slub: reduce differences between SMP and NUMA
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f
CL
30
31/*
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
35 *
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
42 *
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
48 *
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
54 *
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
67 *
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
72 *
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
75 *
672bba3a
CL
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 78 * freed then the slab will show up again on the partial lists.
672bba3a
CL
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
81819f0f
CL
81 *
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
85 *
86 * Overloading of page flags that are otherwise used for LRU management.
87 *
4b6f0750
CL
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
96 *
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
dfb4f096 100 * freelist that allows lockless access to
894b8788
CL
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
81819f0f
CL
103 *
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
894b8788 106 * the fast path and disables lockless freelists.
81819f0f
CL
107 */
108
af537b0a
CL
109#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 SLAB_TRACE | SLAB_DEBUG_FREE)
111
112static inline int kmem_cache_debug(struct kmem_cache *s)
113{
5577bd8a 114#ifdef CONFIG_SLUB_DEBUG
af537b0a 115 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 116#else
af537b0a 117 return 0;
5577bd8a 118#endif
af537b0a 119}
5577bd8a 120
81819f0f
CL
121/*
122 * Issues still to be resolved:
123 *
81819f0f
CL
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
125 *
81819f0f
CL
126 * - Variable sizing of the per node arrays
127 */
128
129/* Enable to test recovery from slab corruption on boot */
130#undef SLUB_RESILIENCY_TEST
131
2086d26a
CL
132/*
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
135 */
76be8950 136#define MIN_PARTIAL 5
e95eed57 137
2086d26a
CL
138/*
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
142 */
143#define MAX_PARTIAL 10
144
81819f0f
CL
145#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 SLAB_POISON | SLAB_STORE_USER)
672bba3a 147
fa5ec8a1 148/*
3de47213
DR
149 * Debugging flags that require metadata to be stored in the slab. These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
fa5ec8a1 152 */
3de47213 153#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 154
81819f0f
CL
155/*
156 * Set of flags that will prevent slab merging
157 */
158#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
159 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 SLAB_FAILSLAB)
81819f0f
CL
161
162#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 163 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 164
210b5c06
CG
165#define OO_SHIFT 16
166#define OO_MASK ((1 << OO_SHIFT) - 1)
167#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
168
81819f0f 169/* Internal SLUB flags */
f90ec390 170#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
171
172static int kmem_size = sizeof(struct kmem_cache);
173
174#ifdef CONFIG_SMP
175static struct notifier_block slab_notifier;
176#endif
177
178static enum {
179 DOWN, /* No slab functionality available */
51df1142 180 PARTIAL, /* Kmem_cache_node works */
672bba3a 181 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
182 SYSFS /* Sysfs up */
183} slab_state = DOWN;
184
185/* A list of all slab caches on the system */
186static DECLARE_RWSEM(slub_lock);
5af328a5 187static LIST_HEAD(slab_caches);
81819f0f 188
02cbc874
CL
189/*
190 * Tracking user of a slab.
191 */
192struct track {
ce71e27c 193 unsigned long addr; /* Called from address */
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
f6acb635 201#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
204static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 205
81819f0f 206#else
0c710013
CL
207static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
151c602f
CL
210static inline void sysfs_slab_remove(struct kmem_cache *s)
211{
84c1cf62 212 kfree(s->name);
151c602f
CL
213 kfree(s);
214}
8ff12cfc 215
81819f0f
CL
216#endif
217
84e554e6 218static inline void stat(struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
219{
220#ifdef CONFIG_SLUB_STATS
84e554e6 221 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
222#endif
223}
224
81819f0f
CL
225/********************************************************************
226 * Core slab cache functions
227 *******************************************************************/
228
229int slab_is_available(void)
230{
231 return slab_state >= UP;
232}
233
234static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
235{
81819f0f 236 return s->node[node];
81819f0f
CL
237}
238
6446faa2 239/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
240static inline int check_valid_pointer(struct kmem_cache *s,
241 struct page *page, const void *object)
242{
243 void *base;
244
a973e9dd 245 if (!object)
02cbc874
CL
246 return 1;
247
a973e9dd 248 base = page_address(page);
39b26464 249 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
250 (object - base) % s->size) {
251 return 0;
252 }
253
254 return 1;
255}
256
7656c72b
CL
257static inline void *get_freepointer(struct kmem_cache *s, void *object)
258{
259 return *(void **)(object + s->offset);
260}
261
262static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263{
264 *(void **)(object + s->offset) = fp;
265}
266
267/* Loop over all objects in a slab */
224a88be
CL
268#define for_each_object(__p, __s, __addr, __objects) \
269 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
270 __p += (__s)->size)
271
272/* Scan freelist */
273#define for_each_free_object(__p, __s, __free) \
a973e9dd 274 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
275
276/* Determine object index from a given position */
277static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
278{
279 return (p - addr) / s->size;
280}
281
834f3d11
CL
282static inline struct kmem_cache_order_objects oo_make(int order,
283 unsigned long size)
284{
285 struct kmem_cache_order_objects x = {
210b5c06 286 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
287 };
288
289 return x;
290}
291
292static inline int oo_order(struct kmem_cache_order_objects x)
293{
210b5c06 294 return x.x >> OO_SHIFT;
834f3d11
CL
295}
296
297static inline int oo_objects(struct kmem_cache_order_objects x)
298{
210b5c06 299 return x.x & OO_MASK;
834f3d11
CL
300}
301
41ecc55b
CL
302#ifdef CONFIG_SLUB_DEBUG
303/*
304 * Debug settings:
305 */
f0630fff
CL
306#ifdef CONFIG_SLUB_DEBUG_ON
307static int slub_debug = DEBUG_DEFAULT_FLAGS;
308#else
41ecc55b 309static int slub_debug;
f0630fff 310#endif
41ecc55b
CL
311
312static char *slub_debug_slabs;
fa5ec8a1 313static int disable_higher_order_debug;
41ecc55b 314
81819f0f
CL
315/*
316 * Object debugging
317 */
318static void print_section(char *text, u8 *addr, unsigned int length)
319{
320 int i, offset;
321 int newline = 1;
322 char ascii[17];
323
324 ascii[16] = 0;
325
326 for (i = 0; i < length; i++) {
327 if (newline) {
24922684 328 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
329 newline = 0;
330 }
06428780 331 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
332 offset = i % 16;
333 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
334 if (offset == 15) {
06428780 335 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
336 newline = 1;
337 }
338 }
339 if (!newline) {
340 i %= 16;
341 while (i < 16) {
06428780 342 printk(KERN_CONT " ");
81819f0f
CL
343 ascii[i] = ' ';
344 i++;
345 }
06428780 346 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
347 }
348}
349
81819f0f
CL
350static struct track *get_track(struct kmem_cache *s, void *object,
351 enum track_item alloc)
352{
353 struct track *p;
354
355 if (s->offset)
356 p = object + s->offset + sizeof(void *);
357 else
358 p = object + s->inuse;
359
360 return p + alloc;
361}
362
363static void set_track(struct kmem_cache *s, void *object,
ce71e27c 364 enum track_item alloc, unsigned long addr)
81819f0f 365{
1a00df4a 366 struct track *p = get_track(s, object, alloc);
81819f0f 367
81819f0f
CL
368 if (addr) {
369 p->addr = addr;
370 p->cpu = smp_processor_id();
88e4ccf2 371 p->pid = current->pid;
81819f0f
CL
372 p->when = jiffies;
373 } else
374 memset(p, 0, sizeof(struct track));
375}
376
81819f0f
CL
377static void init_tracking(struct kmem_cache *s, void *object)
378{
24922684
CL
379 if (!(s->flags & SLAB_STORE_USER))
380 return;
381
ce71e27c
EGM
382 set_track(s, object, TRACK_FREE, 0UL);
383 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
384}
385
386static void print_track(const char *s, struct track *t)
387{
388 if (!t->addr)
389 return;
390
7daf705f 391 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 392 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
393}
394
395static void print_tracking(struct kmem_cache *s, void *object)
396{
397 if (!(s->flags & SLAB_STORE_USER))
398 return;
399
400 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
401 print_track("Freed", get_track(s, object, TRACK_FREE));
402}
403
404static void print_page_info(struct page *page)
405{
39b26464
CL
406 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
407 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
408
409}
410
411static void slab_bug(struct kmem_cache *s, char *fmt, ...)
412{
413 va_list args;
414 char buf[100];
415
416 va_start(args, fmt);
417 vsnprintf(buf, sizeof(buf), fmt, args);
418 va_end(args);
419 printk(KERN_ERR "========================================"
420 "=====================================\n");
421 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
422 printk(KERN_ERR "----------------------------------------"
423 "-------------------------------------\n\n");
81819f0f
CL
424}
425
24922684
CL
426static void slab_fix(struct kmem_cache *s, char *fmt, ...)
427{
428 va_list args;
429 char buf[100];
430
431 va_start(args, fmt);
432 vsnprintf(buf, sizeof(buf), fmt, args);
433 va_end(args);
434 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
435}
436
437static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
438{
439 unsigned int off; /* Offset of last byte */
a973e9dd 440 u8 *addr = page_address(page);
24922684
CL
441
442 print_tracking(s, p);
443
444 print_page_info(page);
445
446 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
447 p, p - addr, get_freepointer(s, p));
448
449 if (p > addr + 16)
450 print_section("Bytes b4", p - 16, 16);
451
0ebd652b 452 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
453
454 if (s->flags & SLAB_RED_ZONE)
455 print_section("Redzone", p + s->objsize,
456 s->inuse - s->objsize);
457
81819f0f
CL
458 if (s->offset)
459 off = s->offset + sizeof(void *);
460 else
461 off = s->inuse;
462
24922684 463 if (s->flags & SLAB_STORE_USER)
81819f0f 464 off += 2 * sizeof(struct track);
81819f0f
CL
465
466 if (off != s->size)
467 /* Beginning of the filler is the free pointer */
24922684
CL
468 print_section("Padding", p + off, s->size - off);
469
470 dump_stack();
81819f0f
CL
471}
472
473static void object_err(struct kmem_cache *s, struct page *page,
474 u8 *object, char *reason)
475{
3dc50637 476 slab_bug(s, "%s", reason);
24922684 477 print_trailer(s, page, object);
81819f0f
CL
478}
479
24922684 480static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
481{
482 va_list args;
483 char buf[100];
484
24922684
CL
485 va_start(args, fmt);
486 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 487 va_end(args);
3dc50637 488 slab_bug(s, "%s", buf);
24922684 489 print_page_info(page);
81819f0f
CL
490 dump_stack();
491}
492
493static void init_object(struct kmem_cache *s, void *object, int active)
494{
495 u8 *p = object;
496
497 if (s->flags & __OBJECT_POISON) {
498 memset(p, POISON_FREE, s->objsize - 1);
06428780 499 p[s->objsize - 1] = POISON_END;
81819f0f
CL
500 }
501
502 if (s->flags & SLAB_RED_ZONE)
503 memset(p + s->objsize,
504 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
505 s->inuse - s->objsize);
506}
507
24922684 508static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
509{
510 while (bytes) {
511 if (*start != (u8)value)
24922684 512 return start;
81819f0f
CL
513 start++;
514 bytes--;
515 }
24922684
CL
516 return NULL;
517}
518
519static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
520 void *from, void *to)
521{
522 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
523 memset(from, data, to - from);
524}
525
526static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
527 u8 *object, char *what,
06428780 528 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
529{
530 u8 *fault;
531 u8 *end;
532
533 fault = check_bytes(start, value, bytes);
534 if (!fault)
535 return 1;
536
537 end = start + bytes;
538 while (end > fault && end[-1] == value)
539 end--;
540
541 slab_bug(s, "%s overwritten", what);
542 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
543 fault, end - 1, fault[0], value);
544 print_trailer(s, page, object);
545
546 restore_bytes(s, what, value, fault, end);
547 return 0;
81819f0f
CL
548}
549
81819f0f
CL
550/*
551 * Object layout:
552 *
553 * object address
554 * Bytes of the object to be managed.
555 * If the freepointer may overlay the object then the free
556 * pointer is the first word of the object.
672bba3a 557 *
81819f0f
CL
558 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
559 * 0xa5 (POISON_END)
560 *
561 * object + s->objsize
562 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
563 * Padding is extended by another word if Redzoning is enabled and
564 * objsize == inuse.
565 *
81819f0f
CL
566 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
567 * 0xcc (RED_ACTIVE) for objects in use.
568 *
569 * object + s->inuse
672bba3a
CL
570 * Meta data starts here.
571 *
81819f0f
CL
572 * A. Free pointer (if we cannot overwrite object on free)
573 * B. Tracking data for SLAB_STORE_USER
672bba3a 574 * C. Padding to reach required alignment boundary or at mininum
6446faa2 575 * one word if debugging is on to be able to detect writes
672bba3a
CL
576 * before the word boundary.
577 *
578 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
579 *
580 * object + s->size
672bba3a 581 * Nothing is used beyond s->size.
81819f0f 582 *
672bba3a
CL
583 * If slabcaches are merged then the objsize and inuse boundaries are mostly
584 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
585 * may be used with merged slabcaches.
586 */
587
81819f0f
CL
588static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
589{
590 unsigned long off = s->inuse; /* The end of info */
591
592 if (s->offset)
593 /* Freepointer is placed after the object. */
594 off += sizeof(void *);
595
596 if (s->flags & SLAB_STORE_USER)
597 /* We also have user information there */
598 off += 2 * sizeof(struct track);
599
600 if (s->size == off)
601 return 1;
602
24922684
CL
603 return check_bytes_and_report(s, page, p, "Object padding",
604 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
605}
606
39b26464 607/* Check the pad bytes at the end of a slab page */
81819f0f
CL
608static int slab_pad_check(struct kmem_cache *s, struct page *page)
609{
24922684
CL
610 u8 *start;
611 u8 *fault;
612 u8 *end;
613 int length;
614 int remainder;
81819f0f
CL
615
616 if (!(s->flags & SLAB_POISON))
617 return 1;
618
a973e9dd 619 start = page_address(page);
834f3d11 620 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
621 end = start + length;
622 remainder = length % s->size;
81819f0f
CL
623 if (!remainder)
624 return 1;
625
39b26464 626 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
627 if (!fault)
628 return 1;
629 while (end > fault && end[-1] == POISON_INUSE)
630 end--;
631
632 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 633 print_section("Padding", end - remainder, remainder);
24922684 634
8a3d271d 635 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 636 return 0;
81819f0f
CL
637}
638
639static int check_object(struct kmem_cache *s, struct page *page,
640 void *object, int active)
641{
642 u8 *p = object;
643 u8 *endobject = object + s->objsize;
644
645 if (s->flags & SLAB_RED_ZONE) {
646 unsigned int red =
647 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
648
24922684
CL
649 if (!check_bytes_and_report(s, page, object, "Redzone",
650 endobject, red, s->inuse - s->objsize))
81819f0f 651 return 0;
81819f0f 652 } else {
3adbefee
IM
653 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
654 check_bytes_and_report(s, page, p, "Alignment padding",
655 endobject, POISON_INUSE, s->inuse - s->objsize);
656 }
81819f0f
CL
657 }
658
659 if (s->flags & SLAB_POISON) {
660 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
661 (!check_bytes_and_report(s, page, p, "Poison", p,
662 POISON_FREE, s->objsize - 1) ||
663 !check_bytes_and_report(s, page, p, "Poison",
06428780 664 p + s->objsize - 1, POISON_END, 1)))
81819f0f 665 return 0;
81819f0f
CL
666 /*
667 * check_pad_bytes cleans up on its own.
668 */
669 check_pad_bytes(s, page, p);
670 }
671
672 if (!s->offset && active)
673 /*
674 * Object and freepointer overlap. Cannot check
675 * freepointer while object is allocated.
676 */
677 return 1;
678
679 /* Check free pointer validity */
680 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
681 object_err(s, page, p, "Freepointer corrupt");
682 /*
9f6c708e 683 * No choice but to zap it and thus lose the remainder
81819f0f 684 * of the free objects in this slab. May cause
672bba3a 685 * another error because the object count is now wrong.
