slub: never fail to shrink cache
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
210b5c06
CG
172#define OO_SHIFT 16
173#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 174#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 175
81819f0f 176/* Internal SLUB flags */
f90ec390 177#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 178#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 179
81819f0f
CL
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
02cbc874
CL
184/*
185 * Tracking user of a slab.
186 */
d6543e39 187#define TRACK_ADDRS_COUNT 16
02cbc874 188struct track {
ce71e27c 189 unsigned long addr; /* Called from address */
d6543e39
BG
190#ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192#endif
02cbc874
CL
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196};
197
198enum track_item { TRACK_ALLOC, TRACK_FREE };
199
ab4d5ed5 200#ifdef CONFIG_SYSFS
81819f0f
CL
201static int sysfs_slab_add(struct kmem_cache *);
202static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 203static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 204#else
0c710013
CL
205static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
206static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
207 { return 0; }
107dab5c 208static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
209#endif
210
4fdccdfb 211static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
212{
213#ifdef CONFIG_SLUB_STATS
88da03a6
CL
214 /*
215 * The rmw is racy on a preemptible kernel but this is acceptable, so
216 * avoid this_cpu_add()'s irq-disable overhead.
217 */
218 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
219#endif
220}
221
81819f0f
CL
222/********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
225
6446faa2 226/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
227static inline int check_valid_pointer(struct kmem_cache *s,
228 struct page *page, const void *object)
229{
230 void *base;
231
a973e9dd 232 if (!object)
02cbc874
CL
233 return 1;
234
a973e9dd 235 base = page_address(page);
39b26464 236 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
237 (object - base) % s->size) {
238 return 0;
239 }
240
241 return 1;
242}
243
7656c72b
CL
244static inline void *get_freepointer(struct kmem_cache *s, void *object)
245{
246 return *(void **)(object + s->offset);
247}
248
0ad9500e
ED
249static void prefetch_freepointer(const struct kmem_cache *s, void *object)
250{
251 prefetch(object + s->offset);
252}
253
1393d9a1
CL
254static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
255{
256 void *p;
257
258#ifdef CONFIG_DEBUG_PAGEALLOC
259 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
260#else
261 p = get_freepointer(s, object);
262#endif
263 return p;
264}
265
7656c72b
CL
266static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
267{
268 *(void **)(object + s->offset) = fp;
269}
270
271/* Loop over all objects in a slab */
224a88be
CL
272#define for_each_object(__p, __s, __addr, __objects) \
273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
274 __p += (__s)->size)
275
54266640
WY
276#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
277 for (__p = (__addr), __idx = 1; __idx <= __objects;\
278 __p += (__s)->size, __idx++)
279
7656c72b
CL
280/* Determine object index from a given position */
281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282{
283 return (p - addr) / s->size;
284}
285
d71f606f
MK
286static inline size_t slab_ksize(const struct kmem_cache *s)
287{
288#ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 294 return s->object_size;
d71f606f
MK
295
296#endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308}
309
ab9a0f19
LJ
310static inline int order_objects(int order, unsigned long size, int reserved)
311{
312 return ((PAGE_SIZE << order) - reserved) / size;
313}
314
834f3d11 315static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 316 unsigned long size, int reserved)
834f3d11
CL
317{
318 struct kmem_cache_order_objects x = {
ab9a0f19 319 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
320 };
321
322 return x;
323}
324
325static inline int oo_order(struct kmem_cache_order_objects x)
326{
210b5c06 327 return x.x >> OO_SHIFT;
834f3d11
CL
328}
329
330static inline int oo_objects(struct kmem_cache_order_objects x)
331{
210b5c06 332 return x.x & OO_MASK;
834f3d11
CL
333}
334
881db7fb
CL
335/*
336 * Per slab locking using the pagelock
337 */
338static __always_inline void slab_lock(struct page *page)
339{
340 bit_spin_lock(PG_locked, &page->flags);
341}
342
343static __always_inline void slab_unlock(struct page *page)
344{
345 __bit_spin_unlock(PG_locked, &page->flags);
346}
347
a0320865
DH
348static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
349{
350 struct page tmp;
351 tmp.counters = counters_new;
352 /*
353 * page->counters can cover frozen/inuse/objects as well
354 * as page->_count. If we assign to ->counters directly
355 * we run the risk of losing updates to page->_count, so
356 * be careful and only assign to the fields we need.
357 */
358 page->frozen = tmp.frozen;
359 page->inuse = tmp.inuse;
360 page->objects = tmp.objects;
361}
362
1d07171c
CL
363/* Interrupts must be disabled (for the fallback code to work right) */
364static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 void *freelist_old, unsigned long counters_old,
366 void *freelist_new, unsigned long counters_new,
367 const char *n)
368{
369 VM_BUG_ON(!irqs_disabled());
2565409f
HC
370#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 372 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 373 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
374 freelist_old, counters_old,
375 freelist_new, counters_new))
376 return 1;
1d07171c
CL
377 } else
378#endif
379 {
380 slab_lock(page);
d0e0ac97
CG
381 if (page->freelist == freelist_old &&
382 page->counters == counters_old) {
1d07171c 383 page->freelist = freelist_new;
a0320865 384 set_page_slub_counters(page, counters_new);
1d07171c
CL
385 slab_unlock(page);
386 return 1;
387 }
388 slab_unlock(page);
389 }
390
391 cpu_relax();
392 stat(s, CMPXCHG_DOUBLE_FAIL);
393
394#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 395 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
396#endif
397
398 return 0;
399}
400
b789ef51
CL
401static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 void *freelist_old, unsigned long counters_old,
403 void *freelist_new, unsigned long counters_new,
404 const char *n)
405{
2565409f
HC
406#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 408 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 409 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
410 freelist_old, counters_old,
411 freelist_new, counters_new))
412 return 1;
b789ef51
CL
413 } else
414#endif
415 {
1d07171c
CL
416 unsigned long flags;
417
418 local_irq_save(flags);
881db7fb 419 slab_lock(page);
d0e0ac97
CG
420 if (page->freelist == freelist_old &&
421 page->counters == counters_old) {
b789ef51 422 page->freelist = freelist_new;
a0320865 423 set_page_slub_counters(page, counters_new);
881db7fb 424 slab_unlock(page);
1d07171c 425 local_irq_restore(flags);
b789ef51
CL
426 return 1;
427 }
881db7fb 428 slab_unlock(page);
1d07171c 429 local_irq_restore(flags);
b789ef51
CL
430 }
431
432 cpu_relax();
433 stat(s, CMPXCHG_DOUBLE_FAIL);
434
435#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 436 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
437#endif
438
439 return 0;
440}
441
41ecc55b 442#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
443/*
444 * Determine a map of object in use on a page.
445 *
881db7fb 446 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
447 * not vanish from under us.
448 */
449static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450{
451 void *p;
452 void *addr = page_address(page);
453
454 for (p = page->freelist; p; p = get_freepointer(s, p))
455 set_bit(slab_index(p, s, addr), map);
456}
457
41ecc55b
CL
458/*
459 * Debug settings:
460 */
f0630fff
CL
461#ifdef CONFIG_SLUB_DEBUG_ON
462static int slub_debug = DEBUG_DEFAULT_FLAGS;
463#else
41ecc55b 464static int slub_debug;
f0630fff 465#endif
41ecc55b
CL
466
467static char *slub_debug_slabs;
fa5ec8a1 468static int disable_higher_order_debug;
41ecc55b 469
81819f0f
CL
470/*
471 * Object debugging
472 */
473static void print_section(char *text, u8 *addr, unsigned int length)
474{
ffc79d28
SAS
475 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
476 length, 1);
81819f0f
CL
477}
478
81819f0f
CL
479static struct track *get_track(struct kmem_cache *s, void *object,
480 enum track_item alloc)
481{
482 struct track *p;
483
484 if (s->offset)
485 p = object + s->offset + sizeof(void *);
486 else
487 p = object + s->inuse;
488
489 return p + alloc;
490}
491
492static void set_track(struct kmem_cache *s, void *object,
ce71e27c 493 enum track_item alloc, unsigned long addr)
81819f0f 494{
1a00df4a 495 struct track *p = get_track(s, object, alloc);
81819f0f 496
81819f0f 497 if (addr) {
d6543e39
BG
498#ifdef CONFIG_STACKTRACE
499 struct stack_trace trace;
500 int i;
501
502 trace.nr_entries = 0;
503 trace.max_entries = TRACK_ADDRS_COUNT;
504 trace.entries = p->addrs;
505 trace.skip = 3;
506 save_stack_trace(&trace);
507
508 /* See rant in lockdep.c */
509 if (trace.nr_entries != 0 &&
510 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
511 trace.nr_entries--;
512
513 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
514 p->addrs[i] = 0;
515#endif
81819f0f
CL
516 p->addr = addr;
517 p->cpu = smp_processor_id();
88e4ccf2 518 p->pid = current->pid;
81819f0f
CL
519 p->when = jiffies;
520 } else
521 memset(p, 0, sizeof(struct track));
522}
523
81819f0f
CL
524static void init_tracking(struct kmem_cache *s, void *object)
525{
24922684
CL
526 if (!(s->flags & SLAB_STORE_USER))
527 return;
528
ce71e27c
EGM
529 set_track(s, object, TRACK_FREE, 0UL);
530 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
531}
532
533static void print_track(const char *s, struct track *t)
534{
535 if (!t->addr)
536 return;
537
f9f58285
FF
538 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
539 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
540#ifdef CONFIG_STACKTRACE
541 {
542 int i;
543 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
544 if (t->addrs[i])
f9f58285 545 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
546 else
547 break;
548 }
549#endif
24922684
CL
550}
551
552static void print_tracking(struct kmem_cache *s, void *object)
553{
554 if (!(s->flags & SLAB_STORE_USER))
555 return;
556
557 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
558 print_track("Freed", get_track(s, object, TRACK_FREE));
559}
560
561static void print_page_info(struct page *page)
562{
f9f58285 563 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 564 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
565
566}
567
568static void slab_bug(struct kmem_cache *s, char *fmt, ...)
569{
ecc42fbe 570 struct va_format vaf;
24922684 571 va_list args;
24922684
CL
572
573 va_start(args, fmt);
ecc42fbe
FF
574 vaf.fmt = fmt;
575 vaf.va = &args;
f9f58285 576 pr_err("=============================================================================\n");
ecc42fbe 577 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 578 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 579
373d4d09 580 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 581 va_end(args);
81819f0f
CL
582}
583
24922684
CL
584static void slab_fix(struct kmem_cache *s, char *fmt, ...)
585{
ecc42fbe 586 struct va_format vaf;
24922684 587 va_list args;
24922684
CL
588
589 va_start(args, fmt);
ecc42fbe
FF
590 vaf.fmt = fmt;
591 vaf.va = &args;
592 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 593 va_end(args);
24922684
CL
594}
595
596static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
597{
598 unsigned int off; /* Offset of last byte */
a973e9dd 599 u8 *addr = page_address(page);
24922684
CL
600
601 print_tracking(s, p);
602
603 print_page_info(page);
604
f9f58285
FF
605 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
606 p, p - addr, get_freepointer(s, p));
24922684
CL
607
608 if (p > addr + 16)
ffc79d28 609 print_section("Bytes b4 ", p - 16, 16);
81819f0f 610
3b0efdfa 611 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 612 PAGE_SIZE));
81819f0f 613 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
614 print_section("Redzone ", p + s->object_size,
615 s->inuse - s->object_size);
81819f0f 616
81819f0f
CL
617 if (s->offset)
618 off = s->offset + sizeof(void *);
619 else
620 off = s->inuse;
621
24922684 622 if (s->flags & SLAB_STORE_USER)
81819f0f 623 off += 2 * sizeof(struct track);
81819f0f
CL
624
625 if (off != s->size)
626 /* Beginning of the filler is the free pointer */
ffc79d28 627 print_section("Padding ", p + off, s->size - off);
24922684
CL
628
629 dump_stack();
81819f0f
CL
630}
631
632static void object_err(struct kmem_cache *s, struct page *page,
633 u8 *object, char *reason)
634{
3dc50637 635 slab_bug(s, "%s", reason);
24922684 636 print_trailer(s, page, object);
81819f0f
CL
637}
638
d0e0ac97
CG
639static void slab_err(struct kmem_cache *s, struct page *page,
640 const char *fmt, ...)
81819f0f
CL
641{
642 va_list args;
643 char buf[100];
644
24922684
CL
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 647 va_end(args);
3dc50637 648 slab_bug(s, "%s", buf);
24922684 649 print_page_info(page);
81819f0f
CL
650 dump_stack();
651}
652
f7cb1933 653static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
654{
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
658 memset(p, POISON_FREE, s->object_size - 1);
659 p[s->object_size - 1] = POISON_END;
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 663 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
664}
665
24922684
CL
666static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668{
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671}
672
673static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
06428780 675 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
676{
677 u8 *fault;
678 u8 *end;
679
79824820 680 fault = memchr_inv(start, value, bytes);
24922684
CL
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
f9f58285 689 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
81819f0f
CL
695}
696
81819f0f
CL
697/*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
672bba3a 704 *
81819f0f
CL
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
3b0efdfa 708 * object + s->object_size
81819f0f 709 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 710 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 711 * object_size == inuse.
672bba3a 712 *
81819f0f
CL
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
672bba3a
CL
717 * Meta data starts here.
718 *
81819f0f
CL
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
672bba3a 721 * C. Padding to reach required alignment boundary or at mininum
6446faa2 722 * one word if debugging is on to be able to detect writes
672bba3a
CL
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
726 *
727 * object + s->size
672bba3a 728 * Nothing is used beyond s->size.
81819f0f 729 *
3b0efdfa 730 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 731 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
732 * may be used with merged slabcaches.
733 */
734
81819f0f
CL
735static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736{
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
24922684
CL
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
752}
753
39b26464 754/* Check the pad bytes at the end of a slab page */
81819f0f
CL
755static int slab_pad_check(struct kmem_cache *s, struct page *page)
756{
24922684
CL
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
81819f0f
CL
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
a973e9dd 766 start = page_address(page);
ab9a0f19 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
768 end = start + length;
769 remainder = length % s->size;
81819f0f
CL
770 if (!remainder)
771 return 1;
772
79824820 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 780 print_section("Padding ", end - remainder, remainder);
24922684 781
8a3d271d 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 783 return 0;
81819f0f
CL
784}
785
786static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 787 void *object, u8 val)
81819f0f
CL
788{
789 u8 *p = object;
3b0efdfa 790 u8 *endobject = object + s->object_size;
81819f0f
CL
791
792 if (s->flags & SLAB_RED_ZONE) {
24922684 793 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 794 endobject, val, s->inuse - s->object_size))
81819f0f 795 return 0;
81819f0f 796 } else {
3b0efdfa 797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 798 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
799 endobject, POISON_INUSE,
800 s->inuse - s->object_size);
3adbefee 801 }
81819f0f
CL
802 }
803
804 if (s->flags & SLAB_POISON) {
f7cb1933 805 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 806 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 807 POISON_FREE, s->object_size - 1) ||
24922684 808 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 809 p + s->object_size - 1, POISON_END, 1)))
81819f0f 810 return 0;
81819f0f
CL
811 /*
812 * check_pad_bytes cleans up on its own.
813 */
814 check_pad_bytes(s, page, p);
815 }
816
f7cb1933 817 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
818 /*
819 * Object and freepointer overlap. Cannot check
820 * freepointer while object is allocated.
821 */
822 return 1;
823
824 /* Check free pointer validity */
825 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
826 object_err(s, page, p, "Freepointer corrupt");
827 /*
9f6c708e 828 * No choice but to zap it and thus lose the remainder
81819f0f 829 * of the free objects in this slab. May cause
672bba3a 830 * another error because the object count is now wrong.
81819f0f 831 */
a973e9dd 832 set_freepointer(s, p, NULL);
81819f0f
CL
833 return 0;
834 }
835 return 1;
836}
837
838static int check_slab(struct kmem_cache *s, struct page *page)
839{
39b26464
CL
840 int maxobj;
841
81819f0f
CL
842 VM_BUG_ON(!irqs_disabled());
843
844 if (!PageSlab(page)) {
24922684 845 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
846 return 0;
847 }
39b26464 848
ab9a0f19 849 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
850 if (page->objects > maxobj) {
851 slab_err(s, page, "objects %u > max %u",
f6edde9c 852 page->objects, maxobj);
39b26464
CL
853 return 0;
854 }
855 if (page->inuse > page->objects) {
24922684 856 slab_err(s, page, "inuse %u > max %u",
f6edde9c 857 page->inuse, page->objects);
81819f0f
CL
858 return 0;
859 }
860 /* Slab_pad_check fixes things up after itself */
861 slab_pad_check(s, page);
862 return 1;
863}
864
865/*
672bba3a
CL
866 * Determine if a certain object on a page is on the freelist. Must hold the
867 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
868 */
869static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
870{
871 int nr = 0;
881db7fb 872 void *fp;
81819f0f 873 void *object = NULL;
f6edde9c 874 int max_objects;
81819f0f 875
881db7fb 876 fp = page->freelist;
39b26464 877 while (fp && nr <= page->objects) {
81819f0f
CL
878 if (fp == search)
879 return 1;
880 if (!check_valid_pointer(s, page, fp)) {
881 if (object) {
882 object_err(s, page, object,
883 "Freechain corrupt");
a973e9dd 884 set_freepointer(s, object, NULL);
81819f0f 885 } else {
24922684 886 slab_err(s, page, "Freepointer corrupt");
a973e9dd 887 page->freelist = NULL;
39b26464 888 page->inuse = page->objects;
24922684 889 slab_fix(s, "Freelist cleared");
81819f0f
CL
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
ab9a0f19 899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
39b26464 909 if (page->inuse != page->objects - nr) {
70d71228 910 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
24922684 913 slab_fix(s, "Object count adjusted.");
81819f0f
CL
914 }
915 return search == NULL;
916}
917
0121c619
CL
918static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
3ec09742
CL
920{
921 if (s->flags & SLAB_TRACE) {
f9f58285 922 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
d0e0ac97
CG
929 print_section("Object ", (void *)object,
930 s->object_size);
3ec09742
CL
931
932 dump_stack();
933 }
934}
935
643b1138 936/*
672bba3a 937 * Tracking of fully allocated slabs for debugging purposes.
643b1138 938 */
5cc6eee8
CL
939static void add_full(struct kmem_cache *s,
940 struct kmem_cache_node *n, struct page *page)
643b1138 941{
5cc6eee8
CL
942 if (!(s->flags & SLAB_STORE_USER))
943 return;
944
255d0884 945 lockdep_assert_held(&n->list_lock);
643b1138 946 list_add(&page->lru, &n->full);
643b1138
CL
947}
948
c65c1877 949static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 950{
643b1138
CL
951 if (!(s->flags & SLAB_STORE_USER))
952 return;
953
255d0884 954 lockdep_assert_held(&n->list_lock);
643b1138 955 list_del(&page->lru);
643b1138
CL
956}
957
0f389ec6
CL
958/* Tracking of the number of slabs for debugging purposes */
959static inline unsigned long slabs_node(struct kmem_cache *s, int node)
960{
961 struct kmem_cache_node *n = get_node(s, node);
962
963 return atomic_long_read(&n->nr_slabs);
964}
965
26c02cf0
AB
966static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
967{
968 return atomic_long_read(&n->nr_slabs);
969}
970
205ab99d 971static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
972{
973 struct kmem_cache_node *n = get_node(s, node);
974
975 /*
976 * May be called early in order to allocate a slab for the
977 * kmem_cache_node structure. Solve the chicken-egg
978 * dilemma by deferring the increment of the count during
979 * bootstrap (see early_kmem_cache_node_alloc).
