slob: fix gfp flags for order-0 page allocations
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f
CL
30
31/*
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
35 *
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
42 *
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
48 *
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
54 *
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
67 *
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
72 *
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
75 *
672bba3a
CL
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 78 * freed then the slab will show up again on the partial lists.
672bba3a
CL
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
81819f0f
CL
81 *
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
85 *
86 * Overloading of page flags that are otherwise used for LRU management.
87 *
4b6f0750
CL
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
96 *
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
dfb4f096 100 * freelist that allows lockless access to
894b8788
CL
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
81819f0f
CL
103 *
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
894b8788 106 * the fast path and disables lockless freelists.
81819f0f
CL
107 */
108
af537b0a
CL
109#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 SLAB_TRACE | SLAB_DEBUG_FREE)
111
112static inline int kmem_cache_debug(struct kmem_cache *s)
113{
5577bd8a 114#ifdef CONFIG_SLUB_DEBUG
af537b0a 115 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 116#else
af537b0a 117 return 0;
5577bd8a 118#endif
af537b0a 119}
5577bd8a 120
81819f0f
CL
121/*
122 * Issues still to be resolved:
123 *
81819f0f
CL
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
125 *
81819f0f
CL
126 * - Variable sizing of the per node arrays
127 */
128
129/* Enable to test recovery from slab corruption on boot */
130#undef SLUB_RESILIENCY_TEST
131
2086d26a
CL
132/*
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
135 */
76be8950 136#define MIN_PARTIAL 5
e95eed57 137
2086d26a
CL
138/*
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
142 */
143#define MAX_PARTIAL 10
144
81819f0f
CL
145#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 SLAB_POISON | SLAB_STORE_USER)
672bba3a 147
fa5ec8a1 148/*
3de47213
DR
149 * Debugging flags that require metadata to be stored in the slab. These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
fa5ec8a1 152 */
3de47213 153#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 154
81819f0f
CL
155/*
156 * Set of flags that will prevent slab merging
157 */
158#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
159 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 SLAB_FAILSLAB)
81819f0f
CL
161
162#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 163 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 164
210b5c06
CG
165#define OO_SHIFT 16
166#define OO_MASK ((1 << OO_SHIFT) - 1)
167#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
168
81819f0f 169/* Internal SLUB flags */
f90ec390 170#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
171
172static int kmem_size = sizeof(struct kmem_cache);
173
174#ifdef CONFIG_SMP
175static struct notifier_block slab_notifier;
176#endif
177
178static enum {
179 DOWN, /* No slab functionality available */
51df1142 180 PARTIAL, /* Kmem_cache_node works */
672bba3a 181 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
182 SYSFS /* Sysfs up */
183} slab_state = DOWN;
184
185/* A list of all slab caches on the system */
186static DECLARE_RWSEM(slub_lock);
5af328a5 187static LIST_HEAD(slab_caches);
81819f0f 188
02cbc874
CL
189/*
190 * Tracking user of a slab.
191 */
192struct track {
ce71e27c 193 unsigned long addr; /* Called from address */
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
f6acb635 201#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
204static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 205
81819f0f 206#else
0c710013
CL
207static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
151c602f
CL
210static inline void sysfs_slab_remove(struct kmem_cache *s)
211{
212 kfree(s);
213}
8ff12cfc 214
81819f0f
CL
215#endif
216
84e554e6 217static inline void stat(struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
218{
219#ifdef CONFIG_SLUB_STATS
84e554e6 220 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
221#endif
222}
223
81819f0f
CL
224/********************************************************************
225 * Core slab cache functions
226 *******************************************************************/
227
228int slab_is_available(void)
229{
230 return slab_state >= UP;
231}
232
233static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
234{
235#ifdef CONFIG_NUMA
236 return s->node[node];
237#else
238 return &s->local_node;
239#endif
240}
241
6446faa2 242/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
243static inline int check_valid_pointer(struct kmem_cache *s,
244 struct page *page, const void *object)
245{
246 void *base;
247
a973e9dd 248 if (!object)
02cbc874
CL
249 return 1;
250
a973e9dd 251 base = page_address(page);
39b26464 252 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
253 (object - base) % s->size) {
254 return 0;
255 }
256
257 return 1;
258}
259
7656c72b
CL
260static inline void *get_freepointer(struct kmem_cache *s, void *object)
261{
262 return *(void **)(object + s->offset);
263}
264
265static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
266{
267 *(void **)(object + s->offset) = fp;
268}
269
270/* Loop over all objects in a slab */
224a88be
CL
271#define for_each_object(__p, __s, __addr, __objects) \
272 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
273 __p += (__s)->size)
274
275/* Scan freelist */
276#define for_each_free_object(__p, __s, __free) \
a973e9dd 277 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
278
279/* Determine object index from a given position */
280static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
281{
282 return (p - addr) / s->size;
283}
284
834f3d11
CL
285static inline struct kmem_cache_order_objects oo_make(int order,
286 unsigned long size)
287{
288 struct kmem_cache_order_objects x = {
210b5c06 289 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
290 };
291
292 return x;
293}
294
295static inline int oo_order(struct kmem_cache_order_objects x)
296{
210b5c06 297 return x.x >> OO_SHIFT;
834f3d11
CL
298}
299
300static inline int oo_objects(struct kmem_cache_order_objects x)
301{
210b5c06 302 return x.x & OO_MASK;
834f3d11
CL
303}
304
41ecc55b
CL
305#ifdef CONFIG_SLUB_DEBUG
306/*
307 * Debug settings:
308 */
f0630fff
CL
309#ifdef CONFIG_SLUB_DEBUG_ON
310static int slub_debug = DEBUG_DEFAULT_FLAGS;
311#else
41ecc55b 312static int slub_debug;
f0630fff 313#endif
41ecc55b
CL
314
315static char *slub_debug_slabs;
fa5ec8a1 316static int disable_higher_order_debug;
41ecc55b 317
81819f0f
CL
318/*
319 * Object debugging
320 */
321static void print_section(char *text, u8 *addr, unsigned int length)
322{
323 int i, offset;
324 int newline = 1;
325 char ascii[17];
326
327 ascii[16] = 0;
328
329 for (i = 0; i < length; i++) {
330 if (newline) {
24922684 331 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
332 newline = 0;
333 }
06428780 334 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
335 offset = i % 16;
336 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
337 if (offset == 15) {
06428780 338 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
339 newline = 1;
340 }
341 }
342 if (!newline) {
343 i %= 16;
344 while (i < 16) {
06428780 345 printk(KERN_CONT " ");
81819f0f
CL
346 ascii[i] = ' ';
347 i++;
348 }
06428780 349 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
350 }
351}
352
81819f0f
CL
353static struct track *get_track(struct kmem_cache *s, void *object,
354 enum track_item alloc)
355{
356 struct track *p;
357
358 if (s->offset)
359 p = object + s->offset + sizeof(void *);
360 else
361 p = object + s->inuse;
362
363 return p + alloc;
364}
365
366static void set_track(struct kmem_cache *s, void *object,
ce71e27c 367 enum track_item alloc, unsigned long addr)
81819f0f 368{
1a00df4a 369 struct track *p = get_track(s, object, alloc);
81819f0f 370
81819f0f
CL
371 if (addr) {
372 p->addr = addr;
373 p->cpu = smp_processor_id();
88e4ccf2 374 p->pid = current->pid;
81819f0f
CL
375 p->when = jiffies;
376 } else
377 memset(p, 0, sizeof(struct track));
378}
379
81819f0f
CL
380static void init_tracking(struct kmem_cache *s, void *object)
381{
24922684
CL
382 if (!(s->flags & SLAB_STORE_USER))
383 return;
384
ce71e27c
EGM
385 set_track(s, object, TRACK_FREE, 0UL);
386 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
387}
388
389static void print_track(const char *s, struct track *t)
390{
391 if (!t->addr)
392 return;
393
7daf705f 394 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 395 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
396}
397
398static void print_tracking(struct kmem_cache *s, void *object)
399{
400 if (!(s->flags & SLAB_STORE_USER))
401 return;
402
403 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
404 print_track("Freed", get_track(s, object, TRACK_FREE));
405}
406
407static void print_page_info(struct page *page)
408{
39b26464
CL
409 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
410 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
411
412}
413
414static void slab_bug(struct kmem_cache *s, char *fmt, ...)
415{
416 va_list args;
417 char buf[100];
418
419 va_start(args, fmt);
420 vsnprintf(buf, sizeof(buf), fmt, args);
421 va_end(args);
422 printk(KERN_ERR "========================================"
423 "=====================================\n");
424 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
425 printk(KERN_ERR "----------------------------------------"
426 "-------------------------------------\n\n");
81819f0f
CL
427}
428
24922684
CL
429static void slab_fix(struct kmem_cache *s, char *fmt, ...)
430{
431 va_list args;
432 char buf[100];
433
434 va_start(args, fmt);
435 vsnprintf(buf, sizeof(buf), fmt, args);
436 va_end(args);
437 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
438}
439
440static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
441{
442 unsigned int off; /* Offset of last byte */
a973e9dd 443 u8 *addr = page_address(page);
24922684
CL
444
445 print_tracking(s, p);
446
447 print_page_info(page);
448
449 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
450 p, p - addr, get_freepointer(s, p));
451
452 if (p > addr + 16)
453 print_section("Bytes b4", p - 16, 16);
454
0ebd652b 455 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
456
457 if (s->flags & SLAB_RED_ZONE)
458 print_section("Redzone", p + s->objsize,
459 s->inuse - s->objsize);
460
81819f0f
CL
461 if (s->offset)
462 off = s->offset + sizeof(void *);
463 else
464 off = s->inuse;
465
24922684 466 if (s->flags & SLAB_STORE_USER)
81819f0f 467 off += 2 * sizeof(struct track);
81819f0f
CL
468
469 if (off != s->size)
470 /* Beginning of the filler is the free pointer */
24922684
CL
471 print_section("Padding", p + off, s->size - off);
472
473 dump_stack();
81819f0f
CL
474}
475
476static void object_err(struct kmem_cache *s, struct page *page,
477 u8 *object, char *reason)
478{
3dc50637 479 slab_bug(s, "%s", reason);
24922684 480 print_trailer(s, page, object);
81819f0f
CL
481}
482
24922684 483static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
484{
485 va_list args;
486 char buf[100];
487
24922684
CL
488 va_start(args, fmt);
489 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 490 va_end(args);
3dc50637 491 slab_bug(s, "%s", buf);
24922684 492 print_page_info(page);
81819f0f
CL
493 dump_stack();
494}
495
496static void init_object(struct kmem_cache *s, void *object, int active)
497{
498 u8 *p = object;
499
500 if (s->flags & __OBJECT_POISON) {
501 memset(p, POISON_FREE, s->objsize - 1);
06428780 502 p[s->objsize - 1] = POISON_END;
81819f0f
CL
503 }
504
505 if (s->flags & SLAB_RED_ZONE)
506 memset(p + s->objsize,
507 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
508 s->inuse - s->objsize);
509}
510
24922684 511static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
512{
513 while (bytes) {
514 if (*start != (u8)value)
24922684 515 return start;
81819f0f
CL
516 start++;
517 bytes--;
518 }
24922684
CL
519 return NULL;
520}
521
522static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
523 void *from, void *to)
524{
525 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
526 memset(from, data, to - from);
527}
528
529static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
530 u8 *object, char *what,
06428780 531 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
532{
533 u8 *fault;
534 u8 *end;
535
536 fault = check_bytes(start, value, bytes);
537 if (!fault)
538 return 1;
539
540 end = start + bytes;
541 while (end > fault && end[-1] == value)
542 end--;
543
544 slab_bug(s, "%s overwritten", what);
545 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
546 fault, end - 1, fault[0], value);
547 print_trailer(s, page, object);
548
549 restore_bytes(s, what, value, fault, end);
550 return 0;
81819f0f
CL
551}
552
81819f0f
CL
553/*
554 * Object layout:
555 *
556 * object address
557 * Bytes of the object to be managed.
558 * If the freepointer may overlay the object then the free
559 * pointer is the first word of the object.
672bba3a 560 *
81819f0f
CL
561 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
562 * 0xa5 (POISON_END)
563 *
564 * object + s->objsize
565 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
566 * Padding is extended by another word if Redzoning is enabled and
567 * objsize == inuse.
568 *
81819f0f
CL
569 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
570 * 0xcc (RED_ACTIVE) for objects in use.
571 *
572 * object + s->inuse
672bba3a
CL
573 * Meta data starts here.
574 *
81819f0f
CL
575 * A. Free pointer (if we cannot overwrite object on free)
576 * B. Tracking data for SLAB_STORE_USER
672bba3a 577 * C. Padding to reach required alignment boundary or at mininum
6446faa2 578 * one word if debugging is on to be able to detect writes
672bba3a
CL
579 * before the word boundary.
580 *
581 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
582 *
583 * object + s->size
672bba3a 584 * Nothing is used beyond s->size.
81819f0f 585 *
672bba3a
CL
586 * If slabcaches are merged then the objsize and inuse boundaries are mostly
587 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
588 * may be used with merged slabcaches.
589 */
590
81819f0f
CL
591static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
592{
593 unsigned long off = s->inuse; /* The end of info */
594
595 if (s->offset)
596 /* Freepointer is placed after the object. */
597 off += sizeof(void *);
598
599 if (s->flags & SLAB_STORE_USER)
600 /* We also have user information there */
601 off += 2 * sizeof(struct track);
602
603 if (s->size == off)
604 return 1;
605
24922684
CL
606 return check_bytes_and_report(s, page, p, "Object padding",
607 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
608}
609
39b26464 610/* Check the pad bytes at the end of a slab page */
81819f0f
CL
611static int slab_pad_check(struct kmem_cache *s, struct page *page)
612{
24922684
CL
613 u8 *start;
614 u8 *fault;
615 u8 *end;
616 int length;
617 int remainder;
81819f0f
CL
618
619 if (!(s->flags & SLAB_POISON))
620 return 1;
621
a973e9dd 622 start = page_address(page);
834f3d11 623 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
624 end = start + length;
625 remainder = length % s->size;
81819f0f
CL
626 if (!remainder)
627 return 1;
628
39b26464 629 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
630 if (!fault)
631 return 1;
632 while (end > fault && end[-1] == POISON_INUSE)
633 end--;
634
635 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 636 print_section("Padding", end - remainder, remainder);
24922684 637
8a3d271d 638 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 639 return 0;
81819f0f
CL
640}
641
642static int check_object(struct kmem_cache *s, struct page *page,
643 void *object, int active)
644{
645 u8 *p = object;
646 u8 *endobject = object + s->objsize;
647
648 if (s->flags & SLAB_RED_ZONE) {
649 unsigned int red =
650 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
651
24922684
CL
652 if (!check_bytes_and_report(s, page, object, "Redzone",
653 endobject, red, s->inuse - s->objsize))
81819f0f 654 return 0;
81819f0f 655 } else {
3adbefee
IM
656 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
657 check_bytes_and_report(s, page, p, "Alignment padding",
658 endobject, POISON_INUSE, s->inuse - s->objsize);
659 }
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_POISON) {
663 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
664 (!check_bytes_and_report(s, page, p, "Poison", p,
665 POISON_FREE, s->objsize - 1) ||
666 !check_bytes_and_report(s, page, p, "Poison",
06428780 667 p + s->objsize - 1, POISON_END, 1)))
81819f0f 668 return 0;
81819f0f
CL
669 /*
670 * check_pad_bytes cleans up on its own.
671 */
672 check_pad_bytes(s, page, p);
673 }
674
675 if (!s->offset && active)
676 /*
677 * Object and freepointer overlap. Cannot check
678 * freepointer while object is allocated.
679 */
680 return 1;
681
682 /* Check free pointer validity */
683 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
684 object_err(s, page, p, "Freepointer corrupt");
685 /*
9f6c708e 686 * No choice but to zap it and thus lose the remainder
81819f0f 687 * of the free objects in this slab. May cause
672bba3a 688 * another error because the object count is now wrong.