81819f0f 686 */
a973e9dd 687 set_freepointer(s, p, NULL);
81819f0f
CL
688 return 0;
689 }
690 return 1;
691}
692
693static int check_slab(struct kmem_cache *s, struct page *page)
694{
39b26464
CL
695 int maxobj;
696
81819f0f
CL
697 VM_BUG_ON(!irqs_disabled());
698
699 if (!PageSlab(page)) {
24922684 700 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
701 return 0;
702 }
39b26464
CL
703
704 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
705 if (page->objects > maxobj) {
706 slab_err(s, page, "objects %u > max %u",
707 s->name, page->objects, maxobj);
708 return 0;
709 }
710 if (page->inuse > page->objects) {
24922684 711 slab_err(s, page, "inuse %u > max %u",
39b26464 712 s->name, page->inuse, page->objects);
81819f0f
CL
713 return 0;
714 }
715 /* Slab_pad_check fixes things up after itself */
716 slab_pad_check(s, page);
717 return 1;
718}
719
720/*
672bba3a
CL
721 * Determine if a certain object on a page is on the freelist. Must hold the
722 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
723 */
724static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
725{
726 int nr = 0;
727 void *fp = page->freelist;
728 void *object = NULL;
224a88be 729 unsigned long max_objects;
81819f0f 730
39b26464 731 while (fp && nr <= page->objects) {
81819f0f
CL
732 if (fp == search)
733 return 1;
734 if (!check_valid_pointer(s, page, fp)) {
735 if (object) {
736 object_err(s, page, object,
737 "Freechain corrupt");
a973e9dd 738 set_freepointer(s, object, NULL);
81819f0f
CL
739 break;
740 } else {
24922684 741 slab_err(s, page, "Freepointer corrupt");
a973e9dd 742 page->freelist = NULL;
39b26464 743 page->inuse = page->objects;
24922684 744 slab_fix(s, "Freelist cleared");
81819f0f
CL
745 return 0;
746 }
747 break;
748 }
749 object = fp;
750 fp = get_freepointer(s, object);
751 nr++;
752 }
753
224a88be 754 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
755 if (max_objects > MAX_OBJS_PER_PAGE)
756 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
757
758 if (page->objects != max_objects) {
759 slab_err(s, page, "Wrong number of objects. Found %d but "
760 "should be %d", page->objects, max_objects);
761 page->objects = max_objects;
762 slab_fix(s, "Number of objects adjusted.");
763 }
39b26464 764 if (page->inuse != page->objects - nr) {
70d71228 765 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
766 "counted were %d", page->inuse, page->objects - nr);
767 page->inuse = page->objects - nr;
24922684 768 slab_fix(s, "Object count adjusted.");
81819f0f
CL
769 }
770 return search == NULL;
771}
772
0121c619
CL
773static void trace(struct kmem_cache *s, struct page *page, void *object,
774 int alloc)
3ec09742
CL
775{
776 if (s->flags & SLAB_TRACE) {
777 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
778 s->name,
779 alloc ? "alloc" : "free",
780 object, page->inuse,
781 page->freelist);
782
783 if (!alloc)
784 print_section("Object", (void *)object, s->objsize);
785
786 dump_stack();
787 }
788}
789
c016b0bd
CL
790/*
791 * Hooks for other subsystems that check memory allocations. In a typical
792 * production configuration these hooks all should produce no code at all.
793 */
794static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
795{
c1d50836 796 flags &= gfp_allowed_mask;
c016b0bd
CL
797 lockdep_trace_alloc(flags);
798 might_sleep_if(flags & __GFP_WAIT);
799
800 return should_failslab(s->objsize, flags, s->flags);
801}
802
803static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
804{
c1d50836 805 flags &= gfp_allowed_mask;
c016b0bd
CL
806 kmemcheck_slab_alloc(s, flags, object, s->objsize);
807 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
808}
809
810static inline void slab_free_hook(struct kmem_cache *s, void *x)
811{
812 kmemleak_free_recursive(x, s->flags);
813}
814
815static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
816{
817 kmemcheck_slab_free(s, object, s->objsize);
818 debug_check_no_locks_freed(object, s->objsize);
819 if (!(s->flags & SLAB_DEBUG_OBJECTS))
820 debug_check_no_obj_freed(object, s->objsize);
821}
822
643b1138 823/*
672bba3a 824 * Tracking of fully allocated slabs for debugging purposes.
643b1138 825 */
e95eed57 826static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 827{
643b1138
CL
828 spin_lock(&n->list_lock);
829 list_add(&page->lru, &n->full);
830 spin_unlock(&n->list_lock);
831}
832
833static void remove_full(struct kmem_cache *s, struct page *page)
834{
835 struct kmem_cache_node *n;
836
837 if (!(s->flags & SLAB_STORE_USER))
838 return;
839
840 n = get_node(s, page_to_nid(page));
841
842 spin_lock(&n->list_lock);
843 list_del(&page->lru);
844 spin_unlock(&n->list_lock);
845}
846
0f389ec6
CL
847/* Tracking of the number of slabs for debugging purposes */
848static inline unsigned long slabs_node(struct kmem_cache *s, int node)
849{
850 struct kmem_cache_node *n = get_node(s, node);
851
852 return atomic_long_read(&n->nr_slabs);
853}
854
26c02cf0
AB
855static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
856{
857 return atomic_long_read(&n->nr_slabs);
858}
859
205ab99d 860static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
861{
862 struct kmem_cache_node *n = get_node(s, node);
863
864 /*
865 * May be called early in order to allocate a slab for the
866 * kmem_cache_node structure. Solve the chicken-egg
867 * dilemma by deferring the increment of the count during
868 * bootstrap (see early_kmem_cache_node_alloc).
869 */
7340cc84 870 if (n) {
0f389ec6 871 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
872 atomic_long_add(objects, &n->total_objects);
873 }
0f389ec6 874}
205ab99d 875static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
876{
877 struct kmem_cache_node *n = get_node(s, node);
878
879 atomic_long_dec(&n->nr_slabs);
205ab99d 880 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
881}
882
883/* Object debug checks for alloc/free paths */
3ec09742
CL
884static void setup_object_debug(struct kmem_cache *s, struct page *page,
885 void *object)
886{
887 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
888 return;
889
890 init_object(s, object, 0);
891 init_tracking(s, object);
892}
893
1537066c 894static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 895 void *object, unsigned long addr)
81819f0f
CL
896{
897 if (!check_slab(s, page))
898 goto bad;
899
d692ef6d 900 if (!on_freelist(s, page, object)) {
24922684 901 object_err(s, page, object, "Object already allocated");
70d71228 902 goto bad;
81819f0f
CL
903 }
904
905 if (!check_valid_pointer(s, page, object)) {
906 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 907 goto bad;
81819f0f
CL
908 }
909
d692ef6d 910 if (!check_object(s, page, object, 0))
81819f0f 911 goto bad;
81819f0f 912
3ec09742
CL
913 /* Success perform special debug activities for allocs */
914 if (s->flags & SLAB_STORE_USER)
915 set_track(s, object, TRACK_ALLOC, addr);
916 trace(s, page, object, 1);
917 init_object(s, object, 1);
81819f0f 918 return 1;
3ec09742 919
81819f0f
CL
920bad:
921 if (PageSlab(page)) {
922 /*
923 * If this is a slab page then lets do the best we can
924 * to avoid issues in the future. Marking all objects
672bba3a 925 * as used avoids touching the remaining objects.
81819f0f 926 */
24922684 927 slab_fix(s, "Marking all objects used");
39b26464 928 page->inuse = page->objects;
a973e9dd 929 page->freelist = NULL;
81819f0f
CL
930 }
931 return 0;
932}
933
1537066c
CL
934static noinline int free_debug_processing(struct kmem_cache *s,
935 struct page *page, void *object, unsigned long addr)
81819f0f
CL
936{
937 if (!check_slab(s, page))
938 goto fail;
939
940 if (!check_valid_pointer(s, page, object)) {
70d71228 941 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
942 goto fail;
943 }
944
945 if (on_freelist(s, page, object)) {
24922684 946 object_err(s, page, object, "Object already free");
81819f0f
CL
947 goto fail;
948 }
949
950 if (!check_object(s, page, object, 1))
951 return 0;
952
953 if (unlikely(s != page->slab)) {
3adbefee 954 if (!PageSlab(page)) {
70d71228
CL
955 slab_err(s, page, "Attempt to free object(0x%p) "
956 "outside of slab", object);
3adbefee 957 } else if (!page->slab) {
81819f0f 958 printk(KERN_ERR
70d71228 959 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 960 object);
70d71228 961 dump_stack();
06428780 962 } else
24922684
CL
963 object_err(s, page, object,
964 "page slab pointer corrupt.");
81819f0f
CL
965 goto fail;
966 }
3ec09742
CL
967
968 /* Special debug activities for freeing objects */
8a38082d 969 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
970 remove_full(s, page);
971 if (s->flags & SLAB_STORE_USER)
972 set_track(s, object, TRACK_FREE, addr);
973 trace(s, page, object, 0);
974 init_object(s, object, 0);
81819f0f 975 return 1;
3ec09742 976
81819f0f 977fail:
24922684 978 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
979 return 0;
980}
981
41ecc55b
CL
982static int __init setup_slub_debug(char *str)
983{
f0630fff
CL
984 slub_debug = DEBUG_DEFAULT_FLAGS;
985 if (*str++ != '=' || !*str)
986 /*
987 * No options specified. Switch on full debugging.
988 */
989 goto out;
990
991 if (*str == ',')
992 /*
993 * No options but restriction on slabs. This means full
994 * debugging for slabs matching a pattern.
995 */
996 goto check_slabs;
997
fa5ec8a1
DR
998 if (tolower(*str) == 'o') {
999 /*
1000 * Avoid enabling debugging on caches if its minimum order
1001 * would increase as a result.
1002 */
1003 disable_higher_order_debug = 1;
1004 goto out;
1005 }
1006
f0630fff
CL
1007 slub_debug = 0;
1008 if (*str == '-')
1009 /*
1010 * Switch off all debugging measures.
1011 */
1012 goto out;
1013
1014 /*
1015 * Determine which debug features should be switched on
1016 */
06428780 1017 for (; *str && *str != ','; str++) {
f0630fff
CL
1018 switch (tolower(*str)) {
1019 case 'f':
1020 slub_debug |= SLAB_DEBUG_FREE;
1021 break;
1022 case 'z':
1023 slub_debug |= SLAB_RED_ZONE;
1024 break;
1025 case 'p':
1026 slub_debug |= SLAB_POISON;
1027 break;
1028 case 'u':
1029 slub_debug |= SLAB_STORE_USER;
1030 break;
1031 case 't':
1032 slub_debug |= SLAB_TRACE;
1033 break;
4c13dd3b
DM
1034 case 'a':
1035 slub_debug |= SLAB_FAILSLAB;
1036 break;
f0630fff
CL
1037 default:
1038 printk(KERN_ERR "slub_debug option '%c' "
06428780 1039 "unknown. skipped\n", *str);
f0630fff 1040 }
41ecc55b
CL
1041 }
1042
f0630fff 1043check_slabs:
41ecc55b
CL
1044 if (*str == ',')
1045 slub_debug_slabs = str + 1;
f0630fff 1046out:
41ecc55b
CL
1047 return 1;
1048}
1049
1050__setup("slub_debug", setup_slub_debug);
1051
ba0268a8
CL
1052static unsigned long kmem_cache_flags(unsigned long objsize,
1053 unsigned long flags, const char *name,
51cc5068 1054 void (*ctor)(void *))
41ecc55b
CL
1055{
1056 /*
e153362a 1057 * Enable debugging if selected on the kernel commandline.
41ecc55b 1058 */
e153362a 1059 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1060 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1061 flags |= slub_debug;
ba0268a8
CL
1062
1063 return flags;
41ecc55b
CL
1064}
1065#else
3ec09742
CL
1066static inline void setup_object_debug(struct kmem_cache *s,
1067 struct page *page, void *object) {}
41ecc55b 1068
3ec09742 1069static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1070 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1071
3ec09742 1072static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1073 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1074
41ecc55b
CL
1075static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1076 { return 1; }
1077static inline int check_object(struct kmem_cache *s, struct page *page,
1078 void *object, int active) { return 1; }
3ec09742 1079static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1080static inline unsigned long kmem_cache_flags(unsigned long objsize,
1081 unsigned long flags, const char *name,
51cc5068 1082 void (*ctor)(void *))
ba0268a8
CL
1083{
1084 return flags;
1085}
41ecc55b 1086#define slub_debug 0
0f389ec6 1087
fdaa45e9
IM
1088#define disable_higher_order_debug 0
1089
0f389ec6
CL
1090static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1091 { return 0; }
26c02cf0
AB
1092static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1093 { return 0; }
205ab99d
CL
1094static inline void inc_slabs_node(struct kmem_cache *s, int node,
1095 int objects) {}
1096static inline void dec_slabs_node(struct kmem_cache *s, int node,
1097 int objects) {}
7d550c56
CL
1098
1099static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1100 { return 0; }
1101
1102static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1103 void *object) {}
1104
1105static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1106
1107static inline void slab_free_hook_irq(struct kmem_cache *s,
1108 void *object) {}
1109
41ecc55b 1110#endif
205ab99d 1111
81819f0f
CL
1112/*
1113 * Slab allocation and freeing
1114 */
65c3376a
CL
1115static inline struct page *alloc_slab_page(gfp_t flags, int node,
1116 struct kmem_cache_order_objects oo)
1117{
1118 int order = oo_order(oo);
1119
b1eeab67
VN
1120 flags |= __GFP_NOTRACK;
1121
2154a336 1122 if (node == NUMA_NO_NODE)
65c3376a
CL
1123 return alloc_pages(flags, order);
1124 else
6b65aaf3 1125 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1126}
1127
81819f0f
CL
1128static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1129{
06428780 1130 struct page *page;
834f3d11 1131 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1132 gfp_t alloc_gfp;
81819f0f 1133
b7a49f0d 1134 flags |= s->allocflags;
e12ba74d 1135
ba52270d
PE
1136 /*
1137 * Let the initial higher-order allocation fail under memory pressure
1138 * so we fall-back to the minimum order allocation.
1139 */
1140 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1141
1142 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1143 if (unlikely(!page)) {
1144 oo = s->min;
1145 /*
1146 * Allocation may have failed due to fragmentation.
1147 * Try a lower order alloc if possible
1148 */
1149 page = alloc_slab_page(flags, node, oo);
1150 if (!page)
1151 return NULL;
81819f0f 1152
84e554e6 1153 stat(s, ORDER_FALLBACK);
65c3376a 1154 }
5a896d9e
VN
1155
1156 if (kmemcheck_enabled
5086c389 1157 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1158 int pages = 1 << oo_order(oo);
1159
1160 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1161
1162 /*
1163 * Objects from caches that have a constructor don't get
1164 * cleared when they're allocated, so we need to do it here.
