1500 *
1501 * The fastpath works by first checking if the lockless freelist can be used.
1502 * If not then __slab_alloc is called for slow processing.
1503 *
1504 * Otherwise we can simply pick the next object from the lockless free list.
1505 */
1506static void __always_inline *slab_alloc(struct kmem_cache *s,
1507 gfp_t gfpflags, int node, void *addr)
1508{
1509 struct page *page;
1510 void **object;
1511 unsigned long flags;
1512
1513 local_irq_save(flags);
1514 page = s->cpu_slab[smp_processor_id()];
1515 if (unlikely(!page || !page->lockless_freelist ||
1516 (node != -1 && page_to_nid(page) != node)))
1517
1518 object = __slab_alloc(s, gfpflags, node, addr, page);
1519
1520 else {
1521 object = page->lockless_freelist;
1522 page->lockless_freelist = object[page->offset];
1523 }
1524 local_irq_restore(flags);
1525 return object;
81819f0f
CL
1526}
1527
1528void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1529{
77c5e2d0 1530 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1531}
1532EXPORT_SYMBOL(kmem_cache_alloc);
1533
1534#ifdef CONFIG_NUMA
1535void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1536{
77c5e2d0 1537 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1538}
1539EXPORT_SYMBOL(kmem_cache_alloc_node);
1540#endif
1541
1542/*
894b8788
CL
1543 * Slow patch handling. This may still be called frequently since objects
1544 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1545 *
894b8788
CL
1546 * So we still attempt to reduce cache line usage. Just take the slab
1547 * lock and free the item. If there is no additional partial page
1548 * handling required then we can return immediately.
81819f0f 1549 */
894b8788 1550static void __slab_free(struct kmem_cache *s, struct page *page,
77c5e2d0 1551 void *x, void *addr)
81819f0f
CL
1552{
1553 void *prior;
1554 void **object = (void *)x;
81819f0f 1555
81819f0f
CL
1556 slab_lock(page);
1557
35e5d7ee 1558 if (unlikely(SlabDebug(page)))
81819f0f
CL
1559 goto debug;
1560checks_ok:
1561 prior = object[page->offset] = page->freelist;
1562 page->freelist = object;
1563 page->inuse--;
1564
4b6f0750 1565 if (unlikely(SlabFrozen(page)))
81819f0f
CL
1566 goto out_unlock;
1567
1568 if (unlikely(!page->inuse))
1569 goto slab_empty;
1570
1571 /*
1572 * Objects left in the slab. If it
1573 * was not on the partial list before
1574 * then add it.
1575 */
1576 if (unlikely(!prior))
e95eed57 1577 add_partial(get_node(s, page_to_nid(page)), page);
81819f0f
CL
1578
1579out_unlock:
1580 slab_unlock(page);
81819f0f
CL
1581 return;
1582
1583slab_empty:
1584 if (prior)
1585 /*
672bba3a 1586 * Slab still on the partial list.
81819f0f
CL
1587 */
1588 remove_partial(s, page);
1589
1590 slab_unlock(page);
1591 discard_slab(s, page);
81819f0f
CL
1592 return;
1593
1594debug:
3ec09742 1595 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1596 goto out_unlock;
77c5e2d0 1597 goto checks_ok;
81819f0f
CL
1598}
1599
894b8788
CL
1600/*
1601 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1602 * can perform fastpath freeing without additional function calls.
1603 *
1604 * The fastpath is only possible if we are freeing to the current cpu slab
1605 * of this processor. This typically the case if we have just allocated
1606 * the item before.
1607 *
1608 * If fastpath is not possible then fall back to __slab_free where we deal
1609 * with all sorts of special processing.
1610 */
1611static void __always_inline slab_free(struct kmem_cache *s,
1612 struct page *page, void *x, void *addr)
1613{
1614 void **object = (void *)x;
1615 unsigned long flags;
1616
1617 local_irq_save(flags);
1618 if (likely(page == s->cpu_slab[smp_processor_id()] &&
1619 !SlabDebug(page))) {
1620 object[page->offset] = page->lockless_freelist;
1621 page->lockless_freelist = object;
1622 } else
1623 __slab_free(s, page, x, addr);
1624
1625 local_irq_restore(flags);
1626}
1627
81819f0f
CL
1628void kmem_cache_free(struct kmem_cache *s, void *x)
1629{
77c5e2d0 1630 struct page *page;
81819f0f 1631
b49af68f 1632 page = virt_to_head_page(x);
81819f0f 1633
77c5e2d0 1634 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1635}
1636EXPORT_SYMBOL(kmem_cache_free);
1637
1638/* Figure out on which slab object the object resides */
1639static struct page *get_object_page(const void *x)
1640{
b49af68f 1641 struct page *page = virt_to_head_page(x);
81819f0f
CL
1642
1643 if (!PageSlab(page))
1644 return NULL;
1645
1646 return page;
1647}
1648
1649/*
672bba3a
CL
1650 * Object placement in a slab is made very easy because we always start at
1651 * offset 0. If we tune the size of the object to the alignment then we can
1652 * get the required alignment by putting one properly sized object after
1653 * another.
81819f0f
CL
1654 *
1655 * Notice that the allocation order determines the sizes of the per cpu
1656 * caches. Each processor has always one slab available for allocations.
1657 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1658 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1659 * locking overhead.
81819f0f
CL
1660 */
1661
1662/*
1663 * Mininum / Maximum order of slab pages. This influences locking overhead
1664 * and slab fragmentation. A higher order reduces the number of partial slabs
1665 * and increases the number of allocations possible without having to
1666 * take the list_lock.
1667 */
1668static int slub_min_order;
1669static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1670static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1671
1672/*
1673 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1674 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1675 */
1676static int slub_nomerge;
1677
81819f0f
CL
1678/*
1679 * Calculate the order of allocation given an slab object size.
1680 *
672bba3a
CL
1681 * The order of allocation has significant impact on performance and other
1682 * system components. Generally order 0 allocations should be preferred since
1683 * order 0 does not cause fragmentation in the page allocator. Larger objects
1684 * be problematic to put into order 0 slabs because there may be too much
1685 * unused space left. We go to a higher order if more than 1/8th of the slab
1686 * would be wasted.
1687 *
1688 * In order to reach satisfactory performance we must ensure that a minimum
1689 * number of objects is in one slab. Otherwise we may generate too much
1690 * activity on the partial lists which requires taking the list_lock. This is
1691 * less a concern for large slabs though which are rarely used.
81819f0f 1692 *
672bba3a
CL
1693 * slub_max_order specifies the order where we begin to stop considering the
1694 * number of objects in a slab as critical. If we reach slub_max_order then
1695 * we try to keep the page order as low as possible. So we accept more waste
1696 * of space in favor of a small page order.
81819f0f 1697 *
672bba3a
CL
1698 * Higher order allocations also allow the placement of more objects in a
1699 * slab and thereby reduce object handling overhead. If the user has
1700 * requested a higher mininum order then we start with that one instead of
1701 * the smallest order which will fit the object.
81819f0f 1702 */
5e6d444e
CL
1703static inline int slab_order(int size, int min_objects,
1704 int max_order, int fract_leftover)
81819f0f
CL
1705{
1706 int order;
1707 int rem;
1708
5e6d444e
CL
1709 for (order = max(slub_min_order,
1710 fls(min_objects * size - 1) - PAGE_SHIFT);
1711 order <= max_order; order++) {
81819f0f 1712
5e6d444e 1713 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1714
5e6d444e 1715 if (slab_size < min_objects * size)
81819f0f
CL
1716 continue;
1717
1718 rem = slab_size % size;
1719
5e6d444e 1720 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1721 break;
1722
1723 }
672bba3a 1724
81819f0f
CL
1725 return order;
1726}
1727
5e6d444e
CL
1728static inline int calculate_order(int size)
1729{
1730 int order;
1731 int min_objects;
1732 int fraction;
1733
1734 /*
1735 * Attempt to find best configuration for a slab. This
1736 * works by first attempting to generate a layout with
1737 * the best configuration and backing off gradually.
1738 *
1739 * First we reduce the acceptable waste in a slab. Then
1740 * we reduce the minimum objects required in a slab.
1741 */
1742 min_objects = slub_min_objects;
1743 while (min_objects > 1) {
1744 fraction = 8;
1745 while (fraction >= 4) {
1746 order = slab_order(size, min_objects,
1747 slub_max_order, fraction);
1748 if (order <= slub_max_order)
1749 return order;
1750 fraction /= 2;
1751 }
1752 min_objects /= 2;
1753 }
1754
1755 /*
1756 * We were unable to place multiple objects in a slab. Now
1757 * lets see if we can place a single object there.