980 */
338b2642 981 if (likely(n)) {
0f389ec6 982 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
983 atomic_long_add(objects, &n->total_objects);
984 }
0f389ec6 985}
205ab99d 986static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
987{
988 struct kmem_cache_node *n = get_node(s, node);
989
990 atomic_long_dec(&n->nr_slabs);
205ab99d 991 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
992}
993
994/* Object debug checks for alloc/free paths */
3ec09742
CL
995static void setup_object_debug(struct kmem_cache *s, struct page *page,
996 void *object)
997{
998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
999 return;
1000
f7cb1933 1001 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1002 init_tracking(s, object);
1003}
1004
d0e0ac97
CG
1005static noinline int alloc_debug_processing(struct kmem_cache *s,
1006 struct page *page,
ce71e27c 1007 void *object, unsigned long addr)
81819f0f
CL
1008{
1009 if (!check_slab(s, page))
1010 goto bad;
1011
81819f0f
CL
1012 if (!check_valid_pointer(s, page, object)) {
1013 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1014 goto bad;
81819f0f
CL
1015 }
1016
f7cb1933 1017 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1018 goto bad;
81819f0f 1019
3ec09742
CL
1020 /* Success perform special debug activities for allocs */
1021 if (s->flags & SLAB_STORE_USER)
1022 set_track(s, object, TRACK_ALLOC, addr);
1023 trace(s, page, object, 1);
f7cb1933 1024 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1025 return 1;
3ec09742 1026
81819f0f
CL
1027bad:
1028 if (PageSlab(page)) {
1029 /*
1030 * If this is a slab page then lets do the best we can
1031 * to avoid issues in the future. Marking all objects
672bba3a 1032 * as used avoids touching the remaining objects.
81819f0f 1033 */
24922684 1034 slab_fix(s, "Marking all objects used");
39b26464 1035 page->inuse = page->objects;
a973e9dd 1036 page->freelist = NULL;
81819f0f
CL
1037 }
1038 return 0;
1039}
1040
19c7ff9e
CL
1041static noinline struct kmem_cache_node *free_debug_processing(
1042 struct kmem_cache *s, struct page *page, void *object,
1043 unsigned long addr, unsigned long *flags)
81819f0f 1044{
19c7ff9e 1045 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1046
19c7ff9e 1047 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1048 slab_lock(page);
1049
81819f0f
CL
1050 if (!check_slab(s, page))
1051 goto fail;
1052
1053 if (!check_valid_pointer(s, page, object)) {
70d71228 1054 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1055 goto fail;
1056 }
1057
1058 if (on_freelist(s, page, object)) {
24922684 1059 object_err(s, page, object, "Object already free");
81819f0f
CL
1060 goto fail;
1061 }
1062
f7cb1933 1063 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1064 goto out;
81819f0f 1065
1b4f59e3 1066 if (unlikely(s != page->slab_cache)) {
3adbefee 1067 if (!PageSlab(page)) {
70d71228
CL
1068 slab_err(s, page, "Attempt to free object(0x%p) "
1069 "outside of slab", object);
1b4f59e3 1070 } else if (!page->slab_cache) {
f9f58285
FF
1071 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1072 object);
70d71228 1073 dump_stack();
06428780 1074 } else
24922684
CL
1075 object_err(s, page, object,
1076 "page slab pointer corrupt.");
81819f0f
CL
1077 goto fail;
1078 }
3ec09742 1079
3ec09742
CL
1080 if (s->flags & SLAB_STORE_USER)
1081 set_track(s, object, TRACK_FREE, addr);
1082 trace(s, page, object, 0);
f7cb1933 1083 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1084out:
881db7fb 1085 slab_unlock(page);
19c7ff9e
CL
1086 /*
1087 * Keep node_lock to preserve integrity
1088 * until the object is actually freed
1089 */
1090 return n;
3ec09742 1091
81819f0f 1092fail:
19c7ff9e
CL
1093 slab_unlock(page);
1094 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1095 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1096 return NULL;
81819f0f
CL
1097}
1098
41ecc55b
CL
1099static int __init setup_slub_debug(char *str)
1100{
f0630fff
CL
1101 slub_debug = DEBUG_DEFAULT_FLAGS;
1102 if (*str++ != '=' || !*str)
1103 /*
1104 * No options specified. Switch on full debugging.
1105 */
1106 goto out;
1107
1108 if (*str == ',')
1109 /*
1110 * No options but restriction on slabs. This means full
1111 * debugging for slabs matching a pattern.
1112 */
1113 goto check_slabs;
1114
fa5ec8a1
DR
1115 if (tolower(*str) == 'o') {
1116 /*
1117 * Avoid enabling debugging on caches if its minimum order
1118 * would increase as a result.
1119 */
1120 disable_higher_order_debug = 1;
1121 goto out;
1122 }
1123
f0630fff
CL
1124 slub_debug = 0;
1125 if (*str == '-')
1126 /*
1127 * Switch off all debugging measures.
1128 */
1129 goto out;
1130
1131 /*
1132 * Determine which debug features should be switched on
1133 */
06428780 1134 for (; *str && *str != ','; str++) {
f0630fff
CL
1135 switch (tolower(*str)) {
1136 case 'f':
1137 slub_debug |= SLAB_DEBUG_FREE;
1138 break;
1139 case 'z':
1140 slub_debug |= SLAB_RED_ZONE;
1141 break;
1142 case 'p':
1143 slub_debug |= SLAB_POISON;
1144 break;
1145 case 'u':
1146 slub_debug |= SLAB_STORE_USER;
1147 break;
1148 case 't':
1149 slub_debug |= SLAB_TRACE;
1150 break;
4c13dd3b
DM
1151 case 'a':
1152 slub_debug |= SLAB_FAILSLAB;
1153 break;
f0630fff 1154 default:
f9f58285
FF
1155 pr_err("slub_debug option '%c' unknown. skipped\n",
1156 *str);
f0630fff 1157 }
41ecc55b
CL
1158 }
1159
f0630fff 1160check_slabs:
41ecc55b
CL
1161 if (*str == ',')
1162 slub_debug_slabs = str + 1;
f0630fff 1163out:
41ecc55b
CL
1164 return 1;
1165}
1166
1167__setup("slub_debug", setup_slub_debug);
1168
423c929c 1169unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1170 unsigned long flags, const char *name,
51cc5068 1171 void (*ctor)(void *))
41ecc55b
CL
1172{
1173 /*
e153362a 1174 * Enable debugging if selected on the kernel commandline.
41ecc55b 1175 */
c6f58d9b
CL
1176 if (slub_debug && (!slub_debug_slabs || (name &&
1177 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1178 flags |= slub_debug;
ba0268a8
CL
1179
1180 return flags;
41ecc55b
CL
1181}
1182#else
3ec09742
CL
1183static inline void setup_object_debug(struct kmem_cache *s,
1184 struct page *page, void *object) {}
41ecc55b 1185
3ec09742 1186static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1187 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1188
19c7ff9e
CL
1189static inline struct kmem_cache_node *free_debug_processing(
1190 struct kmem_cache *s, struct page *page, void *object,
1191 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1192
41ecc55b
CL
1193static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1194 { return 1; }
1195static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1196 void *object, u8 val) { return 1; }
5cc6eee8
CL
1197static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1198 struct page *page) {}
c65c1877
PZ
1199static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1200 struct page *page) {}
423c929c 1201unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1202 unsigned long flags, const char *name,
51cc5068 1203 void (*ctor)(void *))
ba0268a8
CL
1204{
1205 return flags;
1206}
41ecc55b 1207#define slub_debug 0
0f389ec6 1208
fdaa45e9
IM
1209#define disable_higher_order_debug 0
1210
0f389ec6
CL
1211static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1212 { return 0; }
26c02cf0
AB
1213static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1214 { return 0; }
205ab99d
CL
1215static inline void inc_slabs_node(struct kmem_cache *s, int node,
1216 int objects) {}
1217static inline void dec_slabs_node(struct kmem_cache *s, int node,
1218 int objects) {}
7d550c56 1219
02e72cc6
AR
1220#endif /* CONFIG_SLUB_DEBUG */
1221
1222/*
1223 * Hooks for other subsystems that check memory allocations. In a typical
1224 * production configuration these hooks all should produce no code at all.
1225 */
d56791b3
RB
1226static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1227{
1228 kmemleak_alloc(ptr, size, 1, flags);
1229}
1230
1231static inline void kfree_hook(const void *x)
1232{
1233 kmemleak_free(x);
1234}
1235
8135be5a
VD
1236static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1237 gfp_t flags)
02e72cc6
AR
1238{
1239 flags &= gfp_allowed_mask;
1240 lockdep_trace_alloc(flags);
1241 might_sleep_if(flags & __GFP_WAIT);
7d550c56 1242
8135be5a
VD
1243 if (should_failslab(s->object_size, flags, s->flags))
1244 return NULL;
1245
1246 return memcg_kmem_get_cache(s, flags);
02e72cc6
AR
1247}
1248
1249static inline void slab_post_alloc_hook(struct kmem_cache *s,
1250 gfp_t flags, void *object)
d56791b3 1251{
02e72cc6
AR
1252 flags &= gfp_allowed_mask;
1253 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1254 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
8135be5a 1255 memcg_kmem_put_cache(s);
d56791b3 1256}
7d550c56 1257
d56791b3
RB
1258static inline void slab_free_hook(struct kmem_cache *s, void *x)
1259{
1260 kmemleak_free_recursive(x, s->flags);
7d550c56 1261
02e72cc6
AR
1262 /*
1263 * Trouble is that we may no longer disable interrupts in the fast path
1264 * So in order to make the debug calls that expect irqs to be
1265 * disabled we need to disable interrupts temporarily.
1266 */
1267#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1268 {
1269 unsigned long flags;
1270
1271 local_irq_save(flags);
1272 kmemcheck_slab_free(s, x, s->object_size);
1273 debug_check_no_locks_freed(x, s->object_size);
1274 local_irq_restore(flags);
1275 }
1276#endif
1277 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1278 debug_check_no_obj_freed(x, s->object_size);
1279}
205ab99d 1280
81819f0f
CL
1281/*
1282 * Slab allocation and freeing
1283 */
5dfb4175
VD
1284static inline struct page *alloc_slab_page(struct kmem_cache *s,
1285 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1286{
5dfb4175 1287 struct page *page;
65c3376a
CL
1288 int order = oo_order(oo);
1289
b1eeab67
VN
1290 flags |= __GFP_NOTRACK;
1291
5dfb4175
VD
1292 if (memcg_charge_slab(s, flags, order))
1293 return NULL;
1294
2154a336 1295 if (node == NUMA_NO_NODE)
5dfb4175 1296 page = alloc_pages(flags, order);
65c3376a 1297 else
5dfb4175
VD
1298 page = alloc_pages_exact_node(node, flags, order);
1299
1300 if (!page)
1301 memcg_uncharge_slab(s, order);
1302
1303 return page;
65c3376a
CL
1304}
1305
81819f0f
CL
1306static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1307{
06428780 1308 struct page *page;
834f3d11 1309 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1310 gfp_t alloc_gfp;
81819f0f 1311
7e0528da
CL
1312 flags &= gfp_allowed_mask;
1313
1314 if (flags & __GFP_WAIT)
1315 local_irq_enable();
1316
b7a49f0d 1317 flags |= s->allocflags;
e12ba74d 1318
ba52270d
PE
1319 /*
1320 * Let the initial higher-order allocation fail under memory pressure
1321 * so we fall-back to the minimum order allocation.
1322 */
1323 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1324
5dfb4175 1325 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1326 if (unlikely(!page)) {
1327 oo = s->min;
80c3a998 1328 alloc_gfp = flags;
65c3376a
CL
1329 /*
1330 * Allocation may have failed due to fragmentation.
1331 * Try a lower order alloc if possible
1332 */
5dfb4175 1333 page = alloc_slab_page(s, alloc_gfp, node, oo);
81819f0f 1334
7e0528da
CL
1335 if (page)
1336 stat(s, ORDER_FALLBACK);
65c3376a 1337 }
5a896d9e 1338
737b719e 1339 if (kmemcheck_enabled && page
5086c389 1340 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1341 int pages = 1 << oo_order(oo);
1342
80c3a998 1343 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1344
1345 /*
1346 * Objects from caches that have a constructor don't get
1347 * cleared when they're allocated, so we need to do it here.
1348 */
1349 if (s->ctor)
1350 kmemcheck_mark_uninitialized_pages(page, pages);
1351 else
1352 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1353 }
1354
737b719e
DR
1355 if (flags & __GFP_WAIT)
1356 local_irq_disable();
1357 if (!page)
1358 return NULL;
1359
834f3d11 1360 page->objects = oo_objects(oo);
81819f0f
CL
1361 mod_zone_page_state(page_zone(page),
1362 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1363 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1364 1 << oo_order(oo));
81819f0f
CL
1365
1366 return page;
1367}
1368
1369static void setup_object(struct kmem_cache *s, struct page *page,
1370 void *object)
1371{
3ec09742 1372 setup_object_debug(s, page, object);
4f104934 1373 if (unlikely(s->ctor))
51cc5068 1374 s->ctor(object);
81819f0f
CL
1375}
1376
1377static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1378{
1379 struct page *page;
81819f0f 1380 void *start;
81819f0f 1381 void *p;
1f458cbf 1382 int order;
54266640 1383 int idx;
81819f0f 1384
c871ac4e
AM
1385 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1386 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1387 BUG();
1388 }
81819f0f 1389
6cb06229
CL
1390 page = allocate_slab(s,
1391 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1392 if (!page)
1393 goto out;
1394
1f458cbf 1395 order = compound_order(page);
205ab99d 1396 inc_slabs_node(s, page_to_nid(page), page->objects);
1b4f59e3 1397 page->slab_cache = s;
c03f94cc 1398 __SetPageSlab(page);
072bb0aa
MG
1399 if (page->pfmemalloc)
1400 SetPageSlabPfmemalloc(page);
81819f0f
CL
1401
1402 start = page_address(page);
81819f0f
CL
1403
1404 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1405 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1406
54266640
WY
1407 for_each_object_idx(p, idx, s, start, page->objects) {
1408 setup_object(s, page, p);
1409 if (likely(idx < page->objects))
1410 set_freepointer(s, p, p + s->size);
1411 else
1412 set_freepointer(s, p, NULL);
81819f0f 1413 }
81819f0f
CL
1414
1415 page->freelist = start;
e6e82ea1 1416 page->inuse = page->objects;
8cb0a506 1417 page->frozen = 1;
81819f0f 1418out:
81819f0f
CL
1419 return page;
1420}
1421
1422static void __free_slab(struct kmem_cache *s, struct page *page)
1423{
834f3d11
CL
1424 int order = compound_order(page);
1425 int pages = 1 << order;
81819f0f 1426
af537b0a 1427 if (kmem_cache_debug(s)) {
81819f0f
CL
1428 void *p;
1429
1430 slab_pad_check(s, page);
224a88be
CL
1431 for_each_object(p, s, page_address(page),
1432 page->objects)
f7cb1933 1433 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1434 }
1435
b1eeab67 1436 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1437
81819f0f
CL
1438 mod_zone_page_state(page_zone(page),
1439 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1440 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1441 -pages);
81819f0f 1442
072bb0aa 1443 __ClearPageSlabPfmemalloc(page);
49bd5221 1444 __ClearPageSlab(page);
1f458cbf 1445
22b751c3 1446 page_mapcount_reset(page);
1eb5ac64
NP
1447 if (current->reclaim_state)
1448 current->reclaim_state->reclaimed_slab += pages;
5dfb4175
VD
1449 __free_pages(page, order);
1450 memcg_uncharge_slab(s, order);
81819f0f
CL
1451}
1452
da9a638c
LJ
1453#define need_reserve_slab_rcu \
1454 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1455
81819f0f
CL
1456static void rcu_free_slab(struct rcu_head *h)
1457{
1458 struct page *page;
1459
da9a638c
LJ
1460 if (need_reserve_slab_rcu)
1461 page = virt_to_head_page(h);
1462 else
1463 page = container_of((struct list_head *)h, struct page, lru);
1464
1b4f59e3 1465 __free_slab(page->slab_cache, page);
81819f0f
CL
1466}
1467
1468static void free_slab(struct kmem_cache *s, struct page *page)
1469{
1470 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1471 struct rcu_head *head;
1472
1473 if (need_reserve_slab_rcu) {
1474 int order = compound_order(page);
1475 int offset = (PAGE_SIZE << order) - s->reserved;
1476
1477 VM_BUG_ON(s->reserved != sizeof(*head));
1478 head = page_address(page) + offset;
1479 } else {
1480 /*
1481 * RCU free overloads the RCU head over the LRU
1482 */
1483 head = (void *)&page->lru;
1484 }
81819f0f
CL
1485
1486 call_rcu(head, rcu_free_slab);
1487 } else
1488 __free_slab(s, page);
1489}
1490
1491static void discard_slab(struct kmem_cache *s, struct page *page)
1492{
205ab99d 1493 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1494 free_slab(s, page);
1495}
1496
1497/*
5cc6eee8 1498 * Management of partially allocated slabs.
81819f0f 1499 */
1e4dd946
SR
1500static inline void
1501__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1502{
e95eed57 1503 n->nr_partial++;
136333d1 1504 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1505 list_add_tail(&page->lru, &n->partial);
1506 else
1507 list_add(&page->lru, &n->partial);
81819f0f
CL
1508}
1509
1e4dd946
SR
1510static inline void add_partial(struct kmem_cache_node *n,
1511 struct page *page, int tail)
62e346a8 1512{
c65c1877 1513 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1514 __add_partial(n, page, tail);
1515}
c65c1877 1516
1e4dd946
SR
1517static inline void
1518__remove_partial(struct kmem_cache_node *n, struct page *page)
1519{
62e346a8
CL
1520 list_del(&page->lru);
1521 n->nr_partial--;
1522}
1523
1e4dd946
SR
1524static inline void remove_partial(struct kmem_cache_node *n,
1525 struct page *page)
1526{
1527 lockdep_assert_held(&n->list_lock);
1528 __remove_partial(n, page);
1529}
1530
81819f0f 1531/*
7ced3719
CL
1532 * Remove slab from the partial list, freeze it and
1533 * return the pointer to the freelist.
81819f0f 1534 *
497b66f2 1535 * Returns a list of objects or NULL if it fails.
81819f0f 1536 */
497b66f2 1537static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1538 struct kmem_cache_node *n, struct page *page,
633b0764 1539 int mode, int *objects)
81819f0f 1540{
2cfb7455
CL
1541 void *freelist;
1542 unsigned long counters;
1543 struct page new;
1544
c65c1877
PZ
1545 lockdep_assert_held(&n->list_lock);
1546
2cfb7455
CL
1547 /*
1548 * Zap the freelist and set the frozen bit.
1549 * The old freelist is the list of objects for the
1550 * per cpu allocation list.