1165 */
1166 if (s->ctor)
1167 kmemcheck_mark_uninitialized_pages(page, pages);
1168 else
1169 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1170 }
1171
834f3d11 1172 page->objects = oo_objects(oo);
81819f0f
CL
1173 mod_zone_page_state(page_zone(page),
1174 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1175 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1176 1 << oo_order(oo));
81819f0f
CL
1177
1178 return page;
1179}
1180
1181static void setup_object(struct kmem_cache *s, struct page *page,
1182 void *object)
1183{
3ec09742 1184 setup_object_debug(s, page, object);
4f104934 1185 if (unlikely(s->ctor))
51cc5068 1186 s->ctor(object);
81819f0f
CL
1187}
1188
1189static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1190{
1191 struct page *page;
81819f0f 1192 void *start;
81819f0f
CL
1193 void *last;
1194 void *p;
1195
6cb06229 1196 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1197
6cb06229
CL
1198 page = allocate_slab(s,
1199 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1200 if (!page)
1201 goto out;
1202
205ab99d 1203 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1204 page->slab = s;
1205 page->flags |= 1 << PG_slab;
81819f0f
CL
1206
1207 start = page_address(page);
81819f0f
CL
1208
1209 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1210 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1211
1212 last = start;
224a88be 1213 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1214 setup_object(s, page, last);
1215 set_freepointer(s, last, p);
1216 last = p;
1217 }
1218 setup_object(s, page, last);
a973e9dd 1219 set_freepointer(s, last, NULL);
81819f0f
CL
1220
1221 page->freelist = start;
1222 page->inuse = 0;
1223out:
81819f0f
CL
1224 return page;
1225}
1226
1227static void __free_slab(struct kmem_cache *s, struct page *page)
1228{
834f3d11
CL
1229 int order = compound_order(page);
1230 int pages = 1 << order;
81819f0f 1231
af537b0a 1232 if (kmem_cache_debug(s)) {
81819f0f
CL
1233 void *p;
1234
1235 slab_pad_check(s, page);
224a88be
CL
1236 for_each_object(p, s, page_address(page),
1237 page->objects)
81819f0f 1238 check_object(s, page, p, 0);
81819f0f
CL
1239 }
1240
b1eeab67 1241 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1242
81819f0f
CL
1243 mod_zone_page_state(page_zone(page),
1244 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1245 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1246 -pages);
81819f0f 1247
49bd5221
CL
1248 __ClearPageSlab(page);
1249 reset_page_mapcount(page);
1eb5ac64
NP
1250 if (current->reclaim_state)
1251 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1252 __free_pages(page, order);
81819f0f
CL
1253}
1254
1255static void rcu_free_slab(struct rcu_head *h)
1256{
1257 struct page *page;
1258
1259 page = container_of((struct list_head *)h, struct page, lru);
1260 __free_slab(page->slab, page);
1261}
1262
1263static void free_slab(struct kmem_cache *s, struct page *page)
1264{
1265 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1266 /*
1267 * RCU free overloads the RCU head over the LRU
1268 */
1269 struct rcu_head *head = (void *)&page->lru;
1270
1271 call_rcu(head, rcu_free_slab);
1272 } else
1273 __free_slab(s, page);
1274}
1275
1276static void discard_slab(struct kmem_cache *s, struct page *page)
1277{
205ab99d 1278 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1279 free_slab(s, page);
1280}
1281
1282/*
1283 * Per slab locking using the pagelock
1284 */
1285static __always_inline void slab_lock(struct page *page)
1286{
1287 bit_spin_lock(PG_locked, &page->flags);
1288}
1289
1290static __always_inline void slab_unlock(struct page *page)
1291{
a76d3546 1292 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1293}
1294
1295static __always_inline int slab_trylock(struct page *page)
1296{
1297 int rc = 1;
1298
1299 rc = bit_spin_trylock(PG_locked, &page->flags);
1300 return rc;
1301}
1302
1303/*
1304 * Management of partially allocated slabs
1305 */
7c2e132c
CL
1306static void add_partial(struct kmem_cache_node *n,
1307 struct page *page, int tail)
81819f0f 1308{
e95eed57
CL
1309 spin_lock(&n->list_lock);
1310 n->nr_partial++;
7c2e132c
CL
1311 if (tail)
1312 list_add_tail(&page->lru, &n->partial);
1313 else
1314 list_add(&page->lru, &n->partial);
81819f0f
CL
1315 spin_unlock(&n->list_lock);
1316}
1317
0121c619 1318static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1319{
1320 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1321
1322 spin_lock(&n->list_lock);
1323 list_del(&page->lru);
1324 n->nr_partial--;
1325 spin_unlock(&n->list_lock);
1326}
1327
1328/*
672bba3a 1329 * Lock slab and remove from the partial list.
81819f0f 1330 *
672bba3a 1331 * Must hold list_lock.
81819f0f 1332 */
0121c619
CL
1333static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1334 struct page *page)
81819f0f
CL
1335{
1336 if (slab_trylock(page)) {
1337 list_del(&page->lru);
1338 n->nr_partial--;
8a38082d 1339 __SetPageSlubFrozen(page);
81819f0f
CL
1340 return 1;
1341 }
1342 return 0;
1343}
1344
1345/*
672bba3a 1346 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1347 */
1348static struct page *get_partial_node(struct kmem_cache_node *n)
1349{
1350 struct page *page;
1351
1352 /*
1353 * Racy check. If we mistakenly see no partial slabs then we
1354 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1355 * partial slab and there is none available then get_partials()
1356 * will return NULL.
81819f0f
CL
1357 */
1358 if (!n || !n->nr_partial)
1359 return NULL;
1360
1361 spin_lock(&n->list_lock);
1362 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1363 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1364 goto out;
1365 page = NULL;
1366out:
1367 spin_unlock(&n->list_lock);
1368 return page;
1369}
1370
1371/*
672bba3a 1372 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1373 */
1374static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1375{
1376#ifdef CONFIG_NUMA
1377 struct zonelist *zonelist;
dd1a239f 1378 struct zoneref *z;
54a6eb5c
MG
1379 struct zone *zone;
1380 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1381 struct page *page;
1382
1383 /*
672bba3a
CL
1384 * The defrag ratio allows a configuration of the tradeoffs between
1385 * inter node defragmentation and node local allocations. A lower
1386 * defrag_ratio increases the tendency to do local allocations
1387 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1388 *
672bba3a
CL
1389 * If the defrag_ratio is set to 0 then kmalloc() always
1390 * returns node local objects. If the ratio is higher then kmalloc()
1391 * may return off node objects because partial slabs are obtained
1392 * from other nodes and filled up.
81819f0f 1393 *
6446faa2 1394 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1395 * defrag_ratio = 1000) then every (well almost) allocation will
1396 * first attempt to defrag slab caches on other nodes. This means
1397 * scanning over all nodes to look for partial slabs which may be
1398 * expensive if we do it every time we are trying to find a slab
1399 * with available objects.
81819f0f 1400 */
9824601e
CL
1401 if (!s->remote_node_defrag_ratio ||
1402 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1403 return NULL;
1404
c0ff7453 1405 get_mems_allowed();
0e88460d 1406 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1407 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1408 struct kmem_cache_node *n;
1409
54a6eb5c 1410 n = get_node(s, zone_to_nid(zone));
81819f0f 1411
54a6eb5c 1412 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1413 n->nr_partial > s->min_partial) {
81819f0f 1414 page = get_partial_node(n);
c0ff7453
MX
1415 if (page) {
1416 put_mems_allowed();
81819f0f 1417 return page;
c0ff7453 1418 }
81819f0f
CL
1419 }
1420 }
c0ff7453 1421 put_mems_allowed();
81819f0f
CL
1422#endif
1423 return NULL;
1424}
1425
1426/*
1427 * Get a partial page, lock it and return it.
1428 */
1429static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1430{
1431 struct page *page;
2154a336 1432 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1433
1434 page = get_partial_node(get_node(s, searchnode));
bc6488e9 1435 if (page || node != -1)
81819f0f
CL
1436 return page;
1437
1438 return get_any_partial(s, flags);
1439}
1440
1441/*
1442 * Move a page back to the lists.
1443 *
1444 * Must be called with the slab lock held.
1445 *
1446 * On exit the slab lock will have been dropped.
1447 */
7c2e132c 1448static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1449{
e95eed57
CL
1450 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1451
8a38082d 1452 __ClearPageSlubFrozen(page);
81819f0f 1453 if (page->inuse) {
e95eed57 1454
a973e9dd 1455 if (page->freelist) {
7c2e132c 1456 add_partial(n, page, tail);
84e554e6 1457 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1458 } else {
84e554e6 1459 stat(s, DEACTIVATE_FULL);
af537b0a 1460 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1461 add_full(n, page);
1462 }
81819f0f
CL
1463 slab_unlock(page);
1464 } else {
84e554e6 1465 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1466 if (n->nr_partial < s->min_partial) {
e95eed57 1467 /*
672bba3a
CL
1468 * Adding an empty slab to the partial slabs in order
1469 * to avoid page allocator overhead. This slab needs
1470 * to come after the other slabs with objects in
6446faa2
CL
1471 * so that the others get filled first. That way the
1472 * size of the partial list stays small.
1473 *
0121c619
CL
1474 * kmem_cache_shrink can reclaim any empty slabs from
1475 * the partial list.
e95eed57 1476 */
7c2e132c 1477 add_partial(n, page, 1);
e95eed57
CL
1478 slab_unlock(page);
1479 } else {
1480 slab_unlock(page);
84e554e6 1481 stat(s, FREE_SLAB);
e95eed57
CL
1482 discard_slab(s, page);
1483 }
81819f0f
CL
1484 }
1485}
1486
1487/*
1488 * Remove the cpu slab
1489 */
dfb4f096 1490static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1491{
dfb4f096 1492 struct page *page = c->page;
7c2e132c 1493 int tail = 1;
8ff12cfc 1494
b773ad73 1495 if (page->freelist)
84e554e6 1496 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1497 /*
6446faa2 1498 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1499 * because both freelists are empty. So this is unlikely
1500 * to occur.
1501 */
a973e9dd 1502 while (unlikely(c->freelist)) {
894b8788
CL
1503 void **object;
1504
7c2e132c
CL
1505 tail = 0; /* Hot objects. Put the slab first */
1506
894b8788 1507 /* Retrieve object from cpu_freelist */
dfb4f096 1508 object = c->freelist;
ff12059e 1509 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1510
1511 /* And put onto the regular freelist */
ff12059e 1512 set_freepointer(s, object, page->freelist);
894b8788
CL
1513 page->freelist = object;
1514 page->inuse--;
1515 }
dfb4f096 1516 c->page = NULL;
7c2e132c 1517 unfreeze_slab(s, page, tail);
81819f0f
CL
1518}
1519
dfb4f096 1520static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1521{
84e554e6 1522 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1523 slab_lock(c->page);
1524 deactivate_slab(s, c);
81819f0f
CL
1525}
1526
1527/*
1528 * Flush cpu slab.
6446faa2 1529 *
81819f0f
CL
1530 * Called from IPI handler with interrupts disabled.
1531 */
0c710013 1532static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1533{
9dfc6e68 1534 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1535
dfb4f096
CL
1536 if (likely(c && c->page))
1537 flush_slab(s, c);
81819f0f
CL
1538}
1539
1540static void flush_cpu_slab(void *d)
1541{
1542 struct kmem_cache *s = d;
81819f0f 1543
dfb4f096 1544 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1545}
1546
1547static void flush_all(struct kmem_cache *s)
1548{
15c8b6c1 1549 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1550}
1551
dfb4f096
CL
1552/*
1553 * Check if the objects in a per cpu structure fit numa
1554 * locality expectations.
1555 */
1556static inline int node_match(struct kmem_cache_cpu *c, int node)
1557{
1558#ifdef CONFIG_NUMA
2154a336 1559 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1560 return 0;
1561#endif
1562 return 1;
1563}
1564
781b2ba6
PE
1565static int count_free(struct page *page)
1566{
1567 return page->objects - page->inuse;
1568}
1569
1570static unsigned long count_partial(struct kmem_cache_node *n,
1571 int (*get_count)(struct page *))
1572{
1573 unsigned long flags;
1574 unsigned long x = 0;
1575 struct page *page;
1576
1577 spin_lock_irqsave(&n->list_lock, flags);
1578 list_for_each_entry(page, &n->partial, lru)
1579 x += get_count(page);
1580 spin_unlock_irqrestore(&n->list_lock, flags);
1581 return x;
1582}
1583
26c02cf0
AB
1584static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1585{
1586#ifdef CONFIG_SLUB_DEBUG
1587 return atomic_long_read(&n->total_objects);
1588#else
1589 return 0;
1590#endif
1591}
1592
781b2ba6
PE
1593static noinline void
1594slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1595{
1596 int node;
1597
1598 printk(KERN_WARNING
1599 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1600 nid, gfpflags);
1601 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1602 "default order: %d, min order: %d\n", s->name, s->objsize,
1603 s->size, oo_order(s->oo), oo_order(s->min));
1604
fa5ec8a1
DR
1605 if (oo_order(s->min) > get_order(s->objsize))
1606 printk(KERN_WARNING " %s debugging increased min order, use "
1607 "slub_debug=O to disable.\n", s->name);
1608
781b2ba6
PE
1609 for_each_online_node(node) {
1610 struct kmem_cache_node *n = get_node(s, node);
1611 unsigned long nr_slabs;
1612 unsigned long nr_objs;
1613 unsigned long nr_free;
1614
1615 if (!n)
1616 continue;
1617
26c02cf0
AB
1618 nr_free = count_partial(n, count_free);
1619 nr_slabs = node_nr_slabs(n);
1620 nr_objs = node_nr_objs(n);
781b2ba6
PE
1621
1622 printk(KERN_WARNING
1623 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1624 node, nr_slabs, nr_objs, nr_free);
1625 }
1626}
1627
81819f0f 1628/*
894b8788
CL
1629 * Slow path. The lockless freelist is empty or we need to perform
1630 * debugging duties.
1631 *
1632 * Interrupts are disabled.
81819f0f 1633 *
894b8788
CL
1634 * Processing is still very fast if new objects have been freed to the
1635 * regular freelist. In that case we simply take over the regular freelist
1636 * as the lockless freelist and zap the regular freelist.
81819f0f 1637 *
894b8788
CL
1638 * If that is not working then we fall back to the partial lists. We take the
1639 * first element of the freelist as the object to allocate now and move the
1640 * rest of the freelist to the lockless freelist.
81819f0f 1641 *
894b8788 1642 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1643 * we need to allocate a new slab. This is the slowest path since it involves
1644 * a call to the page allocator and the setup of a new slab.
81819f0f 1645 */
ce71e27c
EGM
1646static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1647 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1648{
81819f0f 1649 void **object;
dfb4f096 1650 struct page *new;
81819f0f 1651
e72e9c23
LT
1652 /* We handle __GFP_ZERO in the caller */
1653 gfpflags &= ~__GFP_ZERO;
1654
dfb4f096 1655 if (!c->page)
81819f0f
CL
1656 goto new_slab;
1657
dfb4f096
CL
1658 slab_lock(c->page);
1659 if (unlikely(!node_match(c, node)))
81819f0f 1660 goto another_slab;
6446faa2 1661
84e554e6 1662 stat(s, ALLOC_REFILL);
6446faa2 1663
894b8788 1664load_freelist:
dfb4f096 1665 object = c->page->freelist;
a973e9dd 1666 if (unlikely(!object))
81819f0f 1667 goto another_slab;
af537b0a 1668 if (kmem_cache_debug(s))
81819f0f
CL
1669 goto debug;
1670
ff12059e 1671 c->freelist = get_freepointer(s, object);
39b26464 1672 c->page->inuse = c->page->objects;
a973e9dd 1673 c->page->freelist = NULL;
dfb4f096 1674 c->node = page_to_nid(c->page);
1f84260c 1675unlock_out:
dfb4f096 1676 slab_unlock(c->page);
84e554e6 1677 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1678 return object;
1679
1680another_slab:
dfb4f096 1681 deactivate_slab(s, c);
81819f0f
CL
1682
1683new_slab:
dfb4f096
CL
1684 new = get_partial(s, gfpflags, node);
1685 if (new) {
1686 c->page = new;
84e554e6 1687 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1688 goto load_freelist;
81819f0f
CL
1689 }
1690
c1d50836 1691 gfpflags &= gfp_allowed_mask;
b811c202
CL
1692 if (gfpflags & __GFP_WAIT)
1693 local_irq_enable();
1694
dfb4f096 1695 new = new_slab(s, gfpflags, node);
b811c202
CL
1696
1697 if (gfpflags & __GFP_WAIT)
1698 local_irq_disable();
1699
dfb4f096 1700 if (new) {
9dfc6e68 1701 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1702 stat(s, ALLOC_SLAB);
05aa3450 1703 if (c->page)
dfb4f096 1704 flush_slab(s, c);
dfb4f096 1705 slab_lock(new);
8a38082d 1706 __SetPageSlubFrozen(new);
dfb4f096 1707 c->page = new;
4b6f0750 1708 goto load_freelist;
81819f0f 1709 }
95f85989
PE
1710 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1711 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1712 return NULL;
81819f0f 1713debug:
dfb4f096 1714 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1715 goto another_slab;
894b8788 1716
dfb4f096 1717 c->page->inuse++;
ff12059e 1718 c->page->freelist = get_freepointer(s, object);
ee3c72a1 1719 c->node = -1;
1f84260c 1720 goto unlock_out;
894b8788
CL
1721}
1722
1723/*
1724 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1725 * have the fastpath folded into their functions. So no function call
1726 * overhead for requests that can be satisfied on the fastpath.