1758 */
1759 order = slab_order(size, 1, slub_max_order, 1);
1760 if (order <= slub_max_order)
1761 return order;
1762
1763 /*
1764 * Doh this slab cannot be placed using slub_max_order.
1765 */
1766 order = slab_order(size, 1, MAX_ORDER, 1);
1767 if (order <= MAX_ORDER)
1768 return order;
1769 return -ENOSYS;
1770}
1771
81819f0f 1772/*
672bba3a 1773 * Figure out what the alignment of the objects will be.
81819f0f
CL
1774 */
1775static unsigned long calculate_alignment(unsigned long flags,
1776 unsigned long align, unsigned long size)
1777{
1778 /*
1779 * If the user wants hardware cache aligned objects then
1780 * follow that suggestion if the object is sufficiently
1781 * large.
1782 *
1783 * The hardware cache alignment cannot override the
1784 * specified alignment though. If that is greater
1785 * then use it.
1786 */
5af60839 1787 if ((flags & SLAB_HWCACHE_ALIGN) &&
65c02d4c
CL
1788 size > cache_line_size() / 2)
1789 return max_t(unsigned long, align, cache_line_size());
81819f0f
CL
1790
1791 if (align < ARCH_SLAB_MINALIGN)
1792 return ARCH_SLAB_MINALIGN;
1793
1794 return ALIGN(align, sizeof(void *));
1795}
1796
1797static void init_kmem_cache_node(struct kmem_cache_node *n)
1798{
1799 n->nr_partial = 0;
1800 atomic_long_set(&n->nr_slabs, 0);
1801 spin_lock_init(&n->list_lock);
1802 INIT_LIST_HEAD(&n->partial);
643b1138 1803 INIT_LIST_HEAD(&n->full);
81819f0f
CL
1804}
1805
1806#ifdef CONFIG_NUMA
1807/*
1808 * No kmalloc_node yet so do it by hand. We know that this is the first
1809 * slab on the node for this slabcache. There are no concurrent accesses
1810 * possible.
1811 *
1812 * Note that this function only works on the kmalloc_node_cache
1813 * when allocating for the kmalloc_node_cache.
1814 */
1815static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1816 int node)
1817{
1818 struct page *page;
1819 struct kmem_cache_node *n;
1820
1821 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1822
1823 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
81819f0f
CL
1824
1825 BUG_ON(!page);
1826 n = page->freelist;
1827 BUG_ON(!n);
1828 page->freelist = get_freepointer(kmalloc_caches, n);
1829 page->inuse++;
1830 kmalloc_caches->node[node] = n;
3ec09742 1831 setup_object_debug(kmalloc_caches, page, n);
81819f0f
CL
1832 init_kmem_cache_node(n);
1833 atomic_long_inc(&n->nr_slabs);
e95eed57 1834 add_partial(n, page);
dbc55faa
CL
1835
1836 /*
1837 * new_slab() disables interupts. If we do not reenable interrupts here
1838 * then bootup would continue with interrupts disabled.
1839 */
1840 local_irq_enable();
81819f0f
CL
1841 return n;
1842}
1843
1844static void free_kmem_cache_nodes(struct kmem_cache *s)
1845{
1846 int node;
1847
1848 for_each_online_node(node) {
1849 struct kmem_cache_node *n = s->node[node];
1850 if (n && n != &s->local_node)
1851 kmem_cache_free(kmalloc_caches, n);
1852 s->node[node] = NULL;
1853 }
1854}
1855
1856static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1857{
1858 int node;
1859 int local_node;
1860
1861 if (slab_state >= UP)
1862 local_node = page_to_nid(virt_to_page(s));
1863 else
1864 local_node = 0;
1865
1866 for_each_online_node(node) {
1867 struct kmem_cache_node *n;
1868
1869 if (local_node == node)
1870 n = &s->local_node;
1871 else {
1872 if (slab_state == DOWN) {
1873 n = early_kmem_cache_node_alloc(gfpflags,
1874 node);
1875 continue;
1876 }
1877 n = kmem_cache_alloc_node(kmalloc_caches,
1878 gfpflags, node);
1879
1880 if (!n) {
1881 free_kmem_cache_nodes(s);
1882 return 0;
1883 }
1884
1885 }
1886 s->node[node] = n;
1887 init_kmem_cache_node(n);
1888 }
1889 return 1;
1890}
1891#else
1892static void free_kmem_cache_nodes(struct kmem_cache *s)
1893{
1894}
1895
1896static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1897{
1898 init_kmem_cache_node(&s->local_node);
1899 return 1;
1900}
1901#endif
1902
1903/*
1904 * calculate_sizes() determines the order and the distribution of data within
1905 * a slab object.
1906 */
1907static int calculate_sizes(struct kmem_cache *s)
1908{
1909 unsigned long flags = s->flags;
1910 unsigned long size = s->objsize;
1911 unsigned long align = s->align;
1912
1913 /*
1914 * Determine if we can poison the object itself. If the user of
1915 * the slab may touch the object after free or before allocation
1916 * then we should never poison the object itself.
1917 */
1918 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 1919 !s->ctor)
81819f0f
CL
1920 s->flags |= __OBJECT_POISON;
1921 else
1922 s->flags &= ~__OBJECT_POISON;
1923
1924 /*
1925 * Round up object size to the next word boundary. We can only
1926 * place the free pointer at word boundaries and this determines
1927 * the possible location of the free pointer.
1928 */
1929 size = ALIGN(size, sizeof(void *));
1930
41ecc55b 1931#ifdef CONFIG_SLUB_DEBUG
81819f0f 1932 /*
672bba3a 1933 * If we are Redzoning then check if there is some space between the
81819f0f 1934 * end of the object and the free pointer. If not then add an
672bba3a 1935 * additional word to have some bytes to store Redzone information.
81819f0f
CL
1936 */
1937 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1938 size += sizeof(void *);
41ecc55b 1939#endif
81819f0f
CL
1940
1941 /*
672bba3a
CL
1942 * With that we have determined the number of bytes in actual use
1943 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
1944 */
1945 s->inuse = size;
1946
1947 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 1948 s->ctor)) {
81819f0f
CL
1949 /*
1950 * Relocate free pointer after the object if it is not
1951 * permitted to overwrite the first word of the object on
1952 * kmem_cache_free.
1953 *
1954 * This is the case if we do RCU, have a constructor or
1955 * destructor or are poisoning the objects.
1956 */
1957 s->offset = size;
1958 size += sizeof(void *);
1959 }
1960
c12b3c62 1961#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
1962 if (flags & SLAB_STORE_USER)
1963 /*
1964 * Need to store information about allocs and frees after
1965 * the object.
1966 */
1967 size += 2 * sizeof(struct track);
1968
be7b3fbc 1969 if (flags & SLAB_RED_ZONE)
81819f0f
CL
1970 /*
1971 * Add some empty padding so that we can catch
1972 * overwrites from earlier objects rather than let
1973 * tracking information or the free pointer be
1974 * corrupted if an user writes before the start
1975 * of the object.
1976 */
1977 size += sizeof(void *);
41ecc55b 1978#endif
672bba3a 1979
81819f0f
CL
1980 /*
1981 * Determine the alignment based on various parameters that the
65c02d4c
CL
1982 * user specified and the dynamic determination of cache line size
1983 * on bootup.
81819f0f
CL
1984 */
1985 align = calculate_alignment(flags, align, s->objsize);
1986
1987 /*
1988 * SLUB stores one object immediately after another beginning from
1989 * offset 0. In order to align the objects we have to simply size
1990 * each object to conform to the alignment.
1991 */
1992 size = ALIGN(size, align);
1993 s->size = size;
1994
1995 s->order = calculate_order(size);
1996 if (s->order < 0)
1997 return 0;
1998
1999 /*
2000 * Determine the number of objects per slab
2001 */
2002 s->objects = (PAGE_SIZE << s->order) / size;
2003
2004 /*
2005 * Verify that the number of objects is within permitted limits.
2006 * The page->inuse field is only 16 bit wide! So we cannot have
2007 * more than 64k objects per slab.
