slub: fix a possible memleak in __slab_alloc()
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
81819f0f 32
4a92379b
RK
33#include <trace/events/kmem.h>
34
81819f0f
CL
35/*
36 * Lock order:
881db7fb
CL
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 40 *
881db7fb
CL
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
81819f0f
CL
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
b789ef51
CL
134/* Enable to log cmpxchg failures */
135#undef SLUB_DEBUG_CMPXCHG
136
2086d26a
CL
137/*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
76be8950 141#define MIN_PARTIAL 5
e95eed57 142
2086d26a
CL
143/*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148#define MAX_PARTIAL 10
149
81819f0f
CL
150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
672bba3a 152
fa5ec8a1 153/*
3de47213
DR
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
fa5ec8a1 157 */
3de47213 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 159
81819f0f
CL
160/*
161 * Set of flags that will prevent slab merging
162 */
163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
81819f0f
CL
166
167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 168 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 169
210b5c06
CG
170#define OO_SHIFT 16
171#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 172#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 173
81819f0f 174/* Internal SLUB flags */
f90ec390 175#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 176#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
177
178static int kmem_size = sizeof(struct kmem_cache);
179
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
184static enum {
185 DOWN, /* No slab functionality available */
51df1142 186 PARTIAL, /* Kmem_cache_node works */
672bba3a 187 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
188 SYSFS /* Sysfs up */
189} slab_state = DOWN;
190
191/* A list of all slab caches on the system */
192static DECLARE_RWSEM(slub_lock);
5af328a5 193static LIST_HEAD(slab_caches);
81819f0f 194
02cbc874
CL
195/*
196 * Tracking user of a slab.
197 */
d6543e39 198#define TRACK_ADDRS_COUNT 16
02cbc874 199struct track {
ce71e27c 200 unsigned long addr; /* Called from address */
d6543e39
BG
201#ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203#endif
02cbc874
CL
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207};
208
209enum track_item { TRACK_ALLOC, TRACK_FREE };
210
ab4d5ed5 211#ifdef CONFIG_SYSFS
81819f0f
CL
212static int sysfs_slab_add(struct kmem_cache *);
213static int sysfs_slab_alias(struct kmem_cache *, const char *);
214static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 215
81819f0f 216#else
0c710013
CL
217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
151c602f
CL
220static inline void sysfs_slab_remove(struct kmem_cache *s)
221{
84c1cf62 222 kfree(s->name);
151c602f
CL
223 kfree(s);
224}
8ff12cfc 225
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
84e554e6 231 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
232#endif
233}
234
81819f0f
CL
235/********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239int slab_is_available(void)
240{
241 return slab_state >= UP;
242}
243
244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245{
81819f0f 246 return s->node[node];
81819f0f
CL
247}
248
6446faa2 249/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
250static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252{
253 void *base;
254
a973e9dd 255 if (!object)
02cbc874
CL
256 return 1;
257
a973e9dd 258 base = page_address(page);
39b26464 259 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265}
266
7656c72b
CL
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
269 return *(void **)(object + s->offset);
270}
271
1393d9a1
CL
272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273{
274 void *p;
275
276#ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278#else
279 p = get_freepointer(s, object);
280#endif
281 return p;
282}
283
7656c72b
CL
284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285{
286 *(void **)(object + s->offset) = fp;
287}
288
289/* Loop over all objects in a slab */
224a88be
CL
290#define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
292 __p += (__s)->size)
293
7656c72b
CL
294/* Determine object index from a given position */
295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296{
297 return (p - addr) / s->size;
298}
299
d71f606f
MK
300static inline size_t slab_ksize(const struct kmem_cache *s)
301{
302#ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310#endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322}
323
ab9a0f19
LJ
324static inline int order_objects(int order, unsigned long size, int reserved)
325{
326 return ((PAGE_SIZE << order) - reserved) / size;
327}
328
834f3d11 329static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 330 unsigned long size, int reserved)
834f3d11
CL
331{
332 struct kmem_cache_order_objects x = {
ab9a0f19 333 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
334 };
335
336 return x;
337}
338
339static inline int oo_order(struct kmem_cache_order_objects x)
340{
210b5c06 341 return x.x >> OO_SHIFT;
834f3d11
CL
342}
343
344static inline int oo_objects(struct kmem_cache_order_objects x)
345{
210b5c06 346 return x.x & OO_MASK;
834f3d11
CL
347}
348
881db7fb
CL
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
354 bit_spin_lock(PG_locked, &page->flags);
355}
356
357static __always_inline void slab_unlock(struct page *page)
358{
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
369#ifdef CONFIG_CMPXCHG_DOUBLE
370 if (s->flags & __CMPXCHG_DOUBLE) {
371 if (cmpxchg_double(&page->freelist,
372 freelist_old, counters_old,
373 freelist_new, counters_new))
374 return 1;
375 } else
376#endif
377 {
378 slab_lock(page);
379 if (page->freelist == freelist_old && page->counters == counters_old) {
380 page->freelist = freelist_new;
381 page->counters = counters_new;
382 slab_unlock(page);
383 return 1;
384 }
385 slab_unlock(page);
386 }
387
388 cpu_relax();
389 stat(s, CMPXCHG_DOUBLE_FAIL);
390
391#ifdef SLUB_DEBUG_CMPXCHG
392 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393#endif
394
395 return 0;
396}
397
b789ef51
CL
398static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 void *freelist_old, unsigned long counters_old,
400 void *freelist_new, unsigned long counters_new,
401 const char *n)
402{
403#ifdef CONFIG_CMPXCHG_DOUBLE
404 if (s->flags & __CMPXCHG_DOUBLE) {
405 if (cmpxchg_double(&page->freelist,
406 freelist_old, counters_old,
407 freelist_new, counters_new))
408 return 1;
409 } else
410#endif
411 {
1d07171c
CL
412 unsigned long flags;
413
414 local_irq_save(flags);
881db7fb 415 slab_lock(page);
b789ef51
CL
416 if (page->freelist == freelist_old && page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
881db7fb 419 slab_unlock(page);
1d07171c 420 local_irq_restore(flags);
b789ef51
CL
421 return 1;
422 }
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
b789ef51
CL
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430#ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432#endif
433
434 return 0;
435}
436
41ecc55b 437#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
438/*
439 * Determine a map of object in use on a page.
440 *
881db7fb 441 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
442 * not vanish from under us.
443 */
444static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445{
446 void *p;
447 void *addr = page_address(page);
448
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
451}
452
41ecc55b
CL
453/*
454 * Debug settings:
455 */
f0630fff
CL
456#ifdef CONFIG_SLUB_DEBUG_ON
457static int slub_debug = DEBUG_DEFAULT_FLAGS;
458#else
41ecc55b 459static int slub_debug;
f0630fff 460#endif
41ecc55b
CL
461
462static char *slub_debug_slabs;
fa5ec8a1 463static int disable_higher_order_debug;
41ecc55b 464
81819f0f
CL
465/*
466 * Object debugging
467 */
468static void print_section(char *text, u8 *addr, unsigned int length)
469{
ffc79d28
SAS
470 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
471 length, 1);
81819f0f
CL
472}
473
81819f0f
CL
474static struct track *get_track(struct kmem_cache *s, void *object,
475 enum track_item alloc)
476{
477 struct track *p;
478
479 if (s->offset)
480 p = object + s->offset + sizeof(void *);
481 else
482 p = object + s->inuse;
483
484 return p + alloc;
485}
486
487static void set_track(struct kmem_cache *s, void *object,
ce71e27c 488 enum track_item alloc, unsigned long addr)
81819f0f 489{
1a00df4a 490 struct track *p = get_track(s, object, alloc);
81819f0f 491
81819f0f 492 if (addr) {
d6543e39
BG
493#ifdef CONFIG_STACKTRACE
494 struct stack_trace trace;
495 int i;
496
497 trace.nr_entries = 0;
498 trace.max_entries = TRACK_ADDRS_COUNT;
499 trace.entries = p->addrs;
500 trace.skip = 3;
501 save_stack_trace(&trace);
502
503 /* See rant in lockdep.c */
504 if (trace.nr_entries != 0 &&
505 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
506 trace.nr_entries--;
507
508 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
509 p->addrs[i] = 0;
510#endif
81819f0f
CL
511 p->addr = addr;
512 p->cpu = smp_processor_id();
88e4ccf2 513 p->pid = current->pid;
81819f0f
CL
514 p->when = jiffies;
515 } else
516 memset(p, 0, sizeof(struct track));
517}
518
81819f0f
CL
519static void init_tracking(struct kmem_cache *s, void *object)
520{
24922684
CL
521 if (!(s->flags & SLAB_STORE_USER))
522 return;
523
ce71e27c
EGM
524 set_track(s, object, TRACK_FREE, 0UL);
525 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
526}
527
528static void print_track(const char *s, struct track *t)
529{
530 if (!t->addr)
531 return;
532
7daf705f 533 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 534 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
535#ifdef CONFIG_STACKTRACE
536 {
537 int i;
538 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
539 if (t->addrs[i])
540 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
541 else
542 break;
543 }
544#endif
24922684
CL
545}
546
547static void print_tracking(struct kmem_cache *s, void *object)
548{
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
552 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
553 print_track("Freed", get_track(s, object, TRACK_FREE));
554}
555
556static void print_page_info(struct page *page)
557{
39b26464
CL
558 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
559 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
560
561}
562
563static void slab_bug(struct kmem_cache *s, char *fmt, ...)
564{
565 va_list args;
566 char buf[100];
567
568 va_start(args, fmt);
569 vsnprintf(buf, sizeof(buf), fmt, args);
570 va_end(args);
571 printk(KERN_ERR "========================================"
572 "=====================================\n");
265d47e7 573 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
574 printk(KERN_ERR "----------------------------------------"
575 "-------------------------------------\n\n");
81819f0f
CL
576}
577
24922684
CL
578static void slab_fix(struct kmem_cache *s, char *fmt, ...)
579{
580 va_list args;
581 char buf[100];
582
583 va_start(args, fmt);
584 vsnprintf(buf, sizeof(buf), fmt, args);
585 va_end(args);
586 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
587}
588
589static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
590{
591 unsigned int off; /* Offset of last byte */
a973e9dd 592 u8 *addr = page_address(page);
24922684
CL
593
594 print_tracking(s, p);
595
596 print_page_info(page);
597
598 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
599 p, p - addr, get_freepointer(s, p));
600
601 if (p > addr + 16)
ffc79d28 602 print_section("Bytes b4 ", p - 16, 16);
81819f0f 603
ffc79d28
SAS
604 print_section("Object ", p, min_t(unsigned long, s->objsize,
605 PAGE_SIZE));
81819f0f 606 if (s->flags & SLAB_RED_ZONE)
ffc79d28 607 print_section("Redzone ", p + s->objsize,
81819f0f
CL
608 s->inuse - s->objsize);
609
81819f0f
CL
610 if (s->offset)
611 off = s->offset + sizeof(void *);
612 else
613 off = s->inuse;
614
24922684 615 if (s->flags & SLAB_STORE_USER)
81819f0f 616 off += 2 * sizeof(struct track);
81819f0f
CL
617
618 if (off != s->size)
619 /* Beginning of the filler is the free pointer */
ffc79d28 620 print_section("Padding ", p + off, s->size - off);
24922684
CL
621
622 dump_stack();
81819f0f
CL
623}
624
625static void object_err(struct kmem_cache *s, struct page *page,
626 u8 *object, char *reason)
627{
3dc50637 628 slab_bug(s, "%s", reason);
24922684 629 print_trailer(s, page, object);
81819f0f
CL
630}
631
24922684 632static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
633{
634 va_list args;
635 char buf[100];
636
24922684
CL
637 va_start(args, fmt);
638 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 639 va_end(args);
3dc50637 640 slab_bug(s, "%s", buf);
24922684 641 print_page_info(page);
81819f0f
CL
642 dump_stack();
643}
644
f7cb1933 645static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
646{
647 u8 *p = object;
648
649 if (s->flags & __OBJECT_POISON) {
650 memset(p, POISON_FREE, s->objsize - 1);
06428780 651 p[s->objsize - 1] = POISON_END;
81819f0f
CL
652 }
653
654 if (s->flags & SLAB_RED_ZONE)
f7cb1933 655 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
656}
657
24922684
CL
658static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
659 void *from, void *to)
660{
661 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
662 memset(from, data, to - from);
663}
664
665static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
666 u8 *object, char *what,
06428780 667 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
668{
669 u8 *fault;
670 u8 *end;
671
79824820 672 fault = memchr_inv(start, value, bytes);
24922684
CL
673 if (!fault)
674 return 1;
675
676 end = start + bytes;
677 while (end > fault && end[-1] == value)
678 end--;
679
680 slab_bug(s, "%s overwritten", what);
681 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
682 fault, end - 1, fault[0], value);
683 print_trailer(s, page, object);
684
685 restore_bytes(s, what, value, fault, end);
686 return 0;
81819f0f
CL
687}
688
81819f0f
CL
689/*
690 * Object layout:
691 *
692 * object address
693 * Bytes of the object to be managed.
694 * If the freepointer may overlay the object then the free
695 * pointer is the first word of the object.
672bba3a 696 *
81819f0f
CL
697 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
698 * 0xa5 (POISON_END)
699 *
700 * object + s->objsize
701 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
702 * Padding is extended by another word if Redzoning is enabled and
703 * objsize == inuse.
704 *
81819f0f
CL
705 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
706 * 0xcc (RED_ACTIVE) for objects in use.
707 *
708 * object + s->inuse
672bba3a
CL
709 * Meta data starts here.
710 *
81819f0f
CL
711 * A. Free pointer (if we cannot overwrite object on free)
712 * B. Tracking data for SLAB_STORE_USER
672bba3a 713 * C. Padding to reach required alignment boundary or at mininum
6446faa2 714 * one word if debugging is on to be able to detect writes
672bba3a
CL
715 * before the word boundary.
716 *
717 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
718 *
719 * object + s->size
672bba3a 720 * Nothing is used beyond s->size.
81819f0f 721 *
672bba3a
CL
722 * If slabcaches are merged then the objsize and inuse boundaries are mostly
723 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
724 * may be used with merged slabcaches.
725 */
726
81819f0f
CL
727static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
728{
729 unsigned long off = s->inuse; /* The end of info */
730
731 if (s->offset)
732 /* Freepointer is placed after the object. */
733 off += sizeof(void *);
734
735 if (s->flags & SLAB_STORE_USER)
736 /* We also have user information there */
737 off += 2 * sizeof(struct track);
738
739 if (s->size == off)
740 return 1;
741
24922684
CL
742 return check_bytes_and_report(s, page, p, "Object padding",
743 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
744}
745
39b26464 746/* Check the pad bytes at the end of a slab page */
81819f0f
CL
747static int slab_pad_check(struct kmem_cache *s, struct page *page)
748{
24922684
CL
749 u8 *start;
750 u8 *fault;
751 u8 *end;
752 int length;
753 int remainder;
81819f0f
CL
754
755 if (!(s->flags & SLAB_POISON))
756 return 1;
757
a973e9dd 758 start = page_address(page);
ab9a0f19 759 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
760 end = start + length;
761 remainder = length % s->size;
81819f0f
CL
762 if (!remainder)
763 return 1;
764
79824820 765 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
766 if (!fault)
767 return 1;
768 while (end > fault && end[-1] == POISON_INUSE)
769 end--;
770
771 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 772 print_section("Padding ", end - remainder, remainder);
24922684 773
8a3d271d 774 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 775 return 0;
81819f0f
CL
776}
777
778static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 779 void *object, u8 val)
81819f0f
CL
780{
781 u8 *p = object;
782 u8 *endobject = object + s->objsize;
783
784 if (s->flags & SLAB_RED_ZONE) {
24922684 785 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 786 endobject, val, s->inuse - s->objsize))
81819f0f 787 return 0;
81819f0f 788 } else {
3adbefee
IM
789 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
790 check_bytes_and_report(s, page, p, "Alignment padding",
791 endobject, POISON_INUSE, s->inuse - s->objsize);
792 }
81819f0f
CL
793 }
794
795 if (s->flags & SLAB_POISON) {
f7cb1933 796 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
797 (!check_bytes_and_report(s, page, p, "Poison", p,
798 POISON_FREE, s->objsize - 1) ||
799 !check_bytes_and_report(s, page, p, "Poison",
06428780 800 p + s->objsize - 1, POISON_END, 1)))
81819f0f 801 return 0;
81819f0f
CL
802 /*
803 * check_pad_bytes cleans up on its own.
804 */
805 check_pad_bytes(s, page, p);
806 }
807
f7cb1933 808 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
809 /*
810 * Object and freepointer overlap. Cannot check
811 * freepointer while object is allocated.
812 */
813 return 1;
814
815 /* Check free pointer validity */
816 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
817 object_err(s, page, p, "Freepointer corrupt");
818 /*
9f6c708e 819 * No choice but to zap it and thus lose the remainder
81819f0f 820 * of the free objects in this slab. May cause
672bba3a 821 * another error because the object count is now wrong.
81819f0f 822 */
a973e9dd 823 set_freepointer(s, p, NULL);
81819f0f
CL
824 return 0;
825 }
826 return 1;
827}
828
829static int check_slab(struct kmem_cache *s, struct page *page)
830{
39b26464
CL
831 int maxobj;
832
81819f0f
CL
833 VM_BUG_ON(!irqs_disabled());
834
835 if (!PageSlab(page)) {
24922684 836 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
837 return 0;
838 }
39b26464 839
ab9a0f19 840 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
841 if (page->objects > maxobj) {
842 slab_err(s, page, "objects %u > max %u",
843 s->name, page->objects, maxobj);
844 return 0;
845 }
846 if (page->inuse > page->objects) {
24922684 847 slab_err(s, page, "inuse %u > max %u",
39b26464 848 s->name, page->inuse, page->objects);
81819f0f
CL
849 return 0;
850 }
851 /* Slab_pad_check fixes things up after itself */
852 slab_pad_check(s, page);
853 return 1;
854}
855
856/*
672bba3a
CL
857 * Determine if a certain object on a page is on the freelist. Must hold the
858 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
859 */
860static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
861{
862 int nr = 0;
881db7fb 863 void *fp;
81819f0f 864 void *object = NULL;
224a88be 865 unsigned long max_objects;
81819f0f 866
881db7fb 867 fp = page->freelist;
39b26464 868 while (fp && nr <= page->objects) {
81819f0f
CL
869 if (fp == search)
870 return 1;
871 if (!check_valid_pointer(s, page, fp)) {
872 if (object) {
873 object_err(s, page, object,
874 "Freechain corrupt");
a973e9dd 875 set_freepointer(s, object, NULL);
81819f0f
CL
876 break;
877 } else {
24922684 878 slab_err(s, page, "Freepointer corrupt");
a973e9dd 879 page->freelist = NULL;
39b26464 880 page->inuse = page->objects;
24922684 881 slab_fix(s, "Freelist cleared");
81819f0f
CL
882 return 0;
883 }
884 break;
885 }
886 object = fp;
887 fp = get_freepointer(s, object);
888 nr++;
889 }
890
ab9a0f19 891 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
892 if (max_objects > MAX_OBJS_PER_PAGE)
893 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
894
895 if (page->objects != max_objects) {
896 slab_err(s, page, "Wrong number of objects. Found %d but "
897 "should be %d", page->objects, max_objects);
898 page->objects = max_objects;
899 slab_fix(s, "Number of objects adjusted.");
900 }
39b26464 901 if (page->inuse != page->objects - nr) {
70d71228 902 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
903 "counted were %d", page->inuse, page->objects - nr);
904 page->inuse = page->objects - nr;
24922684 905 slab_fix(s, "Object count adjusted.");
81819f0f
CL
906 }
907 return search == NULL;
908}
909
0121c619
CL
910static void trace(struct kmem_cache *s, struct page *page, void *object,
911 int alloc)
3ec09742
CL
912{
913 if (s->flags & SLAB_TRACE) {
914 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
915 s->name,
916 alloc ? "alloc" : "free",
917 object, page->inuse,
918 page->freelist);
919
920 if (!alloc)
ffc79d28 921 print_section("Object ", (void *)object, s->objsize);
3ec09742
CL
922
923 dump_stack();
924 }
925}
926
c016b0bd
CL
927/*
928 * Hooks for other subsystems that check memory allocations. In a typical
929 * production configuration these hooks all should produce no code at all.