1727 *
1728 * The fastpath works by first checking if the lockless freelist can be used.
1729 * If not then __slab_alloc is called for slow processing.
1730 *
1731 * Otherwise we can simply pick the next object from the lockless free list.
1732 */
06428780 1733static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1734 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1735{
894b8788 1736 void **object;
dfb4f096 1737 struct kmem_cache_cpu *c;
1f84260c
CL
1738 unsigned long flags;
1739
c016b0bd 1740 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1741 return NULL;
1f84260c 1742
894b8788 1743 local_irq_save(flags);
9dfc6e68
CL
1744 c = __this_cpu_ptr(s->cpu_slab);
1745 object = c->freelist;
9dfc6e68 1746 if (unlikely(!object || !node_match(c, node)))
894b8788 1747
dfb4f096 1748 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1749
1750 else {
ff12059e 1751 c->freelist = get_freepointer(s, object);
84e554e6 1752 stat(s, ALLOC_FASTPATH);
894b8788
CL
1753 }
1754 local_irq_restore(flags);
d07dbea4 1755
74e2134f 1756 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1757 memset(object, 0, s->objsize);
d07dbea4 1758
c016b0bd 1759 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1760
894b8788 1761 return object;
81819f0f
CL
1762}
1763
1764void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1765{
2154a336 1766 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1767
ca2b84cb 1768 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1769
1770 return ret;
81819f0f
CL
1771}
1772EXPORT_SYMBOL(kmem_cache_alloc);
1773
0f24f128 1774#ifdef CONFIG_TRACING
5b882be4
EGM
1775void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1776{
2154a336 1777 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4
EGM
1778}
1779EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1780#endif
1781
81819f0f
CL
1782#ifdef CONFIG_NUMA
1783void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1784{
5b882be4
EGM
1785 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1786
ca2b84cb
EGM
1787 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1788 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1789
1790 return ret;
81819f0f
CL
1791}
1792EXPORT_SYMBOL(kmem_cache_alloc_node);
1793#endif
1794
0f24f128 1795#ifdef CONFIG_TRACING
5b882be4
EGM
1796void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1797 gfp_t gfpflags,
1798 int node)
1799{
1800 return slab_alloc(s, gfpflags, node, _RET_IP_);
1801}
1802EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1803#endif
1804
81819f0f 1805/*
894b8788
CL
1806 * Slow patch handling. This may still be called frequently since objects
1807 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1808 *
894b8788
CL
1809 * So we still attempt to reduce cache line usage. Just take the slab
1810 * lock and free the item. If there is no additional partial page
1811 * handling required then we can return immediately.
81819f0f 1812 */
894b8788 1813static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 1814 void *x, unsigned long addr)
81819f0f
CL
1815{
1816 void *prior;
1817 void **object = (void *)x;
81819f0f 1818
84e554e6 1819 stat(s, FREE_SLOWPATH);
81819f0f
CL
1820 slab_lock(page);
1821
af537b0a 1822 if (kmem_cache_debug(s))
81819f0f 1823 goto debug;
6446faa2 1824
81819f0f 1825checks_ok:
ff12059e
CL
1826 prior = page->freelist;
1827 set_freepointer(s, object, prior);
81819f0f
CL
1828 page->freelist = object;
1829 page->inuse--;
1830
8a38082d 1831 if (unlikely(PageSlubFrozen(page))) {
84e554e6 1832 stat(s, FREE_FROZEN);
81819f0f 1833 goto out_unlock;
8ff12cfc 1834 }
81819f0f
CL
1835
1836 if (unlikely(!page->inuse))
1837 goto slab_empty;
1838
1839 /*
6446faa2 1840 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1841 * then add it.
1842 */
a973e9dd 1843 if (unlikely(!prior)) {
7c2e132c 1844 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 1845 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 1846 }
81819f0f
CL
1847
1848out_unlock:
1849 slab_unlock(page);
81819f0f
CL
1850 return;
1851
1852slab_empty:
a973e9dd 1853 if (prior) {
81819f0f 1854 /*
672bba3a 1855 * Slab still on the partial list.
81819f0f
CL
1856 */
1857 remove_partial(s, page);
84e554e6 1858 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 1859 }
81819f0f 1860 slab_unlock(page);
84e554e6 1861 stat(s, FREE_SLAB);
81819f0f 1862 discard_slab(s, page);
81819f0f
CL
1863 return;
1864
1865debug:
3ec09742 1866 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1867 goto out_unlock;
77c5e2d0 1868 goto checks_ok;
81819f0f
CL
1869}
1870
894b8788
CL
1871/*
1872 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1873 * can perform fastpath freeing without additional function calls.
1874 *
1875 * The fastpath is only possible if we are freeing to the current cpu slab
1876 * of this processor. This typically the case if we have just allocated
1877 * the item before.
1878 *
1879 * If fastpath is not possible then fall back to __slab_free where we deal
1880 * with all sorts of special processing.
1881 */
06428780 1882static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1883 struct page *page, void *x, unsigned long addr)
894b8788
CL
1884{
1885 void **object = (void *)x;
dfb4f096 1886 struct kmem_cache_cpu *c;
1f84260c
CL
1887 unsigned long flags;
1888
c016b0bd
CL
1889 slab_free_hook(s, x);
1890
894b8788 1891 local_irq_save(flags);
9dfc6e68 1892 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd
CL
1893
1894 slab_free_hook_irq(s, x);
1895
ee3c72a1 1896 if (likely(page == c->page && c->node >= 0)) {
ff12059e 1897 set_freepointer(s, object, c->freelist);
dfb4f096 1898 c->freelist = object;
84e554e6 1899 stat(s, FREE_FASTPATH);
894b8788 1900 } else
ff12059e 1901 __slab_free(s, page, x, addr);
894b8788
CL
1902
1903 local_irq_restore(flags);
1904}
1905
81819f0f
CL
1906void kmem_cache_free(struct kmem_cache *s, void *x)
1907{
77c5e2d0 1908 struct page *page;
81819f0f 1909
b49af68f 1910 page = virt_to_head_page(x);
81819f0f 1911
ce71e27c 1912 slab_free(s, page, x, _RET_IP_);
5b882be4 1913
ca2b84cb 1914 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1915}
1916EXPORT_SYMBOL(kmem_cache_free);
1917
e9beef18 1918/* Figure out on which slab page the object resides */
81819f0f
CL
1919static struct page *get_object_page(const void *x)
1920{
b49af68f 1921 struct page *page = virt_to_head_page(x);
81819f0f
CL
1922
1923 if (!PageSlab(page))
1924 return NULL;
1925
1926 return page;
1927}
1928
1929/*
672bba3a
CL
1930 * Object placement in a slab is made very easy because we always start at
1931 * offset 0. If we tune the size of the object to the alignment then we can
1932 * get the required alignment by putting one properly sized object after
1933 * another.
81819f0f
CL
1934 *
1935 * Notice that the allocation order determines the sizes of the per cpu
1936 * caches. Each processor has always one slab available for allocations.
1937 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1938 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1939 * locking overhead.
81819f0f
CL
1940 */
1941
1942/*
1943 * Mininum / Maximum order of slab pages. This influences locking overhead
1944 * and slab fragmentation. A higher order reduces the number of partial slabs
1945 * and increases the number of allocations possible without having to
1946 * take the list_lock.
1947 */
1948static int slub_min_order;
114e9e89 1949static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1950static int slub_min_objects;
81819f0f
CL
1951
1952/*
1953 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1954 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1955 */
1956static int slub_nomerge;
1957
81819f0f
CL
1958/*
1959 * Calculate the order of allocation given an slab object size.
1960 *
672bba3a
CL
1961 * The order of allocation has significant impact on performance and other
1962 * system components. Generally order 0 allocations should be preferred since
1963 * order 0 does not cause fragmentation in the page allocator. Larger objects
1964 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1965 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1966 * would be wasted.
1967 *
1968 * In order to reach satisfactory performance we must ensure that a minimum
1969 * number of objects is in one slab. Otherwise we may generate too much
1970 * activity on the partial lists which requires taking the list_lock. This is
1971 * less a concern for large slabs though which are rarely used.
81819f0f 1972 *
672bba3a
CL
1973 * slub_max_order specifies the order where we begin to stop considering the
1974 * number of objects in a slab as critical. If we reach slub_max_order then
1975 * we try to keep the page order as low as possible. So we accept more waste
1976 * of space in favor of a small page order.
81819f0f 1977 *
672bba3a
CL
1978 * Higher order allocations also allow the placement of more objects in a
1979 * slab and thereby reduce object handling overhead. If the user has
1980 * requested a higher mininum order then we start with that one instead of
1981 * the smallest order which will fit the object.
81819f0f 1982 */
5e6d444e
CL
1983static inline int slab_order(int size, int min_objects,
1984 int max_order, int fract_leftover)
81819f0f
CL
1985{
1986 int order;
1987 int rem;
6300ea75 1988 int min_order = slub_min_order;
81819f0f 1989
210b5c06
CG
1990 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1991 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1992
6300ea75 1993 for (order = max(min_order,
5e6d444e
CL
1994 fls(min_objects * size - 1) - PAGE_SHIFT);
1995 order <= max_order; order++) {
81819f0f 1996
5e6d444e 1997 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1998
5e6d444e 1999 if (slab_size < min_objects * size)
81819f0f
CL
2000 continue;
2001
2002 rem = slab_size % size;
2003
5e6d444e 2004 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2005 break;
2006
2007 }
672bba3a 2008
81819f0f
CL
2009 return order;
2010}
2011
5e6d444e
CL
2012static inline int calculate_order(int size)
2013{
2014 int order;
2015 int min_objects;
2016 int fraction;
e8120ff1 2017 int max_objects;
5e6d444e
CL
2018
2019 /*
2020 * Attempt to find best configuration for a slab. This
2021 * works by first attempting to generate a layout with
2022 * the best configuration and backing off gradually.
2023 *
2024 * First we reduce the acceptable waste in a slab. Then
2025 * we reduce the minimum objects required in a slab.
2026 */
2027 min_objects = slub_min_objects;
9b2cd506
CL
2028 if (!min_objects)
2029 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
2030 max_objects = (PAGE_SIZE << slub_max_order)/size;
2031 min_objects = min(min_objects, max_objects);
2032
5e6d444e 2033 while (min_objects > 1) {
c124f5b5 2034 fraction = 16;
5e6d444e
CL
2035 while (fraction >= 4) {
2036 order = slab_order(size, min_objects,
2037 slub_max_order, fraction);
2038 if (order <= slub_max_order)
2039 return order;
2040 fraction /= 2;
2041 }
5086c389 2042 min_objects--;
5e6d444e
CL
2043 }
2044
2045 /*
2046 * We were unable to place multiple objects in a slab. Now
2047 * lets see if we can place a single object there.
2048 */
2049 order = slab_order(size, 1, slub_max_order, 1);
2050 if (order <= slub_max_order)
2051 return order;
2052
2053 /*
2054 * Doh this slab cannot be placed using slub_max_order.
2055 */
2056 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2057 if (order < MAX_ORDER)
5e6d444e
CL
2058 return order;
2059 return -ENOSYS;
2060}
2061
81819f0f 2062/*
672bba3a 2063 * Figure out what the alignment of the objects will be.
81819f0f
CL
2064 */
2065static unsigned long calculate_alignment(unsigned long flags,
2066 unsigned long align, unsigned long size)
2067{
2068 /*
6446faa2
CL
2069 * If the user wants hardware cache aligned objects then follow that
2070 * suggestion if the object is sufficiently large.
81819f0f 2071 *
6446faa2
CL
2072 * The hardware cache alignment cannot override the specified
2073 * alignment though. If that is greater then use it.
81819f0f 2074 */
b6210386
NP
2075 if (flags & SLAB_HWCACHE_ALIGN) {
2076 unsigned long ralign = cache_line_size();
2077 while (size <= ralign / 2)
2078 ralign /= 2;
2079 align = max(align, ralign);
2080 }
81819f0f
CL
2081
2082 if (align < ARCH_SLAB_MINALIGN)
b6210386 2083 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2084
2085 return ALIGN(align, sizeof(void *));
2086}
2087
5595cffc
PE
2088static void
2089init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2090{
2091 n->nr_partial = 0;
81819f0f
CL
2092 spin_lock_init(&n->list_lock);
2093 INIT_LIST_HEAD(&n->partial);
8ab1372f 2094#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2095 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2096 atomic_long_set(&n->total_objects, 0);
643b1138 2097 INIT_LIST_HEAD(&n->full);
8ab1372f 2098#endif
81819f0f
CL
2099}
2100
55136592 2101static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2102{
6c182dc0
CL
2103 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2104 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2105
6c182dc0 2106 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
4c93c355 2107
6c182dc0 2108 return s->cpu_slab != NULL;
4c93c355 2109}
4c93c355 2110
51df1142
CL
2111static struct kmem_cache *kmem_cache_node;
2112
81819f0f
CL
2113/*
2114 * No kmalloc_node yet so do it by hand. We know that this is the first
2115 * slab on the node for this slabcache. There are no concurrent accesses
2116 * possible.
2117 *
2118 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2119 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2120 * memory on a fresh node that has no slab structures yet.
81819f0f 2121 */
55136592 2122static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2123{
2124 struct page *page;
2125 struct kmem_cache_node *n;
ba84c73c 2126 unsigned long flags;
81819f0f 2127
51df1142 2128 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2129
51df1142 2130 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2131
2132 BUG_ON(!page);
a2f92ee7
CL
2133 if (page_to_nid(page) != node) {
2134 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2135 "node %d\n", node);
2136 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2137 "in order to be able to continue\n");
2138 }
2139
81819f0f
CL
2140 n = page->freelist;
2141 BUG_ON(!n);
51df1142 2142 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2143 page->inuse++;
51df1142 2144 kmem_cache_node->node[node] = n;
8ab1372f 2145#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
2146 init_object(kmem_cache_node, n, 1);
2147 init_tracking(kmem_cache_node, n);
8ab1372f 2148#endif
51df1142
CL
2149 init_kmem_cache_node(n, kmem_cache_node);
2150 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2151
ba84c73c 2152 /*
2153 * lockdep requires consistent irq usage for each lock
2154 * so even though there cannot be a race this early in
2155 * the boot sequence, we still disable irqs.
2156 */
2157 local_irq_save(flags);
7c2e132c 2158 add_partial(n, page, 0);
ba84c73c 2159 local_irq_restore(flags);
81819f0f
CL
2160}
2161
2162static void free_kmem_cache_nodes(struct kmem_cache *s)
2163{
2164 int node;
2165
f64dc58c 2166 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2167 struct kmem_cache_node *n = s->node[node];
51df1142 2168
73367bd8 2169 if (n)
51df1142
CL
2170 kmem_cache_free(kmem_cache_node, n);
2171
81819f0f
CL
2172 s->node[node] = NULL;
2173 }
2174}
2175
55136592 2176static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2177{
2178 int node;
81819f0f 2179
f64dc58c 2180 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2181 struct kmem_cache_node *n;
2182
73367bd8 2183 if (slab_state == DOWN) {
55136592 2184 early_kmem_cache_node_alloc(node);
73367bd8
AD
2185 continue;
2186 }
51df1142 2187 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2188 GFP_KERNEL, node);
81819f0f 2189
73367bd8
AD
2190 if (!n) {
2191 free_kmem_cache_nodes(s);
2192 return 0;
81819f0f 2193 }
73367bd8 2194
81819f0f 2195 s->node[node] = n;
5595cffc 2196 init_kmem_cache_node(n, s);
81819f0f
CL
2197 }
2198 return 1;
2199}
81819f0f 2200
c0bdb232 2201static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2202{
2203 if (min < MIN_PARTIAL)
2204 min = MIN_PARTIAL;
2205 else if (min > MAX_PARTIAL)
2206 min = MAX_PARTIAL;
2207 s->min_partial = min;
2208}
2209
81819f0f
CL
2210/*
2211 * calculate_sizes() determines the order and the distribution of data within
2212 * a slab object.