2008 */
2009 if (!s->objects || s->objects > 65535)
2010 return 0;
2011 return 1;
2012
2013}
2014
81819f0f
CL
2015static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2016 const char *name, size_t size,
2017 size_t align, unsigned long flags,
c59def9f 2018 void (*ctor)(void *, struct kmem_cache *, unsigned long))
81819f0f
CL
2019{
2020 memset(s, 0, kmem_size);
2021 s->name = name;
2022 s->ctor = ctor;
81819f0f
CL
2023 s->objsize = size;
2024 s->flags = flags;
2025 s->align = align;
41ecc55b 2026 kmem_cache_open_debug_check(s);
81819f0f
CL
2027
2028 if (!calculate_sizes(s))
2029 goto error;
2030
2031 s->refcount = 1;
2032#ifdef CONFIG_NUMA
2033 s->defrag_ratio = 100;
2034#endif
2035
2036 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2037 return 1;
2038error:
2039 if (flags & SLAB_PANIC)
2040 panic("Cannot create slab %s size=%lu realsize=%u "
2041 "order=%u offset=%u flags=%lx\n",
2042 s->name, (unsigned long)size, s->size, s->order,
2043 s->offset, flags);
2044 return 0;
2045}
81819f0f
CL
2046
2047/*
2048 * Check if a given pointer is valid
2049 */
2050int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2051{
2052 struct page * page;
81819f0f
CL
2053
2054 page = get_object_page(object);
2055
2056 if (!page || s != page->slab)
2057 /* No slab or wrong slab */
2058 return 0;
2059
abcd08a6 2060 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2061 return 0;
2062
2063 /*
2064 * We could also check if the object is on the slabs freelist.
2065 * But this would be too expensive and it seems that the main
2066 * purpose of kmem_ptr_valid is to check if the object belongs
2067 * to a certain slab.
2068 */
2069 return 1;
2070}
2071EXPORT_SYMBOL(kmem_ptr_validate);
2072
2073/*
2074 * Determine the size of a slab object
2075 */
2076unsigned int kmem_cache_size(struct kmem_cache *s)
2077{
2078 return s->objsize;
2079}
2080EXPORT_SYMBOL(kmem_cache_size);
2081
2082const char *kmem_cache_name(struct kmem_cache *s)
2083{
2084 return s->name;
2085}
2086EXPORT_SYMBOL(kmem_cache_name);
2087
2088/*
672bba3a
CL
2089 * Attempt to free all slabs on a node. Return the number of slabs we
2090 * were unable to free.
81819f0f
CL
2091 */
2092static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2093 struct list_head *list)
2094{
2095 int slabs_inuse = 0;
2096 unsigned long flags;
2097 struct page *page, *h;
2098
2099 spin_lock_irqsave(&n->list_lock, flags);
2100 list_for_each_entry_safe(page, h, list, lru)
2101 if (!page->inuse) {
2102 list_del(&page->lru);
2103 discard_slab(s, page);
2104 } else
2105 slabs_inuse++;
2106 spin_unlock_irqrestore(&n->list_lock, flags);
2107 return slabs_inuse;
2108}
2109
2110/*
672bba3a 2111 * Release all resources used by a slab cache.
81819f0f
CL
2112 */
2113static int kmem_cache_close(struct kmem_cache *s)
2114{
2115 int node;
2116
2117 flush_all(s);
2118
2119 /* Attempt to free all objects */
2120 for_each_online_node(node) {
2121 struct kmem_cache_node *n = get_node(s, node);
2122
2086d26a 2123 n->nr_partial -= free_list(s, n, &n->partial);
81819f0f
CL
2124 if (atomic_long_read(&n->nr_slabs))
2125 return 1;
2126 }
2127 free_kmem_cache_nodes(s);
2128 return 0;
2129}
2130
2131/*
2132 * Close a cache and release the kmem_cache structure
2133 * (must be used for caches created using kmem_cache_create)
2134 */
2135void kmem_cache_destroy(struct kmem_cache *s)
2136{
2137 down_write(&slub_lock);
2138 s->refcount--;
2139 if (!s->refcount) {
2140 list_del(&s->list);
2141 if (kmem_cache_close(s))
2142 WARN_ON(1);
2143 sysfs_slab_remove(s);
2144 kfree(s);
2145 }
2146 up_write(&slub_lock);
2147}
2148EXPORT_SYMBOL(kmem_cache_destroy);
2149
2150/********************************************************************
2151 * Kmalloc subsystem
2152 *******************************************************************/
2153
2154struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
2155EXPORT_SYMBOL(kmalloc_caches);
2156
2157#ifdef CONFIG_ZONE_DMA
2158static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
2159#endif
2160
2161static int __init setup_slub_min_order(char *str)
2162{
2163 get_option (&str, &slub_min_order);
2164
2165 return 1;
2166}
2167
2168__setup("slub_min_order=", setup_slub_min_order);
2169
2170static int __init setup_slub_max_order(char *str)
2171{
2172 get_option (&str, &slub_max_order);
2173
2174 return 1;
2175}
2176
2177__setup("slub_max_order=", setup_slub_max_order);
2178
2179static int __init setup_slub_min_objects(char *str)
2180{
2181 get_option (&str, &slub_min_objects);
2182
2183 return 1;
2184}
2185
2186__setup("slub_min_objects=", setup_slub_min_objects);
2187
2188static int __init setup_slub_nomerge(char *str)
2189{
2190 slub_nomerge = 1;
2191 return 1;
2192}
2193
2194__setup("slub_nomerge", setup_slub_nomerge);
2195
81819f0f
CL
2196static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2197 const char *name, int size, gfp_t gfp_flags)
2198{
2199 unsigned int flags = 0;
2200
2201 if (gfp_flags & SLUB_DMA)
2202 flags = SLAB_CACHE_DMA;
2203
2204 down_write(&slub_lock);
2205 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
c59def9f 2206 flags, NULL))
81819f0f
CL
2207 goto panic;
2208
2209 list_add(&s->list, &slab_caches);
2210 up_write(&slub_lock);
2211 if (sysfs_slab_add(s))
2212 goto panic;
2213 return s;
2214
2215panic:
2216 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2217}
2218
2219static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2220{
2221 int index = kmalloc_index(size);
2222
614410d5 2223 if (!index)
81819f0f
CL
2224 return NULL;
2225
2226 /* Allocation too large? */
2227 BUG_ON(index < 0);
2228
2229#ifdef CONFIG_ZONE_DMA
2230 if ((flags & SLUB_DMA)) {
2231 struct kmem_cache *s;
2232 struct kmem_cache *x;
2233 char *text;
2234 size_t realsize;
2235
2236 s = kmalloc_caches_dma[index];
2237 if (s)
2238 return s;
2239
2240 /* Dynamically create dma cache */
2241 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2242 if (!x)
2243 panic("Unable to allocate memory for dma cache\n");
2244
2245 if (index <= KMALLOC_SHIFT_HIGH)
2246 realsize = 1 << index;
2247 else {
2248 if (index == 1)
2249 realsize = 96;
2250 else
2251 realsize = 192;
2252 }
2253
2254 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2255 (unsigned int)realsize);
2256 s = create_kmalloc_cache(x, text, realsize, flags);
2257 kmalloc_caches_dma[index] = s;
2258 return s;
2259 }
2260#endif
2261 return &kmalloc_caches[index];
2262}
2263
2264void *__kmalloc(size_t size, gfp_t flags)
2265{
2266 struct kmem_cache *s = get_slab(size, flags);
2267
2268 if (s)
77c5e2d0 2269 return slab_alloc(s, flags, -1, __builtin_return_address(0));
272c1d21 2270 return ZERO_SIZE_PTR;
81819f0f
CL
2271}
2272EXPORT_SYMBOL(__kmalloc);
2273
2274#ifdef CONFIG_NUMA
2275void *__kmalloc_node(size_t size, gfp_t flags, int node)
2276{
2277 struct kmem_cache *s = get_slab(size, flags);
2278
2279 if (s)
77c5e2d0 2280 return slab_alloc(s, flags, node, __builtin_return_address(0));
272c1d21 2281 return ZERO_SIZE_PTR;
81819f0f
CL
2282}
2283EXPORT_SYMBOL(__kmalloc_node);
2284#endif
2285
2286size_t ksize(const void *object)
2287{
272c1d21 2288 struct page *page;
81819f0f
CL
2289 struct kmem_cache *s;
2290
272c1d21
CL
2291 if (object == ZERO_SIZE_PTR)
2292 return 0;
2293
2294 page = get_object_page(object);
81819f0f
CL
2295 BUG_ON(!page);
2296 s = page->slab;
2297 BUG_ON(!s);
2298
2299 /*
2300 * Debugging requires use of the padding between object
2301 * and whatever may come after it.