81819f0f 689 */
a973e9dd 690 set_freepointer(s, p, NULL);
81819f0f
CL
691 return 0;
692 }
693 return 1;
694}
695
696static int check_slab(struct kmem_cache *s, struct page *page)
697{
39b26464
CL
698 int maxobj;
699
81819f0f
CL
700 VM_BUG_ON(!irqs_disabled());
701
702 if (!PageSlab(page)) {
24922684 703 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
704 return 0;
705 }
39b26464
CL
706
707 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
708 if (page->objects > maxobj) {
709 slab_err(s, page, "objects %u > max %u",
710 s->name, page->objects, maxobj);
711 return 0;
712 }
713 if (page->inuse > page->objects) {
24922684 714 slab_err(s, page, "inuse %u > max %u",
39b26464 715 s->name, page->inuse, page->objects);
81819f0f
CL
716 return 0;
717 }
718 /* Slab_pad_check fixes things up after itself */
719 slab_pad_check(s, page);
720 return 1;
721}
722
723/*
672bba3a
CL
724 * Determine if a certain object on a page is on the freelist. Must hold the
725 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
726 */
727static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
728{
729 int nr = 0;
730 void *fp = page->freelist;
731 void *object = NULL;
224a88be 732 unsigned long max_objects;
81819f0f 733
39b26464 734 while (fp && nr <= page->objects) {
81819f0f
CL
735 if (fp == search)
736 return 1;
737 if (!check_valid_pointer(s, page, fp)) {
738 if (object) {
739 object_err(s, page, object,
740 "Freechain corrupt");
a973e9dd 741 set_freepointer(s, object, NULL);
81819f0f
CL
742 break;
743 } else {
24922684 744 slab_err(s, page, "Freepointer corrupt");
a973e9dd 745 page->freelist = NULL;
39b26464 746 page->inuse = page->objects;
24922684 747 slab_fix(s, "Freelist cleared");
81819f0f
CL
748 return 0;
749 }
750 break;
751 }
752 object = fp;
753 fp = get_freepointer(s, object);
754 nr++;
755 }
756
224a88be 757 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
758 if (max_objects > MAX_OBJS_PER_PAGE)
759 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
760
761 if (page->objects != max_objects) {
762 slab_err(s, page, "Wrong number of objects. Found %d but "
763 "should be %d", page->objects, max_objects);
764 page->objects = max_objects;
765 slab_fix(s, "Number of objects adjusted.");
766 }
39b26464 767 if (page->inuse != page->objects - nr) {
70d71228 768 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
769 "counted were %d", page->inuse, page->objects - nr);
770 page->inuse = page->objects - nr;
24922684 771 slab_fix(s, "Object count adjusted.");
81819f0f
CL
772 }
773 return search == NULL;
774}
775
0121c619
CL
776static void trace(struct kmem_cache *s, struct page *page, void *object,
777 int alloc)
3ec09742
CL
778{
779 if (s->flags & SLAB_TRACE) {
780 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
781 s->name,
782 alloc ? "alloc" : "free",
783 object, page->inuse,
784 page->freelist);
785
786 if (!alloc)
787 print_section("Object", (void *)object, s->objsize);
788
789 dump_stack();
790 }
791}
792
c016b0bd
CL
793/*
794 * Hooks for other subsystems that check memory allocations. In a typical
795 * production configuration these hooks all should produce no code at all.
796 */
797static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
798{
c1d50836 799 flags &= gfp_allowed_mask;
c016b0bd
CL
800 lockdep_trace_alloc(flags);
801 might_sleep_if(flags & __GFP_WAIT);
802
803 return should_failslab(s->objsize, flags, s->flags);
804}
805
806static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
807{
c1d50836 808 flags &= gfp_allowed_mask;
c016b0bd
CL
809 kmemcheck_slab_alloc(s, flags, object, s->objsize);
810 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
811}
812
813static inline void slab_free_hook(struct kmem_cache *s, void *x)
814{
815 kmemleak_free_recursive(x, s->flags);
816}
817
818static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
819{
820 kmemcheck_slab_free(s, object, s->objsize);
821 debug_check_no_locks_freed(object, s->objsize);
822 if (!(s->flags & SLAB_DEBUG_OBJECTS))
823 debug_check_no_obj_freed(object, s->objsize);
824}
825
643b1138 826/*
672bba3a 827 * Tracking of fully allocated slabs for debugging purposes.
643b1138 828 */
e95eed57 829static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 830{
643b1138
CL
831 spin_lock(&n->list_lock);
832 list_add(&page->lru, &n->full);
833 spin_unlock(&n->list_lock);
834}
835
836static void remove_full(struct kmem_cache *s, struct page *page)
837{
838 struct kmem_cache_node *n;
839
840 if (!(s->flags & SLAB_STORE_USER))
841 return;
842
843 n = get_node(s, page_to_nid(page));
844
845 spin_lock(&n->list_lock);
846 list_del(&page->lru);
847 spin_unlock(&n->list_lock);
848}
849
0f389ec6
CL
850/* Tracking of the number of slabs for debugging purposes */
851static inline unsigned long slabs_node(struct kmem_cache *s, int node)
852{
853 struct kmem_cache_node *n = get_node(s, node);
854
855 return atomic_long_read(&n->nr_slabs);
856}
857
26c02cf0
AB
858static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
859{
860 return atomic_long_read(&n->nr_slabs);
861}
862
205ab99d 863static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
864{
865 struct kmem_cache_node *n = get_node(s, node);
866
867 /*
868 * May be called early in order to allocate a slab for the
869 * kmem_cache_node structure. Solve the chicken-egg
870 * dilemma by deferring the increment of the count during
871 * bootstrap (see early_kmem_cache_node_alloc).
872 */
205ab99d 873 if (!NUMA_BUILD || n) {
0f389ec6 874 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
875 atomic_long_add(objects, &n->total_objects);
876 }
0f389ec6 877}
205ab99d 878static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
879{
880 struct kmem_cache_node *n = get_node(s, node);
881
882 atomic_long_dec(&n->nr_slabs);
205ab99d 883 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
884}
885
886/* Object debug checks for alloc/free paths */
3ec09742
CL
887static void setup_object_debug(struct kmem_cache *s, struct page *page,
888 void *object)
889{
890 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
891 return;
892
893 init_object(s, object, 0);
894 init_tracking(s, object);
895}
896
1537066c 897static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 898 void *object, unsigned long addr)
81819f0f
CL
899{
900 if (!check_slab(s, page))
901 goto bad;
902
d692ef6d 903 if (!on_freelist(s, page, object)) {
24922684 904 object_err(s, page, object, "Object already allocated");
70d71228 905 goto bad;
81819f0f
CL
906 }
907
908 if (!check_valid_pointer(s, page, object)) {
909 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 910 goto bad;
81819f0f
CL
911 }
912
d692ef6d 913 if (!check_object(s, page, object, 0))
81819f0f 914 goto bad;
81819f0f 915
3ec09742
CL
916 /* Success perform special debug activities for allocs */
917 if (s->flags & SLAB_STORE_USER)
918 set_track(s, object, TRACK_ALLOC, addr);
919 trace(s, page, object, 1);
920 init_object(s, object, 1);
81819f0f 921 return 1;
3ec09742 922
81819f0f
CL
923bad:
924 if (PageSlab(page)) {
925 /*
926 * If this is a slab page then lets do the best we can
927 * to avoid issues in the future. Marking all objects
672bba3a 928 * as used avoids touching the remaining objects.
81819f0f 929 */
24922684 930 slab_fix(s, "Marking all objects used");
39b26464 931 page->inuse = page->objects;
a973e9dd 932 page->freelist = NULL;
81819f0f
CL
933 }
934 return 0;
935}
936
1537066c
CL
937static noinline int free_debug_processing(struct kmem_cache *s,
938 struct page *page, void *object, unsigned long addr)
81819f0f
CL
939{
940 if (!check_slab(s, page))
941 goto fail;
942
943 if (!check_valid_pointer(s, page, object)) {
70d71228 944 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
945 goto fail;
946 }
947
948 if (on_freelist(s, page, object)) {
24922684 949 object_err(s, page, object, "Object already free");
81819f0f
CL
950 goto fail;
951 }
952
953 if (!check_object(s, page, object, 1))
954 return 0;
955
956 if (unlikely(s != page->slab)) {
3adbefee 957 if (!PageSlab(page)) {
70d71228
CL
958 slab_err(s, page, "Attempt to free object(0x%p) "
959 "outside of slab", object);
3adbefee 960 } else if (!page->slab) {
81819f0f 961 printk(KERN_ERR
70d71228 962 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 963 object);
70d71228 964 dump_stack();
06428780 965 } else
24922684
CL
966 object_err(s, page, object,
967 "page slab pointer corrupt.");
81819f0f
CL
968 goto fail;
969 }
3ec09742
CL
970
971 /* Special debug activities for freeing objects */
8a38082d 972 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
973 remove_full(s, page);
974 if (s->flags & SLAB_STORE_USER)
975 set_track(s, object, TRACK_FREE, addr);
976 trace(s, page, object, 0);
977 init_object(s, object, 0);
81819f0f 978 return 1;
3ec09742 979
81819f0f 980fail:
24922684 981 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
982 return 0;
983}
984
41ecc55b
CL
985static int __init setup_slub_debug(char *str)
986{
f0630fff
CL
987 slub_debug = DEBUG_DEFAULT_FLAGS;
988 if (*str++ != '=' || !*str)
989 /*
990 * No options specified. Switch on full debugging.
991 */
992 goto out;
993
994 if (*str == ',')
995 /*
996 * No options but restriction on slabs. This means full
997 * debugging for slabs matching a pattern.
998 */
999 goto check_slabs;
1000
fa5ec8a1
DR
1001 if (tolower(*str) == 'o') {
1002 /*
1003 * Avoid enabling debugging on caches if its minimum order
1004 * would increase as a result.
1005 */
1006 disable_higher_order_debug = 1;
1007 goto out;
1008 }
1009
f0630fff
CL
1010 slub_debug = 0;
1011 if (*str == '-')
1012 /*
1013 * Switch off all debugging measures.
1014 */
1015 goto out;
1016
1017 /*
1018 * Determine which debug features should be switched on
1019 */
06428780 1020 for (; *str && *str != ','; str++) {
f0630fff
CL
1021 switch (tolower(*str)) {
1022 case 'f':
1023 slub_debug |= SLAB_DEBUG_FREE;
1024 break;
1025 case 'z':
1026 slub_debug |= SLAB_RED_ZONE;
1027 break;
1028 case 'p':
1029 slub_debug |= SLAB_POISON;
1030 break;
1031 case 'u':
1032 slub_debug |= SLAB_STORE_USER;
1033 break;
1034 case 't':
1035 slub_debug |= SLAB_TRACE;
1036 break;
4c13dd3b
DM
1037 case 'a':
1038 slub_debug |= SLAB_FAILSLAB;
1039 break;
f0630fff
CL
1040 default:
1041 printk(KERN_ERR "slub_debug option '%c' "
06428780 1042 "unknown. skipped\n", *str);
f0630fff 1043 }
41ecc55b
CL
1044 }
1045
f0630fff 1046check_slabs:
41ecc55b
CL
1047 if (*str == ',')
1048 slub_debug_slabs = str + 1;
f0630fff 1049out:
41ecc55b
CL
1050 return 1;
1051}
1052
1053__setup("slub_debug", setup_slub_debug);
1054
ba0268a8
CL
1055static unsigned long kmem_cache_flags(unsigned long objsize,
1056 unsigned long flags, const char *name,
51cc5068 1057 void (*ctor)(void *))
41ecc55b
CL
1058{
1059 /*
e153362a 1060 * Enable debugging if selected on the kernel commandline.
41ecc55b 1061 */
e153362a 1062 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1063 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1064 flags |= slub_debug;
ba0268a8
CL
1065
1066 return flags;
41ecc55b
CL
1067}
1068#else
3ec09742
CL
1069static inline void setup_object_debug(struct kmem_cache *s,
1070 struct page *page, void *object) {}
41ecc55b 1071
3ec09742 1072static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1073 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1074
3ec09742 1075static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1076 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1077
41ecc55b
CL
1078static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1079 { return 1; }
1080static inline int check_object(struct kmem_cache *s, struct page *page,
1081 void *object, int active) { return 1; }
3ec09742 1082static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1083static inline unsigned long kmem_cache_flags(unsigned long objsize,
1084 unsigned long flags, const char *name,
51cc5068 1085 void (*ctor)(void *))
ba0268a8
CL
1086{
1087 return flags;
1088}
41ecc55b 1089#define slub_debug 0
0f389ec6 1090
fdaa45e9
IM
1091#define disable_higher_order_debug 0
1092
0f389ec6
CL
1093static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1094 { return 0; }
26c02cf0
AB
1095static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1096 { return 0; }
205ab99d
CL
1097static inline void inc_slabs_node(struct kmem_cache *s, int node,
1098 int objects) {}
1099static inline void dec_slabs_node(struct kmem_cache *s, int node,
1100 int objects) {}
41ecc55b 1101#endif
205ab99d 1102
81819f0f
CL
1103/*
1104 * Slab allocation and freeing
1105 */
65c3376a
CL
1106static inline struct page *alloc_slab_page(gfp_t flags, int node,
1107 struct kmem_cache_order_objects oo)
1108{
1109 int order = oo_order(oo);
1110
b1eeab67
VN
1111 flags |= __GFP_NOTRACK;
1112
2154a336 1113 if (node == NUMA_NO_NODE)
65c3376a
CL
1114 return alloc_pages(flags, order);
1115 else
6b65aaf3 1116 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1117}
1118
81819f0f
CL
1119static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1120{
06428780 1121 struct page *page;
834f3d11 1122 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1123 gfp_t alloc_gfp;
81819f0f 1124
b7a49f0d 1125 flags |= s->allocflags;
e12ba74d 1126
ba52270d
PE
1127 /*
1128 * Let the initial higher-order allocation fail under memory pressure
1129 * so we fall-back to the minimum order allocation.
1130 */
1131 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1132
1133 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1134 if (unlikely(!page)) {
1135 oo = s->min;
1136 /*
1137 * Allocation may have failed due to fragmentation.
1138 * Try a lower order alloc if possible
1139 */
1140 page = alloc_slab_page(flags, node, oo);
1141 if (!page)
1142 return NULL;
81819f0f 1143
84e554e6 1144 stat(s, ORDER_FALLBACK);
65c3376a 1145 }
5a896d9e
VN
1146
1147 if (kmemcheck_enabled
5086c389 1148 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1149 int pages = 1 << oo_order(oo);
1150
1151 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1152
1153 /*
1154 * Objects from caches that have a constructor don't get
1155 * cleared when they're allocated, so we need to do it here.
1156 */
1157 if (s->ctor)
1158 kmemcheck_mark_uninitialized_pages(page, pages);
1159 else
1160 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1161 }
1162
834f3d11 1163 page->objects = oo_objects(oo);
81819f0f
CL
1164 mod_zone_page_state(page_zone(page),
1165 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1166 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1167 1 << oo_order(oo));
81819f0f
CL
1168
1169 return page;
1170}
1171
1172static void setup_object(struct kmem_cache *s, struct page *page,
1173 void *object)
1174{
3ec09742 1175 setup_object_debug(s, page, object);
4f104934 1176 if (unlikely(s->ctor))
51cc5068 1177 s->ctor(object);
81819f0f
CL
1178}
1179
1180static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1181{
1182 struct page *page;
81819f0f 1183 void *start;
81819f0f
CL
1184 void *last;
1185 void *p;
1186
6cb06229 1187 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1188
6cb06229
CL
1189 page = allocate_slab(s,
1190 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1191 if (!page)
1192 goto out;
1193
205ab99d 1194 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1195 page->slab = s;
1196 page->flags |= 1 << PG_slab;
81819f0f
CL
1197
1198 start = page_address(page);
81819f0f
CL
1199
1200 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1201 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1202
1203 last = start;
224a88be 1204 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1205 setup_object(s, page, last);
1206 set_freepointer(s, last, p);
1207 last = p;
1208 }
1209 setup_object(s, page, last);
a973e9dd 1210 set_freepointer(s, last, NULL);
81819f0f
CL
1211
1212 page->freelist = start;
1213 page->inuse = 0;
1214out:
81819f0f
CL
1215 return page;
1216}
1217
1218static void __free_slab(struct kmem_cache *s, struct page *page)
1219{
834f3d11
CL
1220 int order = compound_order(page);
1221 int pages = 1 << order;
81819f0f 1222
af537b0a 1223 if (kmem_cache_debug(s)) {
81819f0f
CL
1224 void *p;
1225
1226 slab_pad_check(s, page);
224a88be
CL
1227 for_each_object(p, s, page_address(page),
1228 page->objects)
81819f0f 1229 check_object(s, page, p, 0);
81819f0f
CL
1230 }
1231
b1eeab67 1232 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1233
81819f0f
CL
1234 mod_zone_page_state(page_zone(page),
1235 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1236 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1237 -pages);
81819f0f 1238
49bd5221
CL
1239 __ClearPageSlab(page);
1240 reset_page_mapcount(page);
1eb5ac64
NP
1241 if (current->reclaim_state)
1242 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1243 __free_pages(page, order);
81819f0f
CL
1244}
1245
1246static void rcu_free_slab(struct rcu_head *h)
1247{
1248 struct page *page;
1249
1250 page = container_of((struct list_head *)h, struct page, lru);
1251 __free_slab(page->slab, page);
1252}
1253
1254static void free_slab(struct kmem_cache *s, struct page *page)
1255{
1256 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1257 /*
1258 * RCU free overloads the RCU head over the LRU
1259 */
1260 struct rcu_head *head = (void *)&page->lru;
1261
1262 call_rcu(head, rcu_free_slab);
1263 } else
1264 __free_slab(s, page);
1265}
1266
1267static void discard_slab(struct kmem_cache *s, struct page *page)
1268{
205ab99d 1269 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1270 free_slab(s, page);
1271}
1272
1273/*
1274 * Per slab locking using the pagelock
1275 */
1276static __always_inline void slab_lock(struct page *page)
1277{
1278 bit_spin_lock(PG_locked, &page->flags);
1279}
1280
1281static __always_inline void slab_unlock(struct page *page)
1282{
a76d3546 1283 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1284}
1285
1286static __always_inline int slab_trylock(struct page *page)
1287{
1288 int rc = 1;
1289
1290 rc = bit_spin_trylock(PG_locked, &page->flags);
1291 return rc;
1292}
1293
1294/*
1295 * Management of partially allocated slabs
1296 */
7c2e132c
CL
1297static void add_partial(struct kmem_cache_node *n,
1298 struct page *page, int tail)
81819f0f 1299{
e95eed57
CL
1300 spin_lock(&n->list_lock);
1301 n->nr_partial++;
7c2e132c
CL
1302 if (tail)
1303 list_add_tail(&page->lru, &n->partial);
1304 else
1305 list_add(&page->lru, &n->partial);
81819f0f
CL
1306 spin_unlock(&n->list_lock);
1307}
1308
0121c619 1309static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1310{
1311 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1312
1313 spin_lock(&n->list_lock);
1314 list_del(&page->lru);
1315 n->nr_partial--;
1316 spin_unlock(&n->list_lock);
1317}
1318
1319/*
672bba3a 1320 * Lock slab and remove from the partial list.