2213 */
06b285dc 2214static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2215{
2216 unsigned long flags = s->flags;
2217 unsigned long size = s->objsize;
2218 unsigned long align = s->align;
834f3d11 2219 int order;
81819f0f 2220
d8b42bf5
CL
2221 /*
2222 * Round up object size to the next word boundary. We can only
2223 * place the free pointer at word boundaries and this determines
2224 * the possible location of the free pointer.
2225 */
2226 size = ALIGN(size, sizeof(void *));
2227
2228#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2229 /*
2230 * Determine if we can poison the object itself. If the user of
2231 * the slab may touch the object after free or before allocation
2232 * then we should never poison the object itself.
2233 */
2234 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2235 !s->ctor)
81819f0f
CL
2236 s->flags |= __OBJECT_POISON;
2237 else
2238 s->flags &= ~__OBJECT_POISON;
2239
81819f0f
CL
2240
2241 /*
672bba3a 2242 * If we are Redzoning then check if there is some space between the
81819f0f 2243 * end of the object and the free pointer. If not then add an
672bba3a 2244 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2245 */
2246 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2247 size += sizeof(void *);
41ecc55b 2248#endif
81819f0f
CL
2249
2250 /*
672bba3a
CL
2251 * With that we have determined the number of bytes in actual use
2252 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2253 */
2254 s->inuse = size;
2255
2256 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2257 s->ctor)) {
81819f0f
CL
2258 /*
2259 * Relocate free pointer after the object if it is not
2260 * permitted to overwrite the first word of the object on
2261 * kmem_cache_free.
2262 *
2263 * This is the case if we do RCU, have a constructor or
2264 * destructor or are poisoning the objects.
2265 */
2266 s->offset = size;
2267 size += sizeof(void *);
2268 }
2269
c12b3c62 2270#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2271 if (flags & SLAB_STORE_USER)
2272 /*
2273 * Need to store information about allocs and frees after
2274 * the object.
2275 */
2276 size += 2 * sizeof(struct track);
2277
be7b3fbc 2278 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2279 /*
2280 * Add some empty padding so that we can catch
2281 * overwrites from earlier objects rather than let
2282 * tracking information or the free pointer be
0211a9c8 2283 * corrupted if a user writes before the start
81819f0f
CL
2284 * of the object.
2285 */
2286 size += sizeof(void *);
41ecc55b 2287#endif
672bba3a 2288
81819f0f
CL
2289 /*
2290 * Determine the alignment based on various parameters that the
65c02d4c
CL
2291 * user specified and the dynamic determination of cache line size
2292 * on bootup.
81819f0f
CL
2293 */
2294 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2295 s->align = align;
81819f0f
CL
2296
2297 /*
2298 * SLUB stores one object immediately after another beginning from
2299 * offset 0. In order to align the objects we have to simply size
2300 * each object to conform to the alignment.
2301 */
2302 size = ALIGN(size, align);
2303 s->size = size;
06b285dc
CL
2304 if (forced_order >= 0)
2305 order = forced_order;
2306 else
2307 order = calculate_order(size);
81819f0f 2308
834f3d11 2309 if (order < 0)
81819f0f
CL
2310 return 0;
2311
b7a49f0d 2312 s->allocflags = 0;
834f3d11 2313 if (order)
b7a49f0d
CL
2314 s->allocflags |= __GFP_COMP;
2315
2316 if (s->flags & SLAB_CACHE_DMA)
2317 s->allocflags |= SLUB_DMA;
2318
2319 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2320 s->allocflags |= __GFP_RECLAIMABLE;
2321
81819f0f
CL
2322 /*
2323 * Determine the number of objects per slab
2324 */
834f3d11 2325 s->oo = oo_make(order, size);
65c3376a 2326 s->min = oo_make(get_order(size), size);
205ab99d
CL
2327 if (oo_objects(s->oo) > oo_objects(s->max))
2328 s->max = s->oo;
81819f0f 2329
834f3d11 2330 return !!oo_objects(s->oo);
81819f0f
CL
2331
2332}
2333
55136592 2334static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2335 const char *name, size_t size,
2336 size_t align, unsigned long flags,
51cc5068 2337 void (*ctor)(void *))
81819f0f
CL
2338{
2339 memset(s, 0, kmem_size);
2340 s->name = name;
2341 s->ctor = ctor;
81819f0f 2342 s->objsize = size;
81819f0f 2343 s->align = align;
ba0268a8 2344 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2345
06b285dc 2346 if (!calculate_sizes(s, -1))
81819f0f 2347 goto error;
3de47213
DR
2348 if (disable_higher_order_debug) {
2349 /*
2350 * Disable debugging flags that store metadata if the min slab
2351 * order increased.
2352 */
2353 if (get_order(s->size) > get_order(s->objsize)) {
2354 s->flags &= ~DEBUG_METADATA_FLAGS;
2355 s->offset = 0;
2356 if (!calculate_sizes(s, -1))
2357 goto error;
2358 }
2359 }
81819f0f 2360
3b89d7d8
DR
2361 /*
2362 * The larger the object size is, the more pages we want on the partial
2363 * list to avoid pounding the page allocator excessively.
2364 */
c0bdb232 2365 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2366 s->refcount = 1;
2367#ifdef CONFIG_NUMA
e2cb96b7 2368 s->remote_node_defrag_ratio = 1000;
81819f0f 2369#endif
55136592 2370 if (!init_kmem_cache_nodes(s))
dfb4f096 2371 goto error;
81819f0f 2372
55136592 2373 if (alloc_kmem_cache_cpus(s))
81819f0f 2374 return 1;
ff12059e 2375
4c93c355 2376 free_kmem_cache_nodes(s);
81819f0f
CL
2377error:
2378 if (flags & SLAB_PANIC)
2379 panic("Cannot create slab %s size=%lu realsize=%u "
2380 "order=%u offset=%u flags=%lx\n",
834f3d11 2381 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2382 s->offset, flags);
2383 return 0;
2384}
81819f0f
CL
2385
2386/*
2387 * Check if a given pointer is valid
2388 */
2389int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2390{
06428780 2391 struct page *page;
81819f0f 2392
d3e06e2b
PE
2393 if (!kern_ptr_validate(object, s->size))
2394 return 0;
2395
81819f0f
CL
2396 page = get_object_page(object);
2397
2398 if (!page || s != page->slab)
2399 /* No slab or wrong slab */
2400 return 0;
2401
abcd08a6 2402 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2403 return 0;
2404
2405 /*
2406 * We could also check if the object is on the slabs freelist.
2407 * But this would be too expensive and it seems that the main
6446faa2 2408 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2409 * to a certain slab.
2410 */
2411 return 1;
2412}
2413EXPORT_SYMBOL(kmem_ptr_validate);
2414
2415/*
2416 * Determine the size of a slab object
2417 */
2418unsigned int kmem_cache_size(struct kmem_cache *s)
2419{
2420 return s->objsize;
2421}
2422EXPORT_SYMBOL(kmem_cache_size);
2423
2424const char *kmem_cache_name(struct kmem_cache *s)
2425{
2426 return s->name;
2427}
2428EXPORT_SYMBOL(kmem_cache_name);
2429
33b12c38
CL
2430static void list_slab_objects(struct kmem_cache *s, struct page *page,
2431 const char *text)
2432{
2433#ifdef CONFIG_SLUB_DEBUG
2434 void *addr = page_address(page);
2435 void *p;
bbd7d57b
ED
2436 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2437 GFP_ATOMIC);
33b12c38 2438
bbd7d57b
ED
2439 if (!map)
2440 return;
33b12c38
CL
2441 slab_err(s, page, "%s", text);
2442 slab_lock(page);
2443 for_each_free_object(p, s, page->freelist)
2444 set_bit(slab_index(p, s, addr), map);
2445
2446 for_each_object(p, s, addr, page->objects) {
2447
2448 if (!test_bit(slab_index(p, s, addr), map)) {
2449 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2450 p, p - addr);
2451 print_tracking(s, p);
2452 }
2453 }
2454 slab_unlock(page);
bbd7d57b 2455 kfree(map);
33b12c38
CL
2456#endif
2457}
2458
81819f0f 2459/*
599870b1 2460 * Attempt to free all partial slabs on a node.
81819f0f 2461 */
599870b1 2462static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2463{
81819f0f
CL
2464 unsigned long flags;
2465 struct page *page, *h;
2466
2467 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2468 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2469 if (!page->inuse) {
2470 list_del(&page->lru);
2471 discard_slab(s, page);
599870b1 2472 n->nr_partial--;
33b12c38
CL
2473 } else {
2474 list_slab_objects(s, page,
2475 "Objects remaining on kmem_cache_close()");
599870b1 2476 }
33b12c38 2477 }
81819f0f 2478 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2479}
2480
2481/*
672bba3a 2482 * Release all resources used by a slab cache.
81819f0f 2483 */
0c710013 2484static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2485{
2486 int node;
2487
2488 flush_all(s);
9dfc6e68 2489 free_percpu(s->cpu_slab);
81819f0f 2490 /* Attempt to free all objects */
f64dc58c 2491 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2492 struct kmem_cache_node *n = get_node(s, node);
2493
599870b1
CL
2494 free_partial(s, n);
2495 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2496 return 1;
2497 }
2498 free_kmem_cache_nodes(s);
2499 return 0;
2500}
2501
2502/*
2503 * Close a cache and release the kmem_cache structure
2504 * (must be used for caches created using kmem_cache_create)
2505 */
2506void kmem_cache_destroy(struct kmem_cache *s)
2507{
2508 down_write(&slub_lock);
2509 s->refcount--;
2510 if (!s->refcount) {
2511 list_del(&s->list);
d629d819
PE
2512 if (kmem_cache_close(s)) {
2513 printk(KERN_ERR "SLUB %s: %s called for cache that "
2514 "still has objects.\n", s->name, __func__);
2515 dump_stack();
2516 }
d76b1590
ED
2517 if (s->flags & SLAB_DESTROY_BY_RCU)
2518 rcu_barrier();
81819f0f 2519 sysfs_slab_remove(s);
2bce6485
CL
2520 }
2521 up_write(&slub_lock);
81819f0f
CL
2522}
2523EXPORT_SYMBOL(kmem_cache_destroy);
2524
2525/********************************************************************
2526 * Kmalloc subsystem
2527 *******************************************************************/
2528
51df1142 2529struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2530EXPORT_SYMBOL(kmalloc_caches);
2531
51df1142
CL
2532static struct kmem_cache *kmem_cache;
2533
55136592 2534#ifdef CONFIG_ZONE_DMA
51df1142 2535static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2536#endif
2537
81819f0f
CL
2538static int __init setup_slub_min_order(char *str)
2539{
06428780 2540 get_option(&str, &slub_min_order);
81819f0f
CL
2541
2542 return 1;
2543}
2544
2545__setup("slub_min_order=", setup_slub_min_order);
2546
2547static int __init setup_slub_max_order(char *str)
2548{
06428780 2549 get_option(&str, &slub_max_order);
818cf590 2550 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2551
2552 return 1;
2553}
2554
2555__setup("slub_max_order=", setup_slub_max_order);
2556
2557static int __init setup_slub_min_objects(char *str)
2558{
06428780 2559 get_option(&str, &slub_min_objects);
81819f0f
CL
2560
2561 return 1;
2562}
2563
2564__setup("slub_min_objects=", setup_slub_min_objects);
2565
2566static int __init setup_slub_nomerge(char *str)
2567{
2568 slub_nomerge = 1;
2569 return 1;
2570}
2571
2572__setup("slub_nomerge", setup_slub_nomerge);
2573
51df1142
CL
2574static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2575 int size, unsigned int flags)
81819f0f 2576{
51df1142
CL
2577 struct kmem_cache *s;
2578
2579 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2580
83b519e8
PE
2581 /*
2582 * This function is called with IRQs disabled during early-boot on
2583 * single CPU so there's no need to take slub_lock here.
2584 */
55136592 2585 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2586 flags, NULL))
81819f0f
CL
2587 goto panic;
2588
2589 list_add(&s->list, &slab_caches);
51df1142 2590 return s;
81819f0f
CL
2591
2592panic:
2593 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2594 return NULL;
81819f0f
CL
2595}
2596
f1b26339
CL
2597/*
2598 * Conversion table for small slabs sizes / 8 to the index in the
2599 * kmalloc array. This is necessary for slabs < 192 since we have non power
2600 * of two cache sizes there. The size of larger slabs can be determined using
2601 * fls.
2602 */
2603static s8 size_index[24] = {
2604 3, /* 8 */
2605 4, /* 16 */
2606 5, /* 24 */
2607 5, /* 32 */
2608 6, /* 40 */
2609 6, /* 48 */
2610 6, /* 56 */
2611 6, /* 64 */
2612 1, /* 72 */
2613 1, /* 80 */
2614 1, /* 88 */
2615 1, /* 96 */
2616 7, /* 104 */
2617 7, /* 112 */
2618 7, /* 120 */
2619 7, /* 128 */
2620 2, /* 136 */
2621 2, /* 144 */
2622 2, /* 152 */
2623 2, /* 160 */
2624 2, /* 168 */
2625 2, /* 176 */
2626 2, /* 184 */
2627 2 /* 192 */
2628};
2629
acdfcd04
AK
2630static inline int size_index_elem(size_t bytes)
2631{
2632 return (bytes - 1) / 8;
2633}
2634
81819f0f
CL
2635static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2636{
f1b26339 2637 int index;
81819f0f 2638
f1b26339
CL
2639 if (size <= 192) {
2640 if (!size)
2641 return ZERO_SIZE_PTR;
81819f0f 2642
acdfcd04 2643 index = size_index[size_index_elem(size)];
aadb4bc4 2644 } else
f1b26339 2645 index = fls(size - 1);
81819f0f
CL
2646
2647#ifdef CONFIG_ZONE_DMA
f1b26339 2648 if (unlikely((flags & SLUB_DMA)))
51df1142 2649 return kmalloc_dma_caches[index];
f1b26339 2650
81819f0f 2651#endif
51df1142 2652 return kmalloc_caches[index];
81819f0f
CL
2653}
2654
2655void *__kmalloc(size_t size, gfp_t flags)
2656{
aadb4bc4 2657 struct kmem_cache *s;
5b882be4 2658 void *ret;
81819f0f 2659
ffadd4d0 2660 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2661 return kmalloc_large(size, flags);
aadb4bc4
CL
2662
2663 s = get_slab(size, flags);
2664
2665 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2666 return s;
2667
2154a336 2668 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2669
ca2b84cb 2670 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2671
2672 return ret;
81819f0f
CL
2673}
2674EXPORT_SYMBOL(__kmalloc);
2675
f619cfe1
CL
2676static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2677{
b1eeab67 2678 struct page *page;
e4f7c0b4 2679 void *ptr = NULL;
f619cfe1 2680
b1eeab67
VN
2681 flags |= __GFP_COMP | __GFP_NOTRACK;
2682 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2683 if (page)
e4f7c0b4
CM
2684 ptr = page_address(page);
2685
2686 kmemleak_alloc(ptr, size, 1, flags);
2687 return ptr;
f619cfe1
CL
2688}
2689
81819f0f
CL
2690#ifdef CONFIG_NUMA
2691void *__kmalloc_node(size_t size, gfp_t flags, int node)
2692{
aadb4bc4 2693 struct kmem_cache *s;
5b882be4 2694 void *ret;
81819f0f 2695
057685cf 2696 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2697 ret = kmalloc_large_node(size, flags, node);
2698
ca2b84cb
EGM
2699 trace_kmalloc_node(_RET_IP_, ret,
2700 size, PAGE_SIZE << get_order(size),
2701 flags, node);
5b882be4
EGM
2702
2703 return ret;
2704 }
aadb4bc4
CL
2705
2706 s = get_slab(size, flags);
2707
2708 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2709 return s;
2710
5b882be4
EGM
2711 ret = slab_alloc(s, flags, node, _RET_IP_);
2712
ca2b84cb 2713 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2714
2715 return ret;
81819f0f
CL
2716}
2717EXPORT_SYMBOL(__kmalloc_node);
2718#endif
2719
2720size_t ksize(const void *object)
2721{
272c1d21 2722 struct page *page;
81819f0f
CL
2723 struct kmem_cache *s;
2724
ef8b4520 2725 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2726 return 0;
2727
294a80a8 2728 page = virt_to_head_page(object);
294a80a8 2729
76994412
PE
2730 if (unlikely(!PageSlab(page))) {
2731 WARN_ON(!PageCompound(page));
294a80a8 2732 return PAGE_SIZE << compound_order(page);
76994412 2733 }
81819f0f 2734 s = page->slab;
81819f0f 2735
ae20bfda 2736#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2737 /*
2738 * Debugging requires use of the padding between object
2739 * and whatever may come after it.