930 */
931static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
932{
c1d50836 933 flags &= gfp_allowed_mask;
c016b0bd
CL
934 lockdep_trace_alloc(flags);
935 might_sleep_if(flags & __GFP_WAIT);
936
937 return should_failslab(s->objsize, flags, s->flags);
938}
939
940static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
941{
c1d50836 942 flags &= gfp_allowed_mask;
b3d41885 943 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
944 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
945}
946
947static inline void slab_free_hook(struct kmem_cache *s, void *x)
948{
949 kmemleak_free_recursive(x, s->flags);
c016b0bd 950
d3f661d6
CL
951 /*
952 * Trouble is that we may no longer disable interupts in the fast path
953 * So in order to make the debug calls that expect irqs to be
954 * disabled we need to disable interrupts temporarily.
955 */
956#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
957 {
958 unsigned long flags;
959
960 local_irq_save(flags);
961 kmemcheck_slab_free(s, x, s->objsize);
962 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
963 local_irq_restore(flags);
964 }
965#endif
f9b615de
TG
966 if (!(s->flags & SLAB_DEBUG_OBJECTS))
967 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
968}
969
643b1138 970/*
672bba3a 971 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
972 *
973 * list_lock must be held.
643b1138 974 */
5cc6eee8
CL
975static void add_full(struct kmem_cache *s,
976 struct kmem_cache_node *n, struct page *page)
643b1138 977{
5cc6eee8
CL
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
643b1138 981 list_add(&page->lru, &n->full);
643b1138
CL
982}
983
5cc6eee8
CL
984/*
985 * list_lock must be held.
986 */
643b1138
CL
987static void remove_full(struct kmem_cache *s, struct page *page)
988{
643b1138
CL
989 if (!(s->flags & SLAB_STORE_USER))
990 return;
991
643b1138 992 list_del(&page->lru);
643b1138
CL
993}
994
0f389ec6
CL
995/* Tracking of the number of slabs for debugging purposes */
996static inline unsigned long slabs_node(struct kmem_cache *s, int node)
997{
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 return atomic_long_read(&n->nr_slabs);
1001}
1002
26c02cf0
AB
1003static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1004{
1005 return atomic_long_read(&n->nr_slabs);
1006}
1007
205ab99d 1008static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1009{
1010 struct kmem_cache_node *n = get_node(s, node);
1011
1012 /*
1013 * May be called early in order to allocate a slab for the
1014 * kmem_cache_node structure. Solve the chicken-egg
1015 * dilemma by deferring the increment of the count during
1016 * bootstrap (see early_kmem_cache_node_alloc).
1017 */
7340cc84 1018 if (n) {
0f389ec6 1019 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1020 atomic_long_add(objects, &n->total_objects);
1021 }
0f389ec6 1022}
205ab99d 1023static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1024{
1025 struct kmem_cache_node *n = get_node(s, node);
1026
1027 atomic_long_dec(&n->nr_slabs);
205ab99d 1028 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1029}
1030
1031/* Object debug checks for alloc/free paths */
3ec09742
CL
1032static void setup_object_debug(struct kmem_cache *s, struct page *page,
1033 void *object)
1034{
1035 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1036 return;
1037
f7cb1933 1038 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1039 init_tracking(s, object);
1040}
1041
1537066c 1042static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1043 void *object, unsigned long addr)
81819f0f
CL
1044{
1045 if (!check_slab(s, page))
1046 goto bad;
1047
81819f0f
CL
1048 if (!check_valid_pointer(s, page, object)) {
1049 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1050 goto bad;
81819f0f
CL
1051 }
1052
f7cb1933 1053 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1054 goto bad;
81819f0f 1055
3ec09742
CL
1056 /* Success perform special debug activities for allocs */
1057 if (s->flags & SLAB_STORE_USER)
1058 set_track(s, object, TRACK_ALLOC, addr);
1059 trace(s, page, object, 1);
f7cb1933 1060 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1061 return 1;
3ec09742 1062
81819f0f
CL
1063bad:
1064 if (PageSlab(page)) {
1065 /*
1066 * If this is a slab page then lets do the best we can
1067 * to avoid issues in the future. Marking all objects
672bba3a 1068 * as used avoids touching the remaining objects.
81819f0f 1069 */
24922684 1070 slab_fix(s, "Marking all objects used");
39b26464 1071 page->inuse = page->objects;
a973e9dd 1072 page->freelist = NULL;
81819f0f
CL
1073 }
1074 return 0;
1075}
1076
1537066c
CL
1077static noinline int free_debug_processing(struct kmem_cache *s,
1078 struct page *page, void *object, unsigned long addr)
81819f0f 1079{
5c2e4bbb
CL
1080 unsigned long flags;
1081 int rc = 0;
1082
1083 local_irq_save(flags);
881db7fb
CL
1084 slab_lock(page);
1085
81819f0f
CL
1086 if (!check_slab(s, page))
1087 goto fail;
1088
1089 if (!check_valid_pointer(s, page, object)) {
70d71228 1090 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1091 goto fail;
1092 }
1093
1094 if (on_freelist(s, page, object)) {
24922684 1095 object_err(s, page, object, "Object already free");
81819f0f
CL
1096 goto fail;
1097 }
1098
f7cb1933 1099 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1100 goto out;
81819f0f
CL
1101
1102 if (unlikely(s != page->slab)) {
3adbefee 1103 if (!PageSlab(page)) {
70d71228
CL
1104 slab_err(s, page, "Attempt to free object(0x%p) "
1105 "outside of slab", object);
3adbefee 1106 } else if (!page->slab) {
81819f0f 1107 printk(KERN_ERR
70d71228 1108 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1109 object);
70d71228 1110 dump_stack();
06428780 1111 } else
24922684
CL
1112 object_err(s, page, object,
1113 "page slab pointer corrupt.");
81819f0f
CL
1114 goto fail;
1115 }
3ec09742 1116
3ec09742
CL
1117 if (s->flags & SLAB_STORE_USER)
1118 set_track(s, object, TRACK_FREE, addr);
1119 trace(s, page, object, 0);
f7cb1933 1120 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1121 rc = 1;
1122out:
881db7fb 1123 slab_unlock(page);
5c2e4bbb
CL
1124 local_irq_restore(flags);
1125 return rc;
3ec09742 1126
81819f0f 1127fail:
24922684 1128 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1129 goto out;
81819f0f
CL
1130}
1131
41ecc55b
CL
1132static int __init setup_slub_debug(char *str)
1133{
f0630fff
CL
1134 slub_debug = DEBUG_DEFAULT_FLAGS;
1135 if (*str++ != '=' || !*str)
1136 /*
1137 * No options specified. Switch on full debugging.
1138 */
1139 goto out;
1140
1141 if (*str == ',')
1142 /*
1143 * No options but restriction on slabs. This means full
1144 * debugging for slabs matching a pattern.
1145 */
1146 goto check_slabs;
1147
fa5ec8a1
DR
1148 if (tolower(*str) == 'o') {
1149 /*
1150 * Avoid enabling debugging on caches if its minimum order
1151 * would increase as a result.
1152 */
1153 disable_higher_order_debug = 1;
1154 goto out;
1155 }
1156
f0630fff
CL
1157 slub_debug = 0;
1158 if (*str == '-')
1159 /*
1160 * Switch off all debugging measures.
1161 */
1162 goto out;
1163
1164 /*
1165 * Determine which debug features should be switched on
1166 */
06428780 1167 for (; *str && *str != ','; str++) {
f0630fff
CL
1168 switch (tolower(*str)) {
1169 case 'f':
1170 slub_debug |= SLAB_DEBUG_FREE;
1171 break;
1172 case 'z':
1173 slub_debug |= SLAB_RED_ZONE;
1174 break;
1175 case 'p':
1176 slub_debug |= SLAB_POISON;
1177 break;
1178 case 'u':
1179 slub_debug |= SLAB_STORE_USER;
1180 break;
1181 case 't':
1182 slub_debug |= SLAB_TRACE;
1183 break;
4c13dd3b
DM
1184 case 'a':
1185 slub_debug |= SLAB_FAILSLAB;
1186 break;
f0630fff
CL
1187 default:
1188 printk(KERN_ERR "slub_debug option '%c' "
06428780 1189 "unknown. skipped\n", *str);
f0630fff 1190 }
41ecc55b
CL
1191 }
1192
f0630fff 1193check_slabs:
41ecc55b
CL
1194 if (*str == ',')
1195 slub_debug_slabs = str + 1;
f0630fff 1196out:
41ecc55b
CL
1197 return 1;
1198}
1199
1200__setup("slub_debug", setup_slub_debug);
1201
ba0268a8
CL
1202static unsigned long kmem_cache_flags(unsigned long objsize,
1203 unsigned long flags, const char *name,
51cc5068 1204 void (*ctor)(void *))
41ecc55b
CL
1205{
1206 /*
e153362a 1207 * Enable debugging if selected on the kernel commandline.
41ecc55b 1208 */
e153362a 1209 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1210 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1211 flags |= slub_debug;
ba0268a8
CL
1212
1213 return flags;
41ecc55b
CL
1214}
1215#else
3ec09742
CL
1216static inline void setup_object_debug(struct kmem_cache *s,
1217 struct page *page, void *object) {}
41ecc55b 1218
3ec09742 1219static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1220 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1221
3ec09742 1222static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1223 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1224
41ecc55b
CL
1225static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1226 { return 1; }
1227static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1228 void *object, u8 val) { return 1; }
5cc6eee8
CL
1229static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1230 struct page *page) {}
2cfb7455 1231static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1232static inline unsigned long kmem_cache_flags(unsigned long objsize,
1233 unsigned long flags, const char *name,
51cc5068 1234 void (*ctor)(void *))
ba0268a8
CL
1235{
1236 return flags;
1237}
41ecc55b 1238#define slub_debug 0
0f389ec6 1239
fdaa45e9
IM
1240#define disable_higher_order_debug 0
1241
0f389ec6
CL
1242static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1243 { return 0; }
26c02cf0
AB
1244static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1245 { return 0; }
205ab99d
CL
1246static inline void inc_slabs_node(struct kmem_cache *s, int node,
1247 int objects) {}
1248static inline void dec_slabs_node(struct kmem_cache *s, int node,
1249 int objects) {}
7d550c56
CL
1250
1251static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1252 { return 0; }
1253
1254static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1255 void *object) {}
1256
1257static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1258
ab4d5ed5 1259#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1260
81819f0f
CL
1261/*
1262 * Slab allocation and freeing
1263 */
65c3376a
CL
1264static inline struct page *alloc_slab_page(gfp_t flags, int node,
1265 struct kmem_cache_order_objects oo)
1266{
1267 int order = oo_order(oo);
1268
b1eeab67
VN
1269 flags |= __GFP_NOTRACK;
1270
2154a336 1271 if (node == NUMA_NO_NODE)
65c3376a
CL
1272 return alloc_pages(flags, order);
1273 else
6b65aaf3 1274 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1275}
1276
81819f0f
CL
1277static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1278{
06428780 1279 struct page *page;
834f3d11 1280 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1281 gfp_t alloc_gfp;
81819f0f 1282
7e0528da
CL
1283 flags &= gfp_allowed_mask;
1284
1285 if (flags & __GFP_WAIT)
1286 local_irq_enable();
1287
b7a49f0d 1288 flags |= s->allocflags;
e12ba74d 1289
ba52270d
PE
1290 /*
1291 * Let the initial higher-order allocation fail under memory pressure
1292 * so we fall-back to the minimum order allocation.
1293 */
1294 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1295
1296 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1297 if (unlikely(!page)) {
1298 oo = s->min;
1299 /*
1300 * Allocation may have failed due to fragmentation.
1301 * Try a lower order alloc if possible
1302 */
1303 page = alloc_slab_page(flags, node, oo);
81819f0f 1304
7e0528da
CL
1305 if (page)
1306 stat(s, ORDER_FALLBACK);
65c3376a 1307 }
5a896d9e 1308
7e0528da
CL
1309 if (flags & __GFP_WAIT)
1310 local_irq_disable();
1311
1312 if (!page)
1313 return NULL;
1314
5a896d9e 1315 if (kmemcheck_enabled
5086c389 1316 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1317 int pages = 1 << oo_order(oo);
1318
1319 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1320
1321 /*
1322 * Objects from caches that have a constructor don't get
1323 * cleared when they're allocated, so we need to do it here.
1324 */
1325 if (s->ctor)
1326 kmemcheck_mark_uninitialized_pages(page, pages);
1327 else
1328 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1329 }
1330
834f3d11 1331 page->objects = oo_objects(oo);
81819f0f
CL
1332 mod_zone_page_state(page_zone(page),
1333 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1334 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1335 1 << oo_order(oo));
81819f0f
CL
1336
1337 return page;
1338}
1339
1340static void setup_object(struct kmem_cache *s, struct page *page,
1341 void *object)
1342{
3ec09742 1343 setup_object_debug(s, page, object);
4f104934 1344 if (unlikely(s->ctor))
51cc5068 1345 s->ctor(object);
81819f0f
CL
1346}
1347
1348static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1349{
1350 struct page *page;
81819f0f 1351 void *start;
81819f0f
CL
1352 void *last;
1353 void *p;
1354
6cb06229 1355 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1356
6cb06229
CL
1357 page = allocate_slab(s,
1358 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1359 if (!page)
1360 goto out;
1361
205ab99d 1362 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1363 page->slab = s;
1364 page->flags |= 1 << PG_slab;
81819f0f
CL
1365
1366 start = page_address(page);
81819f0f
CL
1367
1368 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1369 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1370
1371 last = start;
224a88be 1372 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1373 setup_object(s, page, last);
1374 set_freepointer(s, last, p);
1375 last = p;
1376 }
1377 setup_object(s, page, last);
a973e9dd 1378 set_freepointer(s, last, NULL);
81819f0f
CL
1379
1380 page->freelist = start;
e6e82ea1 1381 page->inuse = page->objects;
8cb0a506 1382 page->frozen = 1;
81819f0f 1383out:
81819f0f
CL
1384 return page;
1385}
1386
1387static void __free_slab(struct kmem_cache *s, struct page *page)
1388{
834f3d11
CL
1389 int order = compound_order(page);
1390 int pages = 1 << order;
81819f0f 1391
af537b0a 1392 if (kmem_cache_debug(s)) {
81819f0f
CL
1393 void *p;
1394
1395 slab_pad_check(s, page);
224a88be
CL
1396 for_each_object(p, s, page_address(page),
1397 page->objects)
f7cb1933 1398 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1399 }
1400
b1eeab67 1401 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1402
81819f0f
CL
1403 mod_zone_page_state(page_zone(page),
1404 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1405 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1406 -pages);
81819f0f 1407
49bd5221
CL
1408 __ClearPageSlab(page);
1409 reset_page_mapcount(page);
1eb5ac64
NP
1410 if (current->reclaim_state)
1411 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1412 __free_pages(page, order);
81819f0f
CL
1413}
1414
da9a638c
LJ
1415#define need_reserve_slab_rcu \
1416 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1417
81819f0f
CL
1418static void rcu_free_slab(struct rcu_head *h)
1419{
1420 struct page *page;
1421
da9a638c
LJ
1422 if (need_reserve_slab_rcu)
1423 page = virt_to_head_page(h);
1424 else
1425 page = container_of((struct list_head *)h, struct page, lru);
1426
81819f0f
CL
1427 __free_slab(page->slab, page);
1428}
1429
1430static void free_slab(struct kmem_cache *s, struct page *page)
1431{
1432 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1433 struct rcu_head *head;
1434
1435 if (need_reserve_slab_rcu) {
1436 int order = compound_order(page);
1437 int offset = (PAGE_SIZE << order) - s->reserved;
1438
1439 VM_BUG_ON(s->reserved != sizeof(*head));
1440 head = page_address(page) + offset;
1441 } else {
1442 /*
1443 * RCU free overloads the RCU head over the LRU
1444 */
1445 head = (void *)&page->lru;
1446 }
81819f0f
CL
1447
1448 call_rcu(head, rcu_free_slab);
1449 } else
1450 __free_slab(s, page);
1451}
1452
1453static void discard_slab(struct kmem_cache *s, struct page *page)
1454{
205ab99d 1455 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1456 free_slab(s, page);
1457}
1458
1459/*
5cc6eee8
CL
1460 * Management of partially allocated slabs.
1461 *
1462 * list_lock must be held.
81819f0f 1463 */
5cc6eee8 1464static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1465 struct page *page, int tail)
81819f0f 1466{
e95eed57 1467 n->nr_partial++;
136333d1 1468 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1469 list_add_tail(&page->lru, &n->partial);
1470 else
1471 list_add(&page->lru, &n->partial);
81819f0f
CL
1472}
1473
5cc6eee8
CL
1474/*
1475 * list_lock must be held.
1476 */
1477static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1478 struct page *page)
1479{
1480 list_del(&page->lru);
1481 n->nr_partial--;
1482}
1483
81819f0f 1484/*
5cc6eee8
CL
1485 * Lock slab, remove from the partial list and put the object into the
1486 * per cpu freelist.
81819f0f 1487 *
497b66f2
CL
1488 * Returns a list of objects or NULL if it fails.
1489 *
672bba3a 1490 * Must hold list_lock.
81819f0f 1491 */
497b66f2 1492static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1493 struct kmem_cache_node *n, struct page *page,
49e22585 1494 int mode)
81819f0f 1495{
2cfb7455
CL
1496 void *freelist;
1497 unsigned long counters;
1498 struct page new;
1499
2cfb7455
CL
1500 /*
1501 * Zap the freelist and set the frozen bit.
1502 * The old freelist is the list of objects for the
1503 * per cpu allocation list.
1504 */
1505 do {
1506 freelist = page->freelist;
1507 counters = page->counters;
1508 new.counters = counters;
49e22585
CL
1509 if (mode)
1510 new.inuse = page->objects;
2cfb7455
CL
1511
1512 VM_BUG_ON(new.frozen);
1513 new.frozen = 1;
1514
1d07171c 1515 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1516 freelist, counters,
1517 NULL, new.counters,
1518 "lock and freeze"));
1519
1520 remove_partial(n, page);
49e22585 1521 return freelist;
81819f0f
CL
1522}
1523
49e22585
CL
1524static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1525
81819f0f 1526/*
672bba3a 1527 * Try to allocate a partial slab from a specific node.
81819f0f 1528 */
497b66f2 1529static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1530 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1531{
49e22585
CL
1532 struct page *page, *page2;
1533 void *object = NULL;
81819f0f
CL
1534
1535 /*
1536 * Racy check. If we mistakenly see no partial slabs then we
1537 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1538 * partial slab and there is none available then get_partials()
1539 * will return NULL.
81819f0f
CL
1540 */
1541 if (!n || !n->nr_partial)
1542 return NULL;
1543
1544 spin_lock(&n->list_lock);
49e22585 1545 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1546 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1547 int available;
1548
1549 if (!t)
1550 break;
1551
12d79634 1552 if (!object) {
49e22585
CL
1553 c->page = page;
1554 c->node = page_to_nid(page);
1555 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1556 object = t;
1557 available = page->objects - page->inuse;
1558 } else {
1559 page->freelist = t;
1560 available = put_cpu_partial(s, page, 0);
1561 }
1562 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1563 break;
1564
497b66f2 1565 }
81819f0f 1566 spin_unlock(&n->list_lock);
497b66f2 1567 return object;
81819f0f
CL
1568}
1569
1570/*
672bba3a 1571 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1572 */
acd19fd1
CL
1573static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1574 struct kmem_cache_cpu *c)
81819f0f
CL
1575{
1576#ifdef CONFIG_NUMA
1577 struct zonelist *zonelist;
dd1a239f 1578 struct zoneref *z;
54a6eb5c
MG
1579 struct zone *zone;
1580 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1581 void *object;
81819f0f
CL
1582
1583 /*
672bba3a
CL
1584 * The defrag ratio allows a configuration of the tradeoffs between
1585 * inter node defragmentation and node local allocations. A lower
1586 * defrag_ratio increases the tendency to do local allocations
1587 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1588 *
672bba3a
CL
1589 * If the defrag_ratio is set to 0 then kmalloc() always
1590 * returns node local objects. If the ratio is higher then kmalloc()
1591 * may return off node objects because partial slabs are obtained
1592 * from other nodes and filled up.