1551 */
7ced3719
CL
1552 freelist = page->freelist;
1553 counters = page->counters;
1554 new.counters = counters;
633b0764 1555 *objects = new.objects - new.inuse;
23910c50 1556 if (mode) {
7ced3719 1557 new.inuse = page->objects;
23910c50
PE
1558 new.freelist = NULL;
1559 } else {
1560 new.freelist = freelist;
1561 }
2cfb7455 1562
a0132ac0 1563 VM_BUG_ON(new.frozen);
7ced3719 1564 new.frozen = 1;
2cfb7455 1565
7ced3719 1566 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1567 freelist, counters,
02d7633f 1568 new.freelist, new.counters,
7ced3719 1569 "acquire_slab"))
7ced3719 1570 return NULL;
2cfb7455
CL
1571
1572 remove_partial(n, page);
7ced3719 1573 WARN_ON(!freelist);
49e22585 1574 return freelist;
81819f0f
CL
1575}
1576
633b0764 1577static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1578static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1579
81819f0f 1580/*
672bba3a 1581 * Try to allocate a partial slab from a specific node.
81819f0f 1582 */
8ba00bb6
JK
1583static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1584 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1585{
49e22585
CL
1586 struct page *page, *page2;
1587 void *object = NULL;
633b0764
JK
1588 int available = 0;
1589 int objects;
81819f0f
CL
1590
1591 /*
1592 * Racy check. If we mistakenly see no partial slabs then we
1593 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1594 * partial slab and there is none available then get_partials()
1595 * will return NULL.
81819f0f
CL
1596 */
1597 if (!n || !n->nr_partial)
1598 return NULL;
1599
1600 spin_lock(&n->list_lock);
49e22585 1601 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1602 void *t;
49e22585 1603
8ba00bb6
JK
1604 if (!pfmemalloc_match(page, flags))
1605 continue;
1606
633b0764 1607 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1608 if (!t)
1609 break;
1610
633b0764 1611 available += objects;
12d79634 1612 if (!object) {
49e22585 1613 c->page = page;
49e22585 1614 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1615 object = t;
49e22585 1616 } else {
633b0764 1617 put_cpu_partial(s, page, 0);
8028dcea 1618 stat(s, CPU_PARTIAL_NODE);
49e22585 1619 }
345c905d
JK
1620 if (!kmem_cache_has_cpu_partial(s)
1621 || available > s->cpu_partial / 2)
49e22585
CL
1622 break;
1623
497b66f2 1624 }
81819f0f 1625 spin_unlock(&n->list_lock);
497b66f2 1626 return object;
81819f0f
CL
1627}
1628
1629/*
672bba3a 1630 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1631 */
de3ec035 1632static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1633 struct kmem_cache_cpu *c)
81819f0f
CL
1634{
1635#ifdef CONFIG_NUMA
1636 struct zonelist *zonelist;
dd1a239f 1637 struct zoneref *z;
54a6eb5c
MG
1638 struct zone *zone;
1639 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1640 void *object;
cc9a6c87 1641 unsigned int cpuset_mems_cookie;
81819f0f
CL
1642
1643 /*
672bba3a
CL
1644 * The defrag ratio allows a configuration of the tradeoffs between
1645 * inter node defragmentation and node local allocations. A lower
1646 * defrag_ratio increases the tendency to do local allocations
1647 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1648 *
672bba3a
CL
1649 * If the defrag_ratio is set to 0 then kmalloc() always
1650 * returns node local objects. If the ratio is higher then kmalloc()
1651 * may return off node objects because partial slabs are obtained
1652 * from other nodes and filled up.
81819f0f 1653 *
6446faa2 1654 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1655 * defrag_ratio = 1000) then every (well almost) allocation will
1656 * first attempt to defrag slab caches on other nodes. This means
1657 * scanning over all nodes to look for partial slabs which may be
1658 * expensive if we do it every time we are trying to find a slab
1659 * with available objects.
81819f0f 1660 */
9824601e
CL
1661 if (!s->remote_node_defrag_ratio ||
1662 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1663 return NULL;
1664
cc9a6c87 1665 do {
d26914d1 1666 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1667 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1668 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1669 struct kmem_cache_node *n;
1670
1671 n = get_node(s, zone_to_nid(zone));
1672
dee2f8aa 1673 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1674 n->nr_partial > s->min_partial) {
8ba00bb6 1675 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1676 if (object) {
1677 /*
d26914d1
MG
1678 * Don't check read_mems_allowed_retry()
1679 * here - if mems_allowed was updated in
1680 * parallel, that was a harmless race
1681 * between allocation and the cpuset
1682 * update
cc9a6c87 1683 */
cc9a6c87
MG
1684 return object;
1685 }
c0ff7453 1686 }
81819f0f 1687 }
d26914d1 1688 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1689#endif
1690 return NULL;
1691}
1692
1693/*
1694 * Get a partial page, lock it and return it.
1695 */
497b66f2 1696static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1697 struct kmem_cache_cpu *c)
81819f0f 1698{
497b66f2 1699 void *object;
a561ce00
JK
1700 int searchnode = node;
1701
1702 if (node == NUMA_NO_NODE)
1703 searchnode = numa_mem_id();
1704 else if (!node_present_pages(node))
1705 searchnode = node_to_mem_node(node);
81819f0f 1706
8ba00bb6 1707 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1708 if (object || node != NUMA_NO_NODE)
1709 return object;
81819f0f 1710
acd19fd1 1711 return get_any_partial(s, flags, c);
81819f0f
CL
1712}
1713
8a5ec0ba
CL
1714#ifdef CONFIG_PREEMPT
1715/*
1716 * Calculate the next globally unique transaction for disambiguiation
1717 * during cmpxchg. The transactions start with the cpu number and are then
1718 * incremented by CONFIG_NR_CPUS.
1719 */
1720#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1721#else
1722/*
1723 * No preemption supported therefore also no need to check for
1724 * different cpus.
1725 */
1726#define TID_STEP 1
1727#endif
1728
1729static inline unsigned long next_tid(unsigned long tid)
1730{
1731 return tid + TID_STEP;
1732}
1733
1734static inline unsigned int tid_to_cpu(unsigned long tid)
1735{
1736 return tid % TID_STEP;
1737}
1738
1739static inline unsigned long tid_to_event(unsigned long tid)
1740{
1741 return tid / TID_STEP;
1742}
1743
1744static inline unsigned int init_tid(int cpu)
1745{
1746 return cpu;
1747}
1748
1749static inline void note_cmpxchg_failure(const char *n,
1750 const struct kmem_cache *s, unsigned long tid)
1751{
1752#ifdef SLUB_DEBUG_CMPXCHG
1753 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1754
f9f58285 1755 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1756
1757#ifdef CONFIG_PREEMPT
1758 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1759 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1760 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1761 else
1762#endif
1763 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1764 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1765 tid_to_event(tid), tid_to_event(actual_tid));
1766 else
f9f58285 1767 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1768 actual_tid, tid, next_tid(tid));
1769#endif
4fdccdfb 1770 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1771}
1772
788e1aad 1773static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1774{
8a5ec0ba
CL
1775 int cpu;
1776
1777 for_each_possible_cpu(cpu)
1778 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1779}
2cfb7455 1780
81819f0f
CL
1781/*
1782 * Remove the cpu slab
1783 */
d0e0ac97
CG
1784static void deactivate_slab(struct kmem_cache *s, struct page *page,
1785 void *freelist)
81819f0f 1786{
2cfb7455 1787 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1788 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1789 int lock = 0;
1790 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1791 void *nextfree;
136333d1 1792 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1793 struct page new;
1794 struct page old;
1795
1796 if (page->freelist) {
84e554e6 1797 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1798 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1799 }
1800
894b8788 1801 /*
2cfb7455
CL
1802 * Stage one: Free all available per cpu objects back
1803 * to the page freelist while it is still frozen. Leave the
1804 * last one.
1805 *
1806 * There is no need to take the list->lock because the page
1807 * is still frozen.
1808 */
1809 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1810 void *prior;
1811 unsigned long counters;
1812
1813 do {
1814 prior = page->freelist;
1815 counters = page->counters;
1816 set_freepointer(s, freelist, prior);
1817 new.counters = counters;
1818 new.inuse--;
a0132ac0 1819 VM_BUG_ON(!new.frozen);
2cfb7455 1820
1d07171c 1821 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1822 prior, counters,
1823 freelist, new.counters,
1824 "drain percpu freelist"));
1825
1826 freelist = nextfree;
1827 }
1828
894b8788 1829 /*
2cfb7455
CL
1830 * Stage two: Ensure that the page is unfrozen while the
1831 * list presence reflects the actual number of objects
1832 * during unfreeze.
1833 *
1834 * We setup the list membership and then perform a cmpxchg
1835 * with the count. If there is a mismatch then the page
1836 * is not unfrozen but the page is on the wrong list.
1837 *
1838 * Then we restart the process which may have to remove
1839 * the page from the list that we just put it on again
1840 * because the number of objects in the slab may have
1841 * changed.
894b8788 1842 */
2cfb7455 1843redo:
894b8788 1844
2cfb7455
CL
1845 old.freelist = page->freelist;
1846 old.counters = page->counters;
a0132ac0 1847 VM_BUG_ON(!old.frozen);
7c2e132c 1848
2cfb7455
CL
1849 /* Determine target state of the slab */
1850 new.counters = old.counters;
1851 if (freelist) {
1852 new.inuse--;
1853 set_freepointer(s, freelist, old.freelist);
1854 new.freelist = freelist;
1855 } else
1856 new.freelist = old.freelist;
1857
1858 new.frozen = 0;
1859
8a5b20ae 1860 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1861 m = M_FREE;
1862 else if (new.freelist) {
1863 m = M_PARTIAL;
1864 if (!lock) {
1865 lock = 1;
1866 /*
1867 * Taking the spinlock removes the possiblity
1868 * that acquire_slab() will see a slab page that
1869 * is frozen
1870 */
1871 spin_lock(&n->list_lock);
1872 }
1873 } else {
1874 m = M_FULL;
1875 if (kmem_cache_debug(s) && !lock) {
1876 lock = 1;
1877 /*
1878 * This also ensures that the scanning of full
1879 * slabs from diagnostic functions will not see
1880 * any frozen slabs.
1881 */
1882 spin_lock(&n->list_lock);
1883 }
1884 }
1885
1886 if (l != m) {
1887
1888 if (l == M_PARTIAL)
1889
1890 remove_partial(n, page);
1891
1892 else if (l == M_FULL)
894b8788 1893
c65c1877 1894 remove_full(s, n, page);
2cfb7455
CL
1895
1896 if (m == M_PARTIAL) {
1897
1898 add_partial(n, page, tail);
136333d1 1899 stat(s, tail);
2cfb7455
CL
1900
1901 } else if (m == M_FULL) {
894b8788 1902
2cfb7455
CL
1903 stat(s, DEACTIVATE_FULL);
1904 add_full(s, n, page);
1905
1906 }
1907 }
1908
1909 l = m;
1d07171c 1910 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1911 old.freelist, old.counters,
1912 new.freelist, new.counters,
1913 "unfreezing slab"))
1914 goto redo;
1915
2cfb7455
CL
1916 if (lock)
1917 spin_unlock(&n->list_lock);
1918
1919 if (m == M_FREE) {
1920 stat(s, DEACTIVATE_EMPTY);
1921 discard_slab(s, page);
1922 stat(s, FREE_SLAB);
894b8788 1923 }
81819f0f
CL
1924}
1925
d24ac77f
JK
1926/*
1927 * Unfreeze all the cpu partial slabs.
1928 *
59a09917
CL
1929 * This function must be called with interrupts disabled
1930 * for the cpu using c (or some other guarantee must be there
1931 * to guarantee no concurrent accesses).
d24ac77f 1932 */
59a09917
CL
1933static void unfreeze_partials(struct kmem_cache *s,
1934 struct kmem_cache_cpu *c)
49e22585 1935{
345c905d 1936#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1937 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1938 struct page *page, *discard_page = NULL;
49e22585
CL
1939
1940 while ((page = c->partial)) {
49e22585
CL
1941 struct page new;
1942 struct page old;
1943
1944 c->partial = page->next;
43d77867
JK
1945
1946 n2 = get_node(s, page_to_nid(page));
1947 if (n != n2) {
1948 if (n)
1949 spin_unlock(&n->list_lock);
1950
1951 n = n2;
1952 spin_lock(&n->list_lock);
1953 }
49e22585
CL
1954
1955 do {
1956
1957 old.freelist = page->freelist;
1958 old.counters = page->counters;
a0132ac0 1959 VM_BUG_ON(!old.frozen);
49e22585
CL
1960
1961 new.counters = old.counters;
1962 new.freelist = old.freelist;
1963
1964 new.frozen = 0;
1965
d24ac77f 1966 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1967 old.freelist, old.counters,
1968 new.freelist, new.counters,
1969 "unfreezing slab"));
1970
8a5b20ae 1971 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
1972 page->next = discard_page;
1973 discard_page = page;
43d77867
JK
1974 } else {
1975 add_partial(n, page, DEACTIVATE_TO_TAIL);
1976 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1977 }
1978 }
1979
1980 if (n)
1981 spin_unlock(&n->list_lock);
9ada1934
SL
1982
1983 while (discard_page) {
1984 page = discard_page;
1985 discard_page = discard_page->next;
1986
1987 stat(s, DEACTIVATE_EMPTY);
1988 discard_slab(s, page);
1989 stat(s, FREE_SLAB);
1990 }
345c905d 1991#endif
49e22585
CL
1992}
1993
1994/*
1995 * Put a page that was just frozen (in __slab_free) into a partial page
1996 * slot if available. This is done without interrupts disabled and without
1997 * preemption disabled. The cmpxchg is racy and may put the partial page
1998 * onto a random cpus partial slot.
1999 *
2000 * If we did not find a slot then simply move all the partials to the
2001 * per node partial list.
2002 */
633b0764 2003static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2004{
345c905d 2005#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2006 struct page *oldpage;
2007 int pages;
2008 int pobjects;
2009
2010 do {
2011 pages = 0;
2012 pobjects = 0;
2013 oldpage = this_cpu_read(s->cpu_slab->partial);
2014
2015 if (oldpage) {
2016 pobjects = oldpage->pobjects;
2017 pages = oldpage->pages;
2018 if (drain && pobjects > s->cpu_partial) {
2019 unsigned long flags;
2020 /*
2021 * partial array is full. Move the existing
2022 * set to the per node partial list.
2023 */
2024 local_irq_save(flags);
59a09917 2025 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2026 local_irq_restore(flags);
e24fc410 2027 oldpage = NULL;
49e22585
CL
2028 pobjects = 0;
2029 pages = 0;
8028dcea 2030 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2031 }
2032 }
2033
2034 pages++;
2035 pobjects += page->objects - page->inuse;
2036
2037 page->pages = pages;
2038 page->pobjects = pobjects;
2039 page->next = oldpage;
2040
d0e0ac97
CG
2041 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2042 != oldpage);
345c905d 2043#endif
49e22585
CL
2044}
2045
dfb4f096 2046static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2047{
84e554e6 2048 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2049 deactivate_slab(s, c->page, c->freelist);
2050
2051 c->tid = next_tid(c->tid);
2052 c->page = NULL;
2053 c->freelist = NULL;
81819f0f
CL
2054}
2055
2056/*
2057 * Flush cpu slab.
6446faa2 2058 *
81819f0f
CL
2059 * Called from IPI handler with interrupts disabled.
2060 */
0c710013 2061static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2062{
9dfc6e68 2063 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2064
49e22585
CL
2065 if (likely(c)) {
2066 if (c->page)
2067 flush_slab(s, c);
2068
59a09917 2069 unfreeze_partials(s, c);
49e22585 2070 }
81819f0f
CL
2071}
2072
2073static void flush_cpu_slab(void *d)
2074{
2075 struct kmem_cache *s = d;
81819f0f 2076
dfb4f096 2077 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2078}
2079
a8364d55
GBY
2080static bool has_cpu_slab(int cpu, void *info)
2081{
2082 struct kmem_cache *s = info;
2083 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2084
02e1a9cd 2085 return c->page || c->partial;
a8364d55
GBY
2086}
2087
81819f0f
CL
2088static void flush_all(struct kmem_cache *s)
2089{
a8364d55 2090 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2091}
2092
dfb4f096
CL
2093/*
2094 * Check if the objects in a per cpu structure fit numa
2095 * locality expectations.
2096 */
57d437d2 2097static inline int node_match(struct page *page, int node)
dfb4f096
CL
2098{
2099#ifdef CONFIG_NUMA
4d7868e6 2100 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2101 return 0;
2102#endif
2103 return 1;
2104}
2105
9a02d699 2106#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2107static int count_free(struct page *page)
2108{
2109 return page->objects - page->inuse;
2110}
2111
9a02d699
DR
2112static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2113{
2114 return atomic_long_read(&n->total_objects);
2115}
2116#endif /* CONFIG_SLUB_DEBUG */
2117
2118#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2119static unsigned long count_partial(struct kmem_cache_node *n,
2120 int (*get_count)(struct page *))
2121{
2122 unsigned long flags;
2123 unsigned long x = 0;
2124 struct page *page;
2125
2126 spin_lock_irqsave(&n->list_lock, flags);
2127 list_for_each_entry(page, &n->partial, lru)
2128 x += get_count(page);
2129 spin_unlock_irqrestore(&n->list_lock, flags);
2130 return x;
2131}
9a02d699 2132#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2133
781b2ba6
PE
2134static noinline void
2135slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2136{
9a02d699
DR
2137#ifdef CONFIG_SLUB_DEBUG
2138 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2139 DEFAULT_RATELIMIT_BURST);
781b2ba6 2140 int node;
fa45dc25 2141 struct kmem_cache_node *n;
781b2ba6 2142
9a02d699
DR
2143 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2144 return;
2145
f9f58285 2146 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2147 nid, gfpflags);
f9f58285
FF
2148 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2149 s->name, s->object_size, s->size, oo_order(s->oo),
2150 oo_order(s->min));
781b2ba6 2151
3b0efdfa 2152 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2153 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2154 s->name);
fa5ec8a1 2155
fa45dc25 2156 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2157 unsigned long nr_slabs;
2158 unsigned long nr_objs;
2159 unsigned long nr_free;
2160
26c02cf0
AB
2161 nr_free = count_partial(n, count_free);
2162 nr_slabs = node_nr_slabs(n);
2163 nr_objs = node_nr_objs(n);
781b2ba6 2164
f9f58285 2165 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2166 node, nr_slabs, nr_objs, nr_free);
2167 }
9a02d699 2168#endif
781b2ba6
PE
2169}
2170
497b66f2
CL
2171static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2172 int node, struct kmem_cache_cpu **pc)
2173{
6faa6833 2174 void *freelist;
188fd063
CL
2175 struct kmem_cache_cpu *c = *pc;
2176 struct page *page;
497b66f2 2177
188fd063 2178 freelist = get_partial(s, flags, node, c);
497b66f2 2179
188fd063
CL
2180 if (freelist)
2181 return freelist;
2182
2183 page = new_slab(s, flags, node);
497b66f2 2184 if (page) {
7c8e0181 2185 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2186 if (c->page)
2187 flush_slab(s, c);
2188
2189 /*
2190 * No other reference to the page yet so we can
2191 * muck around with it freely without cmpxchg
2192 */
6faa6833 2193 freelist = page->freelist;
497b66f2
CL
2194 page->freelist = NULL;
2195
2196 stat(s, ALLOC_SLAB);
497b66f2
CL
2197 c->page = page;
2198 *pc = c;
2199 } else
6faa6833 2200 freelist = NULL;
497b66f2 2201
6faa6833 2202 return freelist;
497b66f2
CL
2203}
2204
072bb0aa
MG
2205static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2206{
2207 if (unlikely(PageSlabPfmemalloc(page)))
2208 return gfp_pfmemalloc_allowed(gfpflags);
2209
2210 return true;
2211}
2212
213eeb9f 2213/*
d0e0ac97
CG
2214 * Check the page->freelist of a page and either transfer the freelist to the
2215 * per cpu freelist or deactivate the page.