81819f0f 1321 *
672bba3a 1322 * Must hold list_lock.
81819f0f 1323 */
0121c619
CL
1324static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1325 struct page *page)
81819f0f
CL
1326{
1327 if (slab_trylock(page)) {
1328 list_del(&page->lru);
1329 n->nr_partial--;
8a38082d 1330 __SetPageSlubFrozen(page);
81819f0f
CL
1331 return 1;
1332 }
1333 return 0;
1334}
1335
1336/*
672bba3a 1337 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1338 */
1339static struct page *get_partial_node(struct kmem_cache_node *n)
1340{
1341 struct page *page;
1342
1343 /*
1344 * Racy check. If we mistakenly see no partial slabs then we
1345 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1346 * partial slab and there is none available then get_partials()
1347 * will return NULL.
81819f0f
CL
1348 */
1349 if (!n || !n->nr_partial)
1350 return NULL;
1351
1352 spin_lock(&n->list_lock);
1353 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1354 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1355 goto out;
1356 page = NULL;
1357out:
1358 spin_unlock(&n->list_lock);
1359 return page;
1360}
1361
1362/*
672bba3a 1363 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1364 */
1365static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1366{
1367#ifdef CONFIG_NUMA
1368 struct zonelist *zonelist;
dd1a239f 1369 struct zoneref *z;
54a6eb5c
MG
1370 struct zone *zone;
1371 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1372 struct page *page;
1373
1374 /*
672bba3a
CL
1375 * The defrag ratio allows a configuration of the tradeoffs between
1376 * inter node defragmentation and node local allocations. A lower
1377 * defrag_ratio increases the tendency to do local allocations
1378 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1379 *
672bba3a
CL
1380 * If the defrag_ratio is set to 0 then kmalloc() always
1381 * returns node local objects. If the ratio is higher then kmalloc()
1382 * may return off node objects because partial slabs are obtained
1383 * from other nodes and filled up.
81819f0f 1384 *
6446faa2 1385 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1386 * defrag_ratio = 1000) then every (well almost) allocation will
1387 * first attempt to defrag slab caches on other nodes. This means
1388 * scanning over all nodes to look for partial slabs which may be
1389 * expensive if we do it every time we are trying to find a slab
1390 * with available objects.
81819f0f 1391 */
9824601e
CL
1392 if (!s->remote_node_defrag_ratio ||
1393 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1394 return NULL;
1395
c0ff7453 1396 get_mems_allowed();
0e88460d 1397 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1398 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1399 struct kmem_cache_node *n;
1400
54a6eb5c 1401 n = get_node(s, zone_to_nid(zone));
81819f0f 1402
54a6eb5c 1403 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1404 n->nr_partial > s->min_partial) {
81819f0f 1405 page = get_partial_node(n);
c0ff7453
MX
1406 if (page) {
1407 put_mems_allowed();
81819f0f 1408 return page;
c0ff7453 1409 }
81819f0f
CL
1410 }
1411 }
c0ff7453 1412 put_mems_allowed();
81819f0f
CL
1413#endif
1414 return NULL;
1415}
1416
1417/*
1418 * Get a partial page, lock it and return it.
1419 */
1420static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1421{
1422 struct page *page;
2154a336 1423 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1424
1425 page = get_partial_node(get_node(s, searchnode));
bc6488e9 1426 if (page || node != -1)
81819f0f
CL
1427 return page;
1428
1429 return get_any_partial(s, flags);
1430}
1431
1432/*
1433 * Move a page back to the lists.
1434 *
1435 * Must be called with the slab lock held.
1436 *
1437 * On exit the slab lock will have been dropped.
1438 */
7c2e132c 1439static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1440{
e95eed57
CL
1441 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1442
8a38082d 1443 __ClearPageSlubFrozen(page);
81819f0f 1444 if (page->inuse) {
e95eed57 1445
a973e9dd 1446 if (page->freelist) {
7c2e132c 1447 add_partial(n, page, tail);
84e554e6 1448 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1449 } else {
84e554e6 1450 stat(s, DEACTIVATE_FULL);
af537b0a 1451 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1452 add_full(n, page);
1453 }
81819f0f
CL
1454 slab_unlock(page);
1455 } else {
84e554e6 1456 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1457 if (n->nr_partial < s->min_partial) {
e95eed57 1458 /*
672bba3a
CL
1459 * Adding an empty slab to the partial slabs in order
1460 * to avoid page allocator overhead. This slab needs
1461 * to come after the other slabs with objects in
6446faa2
CL
1462 * so that the others get filled first. That way the
1463 * size of the partial list stays small.
1464 *
0121c619
CL
1465 * kmem_cache_shrink can reclaim any empty slabs from
1466 * the partial list.
e95eed57 1467 */
7c2e132c 1468 add_partial(n, page, 1);
e95eed57
CL
1469 slab_unlock(page);
1470 } else {
1471 slab_unlock(page);
84e554e6 1472 stat(s, FREE_SLAB);
e95eed57
CL
1473 discard_slab(s, page);
1474 }
81819f0f
CL
1475 }
1476}
1477
1478/*
1479 * Remove the cpu slab
1480 */
dfb4f096 1481static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1482{
dfb4f096 1483 struct page *page = c->page;
7c2e132c 1484 int tail = 1;
8ff12cfc 1485
b773ad73 1486 if (page->freelist)
84e554e6 1487 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1488 /*
6446faa2 1489 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1490 * because both freelists are empty. So this is unlikely
1491 * to occur.
1492 */
a973e9dd 1493 while (unlikely(c->freelist)) {
894b8788
CL
1494 void **object;
1495
7c2e132c
CL
1496 tail = 0; /* Hot objects. Put the slab first */
1497
894b8788 1498 /* Retrieve object from cpu_freelist */
dfb4f096 1499 object = c->freelist;
ff12059e 1500 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1501
1502 /* And put onto the regular freelist */
ff12059e 1503 set_freepointer(s, object, page->freelist);
894b8788
CL
1504 page->freelist = object;
1505 page->inuse--;
1506 }
dfb4f096 1507 c->page = NULL;
7c2e132c 1508 unfreeze_slab(s, page, tail);
81819f0f
CL
1509}
1510
dfb4f096 1511static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1512{
84e554e6 1513 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1514 slab_lock(c->page);
1515 deactivate_slab(s, c);
81819f0f
CL
1516}
1517
1518/*
1519 * Flush cpu slab.
6446faa2 1520 *
81819f0f
CL
1521 * Called from IPI handler with interrupts disabled.
1522 */
0c710013 1523static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1524{
9dfc6e68 1525 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1526
dfb4f096
CL
1527 if (likely(c && c->page))
1528 flush_slab(s, c);
81819f0f
CL
1529}
1530
1531static void flush_cpu_slab(void *d)
1532{
1533 struct kmem_cache *s = d;
81819f0f 1534
dfb4f096 1535 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1536}
1537
1538static void flush_all(struct kmem_cache *s)
1539{
15c8b6c1 1540 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1541}
1542
dfb4f096
CL
1543/*
1544 * Check if the objects in a per cpu structure fit numa
1545 * locality expectations.
1546 */
1547static inline int node_match(struct kmem_cache_cpu *c, int node)
1548{
1549#ifdef CONFIG_NUMA
2154a336 1550 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1551 return 0;
1552#endif
1553 return 1;
1554}
1555
781b2ba6
PE
1556static int count_free(struct page *page)
1557{
1558 return page->objects - page->inuse;
1559}
1560
1561static unsigned long count_partial(struct kmem_cache_node *n,
1562 int (*get_count)(struct page *))
1563{
1564 unsigned long flags;
1565 unsigned long x = 0;
1566 struct page *page;
1567
1568 spin_lock_irqsave(&n->list_lock, flags);
1569 list_for_each_entry(page, &n->partial, lru)
1570 x += get_count(page);
1571 spin_unlock_irqrestore(&n->list_lock, flags);
1572 return x;
1573}
1574
26c02cf0
AB
1575static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1576{
1577#ifdef CONFIG_SLUB_DEBUG
1578 return atomic_long_read(&n->total_objects);
1579#else
1580 return 0;
1581#endif
1582}
1583
781b2ba6
PE
1584static noinline void
1585slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1586{
1587 int node;
1588
1589 printk(KERN_WARNING
1590 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1591 nid, gfpflags);
1592 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1593 "default order: %d, min order: %d\n", s->name, s->objsize,
1594 s->size, oo_order(s->oo), oo_order(s->min));
1595
fa5ec8a1
DR
1596 if (oo_order(s->min) > get_order(s->objsize))
1597 printk(KERN_WARNING " %s debugging increased min order, use "
1598 "slub_debug=O to disable.\n", s->name);
1599
781b2ba6
PE
1600 for_each_online_node(node) {
1601 struct kmem_cache_node *n = get_node(s, node);
1602 unsigned long nr_slabs;
1603 unsigned long nr_objs;
1604 unsigned long nr_free;
1605
1606 if (!n)
1607 continue;
1608
26c02cf0
AB
1609 nr_free = count_partial(n, count_free);
1610 nr_slabs = node_nr_slabs(n);
1611 nr_objs = node_nr_objs(n);
781b2ba6
PE
1612
1613 printk(KERN_WARNING
1614 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1615 node, nr_slabs, nr_objs, nr_free);
1616 }
1617}
1618
81819f0f 1619/*
894b8788
CL
1620 * Slow path. The lockless freelist is empty or we need to perform
1621 * debugging duties.
1622 *
1623 * Interrupts are disabled.
81819f0f 1624 *
894b8788
CL
1625 * Processing is still very fast if new objects have been freed to the
1626 * regular freelist. In that case we simply take over the regular freelist
1627 * as the lockless freelist and zap the regular freelist.
81819f0f 1628 *
894b8788
CL
1629 * If that is not working then we fall back to the partial lists. We take the
1630 * first element of the freelist as the object to allocate now and move the
1631 * rest of the freelist to the lockless freelist.
81819f0f 1632 *
894b8788 1633 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1634 * we need to allocate a new slab. This is the slowest path since it involves
1635 * a call to the page allocator and the setup of a new slab.
81819f0f 1636 */
ce71e27c
EGM
1637static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1638 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1639{
81819f0f 1640 void **object;
dfb4f096 1641 struct page *new;
81819f0f 1642
e72e9c23
LT
1643 /* We handle __GFP_ZERO in the caller */
1644 gfpflags &= ~__GFP_ZERO;
1645
dfb4f096 1646 if (!c->page)
81819f0f
CL
1647 goto new_slab;
1648
dfb4f096
CL
1649 slab_lock(c->page);
1650 if (unlikely(!node_match(c, node)))
81819f0f 1651 goto another_slab;
6446faa2 1652
84e554e6 1653 stat(s, ALLOC_REFILL);
6446faa2 1654
894b8788 1655load_freelist:
dfb4f096 1656 object = c->page->freelist;
a973e9dd 1657 if (unlikely(!object))
81819f0f 1658 goto another_slab;
af537b0a 1659 if (kmem_cache_debug(s))
81819f0f
CL
1660 goto debug;
1661
ff12059e 1662 c->freelist = get_freepointer(s, object);
39b26464 1663 c->page->inuse = c->page->objects;
a973e9dd 1664 c->page->freelist = NULL;
dfb4f096 1665 c->node = page_to_nid(c->page);
1f84260c 1666unlock_out:
dfb4f096 1667 slab_unlock(c->page);
84e554e6 1668 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1669 return object;
1670
1671another_slab:
dfb4f096 1672 deactivate_slab(s, c);
81819f0f
CL
1673
1674new_slab:
dfb4f096
CL
1675 new = get_partial(s, gfpflags, node);
1676 if (new) {
1677 c->page = new;
84e554e6 1678 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1679 goto load_freelist;
81819f0f
CL
1680 }
1681
c1d50836 1682 gfpflags &= gfp_allowed_mask;
b811c202
CL
1683 if (gfpflags & __GFP_WAIT)
1684 local_irq_enable();
1685
dfb4f096 1686 new = new_slab(s, gfpflags, node);
b811c202
CL
1687
1688 if (gfpflags & __GFP_WAIT)
1689 local_irq_disable();
1690
dfb4f096 1691 if (new) {
9dfc6e68 1692 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1693 stat(s, ALLOC_SLAB);
05aa3450 1694 if (c->page)
dfb4f096 1695 flush_slab(s, c);
dfb4f096 1696 slab_lock(new);
8a38082d 1697 __SetPageSlubFrozen(new);
dfb4f096 1698 c->page = new;
4b6f0750 1699 goto load_freelist;
81819f0f 1700 }
95f85989
PE
1701 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1702 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1703 return NULL;
81819f0f 1704debug:
dfb4f096 1705 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1706 goto another_slab;
894b8788 1707
dfb4f096 1708 c->page->inuse++;
ff12059e 1709 c->page->freelist = get_freepointer(s, object);
ee3c72a1 1710 c->node = -1;
1f84260c 1711 goto unlock_out;
894b8788
CL
1712}
1713
1714/*
1715 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1716 * have the fastpath folded into their functions. So no function call
1717 * overhead for requests that can be satisfied on the fastpath.
1718 *
1719 * The fastpath works by first checking if the lockless freelist can be used.
1720 * If not then __slab_alloc is called for slow processing.
1721 *
1722 * Otherwise we can simply pick the next object from the lockless free list.
1723 */
06428780 1724static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1725 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1726{
894b8788 1727 void **object;
dfb4f096 1728 struct kmem_cache_cpu *c;
1f84260c
CL
1729 unsigned long flags;
1730
c016b0bd 1731 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1732 return NULL;
1f84260c 1733
894b8788 1734 local_irq_save(flags);
9dfc6e68
CL
1735 c = __this_cpu_ptr(s->cpu_slab);
1736 object = c->freelist;
9dfc6e68 1737 if (unlikely(!object || !node_match(c, node)))
894b8788 1738
dfb4f096 1739 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1740
1741 else {
ff12059e 1742 c->freelist = get_freepointer(s, object);
84e554e6 1743 stat(s, ALLOC_FASTPATH);
894b8788
CL
1744 }
1745 local_irq_restore(flags);
d07dbea4 1746
74e2134f 1747 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1748 memset(object, 0, s->objsize);
d07dbea4 1749
c016b0bd 1750 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1751
894b8788 1752 return object;
81819f0f
CL
1753}
1754
1755void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1756{
2154a336 1757 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1758
ca2b84cb 1759 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1760
1761 return ret;
81819f0f
CL
1762}
1763EXPORT_SYMBOL(kmem_cache_alloc);
1764
0f24f128 1765#ifdef CONFIG_TRACING
5b882be4
EGM
1766void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1767{
2154a336 1768 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4
EGM
1769}
1770EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1771#endif
1772
81819f0f
CL
1773#ifdef CONFIG_NUMA
1774void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1775{
5b882be4
EGM
1776 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1777
ca2b84cb
EGM
1778 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1779 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1780
1781 return ret;
81819f0f
CL
1782}
1783EXPORT_SYMBOL(kmem_cache_alloc_node);
1784#endif
1785
0f24f128 1786#ifdef CONFIG_TRACING
5b882be4
EGM
1787void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1788 gfp_t gfpflags,
1789 int node)
1790{
1791 return slab_alloc(s, gfpflags, node, _RET_IP_);
1792}
1793EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1794#endif
1795
81819f0f 1796/*
894b8788
CL
1797 * Slow patch handling. This may still be called frequently since objects
1798 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1799 *
894b8788
CL
1800 * So we still attempt to reduce cache line usage. Just take the slab
1801 * lock and free the item. If there is no additional partial page
1802 * handling required then we can return immediately.
81819f0f 1803 */
894b8788 1804static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 1805 void *x, unsigned long addr)
81819f0f
CL
1806{
1807 void *prior;
1808 void **object = (void *)x;
81819f0f 1809
84e554e6 1810 stat(s, FREE_SLOWPATH);
81819f0f
CL
1811 slab_lock(page);
1812
af537b0a 1813 if (kmem_cache_debug(s))
81819f0f 1814 goto debug;
6446faa2 1815
81819f0f 1816checks_ok:
ff12059e
CL
1817 prior = page->freelist;
1818 set_freepointer(s, object, prior);
81819f0f
CL
1819 page->freelist = object;
1820 page->inuse--;
1821
8a38082d 1822 if (unlikely(PageSlubFrozen(page))) {
84e554e6 1823 stat(s, FREE_FROZEN);
81819f0f 1824 goto out_unlock;
8ff12cfc 1825 }
81819f0f
CL
1826
1827 if (unlikely(!page->inuse))
1828 goto slab_empty;
1829
1830 /*
6446faa2 1831 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1832 * then add it.
1833 */
a973e9dd 1834 if (unlikely(!prior)) {
7c2e132c 1835 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 1836 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 1837 }
81819f0f
CL
1838
1839out_unlock:
1840 slab_unlock(page);
81819f0f
CL
1841 return;
1842
1843slab_empty:
a973e9dd 1844 if (prior) {
81819f0f 1845 /*
672bba3a 1846 * Slab still on the partial list.
81819f0f
CL
1847 */
1848 remove_partial(s, page);
84e554e6 1849 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 1850 }
81819f0f 1851 slab_unlock(page);
84e554e6 1852 stat(s, FREE_SLAB);
81819f0f 1853 discard_slab(s, page);
81819f0f
CL
1854 return;
1855
1856debug:
3ec09742 1857 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1858 goto out_unlock;
77c5e2d0 1859 goto checks_ok;
81819f0f
CL
1860}
1861
894b8788
CL
1862/*
1863 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1864 * can perform fastpath freeing without additional function calls.