2302 */
2303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2304 return s->objsize;
2305
2306 /*
2307 * If we have the need to store the freelist pointer
2308 * back there or track user information then we can
2309 * only use the space before that information.
2310 */
2311 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2312 return s->inuse;
2313
2314 /*
2315 * Else we can use all the padding etc for the allocation
2316 */
2317 return s->size;
2318}
2319EXPORT_SYMBOL(ksize);
2320
2321void kfree(const void *x)
2322{
2323 struct kmem_cache *s;
2324 struct page *page;
2325
272c1d21
CL
2326 /*
2327 * This has to be an unsigned comparison. According to Linus
2328 * some gcc version treat a pointer as a signed entity. Then
2329 * this comparison would be true for all "negative" pointers
2330 * (which would cover the whole upper half of the address space).
2331 */
2332 if ((unsigned long)x <= (unsigned long)ZERO_SIZE_PTR)
81819f0f
CL
2333 return;
2334
b49af68f 2335 page = virt_to_head_page(x);
81819f0f
CL
2336 s = page->slab;
2337
77c5e2d0 2338 slab_free(s, page, (void *)x, __builtin_return_address(0));
81819f0f
CL
2339}
2340EXPORT_SYMBOL(kfree);
2341
2086d26a 2342/*
672bba3a
CL
2343 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2344 * the remaining slabs by the number of items in use. The slabs with the
2345 * most items in use come first. New allocations will then fill those up
2346 * and thus they can be removed from the partial lists.
2347 *
2348 * The slabs with the least items are placed last. This results in them
2349 * being allocated from last increasing the chance that the last objects
2350 * are freed in them.
2086d26a
CL
2351 */
2352int kmem_cache_shrink(struct kmem_cache *s)
2353{
2354 int node;
2355 int i;
2356 struct kmem_cache_node *n;
2357 struct page *page;
2358 struct page *t;
2359 struct list_head *slabs_by_inuse =
2360 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2361 unsigned long flags;
2362
2363 if (!slabs_by_inuse)
2364 return -ENOMEM;
2365
2366 flush_all(s);
2367 for_each_online_node(node) {
2368 n = get_node(s, node);
2369
2370 if (!n->nr_partial)
2371 continue;
2372
2373 for (i = 0; i < s->objects; i++)
2374 INIT_LIST_HEAD(slabs_by_inuse + i);
2375
2376 spin_lock_irqsave(&n->list_lock, flags);
2377
2378 /*
672bba3a 2379 * Build lists indexed by the items in use in each slab.
2086d26a 2380 *
672bba3a
CL
2381 * Note that concurrent frees may occur while we hold the
2382 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2383 */
2384 list_for_each_entry_safe(page, t, &n->partial, lru) {
2385 if (!page->inuse && slab_trylock(page)) {
2386 /*
2387 * Must hold slab lock here because slab_free
2388 * may have freed the last object and be
2389 * waiting to release the slab.
2390 */
2391 list_del(&page->lru);
2392 n->nr_partial--;
2393 slab_unlock(page);
2394 discard_slab(s, page);
2395 } else {
2396 if (n->nr_partial > MAX_PARTIAL)
2397 list_move(&page->lru,
2398 slabs_by_inuse + page->inuse);
2399 }
2400 }
2401
2402 if (n->nr_partial <= MAX_PARTIAL)
2403 goto out;
2404
2405 /*
672bba3a
CL
2406 * Rebuild the partial list with the slabs filled up most
2407 * first and the least used slabs at the end.
2086d26a
CL
2408 */
2409 for (i = s->objects - 1; i >= 0; i--)
2410 list_splice(slabs_by_inuse + i, n->partial.prev);
2411
2412 out:
2413 spin_unlock_irqrestore(&n->list_lock, flags);
2414 }
2415
2416 kfree(slabs_by_inuse);
2417 return 0;
2418}
2419EXPORT_SYMBOL(kmem_cache_shrink);
2420
81819f0f
CL
2421/**
2422 * krealloc - reallocate memory. The contents will remain unchanged.
81819f0f
CL
2423 * @p: object to reallocate memory for.
2424 * @new_size: how many bytes of memory are required.
2425 * @flags: the type of memory to allocate.
2426 *
2427 * The contents of the object pointed to are preserved up to the
2428 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2429 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2430 * %NULL pointer, the object pointed to is freed.
2431 */
2432void *krealloc(const void *p, size_t new_size, gfp_t flags)
2433{
81819f0f 2434 void *ret;
1f99a283 2435 size_t ks;
81819f0f 2436
272c1d21 2437 if (unlikely(!p || p == ZERO_SIZE_PTR))
81819f0f
CL
2438 return kmalloc(new_size, flags);
2439
2440 if (unlikely(!new_size)) {
2441 kfree(p);
272c1d21 2442 return ZERO_SIZE_PTR;
81819f0f
CL
2443 }
2444
1f99a283
CL
2445 ks = ksize(p);
2446 if (ks >= new_size)
81819f0f
CL
2447 return (void *)p;
2448
2449 ret = kmalloc(new_size, flags);
2450 if (ret) {
1f99a283 2451 memcpy(ret, p, min(new_size, ks));
81819f0f
CL
2452 kfree(p);
2453 }
2454 return ret;
2455}
2456EXPORT_SYMBOL(krealloc);
2457
2458/********************************************************************
2459 * Basic setup of slabs
2460 *******************************************************************/
2461
2462void __init kmem_cache_init(void)
2463{
2464 int i;
4b356be0 2465 int caches = 0;
81819f0f
CL
2466
2467#ifdef CONFIG_NUMA
2468 /*
2469 * Must first have the slab cache available for the allocations of the
672bba3a 2470 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2471 * kmem_cache_open for slab_state == DOWN.
2472 */
2473 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2474 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2475 kmalloc_caches[0].refcount = -1;
4b356be0 2476 caches++;
81819f0f
CL
2477#endif
2478
2479 /* Able to allocate the per node structures */
2480 slab_state = PARTIAL;
2481
2482 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2483 if (KMALLOC_MIN_SIZE <= 64) {
2484 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2485 "kmalloc-96", 96, GFP_KERNEL);
4b356be0
CL
2486 caches++;
2487 }
2488 if (KMALLOC_MIN_SIZE <= 128) {
2489 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2490 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
2491 caches++;
2492 }
81819f0f 2493
4b356be0 2494 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
81819f0f
CL
2495 create_kmalloc_cache(&kmalloc_caches[i],
2496 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
2497 caches++;
2498 }
81819f0f
CL
2499
2500 slab_state = UP;
2501
2502 /* Provide the correct kmalloc names now that the caches are up */
2503 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2504 kmalloc_caches[i]. name =
2505 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2506
2507#ifdef CONFIG_SMP
2508 register_cpu_notifier(&slab_notifier);
2509#endif
2510
bcf889f9
CL
2511 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2512 nr_cpu_ids * sizeof(struct page *);
81819f0f
CL
2513
2514 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
2515 " CPUs=%d, Nodes=%d\n",
2516 caches, cache_line_size(),
81819f0f
CL
2517 slub_min_order, slub_max_order, slub_min_objects,
2518 nr_cpu_ids, nr_node_ids);
2519}
2520
2521/*
2522 * Find a mergeable slab cache
2523 */
2524static int slab_unmergeable(struct kmem_cache *s)
2525{
2526 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2527 return 1;
2528
c59def9f 2529 if (s->ctor)
81819f0f
CL
2530 return 1;
2531
8ffa6875
CL
2532 /*
2533 * We may have set a slab to be unmergeable during bootstrap.
2534 */
2535 if (s->refcount < 0)
2536 return 1;
2537
81819f0f
CL
2538 return 0;
2539}
2540
2541static struct kmem_cache *find_mergeable(size_t size,
2542 size_t align, unsigned long flags,
c59def9f 2543 void (*ctor)(void *, struct kmem_cache *, unsigned long))
81819f0f
CL
2544{
2545 struct list_head *h;
2546
2547 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2548 return NULL;
2549
c59def9f 2550 if (ctor)
81819f0f
CL
2551 return NULL;
2552
2553 size = ALIGN(size, sizeof(void *));
2554 align = calculate_alignment(flags, align, size);
2555 size = ALIGN(size, align);
2556
2557 list_for_each(h, &slab_caches) {
2558 struct kmem_cache *s =
2559 container_of(h, struct kmem_cache, list);
2560
2561 if (slab_unmergeable(s))
2562 continue;
2563
2564 if (size > s->size)
2565 continue;
2566
2567 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2568 (s->flags & SLUB_MERGE_SAME))
2569 continue;
2570 /*
2571 * Check if alignment is compatible.
