slub: look up object from the freelist once
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
b9049e23 23#include <linux/memory.h>
81819f0f
CL
24
25/*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
672bba3a
CL
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 72 * freed then the slab will show up again on the partial lists.
672bba3a
CL
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
81819f0f
CL
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
4b6f0750
CL
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
dfb4f096 94 * freelist that allows lockless access to
894b8788
CL
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
81819f0f
CL
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
894b8788 100 * the fast path and disables lockless freelists.
81819f0f
CL
101 */
102
5577bd8a
CL
103#define FROZEN (1 << PG_active)
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG (1 << PG_error)
107#else
108#define SLABDEBUG 0
109#endif
110
4b6f0750
CL
111static inline int SlabFrozen(struct page *page)
112{
5577bd8a 113 return page->flags & FROZEN;
4b6f0750
CL
114}
115
116static inline void SetSlabFrozen(struct page *page)
117{
5577bd8a 118 page->flags |= FROZEN;
4b6f0750
CL
119}
120
121static inline void ClearSlabFrozen(struct page *page)
122{
5577bd8a 123 page->flags &= ~FROZEN;
4b6f0750
CL
124}
125
35e5d7ee
CL
126static inline int SlabDebug(struct page *page)
127{
5577bd8a 128 return page->flags & SLABDEBUG;
35e5d7ee
CL
129}
130
131static inline void SetSlabDebug(struct page *page)
132{
5577bd8a 133 page->flags |= SLABDEBUG;
35e5d7ee
CL
134}
135
136static inline void ClearSlabDebug(struct page *page)
137{
5577bd8a 138 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
139}
140
81819f0f
CL
141/*
142 * Issues still to be resolved:
143 *
81819f0f
CL
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
81819f0f
CL
146 * - Variable sizing of the per node arrays
147 */
148
149/* Enable to test recovery from slab corruption on boot */
150#undef SLUB_RESILIENCY_TEST
151
152#if PAGE_SHIFT <= 12
153
154/*
155 * Small page size. Make sure that we do not fragment memory
156 */
157#define DEFAULT_MAX_ORDER 1
158#define DEFAULT_MIN_OBJECTS 4
159
160#else
161
162/*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166#define DEFAULT_MAX_ORDER 2
167#define DEFAULT_MIN_OBJECTS 8
168
169#endif
170
2086d26a
CL
171/*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
76be8950 175#define MIN_PARTIAL 5
e95eed57 176
2086d26a
CL
177/*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182#define MAX_PARTIAL 10
183
81819f0f
CL
184#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
672bba3a 186
81819f0f
CL
187/*
188 * Set of flags that will prevent slab merging
189 */
190#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 197#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
198#endif
199
200#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 201#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
202#endif
203
204/* Internal SLUB flags */
1ceef402
CL
205#define __OBJECT_POISON 0x80000000 /* Poison object */
206#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
71c7a06f
CL
207#define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208#define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
81819f0f 209
65c02d4c
CL
210/* Not all arches define cache_line_size */
211#ifndef cache_line_size
212#define cache_line_size() L1_CACHE_BYTES
213#endif
214
81819f0f
CL
215static int kmem_size = sizeof(struct kmem_cache);
216
217#ifdef CONFIG_SMP
218static struct notifier_block slab_notifier;
219#endif
220
221static enum {
222 DOWN, /* No slab functionality available */
223 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 224 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
225 SYSFS /* Sysfs up */
226} slab_state = DOWN;
227
228/* A list of all slab caches on the system */
229static DECLARE_RWSEM(slub_lock);
5af328a5 230static LIST_HEAD(slab_caches);
81819f0f 231
02cbc874
CL
232/*
233 * Tracking user of a slab.
234 */
235struct track {
236 void *addr; /* Called from address */
237 int cpu; /* Was running on cpu */
238 int pid; /* Pid context */
239 unsigned long when; /* When did the operation occur */
240};
241
242enum track_item { TRACK_ALLOC, TRACK_FREE };
243
41ecc55b 244#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
245static int sysfs_slab_add(struct kmem_cache *);
246static int sysfs_slab_alias(struct kmem_cache *, const char *);
247static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 248
81819f0f 249#else
0c710013
CL
250static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
252 { return 0; }
151c602f
CL
253static inline void sysfs_slab_remove(struct kmem_cache *s)
254{
255 kfree(s);
256}
8ff12cfc 257
81819f0f
CL
258#endif
259
8ff12cfc
CL
260static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
261{
262#ifdef CONFIG_SLUB_STATS
263 c->stat[si]++;
264#endif
265}
266
81819f0f
CL
267/********************************************************************
268 * Core slab cache functions
269 *******************************************************************/
270
271int slab_is_available(void)
272{
273 return slab_state >= UP;
274}
275
276static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
277{
278#ifdef CONFIG_NUMA
279 return s->node[node];
280#else
281 return &s->local_node;
282#endif
283}
284
dfb4f096
CL
285static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
286{
4c93c355
CL
287#ifdef CONFIG_SMP
288 return s->cpu_slab[cpu];
289#else
290 return &s->cpu_slab;
291#endif
dfb4f096
CL
292}
293
6446faa2 294/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
295static inline int check_valid_pointer(struct kmem_cache *s,
296 struct page *page, const void *object)
297{
298 void *base;
299
a973e9dd 300 if (!object)
02cbc874
CL
301 return 1;
302
a973e9dd 303 base = page_address(page);
02cbc874
CL
304 if (object < base || object >= base + s->objects * s->size ||
305 (object - base) % s->size) {
306 return 0;
307 }
308
309 return 1;
310}
311
7656c72b
CL
312/*
313 * Slow version of get and set free pointer.
314 *
315 * This version requires touching the cache lines of kmem_cache which
316 * we avoid to do in the fast alloc free paths. There we obtain the offset
317 * from the page struct.
318 */
319static inline void *get_freepointer(struct kmem_cache *s, void *object)
320{
321 return *(void **)(object + s->offset);
322}
323
324static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
325{
326 *(void **)(object + s->offset) = fp;
327}
328
329/* Loop over all objects in a slab */
330#define for_each_object(__p, __s, __addr) \
331 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
332 __p += (__s)->size)
333
334/* Scan freelist */
335#define for_each_free_object(__p, __s, __free) \
a973e9dd 336 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
337
338/* Determine object index from a given position */
339static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
340{
341 return (p - addr) / s->size;
342}
343
41ecc55b
CL
344#ifdef CONFIG_SLUB_DEBUG
345/*
346 * Debug settings:
347 */
f0630fff
CL
348#ifdef CONFIG_SLUB_DEBUG_ON
349static int slub_debug = DEBUG_DEFAULT_FLAGS;
350#else
41ecc55b 351static int slub_debug;
f0630fff 352#endif
41ecc55b
CL
353
354static char *slub_debug_slabs;
355
81819f0f
CL
356/*
357 * Object debugging
358 */
359static void print_section(char *text, u8 *addr, unsigned int length)
360{
361 int i, offset;
362 int newline = 1;
363 char ascii[17];
364
365 ascii[16] = 0;
366
367 for (i = 0; i < length; i++) {
368 if (newline) {
24922684 369 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
370 newline = 0;
371 }
06428780 372 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
373 offset = i % 16;
374 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
375 if (offset == 15) {
06428780 376 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
377 newline = 1;
378 }
379 }
380 if (!newline) {
381 i %= 16;
382 while (i < 16) {
06428780 383 printk(KERN_CONT " ");
81819f0f
CL
384 ascii[i] = ' ';
385 i++;
386 }
06428780 387 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
388 }
389}
390
81819f0f
CL
391static struct track *get_track(struct kmem_cache *s, void *object,
392 enum track_item alloc)
393{
394 struct track *p;
395
396 if (s->offset)
397 p = object + s->offset + sizeof(void *);
398 else
399 p = object + s->inuse;
400
401 return p + alloc;
402}
403
404static void set_track(struct kmem_cache *s, void *object,
405 enum track_item alloc, void *addr)
406{
407 struct track *p;
408
409 if (s->offset)
410 p = object + s->offset + sizeof(void *);
411 else
412 p = object + s->inuse;
413
414 p += alloc;
415 if (addr) {
416 p->addr = addr;
417 p->cpu = smp_processor_id();
418 p->pid = current ? current->pid : -1;
419 p->when = jiffies;
420 } else
421 memset(p, 0, sizeof(struct track));
422}
423
81819f0f
CL
424static void init_tracking(struct kmem_cache *s, void *object)
425{
24922684
CL
426 if (!(s->flags & SLAB_STORE_USER))
427 return;
428
429 set_track(s, object, TRACK_FREE, NULL);
430 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
431}
432
433static void print_track(const char *s, struct track *t)
434{
435 if (!t->addr)
436 return;
437
24922684 438 printk(KERN_ERR "INFO: %s in ", s);
81819f0f 439 __print_symbol("%s", (unsigned long)t->addr);
24922684
CL
440 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
441}
442
443static void print_tracking(struct kmem_cache *s, void *object)
444{
445 if (!(s->flags & SLAB_STORE_USER))
446 return;
447
448 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
449 print_track("Freed", get_track(s, object, TRACK_FREE));
450}
451
452static void print_page_info(struct page *page)
453{
454 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
455 page, page->inuse, page->freelist, page->flags);
456
457}
458
459static void slab_bug(struct kmem_cache *s, char *fmt, ...)
460{
461 va_list args;
462 char buf[100];
463
464 va_start(args, fmt);
465 vsnprintf(buf, sizeof(buf), fmt, args);
466 va_end(args);
467 printk(KERN_ERR "========================================"
468 "=====================================\n");
469 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
470 printk(KERN_ERR "----------------------------------------"
471 "-------------------------------------\n\n");
81819f0f
CL
472}
473
24922684
CL
474static void slab_fix(struct kmem_cache *s, char *fmt, ...)
475{
476 va_list args;
477 char buf[100];
478
479 va_start(args, fmt);
480 vsnprintf(buf, sizeof(buf), fmt, args);
481 va_end(args);
482 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
483}
484
485static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
486{
487 unsigned int off; /* Offset of last byte */
a973e9dd 488 u8 *addr = page_address(page);
24922684
CL
489
490 print_tracking(s, p);
491
492 print_page_info(page);
493
494 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
495 p, p - addr, get_freepointer(s, p));
496
497 if (p > addr + 16)
498 print_section("Bytes b4", p - 16, 16);
499
500 print_section("Object", p, min(s->objsize, 128));
81819f0f
CL
501
502 if (s->flags & SLAB_RED_ZONE)
503 print_section("Redzone", p + s->objsize,
504 s->inuse - s->objsize);
505
81819f0f
CL
506 if (s->offset)
507 off = s->offset + sizeof(void *);
508 else
509 off = s->inuse;
510
24922684 511 if (s->flags & SLAB_STORE_USER)
81819f0f 512 off += 2 * sizeof(struct track);
81819f0f
CL
513
514 if (off != s->size)
515 /* Beginning of the filler is the free pointer */
24922684
CL
516 print_section("Padding", p + off, s->size - off);
517
518 dump_stack();
81819f0f
CL
519}
520
521static void object_err(struct kmem_cache *s, struct page *page,
522 u8 *object, char *reason)
523{
24922684
CL
524 slab_bug(s, reason);
525 print_trailer(s, page, object);
81819f0f
CL
526}
527
24922684 528static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
529{
530 va_list args;
531 char buf[100];
532
24922684
CL
533 va_start(args, fmt);
534 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 535 va_end(args);
24922684
CL
536 slab_bug(s, fmt);
537 print_page_info(page);
81819f0f
CL
538 dump_stack();
539}
540
541static void init_object(struct kmem_cache *s, void *object, int active)
542{
543 u8 *p = object;
544
545 if (s->flags & __OBJECT_POISON) {
546 memset(p, POISON_FREE, s->objsize - 1);
06428780 547 p[s->objsize - 1] = POISON_END;
81819f0f
CL
548 }
549
550 if (s->flags & SLAB_RED_ZONE)
551 memset(p + s->objsize,
552 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
553 s->inuse - s->objsize);
554}
555
24922684 556static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
557{
558 while (bytes) {
559 if (*start != (u8)value)
24922684 560 return start;
81819f0f
CL
561 start++;
562 bytes--;
563 }
24922684
CL
564 return NULL;
565}
566
567static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
568 void *from, void *to)
569{
570 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
571 memset(from, data, to - from);
572}
573
574static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
575 u8 *object, char *what,
06428780 576 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
577{
578 u8 *fault;
579 u8 *end;
580
581 fault = check_bytes(start, value, bytes);
582 if (!fault)
583 return 1;
584
585 end = start + bytes;
586 while (end > fault && end[-1] == value)
587 end--;
588
589 slab_bug(s, "%s overwritten", what);
590 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
591 fault, end - 1, fault[0], value);
592 print_trailer(s, page, object);
593
594 restore_bytes(s, what, value, fault, end);
595 return 0;
81819f0f
CL
596}
597
81819f0f
CL
598/*
599 * Object layout:
600 *
601 * object address
602 * Bytes of the object to be managed.
603 * If the freepointer may overlay the object then the free
604 * pointer is the first word of the object.
672bba3a 605 *
81819f0f
CL
606 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
607 * 0xa5 (POISON_END)
608 *
609 * object + s->objsize
610 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
611 * Padding is extended by another word if Redzoning is enabled and
612 * objsize == inuse.
613 *
81819f0f
CL
614 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
615 * 0xcc (RED_ACTIVE) for objects in use.
616 *
617 * object + s->inuse
672bba3a
CL
618 * Meta data starts here.
619 *
81819f0f
CL
620 * A. Free pointer (if we cannot overwrite object on free)
621 * B. Tracking data for SLAB_STORE_USER
672bba3a 622 * C. Padding to reach required alignment boundary or at mininum
6446faa2 623 * one word if debugging is on to be able to detect writes
672bba3a
CL
624 * before the word boundary.
625 *
626 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
627 *
628 * object + s->size
672bba3a 629 * Nothing is used beyond s->size.
81819f0f 630 *
672bba3a
CL
631 * If slabcaches are merged then the objsize and inuse boundaries are mostly
632 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
633 * may be used with merged slabcaches.
634 */
635
81819f0f
CL
636static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
637{
638 unsigned long off = s->inuse; /* The end of info */
639
640 if (s->offset)
641 /* Freepointer is placed after the object. */
642 off += sizeof(void *);
643
644 if (s->flags & SLAB_STORE_USER)
645 /* We also have user information there */
646 off += 2 * sizeof(struct track);
647
648 if (s->size == off)
649 return 1;
650
24922684
CL
651 return check_bytes_and_report(s, page, p, "Object padding",
652 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
653}
654
655static int slab_pad_check(struct kmem_cache *s, struct page *page)
656{
24922684
CL
657 u8 *start;
658 u8 *fault;
659 u8 *end;
660 int length;
661 int remainder;
81819f0f
CL
662
663 if (!(s->flags & SLAB_POISON))
664 return 1;
665
a973e9dd 666 start = page_address(page);
24922684 667 end = start + (PAGE_SIZE << s->order);
81819f0f 668 length = s->objects * s->size;
24922684 669 remainder = end - (start + length);
81819f0f
CL
670 if (!remainder)
671 return 1;
672
24922684
CL
673 fault = check_bytes(start + length, POISON_INUSE, remainder);
674 if (!fault)
675 return 1;
676 while (end > fault && end[-1] == POISON_INUSE)
677 end--;
678
679 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
680 print_section("Padding", start, length);
681
682 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
683 return 0;
81819f0f
CL
684}
685
686static int check_object(struct kmem_cache *s, struct page *page,
687 void *object, int active)
688{
689 u8 *p = object;
690 u8 *endobject = object + s->objsize;
691
692 if (s->flags & SLAB_RED_ZONE) {
693 unsigned int red =
694 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
695
24922684
CL
696 if (!check_bytes_and_report(s, page, object, "Redzone",
697 endobject, red, s->inuse - s->objsize))
81819f0f 698 return 0;
81819f0f 699 } else {
3adbefee
IM
700 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
701 check_bytes_and_report(s, page, p, "Alignment padding",
702 endobject, POISON_INUSE, s->inuse - s->objsize);
703 }
81819f0f
CL
704 }
705
706 if (s->flags & SLAB_POISON) {
707 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
708 (!check_bytes_and_report(s, page, p, "Poison", p,
709 POISON_FREE, s->objsize - 1) ||
710 !check_bytes_and_report(s, page, p, "Poison",
06428780 711 p + s->objsize - 1, POISON_END, 1)))
81819f0f 712 return 0;
81819f0f
CL
713 /*
714 * check_pad_bytes cleans up on its own.