1865 *
1866 * The fastpath is only possible if we are freeing to the current cpu slab
1867 * of this processor. This typically the case if we have just allocated
1868 * the item before.
1869 *
1870 * If fastpath is not possible then fall back to __slab_free where we deal
1871 * with all sorts of special processing.
1872 */
06428780 1873static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1874 struct page *page, void *x, unsigned long addr)
894b8788
CL
1875{
1876 void **object = (void *)x;
dfb4f096 1877 struct kmem_cache_cpu *c;
1f84260c
CL
1878 unsigned long flags;
1879
c016b0bd
CL
1880 slab_free_hook(s, x);
1881
894b8788 1882 local_irq_save(flags);
9dfc6e68 1883 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd
CL
1884
1885 slab_free_hook_irq(s, x);
1886
ee3c72a1 1887 if (likely(page == c->page && c->node >= 0)) {
ff12059e 1888 set_freepointer(s, object, c->freelist);
dfb4f096 1889 c->freelist = object;
84e554e6 1890 stat(s, FREE_FASTPATH);
894b8788 1891 } else
ff12059e 1892 __slab_free(s, page, x, addr);
894b8788
CL
1893
1894 local_irq_restore(flags);
1895}
1896
81819f0f
CL
1897void kmem_cache_free(struct kmem_cache *s, void *x)
1898{
77c5e2d0 1899 struct page *page;
81819f0f 1900
b49af68f 1901 page = virt_to_head_page(x);
81819f0f 1902
ce71e27c 1903 slab_free(s, page, x, _RET_IP_);
5b882be4 1904
ca2b84cb 1905 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1906}
1907EXPORT_SYMBOL(kmem_cache_free);
1908
e9beef18 1909/* Figure out on which slab page the object resides */
81819f0f
CL
1910static struct page *get_object_page(const void *x)
1911{
b49af68f 1912 struct page *page = virt_to_head_page(x);
81819f0f
CL
1913
1914 if (!PageSlab(page))
1915 return NULL;
1916
1917 return page;
1918}
1919
1920/*
672bba3a
CL
1921 * Object placement in a slab is made very easy because we always start at
1922 * offset 0. If we tune the size of the object to the alignment then we can
1923 * get the required alignment by putting one properly sized object after
1924 * another.
81819f0f
CL
1925 *
1926 * Notice that the allocation order determines the sizes of the per cpu
1927 * caches. Each processor has always one slab available for allocations.
1928 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1929 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1930 * locking overhead.
81819f0f
CL
1931 */
1932
1933/*
1934 * Mininum / Maximum order of slab pages. This influences locking overhead
1935 * and slab fragmentation. A higher order reduces the number of partial slabs
1936 * and increases the number of allocations possible without having to
1937 * take the list_lock.
1938 */
1939static int slub_min_order;
114e9e89 1940static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1941static int slub_min_objects;
81819f0f
CL
1942
1943/*
1944 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1945 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1946 */
1947static int slub_nomerge;
1948
81819f0f
CL
1949/*
1950 * Calculate the order of allocation given an slab object size.
1951 *
672bba3a
CL
1952 * The order of allocation has significant impact on performance and other
1953 * system components. Generally order 0 allocations should be preferred since
1954 * order 0 does not cause fragmentation in the page allocator. Larger objects
1955 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1956 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1957 * would be wasted.
1958 *
1959 * In order to reach satisfactory performance we must ensure that a minimum
1960 * number of objects is in one slab. Otherwise we may generate too much
1961 * activity on the partial lists which requires taking the list_lock. This is
1962 * less a concern for large slabs though which are rarely used.
81819f0f 1963 *
672bba3a
CL
1964 * slub_max_order specifies the order where we begin to stop considering the
1965 * number of objects in a slab as critical. If we reach slub_max_order then
1966 * we try to keep the page order as low as possible. So we accept more waste
1967 * of space in favor of a small page order.
81819f0f 1968 *
672bba3a
CL
1969 * Higher order allocations also allow the placement of more objects in a
1970 * slab and thereby reduce object handling overhead. If the user has
1971 * requested a higher mininum order then we start with that one instead of
1972 * the smallest order which will fit the object.
81819f0f 1973 */
5e6d444e
CL
1974static inline int slab_order(int size, int min_objects,
1975 int max_order, int fract_leftover)
81819f0f
CL
1976{
1977 int order;
1978 int rem;
6300ea75 1979 int min_order = slub_min_order;
81819f0f 1980
210b5c06
CG
1981 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1982 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1983
6300ea75 1984 for (order = max(min_order,
5e6d444e
CL
1985 fls(min_objects * size - 1) - PAGE_SHIFT);
1986 order <= max_order; order++) {
81819f0f 1987
5e6d444e 1988 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1989
5e6d444e 1990 if (slab_size < min_objects * size)
81819f0f
CL
1991 continue;
1992
1993 rem = slab_size % size;
1994
5e6d444e 1995 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1996 break;
1997
1998 }
672bba3a 1999
81819f0f
CL
2000 return order;
2001}
2002
5e6d444e
CL
2003static inline int calculate_order(int size)
2004{
2005 int order;
2006 int min_objects;
2007 int fraction;
e8120ff1 2008 int max_objects;
5e6d444e
CL
2009
2010 /*
2011 * Attempt to find best configuration for a slab. This
2012 * works by first attempting to generate a layout with
2013 * the best configuration and backing off gradually.
2014 *
2015 * First we reduce the acceptable waste in a slab. Then
2016 * we reduce the minimum objects required in a slab.
2017 */
2018 min_objects = slub_min_objects;
9b2cd506
CL
2019 if (!min_objects)
2020 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
2021 max_objects = (PAGE_SIZE << slub_max_order)/size;
2022 min_objects = min(min_objects, max_objects);
2023
5e6d444e 2024 while (min_objects > 1) {
c124f5b5 2025 fraction = 16;
5e6d444e
CL
2026 while (fraction >= 4) {
2027 order = slab_order(size, min_objects,
2028 slub_max_order, fraction);
2029 if (order <= slub_max_order)
2030 return order;
2031 fraction /= 2;
2032 }
5086c389 2033 min_objects--;
5e6d444e
CL
2034 }
2035
2036 /*
2037 * We were unable to place multiple objects in a slab. Now
2038 * lets see if we can place a single object there.
2039 */
2040 order = slab_order(size, 1, slub_max_order, 1);
2041 if (order <= slub_max_order)
2042 return order;
2043
2044 /*
2045 * Doh this slab cannot be placed using slub_max_order.
2046 */
2047 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2048 if (order < MAX_ORDER)
5e6d444e
CL
2049 return order;
2050 return -ENOSYS;
2051}
2052
81819f0f 2053/*
672bba3a 2054 * Figure out what the alignment of the objects will be.
81819f0f
CL
2055 */
2056static unsigned long calculate_alignment(unsigned long flags,
2057 unsigned long align, unsigned long size)
2058{
2059 /*
6446faa2
CL
2060 * If the user wants hardware cache aligned objects then follow that
2061 * suggestion if the object is sufficiently large.
81819f0f 2062 *
6446faa2
CL
2063 * The hardware cache alignment cannot override the specified
2064 * alignment though. If that is greater then use it.
81819f0f 2065 */
b6210386
NP
2066 if (flags & SLAB_HWCACHE_ALIGN) {
2067 unsigned long ralign = cache_line_size();
2068 while (size <= ralign / 2)
2069 ralign /= 2;
2070 align = max(align, ralign);
2071 }
81819f0f
CL
2072
2073 if (align < ARCH_SLAB_MINALIGN)
b6210386 2074 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2075
2076 return ALIGN(align, sizeof(void *));
2077}
2078
5595cffc
PE
2079static void
2080init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2081{
2082 n->nr_partial = 0;
81819f0f
CL
2083 spin_lock_init(&n->list_lock);
2084 INIT_LIST_HEAD(&n->partial);
8ab1372f 2085#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2086 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2087 atomic_long_set(&n->total_objects, 0);
643b1138 2088 INIT_LIST_HEAD(&n->full);
8ab1372f 2089#endif
81819f0f
CL
2090}
2091
55136592 2092static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2093{
6c182dc0
CL
2094 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2095 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2096
6c182dc0 2097 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
4c93c355 2098
6c182dc0 2099 return s->cpu_slab != NULL;
4c93c355 2100}
4c93c355 2101
81819f0f 2102#ifdef CONFIG_NUMA
51df1142
CL
2103static struct kmem_cache *kmem_cache_node;
2104
81819f0f
CL
2105/*
2106 * No kmalloc_node yet so do it by hand. We know that this is the first
2107 * slab on the node for this slabcache. There are no concurrent accesses
2108 * possible.
2109 *
2110 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2111 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2112 * memory on a fresh node that has no slab structures yet.
81819f0f 2113 */
55136592 2114static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2115{
2116 struct page *page;
2117 struct kmem_cache_node *n;
ba84c73c 2118 unsigned long flags;
81819f0f 2119
51df1142 2120 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2121
51df1142 2122 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2123
2124 BUG_ON(!page);
a2f92ee7
CL
2125 if (page_to_nid(page) != node) {
2126 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2127 "node %d\n", node);
2128 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2129 "in order to be able to continue\n");
2130 }
2131
81819f0f
CL
2132 n = page->freelist;
2133 BUG_ON(!n);
51df1142 2134 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2135 page->inuse++;
51df1142 2136 kmem_cache_node->node[node] = n;
8ab1372f 2137#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
2138 init_object(kmem_cache_node, n, 1);
2139 init_tracking(kmem_cache_node, n);
8ab1372f 2140#endif
51df1142
CL
2141 init_kmem_cache_node(n, kmem_cache_node);
2142 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2143
ba84c73c 2144 /*
2145 * lockdep requires consistent irq usage for each lock
2146 * so even though there cannot be a race this early in
2147 * the boot sequence, we still disable irqs.
2148 */
2149 local_irq_save(flags);
7c2e132c 2150 add_partial(n, page, 0);
ba84c73c 2151 local_irq_restore(flags);
81819f0f
CL
2152}
2153
2154static void free_kmem_cache_nodes(struct kmem_cache *s)
2155{
2156 int node;
2157
f64dc58c 2158 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2159 struct kmem_cache_node *n = s->node[node];
51df1142 2160
73367bd8 2161 if (n)
51df1142
CL
2162 kmem_cache_free(kmem_cache_node, n);
2163
81819f0f
CL
2164 s->node[node] = NULL;
2165 }
2166}
2167
55136592 2168static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2169{
2170 int node;
81819f0f 2171
f64dc58c 2172 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2173 struct kmem_cache_node *n;
2174
73367bd8 2175 if (slab_state == DOWN) {
55136592 2176 early_kmem_cache_node_alloc(node);
73367bd8
AD
2177 continue;
2178 }
51df1142 2179 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2180 GFP_KERNEL, node);
81819f0f 2181
73367bd8
AD
2182 if (!n) {
2183 free_kmem_cache_nodes(s);
2184 return 0;
81819f0f 2185 }
73367bd8 2186
81819f0f 2187 s->node[node] = n;
5595cffc 2188 init_kmem_cache_node(n, s);
81819f0f
CL
2189 }
2190 return 1;
2191}
2192#else
2193static void free_kmem_cache_nodes(struct kmem_cache *s)
2194{
2195}
2196
55136592 2197static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f 2198{
5595cffc 2199 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2200 return 1;
2201}
2202#endif
2203
c0bdb232 2204static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2205{
2206 if (min < MIN_PARTIAL)
2207 min = MIN_PARTIAL;
2208 else if (min > MAX_PARTIAL)
2209 min = MAX_PARTIAL;
2210 s->min_partial = min;
2211}
2212
81819f0f
CL
2213/*
2214 * calculate_sizes() determines the order and the distribution of data within
2215 * a slab object.
2216 */
06b285dc 2217static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2218{
2219 unsigned long flags = s->flags;
2220 unsigned long size = s->objsize;
2221 unsigned long align = s->align;
834f3d11 2222 int order;
81819f0f 2223
d8b42bf5
CL
2224 /*
2225 * Round up object size to the next word boundary. We can only
2226 * place the free pointer at word boundaries and this determines
2227 * the possible location of the free pointer.
2228 */
2229 size = ALIGN(size, sizeof(void *));
2230
2231#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2232 /*
2233 * Determine if we can poison the object itself. If the user of
2234 * the slab may touch the object after free or before allocation
2235 * then we should never poison the object itself.
2236 */
2237 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2238 !s->ctor)
81819f0f
CL
2239 s->flags |= __OBJECT_POISON;
2240 else
2241 s->flags &= ~__OBJECT_POISON;
2242
81819f0f
CL
2243
2244 /*
672bba3a 2245 * If we are Redzoning then check if there is some space between the
81819f0f 2246 * end of the object and the free pointer. If not then add an
672bba3a 2247 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2248 */
2249 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2250 size += sizeof(void *);
41ecc55b 2251#endif
81819f0f
CL
2252
2253 /*
672bba3a
CL
2254 * With that we have determined the number of bytes in actual use
2255 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2256 */
2257 s->inuse = size;
2258
2259 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2260 s->ctor)) {
81819f0f
CL
2261 /*
2262 * Relocate free pointer after the object if it is not
2263 * permitted to overwrite the first word of the object on
2264 * kmem_cache_free.
2265 *
2266 * This is the case if we do RCU, have a constructor or
2267 * destructor or are poisoning the objects.
2268 */
2269 s->offset = size;
2270 size += sizeof(void *);
2271 }
2272
c12b3c62 2273#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2274 if (flags & SLAB_STORE_USER)
2275 /*
2276 * Need to store information about allocs and frees after
2277 * the object.
2278 */
2279 size += 2 * sizeof(struct track);
2280
be7b3fbc 2281 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2282 /*
2283 * Add some empty padding so that we can catch
2284 * overwrites from earlier objects rather than let
2285 * tracking information or the free pointer be
0211a9c8 2286 * corrupted if a user writes before the start
81819f0f
CL
2287 * of the object.
2288 */
2289 size += sizeof(void *);
41ecc55b 2290#endif
672bba3a 2291
81819f0f
CL
2292 /*
2293 * Determine the alignment based on various parameters that the
65c02d4c
CL
2294 * user specified and the dynamic determination of cache line size
2295 * on bootup.
81819f0f
CL
2296 */
2297 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2298 s->align = align;
81819f0f
CL
2299
2300 /*
2301 * SLUB stores one object immediately after another beginning from
2302 * offset 0. In order to align the objects we have to simply size
2303 * each object to conform to the alignment.
2304 */
2305 size = ALIGN(size, align);
2306 s->size = size;
06b285dc
CL
2307 if (forced_order >= 0)
2308 order = forced_order;
2309 else
2310 order = calculate_order(size);
81819f0f 2311
834f3d11 2312 if (order < 0)
81819f0f
CL
2313 return 0;
2314
b7a49f0d 2315 s->allocflags = 0;
834f3d11 2316 if (order)
b7a49f0d
CL
2317 s->allocflags |= __GFP_COMP;
2318
2319 if (s->flags & SLAB_CACHE_DMA)
2320 s->allocflags |= SLUB_DMA;
2321
2322 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2323 s->allocflags |= __GFP_RECLAIMABLE;
2324
81819f0f
CL
2325 /*
2326 * Determine the number of objects per slab
2327 */
834f3d11 2328 s->oo = oo_make(order, size);
65c3376a 2329 s->min = oo_make(get_order(size), size);
205ab99d
CL
2330 if (oo_objects(s->oo) > oo_objects(s->max))
2331 s->max = s->oo;
81819f0f 2332
834f3d11 2333 return !!oo_objects(s->oo);
81819f0f
CL
2334
2335}
2336
55136592 2337static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2338 const char *name, size_t size,
2339 size_t align, unsigned long flags,
51cc5068 2340 void (*ctor)(void *))
81819f0f
CL
2341{
2342 memset(s, 0, kmem_size);
2343 s->name = name;
2344 s->ctor = ctor;
81819f0f 2345 s->objsize = size;
81819f0f 2346 s->align = align;
ba0268a8 2347 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2348
06b285dc 2349 if (!calculate_sizes(s, -1))
81819f0f 2350 goto error;
3de47213
DR
2351 if (disable_higher_order_debug) {
2352 /*
2353 * Disable debugging flags that store metadata if the min slab
2354 * order increased.
2355 */
2356 if (get_order(s->size) > get_order(s->objsize)) {
2357 s->flags &= ~DEBUG_METADATA_FLAGS;
2358 s->offset = 0;
2359 if (!calculate_sizes(s, -1))
2360 goto error;
2361 }
2362 }
81819f0f 2363
3b89d7d8
DR
2364 /*
2365 * The larger the object size is, the more pages we want on the partial
2366 * list to avoid pounding the page allocator excessively.