81819f0f 1593 *
6446faa2 1594 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1595 * defrag_ratio = 1000) then every (well almost) allocation will
1596 * first attempt to defrag slab caches on other nodes. This means
1597 * scanning over all nodes to look for partial slabs which may be
1598 * expensive if we do it every time we are trying to find a slab
1599 * with available objects.
81819f0f 1600 */
9824601e
CL
1601 if (!s->remote_node_defrag_ratio ||
1602 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1603 return NULL;
1604
c0ff7453 1605 get_mems_allowed();
0e88460d 1606 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1607 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1608 struct kmem_cache_node *n;
1609
54a6eb5c 1610 n = get_node(s, zone_to_nid(zone));
81819f0f 1611
54a6eb5c 1612 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1613 n->nr_partial > s->min_partial) {
497b66f2
CL
1614 object = get_partial_node(s, n, c);
1615 if (object) {
c0ff7453 1616 put_mems_allowed();
497b66f2 1617 return object;
c0ff7453 1618 }
81819f0f
CL
1619 }
1620 }
c0ff7453 1621 put_mems_allowed();
81819f0f
CL
1622#endif
1623 return NULL;
1624}
1625
1626/*
1627 * Get a partial page, lock it and return it.
1628 */
497b66f2 1629static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1630 struct kmem_cache_cpu *c)
81819f0f 1631{
497b66f2 1632 void *object;
2154a336 1633 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1634
497b66f2
CL
1635 object = get_partial_node(s, get_node(s, searchnode), c);
1636 if (object || node != NUMA_NO_NODE)
1637 return object;
81819f0f 1638
acd19fd1 1639 return get_any_partial(s, flags, c);
81819f0f
CL
1640}
1641
8a5ec0ba
CL
1642#ifdef CONFIG_PREEMPT
1643/*
1644 * Calculate the next globally unique transaction for disambiguiation
1645 * during cmpxchg. The transactions start with the cpu number and are then
1646 * incremented by CONFIG_NR_CPUS.
1647 */
1648#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1649#else
1650/*
1651 * No preemption supported therefore also no need to check for
1652 * different cpus.
1653 */
1654#define TID_STEP 1
1655#endif
1656
1657static inline unsigned long next_tid(unsigned long tid)
1658{
1659 return tid + TID_STEP;
1660}
1661
1662static inline unsigned int tid_to_cpu(unsigned long tid)
1663{
1664 return tid % TID_STEP;
1665}
1666
1667static inline unsigned long tid_to_event(unsigned long tid)
1668{
1669 return tid / TID_STEP;
1670}
1671
1672static inline unsigned int init_tid(int cpu)
1673{
1674 return cpu;
1675}
1676
1677static inline void note_cmpxchg_failure(const char *n,
1678 const struct kmem_cache *s, unsigned long tid)
1679{
1680#ifdef SLUB_DEBUG_CMPXCHG
1681 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1682
1683 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1684
1685#ifdef CONFIG_PREEMPT
1686 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1687 printk("due to cpu change %d -> %d\n",
1688 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1689 else
1690#endif
1691 if (tid_to_event(tid) != tid_to_event(actual_tid))
1692 printk("due to cpu running other code. Event %ld->%ld\n",
1693 tid_to_event(tid), tid_to_event(actual_tid));
1694 else
1695 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1696 actual_tid, tid, next_tid(tid));
1697#endif
4fdccdfb 1698 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1699}
1700
8a5ec0ba
CL
1701void init_kmem_cache_cpus(struct kmem_cache *s)
1702{
8a5ec0ba
CL
1703 int cpu;
1704
1705 for_each_possible_cpu(cpu)
1706 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1707}
2cfb7455 1708
81819f0f
CL
1709/*
1710 * Remove the cpu slab
1711 */
dfb4f096 1712static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1713{
2cfb7455 1714 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1715 struct page *page = c->page;
2cfb7455
CL
1716 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1717 int lock = 0;
1718 enum slab_modes l = M_NONE, m = M_NONE;
1719 void *freelist;
1720 void *nextfree;
136333d1 1721 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1722 struct page new;
1723 struct page old;
1724
1725 if (page->freelist) {
84e554e6 1726 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1727 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1728 }
1729
1730 c->tid = next_tid(c->tid);
1731 c->page = NULL;
1732 freelist = c->freelist;
1733 c->freelist = NULL;
1734
894b8788 1735 /*
2cfb7455
CL
1736 * Stage one: Free all available per cpu objects back
1737 * to the page freelist while it is still frozen. Leave the
1738 * last one.
1739 *
1740 * There is no need to take the list->lock because the page
1741 * is still frozen.
1742 */
1743 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1744 void *prior;
1745 unsigned long counters;
1746
1747 do {
1748 prior = page->freelist;
1749 counters = page->counters;
1750 set_freepointer(s, freelist, prior);
1751 new.counters = counters;
1752 new.inuse--;
1753 VM_BUG_ON(!new.frozen);
1754
1d07171c 1755 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1756 prior, counters,
1757 freelist, new.counters,
1758 "drain percpu freelist"));
1759
1760 freelist = nextfree;
1761 }
1762
894b8788 1763 /*
2cfb7455
CL
1764 * Stage two: Ensure that the page is unfrozen while the
1765 * list presence reflects the actual number of objects
1766 * during unfreeze.
1767 *
1768 * We setup the list membership and then perform a cmpxchg
1769 * with the count. If there is a mismatch then the page
1770 * is not unfrozen but the page is on the wrong list.
1771 *
1772 * Then we restart the process which may have to remove
1773 * the page from the list that we just put it on again
1774 * because the number of objects in the slab may have
1775 * changed.
894b8788 1776 */
2cfb7455 1777redo:
894b8788 1778
2cfb7455
CL
1779 old.freelist = page->freelist;
1780 old.counters = page->counters;
1781 VM_BUG_ON(!old.frozen);
7c2e132c 1782
2cfb7455
CL
1783 /* Determine target state of the slab */
1784 new.counters = old.counters;
1785 if (freelist) {
1786 new.inuse--;
1787 set_freepointer(s, freelist, old.freelist);
1788 new.freelist = freelist;
1789 } else
1790 new.freelist = old.freelist;
1791
1792 new.frozen = 0;
1793
81107188 1794 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1795 m = M_FREE;
1796 else if (new.freelist) {
1797 m = M_PARTIAL;
1798 if (!lock) {
1799 lock = 1;
1800 /*
1801 * Taking the spinlock removes the possiblity
1802 * that acquire_slab() will see a slab page that
1803 * is frozen
1804 */
1805 spin_lock(&n->list_lock);
1806 }
1807 } else {
1808 m = M_FULL;
1809 if (kmem_cache_debug(s) && !lock) {
1810 lock = 1;
1811 /*
1812 * This also ensures that the scanning of full
1813 * slabs from diagnostic functions will not see
1814 * any frozen slabs.
1815 */
1816 spin_lock(&n->list_lock);
1817 }
1818 }
1819
1820 if (l != m) {
1821
1822 if (l == M_PARTIAL)
1823
1824 remove_partial(n, page);
1825
1826 else if (l == M_FULL)
894b8788 1827
2cfb7455
CL
1828 remove_full(s, page);
1829
1830 if (m == M_PARTIAL) {
1831
1832 add_partial(n, page, tail);
136333d1 1833 stat(s, tail);
2cfb7455
CL
1834
1835 } else if (m == M_FULL) {
894b8788 1836
2cfb7455
CL
1837 stat(s, DEACTIVATE_FULL);
1838 add_full(s, n, page);
1839
1840 }
1841 }
1842
1843 l = m;
1d07171c 1844 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1845 old.freelist, old.counters,
1846 new.freelist, new.counters,
1847 "unfreezing slab"))
1848 goto redo;
1849
2cfb7455
CL
1850 if (lock)
1851 spin_unlock(&n->list_lock);
1852
1853 if (m == M_FREE) {
1854 stat(s, DEACTIVATE_EMPTY);
1855 discard_slab(s, page);
1856 stat(s, FREE_SLAB);
894b8788 1857 }
81819f0f
CL
1858}
1859
49e22585
CL
1860/* Unfreeze all the cpu partial slabs */
1861static void unfreeze_partials(struct kmem_cache *s)
1862{
1863 struct kmem_cache_node *n = NULL;
1864 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1865 struct page *page, *discard_page = NULL;
49e22585
CL
1866
1867 while ((page = c->partial)) {
1868 enum slab_modes { M_PARTIAL, M_FREE };
1869 enum slab_modes l, m;
1870 struct page new;
1871 struct page old;
1872
1873 c->partial = page->next;
1874 l = M_FREE;
1875
1876 do {
1877
1878 old.freelist = page->freelist;
1879 old.counters = page->counters;
1880 VM_BUG_ON(!old.frozen);
1881
1882 new.counters = old.counters;
1883 new.freelist = old.freelist;
1884
1885 new.frozen = 0;
1886
dcc3be6a 1887 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
49e22585
CL
1888 m = M_FREE;
1889 else {
1890 struct kmem_cache_node *n2 = get_node(s,
1891 page_to_nid(page));
1892
1893 m = M_PARTIAL;
1894 if (n != n2) {
1895 if (n)
1896 spin_unlock(&n->list_lock);
1897
1898 n = n2;
1899 spin_lock(&n->list_lock);
1900 }
1901 }
1902
1903 if (l != m) {
4c493a5a 1904 if (l == M_PARTIAL) {
49e22585 1905 remove_partial(n, page);
4c493a5a
SL
1906 stat(s, FREE_REMOVE_PARTIAL);
1907 } else {
f64ae042
SL
1908 add_partial(n, page,
1909 DEACTIVATE_TO_TAIL);
4c493a5a
SL
1910 stat(s, FREE_ADD_PARTIAL);
1911 }
49e22585
CL
1912
1913 l = m;
1914 }
1915
1916 } while (!cmpxchg_double_slab(s, page,
1917 old.freelist, old.counters,
1918 new.freelist, new.counters,
1919 "unfreezing slab"));
1920
1921 if (m == M_FREE) {
9ada1934
SL
1922 page->next = discard_page;
1923 discard_page = page;
49e22585
CL
1924 }
1925 }
1926
1927 if (n)
1928 spin_unlock(&n->list_lock);
9ada1934
SL
1929
1930 while (discard_page) {
1931 page = discard_page;
1932 discard_page = discard_page->next;
1933
1934 stat(s, DEACTIVATE_EMPTY);
1935 discard_slab(s, page);
1936 stat(s, FREE_SLAB);
1937 }
49e22585
CL
1938}
1939
1940/*
1941 * Put a page that was just frozen (in __slab_free) into a partial page
1942 * slot if available. This is done without interrupts disabled and without
1943 * preemption disabled. The cmpxchg is racy and may put the partial page
1944 * onto a random cpus partial slot.
1945 *
1946 * If we did not find a slot then simply move all the partials to the
1947 * per node partial list.
1948 */
1949int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1950{
1951 struct page *oldpage;
1952 int pages;
1953 int pobjects;
1954
1955 do {
1956 pages = 0;
1957 pobjects = 0;
1958 oldpage = this_cpu_read(s->cpu_slab->partial);
1959
1960 if (oldpage) {
1961 pobjects = oldpage->pobjects;
1962 pages = oldpage->pages;
1963 if (drain && pobjects > s->cpu_partial) {
1964 unsigned long flags;
1965 /*
1966 * partial array is full. Move the existing
1967 * set to the per node partial list.
1968 */
1969 local_irq_save(flags);
1970 unfreeze_partials(s);
1971 local_irq_restore(flags);
1972 pobjects = 0;
1973 pages = 0;
1974 }
1975 }
1976
1977 pages++;
1978 pobjects += page->objects - page->inuse;
1979
1980 page->pages = pages;
1981 page->pobjects = pobjects;
1982 page->next = oldpage;
1983
42d623a8 1984 } while (irqsafe_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1985 stat(s, CPU_PARTIAL_FREE);
1986 return pobjects;
1987}
1988
dfb4f096 1989static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1990{
84e554e6 1991 stat(s, CPUSLAB_FLUSH);
dfb4f096 1992 deactivate_slab(s, c);
81819f0f
CL
1993}
1994
1995/*
1996 * Flush cpu slab.
6446faa2 1997 *
81819f0f
CL
1998 * Called from IPI handler with interrupts disabled.
1999 */
0c710013 2000static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2001{
9dfc6e68 2002 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2003
49e22585
CL
2004 if (likely(c)) {
2005 if (c->page)
2006 flush_slab(s, c);
2007
2008 unfreeze_partials(s);
2009 }
81819f0f
CL
2010}
2011
2012static void flush_cpu_slab(void *d)
2013{
2014 struct kmem_cache *s = d;
81819f0f 2015
dfb4f096 2016 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2017}
2018
2019static void flush_all(struct kmem_cache *s)
2020{
15c8b6c1 2021 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
2022}
2023
dfb4f096
CL
2024/*
2025 * Check if the objects in a per cpu structure fit numa
2026 * locality expectations.
2027 */
2028static inline int node_match(struct kmem_cache_cpu *c, int node)
2029{
2030#ifdef CONFIG_NUMA
2154a336 2031 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
2032 return 0;
2033#endif
2034 return 1;
2035}
2036
781b2ba6
PE
2037static int count_free(struct page *page)
2038{
2039 return page->objects - page->inuse;
2040}
2041
2042static unsigned long count_partial(struct kmem_cache_node *n,
2043 int (*get_count)(struct page *))
2044{
2045 unsigned long flags;
2046 unsigned long x = 0;
2047 struct page *page;
2048
2049 spin_lock_irqsave(&n->list_lock, flags);
2050 list_for_each_entry(page, &n->partial, lru)
2051 x += get_count(page);
2052 spin_unlock_irqrestore(&n->list_lock, flags);
2053 return x;
2054}
2055
26c02cf0
AB
2056static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2057{
2058#ifdef CONFIG_SLUB_DEBUG
2059 return atomic_long_read(&n->total_objects);
2060#else
2061 return 0;
2062#endif
2063}
2064
781b2ba6
PE
2065static noinline void
2066slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2067{
2068 int node;
2069
2070 printk(KERN_WARNING
2071 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2072 nid, gfpflags);
2073 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2074 "default order: %d, min order: %d\n", s->name, s->objsize,
2075 s->size, oo_order(s->oo), oo_order(s->min));
2076
fa5ec8a1
DR
2077 if (oo_order(s->min) > get_order(s->objsize))
2078 printk(KERN_WARNING " %s debugging increased min order, use "
2079 "slub_debug=O to disable.\n", s->name);
2080
781b2ba6
PE
2081 for_each_online_node(node) {
2082 struct kmem_cache_node *n = get_node(s, node);
2083 unsigned long nr_slabs;
2084 unsigned long nr_objs;
2085 unsigned long nr_free;
2086
2087 if (!n)
2088 continue;
2089
26c02cf0
AB
2090 nr_free = count_partial(n, count_free);
2091 nr_slabs = node_nr_slabs(n);
2092 nr_objs = node_nr_objs(n);
781b2ba6
PE
2093
2094 printk(KERN_WARNING
2095 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2096 node, nr_slabs, nr_objs, nr_free);
2097 }
2098}
2099
497b66f2
CL
2100static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2101 int node, struct kmem_cache_cpu **pc)
2102{
2103 void *object;
2104 struct kmem_cache_cpu *c;
2105 struct page *page = new_slab(s, flags, node);
2106
2107 if (page) {
2108 c = __this_cpu_ptr(s->cpu_slab);
2109 if (c->page)
2110 flush_slab(s, c);
2111
2112 /*
2113 * No other reference to the page yet so we can
2114 * muck around with it freely without cmpxchg
2115 */
2116 object = page->freelist;
2117 page->freelist = NULL;
2118
2119 stat(s, ALLOC_SLAB);
2120 c->node = page_to_nid(page);
2121 c->page = page;
2122 *pc = c;
2123 } else
2124 object = NULL;
2125
2126 return object;
2127}
2128
81819f0f 2129/*
894b8788
CL
2130 * Slow path. The lockless freelist is empty or we need to perform
2131 * debugging duties.
2132 *
894b8788
CL
2133 * Processing is still very fast if new objects have been freed to the
2134 * regular freelist. In that case we simply take over the regular freelist
2135 * as the lockless freelist and zap the regular freelist.
81819f0f 2136 *
894b8788
CL
2137 * If that is not working then we fall back to the partial lists. We take the
2138 * first element of the freelist as the object to allocate now and move the
2139 * rest of the freelist to the lockless freelist.
81819f0f 2140 *
894b8788 2141 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2142 * we need to allocate a new slab. This is the slowest path since it involves
2143 * a call to the page allocator and the setup of a new slab.
81819f0f 2144 */
ce71e27c
EGM
2145static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2146 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2147{
81819f0f 2148 void **object;
8a5ec0ba 2149 unsigned long flags;
2cfb7455
CL
2150 struct page new;
2151 unsigned long counters;
8a5ec0ba
CL
2152
2153 local_irq_save(flags);
2154#ifdef CONFIG_PREEMPT
2155 /*
2156 * We may have been preempted and rescheduled on a different
2157 * cpu before disabling interrupts. Need to reload cpu area
2158 * pointer.
2159 */
2160 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2161#endif
81819f0f 2162
497b66f2 2163 if (!c->page)
81819f0f 2164 goto new_slab;
49e22585 2165redo:
fc59c053 2166 if (unlikely(!node_match(c, node))) {
e36a2652 2167 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2168 deactivate_slab(s, c);
2169 goto new_slab;
2170 }
6446faa2 2171
73736e03
ED
2172 /* must check again c->freelist in case of cpu migration or IRQ */
2173 object = c->freelist;
2174 if (object)
2175 goto load_freelist;
2176
2cfb7455
CL
2177 stat(s, ALLOC_SLOWPATH);
2178
2179 do {
497b66f2
CL
2180 object = c->page->freelist;
2181 counters = c->page->counters;
2cfb7455 2182 new.counters = counters;
2cfb7455
CL
2183 VM_BUG_ON(!new.frozen);
2184
03e404af
CL
2185 /*
2186 * If there is no object left then we use this loop to
2187 * deactivate the slab which is simple since no objects
2188 * are left in the slab and therefore we do not need to
2189 * put the page back onto the partial list.
2190 *
2191 * If there are objects left then we retrieve them
2192 * and use them to refill the per cpu queue.