2572 * Courtesy of Adrian Drzewiecki
2573 */
2574 if ((s->size & ~(align -1)) != s->size)
2575 continue;
2576
2577 if (s->size - size >= sizeof(void *))
2578 continue;
2579
2580 return s;
2581 }
2582 return NULL;
2583}
2584
2585struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2586 size_t align, unsigned long flags,
2587 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2588 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2589{
2590 struct kmem_cache *s;
2591
c59def9f 2592 BUG_ON(dtor);
81819f0f 2593 down_write(&slub_lock);
c59def9f 2594 s = find_mergeable(size, align, flags, ctor);
81819f0f
CL
2595 if (s) {
2596 s->refcount++;
2597 /*
2598 * Adjust the object sizes so that we clear
2599 * the complete object on kzalloc.
2600 */
2601 s->objsize = max(s->objsize, (int)size);
2602 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2603 if (sysfs_slab_alias(s, name))
2604 goto err;
2605 } else {
2606 s = kmalloc(kmem_size, GFP_KERNEL);
2607 if (s && kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 2608 size, align, flags, ctor)) {
81819f0f
CL
2609 if (sysfs_slab_add(s)) {
2610 kfree(s);
2611 goto err;
2612 }
2613 list_add(&s->list, &slab_caches);
2614 } else
2615 kfree(s);
2616 }
2617 up_write(&slub_lock);
2618 return s;
2619
2620err:
2621 up_write(&slub_lock);
2622 if (flags & SLAB_PANIC)
2623 panic("Cannot create slabcache %s\n", name);
2624 else
2625 s = NULL;
2626 return s;
2627}
2628EXPORT_SYMBOL(kmem_cache_create);
2629
2630void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2631{
2632 void *x;
2633
77c5e2d0 2634 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2635 if (x)
2636 memset(x, 0, s->objsize);
2637 return x;
2638}
2639EXPORT_SYMBOL(kmem_cache_zalloc);
2640
2641#ifdef CONFIG_SMP
2642static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2643{
2644 struct list_head *h;
2645
2646 down_read(&slub_lock);
2647 list_for_each(h, &slab_caches) {
2648 struct kmem_cache *s =
2649 container_of(h, struct kmem_cache, list);
2650
2651 func(s, cpu);
2652 }
2653 up_read(&slub_lock);
2654}
2655
27390bc3
CL
2656/*
2657 * Version of __flush_cpu_slab for the case that interrupts
2658 * are enabled.
2659 */
2660static void cpu_slab_flush(struct kmem_cache *s, int cpu)
2661{
2662 unsigned long flags;
2663
2664 local_irq_save(flags);
2665 __flush_cpu_slab(s, cpu);
2666 local_irq_restore(flags);
2667}
2668
81819f0f 2669/*
672bba3a
CL
2670 * Use the cpu notifier to insure that the cpu slabs are flushed when
2671 * necessary.
81819f0f
CL
2672 */
2673static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2674 unsigned long action, void *hcpu)
2675{
2676 long cpu = (long)hcpu;
2677
2678 switch (action) {
2679 case CPU_UP_CANCELED:
8bb78442 2680 case CPU_UP_CANCELED_FROZEN:
81819f0f 2681 case CPU_DEAD:
8bb78442 2682 case CPU_DEAD_FROZEN:
27390bc3 2683 for_all_slabs(cpu_slab_flush, cpu);
81819f0f
CL
2684 break;
2685 default:
2686 break;
2687 }
2688 return NOTIFY_OK;
2689}
2690
2691static struct notifier_block __cpuinitdata slab_notifier =
2692 { &slab_cpuup_callback, NULL, 0 };
2693
2694#endif
2695
81819f0f
CL
2696void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2697{
2698 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2699
2700 if (!s)
272c1d21 2701 return ZERO_SIZE_PTR;
81819f0f 2702
77c5e2d0 2703 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
2704}
2705
2706void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2707 int node, void *caller)
2708{
2709 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2710
2711 if (!s)
272c1d21 2712 return ZERO_SIZE_PTR;
81819f0f 2713
77c5e2d0 2714 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
2715}
2716
41ecc55b 2717#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
53e15af0
CL
2718static int validate_slab(struct kmem_cache *s, struct page *page)
2719{
2720 void *p;
2721 void *addr = page_address(page);
7656c72b 2722 DECLARE_BITMAP(map, s->objects);
53e15af0
CL
2723
2724 if (!check_slab(s, page) ||
2725 !on_freelist(s, page, NULL))
2726 return 0;
2727
2728 /* Now we know that a valid freelist exists */
2729 bitmap_zero(map, s->objects);
2730
7656c72b
CL
2731 for_each_free_object(p, s, page->freelist) {
2732 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
2733 if (!check_object(s, page, p, 0))
2734 return 0;
2735 }
2736
7656c72b
CL
2737 for_each_object(p, s, addr)
2738 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
2739 if (!check_object(s, page, p, 1))
2740 return 0;
2741 return 1;
2742}
2743
2744static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2745{
2746 if (slab_trylock(page)) {
2747 validate_slab(s, page);
2748 slab_unlock(page);
2749 } else
2750 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2751 s->name, page);
2752
2753 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
2754 if (!SlabDebug(page))
2755 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
2756 "on slab 0x%p\n", s->name, page);
2757 } else {
35e5d7ee
CL
2758 if (SlabDebug(page))
2759 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
2760 "slab 0x%p\n", s->name, page);
2761 }
2762}
2763
2764static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2765{
2766 unsigned long count = 0;
2767 struct page *page;
2768 unsigned long flags;
2769
2770 spin_lock_irqsave(&n->list_lock, flags);
2771
2772 list_for_each_entry(page, &n->partial, lru) {
2773 validate_slab_slab(s, page);
2774 count++;
2775 }
2776 if (count != n->nr_partial)
2777 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2778 "counter=%ld\n", s->name, count, n->nr_partial);
2779
2780 if (!(s->flags & SLAB_STORE_USER))
2781 goto out;
2782
2783 list_for_each_entry(page, &n->full, lru) {
2784 validate_slab_slab(s, page);
2785 count++;
2786 }
2787 if (count != atomic_long_read(&n->nr_slabs))
2788 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2789 "counter=%ld\n", s->name, count,
2790 atomic_long_read(&n->nr_slabs));
2791
2792out:
2793 spin_unlock_irqrestore(&n->list_lock, flags);
2794 return count;
2795}
2796
2797static unsigned long validate_slab_cache(struct kmem_cache *s)
2798{
2799 int node;
2800 unsigned long count = 0;
2801
2802 flush_all(s);
2803 for_each_online_node(node) {
2804 struct kmem_cache_node *n = get_node(s, node);
2805
2806 count += validate_slab_node(s, n);
2807 }
2808 return count;
2809}
2810
b3459709
CL
2811#ifdef SLUB_RESILIENCY_TEST
2812static void resiliency_test(void)
2813{
2814 u8 *p;
2815
2816 printk(KERN_ERR "SLUB resiliency testing\n");
2817 printk(KERN_ERR "-----------------------\n");
2818 printk(KERN_ERR "A. Corruption after allocation\n");
2819
2820 p = kzalloc(16, GFP_KERNEL);
2821 p[16] = 0x12;
2822 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2823 " 0x12->0x%p\n\n", p + 16);
2824
2825 validate_slab_cache(kmalloc_caches + 4);
2826
2827 /* Hmmm... The next two are dangerous */
2828 p = kzalloc(32, GFP_KERNEL);
2829 p[32 + sizeof(void *)] = 0x34;
2830 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2831 " 0x34 -> -0x%p\n", p);
2832 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2833
2834 validate_slab_cache(kmalloc_caches + 5);
2835 p = kzalloc(64, GFP_KERNEL);
2836 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2837 *p = 0x56;
2838 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2839 p);
2840 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2841 validate_slab_cache(kmalloc_caches + 6);
2842
2843 printk(KERN_ERR "\nB. Corruption after free\n");
2844 p = kzalloc(128, GFP_KERNEL);
2845 kfree(p);
2846 *p = 0x78;
2847 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2848 validate_slab_cache(kmalloc_caches + 7);
2849
2850 p = kzalloc(256, GFP_KERNEL);
2851 kfree(p);
2852 p[50] = 0x9a;
2853 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2854 validate_slab_cache(kmalloc_caches + 8);
2855
2856 p = kzalloc(512, GFP_KERNEL);
2857 kfree(p);
2858 p[512] = 0xab;
2859 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2860 validate_slab_cache(kmalloc_caches + 9);
2861}
2862#else
2863static void resiliency_test(void) {};
2864#endif
2865
88a420e4 2866/*
672bba3a 2867 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
2868 * and freed.