715 */
716 check_pad_bytes(s, page, p);
717 }
718
719 if (!s->offset && active)
720 /*
721 * Object and freepointer overlap. Cannot check
722 * freepointer while object is allocated.
723 */
724 return 1;
725
726 /* Check free pointer validity */
727 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
728 object_err(s, page, p, "Freepointer corrupt");
729 /*
730 * No choice but to zap it and thus loose the remainder
731 * of the free objects in this slab. May cause
672bba3a 732 * another error because the object count is now wrong.
81819f0f 733 */
a973e9dd 734 set_freepointer(s, p, NULL);
81819f0f
CL
735 return 0;
736 }
737 return 1;
738}
739
740static int check_slab(struct kmem_cache *s, struct page *page)
741{
742 VM_BUG_ON(!irqs_disabled());
743
744 if (!PageSlab(page)) {
24922684 745 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
746 return 0;
747 }
81819f0f 748 if (page->inuse > s->objects) {
24922684
CL
749 slab_err(s, page, "inuse %u > max %u",
750 s->name, page->inuse, s->objects);
81819f0f
CL
751 return 0;
752 }
753 /* Slab_pad_check fixes things up after itself */
754 slab_pad_check(s, page);
755 return 1;
756}
757
758/*
672bba3a
CL
759 * Determine if a certain object on a page is on the freelist. Must hold the
760 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
761 */
762static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
763{
764 int nr = 0;
765 void *fp = page->freelist;
766 void *object = NULL;
767
a973e9dd 768 while (fp && nr <= s->objects) {
81819f0f
CL
769 if (fp == search)
770 return 1;
771 if (!check_valid_pointer(s, page, fp)) {
772 if (object) {
773 object_err(s, page, object,
774 "Freechain corrupt");
a973e9dd 775 set_freepointer(s, object, NULL);
81819f0f
CL
776 break;
777 } else {
24922684 778 slab_err(s, page, "Freepointer corrupt");
a973e9dd 779 page->freelist = NULL;
81819f0f 780 page->inuse = s->objects;
24922684 781 slab_fix(s, "Freelist cleared");
81819f0f
CL
782 return 0;
783 }
784 break;
785 }
786 object = fp;
787 fp = get_freepointer(s, object);
788 nr++;
789 }
790
791 if (page->inuse != s->objects - nr) {
70d71228 792 slab_err(s, page, "Wrong object count. Counter is %d but "
24922684 793 "counted were %d", page->inuse, s->objects - nr);
81819f0f 794 page->inuse = s->objects - nr;
24922684 795 slab_fix(s, "Object count adjusted.");
81819f0f
CL
796 }
797 return search == NULL;
798}
799
3ec09742
CL
800static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
801{
802 if (s->flags & SLAB_TRACE) {
803 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
804 s->name,
805 alloc ? "alloc" : "free",
806 object, page->inuse,
807 page->freelist);
808
809 if (!alloc)
810 print_section("Object", (void *)object, s->objsize);
811
812 dump_stack();
813 }
814}
815
643b1138 816/*
672bba3a 817 * Tracking of fully allocated slabs for debugging purposes.
643b1138 818 */
e95eed57 819static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 820{
643b1138
CL
821 spin_lock(&n->list_lock);
822 list_add(&page->lru, &n->full);
823 spin_unlock(&n->list_lock);
824}
825
826static void remove_full(struct kmem_cache *s, struct page *page)
827{
828 struct kmem_cache_node *n;
829
830 if (!(s->flags & SLAB_STORE_USER))
831 return;
832
833 n = get_node(s, page_to_nid(page));
834
835 spin_lock(&n->list_lock);
836 list_del(&page->lru);
837 spin_unlock(&n->list_lock);
838}
839
3ec09742
CL
840static void setup_object_debug(struct kmem_cache *s, struct page *page,
841 void *object)
842{
843 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
844 return;
845
846 init_object(s, object, 0);
847 init_tracking(s, object);
848}
849
850static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
851 void *object, void *addr)
81819f0f
CL
852{
853 if (!check_slab(s, page))
854 goto bad;
855
d692ef6d 856 if (!on_freelist(s, page, object)) {
24922684 857 object_err(s, page, object, "Object already allocated");
70d71228 858 goto bad;
81819f0f
CL
859 }
860
861 if (!check_valid_pointer(s, page, object)) {
862 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 863 goto bad;
81819f0f
CL
864 }
865
d692ef6d 866 if (!check_object(s, page, object, 0))
81819f0f 867 goto bad;
81819f0f 868
3ec09742
CL
869 /* Success perform special debug activities for allocs */
870 if (s->flags & SLAB_STORE_USER)
871 set_track(s, object, TRACK_ALLOC, addr);
872 trace(s, page, object, 1);
873 init_object(s, object, 1);
81819f0f 874 return 1;
3ec09742 875
81819f0f
CL
876bad:
877 if (PageSlab(page)) {
878 /*
879 * If this is a slab page then lets do the best we can
880 * to avoid issues in the future. Marking all objects
672bba3a 881 * as used avoids touching the remaining objects.
81819f0f 882 */
24922684 883 slab_fix(s, "Marking all objects used");
81819f0f 884 page->inuse = s->objects;
a973e9dd 885 page->freelist = NULL;
81819f0f
CL
886 }
887 return 0;
888}
889
3ec09742
CL
890static int free_debug_processing(struct kmem_cache *s, struct page *page,
891 void *object, void *addr)
81819f0f
CL
892{
893 if (!check_slab(s, page))
894 goto fail;
895
896 if (!check_valid_pointer(s, page, object)) {
70d71228 897 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
898 goto fail;
899 }
900
901 if (on_freelist(s, page, object)) {
24922684 902 object_err(s, page, object, "Object already free");
81819f0f
CL
903 goto fail;
904 }
905
906 if (!check_object(s, page, object, 1))
907 return 0;
908
909 if (unlikely(s != page->slab)) {
3adbefee 910 if (!PageSlab(page)) {
70d71228
CL
911 slab_err(s, page, "Attempt to free object(0x%p) "
912 "outside of slab", object);
3adbefee 913 } else if (!page->slab) {
81819f0f 914 printk(KERN_ERR
70d71228 915 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 916 object);
70d71228 917 dump_stack();
06428780 918 } else
24922684
CL
919 object_err(s, page, object,
920 "page slab pointer corrupt.");
81819f0f
CL
921 goto fail;
922 }
3ec09742
CL
923
924 /* Special debug activities for freeing objects */
a973e9dd 925 if (!SlabFrozen(page) && !page->freelist)
3ec09742
CL
926 remove_full(s, page);
927 if (s->flags & SLAB_STORE_USER)
928 set_track(s, object, TRACK_FREE, addr);
929 trace(s, page, object, 0);
930 init_object(s, object, 0);
81819f0f 931 return 1;
3ec09742 932
81819f0f 933fail:
24922684 934 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
935 return 0;
936}
937
41ecc55b
CL
938static int __init setup_slub_debug(char *str)
939{
f0630fff
CL
940 slub_debug = DEBUG_DEFAULT_FLAGS;
941 if (*str++ != '=' || !*str)
942 /*
943 * No options specified. Switch on full debugging.
944 */
945 goto out;
946
947 if (*str == ',')
948 /*
949 * No options but restriction on slabs. This means full
950 * debugging for slabs matching a pattern.
951 */
952 goto check_slabs;
953
954 slub_debug = 0;
955 if (*str == '-')
956 /*
957 * Switch off all debugging measures.
958 */
959 goto out;
960
961 /*
962 * Determine which debug features should be switched on
963 */
06428780 964 for (; *str && *str != ','; str++) {
f0630fff
CL
965 switch (tolower(*str)) {
966 case 'f':
967 slub_debug |= SLAB_DEBUG_FREE;
968 break;
969 case 'z':
970 slub_debug |= SLAB_RED_ZONE;
971 break;
972 case 'p':
973 slub_debug |= SLAB_POISON;
974 break;
975 case 'u':
976 slub_debug |= SLAB_STORE_USER;
977 break;
978 case 't':
979 slub_debug |= SLAB_TRACE;
980 break;
981 default:
982 printk(KERN_ERR "slub_debug option '%c' "
06428780 983 "unknown. skipped\n", *str);
f0630fff 984 }
41ecc55b
CL
985 }
986
f0630fff 987check_slabs:
41ecc55b
CL
988 if (*str == ',')
989 slub_debug_slabs = str + 1;
f0630fff 990out:
41ecc55b
CL
991 return 1;
992}
993
994__setup("slub_debug", setup_slub_debug);
995
ba0268a8
CL
996static unsigned long kmem_cache_flags(unsigned long objsize,
997 unsigned long flags, const char *name,
4ba9b9d0 998 void (*ctor)(struct kmem_cache *, void *))
41ecc55b
CL
999{
1000 /*
e153362a 1001 * Enable debugging if selected on the kernel commandline.
41ecc55b 1002 */
e153362a
CL
1003 if (slub_debug && (!slub_debug_slabs ||
1004 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1005 flags |= slub_debug;
ba0268a8
CL
1006
1007 return flags;
41ecc55b
CL
1008}
1009#else
3ec09742
CL
1010static inline void setup_object_debug(struct kmem_cache *s,
1011 struct page *page, void *object) {}
41ecc55b 1012
3ec09742
CL
1013static inline int alloc_debug_processing(struct kmem_cache *s,
1014 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1015
3ec09742
CL
1016static inline int free_debug_processing(struct kmem_cache *s,
1017 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1018
41ecc55b
CL
1019static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1020 { return 1; }
1021static inline int check_object(struct kmem_cache *s, struct page *page,
1022 void *object, int active) { return 1; }
3ec09742 1023static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1024static inline unsigned long kmem_cache_flags(unsigned long objsize,
1025 unsigned long flags, const char *name,
4ba9b9d0 1026 void (*ctor)(struct kmem_cache *, void *))
ba0268a8
CL
1027{
1028 return flags;
1029}
41ecc55b
CL
1030#define slub_debug 0
1031#endif
81819f0f
CL
1032/*
1033 * Slab allocation and freeing
1034 */
1035static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1036{
06428780 1037 struct page *page;
81819f0f
CL
1038 int pages = 1 << s->order;
1039
b7a49f0d 1040 flags |= s->allocflags;
e12ba74d 1041
81819f0f
CL
1042 if (node == -1)
1043 page = alloc_pages(flags, s->order);
1044 else
1045 page = alloc_pages_node(node, flags, s->order);
1046
1047 if (!page)
1048 return NULL;
1049
1050 mod_zone_page_state(page_zone(page),
1051 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1052 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1053 pages);
1054
1055 return page;
1056}
1057
1058static void setup_object(struct kmem_cache *s, struct page *page,
1059 void *object)
1060{
3ec09742 1061 setup_object_debug(s, page, object);
4f104934 1062 if (unlikely(s->ctor))
4ba9b9d0 1063 s->ctor(s, object);
81819f0f
CL
1064}
1065
1066static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1067{
1068 struct page *page;
1069 struct kmem_cache_node *n;
1070 void *start;
81819f0f
CL
1071 void *last;
1072 void *p;
1073
6cb06229 1074 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1075
6cb06229
CL
1076 page = allocate_slab(s,
1077 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1078 if (!page)
1079 goto out;
1080
1081 n = get_node(s, page_to_nid(page));
1082 if (n)
1083 atomic_long_inc(&n->nr_slabs);
81819f0f
CL
1084 page->slab = s;
1085 page->flags |= 1 << PG_slab;
1086 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1087 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1088 SetSlabDebug(page);
81819f0f
CL
1089
1090 start = page_address(page);
81819f0f
CL
1091
1092 if (unlikely(s->flags & SLAB_POISON))
1093 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1094
1095 last = start;
7656c72b 1096 for_each_object(p, s, start) {
81819f0f
CL
1097 setup_object(s, page, last);
1098 set_freepointer(s, last, p);
1099 last = p;
1100 }
1101 setup_object(s, page, last);
a973e9dd 1102 set_freepointer(s, last, NULL);
81819f0f
CL
1103
1104 page->freelist = start;
1105 page->inuse = 0;
1106out:
81819f0f
CL
1107 return page;
1108}
1109
1110static void __free_slab(struct kmem_cache *s, struct page *page)
1111{
1112 int pages = 1 << s->order;
1113
c59def9f 1114 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1115 void *p;
1116
1117 slab_pad_check(s, page);
a973e9dd 1118 for_each_object(p, s, page_address(page))
81819f0f 1119 check_object(s, page, p, 0);
2208b764 1120 ClearSlabDebug(page);
81819f0f
CL
1121 }
1122
1123 mod_zone_page_state(page_zone(page),
1124 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1125 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1126 -pages);
81819f0f 1127
81819f0f
CL
1128 __free_pages(page, s->order);
1129}
1130
1131static void rcu_free_slab(struct rcu_head *h)
1132{
1133 struct page *page;
1134
1135 page = container_of((struct list_head *)h, struct page, lru);
1136 __free_slab(page->slab, page);
1137}
1138
1139static void free_slab(struct kmem_cache *s, struct page *page)
1140{
1141 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1142 /*
1143 * RCU free overloads the RCU head over the LRU
1144 */
1145 struct rcu_head *head = (void *)&page->lru;
1146
1147 call_rcu(head, rcu_free_slab);
1148 } else
1149 __free_slab(s, page);
1150}
1151
1152static void discard_slab(struct kmem_cache *s, struct page *page)
1153{
1154 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1155
1156 atomic_long_dec(&n->nr_slabs);
1157 reset_page_mapcount(page);
35e5d7ee 1158 __ClearPageSlab(page);
81819f0f
CL
1159 free_slab(s, page);
1160}
1161
1162/*
1163 * Per slab locking using the pagelock
1164 */
1165static __always_inline void slab_lock(struct page *page)
1166{
1167 bit_spin_lock(PG_locked, &page->flags);
1168}
1169
1170static __always_inline void slab_unlock(struct page *page)
1171{
a76d3546 1172 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1173}
1174
1175static __always_inline int slab_trylock(struct page *page)
1176{
1177 int rc = 1;
1178
1179 rc = bit_spin_trylock(PG_locked, &page->flags);
1180 return rc;
1181}
1182
1183/*
1184 * Management of partially allocated slabs
1185 */
7c2e132c
CL
1186static void add_partial(struct kmem_cache_node *n,
1187 struct page *page, int tail)
81819f0f 1188{
e95eed57
CL
1189 spin_lock(&n->list_lock);
1190 n->nr_partial++;
7c2e132c
CL
1191 if (tail)
1192 list_add_tail(&page->lru, &n->partial);
1193 else
1194 list_add(&page->lru, &n->partial);
81819f0f
CL
1195 spin_unlock(&n->list_lock);
1196}
1197
1198static void remove_partial(struct kmem_cache *s,
1199 struct page *page)
1200{
1201 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1202
1203 spin_lock(&n->list_lock);
1204 list_del(&page->lru);
1205 n->nr_partial--;
1206 spin_unlock(&n->list_lock);
1207}
1208
1209/*
672bba3a 1210 * Lock slab and remove from the partial list.
81819f0f 1211 *
672bba3a 1212 * Must hold list_lock.
81819f0f 1213 */
4b6f0750 1214static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
81819f0f
CL
1215{
1216 if (slab_trylock(page)) {
1217 list_del(&page->lru);
1218 n->nr_partial--;
4b6f0750 1219 SetSlabFrozen(page);
81819f0f
CL
1220 return 1;
1221 }
1222 return 0;
1223}
1224
1225/*
672bba3a 1226 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1227 */
1228static struct page *get_partial_node(struct kmem_cache_node *n)
1229{
1230 struct page *page;
1231
1232 /*
1233 * Racy check. If we mistakenly see no partial slabs then we
1234 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1235 * partial slab and there is none available then get_partials()
1236 * will return NULL.