2367 */
c0bdb232 2368 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2369 s->refcount = 1;
2370#ifdef CONFIG_NUMA
e2cb96b7 2371 s->remote_node_defrag_ratio = 1000;
81819f0f 2372#endif
55136592 2373 if (!init_kmem_cache_nodes(s))
dfb4f096 2374 goto error;
81819f0f 2375
55136592 2376 if (alloc_kmem_cache_cpus(s))
81819f0f 2377 return 1;
ff12059e 2378
4c93c355 2379 free_kmem_cache_nodes(s);
81819f0f
CL
2380error:
2381 if (flags & SLAB_PANIC)
2382 panic("Cannot create slab %s size=%lu realsize=%u "
2383 "order=%u offset=%u flags=%lx\n",
834f3d11 2384 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2385 s->offset, flags);
2386 return 0;
2387}
81819f0f
CL
2388
2389/*
2390 * Check if a given pointer is valid
2391 */
2392int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2393{
06428780 2394 struct page *page;
81819f0f 2395
d3e06e2b
PE
2396 if (!kern_ptr_validate(object, s->size))
2397 return 0;
2398
81819f0f
CL
2399 page = get_object_page(object);
2400
2401 if (!page || s != page->slab)
2402 /* No slab or wrong slab */
2403 return 0;
2404
abcd08a6 2405 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2406 return 0;
2407
2408 /*
2409 * We could also check if the object is on the slabs freelist.
2410 * But this would be too expensive and it seems that the main
6446faa2 2411 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2412 * to a certain slab.
2413 */
2414 return 1;
2415}
2416EXPORT_SYMBOL(kmem_ptr_validate);
2417
2418/*
2419 * Determine the size of a slab object
2420 */
2421unsigned int kmem_cache_size(struct kmem_cache *s)
2422{
2423 return s->objsize;
2424}
2425EXPORT_SYMBOL(kmem_cache_size);
2426
2427const char *kmem_cache_name(struct kmem_cache *s)
2428{
2429 return s->name;
2430}
2431EXPORT_SYMBOL(kmem_cache_name);
2432
33b12c38
CL
2433static void list_slab_objects(struct kmem_cache *s, struct page *page,
2434 const char *text)
2435{
2436#ifdef CONFIG_SLUB_DEBUG
2437 void *addr = page_address(page);
2438 void *p;
bbd7d57b
ED
2439 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2440 GFP_ATOMIC);
33b12c38 2441
bbd7d57b
ED
2442 if (!map)
2443 return;
33b12c38
CL
2444 slab_err(s, page, "%s", text);
2445 slab_lock(page);
2446 for_each_free_object(p, s, page->freelist)
2447 set_bit(slab_index(p, s, addr), map);
2448
2449 for_each_object(p, s, addr, page->objects) {
2450
2451 if (!test_bit(slab_index(p, s, addr), map)) {
2452 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2453 p, p - addr);
2454 print_tracking(s, p);
2455 }
2456 }
2457 slab_unlock(page);
bbd7d57b 2458 kfree(map);
33b12c38
CL
2459#endif
2460}
2461
81819f0f 2462/*
599870b1 2463 * Attempt to free all partial slabs on a node.
81819f0f 2464 */
599870b1 2465static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2466{
81819f0f
CL
2467 unsigned long flags;
2468 struct page *page, *h;
2469
2470 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2471 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2472 if (!page->inuse) {
2473 list_del(&page->lru);
2474 discard_slab(s, page);
599870b1 2475 n->nr_partial--;
33b12c38
CL
2476 } else {
2477 list_slab_objects(s, page,
2478 "Objects remaining on kmem_cache_close()");
599870b1 2479 }
33b12c38 2480 }
81819f0f 2481 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2482}
2483
2484/*
672bba3a 2485 * Release all resources used by a slab cache.
81819f0f 2486 */
0c710013 2487static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2488{
2489 int node;
2490
2491 flush_all(s);
9dfc6e68 2492 free_percpu(s->cpu_slab);
81819f0f 2493 /* Attempt to free all objects */
f64dc58c 2494 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2495 struct kmem_cache_node *n = get_node(s, node);
2496
599870b1
CL
2497 free_partial(s, n);
2498 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2499 return 1;
2500 }
2501 free_kmem_cache_nodes(s);
2502 return 0;
2503}
2504
2505/*
2506 * Close a cache and release the kmem_cache structure
2507 * (must be used for caches created using kmem_cache_create)
2508 */
2509void kmem_cache_destroy(struct kmem_cache *s)
2510{
2511 down_write(&slub_lock);
2512 s->refcount--;
2513 if (!s->refcount) {
2514 list_del(&s->list);
d629d819
PE
2515 if (kmem_cache_close(s)) {
2516 printk(KERN_ERR "SLUB %s: %s called for cache that "
2517 "still has objects.\n", s->name, __func__);
2518 dump_stack();
2519 }
d76b1590
ED
2520 if (s->flags & SLAB_DESTROY_BY_RCU)
2521 rcu_barrier();
81819f0f 2522 sysfs_slab_remove(s);
2bce6485
CL
2523 }
2524 up_write(&slub_lock);
81819f0f
CL
2525}
2526EXPORT_SYMBOL(kmem_cache_destroy);
2527
2528/********************************************************************
2529 * Kmalloc subsystem
2530 *******************************************************************/
2531
51df1142 2532struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2533EXPORT_SYMBOL(kmalloc_caches);
2534
51df1142
CL
2535static struct kmem_cache *kmem_cache;
2536
55136592 2537#ifdef CONFIG_ZONE_DMA
51df1142 2538static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2539#endif
2540
81819f0f
CL
2541static int __init setup_slub_min_order(char *str)
2542{
06428780 2543 get_option(&str, &slub_min_order);
81819f0f
CL
2544
2545 return 1;
2546}
2547
2548__setup("slub_min_order=", setup_slub_min_order);
2549
2550static int __init setup_slub_max_order(char *str)
2551{
06428780 2552 get_option(&str, &slub_max_order);
818cf590 2553 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2554
2555 return 1;
2556}
2557
2558__setup("slub_max_order=", setup_slub_max_order);
2559
2560static int __init setup_slub_min_objects(char *str)
2561{
06428780 2562 get_option(&str, &slub_min_objects);
81819f0f
CL
2563
2564 return 1;
2565}
2566
2567__setup("slub_min_objects=", setup_slub_min_objects);
2568
2569static int __init setup_slub_nomerge(char *str)
2570{
2571 slub_nomerge = 1;
2572 return 1;
2573}
2574
2575__setup("slub_nomerge", setup_slub_nomerge);
2576
51df1142
CL
2577static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2578 int size, unsigned int flags)
81819f0f 2579{
51df1142
CL
2580 struct kmem_cache *s;
2581
2582 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2583
83b519e8
PE
2584 /*
2585 * This function is called with IRQs disabled during early-boot on
2586 * single CPU so there's no need to take slub_lock here.
2587 */
55136592 2588 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2589 flags, NULL))
81819f0f
CL
2590 goto panic;
2591
2592 list_add(&s->list, &slab_caches);
51df1142 2593 return s;
81819f0f
CL
2594
2595panic:
2596 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2597 return NULL;
81819f0f
CL
2598}
2599
f1b26339
CL
2600/*
2601 * Conversion table for small slabs sizes / 8 to the index in the
2602 * kmalloc array. This is necessary for slabs < 192 since we have non power
2603 * of two cache sizes there. The size of larger slabs can be determined using
2604 * fls.
2605 */
2606static s8 size_index[24] = {
2607 3, /* 8 */
2608 4, /* 16 */
2609 5, /* 24 */
2610 5, /* 32 */
2611 6, /* 40 */
2612 6, /* 48 */
2613 6, /* 56 */
2614 6, /* 64 */
2615 1, /* 72 */
2616 1, /* 80 */
2617 1, /* 88 */
2618 1, /* 96 */
2619 7, /* 104 */
2620 7, /* 112 */
2621 7, /* 120 */
2622 7, /* 128 */
2623 2, /* 136 */
2624 2, /* 144 */
2625 2, /* 152 */
2626 2, /* 160 */
2627 2, /* 168 */
2628 2, /* 176 */
2629 2, /* 184 */
2630 2 /* 192 */
2631};
2632
acdfcd04
AK
2633static inline int size_index_elem(size_t bytes)
2634{
2635 return (bytes - 1) / 8;
2636}
2637
81819f0f
CL
2638static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2639{
f1b26339 2640 int index;
81819f0f 2641
f1b26339
CL
2642 if (size <= 192) {
2643 if (!size)
2644 return ZERO_SIZE_PTR;
81819f0f 2645
acdfcd04 2646 index = size_index[size_index_elem(size)];
aadb4bc4 2647 } else
f1b26339 2648 index = fls(size - 1);
81819f0f
CL
2649
2650#ifdef CONFIG_ZONE_DMA
f1b26339 2651 if (unlikely((flags & SLUB_DMA)))
51df1142 2652 return kmalloc_dma_caches[index];
f1b26339 2653
81819f0f 2654#endif
51df1142 2655 return kmalloc_caches[index];
81819f0f
CL
2656}
2657
2658void *__kmalloc(size_t size, gfp_t flags)
2659{
aadb4bc4 2660 struct kmem_cache *s;
5b882be4 2661 void *ret;
81819f0f 2662
ffadd4d0 2663 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2664 return kmalloc_large(size, flags);
aadb4bc4
CL
2665
2666 s = get_slab(size, flags);
2667
2668 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2669 return s;
2670
2154a336 2671 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2672
ca2b84cb 2673 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2674
2675 return ret;
81819f0f
CL
2676}
2677EXPORT_SYMBOL(__kmalloc);
2678
f619cfe1
CL
2679static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2680{
b1eeab67 2681 struct page *page;
e4f7c0b4 2682 void *ptr = NULL;
f619cfe1 2683
b1eeab67
VN
2684 flags |= __GFP_COMP | __GFP_NOTRACK;
2685 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2686 if (page)
e4f7c0b4
CM
2687 ptr = page_address(page);
2688
2689 kmemleak_alloc(ptr, size, 1, flags);
2690 return ptr;
f619cfe1
CL
2691}
2692
81819f0f
CL
2693#ifdef CONFIG_NUMA
2694void *__kmalloc_node(size_t size, gfp_t flags, int node)
2695{
aadb4bc4 2696 struct kmem_cache *s;
5b882be4 2697 void *ret;
81819f0f 2698
057685cf 2699 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2700 ret = kmalloc_large_node(size, flags, node);
2701
ca2b84cb
EGM
2702 trace_kmalloc_node(_RET_IP_, ret,
2703 size, PAGE_SIZE << get_order(size),
2704 flags, node);
5b882be4
EGM
2705
2706 return ret;
2707 }
aadb4bc4
CL
2708
2709 s = get_slab(size, flags);
2710
2711 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2712 return s;
2713
5b882be4
EGM
2714 ret = slab_alloc(s, flags, node, _RET_IP_);
2715
ca2b84cb 2716 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2717
2718 return ret;
81819f0f
CL
2719}
2720EXPORT_SYMBOL(__kmalloc_node);
2721#endif
2722
2723size_t ksize(const void *object)
2724{
272c1d21 2725 struct page *page;
81819f0f
CL
2726 struct kmem_cache *s;
2727
ef8b4520 2728 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2729 return 0;
2730
294a80a8 2731 page = virt_to_head_page(object);
294a80a8 2732
76994412
PE
2733 if (unlikely(!PageSlab(page))) {
2734 WARN_ON(!PageCompound(page));
294a80a8 2735 return PAGE_SIZE << compound_order(page);
76994412 2736 }
81819f0f 2737 s = page->slab;
81819f0f 2738
ae20bfda 2739#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2740 /*
2741 * Debugging requires use of the padding between object
2742 * and whatever may come after it.
2743 */
2744 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2745 return s->objsize;
2746
ae20bfda 2747#endif
81819f0f
CL
2748 /*
2749 * If we have the need to store the freelist pointer
2750 * back there or track user information then we can
2751 * only use the space before that information.
2752 */
2753 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2754 return s->inuse;
81819f0f
CL
2755 /*
2756 * Else we can use all the padding etc for the allocation
2757 */
2758 return s->size;
2759}
b1aabecd 2760EXPORT_SYMBOL(ksize);
81819f0f
CL
2761
2762void kfree(const void *x)
2763{
81819f0f 2764 struct page *page;
5bb983b0 2765 void *object = (void *)x;
81819f0f 2766
2121db74
PE
2767 trace_kfree(_RET_IP_, x);
2768
2408c550 2769 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2770 return;
2771
b49af68f 2772 page = virt_to_head_page(x);
aadb4bc4 2773 if (unlikely(!PageSlab(page))) {
0937502a 2774 BUG_ON(!PageCompound(page));
e4f7c0b4 2775 kmemleak_free(x);
aadb4bc4
CL
2776 put_page(page);
2777 return;
2778 }
ce71e27c 2779 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2780}
2781EXPORT_SYMBOL(kfree);
2782
2086d26a 2783/*
672bba3a
CL
2784 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2785 * the remaining slabs by the number of items in use. The slabs with the
2786 * most items in use come first. New allocations will then fill those up
2787 * and thus they can be removed from the partial lists.
2788 *
2789 * The slabs with the least items are placed last. This results in them
2790 * being allocated from last increasing the chance that the last objects
2791 * are freed in them.
2086d26a
CL
2792 */
2793int kmem_cache_shrink(struct kmem_cache *s)
2794{
2795 int node;
2796 int i;
2797 struct kmem_cache_node *n;
2798 struct page *page;
2799 struct page *t;
205ab99d 2800 int objects = oo_objects(s->max);
2086d26a 2801 struct list_head *slabs_by_inuse =
834f3d11 2802 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2803 unsigned long flags;
2804
2805 if (!slabs_by_inuse)
2806 return -ENOMEM;
2807
2808 flush_all(s);
f64dc58c 2809 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2810 n = get_node(s, node);
2811
2812 if (!n->nr_partial)
2813 continue;
2814
834f3d11 2815 for (i = 0; i < objects; i++)
2086d26a
CL
2816 INIT_LIST_HEAD(slabs_by_inuse + i);
2817
2818 spin_lock_irqsave(&n->list_lock, flags);
2819
2820 /*
672bba3a 2821 * Build lists indexed by the items in use in each slab.
2086d26a 2822 *
672bba3a
CL
2823 * Note that concurrent frees may occur while we hold the
2824 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2825 */
2826 list_for_each_entry_safe(page, t, &n->partial, lru) {
2827 if (!page->inuse && slab_trylock(page)) {
2828 /*
2829 * Must hold slab lock here because slab_free
2830 * may have freed the last object and be
2831 * waiting to release the slab.
2832 */
2833 list_del(&page->lru);
2834 n->nr_partial--;
2835 slab_unlock(page);
2836 discard_slab(s, page);
2837 } else {
fcda3d89
CL
2838 list_move(&page->lru,
2839 slabs_by_inuse + page->inuse);
2086d26a
CL
2840 }
2841 }
2842
2086d26a 2843 /*
672bba3a
CL
2844 * Rebuild the partial list with the slabs filled up most
2845 * first and the least used slabs at the end.
2086d26a 2846 */
834f3d11 2847 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2848 list_splice(slabs_by_inuse + i, n->partial.prev);
2849
2086d26a
CL
2850 spin_unlock_irqrestore(&n->list_lock, flags);
2851 }
2852
2853 kfree(slabs_by_inuse);
2854 return 0;
2855}
2856EXPORT_SYMBOL(kmem_cache_shrink);
2857
b9049e23
YG
2858#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2859static int slab_mem_going_offline_callback(void *arg)
2860{
2861 struct kmem_cache *s;
2862
2863 down_read(&slub_lock);
2864 list_for_each_entry(s, &slab_caches, list)
2865 kmem_cache_shrink(s);
2866 up_read(&slub_lock);
2867
2868 return 0;
2869}
2870
2871static void slab_mem_offline_callback(void *arg)
2872{
2873 struct kmem_cache_node *n;
2874 struct kmem_cache *s;
2875 struct memory_notify *marg = arg;
2876 int offline_node;
2877
2878 offline_node = marg->status_change_nid;
2879
2880 /*
2881 * If the node still has available memory. we need kmem_cache_node
2882 * for it yet.
2883 */
2884 if (offline_node < 0)
2885 return;
2886
2887 down_read(&slub_lock);
2888 list_for_each_entry(s, &slab_caches, list) {
2889 n = get_node(s, offline_node);
2890 if (n) {
2891 /*
2892 * if n->nr_slabs > 0, slabs still exist on the node
2893 * that is going down. We were unable to free them,
c9404c9c 2894 * and offline_pages() function shouldn't call this
b9049e23
YG
2895 * callback. So, we must fail.
2896 */
0f389ec6 2897 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2898
2899 s->node[offline_node] = NULL;
2900 kmem_cache_free(kmalloc_caches, n);
2901 }
2902 }
2903 up_read(&slub_lock);
2904}
2905
2906static int slab_mem_going_online_callback(void *arg)
2907{
2908 struct kmem_cache_node *n;
2909 struct kmem_cache *s;
2910 struct memory_notify *marg = arg;
2911 int nid = marg->status_change_nid;
2912 int ret = 0;
2913
2914 /*
2915 * If the node's memory is already available, then kmem_cache_node is
2916 * already created. Nothing to do.
2917 */
2918 if (nid < 0)
2919 return 0;
2920
2921 /*
0121c619 2922 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2923 * allocate a kmem_cache_node structure in order to bring the node
2924 * online.
2925 */
2926 down_read(&slub_lock);
2927 list_for_each_entry(s, &slab_caches, list) {
2928 /*
2929 * XXX: kmem_cache_alloc_node will fallback to other nodes
2930 * since memory is not yet available from the node that
2931 * is brought up.