2869 */
2870
2871struct location {
2872 unsigned long count;
2873 void *addr;
45edfa58
CL
2874 long long sum_time;
2875 long min_time;
2876 long max_time;
2877 long min_pid;
2878 long max_pid;
2879 cpumask_t cpus;
2880 nodemask_t nodes;
88a420e4
CL
2881};
2882
2883struct loc_track {
2884 unsigned long max;
2885 unsigned long count;
2886 struct location *loc;
2887};
2888
2889static void free_loc_track(struct loc_track *t)
2890{
2891 if (t->max)
2892 free_pages((unsigned long)t->loc,
2893 get_order(sizeof(struct location) * t->max));
2894}
2895
2896static int alloc_loc_track(struct loc_track *t, unsigned long max)
2897{
2898 struct location *l;
2899 int order;
2900
2901 if (!max)
2902 max = PAGE_SIZE / sizeof(struct location);
2903
2904 order = get_order(sizeof(struct location) * max);
2905
dd08c40e 2906 l = (void *)__get_free_pages(GFP_ATOMIC, order);
88a420e4
CL
2907
2908 if (!l)
2909 return 0;
2910
2911 if (t->count) {
2912 memcpy(l, t->loc, sizeof(struct location) * t->count);
2913 free_loc_track(t);
2914 }
2915 t->max = max;
2916 t->loc = l;
2917 return 1;
2918}
2919
2920static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 2921 const struct track *track)
88a420e4
CL
2922{
2923 long start, end, pos;
2924 struct location *l;
2925 void *caddr;
45edfa58 2926 unsigned long age = jiffies - track->when;
88a420e4
CL
2927
2928 start = -1;
2929 end = t->count;
2930
2931 for ( ; ; ) {
2932 pos = start + (end - start + 1) / 2;
2933
2934 /*
2935 * There is nothing at "end". If we end up there
2936 * we need to add something to before end.
2937 */
2938 if (pos == end)
2939 break;
2940
2941 caddr = t->loc[pos].addr;
45edfa58
CL
2942 if (track->addr == caddr) {
2943
2944 l = &t->loc[pos];
2945 l->count++;
2946 if (track->when) {
2947 l->sum_time += age;
2948 if (age < l->min_time)
2949 l->min_time = age;
2950 if (age > l->max_time)
2951 l->max_time = age;
2952
2953 if (track->pid < l->min_pid)
2954 l->min_pid = track->pid;
2955 if (track->pid > l->max_pid)
2956 l->max_pid = track->pid;
2957
2958 cpu_set(track->cpu, l->cpus);
2959 }
2960 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
2961 return 1;
2962 }
2963
45edfa58 2964 if (track->addr < caddr)
88a420e4
CL
2965 end = pos;
2966 else
2967 start = pos;
2968 }
2969
2970 /*
672bba3a 2971 * Not found. Insert new tracking element.
88a420e4
CL
2972 */
2973 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2974 return 0;
2975
2976 l = t->loc + pos;
2977 if (pos < t->count)
2978 memmove(l + 1, l,
2979 (t->count - pos) * sizeof(struct location));
2980 t->count++;
2981 l->count = 1;
45edfa58
CL
2982 l->addr = track->addr;
2983 l->sum_time = age;
2984 l->min_time = age;
2985 l->max_time = age;
2986 l->min_pid = track->pid;
2987 l->max_pid = track->pid;
2988 cpus_clear(l->cpus);
2989 cpu_set(track->cpu, l->cpus);
2990 nodes_clear(l->nodes);
2991 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
2992 return 1;
2993}
2994
2995static void process_slab(struct loc_track *t, struct kmem_cache *s,
2996 struct page *page, enum track_item alloc)
2997{
2998 void *addr = page_address(page);
7656c72b 2999 DECLARE_BITMAP(map, s->objects);
88a420e4
CL
3000 void *p;
3001
3002 bitmap_zero(map, s->objects);
7656c72b
CL
3003 for_each_free_object(p, s, page->freelist)
3004 set_bit(slab_index(p, s, addr), map);
88a420e4 3005
7656c72b 3006 for_each_object(p, s, addr)
45edfa58
CL
3007 if (!test_bit(slab_index(p, s, addr), map))
3008 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3009}
3010
3011static int list_locations(struct kmem_cache *s, char *buf,
3012 enum track_item alloc)
3013{
3014 int n = 0;
3015 unsigned long i;
3016 struct loc_track t;
3017 int node;
3018
3019 t.count = 0;
3020 t.max = 0;
3021
3022 /* Push back cpu slabs */
3023 flush_all(s);
3024
3025 for_each_online_node(node) {
3026 struct kmem_cache_node *n = get_node(s, node);
3027 unsigned long flags;
3028 struct page *page;
3029
3030 if (!atomic_read(&n->nr_slabs))
3031 continue;
3032
3033 spin_lock_irqsave(&n->list_lock, flags);
3034 list_for_each_entry(page, &n->partial, lru)
3035 process_slab(&t, s, page, alloc);
3036 list_for_each_entry(page, &n->full, lru)
3037 process_slab(&t, s, page, alloc);
3038 spin_unlock_irqrestore(&n->list_lock, flags);
3039 }
3040
3041 for (i = 0; i < t.count; i++) {
45edfa58 3042 struct location *l = &t.loc[i];
88a420e4
CL
3043
3044 if (n > PAGE_SIZE - 100)
3045 break;
45edfa58
CL
3046 n += sprintf(buf + n, "%7ld ", l->count);
3047
3048 if (l->addr)
3049 n += sprint_symbol(buf + n, (unsigned long)l->addr);
88a420e4
CL
3050 else
3051 n += sprintf(buf + n, "<not-available>");
45edfa58
CL
3052
3053 if (l->sum_time != l->min_time) {
3054 unsigned long remainder;
3055
3056 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3057 l->min_time,
3058 div_long_long_rem(l->sum_time, l->count, &remainder),
3059 l->max_time);
3060 } else
3061 n += sprintf(buf + n, " age=%ld",
3062 l->min_time);
3063
3064 if (l->min_pid != l->max_pid)
3065 n += sprintf(buf + n, " pid=%ld-%ld",
3066 l->min_pid, l->max_pid);
3067 else
3068 n += sprintf(buf + n, " pid=%ld",
3069 l->min_pid);
3070
84966343
CL
3071 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3072 n < PAGE_SIZE - 60) {
45edfa58
CL
3073 n += sprintf(buf + n, " cpus=");
3074 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3075 l->cpus);
3076 }
3077
84966343
CL
3078 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3079 n < PAGE_SIZE - 60) {
45edfa58
CL
3080 n += sprintf(buf + n, " nodes=");
3081 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3082 l->nodes);
3083 }
3084
88a420e4
CL
3085 n += sprintf(buf + n, "\n");
3086 }
3087
3088 free_loc_track(&t);
3089 if (!t.count)
3090 n += sprintf(buf, "No data\n");
3091 return n;
3092}
3093
81819f0f
CL
3094static unsigned long count_partial(struct kmem_cache_node *n)
3095{
3096 unsigned long flags;
3097 unsigned long x = 0;
3098 struct page *page;
3099
3100 spin_lock_irqsave(&n->list_lock, flags);
3101 list_for_each_entry(page, &n->partial, lru)
3102 x += page->inuse;
3103 spin_unlock_irqrestore(&n->list_lock, flags);
3104 return x;
3105}
3106
3107enum slab_stat_type {
3108 SL_FULL,
3109 SL_PARTIAL,
3110 SL_CPU,
3111 SL_OBJECTS
3112};
3113
3114#define SO_FULL (1 << SL_FULL)
3115#define SO_PARTIAL (1 << SL_PARTIAL)
3116#define SO_CPU (1 << SL_CPU)
3117#define SO_OBJECTS (1 << SL_OBJECTS)
3118
3119static unsigned long slab_objects(struct kmem_cache *s,
3120 char *buf, unsigned long flags)
3121{
3122 unsigned long total = 0;
3123 int cpu;
3124 int node;
3125 int x;
3126 unsigned long *nodes;
3127 unsigned long *per_cpu;
3128
3129 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3130 per_cpu = nodes + nr_node_ids;
3131
3132 for_each_possible_cpu(cpu) {
3133 struct page *page = s->cpu_slab[cpu];
3134 int node;
3135
3136 if (page) {
3137 node = page_to_nid(page);
3138 if (flags & SO_CPU) {
3139 int x = 0;
3140
3141 if (flags & SO_OBJECTS)
3142 x = page->inuse;
3143 else
3144 x = 1;
3145 total += x;
3146 nodes[node] += x;
3147 }
3148 per_cpu[node]++;
3149 }
3150 }
3151
3152 for_each_online_node(node) {
3153 struct kmem_cache_node *n = get_node(s, node);
3154
3155 if (flags & SO_PARTIAL) {
3156 if (flags & SO_OBJECTS)
3157 x = count_partial(n);