81819f0f
CL
1237 */
1238 if (!n || !n->nr_partial)
1239 return NULL;
1240
1241 spin_lock(&n->list_lock);
1242 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1243 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1244 goto out;
1245 page = NULL;
1246out:
1247 spin_unlock(&n->list_lock);
1248 return page;
1249}
1250
1251/*
672bba3a 1252 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1253 */
1254static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1255{
1256#ifdef CONFIG_NUMA
1257 struct zonelist *zonelist;
1258 struct zone **z;
1259 struct page *page;
1260
1261 /*
672bba3a
CL
1262 * The defrag ratio allows a configuration of the tradeoffs between
1263 * inter node defragmentation and node local allocations. A lower
1264 * defrag_ratio increases the tendency to do local allocations
1265 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1266 *
672bba3a
CL
1267 * If the defrag_ratio is set to 0 then kmalloc() always
1268 * returns node local objects. If the ratio is higher then kmalloc()
1269 * may return off node objects because partial slabs are obtained
1270 * from other nodes and filled up.
81819f0f 1271 *
6446faa2 1272 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1273 * defrag_ratio = 1000) then every (well almost) allocation will
1274 * first attempt to defrag slab caches on other nodes. This means
1275 * scanning over all nodes to look for partial slabs which may be
1276 * expensive if we do it every time we are trying to find a slab
1277 * with available objects.
81819f0f 1278 */
9824601e
CL
1279 if (!s->remote_node_defrag_ratio ||
1280 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1281 return NULL;
1282
3adbefee
IM
1283 zonelist = &NODE_DATA(
1284 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
81819f0f
CL
1285 for (z = zonelist->zones; *z; z++) {
1286 struct kmem_cache_node *n;
1287
1288 n = get_node(s, zone_to_nid(*z));
1289
1290 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1291 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1292 page = get_partial_node(n);
1293 if (page)
1294 return page;
1295 }
1296 }
1297#endif
1298 return NULL;
1299}
1300
1301/*
1302 * Get a partial page, lock it and return it.
1303 */
1304static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1305{
1306 struct page *page;
1307 int searchnode = (node == -1) ? numa_node_id() : node;
1308
1309 page = get_partial_node(get_node(s, searchnode));
1310 if (page || (flags & __GFP_THISNODE))
1311 return page;
1312
1313 return get_any_partial(s, flags);
1314}
1315
1316/*
1317 * Move a page back to the lists.
1318 *
1319 * Must be called with the slab lock held.
1320 *
1321 * On exit the slab lock will have been dropped.
1322 */
7c2e132c 1323static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1324{
e95eed57 1325 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1326 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1327
4b6f0750 1328 ClearSlabFrozen(page);
81819f0f 1329 if (page->inuse) {
e95eed57 1330
a973e9dd 1331 if (page->freelist) {
7c2e132c 1332 add_partial(n, page, tail);
8ff12cfc
CL
1333 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1334 } else {
1335 stat(c, DEACTIVATE_FULL);
1336 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1337 add_full(n, page);
1338 }
81819f0f
CL
1339 slab_unlock(page);
1340 } else {
8ff12cfc 1341 stat(c, DEACTIVATE_EMPTY);
e95eed57
CL
1342 if (n->nr_partial < MIN_PARTIAL) {
1343 /*
672bba3a
CL
1344 * Adding an empty slab to the partial slabs in order
1345 * to avoid page allocator overhead. This slab needs
1346 * to come after the other slabs with objects in
6446faa2
CL
1347 * so that the others get filled first. That way the
1348 * size of the partial list stays small.
1349 *
1350 * kmem_cache_shrink can reclaim any empty slabs from the
1351 * partial list.
e95eed57 1352 */
7c2e132c 1353 add_partial(n, page, 1);
e95eed57
CL
1354 slab_unlock(page);
1355 } else {
1356 slab_unlock(page);
8ff12cfc 1357 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1358 discard_slab(s, page);
1359 }
81819f0f
CL
1360 }
1361}
1362
1363/*
1364 * Remove the cpu slab
1365 */
dfb4f096 1366static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1367{
dfb4f096 1368 struct page *page = c->page;
7c2e132c 1369 int tail = 1;
8ff12cfc
CL
1370
1371 if (c->freelist)
1372 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1373 /*
6446faa2 1374 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1375 * because both freelists are empty. So this is unlikely
1376 * to occur.
1377 */
a973e9dd 1378 while (unlikely(c->freelist)) {
894b8788
CL
1379 void **object;
1380
7c2e132c
CL
1381 tail = 0; /* Hot objects. Put the slab first */
1382
894b8788 1383 /* Retrieve object from cpu_freelist */
dfb4f096 1384 object = c->freelist;
b3fba8da 1385 c->freelist = c->freelist[c->offset];
894b8788
CL
1386
1387 /* And put onto the regular freelist */
b3fba8da 1388 object[c->offset] = page->freelist;
894b8788
CL
1389 page->freelist = object;
1390 page->inuse--;
1391 }
dfb4f096 1392 c->page = NULL;
7c2e132c 1393 unfreeze_slab(s, page, tail);
81819f0f
CL
1394}
1395
dfb4f096 1396static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1397{
8ff12cfc 1398 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1399 slab_lock(c->page);
1400 deactivate_slab(s, c);
81819f0f
CL
1401}
1402
1403/*
1404 * Flush cpu slab.
6446faa2 1405 *
81819f0f
CL
1406 * Called from IPI handler with interrupts disabled.
1407 */
0c710013 1408static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1409{
dfb4f096 1410 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1411
dfb4f096
CL
1412 if (likely(c && c->page))
1413 flush_slab(s, c);
81819f0f
CL
1414}
1415
1416static void flush_cpu_slab(void *d)
1417{
1418 struct kmem_cache *s = d;
81819f0f 1419
dfb4f096 1420 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1421}
1422
1423static void flush_all(struct kmem_cache *s)
1424{
1425#ifdef CONFIG_SMP
1426 on_each_cpu(flush_cpu_slab, s, 1, 1);
1427#else
1428 unsigned long flags;
1429
1430 local_irq_save(flags);
1431 flush_cpu_slab(s);
1432 local_irq_restore(flags);
1433#endif
1434}
1435
dfb4f096
CL
1436/*
1437 * Check if the objects in a per cpu structure fit numa
1438 * locality expectations.
1439 */
1440static inline int node_match(struct kmem_cache_cpu *c, int node)
1441{
1442#ifdef CONFIG_NUMA
1443 if (node != -1 && c->node != node)
1444 return 0;
1445#endif
1446 return 1;
1447}
1448
81819f0f 1449/*
894b8788
CL
1450 * Slow path. The lockless freelist is empty or we need to perform
1451 * debugging duties.
1452 *
1453 * Interrupts are disabled.
81819f0f 1454 *
894b8788
CL
1455 * Processing is still very fast if new objects have been freed to the
1456 * regular freelist. In that case we simply take over the regular freelist
1457 * as the lockless freelist and zap the regular freelist.
81819f0f 1458 *
894b8788
CL
1459 * If that is not working then we fall back to the partial lists. We take the
1460 * first element of the freelist as the object to allocate now and move the
1461 * rest of the freelist to the lockless freelist.
81819f0f 1462 *
894b8788 1463 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1464 * we need to allocate a new slab. This is the slowest path since it involves
1465 * a call to the page allocator and the setup of a new slab.
81819f0f 1466 */
894b8788 1467static void *__slab_alloc(struct kmem_cache *s,
dfb4f096 1468 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
81819f0f 1469{
81819f0f 1470 void **object;
dfb4f096 1471 struct page *new;
81819f0f 1472
dfb4f096 1473 if (!c->page)
81819f0f
CL
1474 goto new_slab;
1475
dfb4f096
CL
1476 slab_lock(c->page);
1477 if (unlikely(!node_match(c, node)))
81819f0f 1478 goto another_slab;
6446faa2 1479
8ff12cfc 1480 stat(c, ALLOC_REFILL);
6446faa2 1481
894b8788 1482load_freelist:
dfb4f096 1483 object = c->page->freelist;
a973e9dd 1484 if (unlikely(!object))
81819f0f 1485 goto another_slab;
dfb4f096 1486 if (unlikely(SlabDebug(c->page)))
81819f0f
CL
1487 goto debug;
1488
b3fba8da 1489 c->freelist = object[c->offset];
dfb4f096 1490 c->page->inuse = s->objects;
a973e9dd 1491 c->page->freelist = NULL;
dfb4f096 1492 c->node = page_to_nid(c->page);
1f84260c 1493unlock_out:
dfb4f096 1494 slab_unlock(c->page);
8ff12cfc 1495 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1496 return object;
1497
1498another_slab:
dfb4f096 1499 deactivate_slab(s, c);
81819f0f
CL
1500
1501new_slab:
dfb4f096
CL
1502 new = get_partial(s, gfpflags, node);
1503 if (new) {
1504 c->page = new;
8ff12cfc 1505 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1506 goto load_freelist;
81819f0f
CL
1507 }
1508
b811c202
CL
1509 if (gfpflags & __GFP_WAIT)
1510 local_irq_enable();
1511
dfb4f096 1512 new = new_slab(s, gfpflags, node);
b811c202
CL
1513
1514 if (gfpflags & __GFP_WAIT)
1515 local_irq_disable();
1516
dfb4f096
CL
1517 if (new) {
1518 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1519 stat(c, ALLOC_SLAB);
05aa3450 1520 if (c->page)
dfb4f096 1521 flush_slab(s, c);
dfb4f096
CL
1522 slab_lock(new);
1523 SetSlabFrozen(new);
1524 c->page = new;
4b6f0750 1525 goto load_freelist;
81819f0f 1526 }
00e962c5 1527
71c7a06f
CL
1528 /*
1529 * No memory available.
1530 *
1531 * If the slab uses higher order allocs but the object is
1532 * smaller than a page size then we can fallback in emergencies
1533 * to the page allocator via kmalloc_large. The page allocator may
1534 * have failed to obtain a higher order page and we can try to
1535 * allocate a single page if the object fits into a single page.
1536 * That is only possible if certain conditions are met that are being
1537 * checked when a slab is created.
1538 */
1539 if (!(gfpflags & __GFP_NORETRY) && (s->flags & __PAGE_ALLOC_FALLBACK))
1540 return kmalloc_large(s->objsize, gfpflags);
1541
1542 return NULL;
81819f0f 1543debug:
dfb4f096 1544 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1545 goto another_slab;
894b8788 1546
dfb4f096 1547 c->page->inuse++;
b3fba8da 1548 c->page->freelist = object[c->offset];
ee3c72a1 1549 c->node = -1;
1f84260c 1550 goto unlock_out;
894b8788
CL
1551}
1552
1553/*
1554 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1555 * have the fastpath folded into their functions. So no function call
1556 * overhead for requests that can be satisfied on the fastpath.
1557 *
1558 * The fastpath works by first checking if the lockless freelist can be used.
1559 * If not then __slab_alloc is called for slow processing.
1560 *
1561 * Otherwise we can simply pick the next object from the lockless free list.
1562 */
06428780 1563static __always_inline void *slab_alloc(struct kmem_cache *s,
ce15fea8 1564 gfp_t gfpflags, int node, void *addr)
894b8788 1565{
894b8788 1566 void **object;
dfb4f096 1567 struct kmem_cache_cpu *c;
1f84260c
CL
1568 unsigned long flags;
1569
894b8788 1570 local_irq_save(flags);
dfb4f096 1571 c = get_cpu_slab(s, smp_processor_id());
a973e9dd 1572 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1573
dfb4f096 1574 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1575
1576 else {
dfb4f096 1577 object = c->freelist;
b3fba8da 1578 c->freelist = object[c->offset];
8ff12cfc 1579 stat(c, ALLOC_FASTPATH);
894b8788
CL
1580 }
1581 local_irq_restore(flags);
d07dbea4
CL
1582
1583 if (unlikely((gfpflags & __GFP_ZERO) && object))
42a9fdbb 1584 memset(object, 0, c->objsize);
d07dbea4 1585
894b8788 1586 return object;
81819f0f
CL
1587}
1588
1589void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1590{
ce15fea8 1591 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1592}
1593EXPORT_SYMBOL(kmem_cache_alloc);
1594
1595#ifdef CONFIG_NUMA
1596void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1597{
ce15fea8 1598 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1599}
1600EXPORT_SYMBOL(kmem_cache_alloc_node);
1601#endif
1602
1603/*
894b8788
CL
1604 * Slow patch handling. This may still be called frequently since objects
1605 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1606 *
894b8788
CL
1607 * So we still attempt to reduce cache line usage. Just take the slab
1608 * lock and free the item. If there is no additional partial page
1609 * handling required then we can return immediately.
81819f0f 1610 */
894b8788 1611static void __slab_free(struct kmem_cache *s, struct page *page,
b3fba8da 1612 void *x, void *addr, unsigned int offset)
81819f0f
CL
1613{
1614 void *prior;
1615 void **object = (void *)x;
8ff12cfc 1616 struct kmem_cache_cpu *c;
81819f0f 1617
8ff12cfc
CL
1618 c = get_cpu_slab(s, raw_smp_processor_id());
1619 stat(c, FREE_SLOWPATH);
81819f0f
CL
1620 slab_lock(page);
1621
35e5d7ee 1622 if (unlikely(SlabDebug(page)))
81819f0f 1623 goto debug;
6446faa2 1624
81819f0f 1625checks_ok:
b3fba8da 1626 prior = object[offset] = page->freelist;
81819f0f
CL
1627 page->freelist = object;
1628 page->inuse--;
1629
8ff12cfc
CL
1630 if (unlikely(SlabFrozen(page))) {
1631 stat(c, FREE_FROZEN);
81819f0f 1632 goto out_unlock;
8ff12cfc 1633 }
81819f0f
CL
1634
1635 if (unlikely(!page->inuse))
1636 goto slab_empty;
1637
1638 /*
6446faa2 1639 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1640 * then add it.
1641 */
a973e9dd 1642 if (unlikely(!prior)) {
7c2e132c 1643 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1644 stat(c, FREE_ADD_PARTIAL);
1645 }
81819f0f
CL
1646
1647out_unlock:
1648 slab_unlock(page);
81819f0f
CL
1649 return;
1650
1651slab_empty:
a973e9dd 1652 if (prior) {
81819f0f 1653 /*
672bba3a 1654 * Slab still on the partial list.
81819f0f
CL
1655 */
1656 remove_partial(s, page);
8ff12cfc
CL
1657 stat(c, FREE_REMOVE_PARTIAL);
1658 }
81819f0f 1659 slab_unlock(page);
8ff12cfc 1660 stat(c, FREE_SLAB);
81819f0f 1661 discard_slab(s, page);
81819f0f
CL
1662 return;
1663
1664debug:
3ec09742 1665 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1666 goto out_unlock;
77c5e2d0 1667 goto checks_ok;
81819f0f
CL
1668}
1669
894b8788
CL
1670/*
1671 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1672 * can perform fastpath freeing without additional function calls.
1673 *
1674 * The fastpath is only possible if we are freeing to the current cpu slab
1675 * of this processor. This typically the case if we have just allocated
1676 * the item before.
1677 *
1678 * If fastpath is not possible then fall back to __slab_free where we deal
1679 * with all sorts of special processing.