2740 */
2741 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2742 return s->objsize;
2743
ae20bfda 2744#endif
81819f0f
CL
2745 /*
2746 * If we have the need to store the freelist pointer
2747 * back there or track user information then we can
2748 * only use the space before that information.
2749 */
2750 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2751 return s->inuse;
81819f0f
CL
2752 /*
2753 * Else we can use all the padding etc for the allocation
2754 */
2755 return s->size;
2756}
b1aabecd 2757EXPORT_SYMBOL(ksize);
81819f0f
CL
2758
2759void kfree(const void *x)
2760{
81819f0f 2761 struct page *page;
5bb983b0 2762 void *object = (void *)x;
81819f0f 2763
2121db74
PE
2764 trace_kfree(_RET_IP_, x);
2765
2408c550 2766 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2767 return;
2768
b49af68f 2769 page = virt_to_head_page(x);
aadb4bc4 2770 if (unlikely(!PageSlab(page))) {
0937502a 2771 BUG_ON(!PageCompound(page));
e4f7c0b4 2772 kmemleak_free(x);
aadb4bc4
CL
2773 put_page(page);
2774 return;
2775 }
ce71e27c 2776 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2777}
2778EXPORT_SYMBOL(kfree);
2779
2086d26a 2780/*
672bba3a
CL
2781 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2782 * the remaining slabs by the number of items in use. The slabs with the
2783 * most items in use come first. New allocations will then fill those up
2784 * and thus they can be removed from the partial lists.
2785 *
2786 * The slabs with the least items are placed last. This results in them
2787 * being allocated from last increasing the chance that the last objects
2788 * are freed in them.
2086d26a
CL
2789 */
2790int kmem_cache_shrink(struct kmem_cache *s)
2791{
2792 int node;
2793 int i;
2794 struct kmem_cache_node *n;
2795 struct page *page;
2796 struct page *t;
205ab99d 2797 int objects = oo_objects(s->max);
2086d26a 2798 struct list_head *slabs_by_inuse =
834f3d11 2799 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2800 unsigned long flags;
2801
2802 if (!slabs_by_inuse)
2803 return -ENOMEM;
2804
2805 flush_all(s);
f64dc58c 2806 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2807 n = get_node(s, node);
2808
2809 if (!n->nr_partial)
2810 continue;
2811
834f3d11 2812 for (i = 0; i < objects; i++)
2086d26a
CL
2813 INIT_LIST_HEAD(slabs_by_inuse + i);
2814
2815 spin_lock_irqsave(&n->list_lock, flags);
2816
2817 /*
672bba3a 2818 * Build lists indexed by the items in use in each slab.
2086d26a 2819 *
672bba3a
CL
2820 * Note that concurrent frees may occur while we hold the
2821 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2822 */
2823 list_for_each_entry_safe(page, t, &n->partial, lru) {
2824 if (!page->inuse && slab_trylock(page)) {
2825 /*
2826 * Must hold slab lock here because slab_free
2827 * may have freed the last object and be
2828 * waiting to release the slab.
2829 */
2830 list_del(&page->lru);
2831 n->nr_partial--;
2832 slab_unlock(page);
2833 discard_slab(s, page);
2834 } else {
fcda3d89
CL
2835 list_move(&page->lru,
2836 slabs_by_inuse + page->inuse);
2086d26a
CL
2837 }
2838 }
2839
2086d26a 2840 /*
672bba3a
CL
2841 * Rebuild the partial list with the slabs filled up most
2842 * first and the least used slabs at the end.
2086d26a 2843 */
834f3d11 2844 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2845 list_splice(slabs_by_inuse + i, n->partial.prev);
2846
2086d26a
CL
2847 spin_unlock_irqrestore(&n->list_lock, flags);
2848 }
2849
2850 kfree(slabs_by_inuse);
2851 return 0;
2852}
2853EXPORT_SYMBOL(kmem_cache_shrink);
2854
b9049e23
YG
2855#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2856static int slab_mem_going_offline_callback(void *arg)
2857{
2858 struct kmem_cache *s;
2859
2860 down_read(&slub_lock);
2861 list_for_each_entry(s, &slab_caches, list)
2862 kmem_cache_shrink(s);
2863 up_read(&slub_lock);
2864
2865 return 0;
2866}
2867
2868static void slab_mem_offline_callback(void *arg)
2869{
2870 struct kmem_cache_node *n;
2871 struct kmem_cache *s;
2872 struct memory_notify *marg = arg;
2873 int offline_node;
2874
2875 offline_node = marg->status_change_nid;
2876
2877 /*
2878 * If the node still has available memory. we need kmem_cache_node
2879 * for it yet.
2880 */
2881 if (offline_node < 0)
2882 return;
2883
2884 down_read(&slub_lock);
2885 list_for_each_entry(s, &slab_caches, list) {
2886 n = get_node(s, offline_node);
2887 if (n) {
2888 /*
2889 * if n->nr_slabs > 0, slabs still exist on the node
2890 * that is going down. We were unable to free them,
c9404c9c 2891 * and offline_pages() function shouldn't call this
b9049e23
YG
2892 * callback. So, we must fail.
2893 */
0f389ec6 2894 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2895
2896 s->node[offline_node] = NULL;
8de66a0c 2897 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
2898 }
2899 }
2900 up_read(&slub_lock);
2901}
2902
2903static int slab_mem_going_online_callback(void *arg)
2904{
2905 struct kmem_cache_node *n;
2906 struct kmem_cache *s;
2907 struct memory_notify *marg = arg;
2908 int nid = marg->status_change_nid;
2909 int ret = 0;
2910
2911 /*
2912 * If the node's memory is already available, then kmem_cache_node is
2913 * already created. Nothing to do.
2914 */
2915 if (nid < 0)
2916 return 0;
2917
2918 /*
0121c619 2919 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2920 * allocate a kmem_cache_node structure in order to bring the node
2921 * online.
2922 */
2923 down_read(&slub_lock);
2924 list_for_each_entry(s, &slab_caches, list) {
2925 /*
2926 * XXX: kmem_cache_alloc_node will fallback to other nodes
2927 * since memory is not yet available from the node that
2928 * is brought up.
2929 */
8de66a0c 2930 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
2931 if (!n) {
2932 ret = -ENOMEM;
2933 goto out;
2934 }
5595cffc 2935 init_kmem_cache_node(n, s);
b9049e23
YG
2936 s->node[nid] = n;
2937 }
2938out:
2939 up_read(&slub_lock);
2940 return ret;
2941}
2942
2943static int slab_memory_callback(struct notifier_block *self,
2944 unsigned long action, void *arg)
2945{
2946 int ret = 0;
2947
2948 switch (action) {
2949 case MEM_GOING_ONLINE:
2950 ret = slab_mem_going_online_callback(arg);
2951 break;
2952 case MEM_GOING_OFFLINE:
2953 ret = slab_mem_going_offline_callback(arg);
2954 break;
2955 case MEM_OFFLINE:
2956 case MEM_CANCEL_ONLINE:
2957 slab_mem_offline_callback(arg);
2958 break;
2959 case MEM_ONLINE:
2960 case MEM_CANCEL_OFFLINE:
2961 break;
2962 }
dc19f9db
KH
2963 if (ret)
2964 ret = notifier_from_errno(ret);
2965 else
2966 ret = NOTIFY_OK;
b9049e23
YG
2967 return ret;
2968}
2969
2970#endif /* CONFIG_MEMORY_HOTPLUG */
2971
81819f0f
CL
2972/********************************************************************
2973 * Basic setup of slabs
2974 *******************************************************************/
2975
51df1142
CL
2976/*
2977 * Used for early kmem_cache structures that were allocated using
2978 * the page allocator
2979 */
2980
2981static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2982{
2983 int node;
2984
2985 list_add(&s->list, &slab_caches);
2986 s->refcount = -1;
2987
2988 for_each_node_state(node, N_NORMAL_MEMORY) {
2989 struct kmem_cache_node *n = get_node(s, node);
2990 struct page *p;
2991
2992 if (n) {
2993 list_for_each_entry(p, &n->partial, lru)
2994 p->slab = s;
2995
2996#ifdef CONFIG_SLAB_DEBUG
2997 list_for_each_entry(p, &n->full, lru)
2998 p->slab = s;
2999#endif
3000 }
3001 }
3002}
3003
81819f0f
CL
3004void __init kmem_cache_init(void)
3005{
3006 int i;
4b356be0 3007 int caches = 0;
51df1142
CL
3008 struct kmem_cache *temp_kmem_cache;
3009 int order;
51df1142
CL
3010 struct kmem_cache *temp_kmem_cache_node;
3011 unsigned long kmalloc_size;
3012
3013 kmem_size = offsetof(struct kmem_cache, node) +
3014 nr_node_ids * sizeof(struct kmem_cache_node *);
3015
3016 /* Allocate two kmem_caches from the page allocator */
3017 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3018 order = get_order(2 * kmalloc_size);
3019 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3020
81819f0f
CL
3021 /*
3022 * Must first have the slab cache available for the allocations of the
672bba3a 3023 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3024 * kmem_cache_open for slab_state == DOWN.
3025 */
51df1142
CL
3026 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3027
3028 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3029 sizeof(struct kmem_cache_node),
3030 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3031
0c40ba4f 3032 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3033
3034 /* Able to allocate the per node structures */
3035 slab_state = PARTIAL;
3036
51df1142
CL
3037 temp_kmem_cache = kmem_cache;
3038 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3039 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3040 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3041 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3042
51df1142
CL
3043 /*
3044 * Allocate kmem_cache_node properly from the kmem_cache slab.
3045 * kmem_cache_node is separately allocated so no need to
3046 * update any list pointers.
3047 */
3048 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3049
51df1142
CL
3050 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3051 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3052
3053 kmem_cache_bootstrap_fixup(kmem_cache_node);
3054
3055 caches++;
51df1142
CL
3056 kmem_cache_bootstrap_fixup(kmem_cache);
3057 caches++;
3058 /* Free temporary boot structure */
3059 free_pages((unsigned long)temp_kmem_cache, order);
3060
3061 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3062
3063 /*
3064 * Patch up the size_index table if we have strange large alignment
3065 * requirements for the kmalloc array. This is only the case for
6446faa2 3066 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3067 *
3068 * Largest permitted alignment is 256 bytes due to the way we
3069 * handle the index determination for the smaller caches.
3070 *
3071 * Make sure that nothing crazy happens if someone starts tinkering
3072 * around with ARCH_KMALLOC_MINALIGN
3073 */
3074 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3075 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3076
acdfcd04
AK
3077 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3078 int elem = size_index_elem(i);
3079 if (elem >= ARRAY_SIZE(size_index))
3080 break;
3081 size_index[elem] = KMALLOC_SHIFT_LOW;
3082 }
f1b26339 3083
acdfcd04
AK
3084 if (KMALLOC_MIN_SIZE == 64) {
3085 /*
3086 * The 96 byte size cache is not used if the alignment
3087 * is 64 byte.
3088 */
3089 for (i = 64 + 8; i <= 96; i += 8)
3090 size_index[size_index_elem(i)] = 7;
3091 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3092 /*
3093 * The 192 byte sized cache is not used if the alignment
3094 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3095 * instead.
3096 */
3097 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3098 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3099 }
3100
51df1142
CL
3101 /* Caches that are not of the two-to-the-power-of size */
3102 if (KMALLOC_MIN_SIZE <= 32) {
3103 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3104 caches++;
3105 }
3106
3107 if (KMALLOC_MIN_SIZE <= 64) {
3108 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3109 caches++;
3110 }
3111
3112 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3113 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3114 caches++;
3115 }
3116
81819f0f
CL
3117 slab_state = UP;
3118
3119 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3120 if (KMALLOC_MIN_SIZE <= 32) {
3121 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3122 BUG_ON(!kmalloc_caches[1]->name);
3123 }
3124
3125 if (KMALLOC_MIN_SIZE <= 64) {
3126 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3127 BUG_ON(!kmalloc_caches[2]->name);
3128 }
3129
d7278bd7
CL
3130 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3131 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3132
3133 BUG_ON(!s);
51df1142 3134 kmalloc_caches[i]->name = s;
d7278bd7 3135 }
81819f0f
CL
3136
3137#ifdef CONFIG_SMP
3138 register_cpu_notifier(&slab_notifier);
9dfc6e68 3139#endif
81819f0f 3140
55136592 3141#ifdef CONFIG_ZONE_DMA
51df1142
CL
3142 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3143 struct kmem_cache *s = kmalloc_caches[i];
55136592 3144
51df1142 3145 if (s && s->size) {
55136592
CL
3146 char *name = kasprintf(GFP_NOWAIT,
3147 "dma-kmalloc-%d", s->objsize);
3148
3149 BUG_ON(!name);
51df1142
CL
3150 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3151 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3152 }
3153 }
3154#endif
3adbefee
IM
3155 printk(KERN_INFO
3156 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3157 " CPUs=%d, Nodes=%d\n",
3158 caches, cache_line_size(),
81819f0f
CL
3159 slub_min_order, slub_max_order, slub_min_objects,
3160 nr_cpu_ids, nr_node_ids);
3161}
3162
7e85ee0c
PE
3163void __init kmem_cache_init_late(void)
3164{
7e85ee0c
PE
3165}
3166
81819f0f
CL
3167/*
3168 * Find a mergeable slab cache
3169 */
3170static int slab_unmergeable(struct kmem_cache *s)
3171{
3172 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3173 return 1;
3174
c59def9f 3175 if (s->ctor)
81819f0f
CL
3176 return 1;
3177
8ffa6875
CL
3178 /*
3179 * We may have set a slab to be unmergeable during bootstrap.
3180 */
3181 if (s->refcount < 0)
3182 return 1;
3183
81819f0f
CL
3184 return 0;
3185}
3186
3187static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3188 size_t align, unsigned long flags, const char *name,
51cc5068 3189 void (*ctor)(void *))
81819f0f 3190{
5b95a4ac 3191 struct kmem_cache *s;
81819f0f
CL
3192
3193 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3194 return NULL;
3195
c59def9f 3196 if (ctor)
81819f0f
CL
3197 return NULL;
3198
3199 size = ALIGN(size, sizeof(void *));
3200 align = calculate_alignment(flags, align, size);
3201 size = ALIGN(size, align);
ba0268a8 3202 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3203
5b95a4ac 3204 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3205 if (slab_unmergeable(s))
3206 continue;
3207
3208 if (size > s->size)
3209 continue;
3210
ba0268a8 3211 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3212 continue;
3213 /*
3214 * Check if alignment is compatible.
3215 * Courtesy of Adrian Drzewiecki
3216 */
06428780 3217 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3218 continue;
3219
3220 if (s->size - size >= sizeof(void *))
3221 continue;
3222
3223 return s;
3224 }
3225 return NULL;
3226}
3227
3228struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3229 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3230{
3231 struct kmem_cache *s;
84c1cf62 3232 char *n;
81819f0f 3233
fe1ff49d
BH
3234 if (WARN_ON(!name))
3235 return NULL;
3236
81819f0f 3237 down_write(&slub_lock);
ba0268a8 3238 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3239 if (s) {
3240 s->refcount++;
3241 /*
3242 * Adjust the object sizes so that we clear
3243 * the complete object on kzalloc.