3158 else
3159 x = n->nr_partial;
3160 total += x;
3161 nodes[node] += x;
3162 }
3163
3164 if (flags & SO_FULL) {
3165 int full_slabs = atomic_read(&n->nr_slabs)
3166 - per_cpu[node]
3167 - n->nr_partial;
3168
3169 if (flags & SO_OBJECTS)
3170 x = full_slabs * s->objects;
3171 else
3172 x = full_slabs;
3173 total += x;
3174 nodes[node] += x;
3175 }
3176 }
3177
3178 x = sprintf(buf, "%lu", total);
3179#ifdef CONFIG_NUMA
3180 for_each_online_node(node)
3181 if (nodes[node])
3182 x += sprintf(buf + x, " N%d=%lu",
3183 node, nodes[node]);
3184#endif
3185 kfree(nodes);
3186 return x + sprintf(buf + x, "\n");
3187}
3188
3189static int any_slab_objects(struct kmem_cache *s)
3190{
3191 int node;
3192 int cpu;
3193
3194 for_each_possible_cpu(cpu)
3195 if (s->cpu_slab[cpu])
3196 return 1;
3197
3198 for_each_node(node) {
3199 struct kmem_cache_node *n = get_node(s, node);
3200
3201 if (n->nr_partial || atomic_read(&n->nr_slabs))
3202 return 1;
3203 }
3204 return 0;
3205}
3206
3207#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3208#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3209
3210struct slab_attribute {
3211 struct attribute attr;
3212 ssize_t (*show)(struct kmem_cache *s, char *buf);
3213 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3214};
3215
3216#define SLAB_ATTR_RO(_name) \
3217 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3218
3219#define SLAB_ATTR(_name) \
3220 static struct slab_attribute _name##_attr = \
3221 __ATTR(_name, 0644, _name##_show, _name##_store)
3222
81819f0f
CL
3223static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3224{
3225 return sprintf(buf, "%d\n", s->size);
3226}
3227SLAB_ATTR_RO(slab_size);
3228
3229static ssize_t align_show(struct kmem_cache *s, char *buf)
3230{
3231 return sprintf(buf, "%d\n", s->align);
3232}
3233SLAB_ATTR_RO(align);
3234
3235static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3236{
3237 return sprintf(buf, "%d\n", s->objsize);
3238}
3239SLAB_ATTR_RO(object_size);
3240
3241static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3242{
3243 return sprintf(buf, "%d\n", s->objects);
3244}
3245SLAB_ATTR_RO(objs_per_slab);
3246
3247static ssize_t order_show(struct kmem_cache *s, char *buf)
3248{
3249 return sprintf(buf, "%d\n", s->order);
3250}
3251SLAB_ATTR_RO(order);
3252
3253static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3254{
3255 if (s->ctor) {
3256 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3257
3258 return n + sprintf(buf + n, "\n");
3259 }
3260 return 0;
3261}
3262SLAB_ATTR_RO(ctor);
3263
81819f0f
CL
3264static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3265{
3266 return sprintf(buf, "%d\n", s->refcount - 1);
3267}
3268SLAB_ATTR_RO(aliases);
3269
3270static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3271{
3272 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3273}
3274SLAB_ATTR_RO(slabs);
3275
3276static ssize_t partial_show(struct kmem_cache *s, char *buf)
3277{
3278 return slab_objects(s, buf, SO_PARTIAL);
3279}
3280SLAB_ATTR_RO(partial);
3281
3282static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3283{
3284 return slab_objects(s, buf, SO_CPU);
3285}
3286SLAB_ATTR_RO(cpu_slabs);
3287
3288static ssize_t objects_show(struct kmem_cache *s, char *buf)
3289{
3290 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3291}
3292SLAB_ATTR_RO(objects);
3293
3294static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3295{
3296 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3297}
3298
3299static ssize_t sanity_checks_store(struct kmem_cache *s,
3300 const char *buf, size_t length)
3301{
3302 s->flags &= ~SLAB_DEBUG_FREE;
3303 if (buf[0] == '1')
3304 s->flags |= SLAB_DEBUG_FREE;
3305 return length;
3306}
3307SLAB_ATTR(sanity_checks);
3308
3309static ssize_t trace_show(struct kmem_cache *s, char *buf)
3310{
3311 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3312}
3313
3314static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3315 size_t length)
3316{
3317 s->flags &= ~SLAB_TRACE;
3318 if (buf[0] == '1')
3319 s->flags |= SLAB_TRACE;
3320 return length;
3321}
3322SLAB_ATTR(trace);
3323
3324static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3325{
3326 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3327}
3328
3329static ssize_t reclaim_account_store(struct kmem_cache *s,
3330 const char *buf, size_t length)
3331{
3332 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3333 if (buf[0] == '1')
3334 s->flags |= SLAB_RECLAIM_ACCOUNT;
3335 return length;
3336}
3337SLAB_ATTR(reclaim_account);
3338
3339static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3340{
5af60839 3341 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3342}
3343SLAB_ATTR_RO(hwcache_align);
3344
3345#ifdef CONFIG_ZONE_DMA
3346static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3347{
3348 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3349}
3350SLAB_ATTR_RO(cache_dma);
3351#endif
3352
3353static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3354{
3355 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3356}
3357SLAB_ATTR_RO(destroy_by_rcu);
3358
3359static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3360{
3361 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3362}
3363
3364static ssize_t red_zone_store(struct kmem_cache *s,
3365 const char *buf, size_t length)
3366{
3367 if (any_slab_objects(s))
3368 return -EBUSY;
3369
3370 s->flags &= ~SLAB_RED_ZONE;
3371 if (buf[0] == '1')
3372 s->flags |= SLAB_RED_ZONE;
3373 calculate_sizes(s);
3374 return length;
3375}
3376SLAB_ATTR(red_zone);
3377
3378static ssize_t poison_show(struct kmem_cache *s, char *buf)
3379{
3380 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3381}
3382
3383static ssize_t poison_store(struct kmem_cache *s,
3384 const char *buf, size_t length)
3385{
3386 if (any_slab_objects(s))
3387 return -EBUSY;
3388
3389 s->flags &= ~SLAB_POISON;
3390 if (buf[0] == '1')
3391 s->flags |= SLAB_POISON;
3392 calculate_sizes(s);
3393 return length;
3394}
3395SLAB_ATTR(poison);
3396
3397static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3398{
3399 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3400}
3401
3402static ssize_t store_user_store(struct kmem_cache *s,
3403 const char *buf, size_t length)
3404{
3405 if (any_slab_objects(s))
3406 return -EBUSY;
3407
3408 s->flags &= ~SLAB_STORE_USER;
3409 if (buf[0] == '1')
3410 s->flags |= SLAB_STORE_USER;
3411 calculate_sizes(s);
3412 return length;
3413}
3414SLAB_ATTR(store_user);
3415
53e15af0
CL
3416static ssize_t validate_show(struct kmem_cache *s, char *buf)
3417{
3418 return 0;
3419}
3420
3421static ssize_t validate_store(struct kmem_cache *s,
3422 const char *buf, size_t length)
3423{
3424 if (buf[0] == '1')
3425 validate_slab_cache(s);
3426 else
3427 return -EINVAL;
3428 return length;
3429}
3430SLAB_ATTR(validate);
3431
2086d26a
CL
3432static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3433{
3434 return 0;
3435}
3436
3437static ssize_t shrink_store(struct kmem_cache *s,
3438 const char *buf, size_t length)
3439{
3440 if (buf[0] == '1') {
3441 int rc = kmem_cache_shrink(s);
3442
3443 if (rc)
3444 return rc;
3445 } else
3446 return -EINVAL;
3447 return length;