1680 */
06428780 1681static __always_inline void slab_free(struct kmem_cache *s,
894b8788
CL
1682 struct page *page, void *x, void *addr)
1683{
1684 void **object = (void *)x;
dfb4f096 1685 struct kmem_cache_cpu *c;
1f84260c
CL
1686 unsigned long flags;
1687
894b8788 1688 local_irq_save(flags);
dfb4f096 1689 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1690 debug_check_no_locks_freed(object, c->objsize);
ee3c72a1 1691 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1692 object[c->offset] = c->freelist;
dfb4f096 1693 c->freelist = object;
8ff12cfc 1694 stat(c, FREE_FASTPATH);
894b8788 1695 } else
b3fba8da 1696 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1697
1698 local_irq_restore(flags);
1699}
1700
81819f0f
CL
1701void kmem_cache_free(struct kmem_cache *s, void *x)
1702{
77c5e2d0 1703 struct page *page;
81819f0f 1704
b49af68f 1705 page = virt_to_head_page(x);
81819f0f 1706
77c5e2d0 1707 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1708}
1709EXPORT_SYMBOL(kmem_cache_free);
1710
1711/* Figure out on which slab object the object resides */
1712static struct page *get_object_page(const void *x)
1713{
b49af68f 1714 struct page *page = virt_to_head_page(x);
81819f0f
CL
1715
1716 if (!PageSlab(page))
1717 return NULL;
1718
1719 return page;
1720}
1721
1722/*
672bba3a
CL
1723 * Object placement in a slab is made very easy because we always start at
1724 * offset 0. If we tune the size of the object to the alignment then we can
1725 * get the required alignment by putting one properly sized object after
1726 * another.
81819f0f
CL
1727 *
1728 * Notice that the allocation order determines the sizes of the per cpu
1729 * caches. Each processor has always one slab available for allocations.
1730 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1731 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1732 * locking overhead.
81819f0f
CL
1733 */
1734
1735/*
1736 * Mininum / Maximum order of slab pages. This influences locking overhead
1737 * and slab fragmentation. A higher order reduces the number of partial slabs
1738 * and increases the number of allocations possible without having to
1739 * take the list_lock.
1740 */
1741static int slub_min_order;
1742static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1743static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1744
1745/*
1746 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1747 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1748 */
1749static int slub_nomerge;
1750
81819f0f
CL
1751/*
1752 * Calculate the order of allocation given an slab object size.
1753 *
672bba3a
CL
1754 * The order of allocation has significant impact on performance and other
1755 * system components. Generally order 0 allocations should be preferred since
1756 * order 0 does not cause fragmentation in the page allocator. Larger objects
1757 * be problematic to put into order 0 slabs because there may be too much
1758 * unused space left. We go to a higher order if more than 1/8th of the slab
1759 * would be wasted.
1760 *
1761 * In order to reach satisfactory performance we must ensure that a minimum
1762 * number of objects is in one slab. Otherwise we may generate too much
1763 * activity on the partial lists which requires taking the list_lock. This is
1764 * less a concern for large slabs though which are rarely used.
81819f0f 1765 *
672bba3a
CL
1766 * slub_max_order specifies the order where we begin to stop considering the
1767 * number of objects in a slab as critical. If we reach slub_max_order then
1768 * we try to keep the page order as low as possible. So we accept more waste
1769 * of space in favor of a small page order.
81819f0f 1770 *
672bba3a
CL
1771 * Higher order allocations also allow the placement of more objects in a
1772 * slab and thereby reduce object handling overhead. If the user has
1773 * requested a higher mininum order then we start with that one instead of
1774 * the smallest order which will fit the object.
81819f0f 1775 */
5e6d444e
CL
1776static inline int slab_order(int size, int min_objects,
1777 int max_order, int fract_leftover)
81819f0f
CL
1778{
1779 int order;
1780 int rem;
6300ea75 1781 int min_order = slub_min_order;
81819f0f 1782
6300ea75 1783 for (order = max(min_order,
5e6d444e
CL
1784 fls(min_objects * size - 1) - PAGE_SHIFT);
1785 order <= max_order; order++) {
81819f0f 1786
5e6d444e 1787 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1788
5e6d444e 1789 if (slab_size < min_objects * size)
81819f0f
CL
1790 continue;
1791
1792 rem = slab_size % size;
1793
5e6d444e 1794 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1795 break;
1796
1797 }
672bba3a 1798
81819f0f
CL
1799 return order;
1800}
1801
5e6d444e
CL
1802static inline int calculate_order(int size)
1803{
1804 int order;
1805 int min_objects;
1806 int fraction;
1807
1808 /*
1809 * Attempt to find best configuration for a slab. This
1810 * works by first attempting to generate a layout with
1811 * the best configuration and backing off gradually.
1812 *
1813 * First we reduce the acceptable waste in a slab. Then
1814 * we reduce the minimum objects required in a slab.
1815 */
1816 min_objects = slub_min_objects;
1817 while (min_objects > 1) {
1818 fraction = 8;
1819 while (fraction >= 4) {
1820 order = slab_order(size, min_objects,
1821 slub_max_order, fraction);
1822 if (order <= slub_max_order)
1823 return order;
1824 fraction /= 2;
1825 }
1826 min_objects /= 2;
1827 }
1828
1829 /*
1830 * We were unable to place multiple objects in a slab. Now
1831 * lets see if we can place a single object there.
1832 */
1833 order = slab_order(size, 1, slub_max_order, 1);
1834 if (order <= slub_max_order)
1835 return order;
1836
1837 /*
1838 * Doh this slab cannot be placed using slub_max_order.
1839 */
1840 order = slab_order(size, 1, MAX_ORDER, 1);
1841 if (order <= MAX_ORDER)
1842 return order;
1843 return -ENOSYS;
1844}
1845
81819f0f 1846/*
672bba3a 1847 * Figure out what the alignment of the objects will be.
81819f0f
CL
1848 */
1849static unsigned long calculate_alignment(unsigned long flags,
1850 unsigned long align, unsigned long size)
1851{
1852 /*
6446faa2
CL
1853 * If the user wants hardware cache aligned objects then follow that
1854 * suggestion if the object is sufficiently large.
81819f0f 1855 *
6446faa2
CL
1856 * The hardware cache alignment cannot override the specified
1857 * alignment though. If that is greater then use it.
81819f0f 1858 */
5af60839 1859 if ((flags & SLAB_HWCACHE_ALIGN) &&
65c02d4c
CL
1860 size > cache_line_size() / 2)
1861 return max_t(unsigned long, align, cache_line_size());
81819f0f
CL
1862
1863 if (align < ARCH_SLAB_MINALIGN)
1864 return ARCH_SLAB_MINALIGN;
1865
1866 return ALIGN(align, sizeof(void *));
1867}
1868
dfb4f096
CL
1869static void init_kmem_cache_cpu(struct kmem_cache *s,
1870 struct kmem_cache_cpu *c)
1871{
1872 c->page = NULL;
a973e9dd 1873 c->freelist = NULL;
dfb4f096 1874 c->node = 0;
42a9fdbb
CL
1875 c->offset = s->offset / sizeof(void *);
1876 c->objsize = s->objsize;
dfb4f096
CL
1877}
1878
81819f0f
CL
1879static void init_kmem_cache_node(struct kmem_cache_node *n)
1880{
1881 n->nr_partial = 0;
1882 atomic_long_set(&n->nr_slabs, 0);
1883 spin_lock_init(&n->list_lock);
1884 INIT_LIST_HEAD(&n->partial);
8ab1372f 1885#ifdef CONFIG_SLUB_DEBUG
643b1138 1886 INIT_LIST_HEAD(&n->full);
8ab1372f 1887#endif
81819f0f
CL
1888}
1889
4c93c355
CL
1890#ifdef CONFIG_SMP
1891/*
1892 * Per cpu array for per cpu structures.
1893 *
1894 * The per cpu array places all kmem_cache_cpu structures from one processor
1895 * close together meaning that it becomes possible that multiple per cpu
1896 * structures are contained in one cacheline. This may be particularly
1897 * beneficial for the kmalloc caches.
1898 *
1899 * A desktop system typically has around 60-80 slabs. With 100 here we are
1900 * likely able to get per cpu structures for all caches from the array defined
1901 * here. We must be able to cover all kmalloc caches during bootstrap.
1902 *
1903 * If the per cpu array is exhausted then fall back to kmalloc
1904 * of individual cachelines. No sharing is possible then.
1905 */
1906#define NR_KMEM_CACHE_CPU 100
1907
1908static DEFINE_PER_CPU(struct kmem_cache_cpu,
1909 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1910
1911static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1912static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1913
1914static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1915 int cpu, gfp_t flags)
1916{
1917 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1918
1919 if (c)
1920 per_cpu(kmem_cache_cpu_free, cpu) =
1921 (void *)c->freelist;
1922 else {
1923 /* Table overflow: So allocate ourselves */
1924 c = kmalloc_node(
1925 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1926 flags, cpu_to_node(cpu));
1927 if (!c)
1928 return NULL;
1929 }
1930
1931 init_kmem_cache_cpu(s, c);
1932 return c;
1933}
1934
1935static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1936{
1937 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1938 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1939 kfree(c);
1940 return;
1941 }
1942 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1943 per_cpu(kmem_cache_cpu_free, cpu) = c;
1944}
1945
1946static void free_kmem_cache_cpus(struct kmem_cache *s)
1947{
1948 int cpu;
1949
1950 for_each_online_cpu(cpu) {
1951 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1952
1953 if (c) {
1954 s->cpu_slab[cpu] = NULL;
1955 free_kmem_cache_cpu(c, cpu);
1956 }
1957 }
1958}
1959
1960static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1961{
1962 int cpu;
1963
1964 for_each_online_cpu(cpu) {
1965 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1966
1967 if (c)
1968 continue;
1969
1970 c = alloc_kmem_cache_cpu(s, cpu, flags);
1971 if (!c) {
1972 free_kmem_cache_cpus(s);
1973 return 0;
1974 }
1975 s->cpu_slab[cpu] = c;
1976 }
1977 return 1;
1978}
1979
1980/*
1981 * Initialize the per cpu array.
1982 */
1983static void init_alloc_cpu_cpu(int cpu)
1984{
1985 int i;
1986
1987 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1988 return;
1989
1990 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1991 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1992
1993 cpu_set(cpu, kmem_cach_cpu_free_init_once);
1994}
1995
1996static void __init init_alloc_cpu(void)
1997{
1998 int cpu;
1999
2000 for_each_online_cpu(cpu)
2001 init_alloc_cpu_cpu(cpu);
2002 }
2003
2004#else
2005static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2006static inline void init_alloc_cpu(void) {}
2007
2008static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2009{
2010 init_kmem_cache_cpu(s, &s->cpu_slab);
2011 return 1;
2012}
2013#endif
2014
81819f0f
CL
2015#ifdef CONFIG_NUMA
2016/*
2017 * No kmalloc_node yet so do it by hand. We know that this is the first
2018 * slab on the node for this slabcache. There are no concurrent accesses
2019 * possible.
2020 *
2021 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2022 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2023 * memory on a fresh node that has no slab structures yet.
81819f0f 2024 */
1cd7daa5
AB
2025static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2026 int node)
81819f0f
CL
2027{
2028 struct page *page;
2029 struct kmem_cache_node *n;
ba84c73c 2030 unsigned long flags;
81819f0f
CL
2031
2032 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2033
a2f92ee7 2034 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2035
2036 BUG_ON(!page);
a2f92ee7
CL
2037 if (page_to_nid(page) != node) {
2038 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2039 "node %d\n", node);
2040 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2041 "in order to be able to continue\n");
2042 }
2043
81819f0f
CL
2044 n = page->freelist;
2045 BUG_ON(!n);
2046 page->freelist = get_freepointer(kmalloc_caches, n);
2047 page->inuse++;
2048 kmalloc_caches->node[node] = n;
8ab1372f 2049#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2050 init_object(kmalloc_caches, n, 1);
2051 init_tracking(kmalloc_caches, n);
8ab1372f 2052#endif
81819f0f
CL
2053 init_kmem_cache_node(n);
2054 atomic_long_inc(&n->nr_slabs);
6446faa2 2055
ba84c73c 2056 /*
2057 * lockdep requires consistent irq usage for each lock
2058 * so even though there cannot be a race this early in
2059 * the boot sequence, we still disable irqs.
2060 */
2061 local_irq_save(flags);
7c2e132c 2062 add_partial(n, page, 0);
ba84c73c 2063 local_irq_restore(flags);
81819f0f
CL
2064 return n;
2065}
2066
2067static void free_kmem_cache_nodes(struct kmem_cache *s)
2068{
2069 int node;
2070
f64dc58c 2071 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2072 struct kmem_cache_node *n = s->node[node];
2073 if (n && n != &s->local_node)
2074 kmem_cache_free(kmalloc_caches, n);
2075 s->node[node] = NULL;
2076 }
2077}
2078
2079static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2080{
2081 int node;
2082 int local_node;
2083
2084 if (slab_state >= UP)
2085 local_node = page_to_nid(virt_to_page(s));
2086 else
2087 local_node = 0;
2088
f64dc58c 2089 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2090 struct kmem_cache_node *n;
2091
2092 if (local_node == node)
2093 n = &s->local_node;
2094 else {
2095 if (slab_state == DOWN) {
2096 n = early_kmem_cache_node_alloc(gfpflags,
2097 node);
2098 continue;
2099 }
2100 n = kmem_cache_alloc_node(kmalloc_caches,
2101 gfpflags, node);
2102
2103 if (!n) {
2104 free_kmem_cache_nodes(s);
2105 return 0;
2106 }
2107
2108 }
2109 s->node[node] = n;
2110 init_kmem_cache_node(n);
2111 }
2112 return 1;
2113}
2114#else
2115static void free_kmem_cache_nodes(struct kmem_cache *s)
2116{
2117}
2118
2119static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2120{
2121 init_kmem_cache_node(&s->local_node);
2122 return 1;
2123}
2124#endif
2125
2126/*
2127 * calculate_sizes() determines the order and the distribution of data within
2128 * a slab object.
2129 */
2130static int calculate_sizes(struct kmem_cache *s)
2131{
2132 unsigned long flags = s->flags;
2133 unsigned long size = s->objsize;
2134 unsigned long align = s->align;
2135
d8b42bf5
CL
2136 /*
2137 * Round up object size to the next word boundary. We can only
2138 * place the free pointer at word boundaries and this determines
2139 * the possible location of the free pointer.
2140 */
2141 size = ALIGN(size, sizeof(void *));
2142
2143#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2144 /*
2145 * Determine if we can poison the object itself. If the user of
2146 * the slab may touch the object after free or before allocation
2147 * then we should never poison the object itself.
2148 */
2149 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2150 !s->ctor)
81819f0f
CL
2151 s->flags |= __OBJECT_POISON;
2152 else
2153 s->flags &= ~__OBJECT_POISON;
2154
81819f0f
CL
2155
2156 /*
672bba3a 2157 * If we are Redzoning then check if there is some space between the
81819f0f 2158 * end of the object and the free pointer. If not then add an
672bba3a 2159 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2160 */
2161 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2162 size += sizeof(void *);
41ecc55b 2163#endif
81819f0f
CL
2164
2165 /*
672bba3a
CL
2166 * With that we have determined the number of bytes in actual use
2167 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2168 */
2169 s->inuse = size;
2170
2171 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2172 s->ctor)) {
81819f0f
CL
2173 /*
2174 * Relocate free pointer after the object if it is not
2175 * permitted to overwrite the first word of the object on
2176 * kmem_cache_free.
2177 *
2178 * This is the case if we do RCU, have a constructor or
2179 * destructor or are poisoning the objects.
2180 */
2181 s->offset = size;
2182 size += sizeof(void *);
2183 }
2184
c12b3c62 2185#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2186 if (flags & SLAB_STORE_USER)
2187 /*
2188 * Need to store information about allocs and frees after
2189 * the object.
2190 */
2191 size += 2 * sizeof(struct track);
2192
be7b3fbc 2193 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2194 /*
2195 * Add some empty padding so that we can catch
2196 * overwrites from earlier objects rather than let
2197 * tracking information or the free pointer be
2198 * corrupted if an user writes before the start
2199 * of the object.
2200 */
2201 size += sizeof(void *);
41ecc55b 2202#endif
672bba3a 2203
81819f0f
CL
2204 /*
2205 * Determine the alignment based on various parameters that the
65c02d4c
CL
2206 * user specified and the dynamic determination of cache line size
2207 * on bootup.