497b66f2 2193 */
03e404af 2194
497b66f2 2195 new.inuse = c->page->objects;
03e404af
CL
2196 new.frozen = object != NULL;
2197
497b66f2 2198 } while (!__cmpxchg_double_slab(s, c->page,
2cfb7455
CL
2199 object, counters,
2200 NULL, new.counters,
2201 "__slab_alloc"));
6446faa2 2202
49e22585 2203 if (!object) {
03e404af
CL
2204 c->page = NULL;
2205 stat(s, DEACTIVATE_BYPASS);
fc59c053 2206 goto new_slab;
03e404af 2207 }
6446faa2 2208
84e554e6 2209 stat(s, ALLOC_REFILL);
6446faa2 2210
894b8788 2211load_freelist:
ff12059e 2212 c->freelist = get_freepointer(s, object);
8a5ec0ba
CL
2213 c->tid = next_tid(c->tid);
2214 local_irq_restore(flags);
81819f0f
CL
2215 return object;
2216
81819f0f 2217new_slab:
2cfb7455 2218
49e22585
CL
2219 if (c->partial) {
2220 c->page = c->partial;
2221 c->partial = c->page->next;
2222 c->node = page_to_nid(c->page);
2223 stat(s, CPU_PARTIAL_ALLOC);
2224 c->freelist = NULL;
2225 goto redo;
81819f0f
CL
2226 }
2227
49e22585 2228 /* Then do expensive stuff like retrieving pages from the partial lists */
497b66f2 2229 object = get_partial(s, gfpflags, node, c);
b811c202 2230
497b66f2 2231 if (unlikely(!object)) {
01ad8a7b 2232
497b66f2 2233 object = new_slab_objects(s, gfpflags, node, &c);
2cfb7455 2234
497b66f2
CL
2235 if (unlikely(!object)) {
2236 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2237 slab_out_of_memory(s, gfpflags, node);
9e577e8b 2238
497b66f2
CL
2239 local_irq_restore(flags);
2240 return NULL;
2241 }
81819f0f 2242 }
2cfb7455 2243
497b66f2 2244 if (likely(!kmem_cache_debug(s)))
4b6f0750 2245 goto load_freelist;
2cfb7455 2246
497b66f2
CL
2247 /* Only entered in the debug case */
2248 if (!alloc_debug_processing(s, c->page, object, addr))
2249 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2250
2cfb7455 2251 c->freelist = get_freepointer(s, object);
442b06bc 2252 deactivate_slab(s, c);
15b7c514 2253 c->node = NUMA_NO_NODE;
a71ae47a
CL
2254 local_irq_restore(flags);
2255 return object;
894b8788
CL
2256}
2257
2258/*
2259 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2260 * have the fastpath folded into their functions. So no function call
2261 * overhead for requests that can be satisfied on the fastpath.
2262 *
2263 * The fastpath works by first checking if the lockless freelist can be used.
2264 * If not then __slab_alloc is called for slow processing.
2265 *
2266 * Otherwise we can simply pick the next object from the lockless free list.
2267 */
06428780 2268static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2269 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2270{
894b8788 2271 void **object;
dfb4f096 2272 struct kmem_cache_cpu *c;
8a5ec0ba 2273 unsigned long tid;
1f84260c 2274
c016b0bd 2275 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2276 return NULL;
1f84260c 2277
8a5ec0ba 2278redo:
8a5ec0ba
CL
2279
2280 /*
2281 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2282 * enabled. We may switch back and forth between cpus while
2283 * reading from one cpu area. That does not matter as long
2284 * as we end up on the original cpu again when doing the cmpxchg.
2285 */
9dfc6e68 2286 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2287
8a5ec0ba
CL
2288 /*
2289 * The transaction ids are globally unique per cpu and per operation on
2290 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2291 * occurs on the right processor and that there was no operation on the
2292 * linked list in between.
2293 */
2294 tid = c->tid;
2295 barrier();
8a5ec0ba 2296
9dfc6e68 2297 object = c->freelist;
9dfc6e68 2298 if (unlikely(!object || !node_match(c, node)))
894b8788 2299
dfb4f096 2300 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2301
2302 else {
8a5ec0ba 2303 /*
25985edc 2304 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2305 * operation and if we are on the right processor.
2306 *
2307 * The cmpxchg does the following atomically (without lock semantics!)
2308 * 1. Relocate first pointer to the current per cpu area.
2309 * 2. Verify that tid and freelist have not been changed
2310 * 3. If they were not changed replace tid and freelist
2311 *
2312 * Since this is without lock semantics the protection is only against
2313 * code executing on this cpu *not* from access by other cpus.
2314 */
30106b8c 2315 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2316 s->cpu_slab->freelist, s->cpu_slab->tid,
2317 object, tid,
1393d9a1 2318 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
2319
2320 note_cmpxchg_failure("slab_alloc", s, tid);
2321 goto redo;
2322 }
84e554e6 2323 stat(s, ALLOC_FASTPATH);
894b8788 2324 }
8a5ec0ba 2325
74e2134f 2326 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2327 memset(object, 0, s->objsize);
d07dbea4 2328
c016b0bd 2329 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2330
894b8788 2331 return object;
81819f0f
CL
2332}
2333
2334void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2335{
2154a336 2336 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2337
ca2b84cb 2338 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2339
2340 return ret;
81819f0f
CL
2341}
2342EXPORT_SYMBOL(kmem_cache_alloc);
2343
0f24f128 2344#ifdef CONFIG_TRACING
4a92379b
RK
2345void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2346{
2347 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2348 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2349 return ret;
2350}
2351EXPORT_SYMBOL(kmem_cache_alloc_trace);
2352
2353void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2354{
4a92379b
RK
2355 void *ret = kmalloc_order(size, flags, order);
2356 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2357 return ret;
5b882be4 2358}
4a92379b 2359EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2360#endif
2361
81819f0f
CL
2362#ifdef CONFIG_NUMA
2363void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2364{
5b882be4
EGM
2365 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2366
ca2b84cb
EGM
2367 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2368 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2369
2370 return ret;
81819f0f
CL
2371}
2372EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2373
0f24f128 2374#ifdef CONFIG_TRACING
4a92379b 2375void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2376 gfp_t gfpflags,
4a92379b 2377 int node, size_t size)
5b882be4 2378{
4a92379b
RK
2379 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2380
2381 trace_kmalloc_node(_RET_IP_, ret,
2382 size, s->size, gfpflags, node);
2383 return ret;
5b882be4 2384}
4a92379b 2385EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2386#endif
5d1f57e4 2387#endif
5b882be4 2388
81819f0f 2389/*
894b8788
CL
2390 * Slow patch handling. This may still be called frequently since objects
2391 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2392 *
894b8788
CL
2393 * So we still attempt to reduce cache line usage. Just take the slab
2394 * lock and free the item. If there is no additional partial page
2395 * handling required then we can return immediately.
81819f0f 2396 */
894b8788 2397static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2398 void *x, unsigned long addr)
81819f0f
CL
2399{
2400 void *prior;
2401 void **object = (void *)x;
2cfb7455
CL
2402 int was_frozen;
2403 int inuse;
2404 struct page new;
2405 unsigned long counters;
2406 struct kmem_cache_node *n = NULL;
61728d1e 2407 unsigned long uninitialized_var(flags);
81819f0f 2408
8a5ec0ba 2409 stat(s, FREE_SLOWPATH);
81819f0f 2410
8dc16c6c 2411 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2412 return;
6446faa2 2413
2cfb7455
CL
2414 do {
2415 prior = page->freelist;
2416 counters = page->counters;
2417 set_freepointer(s, object, prior);
2418 new.counters = counters;
2419 was_frozen = new.frozen;
2420 new.inuse--;
2421 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2422
2423 if (!kmem_cache_debug(s) && !prior)
2424
2425 /*
2426 * Slab was on no list before and will be partially empty
2427 * We can defer the list move and instead freeze it.
2428 */
2429 new.frozen = 1;
2430
2431 else { /* Needs to be taken off a list */
2432
2433 n = get_node(s, page_to_nid(page));
2434 /*
2435 * Speculatively acquire the list_lock.
2436 * If the cmpxchg does not succeed then we may
2437 * drop the list_lock without any processing.
2438 *
2439 * Otherwise the list_lock will synchronize with
2440 * other processors updating the list of slabs.
2441 */
2442 spin_lock_irqsave(&n->list_lock, flags);
2443
2444 }
2cfb7455
CL
2445 }
2446 inuse = new.inuse;
81819f0f 2447
2cfb7455
CL
2448 } while (!cmpxchg_double_slab(s, page,
2449 prior, counters,
2450 object, new.counters,
2451 "__slab_free"));
81819f0f 2452
2cfb7455 2453 if (likely(!n)) {
49e22585
CL
2454
2455 /*
2456 * If we just froze the page then put it onto the
2457 * per cpu partial list.
2458 */
2459 if (new.frozen && !was_frozen)
2460 put_cpu_partial(s, page, 1);
2461
2462 /*
2cfb7455
CL
2463 * The list lock was not taken therefore no list
2464 * activity can be necessary.
2465 */
2466 if (was_frozen)
2467 stat(s, FREE_FROZEN);
80f08c19 2468 return;
2cfb7455 2469 }
81819f0f
CL
2470
2471 /*
2cfb7455
CL
2472 * was_frozen may have been set after we acquired the list_lock in
2473 * an earlier loop. So we need to check it here again.
81819f0f 2474 */
2cfb7455
CL
2475 if (was_frozen)
2476 stat(s, FREE_FROZEN);
2477 else {
2478 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2479 goto slab_empty;
81819f0f 2480
2cfb7455
CL
2481 /*
2482 * Objects left in the slab. If it was not on the partial list before
2483 * then add it.
2484 */
2485 if (unlikely(!prior)) {
2486 remove_full(s, page);
136333d1 2487 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2488 stat(s, FREE_ADD_PARTIAL);
2489 }
8ff12cfc 2490 }
80f08c19 2491 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2492 return;
2493
2494slab_empty:
a973e9dd 2495 if (prior) {
81819f0f 2496 /*
6fbabb20 2497 * Slab on the partial list.
81819f0f 2498 */
5cc6eee8 2499 remove_partial(n, page);
84e554e6 2500 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2501 } else
2502 /* Slab must be on the full list */
2503 remove_full(s, page);
2cfb7455 2504
80f08c19 2505 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2506 stat(s, FREE_SLAB);
81819f0f 2507 discard_slab(s, page);
81819f0f
CL
2508}
2509
894b8788
CL
2510/*
2511 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2512 * can perform fastpath freeing without additional function calls.
2513 *
2514 * The fastpath is only possible if we are freeing to the current cpu slab
2515 * of this processor. This typically the case if we have just allocated
2516 * the item before.
2517 *
2518 * If fastpath is not possible then fall back to __slab_free where we deal
2519 * with all sorts of special processing.
2520 */
06428780 2521static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2522 struct page *page, void *x, unsigned long addr)
894b8788
CL
2523{
2524 void **object = (void *)x;
dfb4f096 2525 struct kmem_cache_cpu *c;
8a5ec0ba 2526 unsigned long tid;
1f84260c 2527
c016b0bd
CL
2528 slab_free_hook(s, x);
2529
8a5ec0ba
CL
2530redo:
2531 /*
2532 * Determine the currently cpus per cpu slab.
2533 * The cpu may change afterward. However that does not matter since
2534 * data is retrieved via this pointer. If we are on the same cpu
2535 * during the cmpxchg then the free will succedd.
2536 */
9dfc6e68 2537 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2538
8a5ec0ba
CL
2539 tid = c->tid;
2540 barrier();
c016b0bd 2541
442b06bc 2542 if (likely(page == c->page)) {
ff12059e 2543 set_freepointer(s, object, c->freelist);
8a5ec0ba 2544
30106b8c 2545 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2546 s->cpu_slab->freelist, s->cpu_slab->tid,
2547 c->freelist, tid,
2548 object, next_tid(tid)))) {
2549
2550 note_cmpxchg_failure("slab_free", s, tid);
2551 goto redo;
2552 }
84e554e6 2553 stat(s, FREE_FASTPATH);
894b8788 2554 } else
ff12059e 2555 __slab_free(s, page, x, addr);
894b8788 2556
894b8788
CL
2557}
2558
81819f0f
CL
2559void kmem_cache_free(struct kmem_cache *s, void *x)
2560{
77c5e2d0 2561 struct page *page;
81819f0f 2562
b49af68f 2563 page = virt_to_head_page(x);
81819f0f 2564
ce71e27c 2565 slab_free(s, page, x, _RET_IP_);
5b882be4 2566
ca2b84cb 2567 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2568}
2569EXPORT_SYMBOL(kmem_cache_free);
2570
81819f0f 2571/*
672bba3a
CL
2572 * Object placement in a slab is made very easy because we always start at
2573 * offset 0. If we tune the size of the object to the alignment then we can
2574 * get the required alignment by putting one properly sized object after
2575 * another.
81819f0f
CL
2576 *
2577 * Notice that the allocation order determines the sizes of the per cpu
2578 * caches. Each processor has always one slab available for allocations.
2579 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2580 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2581 * locking overhead.
81819f0f
CL
2582 */
2583
2584/*
2585 * Mininum / Maximum order of slab pages. This influences locking overhead
2586 * and slab fragmentation. A higher order reduces the number of partial slabs
2587 * and increases the number of allocations possible without having to
2588 * take the list_lock.
2589 */
2590static int slub_min_order;
114e9e89 2591static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2592static int slub_min_objects;
81819f0f
CL
2593
2594/*
2595 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2596 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2597 */
2598static int slub_nomerge;
2599
81819f0f
CL
2600/*
2601 * Calculate the order of allocation given an slab object size.
2602 *
672bba3a
CL
2603 * The order of allocation has significant impact on performance and other
2604 * system components. Generally order 0 allocations should be preferred since
2605 * order 0 does not cause fragmentation in the page allocator. Larger objects
2606 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2607 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2608 * would be wasted.
2609 *
2610 * In order to reach satisfactory performance we must ensure that a minimum
2611 * number of objects is in one slab. Otherwise we may generate too much
2612 * activity on the partial lists which requires taking the list_lock. This is
2613 * less a concern for large slabs though which are rarely used.
81819f0f 2614 *
672bba3a
CL
2615 * slub_max_order specifies the order where we begin to stop considering the
2616 * number of objects in a slab as critical. If we reach slub_max_order then
2617 * we try to keep the page order as low as possible. So we accept more waste
2618 * of space in favor of a small page order.
81819f0f 2619 *
672bba3a
CL
2620 * Higher order allocations also allow the placement of more objects in a
2621 * slab and thereby reduce object handling overhead. If the user has
2622 * requested a higher mininum order then we start with that one instead of
2623 * the smallest order which will fit the object.
81819f0f 2624 */
5e6d444e 2625static inline int slab_order(int size, int min_objects,
ab9a0f19 2626 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2627{
2628 int order;
2629 int rem;
6300ea75 2630 int min_order = slub_min_order;
81819f0f 2631
ab9a0f19 2632 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2633 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2634
6300ea75 2635 for (order = max(min_order,
5e6d444e
CL
2636 fls(min_objects * size - 1) - PAGE_SHIFT);
2637 order <= max_order; order++) {
81819f0f 2638
5e6d444e 2639 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2640
ab9a0f19 2641 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2642 continue;
2643
ab9a0f19 2644 rem = (slab_size - reserved) % size;
81819f0f 2645
5e6d444e 2646 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2647 break;
2648
2649 }
672bba3a 2650
81819f0f
CL
2651 return order;
2652}
2653
ab9a0f19 2654static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2655{
2656 int order;
2657 int min_objects;
2658 int fraction;
e8120ff1 2659 int max_objects;
5e6d444e
CL
2660
2661 /*
2662 * Attempt to find best configuration for a slab. This
2663 * works by first attempting to generate a layout with
2664 * the best configuration and backing off gradually.
2665 *
2666 * First we reduce the acceptable waste in a slab. Then
2667 * we reduce the minimum objects required in a slab.
2668 */
2669 min_objects = slub_min_objects;
9b2cd506
CL
2670 if (!min_objects)
2671 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2672 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2673 min_objects = min(min_objects, max_objects);
2674
5e6d444e 2675 while (min_objects > 1) {
c124f5b5 2676 fraction = 16;
5e6d444e
CL
2677 while (fraction >= 4) {
2678 order = slab_order(size, min_objects,
ab9a0f19 2679 slub_max_order, fraction, reserved);
5e6d444e
CL
2680 if (order <= slub_max_order)
2681 return order;
2682 fraction /= 2;
2683 }
5086c389 2684 min_objects--;
5e6d444e
CL
2685 }
2686
2687 /*
2688 * We were unable to place multiple objects in a slab. Now
2689 * lets see if we can place a single object there.
2690 */
ab9a0f19 2691 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2692 if (order <= slub_max_order)
2693 return order;
2694
2695 /*
2696 * Doh this slab cannot be placed using slub_max_order.
2697 */
ab9a0f19 2698 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2699 if (order < MAX_ORDER)
5e6d444e
CL
2700 return order;
2701 return -ENOSYS;
2702}
2703
81819f0f 2704/*
672bba3a 2705 * Figure out what the alignment of the objects will be.
81819f0f
CL
2706 */
2707static unsigned long calculate_alignment(unsigned long flags,
2708 unsigned long align, unsigned long size)
2709{
2710 /*
6446faa2
CL
2711 * If the user wants hardware cache aligned objects then follow that
2712 * suggestion if the object is sufficiently large.
81819f0f 2713 *
6446faa2
CL
2714 * The hardware cache alignment cannot override the specified
2715 * alignment though. If that is greater then use it.
81819f0f 2716 */
b6210386
NP
2717 if (flags & SLAB_HWCACHE_ALIGN) {
2718 unsigned long ralign = cache_line_size();
2719 while (size <= ralign / 2)
2720 ralign /= 2;
2721 align = max(align, ralign);
2722 }
81819f0f
CL
2723
2724 if (align < ARCH_SLAB_MINALIGN)
b6210386 2725 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2726
2727 return ALIGN(align, sizeof(void *));
2728}
2729
5595cffc
PE
2730static void
2731init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2732{
2733 n->nr_partial = 0;
81819f0f
CL
2734 spin_lock_init(&n->list_lock);
2735 INIT_LIST_HEAD(&n->partial);
8ab1372f 2736#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2737 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2738 atomic_long_set(&n->total_objects, 0);
643b1138 2739 INIT_LIST_HEAD(&n->full);
8ab1372f 2740#endif
81819f0f
CL
2741}
2742
55136592 2743static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2744{
6c182dc0
CL
2745 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2746 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2747
8a5ec0ba 2748 /*
d4d84fef
CM
2749 * Must align to double word boundary for the double cmpxchg
2750 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2751 */
d4d84fef
CM
2752 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2753 2 * sizeof(void *));
8a5ec0ba
CL
2754
2755 if (!s->cpu_slab)
2756 return 0;
2757
2758 init_kmem_cache_cpus(s);
4c93c355 2759
8a5ec0ba 2760 return 1;
4c93c355 2761}
4c93c355 2762
51df1142
CL
2763static struct kmem_cache *kmem_cache_node;
2764
81819f0f
CL
2765/*
2766 * No kmalloc_node yet so do it by hand. We know that this is the first
2767 * slab on the node for this slabcache. There are no concurrent accesses
2768 * possible.
2769 *
2770 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2771 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2772 * memory on a fresh node that has no slab structures yet.
81819f0f 2773 */
55136592 2774static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2775{
2776 struct page *page;
2777 struct kmem_cache_node *n;
2778
51df1142 2779 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2780
51df1142 2781 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2782
2783 BUG_ON(!page);
a2f92ee7
CL
2784 if (page_to_nid(page) != node) {
2785 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2786 "node %d\n", node);
2787 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2788 "in order to be able to continue\n");
2789 }
2790
81819f0f
CL
2791 n = page->freelist;
2792 BUG_ON(!n);
51df1142 2793 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2794 page->inuse = 1;
8cb0a506 2795 page->frozen = 0;
51df1142 2796 kmem_cache_node->node[node] = n;
8ab1372f 2797#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2798 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2799 init_tracking(kmem_cache_node, n);
8ab1372f 2800#endif
51df1142
CL
2801 init_kmem_cache_node(n, kmem_cache_node);
2802 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2803
136333d1 2804 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2805}
2806
2807static void free_kmem_cache_nodes(struct kmem_cache *s)
2808{
2809 int node;
2810
f64dc58c 2811 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2812 struct kmem_cache_node *n = s->node[node];
51df1142 2813
73367bd8 2814 if (n)
51df1142
CL
2815 kmem_cache_free(kmem_cache_node, n);
2816
81819f0f
CL
2817 s->node[node] = NULL;
2818 }
2819}
2820
55136592 2821static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2822{
2823 int node;
81819f0f 2824
f64dc58c 2825 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2826 struct kmem_cache_node *n;
2827
73367bd8 2828 if (slab_state == DOWN) {
55136592 2829 early_kmem_cache_node_alloc(node);
73367bd8
AD
2830 continue;
2831 }
51df1142 2832 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2833 GFP_KERNEL, node);
81819f0f 2834
73367bd8
AD
2835 if (!n) {
2836 free_kmem_cache_nodes(s);
2837 return 0;
81819f0f 2838 }
73367bd8 2839
81819f0f 2840 s->node[node] = n;
5595cffc 2841 init_kmem_cache_node(n, s);
81819f0f
CL
2842 }
2843 return 1;
2844}
81819f0f 2845
c0bdb232 2846static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2847{
2848 if (min < MIN_PARTIAL)
2849 min = MIN_PARTIAL;
2850 else if (min > MAX_PARTIAL)
2851 min = MAX_PARTIAL;
2852 s->min_partial = min;
2853}
2854
81819f0f
CL
2855/*
2856 * calculate_sizes() determines the order and the distribution of data within
2857 * a slab object.