213eeb9f
CL
2216 *
2217 * The page is still frozen if the return value is not NULL.
2218 *
2219 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2220 *
2221 * This function must be called with interrupt disabled.
213eeb9f
CL
2222 */
2223static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2224{
2225 struct page new;
2226 unsigned long counters;
2227 void *freelist;
2228
2229 do {
2230 freelist = page->freelist;
2231 counters = page->counters;
6faa6833 2232
213eeb9f 2233 new.counters = counters;
a0132ac0 2234 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2235
2236 new.inuse = page->objects;
2237 new.frozen = freelist != NULL;
2238
d24ac77f 2239 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2240 freelist, counters,
2241 NULL, new.counters,
2242 "get_freelist"));
2243
2244 return freelist;
2245}
2246
81819f0f 2247/*
894b8788
CL
2248 * Slow path. The lockless freelist is empty or we need to perform
2249 * debugging duties.
2250 *
894b8788
CL
2251 * Processing is still very fast if new objects have been freed to the
2252 * regular freelist. In that case we simply take over the regular freelist
2253 * as the lockless freelist and zap the regular freelist.
81819f0f 2254 *
894b8788
CL
2255 * If that is not working then we fall back to the partial lists. We take the
2256 * first element of the freelist as the object to allocate now and move the
2257 * rest of the freelist to the lockless freelist.
81819f0f 2258 *
894b8788 2259 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2260 * we need to allocate a new slab. This is the slowest path since it involves
2261 * a call to the page allocator and the setup of a new slab.
81819f0f 2262 */
ce71e27c
EGM
2263static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2264 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2265{
6faa6833 2266 void *freelist;
f6e7def7 2267 struct page *page;
8a5ec0ba
CL
2268 unsigned long flags;
2269
2270 local_irq_save(flags);
2271#ifdef CONFIG_PREEMPT
2272 /*
2273 * We may have been preempted and rescheduled on a different
2274 * cpu before disabling interrupts. Need to reload cpu area
2275 * pointer.
2276 */
2277 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2278#endif
81819f0f 2279
f6e7def7
CL
2280 page = c->page;
2281 if (!page)
81819f0f 2282 goto new_slab;
49e22585 2283redo:
6faa6833 2284
57d437d2 2285 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2286 int searchnode = node;
2287
2288 if (node != NUMA_NO_NODE && !node_present_pages(node))
2289 searchnode = node_to_mem_node(node);
2290
2291 if (unlikely(!node_match(page, searchnode))) {
2292 stat(s, ALLOC_NODE_MISMATCH);
2293 deactivate_slab(s, page, c->freelist);
2294 c->page = NULL;
2295 c->freelist = NULL;
2296 goto new_slab;
2297 }
fc59c053 2298 }
6446faa2 2299
072bb0aa
MG
2300 /*
2301 * By rights, we should be searching for a slab page that was
2302 * PFMEMALLOC but right now, we are losing the pfmemalloc
2303 * information when the page leaves the per-cpu allocator
2304 */
2305 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2306 deactivate_slab(s, page, c->freelist);
2307 c->page = NULL;
2308 c->freelist = NULL;
2309 goto new_slab;
2310 }
2311
73736e03 2312 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2313 freelist = c->freelist;
2314 if (freelist)
73736e03 2315 goto load_freelist;
03e404af 2316
f6e7def7 2317 freelist = get_freelist(s, page);
6446faa2 2318
6faa6833 2319 if (!freelist) {
03e404af
CL
2320 c->page = NULL;
2321 stat(s, DEACTIVATE_BYPASS);
fc59c053 2322 goto new_slab;
03e404af 2323 }
6446faa2 2324
84e554e6 2325 stat(s, ALLOC_REFILL);
6446faa2 2326
894b8788 2327load_freelist:
507effea
CL
2328 /*
2329 * freelist is pointing to the list of objects to be used.
2330 * page is pointing to the page from which the objects are obtained.
2331 * That page must be frozen for per cpu allocations to work.
2332 */
a0132ac0 2333 VM_BUG_ON(!c->page->frozen);
6faa6833 2334 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2335 c->tid = next_tid(c->tid);
2336 local_irq_restore(flags);
6faa6833 2337 return freelist;
81819f0f 2338
81819f0f 2339new_slab:
2cfb7455 2340
49e22585 2341 if (c->partial) {
f6e7def7
CL
2342 page = c->page = c->partial;
2343 c->partial = page->next;
49e22585
CL
2344 stat(s, CPU_PARTIAL_ALLOC);
2345 c->freelist = NULL;
2346 goto redo;
81819f0f
CL
2347 }
2348
188fd063 2349 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2350
f4697436 2351 if (unlikely(!freelist)) {
9a02d699 2352 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2353 local_irq_restore(flags);
2354 return NULL;
81819f0f 2355 }
2cfb7455 2356
f6e7def7 2357 page = c->page;
5091b74a 2358 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2359 goto load_freelist;
2cfb7455 2360
497b66f2 2361 /* Only entered in the debug case */
d0e0ac97
CG
2362 if (kmem_cache_debug(s) &&
2363 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2364 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2365
f6e7def7 2366 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2367 c->page = NULL;
2368 c->freelist = NULL;
a71ae47a 2369 local_irq_restore(flags);
6faa6833 2370 return freelist;
894b8788
CL
2371}
2372
2373/*
2374 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2375 * have the fastpath folded into their functions. So no function call
2376 * overhead for requests that can be satisfied on the fastpath.
2377 *
2378 * The fastpath works by first checking if the lockless freelist can be used.
2379 * If not then __slab_alloc is called for slow processing.
2380 *
2381 * Otherwise we can simply pick the next object from the lockless free list.
2382 */
2b847c3c 2383static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2384 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2385{
894b8788 2386 void **object;
dfb4f096 2387 struct kmem_cache_cpu *c;
57d437d2 2388 struct page *page;
8a5ec0ba 2389 unsigned long tid;
1f84260c 2390
8135be5a
VD
2391 s = slab_pre_alloc_hook(s, gfpflags);
2392 if (!s)
773ff60e 2393 return NULL;
8a5ec0ba 2394redo:
8a5ec0ba
CL
2395 /*
2396 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2397 * enabled. We may switch back and forth between cpus while
2398 * reading from one cpu area. That does not matter as long
2399 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2400 *
9aabf810
JK
2401 * We should guarantee that tid and kmem_cache are retrieved on
2402 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2403 * to check if it is matched or not.
8a5ec0ba 2404 */
9aabf810
JK
2405 do {
2406 tid = this_cpu_read(s->cpu_slab->tid);
2407 c = raw_cpu_ptr(s->cpu_slab);
2408 } while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
2409
2410 /*
2411 * Irqless object alloc/free algorithm used here depends on sequence
2412 * of fetching cpu_slab's data. tid should be fetched before anything
2413 * on c to guarantee that object and page associated with previous tid
2414 * won't be used with current tid. If we fetch tid first, object and
2415 * page could be one associated with next tid and our alloc/free
2416 * request will be failed. In this case, we will retry. So, no problem.
2417 */
2418 barrier();
8a5ec0ba 2419
8a5ec0ba
CL
2420 /*
2421 * The transaction ids are globally unique per cpu and per operation on
2422 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2423 * occurs on the right processor and that there was no operation on the
2424 * linked list in between.
2425 */
8a5ec0ba 2426
9dfc6e68 2427 object = c->freelist;
57d437d2 2428 page = c->page;
8eae1492 2429 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2430 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2431 stat(s, ALLOC_SLOWPATH);
2432 } else {
0ad9500e
ED
2433 void *next_object = get_freepointer_safe(s, object);
2434
8a5ec0ba 2435 /*
25985edc 2436 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2437 * operation and if we are on the right processor.
2438 *
d0e0ac97
CG
2439 * The cmpxchg does the following atomically (without lock
2440 * semantics!)
8a5ec0ba
CL
2441 * 1. Relocate first pointer to the current per cpu area.
2442 * 2. Verify that tid and freelist have not been changed
2443 * 3. If they were not changed replace tid and freelist
2444 *
d0e0ac97
CG
2445 * Since this is without lock semantics the protection is only
2446 * against code executing on this cpu *not* from access by
2447 * other cpus.
8a5ec0ba 2448 */
933393f5 2449 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2450 s->cpu_slab->freelist, s->cpu_slab->tid,
2451 object, tid,
0ad9500e 2452 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2453
2454 note_cmpxchg_failure("slab_alloc", s, tid);
2455 goto redo;
2456 }
0ad9500e 2457 prefetch_freepointer(s, next_object);
84e554e6 2458 stat(s, ALLOC_FASTPATH);
894b8788 2459 }
8a5ec0ba 2460
74e2134f 2461 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2462 memset(object, 0, s->object_size);
d07dbea4 2463
c016b0bd 2464 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2465
894b8788 2466 return object;
81819f0f
CL
2467}
2468
2b847c3c
EG
2469static __always_inline void *slab_alloc(struct kmem_cache *s,
2470 gfp_t gfpflags, unsigned long addr)
2471{
2472 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2473}
2474
81819f0f
CL
2475void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2476{
2b847c3c 2477 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2478
d0e0ac97
CG
2479 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2480 s->size, gfpflags);
5b882be4
EGM
2481
2482 return ret;
81819f0f
CL
2483}
2484EXPORT_SYMBOL(kmem_cache_alloc);
2485
0f24f128 2486#ifdef CONFIG_TRACING
4a92379b
RK
2487void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2488{
2b847c3c 2489 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2490 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2491 return ret;
2492}
2493EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2494#endif
2495
81819f0f
CL
2496#ifdef CONFIG_NUMA
2497void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2498{
2b847c3c 2499 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2500
ca2b84cb 2501 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2502 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2503
2504 return ret;
81819f0f
CL
2505}
2506EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2507
0f24f128 2508#ifdef CONFIG_TRACING
4a92379b 2509void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2510 gfp_t gfpflags,
4a92379b 2511 int node, size_t size)
5b882be4 2512{
2b847c3c 2513 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2514
2515 trace_kmalloc_node(_RET_IP_, ret,
2516 size, s->size, gfpflags, node);
2517 return ret;
5b882be4 2518}
4a92379b 2519EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2520#endif
5d1f57e4 2521#endif
5b882be4 2522
81819f0f 2523/*
94e4d712 2524 * Slow path handling. This may still be called frequently since objects
894b8788 2525 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2526 *
894b8788
CL
2527 * So we still attempt to reduce cache line usage. Just take the slab
2528 * lock and free the item. If there is no additional partial page
2529 * handling required then we can return immediately.
81819f0f 2530 */
894b8788 2531static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2532 void *x, unsigned long addr)
81819f0f
CL
2533{
2534 void *prior;
2535 void **object = (void *)x;
2cfb7455 2536 int was_frozen;
2cfb7455
CL
2537 struct page new;
2538 unsigned long counters;
2539 struct kmem_cache_node *n = NULL;
61728d1e 2540 unsigned long uninitialized_var(flags);
81819f0f 2541
8a5ec0ba 2542 stat(s, FREE_SLOWPATH);
81819f0f 2543
19c7ff9e
CL
2544 if (kmem_cache_debug(s) &&
2545 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2546 return;
6446faa2 2547
2cfb7455 2548 do {
837d678d
JK
2549 if (unlikely(n)) {
2550 spin_unlock_irqrestore(&n->list_lock, flags);
2551 n = NULL;
2552 }
2cfb7455
CL
2553 prior = page->freelist;
2554 counters = page->counters;
2555 set_freepointer(s, object, prior);
2556 new.counters = counters;
2557 was_frozen = new.frozen;
2558 new.inuse--;
837d678d 2559 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2560
c65c1877 2561 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2562
2563 /*
d0e0ac97
CG
2564 * Slab was on no list before and will be
2565 * partially empty
2566 * We can defer the list move and instead
2567 * freeze it.
49e22585
CL
2568 */
2569 new.frozen = 1;
2570
c65c1877 2571 } else { /* Needs to be taken off a list */
49e22585 2572
b455def2 2573 n = get_node(s, page_to_nid(page));
49e22585
CL
2574 /*
2575 * Speculatively acquire the list_lock.
2576 * If the cmpxchg does not succeed then we may
2577 * drop the list_lock without any processing.
2578 *
2579 * Otherwise the list_lock will synchronize with
2580 * other processors updating the list of slabs.
2581 */
2582 spin_lock_irqsave(&n->list_lock, flags);
2583
2584 }
2cfb7455 2585 }
81819f0f 2586
2cfb7455
CL
2587 } while (!cmpxchg_double_slab(s, page,
2588 prior, counters,
2589 object, new.counters,
2590 "__slab_free"));
81819f0f 2591
2cfb7455 2592 if (likely(!n)) {
49e22585
CL
2593
2594 /*
2595 * If we just froze the page then put it onto the
2596 * per cpu partial list.
2597 */
8028dcea 2598 if (new.frozen && !was_frozen) {
49e22585 2599 put_cpu_partial(s, page, 1);
8028dcea
AS
2600 stat(s, CPU_PARTIAL_FREE);
2601 }
49e22585 2602 /*
2cfb7455
CL
2603 * The list lock was not taken therefore no list
2604 * activity can be necessary.
2605 */
b455def2
L
2606 if (was_frozen)
2607 stat(s, FREE_FROZEN);
2608 return;
2609 }
81819f0f 2610
8a5b20ae 2611 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2612 goto slab_empty;
2613
81819f0f 2614 /*
837d678d
JK
2615 * Objects left in the slab. If it was not on the partial list before
2616 * then add it.
81819f0f 2617 */
345c905d
JK
2618 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2619 if (kmem_cache_debug(s))
c65c1877 2620 remove_full(s, n, page);
837d678d
JK
2621 add_partial(n, page, DEACTIVATE_TO_TAIL);
2622 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2623 }
80f08c19 2624 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2625 return;
2626
2627slab_empty:
a973e9dd 2628 if (prior) {
81819f0f 2629 /*
6fbabb20 2630 * Slab on the partial list.
81819f0f 2631 */
5cc6eee8 2632 remove_partial(n, page);
84e554e6 2633 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2634 } else {
6fbabb20 2635 /* Slab must be on the full list */
c65c1877
PZ
2636 remove_full(s, n, page);
2637 }
2cfb7455 2638
80f08c19 2639 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2640 stat(s, FREE_SLAB);
81819f0f 2641 discard_slab(s, page);
81819f0f
CL
2642}
2643
894b8788
CL
2644/*
2645 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2646 * can perform fastpath freeing without additional function calls.
2647 *
2648 * The fastpath is only possible if we are freeing to the current cpu slab
2649 * of this processor. This typically the case if we have just allocated
2650 * the item before.
2651 *
2652 * If fastpath is not possible then fall back to __slab_free where we deal
2653 * with all sorts of special processing.
2654 */
06428780 2655static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2656 struct page *page, void *x, unsigned long addr)
894b8788
CL
2657{
2658 void **object = (void *)x;
dfb4f096 2659 struct kmem_cache_cpu *c;
8a5ec0ba 2660 unsigned long tid;
1f84260c 2661
c016b0bd
CL
2662 slab_free_hook(s, x);
2663
8a5ec0ba
CL
2664redo:
2665 /*
2666 * Determine the currently cpus per cpu slab.
2667 * The cpu may change afterward. However that does not matter since
2668 * data is retrieved via this pointer. If we are on the same cpu
2669 * during the cmpxchg then the free will succedd.
2670 */
9aabf810
JK
2671 do {
2672 tid = this_cpu_read(s->cpu_slab->tid);
2673 c = raw_cpu_ptr(s->cpu_slab);
2674 } while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
c016b0bd 2675
9aabf810
JK
2676 /* Same with comment on barrier() in slab_alloc_node() */
2677 barrier();
c016b0bd 2678
442b06bc 2679 if (likely(page == c->page)) {
ff12059e 2680 set_freepointer(s, object, c->freelist);
8a5ec0ba 2681
933393f5 2682 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2683 s->cpu_slab->freelist, s->cpu_slab->tid,
2684 c->freelist, tid,
2685 object, next_tid(tid)))) {
2686
2687 note_cmpxchg_failure("slab_free", s, tid);
2688 goto redo;
2689 }
84e554e6 2690 stat(s, FREE_FASTPATH);
894b8788 2691 } else
ff12059e 2692 __slab_free(s, page, x, addr);
894b8788 2693
894b8788
CL
2694}
2695
81819f0f
CL
2696void kmem_cache_free(struct kmem_cache *s, void *x)
2697{
b9ce5ef4
GC
2698 s = cache_from_obj(s, x);
2699 if (!s)
79576102 2700 return;
b9ce5ef4 2701 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2702 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2703}
2704EXPORT_SYMBOL(kmem_cache_free);
2705
81819f0f 2706/*
672bba3a
CL
2707 * Object placement in a slab is made very easy because we always start at
2708 * offset 0. If we tune the size of the object to the alignment then we can
2709 * get the required alignment by putting one properly sized object after
2710 * another.
81819f0f
CL
2711 *
2712 * Notice that the allocation order determines the sizes of the per cpu
2713 * caches. Each processor has always one slab available for allocations.
2714 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2715 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2716 * locking overhead.
81819f0f
CL
2717 */
2718
2719/*
2720 * Mininum / Maximum order of slab pages. This influences locking overhead
2721 * and slab fragmentation. A higher order reduces the number of partial slabs
2722 * and increases the number of allocations possible without having to
2723 * take the list_lock.
2724 */
2725static int slub_min_order;
114e9e89 2726static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2727static int slub_min_objects;
81819f0f 2728
81819f0f
CL
2729/*
2730 * Calculate the order of allocation given an slab object size.
2731 *
672bba3a
CL
2732 * The order of allocation has significant impact on performance and other
2733 * system components. Generally order 0 allocations should be preferred since
2734 * order 0 does not cause fragmentation in the page allocator. Larger objects
2735 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2736 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2737 * would be wasted.
2738 *
2739 * In order to reach satisfactory performance we must ensure that a minimum
2740 * number of objects is in one slab. Otherwise we may generate too much
2741 * activity on the partial lists which requires taking the list_lock. This is
2742 * less a concern for large slabs though which are rarely used.
81819f0f 2743 *
672bba3a
CL
2744 * slub_max_order specifies the order where we begin to stop considering the
2745 * number of objects in a slab as critical. If we reach slub_max_order then
2746 * we try to keep the page order as low as possible. So we accept more waste
2747 * of space in favor of a small page order.
81819f0f 2748 *
672bba3a
CL
2749 * Higher order allocations also allow the placement of more objects in a
2750 * slab and thereby reduce object handling overhead. If the user has
2751 * requested a higher mininum order then we start with that one instead of
2752 * the smallest order which will fit the object.