81819f0f
CL
2208 */
2209 align = calculate_alignment(flags, align, s->objsize);
2210
2211 /*
2212 * SLUB stores one object immediately after another beginning from
2213 * offset 0. In order to align the objects we have to simply size
2214 * each object to conform to the alignment.
2215 */
2216 size = ALIGN(size, align);
2217 s->size = size;
2218
71c7a06f
CL
2219 if ((flags & __KMALLOC_CACHE) &&
2220 PAGE_SIZE / size < slub_min_objects) {
2221 /*
2222 * Kmalloc cache that would not have enough objects in
2223 * an order 0 page. Kmalloc slabs can fallback to
2224 * page allocator order 0 allocs so take a reasonably large
2225 * order that will allows us a good number of objects.
2226 */
2227 s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
2228 s->flags |= __PAGE_ALLOC_FALLBACK;
2229 s->allocflags |= __GFP_NOWARN;
2230 } else
2231 s->order = calculate_order(size);
2232
81819f0f
CL
2233 if (s->order < 0)
2234 return 0;
2235
b7a49f0d
CL
2236 s->allocflags = 0;
2237 if (s->order)
2238 s->allocflags |= __GFP_COMP;
2239
2240 if (s->flags & SLAB_CACHE_DMA)
2241 s->allocflags |= SLUB_DMA;
2242
2243 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2244 s->allocflags |= __GFP_RECLAIMABLE;
2245
81819f0f
CL
2246 /*
2247 * Determine the number of objects per slab
2248 */
2249 s->objects = (PAGE_SIZE << s->order) / size;
2250
b3fba8da 2251 return !!s->objects;
81819f0f
CL
2252
2253}
2254
81819f0f
CL
2255static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2256 const char *name, size_t size,
2257 size_t align, unsigned long flags,
4ba9b9d0 2258 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
2259{
2260 memset(s, 0, kmem_size);
2261 s->name = name;
2262 s->ctor = ctor;
81819f0f 2263 s->objsize = size;
81819f0f 2264 s->align = align;
ba0268a8 2265 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f
CL
2266
2267 if (!calculate_sizes(s))
2268 goto error;
2269
2270 s->refcount = 1;
2271#ifdef CONFIG_NUMA
9824601e 2272 s->remote_node_defrag_ratio = 100;
81819f0f 2273#endif
dfb4f096
CL
2274 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2275 goto error;
81819f0f 2276
dfb4f096 2277 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2278 return 1;
4c93c355 2279 free_kmem_cache_nodes(s);
81819f0f
CL
2280error:
2281 if (flags & SLAB_PANIC)
2282 panic("Cannot create slab %s size=%lu realsize=%u "
2283 "order=%u offset=%u flags=%lx\n",
2284 s->name, (unsigned long)size, s->size, s->order,
2285 s->offset, flags);
2286 return 0;
2287}
81819f0f
CL
2288
2289/*
2290 * Check if a given pointer is valid
2291 */
2292int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2293{
06428780 2294 struct page *page;
81819f0f
CL
2295
2296 page = get_object_page(object);
2297
2298 if (!page || s != page->slab)
2299 /* No slab or wrong slab */
2300 return 0;
2301
abcd08a6 2302 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2303 return 0;
2304
2305 /*
2306 * We could also check if the object is on the slabs freelist.
2307 * But this would be too expensive and it seems that the main
6446faa2 2308 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2309 * to a certain slab.
2310 */
2311 return 1;
2312}
2313EXPORT_SYMBOL(kmem_ptr_validate);
2314
2315/*
2316 * Determine the size of a slab object
2317 */
2318unsigned int kmem_cache_size(struct kmem_cache *s)
2319{
2320 return s->objsize;
2321}
2322EXPORT_SYMBOL(kmem_cache_size);
2323
2324const char *kmem_cache_name(struct kmem_cache *s)
2325{
2326 return s->name;
2327}
2328EXPORT_SYMBOL(kmem_cache_name);
2329
2330/*
672bba3a
CL
2331 * Attempt to free all slabs on a node. Return the number of slabs we
2332 * were unable to free.
81819f0f
CL
2333 */
2334static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2335 struct list_head *list)
2336{
2337 int slabs_inuse = 0;
2338 unsigned long flags;
2339 struct page *page, *h;
2340
2341 spin_lock_irqsave(&n->list_lock, flags);
2342 list_for_each_entry_safe(page, h, list, lru)
2343 if (!page->inuse) {
2344 list_del(&page->lru);
2345 discard_slab(s, page);
2346 } else
2347 slabs_inuse++;
2348 spin_unlock_irqrestore(&n->list_lock, flags);
2349 return slabs_inuse;
2350}
2351
2352/*
672bba3a 2353 * Release all resources used by a slab cache.
81819f0f 2354 */
0c710013 2355static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2356{
2357 int node;
2358
2359 flush_all(s);
2360
2361 /* Attempt to free all objects */
4c93c355 2362 free_kmem_cache_cpus(s);
f64dc58c 2363 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2364 struct kmem_cache_node *n = get_node(s, node);
2365
2086d26a 2366 n->nr_partial -= free_list(s, n, &n->partial);
81819f0f
CL
2367 if (atomic_long_read(&n->nr_slabs))
2368 return 1;
2369 }
2370 free_kmem_cache_nodes(s);
2371 return 0;
2372}
2373
2374/*
2375 * Close a cache and release the kmem_cache structure
2376 * (must be used for caches created using kmem_cache_create)
2377 */
2378void kmem_cache_destroy(struct kmem_cache *s)
2379{
2380 down_write(&slub_lock);
2381 s->refcount--;
2382 if (!s->refcount) {
2383 list_del(&s->list);
a0e1d1be 2384 up_write(&slub_lock);
81819f0f
CL
2385 if (kmem_cache_close(s))
2386 WARN_ON(1);
2387 sysfs_slab_remove(s);
a0e1d1be
CL
2388 } else
2389 up_write(&slub_lock);
81819f0f
CL
2390}
2391EXPORT_SYMBOL(kmem_cache_destroy);
2392
2393/********************************************************************
2394 * Kmalloc subsystem
2395 *******************************************************************/
2396
331dc558 2397struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
81819f0f
CL
2398EXPORT_SYMBOL(kmalloc_caches);
2399
2400#ifdef CONFIG_ZONE_DMA
331dc558 2401static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
81819f0f
CL
2402#endif
2403
2404static int __init setup_slub_min_order(char *str)
2405{
06428780 2406 get_option(&str, &slub_min_order);
81819f0f
CL
2407
2408 return 1;
2409}
2410
2411__setup("slub_min_order=", setup_slub_min_order);
2412
2413static int __init setup_slub_max_order(char *str)
2414{
06428780 2415 get_option(&str, &slub_max_order);
81819f0f
CL
2416
2417 return 1;
2418}
2419
2420__setup("slub_max_order=", setup_slub_max_order);
2421
2422static int __init setup_slub_min_objects(char *str)
2423{
06428780 2424 get_option(&str, &slub_min_objects);
81819f0f
CL
2425
2426 return 1;
2427}
2428
2429__setup("slub_min_objects=", setup_slub_min_objects);
2430
2431static int __init setup_slub_nomerge(char *str)
2432{
2433 slub_nomerge = 1;
2434 return 1;
2435}
2436
2437__setup("slub_nomerge", setup_slub_nomerge);
2438
81819f0f
CL
2439static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2440 const char *name, int size, gfp_t gfp_flags)
2441{
2442 unsigned int flags = 0;
2443
2444 if (gfp_flags & SLUB_DMA)
2445 flags = SLAB_CACHE_DMA;
2446
2447 down_write(&slub_lock);
2448 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
71c7a06f 2449 flags | __KMALLOC_CACHE, NULL))
81819f0f
CL
2450 goto panic;
2451
2452 list_add(&s->list, &slab_caches);
2453 up_write(&slub_lock);
2454 if (sysfs_slab_add(s))
2455 goto panic;
2456 return s;
2457
2458panic:
2459 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2460}
2461
2e443fd0 2462#ifdef CONFIG_ZONE_DMA
1ceef402
CL
2463
2464static void sysfs_add_func(struct work_struct *w)
2465{
2466 struct kmem_cache *s;
2467
2468 down_write(&slub_lock);
2469 list_for_each_entry(s, &slab_caches, list) {
2470 if (s->flags & __SYSFS_ADD_DEFERRED) {
2471 s->flags &= ~__SYSFS_ADD_DEFERRED;
2472 sysfs_slab_add(s);
2473 }
2474 }
2475 up_write(&slub_lock);
2476}
2477
2478static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2479
2e443fd0
CL
2480static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2481{
2482 struct kmem_cache *s;
2e443fd0
CL
2483 char *text;
2484 size_t realsize;
2485
2486 s = kmalloc_caches_dma[index];
2487 if (s)
2488 return s;
2489
2490 /* Dynamically create dma cache */
1ceef402
CL
2491 if (flags & __GFP_WAIT)
2492 down_write(&slub_lock);
2493 else {
2494 if (!down_write_trylock(&slub_lock))
2495 goto out;
2496 }
2497
2498 if (kmalloc_caches_dma[index])
2499 goto unlock_out;
2e443fd0 2500
7b55f620 2501 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2502 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2503 (unsigned int)realsize);
1ceef402
CL
2504 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2505
2506 if (!s || !text || !kmem_cache_open(s, flags, text,
2507 realsize, ARCH_KMALLOC_MINALIGN,
2508 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2509 kfree(s);
2510 kfree(text);
2511 goto unlock_out;
dfce8648 2512 }
1ceef402
CL
2513
2514 list_add(&s->list, &slab_caches);
2515 kmalloc_caches_dma[index] = s;
2516
2517 schedule_work(&sysfs_add_work);
2518
2519unlock_out:
dfce8648 2520 up_write(&slub_lock);
1ceef402 2521out:
dfce8648 2522 return kmalloc_caches_dma[index];
2e443fd0
CL
2523}
2524#endif
2525
f1b26339
CL
2526/*
2527 * Conversion table for small slabs sizes / 8 to the index in the
2528 * kmalloc array. This is necessary for slabs < 192 since we have non power
2529 * of two cache sizes there. The size of larger slabs can be determined using
2530 * fls.
2531 */
2532static s8 size_index[24] = {
2533 3, /* 8 */
2534 4, /* 16 */
2535 5, /* 24 */
2536 5, /* 32 */
2537 6, /* 40 */
2538 6, /* 48 */
2539 6, /* 56 */
2540 6, /* 64 */
2541 1, /* 72 */
2542 1, /* 80 */
2543 1, /* 88 */
2544 1, /* 96 */
2545 7, /* 104 */
2546 7, /* 112 */
2547 7, /* 120 */
2548 7, /* 128 */
2549 2, /* 136 */
2550 2, /* 144 */
2551 2, /* 152 */
2552 2, /* 160 */
2553 2, /* 168 */
2554 2, /* 176 */
2555 2, /* 184 */
2556 2 /* 192 */
2557};
2558
81819f0f
CL
2559static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2560{
f1b26339 2561 int index;
81819f0f 2562
f1b26339
CL
2563 if (size <= 192) {
2564 if (!size)
2565 return ZERO_SIZE_PTR;
81819f0f 2566
f1b26339 2567 index = size_index[(size - 1) / 8];
aadb4bc4 2568 } else
f1b26339 2569 index = fls(size - 1);
81819f0f
CL
2570
2571#ifdef CONFIG_ZONE_DMA
f1b26339 2572 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2573 return dma_kmalloc_cache(index, flags);
f1b26339 2574
81819f0f
CL
2575#endif
2576 return &kmalloc_caches[index];
2577}
2578
2579void *__kmalloc(size_t size, gfp_t flags)
2580{
aadb4bc4 2581 struct kmem_cache *s;
81819f0f 2582
331dc558 2583 if (unlikely(size > PAGE_SIZE))
eada35ef 2584 return kmalloc_large(size, flags);
aadb4bc4
CL
2585
2586 s = get_slab(size, flags);
2587
2588 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2589 return s;
2590
ce15fea8 2591 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2592}
2593EXPORT_SYMBOL(__kmalloc);
2594
2595#ifdef CONFIG_NUMA
2596void *__kmalloc_node(size_t size, gfp_t flags, int node)
2597{
aadb4bc4 2598 struct kmem_cache *s;
81819f0f 2599
331dc558 2600 if (unlikely(size > PAGE_SIZE))
eada35ef 2601 return kmalloc_large(size, flags);
aadb4bc4
CL
2602
2603 s = get_slab(size, flags);
2604
2605 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2606 return s;
2607
ce15fea8 2608 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2609}
2610EXPORT_SYMBOL(__kmalloc_node);
2611#endif
2612
2613size_t ksize(const void *object)
2614{
272c1d21 2615 struct page *page;
81819f0f
CL
2616 struct kmem_cache *s;
2617
ef8b4520 2618 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2619 return 0;
2620
294a80a8 2621 page = virt_to_head_page(object);
294a80a8
VN
2622
2623 if (unlikely(!PageSlab(page)))
2624 return PAGE_SIZE << compound_order(page);
2625
81819f0f 2626 s = page->slab;
81819f0f 2627
ae20bfda 2628#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2629 /*
2630 * Debugging requires use of the padding between object
2631 * and whatever may come after it.
2632 */
2633 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2634 return s->objsize;
2635
ae20bfda 2636#endif
81819f0f
CL
2637 /*
2638 * If we have the need to store the freelist pointer
2639 * back there or track user information then we can
2640 * only use the space before that information.
2641 */
2642 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2643 return s->inuse;
81819f0f
CL
2644 /*
2645 * Else we can use all the padding etc for the allocation
2646 */
2647 return s->size;
2648}
2649EXPORT_SYMBOL(ksize);
2650
2651void kfree(const void *x)
2652{
81819f0f 2653 struct page *page;
5bb983b0 2654 void *object = (void *)x;
81819f0f 2655
2408c550 2656 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2657 return;
2658
b49af68f 2659 page = virt_to_head_page(x);
aadb4bc4
CL
2660 if (unlikely(!PageSlab(page))) {
2661 put_page(page);
2662 return;
2663 }
5bb983b0 2664 slab_free(page->slab, page, object, __builtin_return_address(0));
81819f0f
CL
2665}
2666EXPORT_SYMBOL(kfree);
2667
f61396ae
CL
2668static unsigned long count_partial(struct kmem_cache_node *n)
2669{
2670 unsigned long flags;
2671 unsigned long x = 0;
2672 struct page *page;
2673
2674 spin_lock_irqsave(&n->list_lock, flags);
2675 list_for_each_entry(page, &n->partial, lru)
2676 x += page->inuse;
2677 spin_unlock_irqrestore(&n->list_lock, flags);
2678 return x;
2679}
2680
2086d26a 2681/*
672bba3a
CL
2682 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2683 * the remaining slabs by the number of items in use. The slabs with the
2684 * most items in use come first. New allocations will then fill those up
2685 * and thus they can be removed from the partial lists.
2686 *
2687 * The slabs with the least items are placed last. This results in them
2688 * being allocated from last increasing the chance that the last objects
2689 * are freed in them.
2086d26a
CL
2690 */
2691int kmem_cache_shrink(struct kmem_cache *s)
2692{
2693 int node;
2694 int i;
2695 struct kmem_cache_node *n;
2696 struct page *page;
2697 struct page *t;
2698 struct list_head *slabs_by_inuse =
2699 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2700 unsigned long flags;
2701
2702 if (!slabs_by_inuse)
2703 return -ENOMEM;
2704
2705 flush_all(s);
f64dc58c 2706 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2707 n = get_node(s, node);
2708
2709 if (!n->nr_partial)
2710 continue;
2711
2712 for (i = 0; i < s->objects; i++)
2713 INIT_LIST_HEAD(slabs_by_inuse + i);
2714
2715 spin_lock_irqsave(&n->list_lock, flags);
2716
2717 /*
672bba3a 2718 * Build lists indexed by the items in use in each slab.
2086d26a 2719 *
672bba3a
CL
2720 * Note that concurrent frees may occur while we hold the
2721 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2722 */
2723 list_for_each_entry_safe(page, t, &n->partial, lru) {
2724 if (!page->inuse && slab_trylock(page)) {
2725 /*
2726 * Must hold slab lock here because slab_free
2727 * may have freed the last object and be
2728 * waiting to release the slab.