2932 */
2933 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2934 if (!n) {
2935 ret = -ENOMEM;
2936 goto out;
2937 }
5595cffc 2938 init_kmem_cache_node(n, s);
b9049e23
YG
2939 s->node[nid] = n;
2940 }
2941out:
2942 up_read(&slub_lock);
2943 return ret;
2944}
2945
2946static int slab_memory_callback(struct notifier_block *self,
2947 unsigned long action, void *arg)
2948{
2949 int ret = 0;
2950
2951 switch (action) {
2952 case MEM_GOING_ONLINE:
2953 ret = slab_mem_going_online_callback(arg);
2954 break;
2955 case MEM_GOING_OFFLINE:
2956 ret = slab_mem_going_offline_callback(arg);
2957 break;
2958 case MEM_OFFLINE:
2959 case MEM_CANCEL_ONLINE:
2960 slab_mem_offline_callback(arg);
2961 break;
2962 case MEM_ONLINE:
2963 case MEM_CANCEL_OFFLINE:
2964 break;
2965 }
dc19f9db
KH
2966 if (ret)
2967 ret = notifier_from_errno(ret);
2968 else
2969 ret = NOTIFY_OK;
b9049e23
YG
2970 return ret;
2971}
2972
2973#endif /* CONFIG_MEMORY_HOTPLUG */
2974
81819f0f
CL
2975/********************************************************************
2976 * Basic setup of slabs
2977 *******************************************************************/
2978
51df1142
CL
2979/*
2980 * Used for early kmem_cache structures that were allocated using
2981 * the page allocator
2982 */
2983
2984static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2985{
2986 int node;
2987
2988 list_add(&s->list, &slab_caches);
2989 s->refcount = -1;
2990
2991 for_each_node_state(node, N_NORMAL_MEMORY) {
2992 struct kmem_cache_node *n = get_node(s, node);
2993 struct page *p;
2994
2995 if (n) {
2996 list_for_each_entry(p, &n->partial, lru)
2997 p->slab = s;
2998
2999#ifdef CONFIG_SLAB_DEBUG
3000 list_for_each_entry(p, &n->full, lru)
3001 p->slab = s;
3002#endif
3003 }
3004 }
3005}
3006
81819f0f
CL
3007void __init kmem_cache_init(void)
3008{
3009 int i;
4b356be0 3010 int caches = 0;
51df1142
CL
3011 struct kmem_cache *temp_kmem_cache;
3012 int order;
81819f0f
CL
3013
3014#ifdef CONFIG_NUMA
51df1142
CL
3015 struct kmem_cache *temp_kmem_cache_node;
3016 unsigned long kmalloc_size;
3017
3018 kmem_size = offsetof(struct kmem_cache, node) +
3019 nr_node_ids * sizeof(struct kmem_cache_node *);
3020
3021 /* Allocate two kmem_caches from the page allocator */
3022 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3023 order = get_order(2 * kmalloc_size);
3024 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3025
81819f0f
CL
3026 /*
3027 * Must first have the slab cache available for the allocations of the
672bba3a 3028 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3029 * kmem_cache_open for slab_state == DOWN.
3030 */
51df1142
CL
3031 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3032
3033 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3034 sizeof(struct kmem_cache_node),
3035 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3036
0c40ba4f 3037 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
51df1142
CL
3038#else
3039 /* Allocate a single kmem_cache from the page allocator */
3040 kmem_size = sizeof(struct kmem_cache);
3041 order = get_order(kmem_size);
3042 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
81819f0f
CL
3043#endif
3044
3045 /* Able to allocate the per node structures */
3046 slab_state = PARTIAL;
3047
51df1142
CL
3048 temp_kmem_cache = kmem_cache;
3049 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3050 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3051 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3052 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3053
51df1142
CL
3054#ifdef CONFIG_NUMA
3055 /*
3056 * Allocate kmem_cache_node properly from the kmem_cache slab.
3057 * kmem_cache_node is separately allocated so no need to
3058 * update any list pointers.
3059 */
3060 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3061
51df1142
CL
3062 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3063 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3064
3065 kmem_cache_bootstrap_fixup(kmem_cache_node);
3066
3067 caches++;
3068#else
3069 /*
3070 * kmem_cache has kmem_cache_node embedded and we moved it!
3071 * Update the list heads
3072 */
3073 INIT_LIST_HEAD(&kmem_cache->local_node.partial);
3074 list_splice(&temp_kmem_cache->local_node.partial, &kmem_cache->local_node.partial);
3075#ifdef CONFIG_SLUB_DEBUG
3076 INIT_LIST_HEAD(&kmem_cache->local_node.full);
3077 list_splice(&temp_kmem_cache->local_node.full, &kmem_cache->local_node.full);
3078#endif
3079#endif
3080 kmem_cache_bootstrap_fixup(kmem_cache);
3081 caches++;
3082 /* Free temporary boot structure */
3083 free_pages((unsigned long)temp_kmem_cache, order);
3084
3085 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3086
3087 /*
3088 * Patch up the size_index table if we have strange large alignment
3089 * requirements for the kmalloc array. This is only the case for
6446faa2 3090 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3091 *
3092 * Largest permitted alignment is 256 bytes due to the way we
3093 * handle the index determination for the smaller caches.
3094 *
3095 * Make sure that nothing crazy happens if someone starts tinkering
3096 * around with ARCH_KMALLOC_MINALIGN
3097 */
3098 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3099 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3100
acdfcd04
AK
3101 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3102 int elem = size_index_elem(i);
3103 if (elem >= ARRAY_SIZE(size_index))
3104 break;
3105 size_index[elem] = KMALLOC_SHIFT_LOW;
3106 }
f1b26339 3107
acdfcd04
AK
3108 if (KMALLOC_MIN_SIZE == 64) {
3109 /*
3110 * The 96 byte size cache is not used if the alignment
3111 * is 64 byte.
3112 */
3113 for (i = 64 + 8; i <= 96; i += 8)
3114 size_index[size_index_elem(i)] = 7;
3115 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3116 /*
3117 * The 192 byte sized cache is not used if the alignment
3118 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3119 * instead.
3120 */
3121 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3122 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3123 }
3124
51df1142
CL
3125 /* Caches that are not of the two-to-the-power-of size */
3126 if (KMALLOC_MIN_SIZE <= 32) {
3127 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3128 caches++;
3129 }
3130
3131 if (KMALLOC_MIN_SIZE <= 64) {
3132 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3133 caches++;
3134 }
3135
3136 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3137 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3138 caches++;
3139 }
3140
81819f0f
CL
3141 slab_state = UP;
3142
3143 /* Provide the correct kmalloc names now that the caches are up */
d7278bd7
CL
3144 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3145 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3146
3147 BUG_ON(!s);
51df1142 3148 kmalloc_caches[i]->name = s;
d7278bd7 3149 }
81819f0f
CL
3150
3151#ifdef CONFIG_SMP
3152 register_cpu_notifier(&slab_notifier);
9dfc6e68 3153#endif
81819f0f 3154
55136592 3155#ifdef CONFIG_ZONE_DMA
51df1142
CL
3156 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3157 struct kmem_cache *s = kmalloc_caches[i];
55136592 3158
51df1142 3159 if (s && s->size) {
55136592
CL
3160 char *name = kasprintf(GFP_NOWAIT,
3161 "dma-kmalloc-%d", s->objsize);
3162
3163 BUG_ON(!name);
51df1142
CL
3164 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3165 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3166 }
3167 }
3168#endif
3adbefee
IM
3169 printk(KERN_INFO
3170 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3171 " CPUs=%d, Nodes=%d\n",
3172 caches, cache_line_size(),
81819f0f
CL
3173 slub_min_order, slub_max_order, slub_min_objects,
3174 nr_cpu_ids, nr_node_ids);
3175}
3176
7e85ee0c
PE
3177void __init kmem_cache_init_late(void)
3178{
7e85ee0c
PE
3179}
3180
81819f0f
CL
3181/*
3182 * Find a mergeable slab cache
3183 */
3184static int slab_unmergeable(struct kmem_cache *s)
3185{
3186 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3187 return 1;
3188
c59def9f 3189 if (s->ctor)
81819f0f
CL
3190 return 1;
3191
8ffa6875
CL
3192 /*
3193 * We may have set a slab to be unmergeable during bootstrap.
3194 */
3195 if (s->refcount < 0)
3196 return 1;
3197
81819f0f
CL
3198 return 0;
3199}
3200
3201static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3202 size_t align, unsigned long flags, const char *name,
51cc5068 3203 void (*ctor)(void *))
81819f0f 3204{
5b95a4ac 3205 struct kmem_cache *s;
81819f0f
CL
3206
3207 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3208 return NULL;
3209
c59def9f 3210 if (ctor)
81819f0f
CL
3211 return NULL;
3212
3213 size = ALIGN(size, sizeof(void *));
3214 align = calculate_alignment(flags, align, size);
3215 size = ALIGN(size, align);
ba0268a8 3216 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3217
5b95a4ac 3218 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3219 if (slab_unmergeable(s))
3220 continue;
3221
3222 if (size > s->size)
3223 continue;
3224
ba0268a8 3225 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3226 continue;
3227 /*
3228 * Check if alignment is compatible.
3229 * Courtesy of Adrian Drzewiecki
3230 */
06428780 3231 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3232 continue;
3233
3234 if (s->size - size >= sizeof(void *))
3235 continue;
3236
3237 return s;
3238 }
3239 return NULL;
3240}
3241
3242struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3243 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3244{
3245 struct kmem_cache *s;
3246
fe1ff49d
BH
3247 if (WARN_ON(!name))
3248 return NULL;
3249
81819f0f 3250 down_write(&slub_lock);
ba0268a8 3251 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3252 if (s) {
3253 s->refcount++;
3254 /*
3255 * Adjust the object sizes so that we clear
3256 * the complete object on kzalloc.
3257 */
3258 s->objsize = max(s->objsize, (int)size);
3259 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3260
7b8f3b66 3261 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3262 s->refcount--;
81819f0f 3263 goto err;
7b8f3b66 3264 }
2bce6485 3265 up_write(&slub_lock);
a0e1d1be
CL
3266 return s;
3267 }
6446faa2 3268
a0e1d1be
CL
3269 s = kmalloc(kmem_size, GFP_KERNEL);
3270 if (s) {
55136592 3271 if (kmem_cache_open(s, name,
c59def9f 3272 size, align, flags, ctor)) {
81819f0f 3273 list_add(&s->list, &slab_caches);
7b8f3b66 3274 if (sysfs_slab_add(s)) {
7b8f3b66 3275 list_del(&s->list);
7b8f3b66 3276 kfree(s);
a0e1d1be 3277 goto err;
7b8f3b66 3278 }
2bce6485 3279 up_write(&slub_lock);
a0e1d1be
CL
3280 return s;
3281 }
3282 kfree(s);
81819f0f
CL
3283 }
3284 up_write(&slub_lock);
81819f0f
CL
3285
3286err:
81819f0f
CL
3287 if (flags & SLAB_PANIC)
3288 panic("Cannot create slabcache %s\n", name);
3289 else
3290 s = NULL;
3291 return s;
3292}
3293EXPORT_SYMBOL(kmem_cache_create);
3294
81819f0f 3295#ifdef CONFIG_SMP
81819f0f 3296/*
672bba3a
CL
3297 * Use the cpu notifier to insure that the cpu slabs are flushed when
3298 * necessary.
81819f0f
CL
3299 */
3300static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3301 unsigned long action, void *hcpu)
3302{
3303 long cpu = (long)hcpu;
5b95a4ac
CL
3304 struct kmem_cache *s;
3305 unsigned long flags;
81819f0f
CL
3306
3307 switch (action) {
3308 case CPU_UP_CANCELED:
8bb78442 3309 case CPU_UP_CANCELED_FROZEN:
81819f0f 3310 case CPU_DEAD:
8bb78442 3311 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3312 down_read(&slub_lock);
3313 list_for_each_entry(s, &slab_caches, list) {
3314 local_irq_save(flags);
3315 __flush_cpu_slab(s, cpu);
3316 local_irq_restore(flags);
3317 }
3318 up_read(&slub_lock);
81819f0f
CL
3319 break;
3320 default:
3321 break;
3322 }
3323 return NOTIFY_OK;
3324}
3325
06428780 3326static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3327 .notifier_call = slab_cpuup_callback
06428780 3328};
81819f0f
CL
3329
3330#endif
3331
ce71e27c 3332void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3333{
aadb4bc4 3334 struct kmem_cache *s;
94b528d0 3335 void *ret;
aadb4bc4 3336
ffadd4d0 3337 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3338 return kmalloc_large(size, gfpflags);
3339
aadb4bc4 3340 s = get_slab(size, gfpflags);
81819f0f 3341
2408c550 3342 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3343 return s;
81819f0f 3344
2154a336 3345 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0
EGM
3346
3347 /* Honor the call site pointer we recieved. */
ca2b84cb 3348 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3349
3350 return ret;
81819f0f
CL
3351}
3352
3353void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3354 int node, unsigned long caller)
81819f0f 3355{
aadb4bc4 3356 struct kmem_cache *s;
94b528d0 3357 void *ret;
aadb4bc4 3358
d3e14aa3
XF
3359 if (unlikely(size > SLUB_MAX_SIZE)) {
3360 ret = kmalloc_large_node(size, gfpflags, node);
3361
3362 trace_kmalloc_node(caller, ret,
3363 size, PAGE_SIZE << get_order(size),
3364 gfpflags, node);
3365
3366 return ret;
3367 }
eada35ef 3368
aadb4bc4 3369 s = get_slab(size, gfpflags);
81819f0f 3370
2408c550 3371 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3372 return s;
81819f0f 3373
94b528d0
EGM
3374 ret = slab_alloc(s, gfpflags, node, caller);
3375
3376 /* Honor the call site pointer we recieved. */
ca2b84cb 3377 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3378
3379 return ret;
81819f0f
CL
3380}
3381
f6acb635 3382#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3383static int count_inuse(struct page *page)
3384{
3385 return page->inuse;
3386}
3387
3388static int count_total(struct page *page)
3389{
3390 return page->objects;
3391}
3392
434e245d
CL
3393static int validate_slab(struct kmem_cache *s, struct page *page,
3394 unsigned long *map)
53e15af0
CL
3395{
3396 void *p;
a973e9dd 3397 void *addr = page_address(page);
53e15af0
CL
3398
3399 if (!check_slab(s, page) ||
3400 !on_freelist(s, page, NULL))
3401 return 0;
3402
3403 /* Now we know that a valid freelist exists */
39b26464 3404 bitmap_zero(map, page->objects);
53e15af0 3405
7656c72b
CL
3406 for_each_free_object(p, s, page->freelist) {
3407 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3408 if (!check_object(s, page, p, 0))
3409 return 0;
3410 }
3411
224a88be 3412 for_each_object(p, s, addr, page->objects)
7656c72b 3413 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3414 if (!check_object(s, page, p, 1))
3415 return 0;
3416 return 1;
3417}
3418
434e245d
CL
3419static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3420 unsigned long *map)
53e15af0
CL
3421{
3422 if (slab_trylock(page)) {
434e245d 3423 validate_slab(s, page, map);
53e15af0
CL
3424 slab_unlock(page);
3425 } else
3426 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3427 s->name, page);
53e15af0
CL
3428}
3429
434e245d
CL
3430static int validate_slab_node(struct kmem_cache *s,
3431 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3432{
3433 unsigned long count = 0;
3434 struct page *page;
3435 unsigned long flags;
3436
3437 spin_lock_irqsave(&n->list_lock, flags);
3438
3439 list_for_each_entry(page, &n->partial, lru) {
434e245d 3440 validate_slab_slab(s, page, map);
53e15af0
CL
3441 count++;
3442 }
3443 if (count != n->nr_partial)
3444 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3445 "counter=%ld\n", s->name, count, n->nr_partial);
3446
3447 if (!(s->flags & SLAB_STORE_USER))
3448 goto out;
3449
3450 list_for_each_entry(page, &n->full, lru) {
434e245d 3451 validate_slab_slab(s, page, map);
53e15af0
CL
3452 count++;
3453 }
3454 if (count != atomic_long_read(&n->nr_slabs))
3455 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3456 "counter=%ld\n", s->name, count,
3457 atomic_long_read(&n->nr_slabs));
3458
3459out:
3460 spin_unlock_irqrestore(&n->list_lock, flags);
3461 return count;
3462}
3463
434e245d 3464static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3465{
3466 int node;
3467 unsigned long count = 0;
205ab99d 3468 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3469 sizeof(unsigned long), GFP_KERNEL);
3470
3471 if (!map)
3472 return -ENOMEM;
53e15af0
CL
3473
3474 flush_all(s);
f64dc58c 3475 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3476 struct kmem_cache_node *n = get_node(s, node);
3477
434e245d 3478 count += validate_slab_node(s, n, map);
53e15af0 3479 }
434e245d 3480 kfree(map);
53e15af0
CL
3481 return count;
3482}
3483
b3459709
CL
3484#ifdef SLUB_RESILIENCY_TEST
3485static void resiliency_test(void)
3486{
3487 u8 *p;
3488
3489 printk(KERN_ERR "SLUB resiliency testing\n");
3490 printk(KERN_ERR "-----------------------\n");
3491 printk(KERN_ERR "A. Corruption after allocation\n");
3492
3493 p = kzalloc(16, GFP_KERNEL);
3494 p[16] = 0x12;
3495 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3496 " 0x12->0x%p\n\n", p + 16);
3497
3498 validate_slab_cache(kmalloc_caches + 4);
3499
3500 /* Hmmm... The next two are dangerous */
3501 p = kzalloc(32, GFP_KERNEL);
3502 p[32 + sizeof(void *)] = 0x34;
3503 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3504 " 0x34 -> -0x%p\n", p);
3505 printk(KERN_ERR
3506 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3507
3508 validate_slab_cache(kmalloc_caches + 5);
3509 p = kzalloc(64, GFP_KERNEL);
3510 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3511 *p = 0x56;
3512 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3513 p);
3adbefee
IM
3514 printk(KERN_ERR
3515 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3516 validate_slab_cache(kmalloc_caches + 6);
3517
3518 printk(KERN_ERR "\nB. Corruption after free\n");
3519 p = kzalloc(128, GFP_KERNEL);
3520 kfree(p);
3521 *p = 0x78;
3522 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3523 validate_slab_cache(kmalloc_caches + 7);
3524
3525 p = kzalloc(256, GFP_KERNEL);
3526 kfree(p);
3527 p[50] = 0x9a;
3adbefee
IM
3528 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3529 p);
b3459709
CL
3530 validate_slab_cache(kmalloc_caches + 8);
3531
3532 p = kzalloc(512, GFP_KERNEL);
3533 kfree(p);
3534 p[512] = 0xab;
3535 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3536 validate_slab_cache(kmalloc_caches + 9);
3537}
3538#else
3539static void resiliency_test(void) {};
3540#endif
3541
88a420e4 3542/*
672bba3a 3543 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3544 * and freed.