3448}
3449SLAB_ATTR(shrink);
3450
88a420e4
CL
3451static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3452{
3453 if (!(s->flags & SLAB_STORE_USER))
3454 return -ENOSYS;
3455 return list_locations(s, buf, TRACK_ALLOC);
3456}
3457SLAB_ATTR_RO(alloc_calls);
3458
3459static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3460{
3461 if (!(s->flags & SLAB_STORE_USER))
3462 return -ENOSYS;
3463 return list_locations(s, buf, TRACK_FREE);
3464}
3465SLAB_ATTR_RO(free_calls);
3466
81819f0f
CL
3467#ifdef CONFIG_NUMA
3468static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3469{
3470 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3471}
3472
3473static ssize_t defrag_ratio_store(struct kmem_cache *s,
3474 const char *buf, size_t length)
3475{
3476 int n = simple_strtoul(buf, NULL, 10);
3477
3478 if (n < 100)
3479 s->defrag_ratio = n * 10;
3480 return length;
3481}
3482SLAB_ATTR(defrag_ratio);
3483#endif
3484
3485static struct attribute * slab_attrs[] = {
3486 &slab_size_attr.attr,
3487 &object_size_attr.attr,
3488 &objs_per_slab_attr.attr,
3489 &order_attr.attr,
3490 &objects_attr.attr,
3491 &slabs_attr.attr,
3492 &partial_attr.attr,
3493 &cpu_slabs_attr.attr,
3494 &ctor_attr.attr,
81819f0f
CL
3495 &aliases_attr.attr,
3496 &align_attr.attr,
3497 &sanity_checks_attr.attr,
3498 &trace_attr.attr,
3499 &hwcache_align_attr.attr,
3500 &reclaim_account_attr.attr,
3501 &destroy_by_rcu_attr.attr,
3502 &red_zone_attr.attr,
3503 &poison_attr.attr,
3504 &store_user_attr.attr,
53e15af0 3505 &validate_attr.attr,
2086d26a 3506 &shrink_attr.attr,
88a420e4
CL
3507 &alloc_calls_attr.attr,
3508 &free_calls_attr.attr,
81819f0f
CL
3509#ifdef CONFIG_ZONE_DMA
3510 &cache_dma_attr.attr,
3511#endif
3512#ifdef CONFIG_NUMA
3513 &defrag_ratio_attr.attr,
3514#endif
3515 NULL
3516};
3517
3518static struct attribute_group slab_attr_group = {
3519 .attrs = slab_attrs,
3520};
3521
3522static ssize_t slab_attr_show(struct kobject *kobj,
3523 struct attribute *attr,
3524 char *buf)
3525{
3526 struct slab_attribute *attribute;
3527 struct kmem_cache *s;
3528 int err;
3529
3530 attribute = to_slab_attr(attr);
3531 s = to_slab(kobj);
3532
3533 if (!attribute->show)
3534 return -EIO;
3535
3536 err = attribute->show(s, buf);
3537
3538 return err;
3539}
3540
3541static ssize_t slab_attr_store(struct kobject *kobj,
3542 struct attribute *attr,
3543 const char *buf, size_t len)
3544{
3545 struct slab_attribute *attribute;
3546 struct kmem_cache *s;
3547 int err;
3548
3549 attribute = to_slab_attr(attr);
3550 s = to_slab(kobj);
3551
3552 if (!attribute->store)
3553 return -EIO;
3554
3555 err = attribute->store(s, buf, len);
3556
3557 return err;
3558}
3559
3560static struct sysfs_ops slab_sysfs_ops = {
3561 .show = slab_attr_show,
3562 .store = slab_attr_store,
3563};
3564
3565static struct kobj_type slab_ktype = {
3566 .sysfs_ops = &slab_sysfs_ops,
3567};
3568
3569static int uevent_filter(struct kset *kset, struct kobject *kobj)
3570{
3571 struct kobj_type *ktype = get_ktype(kobj);
3572
3573 if (ktype == &slab_ktype)
3574 return 1;
3575 return 0;
3576}
3577
3578static struct kset_uevent_ops slab_uevent_ops = {
3579 .filter = uevent_filter,
3580};
3581
3582decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3583
3584#define ID_STR_LENGTH 64
3585
3586/* Create a unique string id for a slab cache:
3587 * format
3588 * :[flags-]size:[memory address of kmemcache]
3589 */
3590static char *create_unique_id(struct kmem_cache *s)
3591{
3592 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3593 char *p = name;
3594
3595 BUG_ON(!name);
3596
3597 *p++ = ':';
3598 /*
3599 * First flags affecting slabcache operations. We will only
3600 * get here for aliasable slabs so we do not need to support
3601 * too many flags. The flags here must cover all flags that
3602 * are matched during merging to guarantee that the id is
3603 * unique.
3604 */
3605 if (s->flags & SLAB_CACHE_DMA)
3606 *p++ = 'd';
3607 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3608 *p++ = 'a';
3609 if (s->flags & SLAB_DEBUG_FREE)
3610 *p++ = 'F';
3611 if (p != name + 1)
3612 *p++ = '-';
3613 p += sprintf(p, "%07d", s->size);
3614 BUG_ON(p > name + ID_STR_LENGTH - 1);
3615 return name;
3616}
3617
3618static int sysfs_slab_add(struct kmem_cache *s)
3619{
3620 int err;
3621 const char *name;
3622 int unmergeable;
3623
3624 if (slab_state < SYSFS)
3625 /* Defer until later */
3626 return 0;
3627
3628 unmergeable = slab_unmergeable(s);
3629 if (unmergeable) {
3630 /*
3631 * Slabcache can never be merged so we can use the name proper.
3632 * This is typically the case for debug situations. In that
3633 * case we can catch duplicate names easily.
3634 */
0f9008ef 3635 sysfs_remove_link(&slab_subsys.kobj, s->name);
81819f0f
CL
3636 name = s->name;
3637 } else {
3638 /*
3639 * Create a unique name for the slab as a target
3640 * for the symlinks.
3641 */
3642 name = create_unique_id(s);
3643 }
3644
3645 kobj_set_kset_s(s, slab_subsys);
3646 kobject_set_name(&s->kobj, name);
3647 kobject_init(&s->kobj);
3648 err = kobject_add(&s->kobj);
3649 if (err)
3650 return err;
3651
3652 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3653 if (err)
3654 return err;
3655 kobject_uevent(&s->kobj, KOBJ_ADD);
3656 if (!unmergeable) {
3657 /* Setup first alias */
3658 sysfs_slab_alias(s, s->name);
3659 kfree(name);
3660 }
3661 return 0;
3662}
3663
3664static void sysfs_slab_remove(struct kmem_cache *s)
3665{
3666 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3667 kobject_del(&s->kobj);
3668}
3669
3670/*
3671 * Need to buffer aliases during bootup until sysfs becomes
3672 * available lest we loose that information.
3673 */
3674struct saved_alias {
3675 struct kmem_cache *s;
3676 const char *name;
3677 struct saved_alias *next;
3678};
3679
3680struct saved_alias *alias_list;
3681
3682static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3683{
3684 struct saved_alias *al;
3685
3686 if (slab_state == SYSFS) {
3687 /*
3688 * If we have a leftover link then remove it.
3689 */
0f9008ef
LT
3690 sysfs_remove_link(&slab_subsys.kobj, name);
3691 return sysfs_create_link(&slab_subsys.kobj,
81819f0f
CL
3692 &s->kobj, name);
3693 }
3694
3695 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3696 if (!al)
3697 return -ENOMEM;
3698
3699 al->s = s;
3700 al->name = name;
3701 al->next = alias_list;
3702 alias_list = al;
3703 return 0;
3704}
3705
3706static int __init slab_sysfs_init(void)
3707{
26a7bd03 3708 struct list_head *h;
81819f0f
CL
3709 int err;
3710
3711 err = subsystem_register(&slab_subsys);
3712 if (err) {
3713 printk(KERN_ERR "Cannot register slab subsystem.\n");
3714 return -ENOSYS;
3715 }
3716
26a7bd03
CL
3717 slab_state = SYSFS;
3718
3719 list_for_each(h, &slab_caches) {
3720 struct kmem_cache *s =
3721 container_of(h, struct kmem_cache, list);
3722
3723 err = sysfs_slab_add(s);
3724 BUG_ON(err);
3725 }
81819f0f
CL
3726
3727 while (alias_list) {
3728 struct saved_alias *al = alias_list;
3729
3730 alias_list = alias_list->next;
3731 err = sysfs_slab_alias(al->s, al->name);
3732 BUG_ON(err);
3733 kfree(al);
3734 }
3735
3736 resiliency_test();
3737 return 0;
3738}
3739
3740__initcall(slab_sysfs_init);
81819f0f 3741#endif