2729 */
2730 list_del(&page->lru);
2731 n->nr_partial--;
2732 slab_unlock(page);
2733 discard_slab(s, page);
2734 } else {
fcda3d89
CL
2735 list_move(&page->lru,
2736 slabs_by_inuse + page->inuse);
2086d26a
CL
2737 }
2738 }
2739
2086d26a 2740 /*
672bba3a
CL
2741 * Rebuild the partial list with the slabs filled up most
2742 * first and the least used slabs at the end.
2086d26a
CL
2743 */
2744 for (i = s->objects - 1; i >= 0; i--)
2745 list_splice(slabs_by_inuse + i, n->partial.prev);
2746
2086d26a
CL
2747 spin_unlock_irqrestore(&n->list_lock, flags);
2748 }
2749
2750 kfree(slabs_by_inuse);
2751 return 0;
2752}
2753EXPORT_SYMBOL(kmem_cache_shrink);
2754
b9049e23
YG
2755#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2756static int slab_mem_going_offline_callback(void *arg)
2757{
2758 struct kmem_cache *s;
2759
2760 down_read(&slub_lock);
2761 list_for_each_entry(s, &slab_caches, list)
2762 kmem_cache_shrink(s);
2763 up_read(&slub_lock);
2764
2765 return 0;
2766}
2767
2768static void slab_mem_offline_callback(void *arg)
2769{
2770 struct kmem_cache_node *n;
2771 struct kmem_cache *s;
2772 struct memory_notify *marg = arg;
2773 int offline_node;
2774
2775 offline_node = marg->status_change_nid;
2776
2777 /*
2778 * If the node still has available memory. we need kmem_cache_node
2779 * for it yet.
2780 */
2781 if (offline_node < 0)
2782 return;
2783
2784 down_read(&slub_lock);
2785 list_for_each_entry(s, &slab_caches, list) {
2786 n = get_node(s, offline_node);
2787 if (n) {
2788 /*
2789 * if n->nr_slabs > 0, slabs still exist on the node
2790 * that is going down. We were unable to free them,
2791 * and offline_pages() function shoudn't call this
2792 * callback. So, we must fail.
2793 */
27bb628a 2794 BUG_ON(atomic_long_read(&n->nr_slabs));
b9049e23
YG
2795
2796 s->node[offline_node] = NULL;
2797 kmem_cache_free(kmalloc_caches, n);
2798 }
2799 }
2800 up_read(&slub_lock);
2801}
2802
2803static int slab_mem_going_online_callback(void *arg)
2804{
2805 struct kmem_cache_node *n;
2806 struct kmem_cache *s;
2807 struct memory_notify *marg = arg;
2808 int nid = marg->status_change_nid;
2809 int ret = 0;
2810
2811 /*
2812 * If the node's memory is already available, then kmem_cache_node is
2813 * already created. Nothing to do.
2814 */
2815 if (nid < 0)
2816 return 0;
2817
2818 /*
2819 * We are bringing a node online. No memory is availabe yet. We must
2820 * allocate a kmem_cache_node structure in order to bring the node
2821 * online.
2822 */
2823 down_read(&slub_lock);
2824 list_for_each_entry(s, &slab_caches, list) {
2825 /*
2826 * XXX: kmem_cache_alloc_node will fallback to other nodes
2827 * since memory is not yet available from the node that
2828 * is brought up.
2829 */
2830 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2831 if (!n) {
2832 ret = -ENOMEM;
2833 goto out;
2834 }
2835 init_kmem_cache_node(n);
2836 s->node[nid] = n;
2837 }
2838out:
2839 up_read(&slub_lock);
2840 return ret;
2841}
2842
2843static int slab_memory_callback(struct notifier_block *self,
2844 unsigned long action, void *arg)
2845{
2846 int ret = 0;
2847
2848 switch (action) {
2849 case MEM_GOING_ONLINE:
2850 ret = slab_mem_going_online_callback(arg);
2851 break;
2852 case MEM_GOING_OFFLINE:
2853 ret = slab_mem_going_offline_callback(arg);
2854 break;
2855 case MEM_OFFLINE:
2856 case MEM_CANCEL_ONLINE:
2857 slab_mem_offline_callback(arg);
2858 break;
2859 case MEM_ONLINE:
2860 case MEM_CANCEL_OFFLINE:
2861 break;
2862 }
2863
2864 ret = notifier_from_errno(ret);
2865 return ret;
2866}
2867
2868#endif /* CONFIG_MEMORY_HOTPLUG */
2869
81819f0f
CL
2870/********************************************************************
2871 * Basic setup of slabs
2872 *******************************************************************/
2873
2874void __init kmem_cache_init(void)
2875{
2876 int i;
4b356be0 2877 int caches = 0;
81819f0f 2878
4c93c355
CL
2879 init_alloc_cpu();
2880
81819f0f
CL
2881#ifdef CONFIG_NUMA
2882 /*
2883 * Must first have the slab cache available for the allocations of the
672bba3a 2884 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2885 * kmem_cache_open for slab_state == DOWN.
2886 */
2887 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2888 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2889 kmalloc_caches[0].refcount = -1;
4b356be0 2890 caches++;
b9049e23
YG
2891
2892 hotplug_memory_notifier(slab_memory_callback, 1);
81819f0f
CL
2893#endif
2894
2895 /* Able to allocate the per node structures */
2896 slab_state = PARTIAL;
2897
2898 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2899 if (KMALLOC_MIN_SIZE <= 64) {
2900 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2901 "kmalloc-96", 96, GFP_KERNEL);
4b356be0
CL
2902 caches++;
2903 }
2904 if (KMALLOC_MIN_SIZE <= 128) {
2905 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2906 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
2907 caches++;
2908 }
81819f0f 2909
331dc558 2910 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
81819f0f
CL
2911 create_kmalloc_cache(&kmalloc_caches[i],
2912 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
2913 caches++;
2914 }
81819f0f 2915
f1b26339
CL
2916
2917 /*
2918 * Patch up the size_index table if we have strange large alignment
2919 * requirements for the kmalloc array. This is only the case for
6446faa2 2920 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
2921 *
2922 * Largest permitted alignment is 256 bytes due to the way we
2923 * handle the index determination for the smaller caches.
2924 *
2925 * Make sure that nothing crazy happens if someone starts tinkering
2926 * around with ARCH_KMALLOC_MINALIGN
2927 */
2928 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2929 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2930
12ad6843 2931 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
2932 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2933
81819f0f
CL
2934 slab_state = UP;
2935
2936 /* Provide the correct kmalloc names now that the caches are up */
331dc558 2937 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
81819f0f
CL
2938 kmalloc_caches[i]. name =
2939 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2940
2941#ifdef CONFIG_SMP
2942 register_cpu_notifier(&slab_notifier);
4c93c355
CL
2943 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2944 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2945#else
2946 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
2947#endif
2948
3adbefee
IM
2949 printk(KERN_INFO
2950 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
2951 " CPUs=%d, Nodes=%d\n",
2952 caches, cache_line_size(),
81819f0f
CL
2953 slub_min_order, slub_max_order, slub_min_objects,
2954 nr_cpu_ids, nr_node_ids);
2955}
2956
2957/*
2958 * Find a mergeable slab cache
2959 */
2960static int slab_unmergeable(struct kmem_cache *s)
2961{
2962 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2963 return 1;
2964
331dc558 2965 if ((s->flags & __PAGE_ALLOC_FALLBACK))
71c7a06f
CL
2966 return 1;
2967
c59def9f 2968 if (s->ctor)
81819f0f
CL
2969 return 1;
2970
8ffa6875
CL
2971 /*
2972 * We may have set a slab to be unmergeable during bootstrap.
2973 */
2974 if (s->refcount < 0)
2975 return 1;
2976
81819f0f
CL
2977 return 0;
2978}
2979
2980static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 2981 size_t align, unsigned long flags, const char *name,
4ba9b9d0 2982 void (*ctor)(struct kmem_cache *, void *))
81819f0f 2983{
5b95a4ac 2984 struct kmem_cache *s;
81819f0f
CL
2985
2986 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2987 return NULL;
2988
c59def9f 2989 if (ctor)
81819f0f
CL
2990 return NULL;
2991
2992 size = ALIGN(size, sizeof(void *));
2993 align = calculate_alignment(flags, align, size);
2994 size = ALIGN(size, align);
ba0268a8 2995 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 2996
5b95a4ac 2997 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
2998 if (slab_unmergeable(s))
2999 continue;
3000
3001 if (size > s->size)
3002 continue;
3003
ba0268a8 3004 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3005 continue;
3006 /*
3007 * Check if alignment is compatible.
3008 * Courtesy of Adrian Drzewiecki
3009 */
06428780 3010 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3011 continue;
3012
3013 if (s->size - size >= sizeof(void *))
3014 continue;
3015
3016 return s;
3017 }
3018 return NULL;
3019}
3020
3021struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3022 size_t align, unsigned long flags,
4ba9b9d0 3023 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
3024{
3025 struct kmem_cache *s;
3026
3027 down_write(&slub_lock);
ba0268a8 3028 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3029 if (s) {
42a9fdbb
CL
3030 int cpu;
3031
81819f0f
CL
3032 s->refcount++;
3033 /*
3034 * Adjust the object sizes so that we clear
3035 * the complete object on kzalloc.
3036 */
3037 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3038
3039 /*
3040 * And then we need to update the object size in the
3041 * per cpu structures
3042 */
3043 for_each_online_cpu(cpu)
3044 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3045
81819f0f 3046 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3047 up_write(&slub_lock);
6446faa2 3048
81819f0f
CL
3049 if (sysfs_slab_alias(s, name))
3050 goto err;
a0e1d1be
CL
3051 return s;
3052 }
6446faa2 3053
a0e1d1be
CL
3054 s = kmalloc(kmem_size, GFP_KERNEL);
3055 if (s) {
3056 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3057 size, align, flags, ctor)) {
81819f0f 3058 list_add(&s->list, &slab_caches);
a0e1d1be
CL
3059 up_write(&slub_lock);
3060 if (sysfs_slab_add(s))
3061 goto err;
3062 return s;
3063 }
3064 kfree(s);
81819f0f
CL
3065 }
3066 up_write(&slub_lock);
81819f0f
CL
3067
3068err:
81819f0f
CL
3069 if (flags & SLAB_PANIC)
3070 panic("Cannot create slabcache %s\n", name);
3071 else
3072 s = NULL;
3073 return s;
3074}
3075EXPORT_SYMBOL(kmem_cache_create);
3076
81819f0f 3077#ifdef CONFIG_SMP
81819f0f 3078/*
672bba3a
CL
3079 * Use the cpu notifier to insure that the cpu slabs are flushed when
3080 * necessary.
81819f0f
CL
3081 */
3082static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3083 unsigned long action, void *hcpu)
3084{
3085 long cpu = (long)hcpu;
5b95a4ac
CL
3086 struct kmem_cache *s;
3087 unsigned long flags;
81819f0f
CL
3088
3089 switch (action) {
4c93c355
CL
3090 case CPU_UP_PREPARE:
3091 case CPU_UP_PREPARE_FROZEN:
3092 init_alloc_cpu_cpu(cpu);
3093 down_read(&slub_lock);
3094 list_for_each_entry(s, &slab_caches, list)
3095 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3096 GFP_KERNEL);
3097 up_read(&slub_lock);
3098 break;
3099
81819f0f 3100 case CPU_UP_CANCELED:
8bb78442 3101 case CPU_UP_CANCELED_FROZEN:
81819f0f 3102 case CPU_DEAD:
8bb78442 3103 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3104 down_read(&slub_lock);
3105 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3106 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3107
5b95a4ac
CL
3108 local_irq_save(flags);
3109 __flush_cpu_slab(s, cpu);
3110 local_irq_restore(flags);
4c93c355
CL
3111 free_kmem_cache_cpu(c, cpu);
3112 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3113 }
3114 up_read(&slub_lock);
81819f0f
CL
3115 break;
3116 default:
3117 break;
3118 }
3119 return NOTIFY_OK;
3120}
3121
06428780 3122static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3123 .notifier_call = slab_cpuup_callback
06428780 3124};
81819f0f
CL
3125
3126#endif
3127
81819f0f
CL
3128void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3129{
aadb4bc4
CL
3130 struct kmem_cache *s;
3131
331dc558 3132 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3133 return kmalloc_large(size, gfpflags);
3134
aadb4bc4 3135 s = get_slab(size, gfpflags);
81819f0f 3136
2408c550 3137 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3138 return s;
81819f0f 3139
ce15fea8 3140 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
3141}
3142
3143void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3144 int node, void *caller)
3145{
aadb4bc4
CL
3146 struct kmem_cache *s;
3147
331dc558 3148 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3149 return kmalloc_large(size, gfpflags);
3150
aadb4bc4 3151 s = get_slab(size, gfpflags);
81819f0f 3152
2408c550 3153 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3154 return s;
81819f0f 3155
ce15fea8 3156 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
3157}
3158
41ecc55b 3159#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
434e245d
CL
3160static int validate_slab(struct kmem_cache *s, struct page *page,
3161 unsigned long *map)
53e15af0
CL
3162{
3163 void *p;
a973e9dd 3164 void *addr = page_address(page);
53e15af0
CL
3165
3166 if (!check_slab(s, page) ||
3167 !on_freelist(s, page, NULL))
3168 return 0;
3169
3170 /* Now we know that a valid freelist exists */
3171 bitmap_zero(map, s->objects);
3172
7656c72b
CL
3173 for_each_free_object(p, s, page->freelist) {
3174 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3175 if (!check_object(s, page, p, 0))
3176 return 0;
3177 }
3178
7656c72b
CL
3179 for_each_object(p, s, addr)
3180 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3181 if (!check_object(s, page, p, 1))
3182 return 0;
3183 return 1;
3184}
3185
434e245d
CL
3186static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3187 unsigned long *map)
53e15af0
CL
3188{
3189 if (slab_trylock(page)) {
434e245d 3190 validate_slab(s, page, map);
53e15af0
CL
3191 slab_unlock(page);
3192 } else
3193 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3194 s->name, page);
3195
3196 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
3197 if (!SlabDebug(page))
3198 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
3199 "on slab 0x%p\n", s->name, page);
3200 } else {
35e5d7ee
CL
3201 if (SlabDebug(page))
3202 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
3203 "slab 0x%p\n", s->name, page);
3204 }
3205}
3206
434e245d
CL
3207static int validate_slab_node(struct kmem_cache *s,
3208 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3209{
3210 unsigned long count = 0;
3211 struct page *page;
3212 unsigned long flags;
3213
3214 spin_lock_irqsave(&n->list_lock, flags);
3215
3216 list_for_each_entry(page, &n->partial, lru) {
434e245d 3217 validate_slab_slab(s, page, map);
53e15af0
CL
3218 count++;
3219 }
3220 if (count != n->nr_partial)
3221 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3222 "counter=%ld\n", s->name, count, n->nr_partial);
3223
3224 if (!(s->flags & SLAB_STORE_USER))
3225 goto out;
3226
3227 list_for_each_entry(page, &n->full, lru) {
434e245d 3228 validate_slab_slab(s, page, map);
53e15af0
CL
3229 count++;
3230 }
3231 if (count != atomic_long_read(&n->nr_slabs))
3232 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3233 "counter=%ld\n", s->name, count,
3234 atomic_long_read(&n->nr_slabs));
3235
3236out:
3237 spin_unlock_irqrestore(&n->list_lock, flags);
3238 return count;
3239}
3240
434e245d 3241static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3242{
3243 int node;
3244 unsigned long count = 0;
434e245d
CL
3245 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3246 sizeof(unsigned long), GFP_KERNEL);
3247
3248 if (!map)
3249 return -ENOMEM;
53e15af0
CL
3250
3251 flush_all(s);
f64dc58c 3252 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3253 struct kmem_cache_node *n = get_node(s, node);
3254
434e245d 3255 count += validate_slab_node(s, n, map);
53e15af0 3256 }
434e245d 3257 kfree(map);
53e15af0
CL
3258 return count;
3259}
3260
b3459709
CL
3261#ifdef SLUB_RESILIENCY_TEST
3262static void resiliency_test(void)
3263{
3264 u8 *p;
3265
3266 printk(KERN_ERR "SLUB resiliency testing\n");
3267 printk(KERN_ERR "-----------------------\n");
3268 printk(KERN_ERR "A. Corruption after allocation\n");
3269
3270 p = kzalloc(16, GFP_KERNEL);
3271 p[16] = 0x12;
3272 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3273 " 0x12->0x%p\n\n", p + 16);
3274
3275 validate_slab_cache(kmalloc_caches + 4);
3276
3277 /* Hmmm... The next two are dangerous */
3278 p = kzalloc(32, GFP_KERNEL);
3279 p[32 + sizeof(void *)] = 0x34;
3280 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3281 " 0x34 -> -0x%p\n", p);
3282 printk(KERN_ERR
3283 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3284
3285 validate_slab_cache(kmalloc_caches + 5);
3286 p = kzalloc(64, GFP_KERNEL);
3287 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3288 *p = 0x56;
3289 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3290 p);
3adbefee
IM
3291 printk(KERN_ERR
3292 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3293 validate_slab_cache(kmalloc_caches + 6);
3294
3295 printk(KERN_ERR "\nB. Corruption after free\n");
3296 p = kzalloc(128, GFP_KERNEL);
3297 kfree(p);
3298 *p = 0x78;
3299 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3300 validate_slab_cache(kmalloc_caches + 7);
3301
3302 p = kzalloc(256, GFP_KERNEL);
3303 kfree(p);
3304 p[50] = 0x9a;
3adbefee
IM
3305 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3306 p);
b3459709
CL
3307 validate_slab_cache(kmalloc_caches + 8);
3308
3309 p = kzalloc(512, GFP_KERNEL);
3310 kfree(p);
3311 p[512] = 0xab;
3312 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3313 validate_slab_cache(kmalloc_caches + 9);
3314}
3315#else
3316static void resiliency_test(void) {};
3317#endif
3318
88a420e4 3319/*
672bba3a 3320 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3321 * and freed.