2858 */
06b285dc 2859static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2860{
2861 unsigned long flags = s->flags;
2862 unsigned long size = s->objsize;
2863 unsigned long align = s->align;
834f3d11 2864 int order;
81819f0f 2865
d8b42bf5
CL
2866 /*
2867 * Round up object size to the next word boundary. We can only
2868 * place the free pointer at word boundaries and this determines
2869 * the possible location of the free pointer.
2870 */
2871 size = ALIGN(size, sizeof(void *));
2872
2873#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2874 /*
2875 * Determine if we can poison the object itself. If the user of
2876 * the slab may touch the object after free or before allocation
2877 * then we should never poison the object itself.
2878 */
2879 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2880 !s->ctor)
81819f0f
CL
2881 s->flags |= __OBJECT_POISON;
2882 else
2883 s->flags &= ~__OBJECT_POISON;
2884
81819f0f
CL
2885
2886 /*
672bba3a 2887 * If we are Redzoning then check if there is some space between the
81819f0f 2888 * end of the object and the free pointer. If not then add an
672bba3a 2889 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2890 */
2891 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2892 size += sizeof(void *);
41ecc55b 2893#endif
81819f0f
CL
2894
2895 /*
672bba3a
CL
2896 * With that we have determined the number of bytes in actual use
2897 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2898 */
2899 s->inuse = size;
2900
2901 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2902 s->ctor)) {
81819f0f
CL
2903 /*
2904 * Relocate free pointer after the object if it is not
2905 * permitted to overwrite the first word of the object on
2906 * kmem_cache_free.
2907 *
2908 * This is the case if we do RCU, have a constructor or
2909 * destructor or are poisoning the objects.
2910 */
2911 s->offset = size;
2912 size += sizeof(void *);
2913 }
2914
c12b3c62 2915#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2916 if (flags & SLAB_STORE_USER)
2917 /*
2918 * Need to store information about allocs and frees after
2919 * the object.
2920 */
2921 size += 2 * sizeof(struct track);
2922
be7b3fbc 2923 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2924 /*
2925 * Add some empty padding so that we can catch
2926 * overwrites from earlier objects rather than let
2927 * tracking information or the free pointer be
0211a9c8 2928 * corrupted if a user writes before the start
81819f0f
CL
2929 * of the object.
2930 */
2931 size += sizeof(void *);
41ecc55b 2932#endif
672bba3a 2933
81819f0f
CL
2934 /*
2935 * Determine the alignment based on various parameters that the
65c02d4c
CL
2936 * user specified and the dynamic determination of cache line size
2937 * on bootup.
81819f0f
CL
2938 */
2939 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2940 s->align = align;
81819f0f
CL
2941
2942 /*
2943 * SLUB stores one object immediately after another beginning from
2944 * offset 0. In order to align the objects we have to simply size
2945 * each object to conform to the alignment.
2946 */
2947 size = ALIGN(size, align);
2948 s->size = size;
06b285dc
CL
2949 if (forced_order >= 0)
2950 order = forced_order;
2951 else
ab9a0f19 2952 order = calculate_order(size, s->reserved);
81819f0f 2953
834f3d11 2954 if (order < 0)
81819f0f
CL
2955 return 0;
2956
b7a49f0d 2957 s->allocflags = 0;
834f3d11 2958 if (order)
b7a49f0d
CL
2959 s->allocflags |= __GFP_COMP;
2960
2961 if (s->flags & SLAB_CACHE_DMA)
2962 s->allocflags |= SLUB_DMA;
2963
2964 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2965 s->allocflags |= __GFP_RECLAIMABLE;
2966
81819f0f
CL
2967 /*
2968 * Determine the number of objects per slab
2969 */
ab9a0f19
LJ
2970 s->oo = oo_make(order, size, s->reserved);
2971 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2972 if (oo_objects(s->oo) > oo_objects(s->max))
2973 s->max = s->oo;
81819f0f 2974
834f3d11 2975 return !!oo_objects(s->oo);
81819f0f
CL
2976
2977}
2978
55136592 2979static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2980 const char *name, size_t size,
2981 size_t align, unsigned long flags,
51cc5068 2982 void (*ctor)(void *))
81819f0f
CL
2983{
2984 memset(s, 0, kmem_size);
2985 s->name = name;
2986 s->ctor = ctor;
81819f0f 2987 s->objsize = size;
81819f0f 2988 s->align = align;
ba0268a8 2989 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2990 s->reserved = 0;
81819f0f 2991
da9a638c
LJ
2992 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2993 s->reserved = sizeof(struct rcu_head);
81819f0f 2994
06b285dc 2995 if (!calculate_sizes(s, -1))
81819f0f 2996 goto error;
3de47213
DR
2997 if (disable_higher_order_debug) {
2998 /*
2999 * Disable debugging flags that store metadata if the min slab
3000 * order increased.
3001 */
3002 if (get_order(s->size) > get_order(s->objsize)) {
3003 s->flags &= ~DEBUG_METADATA_FLAGS;
3004 s->offset = 0;
3005 if (!calculate_sizes(s, -1))
3006 goto error;
3007 }
3008 }
81819f0f 3009
b789ef51
CL
3010#ifdef CONFIG_CMPXCHG_DOUBLE
3011 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3012 /* Enable fast mode */
3013 s->flags |= __CMPXCHG_DOUBLE;
3014#endif
3015
3b89d7d8
DR
3016 /*
3017 * The larger the object size is, the more pages we want on the partial
3018 * list to avoid pounding the page allocator excessively.
3019 */
49e22585
CL
3020 set_min_partial(s, ilog2(s->size) / 2);
3021
3022 /*
3023 * cpu_partial determined the maximum number of objects kept in the
3024 * per cpu partial lists of a processor.
3025 *
3026 * Per cpu partial lists mainly contain slabs that just have one
3027 * object freed. If they are used for allocation then they can be
3028 * filled up again with minimal effort. The slab will never hit the
3029 * per node partial lists and therefore no locking will be required.
3030 *
3031 * This setting also determines
3032 *
3033 * A) The number of objects from per cpu partial slabs dumped to the
3034 * per node list when we reach the limit.
9f264904 3035 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3036 * per node list when we run out of per cpu objects. We only fetch 50%
3037 * to keep some capacity around for frees.
3038 */
3039 if (s->size >= PAGE_SIZE)
3040 s->cpu_partial = 2;
3041 else if (s->size >= 1024)
3042 s->cpu_partial = 6;
3043 else if (s->size >= 256)
3044 s->cpu_partial = 13;
3045 else
3046 s->cpu_partial = 30;
3047
81819f0f
CL
3048 s->refcount = 1;
3049#ifdef CONFIG_NUMA
e2cb96b7 3050 s->remote_node_defrag_ratio = 1000;
81819f0f 3051#endif
55136592 3052 if (!init_kmem_cache_nodes(s))
dfb4f096 3053 goto error;
81819f0f 3054
55136592 3055 if (alloc_kmem_cache_cpus(s))
81819f0f 3056 return 1;
ff12059e 3057
4c93c355 3058 free_kmem_cache_nodes(s);
81819f0f
CL
3059error:
3060 if (flags & SLAB_PANIC)
3061 panic("Cannot create slab %s size=%lu realsize=%u "
3062 "order=%u offset=%u flags=%lx\n",
834f3d11 3063 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3064 s->offset, flags);
3065 return 0;
3066}
81819f0f 3067
81819f0f
CL
3068/*
3069 * Determine the size of a slab object
3070 */
3071unsigned int kmem_cache_size(struct kmem_cache *s)
3072{
3073 return s->objsize;
3074}
3075EXPORT_SYMBOL(kmem_cache_size);
3076
33b12c38
CL
3077static void list_slab_objects(struct kmem_cache *s, struct page *page,
3078 const char *text)
3079{
3080#ifdef CONFIG_SLUB_DEBUG
3081 void *addr = page_address(page);
3082 void *p;
a5dd5c11
NK
3083 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3084 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3085 if (!map)
3086 return;
33b12c38
CL
3087 slab_err(s, page, "%s", text);
3088 slab_lock(page);
33b12c38 3089
5f80b13a 3090 get_map(s, page, map);
33b12c38
CL
3091 for_each_object(p, s, addr, page->objects) {
3092
3093 if (!test_bit(slab_index(p, s, addr), map)) {
3094 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3095 p, p - addr);
3096 print_tracking(s, p);
3097 }
3098 }
3099 slab_unlock(page);
bbd7d57b 3100 kfree(map);
33b12c38
CL
3101#endif
3102}
3103
81819f0f 3104/*
599870b1 3105 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3106 * This is called from kmem_cache_close(). We must be the last thread
3107 * using the cache and therefore we do not need to lock anymore.
81819f0f 3108 */
599870b1 3109static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3110{
81819f0f
CL
3111 struct page *page, *h;
3112
33b12c38 3113 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3114 if (!page->inuse) {
5cc6eee8 3115 remove_partial(n, page);
81819f0f 3116 discard_slab(s, page);
33b12c38
CL
3117 } else {
3118 list_slab_objects(s, page,
3119 "Objects remaining on kmem_cache_close()");
599870b1 3120 }
33b12c38 3121 }
81819f0f
CL
3122}
3123
3124/*
672bba3a 3125 * Release all resources used by a slab cache.
81819f0f 3126 */
0c710013 3127static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3128{
3129 int node;
3130
3131 flush_all(s);
9dfc6e68 3132 free_percpu(s->cpu_slab);
81819f0f 3133 /* Attempt to free all objects */
f64dc58c 3134 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3135 struct kmem_cache_node *n = get_node(s, node);
3136
599870b1
CL
3137 free_partial(s, n);
3138 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3139 return 1;
3140 }
3141 free_kmem_cache_nodes(s);
3142 return 0;
3143}
3144
3145/*
3146 * Close a cache and release the kmem_cache structure
3147 * (must be used for caches created using kmem_cache_create)
3148 */
3149void kmem_cache_destroy(struct kmem_cache *s)
3150{
3151 down_write(&slub_lock);
3152 s->refcount--;
3153 if (!s->refcount) {
3154 list_del(&s->list);
69cb8e6b 3155 up_write(&slub_lock);
d629d819
PE
3156 if (kmem_cache_close(s)) {
3157 printk(KERN_ERR "SLUB %s: %s called for cache that "
3158 "still has objects.\n", s->name, __func__);
3159 dump_stack();
3160 }
d76b1590
ED
3161 if (s->flags & SLAB_DESTROY_BY_RCU)
3162 rcu_barrier();
81819f0f 3163 sysfs_slab_remove(s);
69cb8e6b
CL
3164 } else
3165 up_write(&slub_lock);
81819f0f
CL
3166}
3167EXPORT_SYMBOL(kmem_cache_destroy);
3168
3169/********************************************************************
3170 * Kmalloc subsystem
3171 *******************************************************************/
3172
51df1142 3173struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3174EXPORT_SYMBOL(kmalloc_caches);
3175
51df1142
CL
3176static struct kmem_cache *kmem_cache;
3177
55136592 3178#ifdef CONFIG_ZONE_DMA
51df1142 3179static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3180#endif
3181
81819f0f
CL
3182static int __init setup_slub_min_order(char *str)
3183{
06428780 3184 get_option(&str, &slub_min_order);
81819f0f
CL
3185
3186 return 1;
3187}
3188
3189__setup("slub_min_order=", setup_slub_min_order);
3190
3191static int __init setup_slub_max_order(char *str)
3192{
06428780 3193 get_option(&str, &slub_max_order);
818cf590 3194 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3195
3196 return 1;
3197}
3198
3199__setup("slub_max_order=", setup_slub_max_order);
3200
3201static int __init setup_slub_min_objects(char *str)
3202{
06428780 3203 get_option(&str, &slub_min_objects);
81819f0f
CL
3204
3205 return 1;
3206}
3207
3208__setup("slub_min_objects=", setup_slub_min_objects);
3209
3210static int __init setup_slub_nomerge(char *str)
3211{
3212 slub_nomerge = 1;
3213 return 1;
3214}
3215
3216__setup("slub_nomerge", setup_slub_nomerge);
3217
51df1142
CL
3218static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3219 int size, unsigned int flags)
81819f0f 3220{
51df1142
CL
3221 struct kmem_cache *s;
3222
3223 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3224
83b519e8
PE
3225 /*
3226 * This function is called with IRQs disabled during early-boot on
3227 * single CPU so there's no need to take slub_lock here.
3228 */
55136592 3229 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3230 flags, NULL))
81819f0f
CL
3231 goto panic;
3232
3233 list_add(&s->list, &slab_caches);
51df1142 3234 return s;
81819f0f
CL
3235
3236panic:
3237 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3238 return NULL;
81819f0f
CL
3239}
3240
f1b26339
CL
3241/*
3242 * Conversion table for small slabs sizes / 8 to the index in the
3243 * kmalloc array. This is necessary for slabs < 192 since we have non power
3244 * of two cache sizes there. The size of larger slabs can be determined using
3245 * fls.
3246 */
3247static s8 size_index[24] = {
3248 3, /* 8 */
3249 4, /* 16 */
3250 5, /* 24 */
3251 5, /* 32 */
3252 6, /* 40 */
3253 6, /* 48 */
3254 6, /* 56 */
3255 6, /* 64 */
3256 1, /* 72 */
3257 1, /* 80 */
3258 1, /* 88 */
3259 1, /* 96 */
3260 7, /* 104 */
3261 7, /* 112 */
3262 7, /* 120 */
3263 7, /* 128 */
3264 2, /* 136 */
3265 2, /* 144 */
3266 2, /* 152 */
3267 2, /* 160 */
3268 2, /* 168 */
3269 2, /* 176 */
3270 2, /* 184 */
3271 2 /* 192 */
3272};
3273
acdfcd04
AK
3274static inline int size_index_elem(size_t bytes)
3275{
3276 return (bytes - 1) / 8;
3277}
3278
81819f0f
CL
3279static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3280{
f1b26339 3281 int index;
81819f0f 3282
f1b26339
CL
3283 if (size <= 192) {
3284 if (!size)
3285 return ZERO_SIZE_PTR;
81819f0f 3286
acdfcd04 3287 index = size_index[size_index_elem(size)];
aadb4bc4 3288 } else
f1b26339 3289 index = fls(size - 1);
81819f0f
CL
3290
3291#ifdef CONFIG_ZONE_DMA
f1b26339 3292 if (unlikely((flags & SLUB_DMA)))
51df1142 3293 return kmalloc_dma_caches[index];
f1b26339 3294
81819f0f 3295#endif
51df1142 3296 return kmalloc_caches[index];
81819f0f
CL
3297}
3298
3299void *__kmalloc(size_t size, gfp_t flags)
3300{
aadb4bc4 3301 struct kmem_cache *s;
5b882be4 3302 void *ret;
81819f0f 3303
ffadd4d0 3304 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3305 return kmalloc_large(size, flags);
aadb4bc4
CL
3306
3307 s = get_slab(size, flags);
3308
3309 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3310 return s;
3311
2154a336 3312 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3313
ca2b84cb 3314 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3315
3316 return ret;
81819f0f
CL
3317}
3318EXPORT_SYMBOL(__kmalloc);
3319
5d1f57e4 3320#ifdef CONFIG_NUMA
f619cfe1
CL
3321static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3322{
b1eeab67 3323 struct page *page;
e4f7c0b4 3324 void *ptr = NULL;
f619cfe1 3325
b1eeab67
VN
3326 flags |= __GFP_COMP | __GFP_NOTRACK;
3327 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3328 if (page)
e4f7c0b4
CM
3329 ptr = page_address(page);
3330
3331 kmemleak_alloc(ptr, size, 1, flags);
3332 return ptr;
f619cfe1
CL
3333}
3334
81819f0f
CL
3335void *__kmalloc_node(size_t size, gfp_t flags, int node)
3336{
aadb4bc4 3337 struct kmem_cache *s;
5b882be4 3338 void *ret;
81819f0f 3339
057685cf 3340 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3341 ret = kmalloc_large_node(size, flags, node);
3342
ca2b84cb
EGM
3343 trace_kmalloc_node(_RET_IP_, ret,
3344 size, PAGE_SIZE << get_order(size),
3345 flags, node);
5b882be4
EGM
3346
3347 return ret;
3348 }
aadb4bc4
CL
3349
3350 s = get_slab(size, flags);
3351
3352 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3353 return s;
3354
5b882be4
EGM
3355 ret = slab_alloc(s, flags, node, _RET_IP_);
3356
ca2b84cb 3357 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3358
3359 return ret;
81819f0f
CL
3360}
3361EXPORT_SYMBOL(__kmalloc_node);
3362#endif
3363
3364size_t ksize(const void *object)
3365{
272c1d21 3366 struct page *page;
81819f0f 3367
ef8b4520 3368 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3369 return 0;
3370
294a80a8 3371 page = virt_to_head_page(object);
294a80a8 3372
76994412
PE
3373 if (unlikely(!PageSlab(page))) {
3374 WARN_ON(!PageCompound(page));
294a80a8 3375 return PAGE_SIZE << compound_order(page);
76994412 3376 }
81819f0f 3377
b3d41885 3378 return slab_ksize(page->slab);
81819f0f 3379}
b1aabecd 3380EXPORT_SYMBOL(ksize);
81819f0f 3381
d18a90dd
BG
3382#ifdef CONFIG_SLUB_DEBUG
3383bool verify_mem_not_deleted(const void *x)
3384{
3385 struct page *page;
3386 void *object = (void *)x;
3387 unsigned long flags;
3388 bool rv;
3389
3390 if (unlikely(ZERO_OR_NULL_PTR(x)))
3391 return false;
3392
3393 local_irq_save(flags);
3394
3395 page = virt_to_head_page(x);
3396 if (unlikely(!PageSlab(page))) {
3397 /* maybe it was from stack? */
3398 rv = true;
3399 goto out_unlock;
3400 }
3401
3402 slab_lock(page);
3403 if (on_freelist(page->slab, page, object)) {
3404 object_err(page->slab, page, object, "Object is on free-list");
3405 rv = false;
3406 } else {
3407 rv = true;
3408 }
3409 slab_unlock(page);
3410
3411out_unlock:
3412 local_irq_restore(flags);
3413 return rv;
3414}
3415EXPORT_SYMBOL(verify_mem_not_deleted);
3416#endif
3417
81819f0f
CL
3418void kfree(const void *x)
3419{
81819f0f 3420 struct page *page;
5bb983b0 3421 void *object = (void *)x;
81819f0f 3422
2121db74
PE
3423 trace_kfree(_RET_IP_, x);
3424
2408c550 3425 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3426 return;
3427
b49af68f 3428 page = virt_to_head_page(x);
aadb4bc4 3429 if (unlikely(!PageSlab(page))) {
0937502a 3430 BUG_ON(!PageCompound(page));
e4f7c0b4 3431 kmemleak_free(x);
aadb4bc4
CL
3432 put_page(page);
3433 return;
3434 }
ce71e27c 3435 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3436}
3437EXPORT_SYMBOL(kfree);
3438
2086d26a 3439/*
672bba3a
CL
3440 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3441 * the remaining slabs by the number of items in use. The slabs with the
3442 * most items in use come first. New allocations will then fill those up
3443 * and thus they can be removed from the partial lists.