81819f0f 2753 */
5e6d444e 2754static inline int slab_order(int size, int min_objects,
ab9a0f19 2755 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2756{
2757 int order;
2758 int rem;
6300ea75 2759 int min_order = slub_min_order;
81819f0f 2760
ab9a0f19 2761 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2762 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2763
6300ea75 2764 for (order = max(min_order,
5e6d444e
CL
2765 fls(min_objects * size - 1) - PAGE_SHIFT);
2766 order <= max_order; order++) {
81819f0f 2767
5e6d444e 2768 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2769
ab9a0f19 2770 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2771 continue;
2772
ab9a0f19 2773 rem = (slab_size - reserved) % size;
81819f0f 2774
5e6d444e 2775 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2776 break;
2777
2778 }
672bba3a 2779
81819f0f
CL
2780 return order;
2781}
2782
ab9a0f19 2783static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2784{
2785 int order;
2786 int min_objects;
2787 int fraction;
e8120ff1 2788 int max_objects;
5e6d444e
CL
2789
2790 /*
2791 * Attempt to find best configuration for a slab. This
2792 * works by first attempting to generate a layout with
2793 * the best configuration and backing off gradually.
2794 *
2795 * First we reduce the acceptable waste in a slab. Then
2796 * we reduce the minimum objects required in a slab.
2797 */
2798 min_objects = slub_min_objects;
9b2cd506
CL
2799 if (!min_objects)
2800 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2801 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2802 min_objects = min(min_objects, max_objects);
2803
5e6d444e 2804 while (min_objects > 1) {
c124f5b5 2805 fraction = 16;
5e6d444e
CL
2806 while (fraction >= 4) {
2807 order = slab_order(size, min_objects,
ab9a0f19 2808 slub_max_order, fraction, reserved);
5e6d444e
CL
2809 if (order <= slub_max_order)
2810 return order;
2811 fraction /= 2;
2812 }
5086c389 2813 min_objects--;
5e6d444e
CL
2814 }
2815
2816 /*
2817 * We were unable to place multiple objects in a slab. Now
2818 * lets see if we can place a single object there.
2819 */
ab9a0f19 2820 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2821 if (order <= slub_max_order)
2822 return order;
2823
2824 /*
2825 * Doh this slab cannot be placed using slub_max_order.
2826 */
ab9a0f19 2827 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2828 if (order < MAX_ORDER)
5e6d444e
CL
2829 return order;
2830 return -ENOSYS;
2831}
2832
5595cffc 2833static void
4053497d 2834init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2835{
2836 n->nr_partial = 0;
81819f0f
CL
2837 spin_lock_init(&n->list_lock);
2838 INIT_LIST_HEAD(&n->partial);
8ab1372f 2839#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2840 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2841 atomic_long_set(&n->total_objects, 0);
643b1138 2842 INIT_LIST_HEAD(&n->full);
8ab1372f 2843#endif
81819f0f
CL
2844}
2845
55136592 2846static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2847{
6c182dc0 2848 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2849 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2850
8a5ec0ba 2851 /*
d4d84fef
CM
2852 * Must align to double word boundary for the double cmpxchg
2853 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2854 */
d4d84fef
CM
2855 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2856 2 * sizeof(void *));
8a5ec0ba
CL
2857
2858 if (!s->cpu_slab)
2859 return 0;
2860
2861 init_kmem_cache_cpus(s);
4c93c355 2862
8a5ec0ba 2863 return 1;
4c93c355 2864}
4c93c355 2865
51df1142
CL
2866static struct kmem_cache *kmem_cache_node;
2867
81819f0f
CL
2868/*
2869 * No kmalloc_node yet so do it by hand. We know that this is the first
2870 * slab on the node for this slabcache. There are no concurrent accesses
2871 * possible.
2872 *
721ae22a
ZYW
2873 * Note that this function only works on the kmem_cache_node
2874 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2875 * memory on a fresh node that has no slab structures yet.
81819f0f 2876 */
55136592 2877static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2878{
2879 struct page *page;
2880 struct kmem_cache_node *n;
2881
51df1142 2882 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2883
51df1142 2884 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2885
2886 BUG_ON(!page);
a2f92ee7 2887 if (page_to_nid(page) != node) {
f9f58285
FF
2888 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2889 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
2890 }
2891
81819f0f
CL
2892 n = page->freelist;
2893 BUG_ON(!n);
51df1142 2894 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2895 page->inuse = 1;
8cb0a506 2896 page->frozen = 0;
51df1142 2897 kmem_cache_node->node[node] = n;
8ab1372f 2898#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2899 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2900 init_tracking(kmem_cache_node, n);
8ab1372f 2901#endif
4053497d 2902 init_kmem_cache_node(n);
51df1142 2903 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2904
67b6c900 2905 /*
1e4dd946
SR
2906 * No locks need to be taken here as it has just been
2907 * initialized and there is no concurrent access.
67b6c900 2908 */
1e4dd946 2909 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2910}
2911
2912static void free_kmem_cache_nodes(struct kmem_cache *s)
2913{
2914 int node;
fa45dc25 2915 struct kmem_cache_node *n;
81819f0f 2916
fa45dc25
CL
2917 for_each_kmem_cache_node(s, node, n) {
2918 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
2919 s->node[node] = NULL;
2920 }
2921}
2922
55136592 2923static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2924{
2925 int node;
81819f0f 2926
f64dc58c 2927 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2928 struct kmem_cache_node *n;
2929
73367bd8 2930 if (slab_state == DOWN) {
55136592 2931 early_kmem_cache_node_alloc(node);
73367bd8
AD
2932 continue;
2933 }
51df1142 2934 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2935 GFP_KERNEL, node);
81819f0f 2936
73367bd8
AD
2937 if (!n) {
2938 free_kmem_cache_nodes(s);
2939 return 0;
81819f0f 2940 }
73367bd8 2941
81819f0f 2942 s->node[node] = n;
4053497d 2943 init_kmem_cache_node(n);
81819f0f
CL
2944 }
2945 return 1;
2946}
81819f0f 2947
c0bdb232 2948static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2949{
2950 if (min < MIN_PARTIAL)
2951 min = MIN_PARTIAL;
2952 else if (min > MAX_PARTIAL)
2953 min = MAX_PARTIAL;
2954 s->min_partial = min;
2955}
2956
81819f0f
CL
2957/*
2958 * calculate_sizes() determines the order and the distribution of data within
2959 * a slab object.
2960 */
06b285dc 2961static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2962{
2963 unsigned long flags = s->flags;
3b0efdfa 2964 unsigned long size = s->object_size;
834f3d11 2965 int order;
81819f0f 2966
d8b42bf5
CL
2967 /*
2968 * Round up object size to the next word boundary. We can only
2969 * place the free pointer at word boundaries and this determines
2970 * the possible location of the free pointer.
2971 */
2972 size = ALIGN(size, sizeof(void *));
2973
2974#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2975 /*
2976 * Determine if we can poison the object itself. If the user of
2977 * the slab may touch the object after free or before allocation
2978 * then we should never poison the object itself.
2979 */
2980 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2981 !s->ctor)
81819f0f
CL
2982 s->flags |= __OBJECT_POISON;
2983 else
2984 s->flags &= ~__OBJECT_POISON;
2985
81819f0f
CL
2986
2987 /*
672bba3a 2988 * If we are Redzoning then check if there is some space between the
81819f0f 2989 * end of the object and the free pointer. If not then add an
672bba3a 2990 * additional word to have some bytes to store Redzone information.
81819f0f 2991 */
3b0efdfa 2992 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2993 size += sizeof(void *);
41ecc55b 2994#endif
81819f0f
CL
2995
2996 /*
672bba3a
CL
2997 * With that we have determined the number of bytes in actual use
2998 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2999 */
3000 s->inuse = size;
3001
3002 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3003 s->ctor)) {
81819f0f
CL
3004 /*
3005 * Relocate free pointer after the object if it is not
3006 * permitted to overwrite the first word of the object on
3007 * kmem_cache_free.
3008 *
3009 * This is the case if we do RCU, have a constructor or
3010 * destructor or are poisoning the objects.
3011 */
3012 s->offset = size;
3013 size += sizeof(void *);
3014 }
3015
c12b3c62 3016#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3017 if (flags & SLAB_STORE_USER)
3018 /*
3019 * Need to store information about allocs and frees after
3020 * the object.
3021 */
3022 size += 2 * sizeof(struct track);
3023
be7b3fbc 3024 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3025 /*
3026 * Add some empty padding so that we can catch
3027 * overwrites from earlier objects rather than let
3028 * tracking information or the free pointer be
0211a9c8 3029 * corrupted if a user writes before the start
81819f0f
CL
3030 * of the object.
3031 */
3032 size += sizeof(void *);
41ecc55b 3033#endif
672bba3a 3034
81819f0f
CL
3035 /*
3036 * SLUB stores one object immediately after another beginning from
3037 * offset 0. In order to align the objects we have to simply size
3038 * each object to conform to the alignment.
3039 */
45906855 3040 size = ALIGN(size, s->align);
81819f0f 3041 s->size = size;
06b285dc
CL
3042 if (forced_order >= 0)
3043 order = forced_order;
3044 else
ab9a0f19 3045 order = calculate_order(size, s->reserved);
81819f0f 3046
834f3d11 3047 if (order < 0)
81819f0f
CL
3048 return 0;
3049
b7a49f0d 3050 s->allocflags = 0;
834f3d11 3051 if (order)
b7a49f0d
CL
3052 s->allocflags |= __GFP_COMP;
3053
3054 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3055 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3056
3057 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3058 s->allocflags |= __GFP_RECLAIMABLE;
3059
81819f0f
CL
3060 /*
3061 * Determine the number of objects per slab
3062 */
ab9a0f19
LJ
3063 s->oo = oo_make(order, size, s->reserved);
3064 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3065 if (oo_objects(s->oo) > oo_objects(s->max))
3066 s->max = s->oo;
81819f0f 3067
834f3d11 3068 return !!oo_objects(s->oo);
81819f0f
CL
3069}
3070
8a13a4cc 3071static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3072{
8a13a4cc 3073 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3074 s->reserved = 0;
81819f0f 3075
da9a638c
LJ
3076 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3077 s->reserved = sizeof(struct rcu_head);
81819f0f 3078
06b285dc 3079 if (!calculate_sizes(s, -1))
81819f0f 3080 goto error;
3de47213
DR
3081 if (disable_higher_order_debug) {
3082 /*
3083 * Disable debugging flags that store metadata if the min slab
3084 * order increased.
3085 */
3b0efdfa 3086 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3087 s->flags &= ~DEBUG_METADATA_FLAGS;
3088 s->offset = 0;
3089 if (!calculate_sizes(s, -1))
3090 goto error;
3091 }
3092 }
81819f0f 3093
2565409f
HC
3094#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3095 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3096 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3097 /* Enable fast mode */
3098 s->flags |= __CMPXCHG_DOUBLE;
3099#endif
3100
3b89d7d8
DR
3101 /*
3102 * The larger the object size is, the more pages we want on the partial
3103 * list to avoid pounding the page allocator excessively.
3104 */
49e22585
CL
3105 set_min_partial(s, ilog2(s->size) / 2);
3106
3107 /*
3108 * cpu_partial determined the maximum number of objects kept in the
3109 * per cpu partial lists of a processor.
3110 *
3111 * Per cpu partial lists mainly contain slabs that just have one
3112 * object freed. If they are used for allocation then they can be
3113 * filled up again with minimal effort. The slab will never hit the
3114 * per node partial lists and therefore no locking will be required.
3115 *
3116 * This setting also determines
3117 *
3118 * A) The number of objects from per cpu partial slabs dumped to the
3119 * per node list when we reach the limit.
9f264904 3120 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3121 * per node list when we run out of per cpu objects. We only fetch
3122 * 50% to keep some capacity around for frees.
49e22585 3123 */
345c905d 3124 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3125 s->cpu_partial = 0;
3126 else if (s->size >= PAGE_SIZE)
49e22585
CL
3127 s->cpu_partial = 2;
3128 else if (s->size >= 1024)
3129 s->cpu_partial = 6;
3130 else if (s->size >= 256)
3131 s->cpu_partial = 13;
3132 else
3133 s->cpu_partial = 30;
3134
81819f0f 3135#ifdef CONFIG_NUMA
e2cb96b7 3136 s->remote_node_defrag_ratio = 1000;
81819f0f 3137#endif
55136592 3138 if (!init_kmem_cache_nodes(s))
dfb4f096 3139 goto error;
81819f0f 3140
55136592 3141 if (alloc_kmem_cache_cpus(s))
278b1bb1 3142 return 0;
ff12059e 3143
4c93c355 3144 free_kmem_cache_nodes(s);
81819f0f
CL
3145error:
3146 if (flags & SLAB_PANIC)
3147 panic("Cannot create slab %s size=%lu realsize=%u "
3148 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3149 s->name, (unsigned long)s->size, s->size,
3150 oo_order(s->oo), s->offset, flags);
278b1bb1 3151 return -EINVAL;
81819f0f 3152}
81819f0f 3153
33b12c38
CL
3154static void list_slab_objects(struct kmem_cache *s, struct page *page,
3155 const char *text)
3156{
3157#ifdef CONFIG_SLUB_DEBUG
3158 void *addr = page_address(page);
3159 void *p;
a5dd5c11
NK
3160 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3161 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3162 if (!map)
3163 return;
945cf2b6 3164 slab_err(s, page, text, s->name);
33b12c38 3165 slab_lock(page);
33b12c38 3166
5f80b13a 3167 get_map(s, page, map);
33b12c38
CL
3168 for_each_object(p, s, addr, page->objects) {
3169
3170 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3171 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3172 print_tracking(s, p);
3173 }
3174 }
3175 slab_unlock(page);
bbd7d57b 3176 kfree(map);
33b12c38
CL
3177#endif
3178}
3179
81819f0f 3180/*
599870b1 3181 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3182 * This is called from kmem_cache_close(). We must be the last thread
3183 * using the cache and therefore we do not need to lock anymore.
81819f0f 3184 */
599870b1 3185static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3186{
81819f0f
CL
3187 struct page *page, *h;
3188
33b12c38 3189 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3190 if (!page->inuse) {
1e4dd946 3191 __remove_partial(n, page);
81819f0f 3192 discard_slab(s, page);
33b12c38
CL
3193 } else {
3194 list_slab_objects(s, page,
945cf2b6 3195 "Objects remaining in %s on kmem_cache_close()");
599870b1 3196 }
33b12c38 3197 }
81819f0f
CL
3198}
3199
3200/*
672bba3a 3201 * Release all resources used by a slab cache.
81819f0f 3202 */
0c710013 3203static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3204{
3205 int node;
fa45dc25 3206 struct kmem_cache_node *n;
81819f0f
CL
3207
3208 flush_all(s);
81819f0f 3209 /* Attempt to free all objects */
fa45dc25 3210 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3211 free_partial(s, n);
3212 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3213 return 1;
3214 }
945cf2b6 3215 free_percpu(s->cpu_slab);
81819f0f
CL
3216 free_kmem_cache_nodes(s);
3217 return 0;
3218}
3219
945cf2b6 3220int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3221{
41a21285 3222 return kmem_cache_close(s);
81819f0f 3223}
81819f0f
CL
3224
3225/********************************************************************
3226 * Kmalloc subsystem
3227 *******************************************************************/
3228
81819f0f
CL
3229static int __init setup_slub_min_order(char *str)
3230{
06428780 3231 get_option(&str, &slub_min_order);
81819f0f
CL
3232
3233 return 1;
3234}
3235
3236__setup("slub_min_order=", setup_slub_min_order);
3237
3238static int __init setup_slub_max_order(char *str)
3239{
06428780 3240 get_option(&str, &slub_max_order);
818cf590 3241 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3242
3243 return 1;
3244}
3245
3246__setup("slub_max_order=", setup_slub_max_order);
3247
3248static int __init setup_slub_min_objects(char *str)
3249{
06428780 3250 get_option(&str, &slub_min_objects);
81819f0f
CL
3251
3252 return 1;
3253}
3254
3255__setup("slub_min_objects=", setup_slub_min_objects);
3256
81819f0f
CL
3257void *__kmalloc(size_t size, gfp_t flags)
3258{
aadb4bc4 3259 struct kmem_cache *s;
5b882be4 3260 void *ret;
81819f0f 3261
95a05b42 3262 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3263 return kmalloc_large(size, flags);
aadb4bc4 3264
2c59dd65 3265 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3266
3267 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3268 return s;
3269
2b847c3c 3270 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3271
ca2b84cb 3272 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3273
3274 return ret;
81819f0f
CL
3275}
3276EXPORT_SYMBOL(__kmalloc);
3277
5d1f57e4 3278#ifdef CONFIG_NUMA
f619cfe1
CL
3279static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3280{
b1eeab67 3281 struct page *page;
e4f7c0b4 3282 void *ptr = NULL;
f619cfe1 3283
52383431
VD
3284 flags |= __GFP_COMP | __GFP_NOTRACK;
3285 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3286 if (page)
e4f7c0b4
CM
3287 ptr = page_address(page);
3288
d56791b3 3289 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3290 return ptr;
f619cfe1
CL
3291}
3292
81819f0f
CL
3293void *__kmalloc_node(size_t size, gfp_t flags, int node)
3294{
aadb4bc4 3295 struct kmem_cache *s;
5b882be4 3296 void *ret;
81819f0f 3297
95a05b42 3298 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3299 ret = kmalloc_large_node(size, flags, node);
3300
ca2b84cb
EGM
3301 trace_kmalloc_node(_RET_IP_, ret,
3302 size, PAGE_SIZE << get_order(size),
3303 flags, node);
5b882be4
EGM
3304
3305 return ret;
3306 }
aadb4bc4 3307
2c59dd65 3308 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3309
3310 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3311 return s;
3312
2b847c3c 3313 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3314
ca2b84cb 3315 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3316
3317 return ret;
81819f0f
CL
3318}
3319EXPORT_SYMBOL(__kmalloc_node);
3320#endif
3321
3322size_t ksize(const void *object)
3323{
272c1d21 3324 struct page *page;
81819f0f 3325
ef8b4520 3326 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3327 return 0;
3328
294a80a8 3329 page = virt_to_head_page(object);
294a80a8 3330
76994412
PE
3331 if (unlikely(!PageSlab(page))) {
3332 WARN_ON(!PageCompound(page));
294a80a8 3333 return PAGE_SIZE << compound_order(page);
76994412 3334 }
81819f0f 3335
1b4f59e3 3336 return slab_ksize(page->slab_cache);
81819f0f 3337}
b1aabecd 3338EXPORT_SYMBOL(ksize);
81819f0f
CL
3339
3340void kfree(const void *x)
3341{
81819f0f 3342 struct page *page;
5bb983b0 3343 void *object = (void *)x;
81819f0f 3344
2121db74
PE
3345 trace_kfree(_RET_IP_, x);
3346
2408c550 3347 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3348 return;
3349
b49af68f 3350 page = virt_to_head_page(x);
aadb4bc4 3351 if (unlikely(!PageSlab(page))) {
0937502a 3352 BUG_ON(!PageCompound(page));
d56791b3 3353 kfree_hook(x);
52383431 3354 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3355 return;
3356 }
1b4f59e3 3357 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3358}
3359EXPORT_SYMBOL(kfree);
3360
832f37f5
VD
3361#define SHRINK_PROMOTE_MAX 32
3362
2086d26a 3363/*
832f37f5
VD
3364 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3365 * up most to the head of the partial lists. New allocations will then
3366 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3367 *
3368 * The slabs with the least items are placed last. This results in them
3369 * being allocated from last increasing the chance that the last objects
3370 * are freed in them.