3322 */
3323
3324struct location {
3325 unsigned long count;
3326 void *addr;
45edfa58
CL
3327 long long sum_time;
3328 long min_time;
3329 long max_time;
3330 long min_pid;
3331 long max_pid;
3332 cpumask_t cpus;
3333 nodemask_t nodes;
88a420e4
CL
3334};
3335
3336struct loc_track {
3337 unsigned long max;
3338 unsigned long count;
3339 struct location *loc;
3340};
3341
3342static void free_loc_track(struct loc_track *t)
3343{
3344 if (t->max)
3345 free_pages((unsigned long)t->loc,
3346 get_order(sizeof(struct location) * t->max));
3347}
3348
68dff6a9 3349static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3350{
3351 struct location *l;
3352 int order;
3353
88a420e4
CL
3354 order = get_order(sizeof(struct location) * max);
3355
68dff6a9 3356 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3357 if (!l)
3358 return 0;
3359
3360 if (t->count) {
3361 memcpy(l, t->loc, sizeof(struct location) * t->count);
3362 free_loc_track(t);
3363 }
3364 t->max = max;
3365 t->loc = l;
3366 return 1;
3367}
3368
3369static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3370 const struct track *track)
88a420e4
CL
3371{
3372 long start, end, pos;
3373 struct location *l;
3374 void *caddr;
45edfa58 3375 unsigned long age = jiffies - track->when;
88a420e4
CL
3376
3377 start = -1;
3378 end = t->count;
3379
3380 for ( ; ; ) {
3381 pos = start + (end - start + 1) / 2;
3382
3383 /*
3384 * There is nothing at "end". If we end up there
3385 * we need to add something to before end.
3386 */
3387 if (pos == end)
3388 break;
3389
3390 caddr = t->loc[pos].addr;
45edfa58
CL
3391 if (track->addr == caddr) {
3392
3393 l = &t->loc[pos];
3394 l->count++;
3395 if (track->when) {
3396 l->sum_time += age;
3397 if (age < l->min_time)
3398 l->min_time = age;
3399 if (age > l->max_time)
3400 l->max_time = age;
3401
3402 if (track->pid < l->min_pid)
3403 l->min_pid = track->pid;
3404 if (track->pid > l->max_pid)
3405 l->max_pid = track->pid;
3406
3407 cpu_set(track->cpu, l->cpus);
3408 }
3409 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3410 return 1;
3411 }
3412
45edfa58 3413 if (track->addr < caddr)
88a420e4
CL
3414 end = pos;
3415 else
3416 start = pos;
3417 }
3418
3419 /*
672bba3a 3420 * Not found. Insert new tracking element.
88a420e4 3421 */
68dff6a9 3422 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3423 return 0;
3424
3425 l = t->loc + pos;
3426 if (pos < t->count)
3427 memmove(l + 1, l,
3428 (t->count - pos) * sizeof(struct location));
3429 t->count++;
3430 l->count = 1;
45edfa58
CL
3431 l->addr = track->addr;
3432 l->sum_time = age;
3433 l->min_time = age;
3434 l->max_time = age;
3435 l->min_pid = track->pid;
3436 l->max_pid = track->pid;
3437 cpus_clear(l->cpus);
3438 cpu_set(track->cpu, l->cpus);
3439 nodes_clear(l->nodes);
3440 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3441 return 1;
3442}
3443
3444static void process_slab(struct loc_track *t, struct kmem_cache *s,
3445 struct page *page, enum track_item alloc)
3446{
a973e9dd 3447 void *addr = page_address(page);
7656c72b 3448 DECLARE_BITMAP(map, s->objects);
88a420e4
CL
3449 void *p;
3450
3451 bitmap_zero(map, s->objects);
7656c72b
CL
3452 for_each_free_object(p, s, page->freelist)
3453 set_bit(slab_index(p, s, addr), map);
88a420e4 3454
7656c72b 3455 for_each_object(p, s, addr)
45edfa58
CL
3456 if (!test_bit(slab_index(p, s, addr), map))
3457 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3458}
3459
3460static int list_locations(struct kmem_cache *s, char *buf,
3461 enum track_item alloc)
3462{
e374d483 3463 int len = 0;
88a420e4 3464 unsigned long i;
68dff6a9 3465 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3466 int node;
3467
68dff6a9 3468 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3469 GFP_TEMPORARY))
68dff6a9 3470 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3471
3472 /* Push back cpu slabs */
3473 flush_all(s);
3474
f64dc58c 3475 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3476 struct kmem_cache_node *n = get_node(s, node);
3477 unsigned long flags;
3478 struct page *page;
3479
9e86943b 3480 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3481 continue;
3482
3483 spin_lock_irqsave(&n->list_lock, flags);
3484 list_for_each_entry(page, &n->partial, lru)
3485 process_slab(&t, s, page, alloc);
3486 list_for_each_entry(page, &n->full, lru)
3487 process_slab(&t, s, page, alloc);
3488 spin_unlock_irqrestore(&n->list_lock, flags);
3489 }
3490
3491 for (i = 0; i < t.count; i++) {
45edfa58 3492 struct location *l = &t.loc[i];
88a420e4 3493
e374d483 3494 if (len > PAGE_SIZE - 100)
88a420e4 3495 break;
e374d483 3496 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3497
3498 if (l->addr)
e374d483 3499 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3500 else
e374d483 3501 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3502
3503 if (l->sum_time != l->min_time) {
3504 unsigned long remainder;
3505
e374d483 3506 len += sprintf(buf + len, " age=%ld/%ld/%ld",
45edfa58
CL
3507 l->min_time,
3508 div_long_long_rem(l->sum_time, l->count, &remainder),
3509 l->max_time);
3510 } else
e374d483 3511 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3512 l->min_time);
3513
3514 if (l->min_pid != l->max_pid)
e374d483 3515 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3516 l->min_pid, l->max_pid);
3517 else
e374d483 3518 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3519 l->min_pid);
3520
84966343 3521 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
e374d483
HH
3522 len < PAGE_SIZE - 60) {
3523 len += sprintf(buf + len, " cpus=");
3524 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3525 l->cpus);
3526 }
3527
84966343 3528 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3529 len < PAGE_SIZE - 60) {
3530 len += sprintf(buf + len, " nodes=");
3531 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3532 l->nodes);
3533 }
3534
e374d483 3535 len += sprintf(buf + len, "\n");
88a420e4
CL
3536 }
3537
3538 free_loc_track(&t);
3539 if (!t.count)
e374d483
HH
3540 len += sprintf(buf, "No data\n");
3541 return len;
88a420e4
CL
3542}
3543
81819f0f
CL
3544enum slab_stat_type {
3545 SL_FULL,
3546 SL_PARTIAL,
3547 SL_CPU,
3548 SL_OBJECTS
3549};
3550
3551#define SO_FULL (1 << SL_FULL)
3552#define SO_PARTIAL (1 << SL_PARTIAL)
3553#define SO_CPU (1 << SL_CPU)
3554#define SO_OBJECTS (1 << SL_OBJECTS)
3555
d9acf4b7 3556static unsigned long show_slab_objects(struct kmem_cache *s,
81819f0f
CL
3557 char *buf, unsigned long flags)
3558{
3559 unsigned long total = 0;
3560 int cpu;
3561 int node;
3562 int x;
3563 unsigned long *nodes;
3564 unsigned long *per_cpu;
3565
3566 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3567 per_cpu = nodes + nr_node_ids;
3568
3569 for_each_possible_cpu(cpu) {
dfb4f096
CL
3570 struct page *page;
3571 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 3572
dfb4f096
CL
3573 if (!c)
3574 continue;
3575
3576 page = c->page;
ee3c72a1
CL
3577 node = c->node;
3578 if (node < 0)
3579 continue;
81819f0f 3580 if (page) {
81819f0f 3581 if (flags & SO_CPU) {
81819f0f
CL
3582 if (flags & SO_OBJECTS)
3583 x = page->inuse;
3584 else
3585 x = 1;
3586 total += x;
ee3c72a1 3587 nodes[node] += x;
81819f0f 3588 }
ee3c72a1 3589 per_cpu[node]++;
81819f0f
CL
3590 }
3591 }
3592
f64dc58c 3593 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3594 struct kmem_cache_node *n = get_node(s, node);
3595
3596 if (flags & SO_PARTIAL) {
3597 if (flags & SO_OBJECTS)
3598 x = count_partial(n);
3599 else
3600 x = n->nr_partial;
3601 total += x;
3602 nodes[node] += x;
3603 }
3604
3605 if (flags & SO_FULL) {
9e86943b 3606 int full_slabs = atomic_long_read(&n->nr_slabs)
81819f0f
CL
3607 - per_cpu[node]
3608 - n->nr_partial;
3609
3610 if (flags & SO_OBJECTS)
3611 x = full_slabs * s->objects;
3612 else
3613 x = full_slabs;
3614 total += x;
3615 nodes[node] += x;
3616 }
3617 }
3618
3619 x = sprintf(buf, "%lu", total);
3620#ifdef CONFIG_NUMA
f64dc58c 3621 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3622 if (nodes[node])
3623 x += sprintf(buf + x, " N%d=%lu",
3624 node, nodes[node]);
3625#endif
3626 kfree(nodes);
3627 return x + sprintf(buf + x, "\n");
3628}
3629
3630static int any_slab_objects(struct kmem_cache *s)
3631{
3632 int node;
3633 int cpu;
3634
dfb4f096
CL
3635 for_each_possible_cpu(cpu) {
3636 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3637
3638 if (c && c->page)
81819f0f 3639 return 1;
dfb4f096 3640 }
81819f0f 3641
dfb4f096 3642 for_each_online_node(node) {
81819f0f
CL
3643 struct kmem_cache_node *n = get_node(s, node);
3644
dfb4f096
CL
3645 if (!n)
3646 continue;
3647
9e86943b 3648 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
81819f0f
CL
3649 return 1;
3650 }
3651 return 0;
3652}
3653
3654#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3655#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3656
3657struct slab_attribute {
3658 struct attribute attr;
3659 ssize_t (*show)(struct kmem_cache *s, char *buf);
3660 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3661};
3662
3663#define SLAB_ATTR_RO(_name) \
3664 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3665
3666#define SLAB_ATTR(_name) \
3667 static struct slab_attribute _name##_attr = \
3668 __ATTR(_name, 0644, _name##_show, _name##_store)
3669
81819f0f
CL
3670static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3671{
3672 return sprintf(buf, "%d\n", s->size);
3673}
3674SLAB_ATTR_RO(slab_size);
3675
3676static ssize_t align_show(struct kmem_cache *s, char *buf)
3677{
3678 return sprintf(buf, "%d\n", s->align);
3679}
3680SLAB_ATTR_RO(align);
3681
3682static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3683{
3684 return sprintf(buf, "%d\n", s->objsize);
3685}
3686SLAB_ATTR_RO(object_size);
3687
3688static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3689{
3690 return sprintf(buf, "%d\n", s->objects);
3691}
3692SLAB_ATTR_RO(objs_per_slab);
3693
3694static ssize_t order_show(struct kmem_cache *s, char *buf)
3695{
3696 return sprintf(buf, "%d\n", s->order);
3697}
3698SLAB_ATTR_RO(order);
3699
3700static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3701{
3702 if (s->ctor) {
3703 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3704
3705 return n + sprintf(buf + n, "\n");
3706 }
3707 return 0;
3708}
3709SLAB_ATTR_RO(ctor);
3710
81819f0f
CL
3711static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3712{
3713 return sprintf(buf, "%d\n", s->refcount - 1);
3714}
3715SLAB_ATTR_RO(aliases);
3716
3717static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3718{
d9acf4b7 3719 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
81819f0f
CL
3720}
3721SLAB_ATTR_RO(slabs);
3722
3723static ssize_t partial_show(struct kmem_cache *s, char *buf)
3724{
d9acf4b7 3725 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3726}
3727SLAB_ATTR_RO(partial);
3728
3729static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3730{
d9acf4b7 3731 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3732}
3733SLAB_ATTR_RO(cpu_slabs);
3734
3735static ssize_t objects_show(struct kmem_cache *s, char *buf)
3736{
d9acf4b7 3737 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
81819f0f
CL
3738}
3739SLAB_ATTR_RO(objects);
3740
3741static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3742{
3743 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3744}
3745
3746static ssize_t sanity_checks_store(struct kmem_cache *s,
3747 const char *buf, size_t length)
3748{
3749 s->flags &= ~SLAB_DEBUG_FREE;
3750 if (buf[0] == '1')
3751 s->flags |= SLAB_DEBUG_FREE;
3752 return length;
3753}
3754SLAB_ATTR(sanity_checks);
3755
3756static ssize_t trace_show(struct kmem_cache *s, char *buf)
3757{
3758 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3759}
3760
3761static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3762 size_t length)
3763{
3764 s->flags &= ~SLAB_TRACE;
3765 if (buf[0] == '1')
3766 s->flags |= SLAB_TRACE;
3767 return length;
3768}
3769SLAB_ATTR(trace);
3770
3771static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3772{
3773 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3774}
3775
3776static ssize_t reclaim_account_store(struct kmem_cache *s,
3777 const char *buf, size_t length)
3778{
3779 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3780 if (buf[0] == '1')
3781 s->flags |= SLAB_RECLAIM_ACCOUNT;
3782 return length;
3783}
3784SLAB_ATTR(reclaim_account);
3785
3786static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3787{
5af60839 3788 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3789}
3790SLAB_ATTR_RO(hwcache_align);
3791
3792#ifdef CONFIG_ZONE_DMA
3793static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3794{
3795 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3796}
3797SLAB_ATTR_RO(cache_dma);
3798#endif
3799
3800static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3801{
3802 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3803}
3804SLAB_ATTR_RO(destroy_by_rcu);
3805
3806static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3807{
3808 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3809}
3810
3811static ssize_t red_zone_store(struct kmem_cache *s,
3812 const char *buf, size_t length)
3813{
3814 if (any_slab_objects(s))
3815 return -EBUSY;
3816
3817 s->flags &= ~SLAB_RED_ZONE;
3818 if (buf[0] == '1')
3819 s->flags |= SLAB_RED_ZONE;
3820 calculate_sizes(s);
3821 return length;
3822}
3823SLAB_ATTR(red_zone);
3824
3825static ssize_t poison_show(struct kmem_cache *s, char *buf)
3826{
3827 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3828}
3829
3830static ssize_t poison_store(struct kmem_cache *s,
3831 const char *buf, size_t length)
3832{
3833 if (any_slab_objects(s))
3834 return -EBUSY;
3835
3836 s->flags &= ~SLAB_POISON;
3837 if (buf[0] == '1')
3838 s->flags |= SLAB_POISON;