3545 */
3546
3547struct location {
3548 unsigned long count;
ce71e27c 3549 unsigned long addr;
45edfa58
CL
3550 long long sum_time;
3551 long min_time;
3552 long max_time;
3553 long min_pid;
3554 long max_pid;
174596a0 3555 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3556 nodemask_t nodes;
88a420e4
CL
3557};
3558
3559struct loc_track {
3560 unsigned long max;
3561 unsigned long count;
3562 struct location *loc;
3563};
3564
3565static void free_loc_track(struct loc_track *t)
3566{
3567 if (t->max)
3568 free_pages((unsigned long)t->loc,
3569 get_order(sizeof(struct location) * t->max));
3570}
3571
68dff6a9 3572static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3573{
3574 struct location *l;
3575 int order;
3576
88a420e4
CL
3577 order = get_order(sizeof(struct location) * max);
3578
68dff6a9 3579 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3580 if (!l)
3581 return 0;
3582
3583 if (t->count) {
3584 memcpy(l, t->loc, sizeof(struct location) * t->count);
3585 free_loc_track(t);
3586 }
3587 t->max = max;
3588 t->loc = l;
3589 return 1;
3590}
3591
3592static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3593 const struct track *track)
88a420e4
CL
3594{
3595 long start, end, pos;
3596 struct location *l;
ce71e27c 3597 unsigned long caddr;
45edfa58 3598 unsigned long age = jiffies - track->when;
88a420e4
CL
3599
3600 start = -1;
3601 end = t->count;
3602
3603 for ( ; ; ) {
3604 pos = start + (end - start + 1) / 2;
3605
3606 /*
3607 * There is nothing at "end". If we end up there
3608 * we need to add something to before end.
3609 */
3610 if (pos == end)
3611 break;
3612
3613 caddr = t->loc[pos].addr;
45edfa58
CL
3614 if (track->addr == caddr) {
3615
3616 l = &t->loc[pos];
3617 l->count++;
3618 if (track->when) {
3619 l->sum_time += age;
3620 if (age < l->min_time)
3621 l->min_time = age;
3622 if (age > l->max_time)
3623 l->max_time = age;
3624
3625 if (track->pid < l->min_pid)
3626 l->min_pid = track->pid;
3627 if (track->pid > l->max_pid)
3628 l->max_pid = track->pid;
3629
174596a0
RR
3630 cpumask_set_cpu(track->cpu,
3631 to_cpumask(l->cpus));
45edfa58
CL
3632 }
3633 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3634 return 1;
3635 }
3636
45edfa58 3637 if (track->addr < caddr)
88a420e4
CL
3638 end = pos;
3639 else
3640 start = pos;
3641 }
3642
3643 /*
672bba3a 3644 * Not found. Insert new tracking element.
88a420e4 3645 */
68dff6a9 3646 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3647 return 0;
3648
3649 l = t->loc + pos;
3650 if (pos < t->count)
3651 memmove(l + 1, l,
3652 (t->count - pos) * sizeof(struct location));
3653 t->count++;
3654 l->count = 1;
45edfa58
CL
3655 l->addr = track->addr;
3656 l->sum_time = age;
3657 l->min_time = age;
3658 l->max_time = age;
3659 l->min_pid = track->pid;
3660 l->max_pid = track->pid;
174596a0
RR
3661 cpumask_clear(to_cpumask(l->cpus));
3662 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3663 nodes_clear(l->nodes);
3664 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3665 return 1;
3666}
3667
3668static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b
ED
3669 struct page *page, enum track_item alloc,
3670 long *map)
88a420e4 3671{
a973e9dd 3672 void *addr = page_address(page);
88a420e4
CL
3673 void *p;
3674
39b26464 3675 bitmap_zero(map, page->objects);
7656c72b
CL
3676 for_each_free_object(p, s, page->freelist)
3677 set_bit(slab_index(p, s, addr), map);
88a420e4 3678
224a88be 3679 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3680 if (!test_bit(slab_index(p, s, addr), map))
3681 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3682}
3683
3684static int list_locations(struct kmem_cache *s, char *buf,
3685 enum track_item alloc)
3686{
e374d483 3687 int len = 0;
88a420e4 3688 unsigned long i;
68dff6a9 3689 struct loc_track t = { 0, 0, NULL };
88a420e4 3690 int node;
bbd7d57b
ED
3691 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3692 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3693
bbd7d57b
ED
3694 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3695 GFP_TEMPORARY)) {
3696 kfree(map);
68dff6a9 3697 return sprintf(buf, "Out of memory\n");
bbd7d57b 3698 }
88a420e4
CL
3699 /* Push back cpu slabs */
3700 flush_all(s);
3701
f64dc58c 3702 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3703 struct kmem_cache_node *n = get_node(s, node);
3704 unsigned long flags;
3705 struct page *page;
3706
9e86943b 3707 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3708 continue;
3709
3710 spin_lock_irqsave(&n->list_lock, flags);
3711 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3712 process_slab(&t, s, page, alloc, map);
88a420e4 3713 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3714 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3715 spin_unlock_irqrestore(&n->list_lock, flags);
3716 }
3717
3718 for (i = 0; i < t.count; i++) {
45edfa58 3719 struct location *l = &t.loc[i];
88a420e4 3720
9c246247 3721 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3722 break;
e374d483 3723 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3724
3725 if (l->addr)
e374d483 3726 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3727 else
e374d483 3728 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3729
3730 if (l->sum_time != l->min_time) {
e374d483 3731 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3732 l->min_time,
3733 (long)div_u64(l->sum_time, l->count),
3734 l->max_time);
45edfa58 3735 } else
e374d483 3736 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3737 l->min_time);
3738
3739 if (l->min_pid != l->max_pid)
e374d483 3740 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3741 l->min_pid, l->max_pid);
3742 else
e374d483 3743 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3744 l->min_pid);
3745
174596a0
RR
3746 if (num_online_cpus() > 1 &&
3747 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3748 len < PAGE_SIZE - 60) {
3749 len += sprintf(buf + len, " cpus=");
3750 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3751 to_cpumask(l->cpus));
45edfa58
CL
3752 }
3753
62bc62a8 3754 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3755 len < PAGE_SIZE - 60) {
3756 len += sprintf(buf + len, " nodes=");
3757 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3758 l->nodes);
3759 }
3760
e374d483 3761 len += sprintf(buf + len, "\n");
88a420e4
CL
3762 }
3763
3764 free_loc_track(&t);
bbd7d57b 3765 kfree(map);
88a420e4 3766 if (!t.count)
e374d483
HH
3767 len += sprintf(buf, "No data\n");
3768 return len;
88a420e4
CL
3769}
3770
81819f0f 3771enum slab_stat_type {
205ab99d
CL
3772 SL_ALL, /* All slabs */
3773 SL_PARTIAL, /* Only partially allocated slabs */
3774 SL_CPU, /* Only slabs used for cpu caches */
3775 SL_OBJECTS, /* Determine allocated objects not slabs */
3776 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3777};
3778
205ab99d 3779#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3780#define SO_PARTIAL (1 << SL_PARTIAL)
3781#define SO_CPU (1 << SL_CPU)
3782#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3783#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3784
62e5c4b4
CG
3785static ssize_t show_slab_objects(struct kmem_cache *s,
3786 char *buf, unsigned long flags)
81819f0f
CL
3787{
3788 unsigned long total = 0;
81819f0f
CL
3789 int node;
3790 int x;
3791 unsigned long *nodes;
3792 unsigned long *per_cpu;
3793
3794 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3795 if (!nodes)
3796 return -ENOMEM;
81819f0f
CL
3797 per_cpu = nodes + nr_node_ids;
3798
205ab99d
CL
3799 if (flags & SO_CPU) {
3800 int cpu;
81819f0f 3801
205ab99d 3802 for_each_possible_cpu(cpu) {
9dfc6e68 3803 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3804
205ab99d
CL
3805 if (!c || c->node < 0)
3806 continue;
3807
3808 if (c->page) {
3809 if (flags & SO_TOTAL)
3810 x = c->page->objects;
3811 else if (flags & SO_OBJECTS)
3812 x = c->page->inuse;
81819f0f
CL
3813 else
3814 x = 1;
205ab99d 3815
81819f0f 3816 total += x;
205ab99d 3817 nodes[c->node] += x;
81819f0f 3818 }
205ab99d 3819 per_cpu[c->node]++;
81819f0f
CL
3820 }
3821 }
3822
205ab99d
CL
3823 if (flags & SO_ALL) {
3824 for_each_node_state(node, N_NORMAL_MEMORY) {
3825 struct kmem_cache_node *n = get_node(s, node);
3826
3827 if (flags & SO_TOTAL)
3828 x = atomic_long_read(&n->total_objects);
3829 else if (flags & SO_OBJECTS)
3830 x = atomic_long_read(&n->total_objects) -
3831 count_partial(n, count_free);
81819f0f 3832
81819f0f 3833 else
205ab99d 3834 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3835 total += x;
3836 nodes[node] += x;
3837 }
3838
205ab99d
CL
3839 } else if (flags & SO_PARTIAL) {
3840 for_each_node_state(node, N_NORMAL_MEMORY) {
3841 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3842
205ab99d
CL
3843 if (flags & SO_TOTAL)
3844 x = count_partial(n, count_total);
3845 else if (flags & SO_OBJECTS)
3846 x = count_partial(n, count_inuse);
81819f0f 3847 else
205ab99d 3848 x = n->nr_partial;
81819f0f
CL
3849 total += x;
3850 nodes[node] += x;
3851 }
3852 }
81819f0f
CL
3853 x = sprintf(buf, "%lu", total);
3854#ifdef CONFIG_NUMA
f64dc58c 3855 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3856 if (nodes[node])
3857 x += sprintf(buf + x, " N%d=%lu",
3858 node, nodes[node]);
3859#endif
3860 kfree(nodes);
3861 return x + sprintf(buf + x, "\n");
3862}
3863
3864static int any_slab_objects(struct kmem_cache *s)
3865{
3866 int node;
81819f0f 3867
dfb4f096 3868 for_each_online_node(node) {
81819f0f
CL
3869 struct kmem_cache_node *n = get_node(s, node);
3870
dfb4f096
CL
3871 if (!n)
3872 continue;
3873
4ea33e2d 3874 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3875 return 1;
3876 }
3877 return 0;
3878}
3879
3880#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3881#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3882
3883struct slab_attribute {
3884 struct attribute attr;
3885 ssize_t (*show)(struct kmem_cache *s, char *buf);
3886 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3887};
3888
3889#define SLAB_ATTR_RO(_name) \
3890 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3891
3892#define SLAB_ATTR(_name) \
3893 static struct slab_attribute _name##_attr = \
3894 __ATTR(_name, 0644, _name##_show, _name##_store)
3895
81819f0f
CL
3896static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3897{
3898 return sprintf(buf, "%d\n", s->size);
3899}
3900SLAB_ATTR_RO(slab_size);
3901
3902static ssize_t align_show(struct kmem_cache *s, char *buf)
3903{
3904 return sprintf(buf, "%d\n", s->align);
3905}
3906SLAB_ATTR_RO(align);
3907
3908static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3909{
3910 return sprintf(buf, "%d\n", s->objsize);
3911}
3912SLAB_ATTR_RO(object_size);
3913
3914static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3915{
834f3d11 3916 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3917}
3918SLAB_ATTR_RO(objs_per_slab);
3919
06b285dc
CL
3920static ssize_t order_store(struct kmem_cache *s,
3921 const char *buf, size_t length)
3922{
0121c619
CL
3923 unsigned long order;
3924 int err;
3925
3926 err = strict_strtoul(buf, 10, &order);
3927 if (err)
3928 return err;
06b285dc
CL
3929
3930 if (order > slub_max_order || order < slub_min_order)
3931 return -EINVAL;
3932
3933 calculate_sizes(s, order);
3934 return length;
3935}
3936
81819f0f
CL
3937static ssize_t order_show(struct kmem_cache *s, char *buf)
3938{
834f3d11 3939 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3940}
06b285dc 3941SLAB_ATTR(order);
81819f0f 3942
73d342b1
DR
3943static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3944{
3945 return sprintf(buf, "%lu\n", s->min_partial);
3946}
3947
3948static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3949 size_t length)
3950{
3951 unsigned long min;
3952 int err;
3953
3954 err = strict_strtoul(buf, 10, &min);
3955 if (err)
3956 return err;
3957
c0bdb232 3958 set_min_partial(s, min);
73d342b1
DR
3959 return length;
3960}
3961SLAB_ATTR(min_partial);
3962
81819f0f
CL
3963static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3964{
3965 if (s->ctor) {
3966 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3967
3968 return n + sprintf(buf + n, "\n");
3969 }
3970 return 0;
3971}
3972SLAB_ATTR_RO(ctor);
3973
81819f0f
CL
3974static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3975{
3976 return sprintf(buf, "%d\n", s->refcount - 1);
3977}
3978SLAB_ATTR_RO(aliases);
3979
3980static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3981{
205ab99d 3982 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3983}
3984SLAB_ATTR_RO(slabs);
3985
3986static ssize_t partial_show(struct kmem_cache *s, char *buf)
3987{
d9acf4b7 3988 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3989}
3990SLAB_ATTR_RO(partial);
3991
3992static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3993{
d9acf4b7 3994 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3995}
3996SLAB_ATTR_RO(cpu_slabs);
3997
3998static ssize_t objects_show(struct kmem_cache *s, char *buf)
3999{
205ab99d 4000 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4001}
4002SLAB_ATTR_RO(objects);
4003
205ab99d
CL
4004static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4005{
4006 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4007}
4008SLAB_ATTR_RO(objects_partial);
4009
4010static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4011{
4012 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4013}
4014SLAB_ATTR_RO(total_objects);
4015
81819f0f
CL
4016static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4017{
4018 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4019}
4020
4021static ssize_t sanity_checks_store(struct kmem_cache *s,
4022 const char *buf, size_t length)
4023{
4024 s->flags &= ~SLAB_DEBUG_FREE;
4025 if (buf[0] == '1')
4026 s->flags |= SLAB_DEBUG_FREE;
4027 return length;
4028}
4029SLAB_ATTR(sanity_checks);
4030
4031static ssize_t trace_show(struct kmem_cache *s, char *buf)
4032{
4033 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4034}
4035
4036static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4037 size_t length)
4038{
4039 s->flags &= ~SLAB_TRACE;
4040 if (buf[0] == '1')
4041 s->flags |= SLAB_TRACE;
4042 return length;
4043}
4044SLAB_ATTR(trace);
4045
4c13dd3b
DM
4046#ifdef CONFIG_FAILSLAB
4047static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4048{
4049 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4050}
4051
4052static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4053 size_t length)
4054{
4055 s->flags &= ~SLAB_FAILSLAB;
4056 if (buf[0] == '1')
4057 s->flags |= SLAB_FAILSLAB;
4058 return length;
4059}
4060SLAB_ATTR(failslab);
4061#endif
4062
81819f0f
CL
4063static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4064{
4065 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4066}
4067
4068static ssize_t reclaim_account_store(struct kmem_cache *s,
4069 const char *buf, size_t length)
4070{
4071 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4072 if (buf[0] == '1')
4073 s->flags |= SLAB_RECLAIM_ACCOUNT;
4074 return length;
4075}
4076SLAB_ATTR(reclaim_account);
4077
4078static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4079{
5af60839 4080 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4081}
4082SLAB_ATTR_RO(hwcache_align);
4083
4084#ifdef CONFIG_ZONE_DMA
4085static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4086{
4087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4088}
4089SLAB_ATTR_RO(cache_dma);
4090#endif
4091
4092static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4093{
4094 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4095}
4096SLAB_ATTR_RO(destroy_by_rcu);
4097
4098static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4099{
4100 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4101}
4102
4103static ssize_t red_zone_store(struct kmem_cache *s,
4104 const char *buf, size_t length)
4105{
4106 if (any_slab_objects(s))
4107 return -EBUSY;
4108
4109 s->flags &= ~SLAB_RED_ZONE;
4110 if (buf[0] == '1')
4111 s->flags |= SLAB_RED_ZONE;
06b285dc 4112 calculate_sizes(s, -1);
81819f0f
CL
4113 return length;
4114}
4115SLAB_ATTR(red_zone);
4116
4117static ssize_t poison_show(struct kmem_cache *s, char *buf)
4118{