3444 *
3445 * The slabs with the least items are placed last. This results in them
3446 * being allocated from last increasing the chance that the last objects
3447 * are freed in them.
2086d26a
CL
3448 */
3449int kmem_cache_shrink(struct kmem_cache *s)
3450{
3451 int node;
3452 int i;
3453 struct kmem_cache_node *n;
3454 struct page *page;
3455 struct page *t;
205ab99d 3456 int objects = oo_objects(s->max);
2086d26a 3457 struct list_head *slabs_by_inuse =
834f3d11 3458 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3459 unsigned long flags;
3460
3461 if (!slabs_by_inuse)
3462 return -ENOMEM;
3463
3464 flush_all(s);
f64dc58c 3465 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3466 n = get_node(s, node);
3467
3468 if (!n->nr_partial)
3469 continue;
3470
834f3d11 3471 for (i = 0; i < objects; i++)
2086d26a
CL
3472 INIT_LIST_HEAD(slabs_by_inuse + i);
3473
3474 spin_lock_irqsave(&n->list_lock, flags);
3475
3476 /*
672bba3a 3477 * Build lists indexed by the items in use in each slab.
2086d26a 3478 *
672bba3a
CL
3479 * Note that concurrent frees may occur while we hold the
3480 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3481 */
3482 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3483 list_move(&page->lru, slabs_by_inuse + page->inuse);
3484 if (!page->inuse)
3485 n->nr_partial--;
2086d26a
CL
3486 }
3487
2086d26a 3488 /*
672bba3a
CL
3489 * Rebuild the partial list with the slabs filled up most
3490 * first and the least used slabs at the end.
2086d26a 3491 */
69cb8e6b 3492 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3493 list_splice(slabs_by_inuse + i, n->partial.prev);
3494
2086d26a 3495 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3496
3497 /* Release empty slabs */
3498 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3499 discard_slab(s, page);
2086d26a
CL
3500 }
3501
3502 kfree(slabs_by_inuse);
3503 return 0;
3504}
3505EXPORT_SYMBOL(kmem_cache_shrink);
3506
92a5bbc1 3507#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3508static int slab_mem_going_offline_callback(void *arg)
3509{
3510 struct kmem_cache *s;
3511
3512 down_read(&slub_lock);
3513 list_for_each_entry(s, &slab_caches, list)
3514 kmem_cache_shrink(s);
3515 up_read(&slub_lock);
3516
3517 return 0;
3518}
3519
3520static void slab_mem_offline_callback(void *arg)
3521{
3522 struct kmem_cache_node *n;
3523 struct kmem_cache *s;
3524 struct memory_notify *marg = arg;
3525 int offline_node;
3526
3527 offline_node = marg->status_change_nid;
3528
3529 /*
3530 * If the node still has available memory. we need kmem_cache_node
3531 * for it yet.
3532 */
3533 if (offline_node < 0)
3534 return;
3535
3536 down_read(&slub_lock);
3537 list_for_each_entry(s, &slab_caches, list) {
3538 n = get_node(s, offline_node);
3539 if (n) {
3540 /*
3541 * if n->nr_slabs > 0, slabs still exist on the node
3542 * that is going down. We were unable to free them,
c9404c9c 3543 * and offline_pages() function shouldn't call this
b9049e23
YG
3544 * callback. So, we must fail.
3545 */
0f389ec6 3546 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3547
3548 s->node[offline_node] = NULL;
8de66a0c 3549 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3550 }
3551 }
3552 up_read(&slub_lock);
3553}
3554
3555static int slab_mem_going_online_callback(void *arg)
3556{
3557 struct kmem_cache_node *n;
3558 struct kmem_cache *s;
3559 struct memory_notify *marg = arg;
3560 int nid = marg->status_change_nid;
3561 int ret = 0;
3562
3563 /*
3564 * If the node's memory is already available, then kmem_cache_node is
3565 * already created. Nothing to do.
3566 */
3567 if (nid < 0)
3568 return 0;
3569
3570 /*
0121c619 3571 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3572 * allocate a kmem_cache_node structure in order to bring the node
3573 * online.
3574 */
3575 down_read(&slub_lock);
3576 list_for_each_entry(s, &slab_caches, list) {
3577 /*
3578 * XXX: kmem_cache_alloc_node will fallback to other nodes
3579 * since memory is not yet available from the node that
3580 * is brought up.
3581 */
8de66a0c 3582 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3583 if (!n) {
3584 ret = -ENOMEM;
3585 goto out;
3586 }
5595cffc 3587 init_kmem_cache_node(n, s);
b9049e23
YG
3588 s->node[nid] = n;
3589 }
3590out:
3591 up_read(&slub_lock);
3592 return ret;
3593}
3594
3595static int slab_memory_callback(struct notifier_block *self,
3596 unsigned long action, void *arg)
3597{
3598 int ret = 0;
3599
3600 switch (action) {
3601 case MEM_GOING_ONLINE:
3602 ret = slab_mem_going_online_callback(arg);
3603 break;
3604 case MEM_GOING_OFFLINE:
3605 ret = slab_mem_going_offline_callback(arg);
3606 break;
3607 case MEM_OFFLINE:
3608 case MEM_CANCEL_ONLINE:
3609 slab_mem_offline_callback(arg);
3610 break;
3611 case MEM_ONLINE:
3612 case MEM_CANCEL_OFFLINE:
3613 break;
3614 }
dc19f9db
KH
3615 if (ret)
3616 ret = notifier_from_errno(ret);
3617 else
3618 ret = NOTIFY_OK;
b9049e23
YG
3619 return ret;
3620}
3621
3622#endif /* CONFIG_MEMORY_HOTPLUG */
3623
81819f0f
CL
3624/********************************************************************
3625 * Basic setup of slabs
3626 *******************************************************************/
3627
51df1142
CL
3628/*
3629 * Used for early kmem_cache structures that were allocated using
3630 * the page allocator
3631 */
3632
3633static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3634{
3635 int node;
3636
3637 list_add(&s->list, &slab_caches);
3638 s->refcount = -1;
3639
3640 for_each_node_state(node, N_NORMAL_MEMORY) {
3641 struct kmem_cache_node *n = get_node(s, node);
3642 struct page *p;
3643
3644 if (n) {
3645 list_for_each_entry(p, &n->partial, lru)
3646 p->slab = s;
3647
607bf324 3648#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3649 list_for_each_entry(p, &n->full, lru)
3650 p->slab = s;
3651#endif
3652 }
3653 }
3654}
3655
81819f0f
CL
3656void __init kmem_cache_init(void)
3657{
3658 int i;
4b356be0 3659 int caches = 0;
51df1142
CL
3660 struct kmem_cache *temp_kmem_cache;
3661 int order;
51df1142
CL
3662 struct kmem_cache *temp_kmem_cache_node;
3663 unsigned long kmalloc_size;
3664
3665 kmem_size = offsetof(struct kmem_cache, node) +
3666 nr_node_ids * sizeof(struct kmem_cache_node *);
3667
3668 /* Allocate two kmem_caches from the page allocator */
3669 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3670 order = get_order(2 * kmalloc_size);
3671 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3672
81819f0f
CL
3673 /*
3674 * Must first have the slab cache available for the allocations of the
672bba3a 3675 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3676 * kmem_cache_open for slab_state == DOWN.
3677 */
51df1142
CL
3678 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3679
3680 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3681 sizeof(struct kmem_cache_node),
3682 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3683
0c40ba4f 3684 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3685
3686 /* Able to allocate the per node structures */
3687 slab_state = PARTIAL;
3688
51df1142
CL
3689 temp_kmem_cache = kmem_cache;
3690 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3691 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3692 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3693 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3694
51df1142
CL
3695 /*
3696 * Allocate kmem_cache_node properly from the kmem_cache slab.
3697 * kmem_cache_node is separately allocated so no need to
3698 * update any list pointers.
3699 */
3700 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3701
51df1142
CL
3702 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3703 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3704
3705 kmem_cache_bootstrap_fixup(kmem_cache_node);
3706
3707 caches++;
51df1142
CL
3708 kmem_cache_bootstrap_fixup(kmem_cache);
3709 caches++;
3710 /* Free temporary boot structure */
3711 free_pages((unsigned long)temp_kmem_cache, order);
3712
3713 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3714
3715 /*
3716 * Patch up the size_index table if we have strange large alignment
3717 * requirements for the kmalloc array. This is only the case for
6446faa2 3718 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3719 *
3720 * Largest permitted alignment is 256 bytes due to the way we
3721 * handle the index determination for the smaller caches.
3722 *
3723 * Make sure that nothing crazy happens if someone starts tinkering
3724 * around with ARCH_KMALLOC_MINALIGN
3725 */
3726 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3727 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3728
acdfcd04
AK
3729 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3730 int elem = size_index_elem(i);
3731 if (elem >= ARRAY_SIZE(size_index))
3732 break;
3733 size_index[elem] = KMALLOC_SHIFT_LOW;
3734 }
f1b26339 3735
acdfcd04
AK
3736 if (KMALLOC_MIN_SIZE == 64) {
3737 /*
3738 * The 96 byte size cache is not used if the alignment
3739 * is 64 byte.
3740 */
3741 for (i = 64 + 8; i <= 96; i += 8)
3742 size_index[size_index_elem(i)] = 7;
3743 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3744 /*
3745 * The 192 byte sized cache is not used if the alignment
3746 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3747 * instead.
3748 */
3749 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3750 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3751 }
3752
51df1142
CL
3753 /* Caches that are not of the two-to-the-power-of size */
3754 if (KMALLOC_MIN_SIZE <= 32) {
3755 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3756 caches++;
3757 }
3758
3759 if (KMALLOC_MIN_SIZE <= 64) {
3760 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3761 caches++;
3762 }
3763
3764 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3765 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3766 caches++;
3767 }
3768
81819f0f
CL
3769 slab_state = UP;
3770
3771 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3772 if (KMALLOC_MIN_SIZE <= 32) {
3773 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3774 BUG_ON(!kmalloc_caches[1]->name);
3775 }
3776
3777 if (KMALLOC_MIN_SIZE <= 64) {
3778 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3779 BUG_ON(!kmalloc_caches[2]->name);
3780 }
3781
d7278bd7
CL
3782 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3783 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3784
3785 BUG_ON(!s);
51df1142 3786 kmalloc_caches[i]->name = s;
d7278bd7 3787 }
81819f0f
CL
3788
3789#ifdef CONFIG_SMP
3790 register_cpu_notifier(&slab_notifier);
9dfc6e68 3791#endif
81819f0f 3792
55136592 3793#ifdef CONFIG_ZONE_DMA
51df1142
CL
3794 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3795 struct kmem_cache *s = kmalloc_caches[i];
55136592 3796
51df1142 3797 if (s && s->size) {
55136592
CL
3798 char *name = kasprintf(GFP_NOWAIT,
3799 "dma-kmalloc-%d", s->objsize);
3800
3801 BUG_ON(!name);
51df1142
CL
3802 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3803 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3804 }
3805 }
3806#endif
3adbefee
IM
3807 printk(KERN_INFO
3808 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3809 " CPUs=%d, Nodes=%d\n",
3810 caches, cache_line_size(),
81819f0f
CL
3811 slub_min_order, slub_max_order, slub_min_objects,
3812 nr_cpu_ids, nr_node_ids);
3813}
3814
7e85ee0c
PE
3815void __init kmem_cache_init_late(void)
3816{
7e85ee0c
PE
3817}
3818
81819f0f
CL
3819/*
3820 * Find a mergeable slab cache
3821 */
3822static int slab_unmergeable(struct kmem_cache *s)
3823{
3824 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3825 return 1;
3826
c59def9f 3827 if (s->ctor)
81819f0f
CL
3828 return 1;
3829
8ffa6875
CL
3830 /*
3831 * We may have set a slab to be unmergeable during bootstrap.
3832 */
3833 if (s->refcount < 0)
3834 return 1;
3835
81819f0f
CL
3836 return 0;
3837}
3838
3839static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3840 size_t align, unsigned long flags, const char *name,
51cc5068 3841 void (*ctor)(void *))
81819f0f 3842{
5b95a4ac 3843 struct kmem_cache *s;
81819f0f
CL
3844
3845 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3846 return NULL;
3847
c59def9f 3848 if (ctor)
81819f0f
CL
3849 return NULL;
3850
3851 size = ALIGN(size, sizeof(void *));
3852 align = calculate_alignment(flags, align, size);
3853 size = ALIGN(size, align);
ba0268a8 3854 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3855
5b95a4ac 3856 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3857 if (slab_unmergeable(s))
3858 continue;
3859
3860 if (size > s->size)
3861 continue;
3862
ba0268a8 3863 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3864 continue;
3865 /*
3866 * Check if alignment is compatible.
3867 * Courtesy of Adrian Drzewiecki
3868 */
06428780 3869 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3870 continue;
3871
3872 if (s->size - size >= sizeof(void *))
3873 continue;
3874
3875 return s;
3876 }
3877 return NULL;
3878}
3879
3880struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3881 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3882{
3883 struct kmem_cache *s;
84c1cf62 3884 char *n;
81819f0f 3885
fe1ff49d
BH
3886 if (WARN_ON(!name))
3887 return NULL;
3888
81819f0f 3889 down_write(&slub_lock);
ba0268a8 3890 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3891 if (s) {
3892 s->refcount++;
3893 /*
3894 * Adjust the object sizes so that we clear
3895 * the complete object on kzalloc.
3896 */
3897 s->objsize = max(s->objsize, (int)size);
3898 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3899
7b8f3b66 3900 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3901 s->refcount--;
81819f0f 3902 goto err;
7b8f3b66 3903 }
2bce6485 3904 up_write(&slub_lock);
a0e1d1be
CL
3905 return s;
3906 }
6446faa2 3907
84c1cf62
PE
3908 n = kstrdup(name, GFP_KERNEL);
3909 if (!n)
3910 goto err;
3911
a0e1d1be
CL
3912 s = kmalloc(kmem_size, GFP_KERNEL);
3913 if (s) {
84c1cf62 3914 if (kmem_cache_open(s, n,
c59def9f 3915 size, align, flags, ctor)) {
81819f0f 3916 list_add(&s->list, &slab_caches);
7b8f3b66 3917 if (sysfs_slab_add(s)) {
7b8f3b66 3918 list_del(&s->list);
84c1cf62 3919 kfree(n);
7b8f3b66 3920 kfree(s);
a0e1d1be 3921 goto err;
7b8f3b66 3922 }
2bce6485 3923 up_write(&slub_lock);
a0e1d1be
CL
3924 return s;
3925 }
84c1cf62 3926 kfree(n);
a0e1d1be 3927 kfree(s);
81819f0f 3928 }
68cee4f1 3929err:
81819f0f 3930 up_write(&slub_lock);
81819f0f 3931
81819f0f
CL
3932 if (flags & SLAB_PANIC)
3933 panic("Cannot create slabcache %s\n", name);
3934 else
3935 s = NULL;
3936 return s;
3937}
3938EXPORT_SYMBOL(kmem_cache_create);
3939
81819f0f 3940#ifdef CONFIG_SMP
81819f0f 3941/*
672bba3a
CL
3942 * Use the cpu notifier to insure that the cpu slabs are flushed when
3943 * necessary.
81819f0f
CL
3944 */
3945static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3946 unsigned long action, void *hcpu)
3947{
3948 long cpu = (long)hcpu;
5b95a4ac
CL
3949 struct kmem_cache *s;
3950 unsigned long flags;
81819f0f
CL
3951
3952 switch (action) {
3953 case CPU_UP_CANCELED:
8bb78442 3954 case CPU_UP_CANCELED_FROZEN:
81819f0f 3955 case CPU_DEAD:
8bb78442 3956 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3957 down_read(&slub_lock);
3958 list_for_each_entry(s, &slab_caches, list) {
3959 local_irq_save(flags);
3960 __flush_cpu_slab(s, cpu);
3961 local_irq_restore(flags);
3962 }
3963 up_read(&slub_lock);
81819f0f
CL
3964 break;
3965 default:
3966 break;
3967 }
3968 return NOTIFY_OK;
3969}
3970
06428780 3971static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3972 .notifier_call = slab_cpuup_callback
06428780 3973};
81819f0f
CL
3974
3975#endif
3976
ce71e27c 3977void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3978{
aadb4bc4 3979 struct kmem_cache *s;
94b528d0 3980 void *ret;
aadb4bc4 3981
ffadd4d0 3982 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3983 return kmalloc_large(size, gfpflags);
3984
aadb4bc4 3985 s = get_slab(size, gfpflags);
81819f0f 3986
2408c550 3987 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3988 return s;
81819f0f 3989
2154a336 3990 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 3991
25985edc 3992 /* Honor the call site pointer we received. */
ca2b84cb 3993 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3994
3995 return ret;
81819f0f
CL
3996}
3997
5d1f57e4 3998#ifdef CONFIG_NUMA
81819f0f 3999void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4000 int node, unsigned long caller)
81819f0f 4001{
aadb4bc4 4002 struct kmem_cache *s;
94b528d0 4003 void *ret;
aadb4bc4 4004
d3e14aa3
XF
4005 if (unlikely(size > SLUB_MAX_SIZE)) {
4006 ret = kmalloc_large_node(size, gfpflags, node);
4007
4008 trace_kmalloc_node(caller, ret,
4009 size, PAGE_SIZE << get_order(size),
4010 gfpflags, node);
4011
4012 return ret;
4013 }
eada35ef 4014
aadb4bc4 4015 s = get_slab(size, gfpflags);
81819f0f 4016
2408c550 4017 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4018 return s;
81819f0f 4019
94b528d0
EGM
4020 ret = slab_alloc(s, gfpflags, node, caller);
4021
25985edc 4022 /* Honor the call site pointer we received. */
ca2b84cb 4023 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4024
4025 return ret;
81819f0f 4026}
5d1f57e4 4027#endif
81819f0f 4028
ab4d5ed5 4029#ifdef CONFIG_SYSFS
205ab99d
CL
4030static int count_inuse(struct page *page)
4031{
4032 return page->inuse;
4033}
4034
4035static int count_total(struct page *page)
4036{
4037 return page->objects;
4038}
ab4d5ed5 4039#endif
205ab99d 4040
ab4d5ed5 4041#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4042static int validate_slab(struct kmem_cache *s, struct page *page,
4043 unsigned long *map)
53e15af0
CL
4044{
4045 void *p;
a973e9dd 4046 void *addr = page_address(page);
53e15af0
CL
4047
4048 if (!check_slab(s, page) ||
4049 !on_freelist(s, page, NULL))
4050 return 0;
4051
4052 /* Now we know that a valid freelist exists */
39b26464 4053 bitmap_zero(map, page->objects);
53e15af0 4054
5f80b13a
CL
4055 get_map(s, page, map);
4056 for_each_object(p, s, addr, page->objects) {
4057 if (test_bit(slab_index(p, s, addr), map))
4058 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4059 return 0;
53e15af0
CL
4060 }
4061
224a88be 4062 for_each_object(p, s, addr, page->objects)
7656c72b 4063 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4064 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4065 return 0;
4066 return 1;
4067}
4068
434e245d
CL
4069static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4070 unsigned long *map)
53e15af0 4071{
881db7fb
CL
4072 slab_lock(page);
4073 validate_slab(s, page, map);
4074 slab_unlock(page);
53e15af0
CL
4075}
4076
434e245d
CL
4077static int validate_slab_node(struct kmem_cache *s,
4078 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4079{
4080 unsigned long count = 0;
4081 struct page *page;
4082 unsigned long flags;
4083
4084 spin_lock_irqsave(&n->list_lock, flags);
4085
4086 list_for_each_entry(page, &n->partial, lru) {
434e245d 4087 validate_slab_slab(s, page, map);
53e15af0
CL
4088 count++;
4089 }
4090 if (count != n->nr_partial)
4091 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4092 "counter=%ld\n", s->name, count, n->nr_partial);
4093
4094 if (!(s->flags & SLAB_STORE_USER))
4095 goto out;
4096
4097 list_for_each_entry(page, &n->full, lru) {
434e245d 4098 validate_slab_slab(s, page, map);
53e15af0
CL
4099 count++;
4100 }
4101 if (count != atomic_long_read(&n->nr_slabs))
4102 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4103 "counter=%ld\n", s->name, count,
4104 atomic_long_read(&n->nr_slabs));
4105
4106out:
4107 spin_unlock_irqrestore(&n->list_lock, flags);
4108 return count;
4109}
4110
434e245d 4111static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4112{
4113 int node;
4114 unsigned long count = 0;
205ab99d 4115 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4116 sizeof(unsigned long), GFP_KERNEL);
4117
4118 if (!map)
4119 return -ENOMEM;
53e15af0
CL
4120
4121 flush_all(s);
f64dc58c 4122 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4123 struct kmem_cache_node *n = get_node(s, node);
4124
434e245d 4125 count += validate_slab_node(s, n, map);
53e15af0 4126 }
434e245d 4127 kfree(map);
53e15af0
CL
4128 return count;
4129}
88a420e4 4130/*
672bba3a 4131 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4132 * and freed.