2086d26a 3371 */
03afc0e2 3372int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3373{
3374 int node;
3375 int i;
3376 struct kmem_cache_node *n;
3377 struct page *page;
3378 struct page *t;
832f37f5
VD
3379 struct list_head discard;
3380 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a
CL
3381 unsigned long flags;
3382
2086d26a 3383 flush_all(s);
fa45dc25 3384 for_each_kmem_cache_node(s, node, n) {
2086d26a
CL
3385 if (!n->nr_partial)
3386 continue;
3387
832f37f5
VD
3388 INIT_LIST_HEAD(&discard);
3389 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3390 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3391
3392 spin_lock_irqsave(&n->list_lock, flags);
3393
3394 /*
832f37f5 3395 * Build lists of slabs to discard or promote.
2086d26a 3396 *
672bba3a
CL
3397 * Note that concurrent frees may occur while we hold the
3398 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3399 */
3400 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3401 int free = page->objects - page->inuse;
3402
3403 /* Do not reread page->inuse */
3404 barrier();
3405
3406 /* We do not keep full slabs on the list */
3407 BUG_ON(free <= 0);
3408
3409 if (free == page->objects) {
3410 list_move(&page->lru, &discard);
69cb8e6b 3411 n->nr_partial--;
832f37f5
VD
3412 } else if (free <= SHRINK_PROMOTE_MAX)
3413 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3414 }
3415
2086d26a 3416 /*
832f37f5
VD
3417 * Promote the slabs filled up most to the head of the
3418 * partial list.
2086d26a 3419 */
832f37f5
VD
3420 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3421 list_splice(promote + i, &n->partial);
2086d26a 3422
2086d26a 3423 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3424
3425 /* Release empty slabs */
832f37f5 3426 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3427 discard_slab(s, page);
2086d26a
CL
3428 }
3429
2086d26a
CL
3430 return 0;
3431}
2086d26a 3432
b9049e23
YG
3433static int slab_mem_going_offline_callback(void *arg)
3434{
3435 struct kmem_cache *s;
3436
18004c5d 3437 mutex_lock(&slab_mutex);
b9049e23 3438 list_for_each_entry(s, &slab_caches, list)
03afc0e2 3439 __kmem_cache_shrink(s);
18004c5d 3440 mutex_unlock(&slab_mutex);
b9049e23
YG
3441
3442 return 0;
3443}
3444
3445static void slab_mem_offline_callback(void *arg)
3446{
3447 struct kmem_cache_node *n;
3448 struct kmem_cache *s;
3449 struct memory_notify *marg = arg;
3450 int offline_node;
3451
b9d5ab25 3452 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3453
3454 /*
3455 * If the node still has available memory. we need kmem_cache_node
3456 * for it yet.
3457 */
3458 if (offline_node < 0)
3459 return;
3460
18004c5d 3461 mutex_lock(&slab_mutex);
b9049e23
YG
3462 list_for_each_entry(s, &slab_caches, list) {
3463 n = get_node(s, offline_node);
3464 if (n) {
3465 /*
3466 * if n->nr_slabs > 0, slabs still exist on the node
3467 * that is going down. We were unable to free them,
c9404c9c 3468 * and offline_pages() function shouldn't call this
b9049e23
YG
3469 * callback. So, we must fail.
3470 */
0f389ec6 3471 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3472
3473 s->node[offline_node] = NULL;
8de66a0c 3474 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3475 }
3476 }
18004c5d 3477 mutex_unlock(&slab_mutex);
b9049e23
YG
3478}
3479
3480static int slab_mem_going_online_callback(void *arg)
3481{
3482 struct kmem_cache_node *n;
3483 struct kmem_cache *s;
3484 struct memory_notify *marg = arg;
b9d5ab25 3485 int nid = marg->status_change_nid_normal;
b9049e23
YG
3486 int ret = 0;
3487
3488 /*
3489 * If the node's memory is already available, then kmem_cache_node is
3490 * already created. Nothing to do.
3491 */
3492 if (nid < 0)
3493 return 0;
3494
3495 /*
0121c619 3496 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3497 * allocate a kmem_cache_node structure in order to bring the node
3498 * online.
3499 */
18004c5d 3500 mutex_lock(&slab_mutex);
b9049e23
YG
3501 list_for_each_entry(s, &slab_caches, list) {
3502 /*
3503 * XXX: kmem_cache_alloc_node will fallback to other nodes
3504 * since memory is not yet available from the node that
3505 * is brought up.
3506 */
8de66a0c 3507 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3508 if (!n) {
3509 ret = -ENOMEM;
3510 goto out;
3511 }
4053497d 3512 init_kmem_cache_node(n);
b9049e23
YG
3513 s->node[nid] = n;
3514 }
3515out:
18004c5d 3516 mutex_unlock(&slab_mutex);
b9049e23
YG
3517 return ret;
3518}
3519
3520static int slab_memory_callback(struct notifier_block *self,
3521 unsigned long action, void *arg)
3522{
3523 int ret = 0;
3524
3525 switch (action) {
3526 case MEM_GOING_ONLINE:
3527 ret = slab_mem_going_online_callback(arg);
3528 break;
3529 case MEM_GOING_OFFLINE:
3530 ret = slab_mem_going_offline_callback(arg);
3531 break;
3532 case MEM_OFFLINE:
3533 case MEM_CANCEL_ONLINE:
3534 slab_mem_offline_callback(arg);
3535 break;
3536 case MEM_ONLINE:
3537 case MEM_CANCEL_OFFLINE:
3538 break;
3539 }
dc19f9db
KH
3540 if (ret)
3541 ret = notifier_from_errno(ret);
3542 else
3543 ret = NOTIFY_OK;
b9049e23
YG
3544 return ret;
3545}
3546
3ac38faa
AM
3547static struct notifier_block slab_memory_callback_nb = {
3548 .notifier_call = slab_memory_callback,
3549 .priority = SLAB_CALLBACK_PRI,
3550};
b9049e23 3551
81819f0f
CL
3552/********************************************************************
3553 * Basic setup of slabs
3554 *******************************************************************/
3555
51df1142
CL
3556/*
3557 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3558 * the page allocator. Allocate them properly then fix up the pointers
3559 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3560 */
3561
dffb4d60 3562static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3563{
3564 int node;
dffb4d60 3565 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3566 struct kmem_cache_node *n;
51df1142 3567
dffb4d60 3568 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3569
7d557b3c
GC
3570 /*
3571 * This runs very early, and only the boot processor is supposed to be
3572 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3573 * IPIs around.
3574 */
3575 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3576 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3577 struct page *p;
3578
fa45dc25
CL
3579 list_for_each_entry(p, &n->partial, lru)
3580 p->slab_cache = s;
51df1142 3581
607bf324 3582#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3583 list_for_each_entry(p, &n->full, lru)
3584 p->slab_cache = s;
51df1142 3585#endif
51df1142 3586 }
f7ce3190 3587 slab_init_memcg_params(s);
dffb4d60
CL
3588 list_add(&s->list, &slab_caches);
3589 return s;
51df1142
CL
3590}
3591
81819f0f
CL
3592void __init kmem_cache_init(void)
3593{
dffb4d60
CL
3594 static __initdata struct kmem_cache boot_kmem_cache,
3595 boot_kmem_cache_node;
51df1142 3596
fc8d8620
SG
3597 if (debug_guardpage_minorder())
3598 slub_max_order = 0;
3599
dffb4d60
CL
3600 kmem_cache_node = &boot_kmem_cache_node;
3601 kmem_cache = &boot_kmem_cache;
51df1142 3602
dffb4d60
CL
3603 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3604 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3605
3ac38faa 3606 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3607
3608 /* Able to allocate the per node structures */
3609 slab_state = PARTIAL;
3610
dffb4d60
CL
3611 create_boot_cache(kmem_cache, "kmem_cache",
3612 offsetof(struct kmem_cache, node) +
3613 nr_node_ids * sizeof(struct kmem_cache_node *),
3614 SLAB_HWCACHE_ALIGN);
8a13a4cc 3615
dffb4d60 3616 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3617
51df1142
CL
3618 /*
3619 * Allocate kmem_cache_node properly from the kmem_cache slab.
3620 * kmem_cache_node is separately allocated so no need to
3621 * update any list pointers.
3622 */
dffb4d60 3623 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3624
3625 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3626 create_kmalloc_caches(0);
81819f0f
CL
3627
3628#ifdef CONFIG_SMP
3629 register_cpu_notifier(&slab_notifier);
9dfc6e68 3630#endif
81819f0f 3631
f9f58285 3632 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3633 cache_line_size(),
81819f0f
CL
3634 slub_min_order, slub_max_order, slub_min_objects,
3635 nr_cpu_ids, nr_node_ids);
3636}
3637
7e85ee0c
PE
3638void __init kmem_cache_init_late(void)
3639{
7e85ee0c
PE
3640}
3641
2633d7a0 3642struct kmem_cache *
a44cb944
VD
3643__kmem_cache_alias(const char *name, size_t size, size_t align,
3644 unsigned long flags, void (*ctor)(void *))
81819f0f 3645{
426589f5 3646 struct kmem_cache *s, *c;
81819f0f 3647
a44cb944 3648 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3649 if (s) {
3650 s->refcount++;
84d0ddd6 3651
81819f0f
CL
3652 /*
3653 * Adjust the object sizes so that we clear
3654 * the complete object on kzalloc.
3655 */
3b0efdfa 3656 s->object_size = max(s->object_size, (int)size);
81819f0f 3657 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3658
426589f5 3659 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3660 c->object_size = s->object_size;
3661 c->inuse = max_t(int, c->inuse,
3662 ALIGN(size, sizeof(void *)));
3663 }
3664
7b8f3b66 3665 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3666 s->refcount--;
cbb79694 3667 s = NULL;
7b8f3b66 3668 }
a0e1d1be 3669 }
6446faa2 3670
cbb79694
CL
3671 return s;
3672}
84c1cf62 3673
8a13a4cc 3674int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3675{
aac3a166
PE
3676 int err;
3677
3678 err = kmem_cache_open(s, flags);
3679 if (err)
3680 return err;
20cea968 3681
45530c44
CL
3682 /* Mutex is not taken during early boot */
3683 if (slab_state <= UP)
3684 return 0;
3685
107dab5c 3686 memcg_propagate_slab_attrs(s);
aac3a166 3687 err = sysfs_slab_add(s);
aac3a166
PE
3688 if (err)
3689 kmem_cache_close(s);
20cea968 3690
aac3a166 3691 return err;
81819f0f 3692}
81819f0f 3693
81819f0f 3694#ifdef CONFIG_SMP
81819f0f 3695/*
672bba3a
CL
3696 * Use the cpu notifier to insure that the cpu slabs are flushed when
3697 * necessary.
81819f0f 3698 */
0db0628d 3699static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3700 unsigned long action, void *hcpu)
3701{
3702 long cpu = (long)hcpu;
5b95a4ac
CL
3703 struct kmem_cache *s;
3704 unsigned long flags;
81819f0f
CL
3705
3706 switch (action) {
3707 case CPU_UP_CANCELED:
8bb78442 3708 case CPU_UP_CANCELED_FROZEN:
81819f0f 3709 case CPU_DEAD:
8bb78442 3710 case CPU_DEAD_FROZEN:
18004c5d 3711 mutex_lock(&slab_mutex);
5b95a4ac
CL
3712 list_for_each_entry(s, &slab_caches, list) {
3713 local_irq_save(flags);
3714 __flush_cpu_slab(s, cpu);
3715 local_irq_restore(flags);
3716 }
18004c5d 3717 mutex_unlock(&slab_mutex);
81819f0f
CL
3718 break;
3719 default:
3720 break;
3721 }
3722 return NOTIFY_OK;
3723}
3724
0db0628d 3725static struct notifier_block slab_notifier = {
3adbefee 3726 .notifier_call = slab_cpuup_callback
06428780 3727};
81819f0f
CL
3728
3729#endif
3730
ce71e27c 3731void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3732{
aadb4bc4 3733 struct kmem_cache *s;
94b528d0 3734 void *ret;
aadb4bc4 3735
95a05b42 3736 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3737 return kmalloc_large(size, gfpflags);
3738
2c59dd65 3739 s = kmalloc_slab(size, gfpflags);
81819f0f 3740
2408c550 3741 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3742 return s;
81819f0f 3743
2b847c3c 3744 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3745
25985edc 3746 /* Honor the call site pointer we received. */
ca2b84cb 3747 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3748
3749 return ret;
81819f0f
CL
3750}
3751
5d1f57e4 3752#ifdef CONFIG_NUMA
81819f0f 3753void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3754 int node, unsigned long caller)
81819f0f 3755{
aadb4bc4 3756 struct kmem_cache *s;
94b528d0 3757 void *ret;
aadb4bc4 3758
95a05b42 3759 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3760 ret = kmalloc_large_node(size, gfpflags, node);
3761
3762 trace_kmalloc_node(caller, ret,
3763 size, PAGE_SIZE << get_order(size),
3764 gfpflags, node);
3765
3766 return ret;
3767 }
eada35ef 3768
2c59dd65 3769 s = kmalloc_slab(size, gfpflags);
81819f0f 3770
2408c550 3771 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3772 return s;
81819f0f 3773
2b847c3c 3774 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3775
25985edc 3776 /* Honor the call site pointer we received. */
ca2b84cb 3777 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3778
3779 return ret;
81819f0f 3780}
5d1f57e4 3781#endif
81819f0f 3782
ab4d5ed5 3783#ifdef CONFIG_SYSFS
205ab99d
CL
3784static int count_inuse(struct page *page)
3785{
3786 return page->inuse;
3787}
3788
3789static int count_total(struct page *page)
3790{
3791 return page->objects;
3792}
ab4d5ed5 3793#endif
205ab99d 3794
ab4d5ed5 3795#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3796static int validate_slab(struct kmem_cache *s, struct page *page,
3797 unsigned long *map)
53e15af0
CL
3798{
3799 void *p;
a973e9dd 3800 void *addr = page_address(page);
53e15af0
CL
3801
3802 if (!check_slab(s, page) ||
3803 !on_freelist(s, page, NULL))
3804 return 0;
3805
3806 /* Now we know that a valid freelist exists */
39b26464 3807 bitmap_zero(map, page->objects);
53e15af0 3808
5f80b13a
CL
3809 get_map(s, page, map);
3810 for_each_object(p, s, addr, page->objects) {
3811 if (test_bit(slab_index(p, s, addr), map))
3812 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3813 return 0;
53e15af0
CL
3814 }
3815
224a88be 3816 for_each_object(p, s, addr, page->objects)
7656c72b 3817 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3818 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3819 return 0;
3820 return 1;
3821}
3822
434e245d
CL
3823static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3824 unsigned long *map)
53e15af0 3825{
881db7fb
CL
3826 slab_lock(page);
3827 validate_slab(s, page, map);
3828 slab_unlock(page);
53e15af0
CL
3829}
3830
434e245d
CL
3831static int validate_slab_node(struct kmem_cache *s,
3832 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3833{
3834 unsigned long count = 0;
3835 struct page *page;
3836 unsigned long flags;
3837
3838 spin_lock_irqsave(&n->list_lock, flags);
3839
3840 list_for_each_entry(page, &n->partial, lru) {
434e245d 3841 validate_slab_slab(s, page, map);
53e15af0
CL
3842 count++;
3843 }
3844 if (count != n->nr_partial)
f9f58285
FF
3845 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3846 s->name, count, n->nr_partial);
53e15af0
CL
3847
3848 if (!(s->flags & SLAB_STORE_USER))
3849 goto out;
3850
3851 list_for_each_entry(page, &n->full, lru) {
434e245d 3852 validate_slab_slab(s, page, map);
53e15af0
CL
3853 count++;
3854 }
3855 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3856 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3857 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
3858
3859out:
3860 spin_unlock_irqrestore(&n->list_lock, flags);
3861 return count;
3862}
3863
434e245d 3864static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3865{
3866 int node;
3867 unsigned long count = 0;
205ab99d 3868 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 3869 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 3870 struct kmem_cache_node *n;
434e245d
CL
3871
3872 if (!map)
3873 return -ENOMEM;
53e15af0
CL
3874
3875 flush_all(s);
fa45dc25 3876 for_each_kmem_cache_node(s, node, n)
434e245d 3877 count += validate_slab_node(s, n, map);
434e245d 3878 kfree(map);
53e15af0
CL
3879 return count;
3880}
88a420e4 3881/*
672bba3a 3882 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3883 * and freed.
3884 */
3885
3886struct location {
3887 unsigned long count;
ce71e27c 3888 unsigned long addr;
45edfa58
CL
3889 long long sum_time;
3890 long min_time;
3891 long max_time;
3892 long min_pid;
3893 long max_pid;
174596a0 3894 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3895 nodemask_t nodes;
88a420e4
CL
3896};
3897
3898struct loc_track {
3899 unsigned long max;
3900 unsigned long count;
3901 struct location *loc;
3902};
3903
3904static void free_loc_track(struct loc_track *t)
3905{
3906 if (t->max)
3907 free_pages((unsigned long)t->loc,
3908 get_order(sizeof(struct location) * t->max));
3909}
3910
68dff6a9 3911static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3912{
3913 struct location *l;
3914 int order;
3915
88a420e4
CL
3916 order = get_order(sizeof(struct location) * max);
3917
68dff6a9 3918 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3919 if (!l)
3920 return 0;
3921
3922 if (t->count) {
3923 memcpy(l, t->loc, sizeof(struct location) * t->count);
3924 free_loc_track(t);
3925 }
3926 t->max = max;
3927 t->loc = l;
3928 return 1;
3929}
3930
3931static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3932 const struct track *track)
88a420e4
CL
3933{
3934 long start, end, pos;
3935 struct location *l;
ce71e27c 3936 unsigned long caddr;
45edfa58 3937 unsigned long age = jiffies - track->when;
88a420e4
CL
3938
3939 start = -1;
3940 end = t->count;
3941
3942 for ( ; ; ) {
3943 pos = start + (end - start + 1) / 2;
3944
3945 /*
3946 * There is nothing at "end". If we end up there
3947 * we need to add something to before end.
3948 */
3949 if (pos == end)
3950 break;
3951
3952 caddr = t->loc[pos].addr;
45edfa58
CL
3953 if (track->addr == caddr) {
3954
3955 l = &t->loc[pos];
3956 l->count++;
3957 if (track->when) {
3958 l->sum_time += age;
3959 if (age < l->min_time)
3960 l->min_time = age;
3961 if (age > l->max_time)
3962 l->max_time = age;
3963
3964 if (track->pid < l->min_pid)
3965 l->min_pid = track->pid;
3966 if (track->pid > l->max_pid)
3967 l->max_pid = track->pid;
3968
174596a0
RR
3969 cpumask_set_cpu(track->cpu,
3970 to_cpumask(l->cpus));
45edfa58
CL
3971 }
3972 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3973 return 1;
3974 }
3975
45edfa58 3976 if (track->addr < caddr)
88a420e4
CL
3977 end = pos;
3978 else
3979 start = pos;
3980 }
3981
3982 /*
672bba3a 3983 * Not found. Insert new tracking element.