4119 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4120}
4121
4122static ssize_t poison_store(struct kmem_cache *s,
4123 const char *buf, size_t length)
4124{
4125 if (any_slab_objects(s))
4126 return -EBUSY;
4127
4128 s->flags &= ~SLAB_POISON;
4129 if (buf[0] == '1')
4130 s->flags |= SLAB_POISON;
06b285dc 4131 calculate_sizes(s, -1);
81819f0f
CL
4132 return length;
4133}
4134SLAB_ATTR(poison);
4135
4136static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4137{
4138 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4139}
4140
4141static ssize_t store_user_store(struct kmem_cache *s,
4142 const char *buf, size_t length)
4143{
4144 if (any_slab_objects(s))
4145 return -EBUSY;
4146
4147 s->flags &= ~SLAB_STORE_USER;
4148 if (buf[0] == '1')
4149 s->flags |= SLAB_STORE_USER;
06b285dc 4150 calculate_sizes(s, -1);
81819f0f
CL
4151 return length;
4152}
4153SLAB_ATTR(store_user);
4154
53e15af0
CL
4155static ssize_t validate_show(struct kmem_cache *s, char *buf)
4156{
4157 return 0;
4158}
4159
4160static ssize_t validate_store(struct kmem_cache *s,
4161 const char *buf, size_t length)
4162{
434e245d
CL
4163 int ret = -EINVAL;
4164
4165 if (buf[0] == '1') {
4166 ret = validate_slab_cache(s);
4167 if (ret >= 0)
4168 ret = length;
4169 }
4170 return ret;
53e15af0
CL
4171}
4172SLAB_ATTR(validate);
4173
2086d26a
CL
4174static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4175{
4176 return 0;
4177}
4178
4179static ssize_t shrink_store(struct kmem_cache *s,
4180 const char *buf, size_t length)
4181{
4182 if (buf[0] == '1') {
4183 int rc = kmem_cache_shrink(s);
4184
4185 if (rc)
4186 return rc;
4187 } else
4188 return -EINVAL;
4189 return length;
4190}
4191SLAB_ATTR(shrink);
4192
88a420e4
CL
4193static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4194{
4195 if (!(s->flags & SLAB_STORE_USER))
4196 return -ENOSYS;
4197 return list_locations(s, buf, TRACK_ALLOC);
4198}
4199SLAB_ATTR_RO(alloc_calls);
4200
4201static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4202{
4203 if (!(s->flags & SLAB_STORE_USER))
4204 return -ENOSYS;
4205 return list_locations(s, buf, TRACK_FREE);
4206}
4207SLAB_ATTR_RO(free_calls);
4208
81819f0f 4209#ifdef CONFIG_NUMA
9824601e 4210static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4211{
9824601e 4212 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4213}
4214
9824601e 4215static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4216 const char *buf, size_t length)
4217{
0121c619
CL
4218 unsigned long ratio;
4219 int err;
4220
4221 err = strict_strtoul(buf, 10, &ratio);
4222 if (err)
4223 return err;
4224
e2cb96b7 4225 if (ratio <= 100)
0121c619 4226 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4227
81819f0f
CL
4228 return length;
4229}
9824601e 4230SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4231#endif
4232
8ff12cfc 4233#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4234static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4235{
4236 unsigned long sum = 0;
4237 int cpu;
4238 int len;
4239 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4240
4241 if (!data)
4242 return -ENOMEM;
4243
4244 for_each_online_cpu(cpu) {
9dfc6e68 4245 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4246
4247 data[cpu] = x;
4248 sum += x;
4249 }
4250
4251 len = sprintf(buf, "%lu", sum);
4252
50ef37b9 4253#ifdef CONFIG_SMP
8ff12cfc
CL
4254 for_each_online_cpu(cpu) {
4255 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4256 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4257 }
50ef37b9 4258#endif
8ff12cfc
CL
4259 kfree(data);
4260 return len + sprintf(buf + len, "\n");
4261}
4262
78eb00cc
DR
4263static void clear_stat(struct kmem_cache *s, enum stat_item si)
4264{
4265 int cpu;
4266
4267 for_each_online_cpu(cpu)
9dfc6e68 4268 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4269}
4270
8ff12cfc
CL
4271#define STAT_ATTR(si, text) \
4272static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4273{ \
4274 return show_stat(s, buf, si); \
4275} \
78eb00cc
DR
4276static ssize_t text##_store(struct kmem_cache *s, \
4277 const char *buf, size_t length) \
4278{ \
4279 if (buf[0] != '0') \
4280 return -EINVAL; \
4281 clear_stat(s, si); \
4282 return length; \
4283} \
4284SLAB_ATTR(text); \
8ff12cfc
CL
4285
4286STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4287STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4288STAT_ATTR(FREE_FASTPATH, free_fastpath);
4289STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4290STAT_ATTR(FREE_FROZEN, free_frozen);
4291STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4292STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4293STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4294STAT_ATTR(ALLOC_SLAB, alloc_slab);
4295STAT_ATTR(ALLOC_REFILL, alloc_refill);
4296STAT_ATTR(FREE_SLAB, free_slab);
4297STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4298STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4299STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4300STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4301STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4302STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4303STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4304#endif
4305
06428780 4306static struct attribute *slab_attrs[] = {
81819f0f
CL
4307 &slab_size_attr.attr,
4308 &object_size_attr.attr,
4309 &objs_per_slab_attr.attr,
4310 &order_attr.attr,
73d342b1 4311 &min_partial_attr.attr,
81819f0f 4312 &objects_attr.attr,
205ab99d
CL
4313 &objects_partial_attr.attr,
4314 &total_objects_attr.attr,
81819f0f
CL
4315 &slabs_attr.attr,
4316 &partial_attr.attr,
4317 &cpu_slabs_attr.attr,
4318 &ctor_attr.attr,
81819f0f
CL
4319 &aliases_attr.attr,
4320 &align_attr.attr,
4321 &sanity_checks_attr.attr,
4322 &trace_attr.attr,
4323 &hwcache_align_attr.attr,
4324 &reclaim_account_attr.attr,
4325 &destroy_by_rcu_attr.attr,
4326 &red_zone_attr.attr,
4327 &poison_attr.attr,
4328 &store_user_attr.attr,
53e15af0 4329 &validate_attr.attr,
2086d26a 4330 &shrink_attr.attr,
88a420e4
CL
4331 &alloc_calls_attr.attr,
4332 &free_calls_attr.attr,
81819f0f
CL
4333#ifdef CONFIG_ZONE_DMA
4334 &cache_dma_attr.attr,
4335#endif
4336#ifdef CONFIG_NUMA
9824601e 4337 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4338#endif
4339#ifdef CONFIG_SLUB_STATS
4340 &alloc_fastpath_attr.attr,
4341 &alloc_slowpath_attr.attr,
4342 &free_fastpath_attr.attr,
4343 &free_slowpath_attr.attr,
4344 &free_frozen_attr.attr,
4345 &free_add_partial_attr.attr,
4346 &free_remove_partial_attr.attr,
4347 &alloc_from_partial_attr.attr,
4348 &alloc_slab_attr.attr,
4349 &alloc_refill_attr.attr,
4350 &free_slab_attr.attr,
4351 &cpuslab_flush_attr.attr,
4352 &deactivate_full_attr.attr,
4353 &deactivate_empty_attr.attr,
4354 &deactivate_to_head_attr.attr,
4355 &deactivate_to_tail_attr.attr,
4356 &deactivate_remote_frees_attr.attr,
65c3376a 4357 &order_fallback_attr.attr,
81819f0f 4358#endif
4c13dd3b
DM
4359#ifdef CONFIG_FAILSLAB
4360 &failslab_attr.attr,
4361#endif
4362
81819f0f
CL
4363 NULL
4364};
4365
4366static struct attribute_group slab_attr_group = {
4367 .attrs = slab_attrs,
4368};
4369
4370static ssize_t slab_attr_show(struct kobject *kobj,
4371 struct attribute *attr,
4372 char *buf)
4373{
4374 struct slab_attribute *attribute;
4375 struct kmem_cache *s;
4376 int err;
4377
4378 attribute = to_slab_attr(attr);
4379 s = to_slab(kobj);
4380
4381 if (!attribute->show)
4382 return -EIO;
4383
4384 err = attribute->show(s, buf);
4385
4386 return err;
4387}
4388
4389static ssize_t slab_attr_store(struct kobject *kobj,
4390 struct attribute *attr,
4391 const char *buf, size_t len)
4392{
4393 struct slab_attribute *attribute;
4394 struct kmem_cache *s;
4395 int err;
4396
4397 attribute = to_slab_attr(attr);
4398 s = to_slab(kobj);
4399
4400 if (!attribute->store)
4401 return -EIO;
4402
4403 err = attribute->store(s, buf, len);
4404
4405 return err;
4406}
4407
151c602f
CL
4408static void kmem_cache_release(struct kobject *kobj)
4409{
4410 struct kmem_cache *s = to_slab(kobj);
4411
4412 kfree(s);
4413}
4414
52cf25d0 4415static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4416 .show = slab_attr_show,
4417 .store = slab_attr_store,
4418};
4419
4420static struct kobj_type slab_ktype = {
4421 .sysfs_ops = &slab_sysfs_ops,
151c602f 4422 .release = kmem_cache_release
81819f0f
CL
4423};
4424
4425static int uevent_filter(struct kset *kset, struct kobject *kobj)
4426{
4427 struct kobj_type *ktype = get_ktype(kobj);
4428
4429 if (ktype == &slab_ktype)
4430 return 1;
4431 return 0;
4432}
4433
9cd43611 4434static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4435 .filter = uevent_filter,
4436};
4437
27c3a314 4438static struct kset *slab_kset;
81819f0f
CL
4439
4440#define ID_STR_LENGTH 64
4441
4442/* Create a unique string id for a slab cache:
6446faa2
CL
4443 *
4444 * Format :[flags-]size
81819f0f
CL
4445 */
4446static char *create_unique_id(struct kmem_cache *s)
4447{
4448 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4449 char *p = name;
4450
4451 BUG_ON(!name);
4452
4453 *p++ = ':';
4454 /*
4455 * First flags affecting slabcache operations. We will only
4456 * get here for aliasable slabs so we do not need to support
4457 * too many flags. The flags here must cover all flags that
4458 * are matched during merging to guarantee that the id is
4459 * unique.
4460 */
4461 if (s->flags & SLAB_CACHE_DMA)
4462 *p++ = 'd';
4463 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4464 *p++ = 'a';
4465 if (s->flags & SLAB_DEBUG_FREE)
4466 *p++ = 'F';
5a896d9e
VN
4467 if (!(s->flags & SLAB_NOTRACK))
4468 *p++ = 't';
81819f0f
CL
4469 if (p != name + 1)
4470 *p++ = '-';
4471 p += sprintf(p, "%07d", s->size);
4472 BUG_ON(p > name + ID_STR_LENGTH - 1);
4473 return name;
4474}
4475
4476static int sysfs_slab_add(struct kmem_cache *s)
4477{
4478 int err;
4479 const char *name;
4480 int unmergeable;
4481
4482 if (slab_state < SYSFS)
4483 /* Defer until later */
4484 return 0;
4485
4486 unmergeable = slab_unmergeable(s);
4487 if (unmergeable) {
4488 /*
4489 * Slabcache can never be merged so we can use the name proper.
4490 * This is typically the case for debug situations. In that
4491 * case we can catch duplicate names easily.
4492 */
27c3a314 4493 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4494 name = s->name;
4495 } else {
4496 /*
4497 * Create a unique name for the slab as a target
4498 * for the symlinks.
4499 */
4500 name = create_unique_id(s);
4501 }
4502
27c3a314 4503 s->kobj.kset = slab_kset;
1eada11c
GKH
4504 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4505 if (err) {
4506 kobject_put(&s->kobj);
81819f0f 4507 return err;
1eada11c 4508 }
81819f0f
CL
4509
4510 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4511 if (err) {
4512 kobject_del(&s->kobj);
4513 kobject_put(&s->kobj);
81819f0f 4514 return err;
5788d8ad 4515 }
81819f0f
CL
4516 kobject_uevent(&s->kobj, KOBJ_ADD);
4517 if (!unmergeable) {
4518 /* Setup first alias */
4519 sysfs_slab_alias(s, s->name);
4520 kfree(name);
4521 }
4522 return 0;
4523}
4524
4525static void sysfs_slab_remove(struct kmem_cache *s)
4526{
2bce6485
CL
4527 if (slab_state < SYSFS)
4528 /*
4529 * Sysfs has not been setup yet so no need to remove the
4530 * cache from sysfs.
4531 */
4532 return;
4533
81819f0f
CL
4534 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4535 kobject_del(&s->kobj);
151c602f 4536 kobject_put(&s->kobj);
81819f0f
CL
4537}
4538
4539/*
4540 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4541 * available lest we lose that information.
81819f0f
CL
4542 */
4543struct saved_alias {
4544 struct kmem_cache *s;
4545 const char *name;
4546 struct saved_alias *next;
4547};
4548
5af328a5 4549static struct saved_alias *alias_list;
81819f0f
CL
4550
4551static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4552{
4553 struct saved_alias *al;
4554
4555 if (slab_state == SYSFS) {
4556 /*
4557 * If we have a leftover link then remove it.
4558 */
27c3a314
GKH
4559 sysfs_remove_link(&slab_kset->kobj, name);
4560 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4561 }
4562
4563 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4564 if (!al)
4565 return -ENOMEM;
4566
4567 al->s = s;
4568 al->name = name;
4569 al->next = alias_list;
4570 alias_list = al;
4571 return 0;
4572}
4573
4574static int __init slab_sysfs_init(void)
4575{
5b95a4ac 4576 struct kmem_cache *s;
81819f0f
CL
4577 int err;
4578
2bce6485
CL
4579 down_write(&slub_lock);
4580
0ff21e46 4581 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4582 if (!slab_kset) {
2bce6485 4583 up_write(&slub_lock);
81819f0f
CL
4584 printk(KERN_ERR "Cannot register slab subsystem.\n");
4585 return -ENOSYS;
4586 }
4587
26a7bd03
CL
4588 slab_state = SYSFS;
4589
5b95a4ac 4590 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4591 err = sysfs_slab_add(s);
5d540fb7
CL
4592 if (err)
4593 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4594 " to sysfs\n", s->name);
26a7bd03 4595 }
81819f0f
CL
4596
4597 while (alias_list) {
4598 struct saved_alias *al = alias_list;
4599
4600 alias_list = alias_list->next;
4601 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4602 if (err)
4603 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4604 " %s to sysfs\n", s->name);
81819f0f
CL
4605 kfree(al);
4606 }
4607
2bce6485 4608 up_write(&slub_lock);
81819f0f
CL
4609 resiliency_test();
4610 return 0;
4611}
4612
4613__initcall(slab_sysfs_init);
81819f0f 4614#endif
57ed3eda
PE
4615
4616/*
4617 * The /proc/slabinfo ABI
4618 */
158a9624 4619#ifdef CONFIG_SLABINFO
57ed3eda
PE
4620static void print_slabinfo_header(struct seq_file *m)
4621{
4622 seq_puts(m, "slabinfo - version: 2.1\n");
4623 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4624 "<objperslab> <pagesperslab>");
4625 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4626 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4627 seq_putc(m, '\n');
4628}
4629
4630static void *s_start(struct seq_file *m, loff_t *pos)
4631{
4632 loff_t n = *pos;
4633
4634 down_read(&slub_lock);
4635 if (!n)
4636 print_slabinfo_header(m);
4637
4638 return seq_list_start(&slab_caches, *pos);
4639}
4640
4641static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4642{
4643 return seq_list_next(p, &slab_caches, pos);
4644}
4645
4646static void s_stop(struct seq_file *m, void *p)
4647{
4648 up_read(&slub_lock);
4649}
4650
4651static int s_show(struct seq_file *m, void *p)
4652{
4653 unsigned long nr_partials = 0;
4654 unsigned long nr_slabs = 0;
4655 unsigned long nr_inuse = 0;
205ab99d
CL
4656 unsigned long nr_objs = 0;
4657 unsigned long nr_free = 0;
57ed3eda
PE
4658 struct kmem_cache *s;
4659 int node;
4660
4661 s = list_entry(p, struct kmem_cache, list);
4662
4663 for_each_online_node(node) {
4664 struct kmem_cache_node *n = get_node(s, node);
4665
4666 if (!n)
4667 continue;
4668
4669 nr_partials += n->nr_partial;
4670 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4671 nr_objs += atomic_long_read(&n->total_objects);
4672 nr_free += count_partial(n, count_free);
57ed3eda
PE
4673 }
4674
205ab99d 4675 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4676
4677 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4678 nr_objs, s->size, oo_objects(s->oo),
4679 (1 << oo_order(s->oo)));
57ed3eda
PE
4680 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4681 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4682 0UL);
4683 seq_putc(m, '\n');
4684 return 0;
4685}
4686
7b3c3a50 4687static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4688 .start = s_start,
4689 .next = s_next,
4690 .stop = s_stop,
4691 .show = s_show,
4692};
4693
7b3c3a50
AD
4694static int slabinfo_open(struct inode *inode, struct file *file)
4695{
4696 return seq_open(file, &slabinfo_op);
4697}
4698
4699static const struct file_operations proc_slabinfo_operations = {
4700 .open = slabinfo_open,
4701 .read = seq_read,
4702 .llseek = seq_lseek,
4703 .release = seq_release,
4704};
4705
4706static int __init slab_proc_init(void)
4707{
cf5d1131 4708 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4709 return 0;
4710}
4711module_init(slab_proc_init);
158a9624 4712#endif /* CONFIG_SLABINFO */