4133 */
4134
4135struct location {
4136 unsigned long count;
ce71e27c 4137 unsigned long addr;
45edfa58
CL
4138 long long sum_time;
4139 long min_time;
4140 long max_time;
4141 long min_pid;
4142 long max_pid;
174596a0 4143 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4144 nodemask_t nodes;
88a420e4
CL
4145};
4146
4147struct loc_track {
4148 unsigned long max;
4149 unsigned long count;
4150 struct location *loc;
4151};
4152
4153static void free_loc_track(struct loc_track *t)
4154{
4155 if (t->max)
4156 free_pages((unsigned long)t->loc,
4157 get_order(sizeof(struct location) * t->max));
4158}
4159
68dff6a9 4160static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4161{
4162 struct location *l;
4163 int order;
4164
88a420e4
CL
4165 order = get_order(sizeof(struct location) * max);
4166
68dff6a9 4167 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4168 if (!l)
4169 return 0;
4170
4171 if (t->count) {
4172 memcpy(l, t->loc, sizeof(struct location) * t->count);
4173 free_loc_track(t);
4174 }
4175 t->max = max;
4176 t->loc = l;
4177 return 1;
4178}
4179
4180static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4181 const struct track *track)
88a420e4
CL
4182{
4183 long start, end, pos;
4184 struct location *l;
ce71e27c 4185 unsigned long caddr;
45edfa58 4186 unsigned long age = jiffies - track->when;
88a420e4
CL
4187
4188 start = -1;
4189 end = t->count;
4190
4191 for ( ; ; ) {
4192 pos = start + (end - start + 1) / 2;
4193
4194 /*
4195 * There is nothing at "end". If we end up there
4196 * we need to add something to before end.
4197 */
4198 if (pos == end)
4199 break;
4200
4201 caddr = t->loc[pos].addr;
45edfa58
CL
4202 if (track->addr == caddr) {
4203
4204 l = &t->loc[pos];
4205 l->count++;
4206 if (track->when) {
4207 l->sum_time += age;
4208 if (age < l->min_time)
4209 l->min_time = age;
4210 if (age > l->max_time)
4211 l->max_time = age;
4212
4213 if (track->pid < l->min_pid)
4214 l->min_pid = track->pid;
4215 if (track->pid > l->max_pid)
4216 l->max_pid = track->pid;
4217
174596a0
RR
4218 cpumask_set_cpu(track->cpu,
4219 to_cpumask(l->cpus));
45edfa58
CL
4220 }
4221 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4222 return 1;
4223 }
4224
45edfa58 4225 if (track->addr < caddr)
88a420e4
CL
4226 end = pos;
4227 else
4228 start = pos;
4229 }
4230
4231 /*
672bba3a 4232 * Not found. Insert new tracking element.
88a420e4 4233 */
68dff6a9 4234 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4235 return 0;
4236
4237 l = t->loc + pos;
4238 if (pos < t->count)
4239 memmove(l + 1, l,
4240 (t->count - pos) * sizeof(struct location));
4241 t->count++;
4242 l->count = 1;
45edfa58
CL
4243 l->addr = track->addr;
4244 l->sum_time = age;
4245 l->min_time = age;
4246 l->max_time = age;
4247 l->min_pid = track->pid;
4248 l->max_pid = track->pid;
174596a0
RR
4249 cpumask_clear(to_cpumask(l->cpus));
4250 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4251 nodes_clear(l->nodes);
4252 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4253 return 1;
4254}
4255
4256static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4257 struct page *page, enum track_item alloc,
a5dd5c11 4258 unsigned long *map)
88a420e4 4259{
a973e9dd 4260 void *addr = page_address(page);
88a420e4
CL
4261 void *p;
4262
39b26464 4263 bitmap_zero(map, page->objects);
5f80b13a 4264 get_map(s, page, map);
88a420e4 4265
224a88be 4266 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4267 if (!test_bit(slab_index(p, s, addr), map))
4268 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4269}
4270
4271static int list_locations(struct kmem_cache *s, char *buf,
4272 enum track_item alloc)
4273{
e374d483 4274 int len = 0;
88a420e4 4275 unsigned long i;
68dff6a9 4276 struct loc_track t = { 0, 0, NULL };
88a420e4 4277 int node;
bbd7d57b
ED
4278 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4279 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4280
bbd7d57b
ED
4281 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4282 GFP_TEMPORARY)) {
4283 kfree(map);
68dff6a9 4284 return sprintf(buf, "Out of memory\n");
bbd7d57b 4285 }
88a420e4
CL
4286 /* Push back cpu slabs */
4287 flush_all(s);
4288
f64dc58c 4289 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4290 struct kmem_cache_node *n = get_node(s, node);
4291 unsigned long flags;
4292 struct page *page;
4293
9e86943b 4294 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4295 continue;
4296
4297 spin_lock_irqsave(&n->list_lock, flags);
4298 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4299 process_slab(&t, s, page, alloc, map);
88a420e4 4300 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4301 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4302 spin_unlock_irqrestore(&n->list_lock, flags);
4303 }
4304
4305 for (i = 0; i < t.count; i++) {
45edfa58 4306 struct location *l = &t.loc[i];
88a420e4 4307
9c246247 4308 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4309 break;
e374d483 4310 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4311
4312 if (l->addr)
62c70bce 4313 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4314 else
e374d483 4315 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4316
4317 if (l->sum_time != l->min_time) {
e374d483 4318 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4319 l->min_time,
4320 (long)div_u64(l->sum_time, l->count),
4321 l->max_time);
45edfa58 4322 } else
e374d483 4323 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4324 l->min_time);
4325
4326 if (l->min_pid != l->max_pid)
e374d483 4327 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4328 l->min_pid, l->max_pid);
4329 else
e374d483 4330 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4331 l->min_pid);
4332
174596a0
RR
4333 if (num_online_cpus() > 1 &&
4334 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4335 len < PAGE_SIZE - 60) {
4336 len += sprintf(buf + len, " cpus=");
4337 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4338 to_cpumask(l->cpus));
45edfa58
CL
4339 }
4340
62bc62a8 4341 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4342 len < PAGE_SIZE - 60) {
4343 len += sprintf(buf + len, " nodes=");
4344 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4345 l->nodes);
4346 }
4347
e374d483 4348 len += sprintf(buf + len, "\n");
88a420e4
CL
4349 }
4350
4351 free_loc_track(&t);
bbd7d57b 4352 kfree(map);
88a420e4 4353 if (!t.count)
e374d483
HH
4354 len += sprintf(buf, "No data\n");
4355 return len;
88a420e4 4356}
ab4d5ed5 4357#endif
88a420e4 4358
a5a84755
CL
4359#ifdef SLUB_RESILIENCY_TEST
4360static void resiliency_test(void)
4361{
4362 u8 *p;
4363
4364 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4365
4366 printk(KERN_ERR "SLUB resiliency testing\n");
4367 printk(KERN_ERR "-----------------------\n");
4368 printk(KERN_ERR "A. Corruption after allocation\n");
4369
4370 p = kzalloc(16, GFP_KERNEL);
4371 p[16] = 0x12;
4372 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4373 " 0x12->0x%p\n\n", p + 16);
4374
4375 validate_slab_cache(kmalloc_caches[4]);
4376
4377 /* Hmmm... The next two are dangerous */
4378 p = kzalloc(32, GFP_KERNEL);
4379 p[32 + sizeof(void *)] = 0x34;
4380 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4381 " 0x34 -> -0x%p\n", p);
4382 printk(KERN_ERR
4383 "If allocated object is overwritten then not detectable\n\n");
4384
4385 validate_slab_cache(kmalloc_caches[5]);
4386 p = kzalloc(64, GFP_KERNEL);
4387 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4388 *p = 0x56;
4389 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4390 p);
4391 printk(KERN_ERR
4392 "If allocated object is overwritten then not detectable\n\n");
4393 validate_slab_cache(kmalloc_caches[6]);
4394
4395 printk(KERN_ERR "\nB. Corruption after free\n");
4396 p = kzalloc(128, GFP_KERNEL);
4397 kfree(p);
4398 *p = 0x78;
4399 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4400 validate_slab_cache(kmalloc_caches[7]);
4401
4402 p = kzalloc(256, GFP_KERNEL);
4403 kfree(p);
4404 p[50] = 0x9a;
4405 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4406 p);
4407 validate_slab_cache(kmalloc_caches[8]);
4408
4409 p = kzalloc(512, GFP_KERNEL);
4410 kfree(p);
4411 p[512] = 0xab;
4412 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4413 validate_slab_cache(kmalloc_caches[9]);
4414}
4415#else
4416#ifdef CONFIG_SYSFS
4417static void resiliency_test(void) {};
4418#endif
4419#endif
4420
ab4d5ed5 4421#ifdef CONFIG_SYSFS
81819f0f 4422enum slab_stat_type {
205ab99d
CL
4423 SL_ALL, /* All slabs */
4424 SL_PARTIAL, /* Only partially allocated slabs */
4425 SL_CPU, /* Only slabs used for cpu caches */
4426 SL_OBJECTS, /* Determine allocated objects not slabs */
4427 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4428};
4429
205ab99d 4430#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4431#define SO_PARTIAL (1 << SL_PARTIAL)
4432#define SO_CPU (1 << SL_CPU)
4433#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4434#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4435
62e5c4b4
CG
4436static ssize_t show_slab_objects(struct kmem_cache *s,
4437 char *buf, unsigned long flags)
81819f0f
CL
4438{
4439 unsigned long total = 0;
81819f0f
CL
4440 int node;
4441 int x;
4442 unsigned long *nodes;
4443 unsigned long *per_cpu;
4444
4445 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4446 if (!nodes)
4447 return -ENOMEM;
81819f0f
CL
4448 per_cpu = nodes + nr_node_ids;
4449
205ab99d
CL
4450 if (flags & SO_CPU) {
4451 int cpu;
81819f0f 4452
205ab99d 4453 for_each_possible_cpu(cpu) {
9dfc6e68 4454 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
bc6697d8 4455 int node = ACCESS_ONCE(c->node);
49e22585 4456 struct page *page;
dfb4f096 4457
bc6697d8 4458 if (node < 0)
205ab99d 4459 continue;
bc6697d8
ED
4460 page = ACCESS_ONCE(c->page);
4461 if (page) {
4462 if (flags & SO_TOTAL)
4463 x = page->objects;
205ab99d 4464 else if (flags & SO_OBJECTS)
bc6697d8 4465 x = page->inuse;
81819f0f
CL
4466 else
4467 x = 1;
205ab99d 4468
81819f0f 4469 total += x;
bc6697d8 4470 nodes[node] += x;
81819f0f 4471 }
49e22585
CL
4472 page = c->partial;
4473
4474 if (page) {
4475 x = page->pobjects;
bc6697d8
ED
4476 total += x;
4477 nodes[node] += x;
49e22585 4478 }
bc6697d8 4479 per_cpu[node]++;
81819f0f
CL
4480 }
4481 }
4482
04d94879 4483 lock_memory_hotplug();
ab4d5ed5 4484#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4485 if (flags & SO_ALL) {
4486 for_each_node_state(node, N_NORMAL_MEMORY) {
4487 struct kmem_cache_node *n = get_node(s, node);
4488
4489 if (flags & SO_TOTAL)
4490 x = atomic_long_read(&n->total_objects);
4491 else if (flags & SO_OBJECTS)
4492 x = atomic_long_read(&n->total_objects) -
4493 count_partial(n, count_free);
81819f0f 4494
81819f0f 4495 else
205ab99d 4496 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4497 total += x;
4498 nodes[node] += x;
4499 }
4500
ab4d5ed5
CL
4501 } else
4502#endif
4503 if (flags & SO_PARTIAL) {
205ab99d
CL
4504 for_each_node_state(node, N_NORMAL_MEMORY) {
4505 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4506
205ab99d
CL
4507 if (flags & SO_TOTAL)
4508 x = count_partial(n, count_total);
4509 else if (flags & SO_OBJECTS)
4510 x = count_partial(n, count_inuse);
81819f0f 4511 else
205ab99d 4512 x = n->nr_partial;
81819f0f
CL
4513 total += x;
4514 nodes[node] += x;
4515 }
4516 }
81819f0f
CL
4517 x = sprintf(buf, "%lu", total);
4518#ifdef CONFIG_NUMA
f64dc58c 4519 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4520 if (nodes[node])
4521 x += sprintf(buf + x, " N%d=%lu",
4522 node, nodes[node]);
4523#endif
04d94879 4524 unlock_memory_hotplug();
81819f0f
CL
4525 kfree(nodes);
4526 return x + sprintf(buf + x, "\n");
4527}
4528
ab4d5ed5 4529#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4530static int any_slab_objects(struct kmem_cache *s)
4531{
4532 int node;
81819f0f 4533
dfb4f096 4534 for_each_online_node(node) {
81819f0f
CL
4535 struct kmem_cache_node *n = get_node(s, node);
4536
dfb4f096
CL
4537 if (!n)
4538 continue;
4539
4ea33e2d 4540 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4541 return 1;
4542 }
4543 return 0;
4544}
ab4d5ed5 4545#endif
81819f0f
CL
4546
4547#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4548#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4549
4550struct slab_attribute {
4551 struct attribute attr;
4552 ssize_t (*show)(struct kmem_cache *s, char *buf);
4553 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4554};
4555
4556#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4557 static struct slab_attribute _name##_attr = \
4558 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4559
4560#define SLAB_ATTR(_name) \
4561 static struct slab_attribute _name##_attr = \
ab067e99 4562 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4563
81819f0f
CL
4564static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4565{
4566 return sprintf(buf, "%d\n", s->size);
4567}
4568SLAB_ATTR_RO(slab_size);
4569
4570static ssize_t align_show(struct kmem_cache *s, char *buf)
4571{
4572 return sprintf(buf, "%d\n", s->align);
4573}
4574SLAB_ATTR_RO(align);
4575
4576static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4577{
4578 return sprintf(buf, "%d\n", s->objsize);
4579}
4580SLAB_ATTR_RO(object_size);
4581
4582static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4583{
834f3d11 4584 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4585}
4586SLAB_ATTR_RO(objs_per_slab);
4587
06b285dc
CL
4588static ssize_t order_store(struct kmem_cache *s,
4589 const char *buf, size_t length)
4590{
0121c619
CL
4591 unsigned long order;
4592 int err;
4593
4594 err = strict_strtoul(buf, 10, &order);
4595 if (err)
4596 return err;
06b285dc
CL
4597
4598 if (order > slub_max_order || order < slub_min_order)
4599 return -EINVAL;
4600
4601 calculate_sizes(s, order);
4602 return length;
4603}
4604
81819f0f
CL
4605static ssize_t order_show(struct kmem_cache *s, char *buf)
4606{
834f3d11 4607 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4608}
06b285dc 4609SLAB_ATTR(order);
81819f0f 4610
73d342b1
DR
4611static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4612{
4613 return sprintf(buf, "%lu\n", s->min_partial);
4614}
4615
4616static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4617 size_t length)
4618{
4619 unsigned long min;
4620 int err;
4621
4622 err = strict_strtoul(buf, 10, &min);
4623 if (err)
4624 return err;
4625
c0bdb232 4626 set_min_partial(s, min);
73d342b1
DR
4627 return length;
4628}
4629SLAB_ATTR(min_partial);
4630
49e22585
CL
4631static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4632{
4633 return sprintf(buf, "%u\n", s->cpu_partial);
4634}
4635
4636static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4637 size_t length)
4638{
4639 unsigned long objects;
4640 int err;
4641
4642 err = strict_strtoul(buf, 10, &objects);
4643 if (err)
4644 return err;
4645
4646 s->cpu_partial = objects;
4647 flush_all(s);
4648 return length;
4649}
4650SLAB_ATTR(cpu_partial);
4651
81819f0f
CL
4652static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4653{
62c70bce
JP
4654 if (!s->ctor)
4655 return 0;
4656 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4657}
4658SLAB_ATTR_RO(ctor);
4659
81819f0f
CL
4660static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4661{
4662 return sprintf(buf, "%d\n", s->refcount - 1);
4663}
4664SLAB_ATTR_RO(aliases);
4665
81819f0f
CL
4666static ssize_t partial_show(struct kmem_cache *s, char *buf)
4667{
d9acf4b7 4668 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4669}
4670SLAB_ATTR_RO(partial);
4671
4672static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4673{
d9acf4b7 4674 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4675}
4676SLAB_ATTR_RO(cpu_slabs);
4677
4678static ssize_t objects_show(struct kmem_cache *s, char *buf)
4679{
205ab99d 4680 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4681}
4682SLAB_ATTR_RO(objects);
4683
205ab99d
CL
4684static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4685{
4686 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4687}
4688SLAB_ATTR_RO(objects_partial);
4689
49e22585
CL
4690static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4691{
4692 int objects = 0;
4693 int pages = 0;
4694 int cpu;
4695 int len;
4696
4697 for_each_online_cpu(cpu) {
4698 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4699
4700 if (page) {
4701 pages += page->pages;
4702 objects += page->pobjects;
4703 }
4704 }
4705
4706 len = sprintf(buf, "%d(%d)", objects, pages);
4707
4708#ifdef CONFIG_SMP
4709 for_each_online_cpu(cpu) {
4710 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4711
4712 if (page && len < PAGE_SIZE - 20)
4713 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4714 page->pobjects, page->pages);
4715 }
4716#endif
4717 return len + sprintf(buf + len, "\n");
4718}
4719SLAB_ATTR_RO(slabs_cpu_partial);
4720
a5a84755
CL
4721static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4722{
4723 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4724}
4725
4726static ssize_t reclaim_account_store(struct kmem_cache *s,
4727 const char *buf, size_t length)
4728{
4729 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4730 if (buf[0] == '1')
4731 s->flags |= SLAB_RECLAIM_ACCOUNT;
4732 return length;
4733}
4734SLAB_ATTR(reclaim_account);
4735
4736static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4737{
4738 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4739}
4740SLAB_ATTR_RO(hwcache_align);
4741
4742#ifdef CONFIG_ZONE_DMA
4743static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4744{
4745 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4746}
4747SLAB_ATTR_RO(cache_dma);
4748#endif
4749
4750static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4751{
4752 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4753}
4754SLAB_ATTR_RO(destroy_by_rcu);
4755
ab9a0f19
LJ
4756static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4757{
4758 return sprintf(buf, "%d\n", s->reserved);
4759}
4760SLAB_ATTR_RO(reserved);
4761
ab4d5ed5 4762#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4763static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4764{
4765 return show_slab_objects(s, buf, SO_ALL);
4766}
4767SLAB_ATTR_RO(slabs);
4768
205ab99d
CL
4769static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4770{
4771 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4772}
4773SLAB_ATTR_RO(total_objects);
4774
81819f0f
CL
4775static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4776{
4777 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4778}
4779
4780static ssize_t sanity_checks_store(struct kmem_cache *s,
4781 const char *buf, size_t length)
4782{
4783 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4784 if (buf[0] == '1') {
4785 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4786 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4787 }
81819f0f
CL
4788 return length;
4789}
4790SLAB_ATTR(sanity_checks);
4791