88a420e4 3984 */
68dff6a9 3985 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3986 return 0;
3987
3988 l = t->loc + pos;
3989 if (pos < t->count)
3990 memmove(l + 1, l,
3991 (t->count - pos) * sizeof(struct location));
3992 t->count++;
3993 l->count = 1;
45edfa58
CL
3994 l->addr = track->addr;
3995 l->sum_time = age;
3996 l->min_time = age;
3997 l->max_time = age;
3998 l->min_pid = track->pid;
3999 l->max_pid = track->pid;
174596a0
RR
4000 cpumask_clear(to_cpumask(l->cpus));
4001 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4002 nodes_clear(l->nodes);
4003 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4004 return 1;
4005}
4006
4007static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4008 struct page *page, enum track_item alloc,
a5dd5c11 4009 unsigned long *map)
88a420e4 4010{
a973e9dd 4011 void *addr = page_address(page);
88a420e4
CL
4012 void *p;
4013
39b26464 4014 bitmap_zero(map, page->objects);
5f80b13a 4015 get_map(s, page, map);
88a420e4 4016
224a88be 4017 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4018 if (!test_bit(slab_index(p, s, addr), map))
4019 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4020}
4021
4022static int list_locations(struct kmem_cache *s, char *buf,
4023 enum track_item alloc)
4024{
e374d483 4025 int len = 0;
88a420e4 4026 unsigned long i;
68dff6a9 4027 struct loc_track t = { 0, 0, NULL };
88a420e4 4028 int node;
bbd7d57b
ED
4029 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4030 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4031 struct kmem_cache_node *n;
88a420e4 4032
bbd7d57b
ED
4033 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4034 GFP_TEMPORARY)) {
4035 kfree(map);
68dff6a9 4036 return sprintf(buf, "Out of memory\n");
bbd7d57b 4037 }
88a420e4
CL
4038 /* Push back cpu slabs */
4039 flush_all(s);
4040
fa45dc25 4041 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4042 unsigned long flags;
4043 struct page *page;
4044
9e86943b 4045 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4046 continue;
4047
4048 spin_lock_irqsave(&n->list_lock, flags);
4049 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4050 process_slab(&t, s, page, alloc, map);
88a420e4 4051 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4052 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4053 spin_unlock_irqrestore(&n->list_lock, flags);
4054 }
4055
4056 for (i = 0; i < t.count; i++) {
45edfa58 4057 struct location *l = &t.loc[i];
88a420e4 4058
9c246247 4059 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4060 break;
e374d483 4061 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4062
4063 if (l->addr)
62c70bce 4064 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4065 else
e374d483 4066 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4067
4068 if (l->sum_time != l->min_time) {
e374d483 4069 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4070 l->min_time,
4071 (long)div_u64(l->sum_time, l->count),
4072 l->max_time);
45edfa58 4073 } else
e374d483 4074 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4075 l->min_time);
4076
4077 if (l->min_pid != l->max_pid)
e374d483 4078 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4079 l->min_pid, l->max_pid);
4080 else
e374d483 4081 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4082 l->min_pid);
4083
174596a0
RR
4084 if (num_online_cpus() > 1 &&
4085 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4086 len < PAGE_SIZE - 60) {
4087 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4088 len += cpulist_scnprintf(buf + len,
4089 PAGE_SIZE - len - 50,
174596a0 4090 to_cpumask(l->cpus));
45edfa58
CL
4091 }
4092
62bc62a8 4093 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4094 len < PAGE_SIZE - 60) {
4095 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4096 len += nodelist_scnprintf(buf + len,
4097 PAGE_SIZE - len - 50,
4098 l->nodes);
45edfa58
CL
4099 }
4100
e374d483 4101 len += sprintf(buf + len, "\n");
88a420e4
CL
4102 }
4103
4104 free_loc_track(&t);
bbd7d57b 4105 kfree(map);
88a420e4 4106 if (!t.count)
e374d483
HH
4107 len += sprintf(buf, "No data\n");
4108 return len;
88a420e4 4109}
ab4d5ed5 4110#endif
88a420e4 4111
a5a84755 4112#ifdef SLUB_RESILIENCY_TEST
c07b8183 4113static void __init resiliency_test(void)
a5a84755
CL
4114{
4115 u8 *p;
4116
95a05b42 4117 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4118
f9f58285
FF
4119 pr_err("SLUB resiliency testing\n");
4120 pr_err("-----------------------\n");
4121 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4122
4123 p = kzalloc(16, GFP_KERNEL);
4124 p[16] = 0x12;
f9f58285
FF
4125 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4126 p + 16);
a5a84755
CL
4127
4128 validate_slab_cache(kmalloc_caches[4]);
4129
4130 /* Hmmm... The next two are dangerous */
4131 p = kzalloc(32, GFP_KERNEL);
4132 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4133 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4134 p);
4135 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4136
4137 validate_slab_cache(kmalloc_caches[5]);
4138 p = kzalloc(64, GFP_KERNEL);
4139 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4140 *p = 0x56;
f9f58285
FF
4141 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4142 p);
4143 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4144 validate_slab_cache(kmalloc_caches[6]);
4145
f9f58285 4146 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4147 p = kzalloc(128, GFP_KERNEL);
4148 kfree(p);
4149 *p = 0x78;
f9f58285 4150 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4151 validate_slab_cache(kmalloc_caches[7]);
4152
4153 p = kzalloc(256, GFP_KERNEL);
4154 kfree(p);
4155 p[50] = 0x9a;
f9f58285 4156 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4157 validate_slab_cache(kmalloc_caches[8]);
4158
4159 p = kzalloc(512, GFP_KERNEL);
4160 kfree(p);
4161 p[512] = 0xab;
f9f58285 4162 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4163 validate_slab_cache(kmalloc_caches[9]);
4164}
4165#else
4166#ifdef CONFIG_SYSFS
4167static void resiliency_test(void) {};
4168#endif
4169#endif
4170
ab4d5ed5 4171#ifdef CONFIG_SYSFS
81819f0f 4172enum slab_stat_type {
205ab99d
CL
4173 SL_ALL, /* All slabs */
4174 SL_PARTIAL, /* Only partially allocated slabs */
4175 SL_CPU, /* Only slabs used for cpu caches */
4176 SL_OBJECTS, /* Determine allocated objects not slabs */
4177 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4178};
4179
205ab99d 4180#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4181#define SO_PARTIAL (1 << SL_PARTIAL)
4182#define SO_CPU (1 << SL_CPU)
4183#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4184#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4185
62e5c4b4
CG
4186static ssize_t show_slab_objects(struct kmem_cache *s,
4187 char *buf, unsigned long flags)
81819f0f
CL
4188{
4189 unsigned long total = 0;
81819f0f
CL
4190 int node;
4191 int x;
4192 unsigned long *nodes;
81819f0f 4193
e35e1a97 4194 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4195 if (!nodes)
4196 return -ENOMEM;
81819f0f 4197
205ab99d
CL
4198 if (flags & SO_CPU) {
4199 int cpu;
81819f0f 4200
205ab99d 4201 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4202 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4203 cpu);
ec3ab083 4204 int node;
49e22585 4205 struct page *page;
dfb4f096 4206
bc6697d8 4207 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4208 if (!page)
4209 continue;
205ab99d 4210
ec3ab083
CL
4211 node = page_to_nid(page);
4212 if (flags & SO_TOTAL)
4213 x = page->objects;
4214 else if (flags & SO_OBJECTS)
4215 x = page->inuse;
4216 else
4217 x = 1;
49e22585 4218
ec3ab083
CL
4219 total += x;
4220 nodes[node] += x;
4221
4222 page = ACCESS_ONCE(c->partial);
49e22585 4223 if (page) {
8afb1474
LZ
4224 node = page_to_nid(page);
4225 if (flags & SO_TOTAL)
4226 WARN_ON_ONCE(1);
4227 else if (flags & SO_OBJECTS)
4228 WARN_ON_ONCE(1);
4229 else
4230 x = page->pages;
bc6697d8
ED
4231 total += x;
4232 nodes[node] += x;
49e22585 4233 }
81819f0f
CL
4234 }
4235 }
4236
bfc8c901 4237 get_online_mems();
ab4d5ed5 4238#ifdef CONFIG_SLUB_DEBUG
205ab99d 4239 if (flags & SO_ALL) {
fa45dc25
CL
4240 struct kmem_cache_node *n;
4241
4242 for_each_kmem_cache_node(s, node, n) {
205ab99d 4243
d0e0ac97
CG
4244 if (flags & SO_TOTAL)
4245 x = atomic_long_read(&n->total_objects);
4246 else if (flags & SO_OBJECTS)
4247 x = atomic_long_read(&n->total_objects) -
4248 count_partial(n, count_free);
81819f0f 4249 else
205ab99d 4250 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4251 total += x;
4252 nodes[node] += x;
4253 }
4254
ab4d5ed5
CL
4255 } else
4256#endif
4257 if (flags & SO_PARTIAL) {
fa45dc25 4258 struct kmem_cache_node *n;
81819f0f 4259
fa45dc25 4260 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4261 if (flags & SO_TOTAL)
4262 x = count_partial(n, count_total);
4263 else if (flags & SO_OBJECTS)
4264 x = count_partial(n, count_inuse);
81819f0f 4265 else
205ab99d 4266 x = n->nr_partial;
81819f0f
CL
4267 total += x;
4268 nodes[node] += x;
4269 }
4270 }
81819f0f
CL
4271 x = sprintf(buf, "%lu", total);
4272#ifdef CONFIG_NUMA
fa45dc25 4273 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4274 if (nodes[node])
4275 x += sprintf(buf + x, " N%d=%lu",
4276 node, nodes[node]);
4277#endif
bfc8c901 4278 put_online_mems();
81819f0f
CL
4279 kfree(nodes);
4280 return x + sprintf(buf + x, "\n");
4281}
4282
ab4d5ed5 4283#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4284static int any_slab_objects(struct kmem_cache *s)
4285{
4286 int node;
fa45dc25 4287 struct kmem_cache_node *n;
81819f0f 4288
fa45dc25 4289 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4290 if (atomic_long_read(&n->total_objects))
81819f0f 4291 return 1;
fa45dc25 4292
81819f0f
CL
4293 return 0;
4294}
ab4d5ed5 4295#endif
81819f0f
CL
4296
4297#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4298#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4299
4300struct slab_attribute {
4301 struct attribute attr;
4302 ssize_t (*show)(struct kmem_cache *s, char *buf);
4303 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4304};
4305
4306#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4307 static struct slab_attribute _name##_attr = \
4308 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4309
4310#define SLAB_ATTR(_name) \
4311 static struct slab_attribute _name##_attr = \
ab067e99 4312 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4313
81819f0f
CL
4314static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4315{
4316 return sprintf(buf, "%d\n", s->size);
4317}
4318SLAB_ATTR_RO(slab_size);
4319
4320static ssize_t align_show(struct kmem_cache *s, char *buf)
4321{
4322 return sprintf(buf, "%d\n", s->align);
4323}
4324SLAB_ATTR_RO(align);
4325
4326static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4327{
3b0efdfa 4328 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4329}
4330SLAB_ATTR_RO(object_size);
4331
4332static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4333{
834f3d11 4334 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4335}
4336SLAB_ATTR_RO(objs_per_slab);
4337
06b285dc
CL
4338static ssize_t order_store(struct kmem_cache *s,
4339 const char *buf, size_t length)
4340{
0121c619
CL
4341 unsigned long order;
4342 int err;
4343
3dbb95f7 4344 err = kstrtoul(buf, 10, &order);
0121c619
CL
4345 if (err)
4346 return err;
06b285dc
CL
4347
4348 if (order > slub_max_order || order < slub_min_order)
4349 return -EINVAL;
4350
4351 calculate_sizes(s, order);
4352 return length;
4353}
4354
81819f0f
CL
4355static ssize_t order_show(struct kmem_cache *s, char *buf)
4356{
834f3d11 4357 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4358}
06b285dc 4359SLAB_ATTR(order);
81819f0f 4360
73d342b1
DR
4361static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4362{
4363 return sprintf(buf, "%lu\n", s->min_partial);
4364}
4365
4366static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4367 size_t length)
4368{
4369 unsigned long min;
4370 int err;
4371
3dbb95f7 4372 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4373 if (err)
4374 return err;
4375
c0bdb232 4376 set_min_partial(s, min);
73d342b1
DR
4377 return length;
4378}
4379SLAB_ATTR(min_partial);
4380
49e22585
CL
4381static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4382{
4383 return sprintf(buf, "%u\n", s->cpu_partial);
4384}
4385
4386static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4387 size_t length)
4388{
4389 unsigned long objects;
4390 int err;
4391
3dbb95f7 4392 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4393 if (err)
4394 return err;
345c905d 4395 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4396 return -EINVAL;
49e22585
CL
4397
4398 s->cpu_partial = objects;
4399 flush_all(s);
4400 return length;
4401}
4402SLAB_ATTR(cpu_partial);
4403
81819f0f
CL
4404static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4405{
62c70bce
JP
4406 if (!s->ctor)
4407 return 0;
4408 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4409}
4410SLAB_ATTR_RO(ctor);
4411
81819f0f
CL
4412static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4413{
4307c14f 4414 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4415}
4416SLAB_ATTR_RO(aliases);
4417
81819f0f
CL
4418static ssize_t partial_show(struct kmem_cache *s, char *buf)
4419{
d9acf4b7 4420 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4421}
4422SLAB_ATTR_RO(partial);
4423
4424static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4425{
d9acf4b7 4426 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4427}
4428SLAB_ATTR_RO(cpu_slabs);
4429
4430static ssize_t objects_show(struct kmem_cache *s, char *buf)
4431{
205ab99d 4432 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4433}
4434SLAB_ATTR_RO(objects);
4435
205ab99d
CL
4436static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4437{
4438 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4439}
4440SLAB_ATTR_RO(objects_partial);
4441
49e22585
CL
4442static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4443{
4444 int objects = 0;
4445 int pages = 0;
4446 int cpu;
4447 int len;
4448
4449 for_each_online_cpu(cpu) {
4450 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4451
4452 if (page) {
4453 pages += page->pages;
4454 objects += page->pobjects;
4455 }
4456 }
4457
4458 len = sprintf(buf, "%d(%d)", objects, pages);
4459
4460#ifdef CONFIG_SMP
4461 for_each_online_cpu(cpu) {
4462 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4463
4464 if (page && len < PAGE_SIZE - 20)
4465 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4466 page->pobjects, page->pages);
4467 }
4468#endif
4469 return len + sprintf(buf + len, "\n");
4470}
4471SLAB_ATTR_RO(slabs_cpu_partial);
4472
a5a84755
CL
4473static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4474{
4475 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4476}
4477
4478static ssize_t reclaim_account_store(struct kmem_cache *s,
4479 const char *buf, size_t length)
4480{
4481 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4482 if (buf[0] == '1')
4483 s->flags |= SLAB_RECLAIM_ACCOUNT;
4484 return length;
4485}
4486SLAB_ATTR(reclaim_account);
4487
4488static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4489{
4490 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4491}
4492SLAB_ATTR_RO(hwcache_align);
4493
4494#ifdef CONFIG_ZONE_DMA
4495static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4496{
4497 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4498}
4499SLAB_ATTR_RO(cache_dma);
4500#endif
4501
4502static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4503{
4504 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4505}
4506SLAB_ATTR_RO(destroy_by_rcu);
4507
ab9a0f19
LJ
4508static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4509{
4510 return sprintf(buf, "%d\n", s->reserved);
4511}
4512SLAB_ATTR_RO(reserved);
4513
ab4d5ed5 4514#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4515static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4516{
4517 return show_slab_objects(s, buf, SO_ALL);
4518}
4519SLAB_ATTR_RO(slabs);
4520
205ab99d
CL
4521static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4522{
4523 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4524}
4525SLAB_ATTR_RO(total_objects);
4526
81819f0f
CL
4527static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4528{
4529 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4530}
4531
4532static ssize_t sanity_checks_store(struct kmem_cache *s,
4533 const char *buf, size_t length)
4534{
4535 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4536 if (buf[0] == '1') {
4537 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4538 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4539 }
81819f0f
CL
4540 return length;
4541}
4542SLAB_ATTR(sanity_checks);
4543
4544static ssize_t trace_show(struct kmem_cache *s, char *buf)
4545{
4546 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4547}
4548
4549static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4550 size_t length)
4551{
c9e16131
CL
4552 /*
4553 * Tracing a merged cache is going to give confusing results
4554 * as well as cause other issues like converting a mergeable
4555 * cache into an umergeable one.