3244 */
3245 s->objsize = max(s->objsize, (int)size);
3246 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3247
7b8f3b66 3248 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3249 s->refcount--;
81819f0f 3250 goto err;
7b8f3b66 3251 }
2bce6485 3252 up_write(&slub_lock);
a0e1d1be
CL
3253 return s;
3254 }
6446faa2 3255
84c1cf62
PE
3256 n = kstrdup(name, GFP_KERNEL);
3257 if (!n)
3258 goto err;
3259
a0e1d1be
CL
3260 s = kmalloc(kmem_size, GFP_KERNEL);
3261 if (s) {
84c1cf62 3262 if (kmem_cache_open(s, n,
c59def9f 3263 size, align, flags, ctor)) {
81819f0f 3264 list_add(&s->list, &slab_caches);
7b8f3b66 3265 if (sysfs_slab_add(s)) {
7b8f3b66 3266 list_del(&s->list);
84c1cf62 3267 kfree(n);
7b8f3b66 3268 kfree(s);
a0e1d1be 3269 goto err;
7b8f3b66 3270 }
2bce6485 3271 up_write(&slub_lock);
a0e1d1be
CL
3272 return s;
3273 }
84c1cf62 3274 kfree(n);
a0e1d1be 3275 kfree(s);
81819f0f
CL
3276 }
3277 up_write(&slub_lock);
81819f0f
CL
3278
3279err:
81819f0f
CL
3280 if (flags & SLAB_PANIC)
3281 panic("Cannot create slabcache %s\n", name);
3282 else
3283 s = NULL;
3284 return s;
3285}
3286EXPORT_SYMBOL(kmem_cache_create);
3287
81819f0f 3288#ifdef CONFIG_SMP
81819f0f 3289/*
672bba3a
CL
3290 * Use the cpu notifier to insure that the cpu slabs are flushed when
3291 * necessary.
81819f0f
CL
3292 */
3293static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3294 unsigned long action, void *hcpu)
3295{
3296 long cpu = (long)hcpu;
5b95a4ac
CL
3297 struct kmem_cache *s;
3298 unsigned long flags;
81819f0f
CL
3299
3300 switch (action) {
3301 case CPU_UP_CANCELED:
8bb78442 3302 case CPU_UP_CANCELED_FROZEN:
81819f0f 3303 case CPU_DEAD:
8bb78442 3304 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3305 down_read(&slub_lock);
3306 list_for_each_entry(s, &slab_caches, list) {
3307 local_irq_save(flags);
3308 __flush_cpu_slab(s, cpu);
3309 local_irq_restore(flags);
3310 }
3311 up_read(&slub_lock);
81819f0f
CL
3312 break;
3313 default:
3314 break;
3315 }
3316 return NOTIFY_OK;
3317}
3318
06428780 3319static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3320 .notifier_call = slab_cpuup_callback
06428780 3321};
81819f0f
CL
3322
3323#endif
3324
ce71e27c 3325void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3326{
aadb4bc4 3327 struct kmem_cache *s;
94b528d0 3328 void *ret;
aadb4bc4 3329
ffadd4d0 3330 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3331 return kmalloc_large(size, gfpflags);
3332
aadb4bc4 3333 s = get_slab(size, gfpflags);
81819f0f 3334
2408c550 3335 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3336 return s;
81819f0f 3337
2154a336 3338 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0
EGM
3339
3340 /* Honor the call site pointer we recieved. */
ca2b84cb 3341 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3342
3343 return ret;
81819f0f
CL
3344}
3345
3346void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3347 int node, unsigned long caller)
81819f0f 3348{
aadb4bc4 3349 struct kmem_cache *s;
94b528d0 3350 void *ret;
aadb4bc4 3351
d3e14aa3
XF
3352 if (unlikely(size > SLUB_MAX_SIZE)) {
3353 ret = kmalloc_large_node(size, gfpflags, node);
3354
3355 trace_kmalloc_node(caller, ret,
3356 size, PAGE_SIZE << get_order(size),
3357 gfpflags, node);
3358
3359 return ret;
3360 }
eada35ef 3361
aadb4bc4 3362 s = get_slab(size, gfpflags);
81819f0f 3363
2408c550 3364 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3365 return s;
81819f0f 3366
94b528d0
EGM
3367 ret = slab_alloc(s, gfpflags, node, caller);
3368
3369 /* Honor the call site pointer we recieved. */
ca2b84cb 3370 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3371
3372 return ret;
81819f0f
CL
3373}
3374
f6acb635 3375#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3376static int count_inuse(struct page *page)
3377{
3378 return page->inuse;
3379}
3380
3381static int count_total(struct page *page)
3382{
3383 return page->objects;
3384}
3385
434e245d
CL
3386static int validate_slab(struct kmem_cache *s, struct page *page,
3387 unsigned long *map)
53e15af0
CL
3388{
3389 void *p;
a973e9dd 3390 void *addr = page_address(page);
53e15af0
CL
3391
3392 if (!check_slab(s, page) ||
3393 !on_freelist(s, page, NULL))
3394 return 0;
3395
3396 /* Now we know that a valid freelist exists */
39b26464 3397 bitmap_zero(map, page->objects);
53e15af0 3398
7656c72b
CL
3399 for_each_free_object(p, s, page->freelist) {
3400 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3401 if (!check_object(s, page, p, 0))
3402 return 0;
3403 }
3404
224a88be 3405 for_each_object(p, s, addr, page->objects)
7656c72b 3406 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3407 if (!check_object(s, page, p, 1))
3408 return 0;
3409 return 1;
3410}
3411
434e245d
CL
3412static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3413 unsigned long *map)
53e15af0
CL
3414{
3415 if (slab_trylock(page)) {
434e245d 3416 validate_slab(s, page, map);
53e15af0
CL
3417 slab_unlock(page);
3418 } else
3419 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3420 s->name, page);
53e15af0
CL
3421}
3422
434e245d
CL
3423static int validate_slab_node(struct kmem_cache *s,
3424 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3425{
3426 unsigned long count = 0;
3427 struct page *page;
3428 unsigned long flags;
3429
3430 spin_lock_irqsave(&n->list_lock, flags);
3431
3432 list_for_each_entry(page, &n->partial, lru) {
434e245d 3433 validate_slab_slab(s, page, map);
53e15af0
CL
3434 count++;
3435 }
3436 if (count != n->nr_partial)
3437 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3438 "counter=%ld\n", s->name, count, n->nr_partial);
3439
3440 if (!(s->flags & SLAB_STORE_USER))
3441 goto out;
3442
3443 list_for_each_entry(page, &n->full, lru) {
434e245d 3444 validate_slab_slab(s, page, map);
53e15af0
CL
3445 count++;
3446 }
3447 if (count != atomic_long_read(&n->nr_slabs))
3448 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3449 "counter=%ld\n", s->name, count,
3450 atomic_long_read(&n->nr_slabs));
3451
3452out:
3453 spin_unlock_irqrestore(&n->list_lock, flags);
3454 return count;
3455}
3456
434e245d 3457static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3458{
3459 int node;
3460 unsigned long count = 0;
205ab99d 3461 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3462 sizeof(unsigned long), GFP_KERNEL);
3463
3464 if (!map)
3465 return -ENOMEM;
53e15af0
CL
3466
3467 flush_all(s);
f64dc58c 3468 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3469 struct kmem_cache_node *n = get_node(s, node);
3470
434e245d 3471 count += validate_slab_node(s, n, map);
53e15af0 3472 }
434e245d 3473 kfree(map);
53e15af0
CL
3474 return count;
3475}
3476
b3459709
CL
3477#ifdef SLUB_RESILIENCY_TEST
3478static void resiliency_test(void)
3479{
3480 u8 *p;
3481
a016471a
DR
3482 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3483
b3459709
CL
3484 printk(KERN_ERR "SLUB resiliency testing\n");
3485 printk(KERN_ERR "-----------------------\n");
3486 printk(KERN_ERR "A. Corruption after allocation\n");
3487
3488 p = kzalloc(16, GFP_KERNEL);
3489 p[16] = 0x12;
3490 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3491 " 0x12->0x%p\n\n", p + 16);
3492
a016471a 3493 validate_slab_cache(kmalloc_caches[4]);
b3459709
CL
3494
3495 /* Hmmm... The next two are dangerous */
3496 p = kzalloc(32, GFP_KERNEL);
3497 p[32 + sizeof(void *)] = 0x34;
3498 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3499 " 0x34 -> -0x%p\n", p);
3500 printk(KERN_ERR
3501 "If allocated object is overwritten then not detectable\n\n");
b3459709 3502
a016471a 3503 validate_slab_cache(kmalloc_caches[5]);
b3459709
CL
3504 p = kzalloc(64, GFP_KERNEL);
3505 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3506 *p = 0x56;
3507 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3508 p);
3adbefee
IM
3509 printk(KERN_ERR
3510 "If allocated object is overwritten then not detectable\n\n");
a016471a 3511 validate_slab_cache(kmalloc_caches[6]);
b3459709
CL
3512
3513 printk(KERN_ERR "\nB. Corruption after free\n");
3514 p = kzalloc(128, GFP_KERNEL);
3515 kfree(p);
3516 *p = 0x78;
3517 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a016471a 3518 validate_slab_cache(kmalloc_caches[7]);
b3459709
CL
3519
3520 p = kzalloc(256, GFP_KERNEL);
3521 kfree(p);
3522 p[50] = 0x9a;
3adbefee
IM
3523 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3524 p);
a016471a 3525 validate_slab_cache(kmalloc_caches[8]);
b3459709
CL
3526
3527 p = kzalloc(512, GFP_KERNEL);
3528 kfree(p);
3529 p[512] = 0xab;
3530 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a016471a 3531 validate_slab_cache(kmalloc_caches[9]);
b3459709
CL
3532}
3533#else
3534static void resiliency_test(void) {};
3535#endif
3536
88a420e4 3537/*
672bba3a 3538 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3539 * and freed.
3540 */
3541
3542struct location {
3543 unsigned long count;
ce71e27c 3544 unsigned long addr;
45edfa58
CL
3545 long long sum_time;
3546 long min_time;
3547 long max_time;
3548 long min_pid;
3549 long max_pid;
174596a0 3550 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3551 nodemask_t nodes;
88a420e4
CL
3552};
3553
3554struct loc_track {
3555 unsigned long max;
3556 unsigned long count;
3557 struct location *loc;
3558};
3559
3560static void free_loc_track(struct loc_track *t)
3561{
3562 if (t->max)
3563 free_pages((unsigned long)t->loc,
3564 get_order(sizeof(struct location) * t->max));
3565}
3566
68dff6a9 3567static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3568{
3569 struct location *l;
3570 int order;
3571
88a420e4
CL
3572 order = get_order(sizeof(struct location) * max);
3573
68dff6a9 3574 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3575 if (!l)
3576 return 0;
3577
3578 if (t->count) {
3579 memcpy(l, t->loc, sizeof(struct location) * t->count);
3580 free_loc_track(t);
3581 }
3582 t->max = max;
3583 t->loc = l;
3584 return 1;
3585}
3586
3587static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3588 const struct track *track)
88a420e4
CL
3589{
3590 long start, end, pos;
3591 struct location *l;
ce71e27c 3592 unsigned long caddr;
45edfa58 3593 unsigned long age = jiffies - track->when;
88a420e4
CL
3594
3595 start = -1;
3596 end = t->count;
3597
3598 for ( ; ; ) {
3599 pos = start + (end - start + 1) / 2;
3600
3601 /*
3602 * There is nothing at "end". If we end up there
3603 * we need to add something to before end.
3604 */
3605 if (pos == end)
3606 break;
3607
3608 caddr = t->loc[pos].addr;
45edfa58
CL
3609 if (track->addr == caddr) {
3610
3611 l = &t->loc[pos];
3612 l->count++;
3613 if (track->when) {
3614 l->sum_time += age;
3615 if (age < l->min_time)
3616 l->min_time = age;
3617 if (age > l->max_time)
3618 l->max_time = age;
3619
3620 if (track->pid < l->min_pid)
3621 l->min_pid = track->pid;
3622 if (track->pid > l->max_pid)
3623 l->max_pid = track->pid;
3624
174596a0
RR
3625 cpumask_set_cpu(track->cpu,
3626 to_cpumask(l->cpus));
45edfa58
CL
3627 }
3628 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3629 return 1;
3630 }
3631
45edfa58 3632 if (track->addr < caddr)
88a420e4
CL
3633 end = pos;
3634 else
3635 start = pos;
3636 }
3637
3638 /*
672bba3a 3639 * Not found. Insert new tracking element.