4792static ssize_t trace_show(struct kmem_cache *s, char *buf)
4793{
4794 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4795}
4796
4797static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4798 size_t length)
4799{
4800 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4801 if (buf[0] == '1') {
4802 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4803 s->flags |= SLAB_TRACE;
b789ef51 4804 }
81819f0f
CL
4805 return length;
4806}
4807SLAB_ATTR(trace);
4808
81819f0f
CL
4809static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4810{
4811 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4812}
4813
4814static ssize_t red_zone_store(struct kmem_cache *s,
4815 const char *buf, size_t length)
4816{
4817 if (any_slab_objects(s))
4818 return -EBUSY;
4819
4820 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4821 if (buf[0] == '1') {
4822 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4823 s->flags |= SLAB_RED_ZONE;
b789ef51 4824 }
06b285dc 4825 calculate_sizes(s, -1);
81819f0f
CL
4826 return length;
4827}
4828SLAB_ATTR(red_zone);
4829
4830static ssize_t poison_show(struct kmem_cache *s, char *buf)
4831{
4832 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4833}
4834
4835static ssize_t poison_store(struct kmem_cache *s,
4836 const char *buf, size_t length)
4837{
4838 if (any_slab_objects(s))
4839 return -EBUSY;
4840
4841 s->flags &= ~SLAB_POISON;
b789ef51
CL
4842 if (buf[0] == '1') {
4843 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4844 s->flags |= SLAB_POISON;
b789ef51 4845 }
06b285dc 4846 calculate_sizes(s, -1);
81819f0f
CL
4847 return length;
4848}
4849SLAB_ATTR(poison);
4850
4851static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4852{
4853 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4854}
4855
4856static ssize_t store_user_store(struct kmem_cache *s,
4857 const char *buf, size_t length)
4858{
4859 if (any_slab_objects(s))
4860 return -EBUSY;
4861
4862 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4863 if (buf[0] == '1') {
4864 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4865 s->flags |= SLAB_STORE_USER;
b789ef51 4866 }
06b285dc 4867 calculate_sizes(s, -1);
81819f0f
CL
4868 return length;
4869}
4870SLAB_ATTR(store_user);
4871
53e15af0
CL
4872static ssize_t validate_show(struct kmem_cache *s, char *buf)
4873{
4874 return 0;
4875}
4876
4877static ssize_t validate_store(struct kmem_cache *s,
4878 const char *buf, size_t length)
4879{
434e245d
CL
4880 int ret = -EINVAL;
4881
4882 if (buf[0] == '1') {
4883 ret = validate_slab_cache(s);
4884 if (ret >= 0)
4885 ret = length;
4886 }
4887 return ret;
53e15af0
CL
4888}
4889SLAB_ATTR(validate);
a5a84755
CL
4890
4891static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4892{
4893 if (!(s->flags & SLAB_STORE_USER))
4894 return -ENOSYS;
4895 return list_locations(s, buf, TRACK_ALLOC);
4896}
4897SLAB_ATTR_RO(alloc_calls);
4898
4899static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4900{
4901 if (!(s->flags & SLAB_STORE_USER))
4902 return -ENOSYS;
4903 return list_locations(s, buf, TRACK_FREE);
4904}
4905SLAB_ATTR_RO(free_calls);
4906#endif /* CONFIG_SLUB_DEBUG */
4907
4908#ifdef CONFIG_FAILSLAB
4909static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4910{
4911 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4912}
4913
4914static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4915 size_t length)
4916{
4917 s->flags &= ~SLAB_FAILSLAB;
4918 if (buf[0] == '1')
4919 s->flags |= SLAB_FAILSLAB;
4920 return length;
4921}
4922SLAB_ATTR(failslab);
ab4d5ed5 4923#endif
53e15af0 4924
2086d26a
CL
4925static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4926{
4927 return 0;
4928}
4929
4930static ssize_t shrink_store(struct kmem_cache *s,
4931 const char *buf, size_t length)
4932{
4933 if (buf[0] == '1') {
4934 int rc = kmem_cache_shrink(s);
4935
4936 if (rc)
4937 return rc;
4938 } else
4939 return -EINVAL;
4940 return length;
4941}
4942SLAB_ATTR(shrink);
4943
81819f0f 4944#ifdef CONFIG_NUMA
9824601e 4945static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4946{
9824601e 4947 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4948}
4949
9824601e 4950static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4951 const char *buf, size_t length)
4952{
0121c619
CL
4953 unsigned long ratio;
4954 int err;
4955
4956 err = strict_strtoul(buf, 10, &ratio);
4957 if (err)
4958 return err;
4959
e2cb96b7 4960 if (ratio <= 100)
0121c619 4961 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4962
81819f0f
CL
4963 return length;
4964}
9824601e 4965SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4966#endif
4967
8ff12cfc 4968#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4969static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4970{
4971 unsigned long sum = 0;
4972 int cpu;
4973 int len;
4974 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4975
4976 if (!data)
4977 return -ENOMEM;
4978
4979 for_each_online_cpu(cpu) {
9dfc6e68 4980 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4981
4982 data[cpu] = x;
4983 sum += x;
4984 }
4985
4986 len = sprintf(buf, "%lu", sum);
4987
50ef37b9 4988#ifdef CONFIG_SMP
8ff12cfc
CL
4989 for_each_online_cpu(cpu) {
4990 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4991 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4992 }
50ef37b9 4993#endif
8ff12cfc
CL
4994 kfree(data);
4995 return len + sprintf(buf + len, "\n");
4996}
4997
78eb00cc
DR
4998static void clear_stat(struct kmem_cache *s, enum stat_item si)
4999{
5000 int cpu;
5001
5002 for_each_online_cpu(cpu)
9dfc6e68 5003 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5004}
5005
8ff12cfc
CL
5006#define STAT_ATTR(si, text) \
5007static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5008{ \
5009 return show_stat(s, buf, si); \
5010} \
78eb00cc
DR
5011static ssize_t text##_store(struct kmem_cache *s, \
5012 const char *buf, size_t length) \
5013{ \
5014 if (buf[0] != '0') \
5015 return -EINVAL; \
5016 clear_stat(s, si); \
5017 return length; \
5018} \
5019SLAB_ATTR(text); \
8ff12cfc
CL
5020
5021STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5022STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5023STAT_ATTR(FREE_FASTPATH, free_fastpath);
5024STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5025STAT_ATTR(FREE_FROZEN, free_frozen);
5026STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5027STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5028STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5029STAT_ATTR(ALLOC_SLAB, alloc_slab);
5030STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5031STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5032STAT_ATTR(FREE_SLAB, free_slab);
5033STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5034STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5035STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5036STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5037STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5038STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5039STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5040STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5041STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5042STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5043STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5044STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8ff12cfc
CL
5045#endif
5046
06428780 5047static struct attribute *slab_attrs[] = {
81819f0f
CL
5048 &slab_size_attr.attr,
5049 &object_size_attr.attr,
5050 &objs_per_slab_attr.attr,
5051 &order_attr.attr,
73d342b1 5052 &min_partial_attr.attr,
49e22585 5053 &cpu_partial_attr.attr,
81819f0f 5054 &objects_attr.attr,
205ab99d 5055 &objects_partial_attr.attr,
81819f0f
CL
5056 &partial_attr.attr,
5057 &cpu_slabs_attr.attr,
5058 &ctor_attr.attr,
81819f0f
CL
5059 &aliases_attr.attr,
5060 &align_attr.attr,
81819f0f
CL
5061 &hwcache_align_attr.attr,
5062 &reclaim_account_attr.attr,
5063 &destroy_by_rcu_attr.attr,
a5a84755 5064 &shrink_attr.attr,
ab9a0f19 5065 &reserved_attr.attr,
49e22585 5066 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5067#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5068 &total_objects_attr.attr,
5069 &slabs_attr.attr,
5070 &sanity_checks_attr.attr,
5071 &trace_attr.attr,
81819f0f
CL
5072 &red_zone_attr.attr,
5073 &poison_attr.attr,
5074 &store_user_attr.attr,
53e15af0 5075 &validate_attr.attr,
88a420e4
CL
5076 &alloc_calls_attr.attr,
5077 &free_calls_attr.attr,
ab4d5ed5 5078#endif
81819f0f
CL
5079#ifdef CONFIG_ZONE_DMA
5080 &cache_dma_attr.attr,
5081#endif
5082#ifdef CONFIG_NUMA
9824601e 5083 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5084#endif
5085#ifdef CONFIG_SLUB_STATS
5086 &alloc_fastpath_attr.attr,
5087 &alloc_slowpath_attr.attr,
5088 &free_fastpath_attr.attr,
5089 &free_slowpath_attr.attr,
5090 &free_frozen_attr.attr,
5091 &free_add_partial_attr.attr,
5092 &free_remove_partial_attr.attr,
5093 &alloc_from_partial_attr.attr,
5094 &alloc_slab_attr.attr,
5095 &alloc_refill_attr.attr,
e36a2652 5096 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5097 &free_slab_attr.attr,
5098 &cpuslab_flush_attr.attr,
5099 &deactivate_full_attr.attr,
5100 &deactivate_empty_attr.attr,
5101 &deactivate_to_head_attr.attr,
5102 &deactivate_to_tail_attr.attr,
5103 &deactivate_remote_frees_attr.attr,
03e404af 5104 &deactivate_bypass_attr.attr,
65c3376a 5105 &order_fallback_attr.attr,
b789ef51
CL
5106 &cmpxchg_double_fail_attr.attr,
5107 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5108 &cpu_partial_alloc_attr.attr,
5109 &cpu_partial_free_attr.attr,
81819f0f 5110#endif
4c13dd3b
DM
5111#ifdef CONFIG_FAILSLAB
5112 &failslab_attr.attr,
5113#endif
5114
81819f0f
CL
5115 NULL
5116};
5117
5118static struct attribute_group slab_attr_group = {
5119 .attrs = slab_attrs,
5120};
5121
5122static ssize_t slab_attr_show(struct kobject *kobj,
5123 struct attribute *attr,
5124 char *buf)
5125{
5126 struct slab_attribute *attribute;
5127 struct kmem_cache *s;
5128 int err;
5129
5130 attribute = to_slab_attr(attr);
5131 s = to_slab(kobj);
5132
5133 if (!attribute->show)
5134 return -EIO;
5135
5136 err = attribute->show(s, buf);
5137
5138 return err;
5139}
5140
5141static ssize_t slab_attr_store(struct kobject *kobj,
5142 struct attribute *attr,
5143 const char *buf, size_t len)
5144{
5145 struct slab_attribute *attribute;
5146 struct kmem_cache *s;
5147 int err;
5148
5149 attribute = to_slab_attr(attr);
5150 s = to_slab(kobj);
5151
5152 if (!attribute->store)
5153 return -EIO;
5154
5155 err = attribute->store(s, buf, len);
5156
5157 return err;
5158}
5159
151c602f
CL
5160static void kmem_cache_release(struct kobject *kobj)
5161{
5162 struct kmem_cache *s = to_slab(kobj);
5163
84c1cf62 5164 kfree(s->name);
151c602f
CL
5165 kfree(s);
5166}
5167
52cf25d0 5168static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5169 .show = slab_attr_show,
5170 .store = slab_attr_store,
5171};
5172
5173static struct kobj_type slab_ktype = {
5174 .sysfs_ops = &slab_sysfs_ops,
151c602f 5175 .release = kmem_cache_release
81819f0f
CL
5176};
5177
5178static int uevent_filter(struct kset *kset, struct kobject *kobj)
5179{
5180 struct kobj_type *ktype = get_ktype(kobj);
5181
5182 if (ktype == &slab_ktype)
5183 return 1;
5184 return 0;
5185}
5186
9cd43611 5187static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5188 .filter = uevent_filter,
5189};
5190
27c3a314 5191static struct kset *slab_kset;
81819f0f
CL
5192
5193#define ID_STR_LENGTH 64
5194
5195/* Create a unique string id for a slab cache:
6446faa2
CL
5196 *
5197 * Format :[flags-]size
81819f0f
CL
5198 */
5199static char *create_unique_id(struct kmem_cache *s)
5200{
5201 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5202 char *p = name;
5203
5204 BUG_ON(!name);
5205
5206 *p++ = ':';
5207 /*
5208 * First flags affecting slabcache operations. We will only
5209 * get here for aliasable slabs so we do not need to support
5210 * too many flags. The flags here must cover all flags that
5211 * are matched during merging to guarantee that the id is
5212 * unique.
5213 */
5214 if (s->flags & SLAB_CACHE_DMA)
5215 *p++ = 'd';
5216 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5217 *p++ = 'a';
5218 if (s->flags & SLAB_DEBUG_FREE)
5219 *p++ = 'F';
5a896d9e
VN
5220 if (!(s->flags & SLAB_NOTRACK))
5221 *p++ = 't';
81819f0f
CL
5222 if (p != name + 1)
5223 *p++ = '-';
5224 p += sprintf(p, "%07d", s->size);
5225 BUG_ON(p > name + ID_STR_LENGTH - 1);
5226 return name;
5227}
5228
5229static int sysfs_slab_add(struct kmem_cache *s)
5230{
5231 int err;
5232 const char *name;
5233 int unmergeable;
5234
5235 if (slab_state < SYSFS)
5236 /* Defer until later */
5237 return 0;
5238
5239 unmergeable = slab_unmergeable(s);
5240 if (unmergeable) {
5241 /*
5242 * Slabcache can never be merged so we can use the name proper.
5243 * This is typically the case for debug situations. In that
5244 * case we can catch duplicate names easily.
5245 */
27c3a314 5246 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5247 name = s->name;
5248 } else {
5249 /*
5250 * Create a unique name for the slab as a target
5251 * for the symlinks.
5252 */
5253 name = create_unique_id(s);
5254 }
5255
27c3a314 5256 s->kobj.kset = slab_kset;
1eada11c
GKH
5257 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5258 if (err) {
5259 kobject_put(&s->kobj);
81819f0f 5260 return err;
1eada11c 5261 }
81819f0f
CL
5262
5263 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5264 if (err) {
5265 kobject_del(&s->kobj);
5266 kobject_put(&s->kobj);
81819f0f 5267 return err;
5788d8ad 5268 }
81819f0f
CL
5269 kobject_uevent(&s->kobj, KOBJ_ADD);
5270 if (!unmergeable) {
5271 /* Setup first alias */
5272 sysfs_slab_alias(s, s->name);
5273 kfree(name);
5274 }
5275 return 0;
5276}
5277
5278static void sysfs_slab_remove(struct kmem_cache *s)
5279{
2bce6485
CL
5280 if (slab_state < SYSFS)
5281 /*
5282 * Sysfs has not been setup yet so no need to remove the
5283 * cache from sysfs.
5284 */
5285 return;
5286
81819f0f
CL
5287 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5288 kobject_del(&s->kobj);
151c602f 5289 kobject_put(&s->kobj);
81819f0f
CL
5290}
5291
5292/*
5293 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5294 * available lest we lose that information.
81819f0f
CL
5295 */
5296struct saved_alias {
5297 struct kmem_cache *s;
5298 const char *name;
5299 struct saved_alias *next;
5300};
5301
5af328a5 5302static struct saved_alias *alias_list;
81819f0f
CL
5303
5304static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5305{
5306 struct saved_alias *al;
5307
5308 if (slab_state == SYSFS) {
5309 /*
5310 * If we have a leftover link then remove it.
5311 */
27c3a314
GKH
5312 sysfs_remove_link(&slab_kset->kobj, name);
5313 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5314 }
5315
5316 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5317 if (!al)
5318 return -ENOMEM;
5319
5320 al->s = s;
5321 al->name = name;
5322 al->next = alias_list;
5323 alias_list = al;
5324 return 0;
5325}
5326
5327static int __init slab_sysfs_init(void)
5328{
5b95a4ac 5329 struct kmem_cache *s;
81819f0f
CL
5330 int err;
5331
2bce6485
CL
5332 down_write(&slub_lock);
5333
0ff21e46 5334 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5335 if (!slab_kset) {
2bce6485 5336 up_write(&slub_lock);
81819f0f
CL
5337 printk(KERN_ERR "Cannot register slab subsystem.\n");
5338 return -ENOSYS;
5339 }
5340
26a7bd03
CL
5341 slab_state = SYSFS;
5342
5b95a4ac 5343 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5344 err = sysfs_slab_add(s);
5d540fb7
CL
5345 if (err)
5346 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5347 " to sysfs\n", s->name);
26a7bd03 5348 }
81819f0f
CL
5349
5350 while (alias_list) {
5351 struct saved_alias *al = alias_list;
5352
5353 alias_list = alias_list->next;
5354 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5355 if (err)
5356 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5357 " %s to sysfs\n", s->name);
81819f0f
CL
5358 kfree(al);
5359 }
5360
2bce6485 5361 up_write(&slub_lock);
81819f0f
CL
5362 resiliency_test();
5363 return 0;
5364}
5365
5366__initcall(slab_sysfs_init);
ab4d5ed5 5367#endif /* CONFIG_SYSFS */
57ed3eda
PE
5368
5369/*
5370 * The /proc/slabinfo ABI
5371 */
158a9624 5372#ifdef CONFIG_SLABINFO
57ed3eda
PE
5373static void print_slabinfo_header(struct seq_file *m)
5374{
5375 seq_puts(m, "slabinfo - version: 2.1\n");
5376 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5377 "<objperslab> <pagesperslab>");
5378 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5379 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5380 seq_putc(m, '\n');
5381}
5382
5383static void *s_start(struct seq_file *m, loff_t *pos)
5384{
5385 loff_t n = *pos;
5386
5387 down_read(&slub_lock);
5388 if (!n)
5389 print_slabinfo_header(m);
5390
5391 return seq_list_start(&slab_caches, *pos);
5392}
5393
5394static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5395{
5396 return seq_list_next(p, &slab_caches, pos);
5397}
5398
5399static void s_stop(struct seq_file *m, void *p)
5400{
5401 up_read(&slub_lock);
5402}
5403
5404static int s_show(struct seq_file *m, void *p)
5405{
5406 unsigned long nr_partials = 0;
5407 unsigned long nr_slabs = 0;
5408 unsigned long nr_inuse = 0;
205ab99d
CL
5409 unsigned long nr_objs = 0;
5410 unsigned long nr_free = 0;
57ed3eda
PE
5411 struct kmem_cache *s;
5412 int node;
5413
5414 s = list_entry(p, struct kmem_cache, list);
5415
5416 for_each_online_node(node) {
5417 struct kmem_cache_node *n = get_node(s, node);
5418
5419 if (!n)
5420 continue;
5421
5422 nr_partials += n->nr_partial;
5423 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5424 nr_objs += atomic_long_read(&n->total_objects);
5425 nr_free += count_partial(n, count_free);
57ed3eda
PE
5426 }
5427
205ab99d 5428 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5429
5430 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5431 nr_objs, s->size, oo_objects(s->oo),
5432 (1 << oo_order(s->oo)));
57ed3eda
PE
5433 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5434 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5435 0UL);
5436 seq_putc(m, '\n');
5437 return 0;
5438}
5439
7b3c3a50 5440static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5441 .start = s_start,
5442 .next = s_next,
5443 .stop = s_stop,
5444 .show = s_show,
5445};
5446
7b3c3a50
AD
5447static int slabinfo_open(struct inode *inode, struct file *file)
5448{
5449 return seq_open(file, &slabinfo_op);
5450}
5451
5452static const struct file_operations proc_slabinfo_operations = {
5453 .open = slabinfo_open,
5454 .read = seq_read,
5455 .llseek = seq_lseek,
5456 .release = seq_release,
5457};
5458
5459static int __init slab_proc_init(void)
5460{
ab067e99 5461 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5462 return 0;
5463}
5464module_init(slab_proc_init);
158a9624 5465#endif /* CONFIG_SLABINFO */