3839 calculate_sizes(s);
3840 return length;
3841}
3842SLAB_ATTR(poison);
3843
3844static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3845{
3846 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3847}
3848
3849static ssize_t store_user_store(struct kmem_cache *s,
3850 const char *buf, size_t length)
3851{
3852 if (any_slab_objects(s))
3853 return -EBUSY;
3854
3855 s->flags &= ~SLAB_STORE_USER;
3856 if (buf[0] == '1')
3857 s->flags |= SLAB_STORE_USER;
3858 calculate_sizes(s);
3859 return length;
3860}
3861SLAB_ATTR(store_user);
3862
53e15af0
CL
3863static ssize_t validate_show(struct kmem_cache *s, char *buf)
3864{
3865 return 0;
3866}
3867
3868static ssize_t validate_store(struct kmem_cache *s,
3869 const char *buf, size_t length)
3870{
434e245d
CL
3871 int ret = -EINVAL;
3872
3873 if (buf[0] == '1') {
3874 ret = validate_slab_cache(s);
3875 if (ret >= 0)
3876 ret = length;
3877 }
3878 return ret;
53e15af0
CL
3879}
3880SLAB_ATTR(validate);
3881
2086d26a
CL
3882static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3883{
3884 return 0;
3885}
3886
3887static ssize_t shrink_store(struct kmem_cache *s,
3888 const char *buf, size_t length)
3889{
3890 if (buf[0] == '1') {
3891 int rc = kmem_cache_shrink(s);
3892
3893 if (rc)
3894 return rc;
3895 } else
3896 return -EINVAL;
3897 return length;
3898}
3899SLAB_ATTR(shrink);
3900
88a420e4
CL
3901static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3902{
3903 if (!(s->flags & SLAB_STORE_USER))
3904 return -ENOSYS;
3905 return list_locations(s, buf, TRACK_ALLOC);
3906}
3907SLAB_ATTR_RO(alloc_calls);
3908
3909static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3910{
3911 if (!(s->flags & SLAB_STORE_USER))
3912 return -ENOSYS;
3913 return list_locations(s, buf, TRACK_FREE);
3914}
3915SLAB_ATTR_RO(free_calls);
3916
81819f0f 3917#ifdef CONFIG_NUMA
9824601e 3918static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 3919{
9824601e 3920 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
3921}
3922
9824601e 3923static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
3924 const char *buf, size_t length)
3925{
3926 int n = simple_strtoul(buf, NULL, 10);
3927
3928 if (n < 100)
9824601e 3929 s->remote_node_defrag_ratio = n * 10;
81819f0f
CL
3930 return length;
3931}
9824601e 3932SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
3933#endif
3934
8ff12cfc 3935#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
3936static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
3937{
3938 unsigned long sum = 0;
3939 int cpu;
3940 int len;
3941 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
3942
3943 if (!data)
3944 return -ENOMEM;
3945
3946 for_each_online_cpu(cpu) {
3947 unsigned x = get_cpu_slab(s, cpu)->stat[si];
3948
3949 data[cpu] = x;
3950 sum += x;
3951 }
3952
3953 len = sprintf(buf, "%lu", sum);
3954
3955 for_each_online_cpu(cpu) {
3956 if (data[cpu] && len < PAGE_SIZE - 20)
3957 len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
3958 }
3959 kfree(data);
3960 return len + sprintf(buf + len, "\n");
3961}
3962
3963#define STAT_ATTR(si, text) \
3964static ssize_t text##_show(struct kmem_cache *s, char *buf) \
3965{ \
3966 return show_stat(s, buf, si); \
3967} \
3968SLAB_ATTR_RO(text); \
3969
3970STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
3971STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
3972STAT_ATTR(FREE_FASTPATH, free_fastpath);
3973STAT_ATTR(FREE_SLOWPATH, free_slowpath);
3974STAT_ATTR(FREE_FROZEN, free_frozen);
3975STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
3976STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
3977STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
3978STAT_ATTR(ALLOC_SLAB, alloc_slab);
3979STAT_ATTR(ALLOC_REFILL, alloc_refill);
3980STAT_ATTR(FREE_SLAB, free_slab);
3981STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
3982STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
3983STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
3984STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
3985STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
3986STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
3987
3988#endif
3989
06428780 3990static struct attribute *slab_attrs[] = {
81819f0f
CL
3991 &slab_size_attr.attr,
3992 &object_size_attr.attr,
3993 &objs_per_slab_attr.attr,
3994 &order_attr.attr,
3995 &objects_attr.attr,
3996 &slabs_attr.attr,
3997 &partial_attr.attr,
3998 &cpu_slabs_attr.attr,
3999 &ctor_attr.attr,
81819f0f
CL
4000 &aliases_attr.attr,
4001 &align_attr.attr,
4002 &sanity_checks_attr.attr,
4003 &trace_attr.attr,
4004 &hwcache_align_attr.attr,
4005 &reclaim_account_attr.attr,
4006 &destroy_by_rcu_attr.attr,
4007 &red_zone_attr.attr,
4008 &poison_attr.attr,
4009 &store_user_attr.attr,
53e15af0 4010 &validate_attr.attr,
2086d26a 4011 &shrink_attr.attr,
88a420e4
CL
4012 &alloc_calls_attr.attr,
4013 &free_calls_attr.attr,
81819f0f
CL
4014#ifdef CONFIG_ZONE_DMA
4015 &cache_dma_attr.attr,
4016#endif
4017#ifdef CONFIG_NUMA
9824601e 4018 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4019#endif
4020#ifdef CONFIG_SLUB_STATS
4021 &alloc_fastpath_attr.attr,
4022 &alloc_slowpath_attr.attr,
4023 &free_fastpath_attr.attr,
4024 &free_slowpath_attr.attr,
4025 &free_frozen_attr.attr,
4026 &free_add_partial_attr.attr,
4027 &free_remove_partial_attr.attr,
4028 &alloc_from_partial_attr.attr,
4029 &alloc_slab_attr.attr,
4030 &alloc_refill_attr.attr,
4031 &free_slab_attr.attr,
4032 &cpuslab_flush_attr.attr,
4033 &deactivate_full_attr.attr,
4034 &deactivate_empty_attr.attr,
4035 &deactivate_to_head_attr.attr,
4036 &deactivate_to_tail_attr.attr,
4037 &deactivate_remote_frees_attr.attr,
81819f0f
CL
4038#endif
4039 NULL
4040};
4041
4042static struct attribute_group slab_attr_group = {
4043 .attrs = slab_attrs,
4044};
4045
4046static ssize_t slab_attr_show(struct kobject *kobj,
4047 struct attribute *attr,
4048 char *buf)
4049{
4050 struct slab_attribute *attribute;
4051 struct kmem_cache *s;
4052 int err;
4053
4054 attribute = to_slab_attr(attr);
4055 s = to_slab(kobj);
4056
4057 if (!attribute->show)
4058 return -EIO;
4059
4060 err = attribute->show(s, buf);
4061
4062 return err;
4063}
4064
4065static ssize_t slab_attr_store(struct kobject *kobj,
4066 struct attribute *attr,
4067 const char *buf, size_t len)
4068{
4069 struct slab_attribute *attribute;
4070 struct kmem_cache *s;
4071 int err;
4072
4073 attribute = to_slab_attr(attr);
4074 s = to_slab(kobj);
4075
4076 if (!attribute->store)
4077 return -EIO;
4078
4079 err = attribute->store(s, buf, len);
4080
4081 return err;
4082}
4083
151c602f
CL
4084static void kmem_cache_release(struct kobject *kobj)
4085{
4086 struct kmem_cache *s = to_slab(kobj);
4087
4088 kfree(s);
4089}
4090
81819f0f
CL
4091static struct sysfs_ops slab_sysfs_ops = {
4092 .show = slab_attr_show,
4093 .store = slab_attr_store,
4094};
4095
4096static struct kobj_type slab_ktype = {
4097 .sysfs_ops = &slab_sysfs_ops,
151c602f 4098 .release = kmem_cache_release
81819f0f
CL
4099};
4100
4101static int uevent_filter(struct kset *kset, struct kobject *kobj)
4102{
4103 struct kobj_type *ktype = get_ktype(kobj);
4104
4105 if (ktype == &slab_ktype)
4106 return 1;
4107 return 0;
4108}
4109
4110static struct kset_uevent_ops slab_uevent_ops = {
4111 .filter = uevent_filter,
4112};
4113
27c3a314 4114static struct kset *slab_kset;
81819f0f
CL
4115
4116#define ID_STR_LENGTH 64
4117
4118/* Create a unique string id for a slab cache:
6446faa2
CL
4119 *
4120 * Format :[flags-]size
81819f0f
CL
4121 */
4122static char *create_unique_id(struct kmem_cache *s)
4123{
4124 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4125 char *p = name;
4126
4127 BUG_ON(!name);
4128
4129 *p++ = ':';
4130 /*
4131 * First flags affecting slabcache operations. We will only
4132 * get here for aliasable slabs so we do not need to support
4133 * too many flags. The flags here must cover all flags that
4134 * are matched during merging to guarantee that the id is
4135 * unique.
4136 */
4137 if (s->flags & SLAB_CACHE_DMA)
4138 *p++ = 'd';
4139 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4140 *p++ = 'a';
4141 if (s->flags & SLAB_DEBUG_FREE)
4142 *p++ = 'F';
4143 if (p != name + 1)
4144 *p++ = '-';
4145 p += sprintf(p, "%07d", s->size);
4146 BUG_ON(p > name + ID_STR_LENGTH - 1);
4147 return name;
4148}
4149
4150static int sysfs_slab_add(struct kmem_cache *s)
4151{
4152 int err;
4153 const char *name;
4154 int unmergeable;
4155
4156 if (slab_state < SYSFS)
4157 /* Defer until later */
4158 return 0;
4159
4160 unmergeable = slab_unmergeable(s);
4161 if (unmergeable) {
4162 /*
4163 * Slabcache can never be merged so we can use the name proper.
4164 * This is typically the case for debug situations. In that
4165 * case we can catch duplicate names easily.
4166 */
27c3a314 4167 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4168 name = s->name;
4169 } else {
4170 /*
4171 * Create a unique name for the slab as a target
4172 * for the symlinks.
4173 */
4174 name = create_unique_id(s);
4175 }
4176
27c3a314 4177 s->kobj.kset = slab_kset;
1eada11c
GKH
4178 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4179 if (err) {
4180 kobject_put(&s->kobj);
81819f0f 4181 return err;
1eada11c 4182 }
81819f0f
CL
4183
4184 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4185 if (err)
4186 return err;
4187 kobject_uevent(&s->kobj, KOBJ_ADD);
4188 if (!unmergeable) {
4189 /* Setup first alias */
4190 sysfs_slab_alias(s, s->name);
4191 kfree(name);
4192 }
4193 return 0;
4194}
4195
4196static void sysfs_slab_remove(struct kmem_cache *s)
4197{
4198 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4199 kobject_del(&s->kobj);
151c602f 4200 kobject_put(&s->kobj);
81819f0f
CL
4201}
4202
4203/*
4204 * Need to buffer aliases during bootup until sysfs becomes
4205 * available lest we loose that information.
4206 */
4207struct saved_alias {
4208 struct kmem_cache *s;
4209 const char *name;
4210 struct saved_alias *next;
4211};
4212
5af328a5 4213static struct saved_alias *alias_list;
81819f0f
CL
4214
4215static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4216{
4217 struct saved_alias *al;
4218
4219 if (slab_state == SYSFS) {
4220 /*
4221 * If we have a leftover link then remove it.
4222 */
27c3a314
GKH
4223 sysfs_remove_link(&slab_kset->kobj, name);
4224 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4225 }
4226
4227 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4228 if (!al)
4229 return -ENOMEM;
4230
4231 al->s = s;
4232 al->name = name;
4233 al->next = alias_list;
4234 alias_list = al;
4235 return 0;
4236}
4237
4238static int __init slab_sysfs_init(void)
4239{
5b95a4ac 4240 struct kmem_cache *s;
81819f0f
CL
4241 int err;
4242
0ff21e46 4243 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4244 if (!slab_kset) {
81819f0f
CL
4245 printk(KERN_ERR "Cannot register slab subsystem.\n");
4246 return -ENOSYS;
4247 }
4248
26a7bd03
CL
4249 slab_state = SYSFS;
4250
5b95a4ac 4251 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4252 err = sysfs_slab_add(s);
5d540fb7
CL
4253 if (err)
4254 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4255 " to sysfs\n", s->name);
26a7bd03 4256 }
81819f0f
CL
4257
4258 while (alias_list) {
4259 struct saved_alias *al = alias_list;
4260
4261 alias_list = alias_list->next;
4262 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4263 if (err)
4264 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4265 " %s to sysfs\n", s->name);
81819f0f
CL
4266 kfree(al);
4267 }
4268
4269 resiliency_test();
4270 return 0;
4271}
4272
4273__initcall(slab_sysfs_init);
81819f0f 4274#endif
57ed3eda
PE
4275
4276/*
4277 * The /proc/slabinfo ABI
4278 */
158a9624
LT
4279#ifdef CONFIG_SLABINFO
4280
4281ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4282 size_t count, loff_t *ppos)
4283{
4284 return -EINVAL;
4285}
4286
57ed3eda
PE
4287
4288static void print_slabinfo_header(struct seq_file *m)
4289{
4290 seq_puts(m, "slabinfo - version: 2.1\n");
4291 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4292 "<objperslab> <pagesperslab>");
4293 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4294 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4295 seq_putc(m, '\n');
4296}
4297
4298static void *s_start(struct seq_file *m, loff_t *pos)
4299{
4300 loff_t n = *pos;
4301
4302 down_read(&slub_lock);
4303 if (!n)
4304 print_slabinfo_header(m);
4305
4306 return seq_list_start(&slab_caches, *pos);
4307}
4308
4309static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4310{
4311 return seq_list_next(p, &slab_caches, pos);
4312}
4313
4314static void s_stop(struct seq_file *m, void *p)
4315{
4316 up_read(&slub_lock);
4317}
4318
4319static int s_show(struct seq_file *m, void *p)
4320{
4321 unsigned long nr_partials = 0;
4322 unsigned long nr_slabs = 0;
4323 unsigned long nr_inuse = 0;
4324 unsigned long nr_objs;
4325 struct kmem_cache *s;
4326 int node;
4327
4328 s = list_entry(p, struct kmem_cache, list);
4329
4330 for_each_online_node(node) {
4331 struct kmem_cache_node *n = get_node(s, node);
4332
4333 if (!n)
4334 continue;
4335
4336 nr_partials += n->nr_partial;
4337 nr_slabs += atomic_long_read(&n->nr_slabs);
4338 nr_inuse += count_partial(n);
4339 }
4340
4341 nr_objs = nr_slabs * s->objects;
4342 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4343
4344 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4345 nr_objs, s->size, s->objects, (1 << s->order));
4346 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4347 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4348 0UL);
4349 seq_putc(m, '\n');
4350 return 0;
4351}
4352
4353const struct seq_operations slabinfo_op = {
4354 .start = s_start,
4355 .next = s_next,
4356 .stop = s_stop,
4357 .show = s_show,
4358};
4359
158a9624 4360#endif /* CONFIG_SLABINFO */