4556 */
4557 if (s->refcount > 1)
4558 return -EINVAL;
4559
81819f0f 4560 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4561 if (buf[0] == '1') {
4562 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4563 s->flags |= SLAB_TRACE;
b789ef51 4564 }
81819f0f
CL
4565 return length;
4566}
4567SLAB_ATTR(trace);
4568
81819f0f
CL
4569static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4570{
4571 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4572}
4573
4574static ssize_t red_zone_store(struct kmem_cache *s,
4575 const char *buf, size_t length)
4576{
4577 if (any_slab_objects(s))
4578 return -EBUSY;
4579
4580 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4581 if (buf[0] == '1') {
4582 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4583 s->flags |= SLAB_RED_ZONE;
b789ef51 4584 }
06b285dc 4585 calculate_sizes(s, -1);
81819f0f
CL
4586 return length;
4587}
4588SLAB_ATTR(red_zone);
4589
4590static ssize_t poison_show(struct kmem_cache *s, char *buf)
4591{
4592 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4593}
4594
4595static ssize_t poison_store(struct kmem_cache *s,
4596 const char *buf, size_t length)
4597{
4598 if (any_slab_objects(s))
4599 return -EBUSY;
4600
4601 s->flags &= ~SLAB_POISON;
b789ef51
CL
4602 if (buf[0] == '1') {
4603 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4604 s->flags |= SLAB_POISON;
b789ef51 4605 }
06b285dc 4606 calculate_sizes(s, -1);
81819f0f
CL
4607 return length;
4608}
4609SLAB_ATTR(poison);
4610
4611static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4612{
4613 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4614}
4615
4616static ssize_t store_user_store(struct kmem_cache *s,
4617 const char *buf, size_t length)
4618{
4619 if (any_slab_objects(s))
4620 return -EBUSY;
4621
4622 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4623 if (buf[0] == '1') {
4624 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4625 s->flags |= SLAB_STORE_USER;
b789ef51 4626 }
06b285dc 4627 calculate_sizes(s, -1);
81819f0f
CL
4628 return length;
4629}
4630SLAB_ATTR(store_user);
4631
53e15af0
CL
4632static ssize_t validate_show(struct kmem_cache *s, char *buf)
4633{
4634 return 0;
4635}
4636
4637static ssize_t validate_store(struct kmem_cache *s,
4638 const char *buf, size_t length)
4639{
434e245d
CL
4640 int ret = -EINVAL;
4641
4642 if (buf[0] == '1') {
4643 ret = validate_slab_cache(s);
4644 if (ret >= 0)
4645 ret = length;
4646 }
4647 return ret;
53e15af0
CL
4648}
4649SLAB_ATTR(validate);
a5a84755
CL
4650
4651static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4652{
4653 if (!(s->flags & SLAB_STORE_USER))
4654 return -ENOSYS;
4655 return list_locations(s, buf, TRACK_ALLOC);
4656}
4657SLAB_ATTR_RO(alloc_calls);
4658
4659static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4660{
4661 if (!(s->flags & SLAB_STORE_USER))
4662 return -ENOSYS;
4663 return list_locations(s, buf, TRACK_FREE);
4664}
4665SLAB_ATTR_RO(free_calls);
4666#endif /* CONFIG_SLUB_DEBUG */
4667
4668#ifdef CONFIG_FAILSLAB
4669static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4670{
4671 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4672}
4673
4674static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4675 size_t length)
4676{
c9e16131
CL
4677 if (s->refcount > 1)
4678 return -EINVAL;
4679
a5a84755
CL
4680 s->flags &= ~SLAB_FAILSLAB;
4681 if (buf[0] == '1')
4682 s->flags |= SLAB_FAILSLAB;
4683 return length;
4684}
4685SLAB_ATTR(failslab);
ab4d5ed5 4686#endif
53e15af0 4687
2086d26a
CL
4688static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4689{
4690 return 0;
4691}
4692
4693static ssize_t shrink_store(struct kmem_cache *s,
4694 const char *buf, size_t length)
4695{
832f37f5
VD
4696 if (buf[0] == '1')
4697 kmem_cache_shrink(s);
4698 else
2086d26a
CL
4699 return -EINVAL;
4700 return length;
4701}
4702SLAB_ATTR(shrink);
4703
81819f0f 4704#ifdef CONFIG_NUMA
9824601e 4705static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4706{
9824601e 4707 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4708}
4709
9824601e 4710static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4711 const char *buf, size_t length)
4712{
0121c619
CL
4713 unsigned long ratio;
4714 int err;
4715
3dbb95f7 4716 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4717 if (err)
4718 return err;
4719
e2cb96b7 4720 if (ratio <= 100)
0121c619 4721 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4722
81819f0f
CL
4723 return length;
4724}
9824601e 4725SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4726#endif
4727
8ff12cfc 4728#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4729static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4730{
4731 unsigned long sum = 0;
4732 int cpu;
4733 int len;
4734 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4735
4736 if (!data)
4737 return -ENOMEM;
4738
4739 for_each_online_cpu(cpu) {
9dfc6e68 4740 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4741
4742 data[cpu] = x;
4743 sum += x;
4744 }
4745
4746 len = sprintf(buf, "%lu", sum);
4747
50ef37b9 4748#ifdef CONFIG_SMP
8ff12cfc
CL
4749 for_each_online_cpu(cpu) {
4750 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4751 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4752 }
50ef37b9 4753#endif
8ff12cfc
CL
4754 kfree(data);
4755 return len + sprintf(buf + len, "\n");
4756}
4757
78eb00cc
DR
4758static void clear_stat(struct kmem_cache *s, enum stat_item si)
4759{
4760 int cpu;
4761
4762 for_each_online_cpu(cpu)
9dfc6e68 4763 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4764}
4765
8ff12cfc
CL
4766#define STAT_ATTR(si, text) \
4767static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4768{ \
4769 return show_stat(s, buf, si); \
4770} \
78eb00cc
DR
4771static ssize_t text##_store(struct kmem_cache *s, \
4772 const char *buf, size_t length) \
4773{ \
4774 if (buf[0] != '0') \
4775 return -EINVAL; \
4776 clear_stat(s, si); \
4777 return length; \
4778} \
4779SLAB_ATTR(text); \
8ff12cfc
CL
4780
4781STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4782STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4783STAT_ATTR(FREE_FASTPATH, free_fastpath);
4784STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4785STAT_ATTR(FREE_FROZEN, free_frozen);
4786STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4787STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4788STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4789STAT_ATTR(ALLOC_SLAB, alloc_slab);
4790STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4791STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4792STAT_ATTR(FREE_SLAB, free_slab);
4793STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4794STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4795STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4796STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4797STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4798STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4799STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4800STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4801STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4802STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4803STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4804STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4805STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4806STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4807#endif
4808
06428780 4809static struct attribute *slab_attrs[] = {
81819f0f
CL
4810 &slab_size_attr.attr,
4811 &object_size_attr.attr,
4812 &objs_per_slab_attr.attr,
4813 &order_attr.attr,
73d342b1 4814 &min_partial_attr.attr,
49e22585 4815 &cpu_partial_attr.attr,
81819f0f 4816 &objects_attr.attr,
205ab99d 4817 &objects_partial_attr.attr,
81819f0f
CL
4818 &partial_attr.attr,
4819 &cpu_slabs_attr.attr,
4820 &ctor_attr.attr,
81819f0f
CL
4821 &aliases_attr.attr,
4822 &align_attr.attr,
81819f0f
CL
4823 &hwcache_align_attr.attr,
4824 &reclaim_account_attr.attr,
4825 &destroy_by_rcu_attr.attr,
a5a84755 4826 &shrink_attr.attr,
ab9a0f19 4827 &reserved_attr.attr,
49e22585 4828 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4829#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4830 &total_objects_attr.attr,
4831 &slabs_attr.attr,
4832 &sanity_checks_attr.attr,
4833 &trace_attr.attr,
81819f0f
CL
4834 &red_zone_attr.attr,
4835 &poison_attr.attr,
4836 &store_user_attr.attr,
53e15af0 4837 &validate_attr.attr,
88a420e4
CL
4838 &alloc_calls_attr.attr,
4839 &free_calls_attr.attr,
ab4d5ed5 4840#endif
81819f0f
CL
4841#ifdef CONFIG_ZONE_DMA
4842 &cache_dma_attr.attr,
4843#endif
4844#ifdef CONFIG_NUMA
9824601e 4845 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4846#endif
4847#ifdef CONFIG_SLUB_STATS
4848 &alloc_fastpath_attr.attr,
4849 &alloc_slowpath_attr.attr,
4850 &free_fastpath_attr.attr,
4851 &free_slowpath_attr.attr,
4852 &free_frozen_attr.attr,
4853 &free_add_partial_attr.attr,
4854 &free_remove_partial_attr.attr,
4855 &alloc_from_partial_attr.attr,
4856 &alloc_slab_attr.attr,
4857 &alloc_refill_attr.attr,
e36a2652 4858 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4859 &free_slab_attr.attr,
4860 &cpuslab_flush_attr.attr,
4861 &deactivate_full_attr.attr,
4862 &deactivate_empty_attr.attr,
4863 &deactivate_to_head_attr.attr,
4864 &deactivate_to_tail_attr.attr,
4865 &deactivate_remote_frees_attr.attr,
03e404af 4866 &deactivate_bypass_attr.attr,
65c3376a 4867 &order_fallback_attr.attr,
b789ef51
CL
4868 &cmpxchg_double_fail_attr.attr,
4869 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4870 &cpu_partial_alloc_attr.attr,
4871 &cpu_partial_free_attr.attr,
8028dcea
AS
4872 &cpu_partial_node_attr.attr,
4873 &cpu_partial_drain_attr.attr,
81819f0f 4874#endif
4c13dd3b
DM
4875#ifdef CONFIG_FAILSLAB
4876 &failslab_attr.attr,
4877#endif
4878
81819f0f
CL
4879 NULL
4880};
4881
4882static struct attribute_group slab_attr_group = {
4883 .attrs = slab_attrs,
4884};
4885
4886static ssize_t slab_attr_show(struct kobject *kobj,
4887 struct attribute *attr,
4888 char *buf)
4889{
4890 struct slab_attribute *attribute;
4891 struct kmem_cache *s;
4892 int err;
4893
4894 attribute = to_slab_attr(attr);
4895 s = to_slab(kobj);
4896
4897 if (!attribute->show)
4898 return -EIO;
4899
4900 err = attribute->show(s, buf);
4901
4902 return err;
4903}
4904
4905static ssize_t slab_attr_store(struct kobject *kobj,
4906 struct attribute *attr,
4907 const char *buf, size_t len)
4908{
4909 struct slab_attribute *attribute;
4910 struct kmem_cache *s;
4911 int err;
4912
4913 attribute = to_slab_attr(attr);
4914 s = to_slab(kobj);
4915
4916 if (!attribute->store)
4917 return -EIO;
4918
4919 err = attribute->store(s, buf, len);
107dab5c
GC
4920#ifdef CONFIG_MEMCG_KMEM
4921 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 4922 struct kmem_cache *c;
81819f0f 4923
107dab5c
GC
4924 mutex_lock(&slab_mutex);
4925 if (s->max_attr_size < len)
4926 s->max_attr_size = len;
4927
ebe945c2
GC
4928 /*
4929 * This is a best effort propagation, so this function's return
4930 * value will be determined by the parent cache only. This is
4931 * basically because not all attributes will have a well
4932 * defined semantics for rollbacks - most of the actions will
4933 * have permanent effects.
4934 *
4935 * Returning the error value of any of the children that fail
4936 * is not 100 % defined, in the sense that users seeing the
4937 * error code won't be able to know anything about the state of
4938 * the cache.
4939 *
4940 * Only returning the error code for the parent cache at least
4941 * has well defined semantics. The cache being written to
4942 * directly either failed or succeeded, in which case we loop
4943 * through the descendants with best-effort propagation.
4944 */
426589f5
VD
4945 for_each_memcg_cache(c, s)
4946 attribute->store(c, buf, len);
107dab5c
GC
4947 mutex_unlock(&slab_mutex);
4948 }
4949#endif
81819f0f
CL
4950 return err;
4951}
4952
107dab5c
GC
4953static void memcg_propagate_slab_attrs(struct kmem_cache *s)
4954{
4955#ifdef CONFIG_MEMCG_KMEM
4956 int i;
4957 char *buffer = NULL;
93030d83 4958 struct kmem_cache *root_cache;
107dab5c 4959
93030d83 4960 if (is_root_cache(s))
107dab5c
GC
4961 return;
4962
f7ce3190 4963 root_cache = s->memcg_params.root_cache;
93030d83 4964
107dab5c
GC
4965 /*
4966 * This mean this cache had no attribute written. Therefore, no point
4967 * in copying default values around
4968 */
93030d83 4969 if (!root_cache->max_attr_size)
107dab5c
GC
4970 return;
4971
4972 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
4973 char mbuf[64];
4974 char *buf;
4975 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
4976
4977 if (!attr || !attr->store || !attr->show)
4978 continue;
4979
4980 /*
4981 * It is really bad that we have to allocate here, so we will
4982 * do it only as a fallback. If we actually allocate, though,
4983 * we can just use the allocated buffer until the end.
4984 *
4985 * Most of the slub attributes will tend to be very small in
4986 * size, but sysfs allows buffers up to a page, so they can
4987 * theoretically happen.
4988 */
4989 if (buffer)
4990 buf = buffer;
93030d83 4991 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
4992 buf = mbuf;
4993 else {
4994 buffer = (char *) get_zeroed_page(GFP_KERNEL);
4995 if (WARN_ON(!buffer))
4996 continue;
4997 buf = buffer;
4998 }
4999
93030d83 5000 attr->show(root_cache, buf);
107dab5c
GC
5001 attr->store(s, buf, strlen(buf));
5002 }
5003
5004 if (buffer)
5005 free_page((unsigned long)buffer);
5006#endif
5007}
5008
41a21285
CL
5009static void kmem_cache_release(struct kobject *k)
5010{
5011 slab_kmem_cache_release(to_slab(k));
5012}
5013
52cf25d0 5014static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5015 .show = slab_attr_show,
5016 .store = slab_attr_store,
5017};
5018
5019static struct kobj_type slab_ktype = {
5020 .sysfs_ops = &slab_sysfs_ops,
41a21285 5021 .release = kmem_cache_release,
81819f0f
CL
5022};
5023
5024static int uevent_filter(struct kset *kset, struct kobject *kobj)
5025{
5026 struct kobj_type *ktype = get_ktype(kobj);
5027
5028 if (ktype == &slab_ktype)
5029 return 1;
5030 return 0;
5031}
5032
9cd43611 5033static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5034 .filter = uevent_filter,
5035};
5036
27c3a314 5037static struct kset *slab_kset;
81819f0f 5038
9a41707b
VD
5039static inline struct kset *cache_kset(struct kmem_cache *s)
5040{
5041#ifdef CONFIG_MEMCG_KMEM
5042 if (!is_root_cache(s))
f7ce3190 5043 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5044#endif
5045 return slab_kset;
5046}
5047
81819f0f
CL
5048#define ID_STR_LENGTH 64
5049
5050/* Create a unique string id for a slab cache:
6446faa2
CL
5051 *
5052 * Format :[flags-]size
81819f0f
CL
5053 */
5054static char *create_unique_id(struct kmem_cache *s)
5055{
5056 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5057 char *p = name;
5058
5059 BUG_ON(!name);
5060
5061 *p++ = ':';
5062 /*
5063 * First flags affecting slabcache operations. We will only
5064 * get here for aliasable slabs so we do not need to support
5065 * too many flags. The flags here must cover all flags that
5066 * are matched during merging to guarantee that the id is
5067 * unique.
5068 */
5069 if (s->flags & SLAB_CACHE_DMA)
5070 *p++ = 'd';
5071 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5072 *p++ = 'a';
5073 if (s->flags & SLAB_DEBUG_FREE)
5074 *p++ = 'F';
5a896d9e
VN
5075 if (!(s->flags & SLAB_NOTRACK))
5076 *p++ = 't';
81819f0f
CL
5077 if (p != name + 1)
5078 *p++ = '-';
5079 p += sprintf(p, "%07d", s->size);
2633d7a0 5080
81819f0f
CL
5081 BUG_ON(p > name + ID_STR_LENGTH - 1);
5082 return name;
5083}
5084
5085static int sysfs_slab_add(struct kmem_cache *s)
5086{
5087 int err;
5088 const char *name;
45530c44 5089 int unmergeable = slab_unmergeable(s);
81819f0f 5090
81819f0f
CL
5091 if (unmergeable) {
5092 /*
5093 * Slabcache can never be merged so we can use the name proper.
5094 * This is typically the case for debug situations. In that
5095 * case we can catch duplicate names easily.
5096 */
27c3a314 5097 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5098 name = s->name;
5099 } else {
5100 /*
5101 * Create a unique name for the slab as a target
5102 * for the symlinks.
5103 */
5104 name = create_unique_id(s);
5105 }
5106
9a41707b 5107 s->kobj.kset = cache_kset(s);
26e4f205 5108 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5109 if (err)
5110 goto out_put_kobj;
81819f0f
CL
5111
5112 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5113 if (err)
5114 goto out_del_kobj;
9a41707b
VD
5115
5116#ifdef CONFIG_MEMCG_KMEM
5117 if (is_root_cache(s)) {
5118 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5119 if (!s->memcg_kset) {
54b6a731
DJ
5120 err = -ENOMEM;
5121 goto out_del_kobj;
9a41707b
VD
5122 }
5123 }
5124#endif
5125
81819f0f
CL
5126 kobject_uevent(&s->kobj, KOBJ_ADD);
5127 if (!unmergeable) {
5128 /* Setup first alias */
5129 sysfs_slab_alias(s, s->name);
81819f0f 5130 }
54b6a731
DJ
5131out:
5132 if (!unmergeable)
5133 kfree(name);
5134 return err;
5135out_del_kobj:
5136 kobject_del(&s->kobj);
5137out_put_kobj:
5138 kobject_put(&s->kobj);
5139 goto out;
81819f0f
CL
5140}
5141
41a21285 5142void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5143{
97d06609 5144 if (slab_state < FULL)
2bce6485
CL
5145 /*
5146 * Sysfs has not been setup yet so no need to remove the
5147 * cache from sysfs.
5148 */
5149 return;
5150
9a41707b
VD
5151#ifdef CONFIG_MEMCG_KMEM
5152 kset_unregister(s->memcg_kset);
5153#endif
81819f0f
CL
5154 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5155 kobject_del(&s->kobj);
151c602f 5156 kobject_put(&s->kobj);
81819f0f
CL
5157}
5158
5159/*
5160 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5161 * available lest we lose that information.
81819f0f
CL
5162 */
5163struct saved_alias {
5164 struct kmem_cache *s;
5165 const char *name;
5166 struct saved_alias *next;
5167};
5168
5af328a5 5169static struct saved_alias *alias_list;
81819f0f
CL
5170
5171static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5172{
5173 struct saved_alias *al;
5174
97d06609 5175 if (slab_state == FULL) {
81819f0f
CL
5176 /*
5177 * If we have a leftover link then remove it.
5178 */
27c3a314
GKH
5179 sysfs_remove_link(&slab_kset->kobj, name);
5180 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5181 }
5182
5183 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5184 if (!al)
5185 return -ENOMEM;
5186
5187 al->s = s;
5188 al->name = name;
5189 al->next = alias_list;
5190 alias_list = al;
5191 return 0;
5192}
5193
5194static int __init slab_sysfs_init(void)
5195{
5b95a4ac 5196 struct kmem_cache *s;
81819f0f
CL
5197 int err;
5198
18004c5d 5199 mutex_lock(&slab_mutex);
2bce6485 5200
0ff21e46 5201 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5202 if (!slab_kset) {
18004c5d 5203 mutex_unlock(&slab_mutex);
f9f58285 5204 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5205 return -ENOSYS;
5206 }
5207
97d06609 5208 slab_state = FULL;
26a7bd03 5209
5b95a4ac 5210 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5211 err = sysfs_slab_add(s);
5d540fb7 5212 if (err)
f9f58285
FF
5213 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5214 s->name);
26a7bd03 5215 }
81819f0f
CL
5216
5217 while (alias_list) {
5218 struct saved_alias *al = alias_list;
5219
5220 alias_list = alias_list->next;
5221 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5222 if (err)
f9f58285
FF
5223 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5224 al->name);
81819f0f
CL
5225 kfree(al);
5226 }
5227
18004c5d 5228 mutex_unlock(&slab_mutex);
81819f0f
CL
5229 resiliency_test();
5230 return 0;
5231}
5232
5233__initcall(slab_sysfs_init);
ab4d5ed5 5234#endif /* CONFIG_SYSFS */
57ed3eda
PE
5235
5236/*
5237 * The /proc/slabinfo ABI
5238 */
158a9624 5239#ifdef CONFIG_SLABINFO
0d7561c6 5240void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5241{
57ed3eda 5242 unsigned long nr_slabs = 0;
205ab99d
CL
5243 unsigned long nr_objs = 0;
5244 unsigned long nr_free = 0;
57ed3eda 5245 int node;
fa45dc25 5246 struct kmem_cache_node *n;
57ed3eda 5247
fa45dc25 5248 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5249 nr_slabs += node_nr_slabs(n);
5250 nr_objs += node_nr_objs(n);
205ab99d 5251 nr_free += count_partial(n, count_free);
57ed3eda
PE
5252 }
5253
0d7561c6
GC
5254 sinfo->active_objs = nr_objs - nr_free;
5255 sinfo->num_objs = nr_objs;
5256 sinfo->active_slabs = nr_slabs;
5257 sinfo->num_slabs = nr_slabs;
5258 sinfo->objects_per_slab = oo_objects(s->oo);
5259 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5260}
5261
0d7561c6 5262void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5263{
7b3c3a50
AD
5264}
5265
b7454ad3
GC
5266ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5267 size_t count, loff_t *ppos)
7b3c3a50 5268{
b7454ad3 5269 return -EIO;
7b3c3a50 5270}
158a9624 5271#endif /* CONFIG_SLABINFO */