88a420e4 3640 */
68dff6a9 3641 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3642 return 0;
3643
3644 l = t->loc + pos;
3645 if (pos < t->count)
3646 memmove(l + 1, l,
3647 (t->count - pos) * sizeof(struct location));
3648 t->count++;
3649 l->count = 1;
45edfa58
CL
3650 l->addr = track->addr;
3651 l->sum_time = age;
3652 l->min_time = age;
3653 l->max_time = age;
3654 l->min_pid = track->pid;
3655 l->max_pid = track->pid;
174596a0
RR
3656 cpumask_clear(to_cpumask(l->cpus));
3657 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3658 nodes_clear(l->nodes);
3659 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3660 return 1;
3661}
3662
3663static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b
ED
3664 struct page *page, enum track_item alloc,
3665 long *map)
88a420e4 3666{
a973e9dd 3667 void *addr = page_address(page);
88a420e4
CL
3668 void *p;
3669
39b26464 3670 bitmap_zero(map, page->objects);
7656c72b
CL
3671 for_each_free_object(p, s, page->freelist)
3672 set_bit(slab_index(p, s, addr), map);
88a420e4 3673
224a88be 3674 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3675 if (!test_bit(slab_index(p, s, addr), map))
3676 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3677}
3678
3679static int list_locations(struct kmem_cache *s, char *buf,
3680 enum track_item alloc)
3681{
e374d483 3682 int len = 0;
88a420e4 3683 unsigned long i;
68dff6a9 3684 struct loc_track t = { 0, 0, NULL };
88a420e4 3685 int node;
bbd7d57b
ED
3686 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3687 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3688
bbd7d57b
ED
3689 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3690 GFP_TEMPORARY)) {
3691 kfree(map);
68dff6a9 3692 return sprintf(buf, "Out of memory\n");
bbd7d57b 3693 }
88a420e4
CL
3694 /* Push back cpu slabs */
3695 flush_all(s);
3696
f64dc58c 3697 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3698 struct kmem_cache_node *n = get_node(s, node);
3699 unsigned long flags;
3700 struct page *page;
3701
9e86943b 3702 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3703 continue;
3704
3705 spin_lock_irqsave(&n->list_lock, flags);
3706 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3707 process_slab(&t, s, page, alloc, map);
88a420e4 3708 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3709 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3710 spin_unlock_irqrestore(&n->list_lock, flags);
3711 }
3712
3713 for (i = 0; i < t.count; i++) {
45edfa58 3714 struct location *l = &t.loc[i];
88a420e4 3715
9c246247 3716 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3717 break;
e374d483 3718 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3719
3720 if (l->addr)
e374d483 3721 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3722 else
e374d483 3723 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3724
3725 if (l->sum_time != l->min_time) {
e374d483 3726 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3727 l->min_time,
3728 (long)div_u64(l->sum_time, l->count),
3729 l->max_time);
45edfa58 3730 } else
e374d483 3731 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3732 l->min_time);
3733
3734 if (l->min_pid != l->max_pid)
e374d483 3735 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3736 l->min_pid, l->max_pid);
3737 else
e374d483 3738 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3739 l->min_pid);
3740
174596a0
RR
3741 if (num_online_cpus() > 1 &&
3742 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3743 len < PAGE_SIZE - 60) {
3744 len += sprintf(buf + len, " cpus=");
3745 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3746 to_cpumask(l->cpus));
45edfa58
CL
3747 }
3748
62bc62a8 3749 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3750 len < PAGE_SIZE - 60) {
3751 len += sprintf(buf + len, " nodes=");
3752 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3753 l->nodes);
3754 }
3755
e374d483 3756 len += sprintf(buf + len, "\n");
88a420e4
CL
3757 }
3758
3759 free_loc_track(&t);
bbd7d57b 3760 kfree(map);
88a420e4 3761 if (!t.count)
e374d483
HH
3762 len += sprintf(buf, "No data\n");
3763 return len;
88a420e4
CL
3764}
3765
81819f0f 3766enum slab_stat_type {
205ab99d
CL
3767 SL_ALL, /* All slabs */
3768 SL_PARTIAL, /* Only partially allocated slabs */
3769 SL_CPU, /* Only slabs used for cpu caches */
3770 SL_OBJECTS, /* Determine allocated objects not slabs */
3771 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3772};
3773
205ab99d 3774#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3775#define SO_PARTIAL (1 << SL_PARTIAL)
3776#define SO_CPU (1 << SL_CPU)
3777#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3778#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3779
62e5c4b4
CG
3780static ssize_t show_slab_objects(struct kmem_cache *s,
3781 char *buf, unsigned long flags)
81819f0f
CL
3782{
3783 unsigned long total = 0;
81819f0f
CL
3784 int node;
3785 int x;
3786 unsigned long *nodes;
3787 unsigned long *per_cpu;
3788
3789 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3790 if (!nodes)
3791 return -ENOMEM;
81819f0f
CL
3792 per_cpu = nodes + nr_node_ids;
3793
205ab99d
CL
3794 if (flags & SO_CPU) {
3795 int cpu;
81819f0f 3796
205ab99d 3797 for_each_possible_cpu(cpu) {
9dfc6e68 3798 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3799
205ab99d
CL
3800 if (!c || c->node < 0)
3801 continue;
3802
3803 if (c->page) {
3804 if (flags & SO_TOTAL)
3805 x = c->page->objects;
3806 else if (flags & SO_OBJECTS)
3807 x = c->page->inuse;
81819f0f
CL
3808 else
3809 x = 1;
205ab99d 3810
81819f0f 3811 total += x;
205ab99d 3812 nodes[c->node] += x;
81819f0f 3813 }
205ab99d 3814 per_cpu[c->node]++;
81819f0f
CL
3815 }
3816 }
3817
205ab99d
CL
3818 if (flags & SO_ALL) {
3819 for_each_node_state(node, N_NORMAL_MEMORY) {
3820 struct kmem_cache_node *n = get_node(s, node);
3821
3822 if (flags & SO_TOTAL)
3823 x = atomic_long_read(&n->total_objects);
3824 else if (flags & SO_OBJECTS)
3825 x = atomic_long_read(&n->total_objects) -
3826 count_partial(n, count_free);
81819f0f 3827
81819f0f 3828 else
205ab99d 3829 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3830 total += x;
3831 nodes[node] += x;
3832 }
3833
205ab99d
CL
3834 } else if (flags & SO_PARTIAL) {
3835 for_each_node_state(node, N_NORMAL_MEMORY) {
3836 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3837
205ab99d
CL
3838 if (flags & SO_TOTAL)
3839 x = count_partial(n, count_total);
3840 else if (flags & SO_OBJECTS)
3841 x = count_partial(n, count_inuse);
81819f0f 3842 else
205ab99d 3843 x = n->nr_partial;
81819f0f
CL
3844 total += x;
3845 nodes[node] += x;
3846 }
3847 }
81819f0f
CL
3848 x = sprintf(buf, "%lu", total);
3849#ifdef CONFIG_NUMA
f64dc58c 3850 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3851 if (nodes[node])
3852 x += sprintf(buf + x, " N%d=%lu",
3853 node, nodes[node]);
3854#endif
3855 kfree(nodes);
3856 return x + sprintf(buf + x, "\n");
3857}
3858
3859static int any_slab_objects(struct kmem_cache *s)
3860{
3861 int node;
81819f0f 3862
dfb4f096 3863 for_each_online_node(node) {
81819f0f
CL
3864 struct kmem_cache_node *n = get_node(s, node);
3865
dfb4f096
CL
3866 if (!n)
3867 continue;
3868
4ea33e2d 3869 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3870 return 1;
3871 }
3872 return 0;
3873}
3874
3875#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3876#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3877
3878struct slab_attribute {
3879 struct attribute attr;
3880 ssize_t (*show)(struct kmem_cache *s, char *buf);
3881 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3882};
3883
3884#define SLAB_ATTR_RO(_name) \
3885 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3886
3887#define SLAB_ATTR(_name) \
3888 static struct slab_attribute _name##_attr = \
3889 __ATTR(_name, 0644, _name##_show, _name##_store)
3890
81819f0f
CL
3891static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3892{
3893 return sprintf(buf, "%d\n", s->size);
3894}
3895SLAB_ATTR_RO(slab_size);
3896
3897static ssize_t align_show(struct kmem_cache *s, char *buf)
3898{
3899 return sprintf(buf, "%d\n", s->align);
3900}
3901SLAB_ATTR_RO(align);
3902
3903static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3904{
3905 return sprintf(buf, "%d\n", s->objsize);
3906}
3907SLAB_ATTR_RO(object_size);
3908
3909static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3910{
834f3d11 3911 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3912}
3913SLAB_ATTR_RO(objs_per_slab);
3914
06b285dc
CL
3915static ssize_t order_store(struct kmem_cache *s,
3916 const char *buf, size_t length)
3917{
0121c619
CL
3918 unsigned long order;
3919 int err;
3920
3921 err = strict_strtoul(buf, 10, &order);
3922 if (err)
3923 return err;
06b285dc
CL
3924
3925 if (order > slub_max_order || order < slub_min_order)
3926 return -EINVAL;
3927
3928 calculate_sizes(s, order);
3929 return length;
3930}
3931
81819f0f
CL
3932static ssize_t order_show(struct kmem_cache *s, char *buf)
3933{
834f3d11 3934 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3935}
06b285dc 3936SLAB_ATTR(order);
81819f0f 3937
73d342b1
DR
3938static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3939{
3940 return sprintf(buf, "%lu\n", s->min_partial);
3941}
3942
3943static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3944 size_t length)
3945{
3946 unsigned long min;
3947 int err;
3948
3949 err = strict_strtoul(buf, 10, &min);
3950 if (err)
3951 return err;
3952
c0bdb232 3953 set_min_partial(s, min);
73d342b1
DR
3954 return length;
3955}
3956SLAB_ATTR(min_partial);
3957
81819f0f
CL
3958static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3959{
3960 if (s->ctor) {
3961 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3962
3963 return n + sprintf(buf + n, "\n");
3964 }
3965 return 0;
3966}
3967SLAB_ATTR_RO(ctor);
3968
81819f0f
CL
3969static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3970{
3971 return sprintf(buf, "%d\n", s->refcount - 1);
3972}
3973SLAB_ATTR_RO(aliases);
3974
3975static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3976{
205ab99d 3977 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3978}
3979SLAB_ATTR_RO(slabs);
3980
3981static ssize_t partial_show(struct kmem_cache *s, char *buf)
3982{
d9acf4b7 3983 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3984}
3985SLAB_ATTR_RO(partial);
3986
3987static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3988{
d9acf4b7 3989 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3990}
3991SLAB_ATTR_RO(cpu_slabs);
3992
3993static ssize_t objects_show(struct kmem_cache *s, char *buf)
3994{
205ab99d 3995 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3996}
3997SLAB_ATTR_RO(objects);
3998
205ab99d
CL
3999static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4000{
4001 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4002}
4003SLAB_ATTR_RO(objects_partial);
4004
4005static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4006{
4007 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4008}
4009SLAB_ATTR_RO(total_objects);
4010
81819f0f
CL
4011static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4012{
4013 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4014}
4015
4016static ssize_t sanity_checks_store(struct kmem_cache *s,
4017 const char *buf, size_t length)
4018{
4019 s->flags &= ~SLAB_DEBUG_FREE;
4020 if (buf[0] == '1')
4021 s->flags |= SLAB_DEBUG_FREE;
4022 return length;
4023}
4024SLAB_ATTR(sanity_checks);
4025
4026static ssize_t trace_show(struct kmem_cache *s, char *buf)
4027{
4028 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4029}
4030
4031static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4032 size_t length)
4033{
4034 s->flags &= ~SLAB_TRACE;
4035 if (buf[0] == '1')
4036 s->flags |= SLAB_TRACE;
4037 return length;
4038}
4039SLAB_ATTR(trace);
4040
4c13dd3b
DM
4041#ifdef CONFIG_FAILSLAB
4042static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4043{
4044 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4045}
4046
4047static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4048 size_t length)
4049{
4050 s->flags &= ~SLAB_FAILSLAB;
4051 if (buf[0] == '1')
4052 s->flags |= SLAB_FAILSLAB;
4053 return length;
4054}
4055SLAB_ATTR(failslab);
4056#endif
4057
81819f0f
CL
4058static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4059{
4060 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4061}
4062
4063static ssize_t reclaim_account_store(struct kmem_cache *s,
4064 const char *buf, size_t length)
4065{
4066 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4067 if (buf[0] == '1')
4068 s->flags |= SLAB_RECLAIM_ACCOUNT;
4069 return length;
4070}
4071SLAB_ATTR(reclaim_account);
4072
4073static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4074{
5af60839 4075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4076}
4077SLAB_ATTR_RO(hwcache_align);
4078
4079#ifdef CONFIG_ZONE_DMA
4080static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4081{
4082 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4083}
4084SLAB_ATTR_RO(cache_dma);
4085#endif
4086
4087static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4088{
4089 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4090}
4091SLAB_ATTR_RO(destroy_by_rcu);
4092
4093static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4094{
4095 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4096}
4097
4098static ssize_t red_zone_store(struct kmem_cache *s,
4099 const char *buf, size_t length)
4100{
4101 if (any_slab_objects(s))
4102 return -EBUSY;
4103
4104 s->flags &= ~SLAB_RED_ZONE;
4105 if (buf[0] == '1')
4106 s->flags |= SLAB_RED_ZONE;
06b285dc 4107 calculate_sizes(s, -1);
81819f0f
CL
4108 return length;
4109}
4110SLAB_ATTR(red_zone);
4111
4112static ssize_t poison_show(struct kmem_cache *s, char *buf)
4113{
4114 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4115}
4116
4117static ssize_t poison_store(struct kmem_cache *s,
4118 const char *buf, size_t length)
4119{
4120 if (any_slab_objects(s))
4121 return -EBUSY;
4122
4123 s->flags &= ~SLAB_POISON;
4124 if (buf[0] == '1')
4125 s->flags |= SLAB_POISON;
06b285dc 4126 calculate_sizes(s, -1);
81819f0f
CL
4127 return length;
4128}
4129SLAB_ATTR(poison);
4130
4131static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4132{
4133 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4134}
4135
4136static ssize_t store_user_store(struct kmem_cache *s,
4137 const char *buf, size_t length)
4138{
4139 if (any_slab_objects(s))
4140 return -EBUSY;
4141
4142 s->flags &= ~SLAB_STORE_USER;
4143 if (buf[0] == '1')
4144 s->flags |= SLAB_STORE_USER;
06b285dc 4145 calculate_sizes(s, -1);
81819f0f
CL
4146 return length;
4147}
4148SLAB_ATTR(store_user);
4149
53e15af0
CL
4150static ssize_t validate_show(struct kmem_cache *s, char *buf)
4151{
4152 return 0;
4153}
4154
4155static ssize_t validate_store(struct kmem_cache *s,
4156 const char *buf, size_t length)
4157{
434e245d
CL
4158 int ret = -EINVAL;
4159
4160 if (buf[0] == '1') {
4161 ret = validate_slab_cache(s);
4162 if (ret >= 0)
4163 ret = length;
4164 }
4165 return ret;
53e15af0
CL
4166}
4167SLAB_ATTR(validate);
4168
2086d26a
CL
4169static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4170{
4171 return 0;
4172}
4173
4174static ssize_t shrink_store(struct kmem_cache *s,
4175 const char *buf, size_t length)
4176{
4177 if (buf[0] == '1') {
4178 int rc = kmem_cache_shrink(s);
4179
4180 if (rc)
4181 return rc;
4182 } else
4183 return -EINVAL;
4184 return length;
4185}
4186SLAB_ATTR(shrink);
4187
88a420e4
CL
4188static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4189{
4190 if (!(s->flags & SLAB_STORE_USER))
4191 return -ENOSYS;
4192 return list_locations(s, buf, TRACK_ALLOC);
4193}
4194SLAB_ATTR_RO(alloc_calls);
4195
4196static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4197{
4198 if (!(s->flags & SLAB_STORE_USER))
4199 return -ENOSYS;
4200 return list_locations(s, buf, TRACK_FREE);
4201}
4202SLAB_ATTR_RO(free_calls);
4203
81819f0f 4204#ifdef CONFIG_NUMA
9824601e 4205static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4206{
9824601e 4207 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4208}
4209
9824601e 4210static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4211 const char *buf, size_t length)
4212{
0121c619
CL
4213 unsigned long ratio;
4214 int err;
4215
4216 err = strict_strtoul(buf, 10, &ratio);
4217 if (err)
4218 return err;
4219
e2cb96b7 4220 if (ratio <= 100)
0121c619 4221 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4222
81819f0f
CL
4223 return length;
4224}
9824601e 4225SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4226#endif
4227
8ff12cfc 4228#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4229static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4230{
4231 unsigned long sum = 0;
4232 int cpu;
4233 int len;
4234 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4235
4236 if (!data)
4237 return -ENOMEM;
4238
4239 for_each_online_cpu(cpu) {
9dfc6e68 4240 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4241
4242 data[cpu] = x;
4243 sum += x;
4244 }
4245
4246 len = sprintf(buf, "%lu", sum);
4247
50ef37b9 4248#ifdef CONFIG_SMP
8ff12cfc
CL
4249 for_each_online_cpu(cpu) {
4250 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4251 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4252 }
50ef37b9 4253#endif
8ff12cfc
CL
4254 kfree(data);
4255 return len + sprintf(buf + len, "\n");
4256}
4257
78eb00cc
DR
4258static void clear_stat(struct kmem_cache *s, enum stat_item si)
4259{
4260 int cpu;
4261
4262 for_each_online_cpu(cpu)
9dfc6e68 4263 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4264}
4265
8ff12cfc
CL
4266#define STAT_ATTR(si, text) \
4267static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4268{ \
4269 return show_stat(s, buf, si); \
4270} \
78eb00cc
DR
4271static ssize_t text##_store(struct kmem_cache *s, \
4272 const char *buf, size_t length) \
4273{ \
4274 if (buf[0] != '0') \
4275 return -EINVAL; \
4276 clear_stat(s, si); \
4277 return length; \
4278} \
4279SLAB_ATTR(text); \
8ff12cfc
CL
4280
4281STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4282STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4283STAT_ATTR(FREE_FASTPATH, free_fastpath);
4284STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4285STAT_ATTR(FREE_FROZEN, free_frozen);
4286STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4287STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4288STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4289STAT_ATTR(ALLOC_SLAB, alloc_slab);
4290STAT_ATTR(ALLOC_REFILL, alloc_refill);
4291STAT_ATTR(FREE_SLAB, free_slab);
4292STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4293STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4294STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4295STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4296STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4297STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4298STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4299#endif
4300
06428780 4301static struct attribute *slab_attrs[] = {
81819f0f
CL
4302 &slab_size_attr.attr,
4303 &object_size_attr.attr,
4304 &objs_per_slab_attr.attr,
4305 &order_attr.attr,
73d342b1 4306 &min_partial_attr.attr,
81819f0f 4307 &objects_attr.attr,
205ab99d
CL
4308 &objects_partial_attr.attr,
4309 &total_objects_attr.attr,
81819f0f
CL
4310 &slabs_attr.attr,
4311 &partial_attr.attr,
4312 &cpu_slabs_attr.attr,
4313 &ctor_attr.attr,
81819f0f
CL
4314 &aliases_attr.attr,
4315 &align_attr.attr,
4316 &sanity_checks_attr.attr,
4317 &trace_attr.attr,
4318 &hwcache_align_attr.attr,
4319 &reclaim_account_attr.attr,
4320 &destroy_by_rcu_attr.attr,
4321 &red_zone_attr.attr,
4322 &poison_attr.attr,
4323 &store_user_attr.attr,
53e15af0 4324 &validate_attr.attr,
2086d26a 4325 &shrink_attr.attr,
88a420e4
CL
4326 &alloc_calls_attr.attr,
4327 &free_calls_attr.attr,
81819f0f
CL
4328#ifdef CONFIG_ZONE_DMA
4329 &cache_dma_attr.attr,
4330#endif
4331#ifdef CONFIG_NUMA
9824601e 4332 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4333#endif
4334#ifdef CONFIG_SLUB_STATS
4335 &alloc_fastpath_attr.attr,
4336 &alloc_slowpath_attr.attr,
4337 &free_fastpath_attr.attr,
4338 &free_slowpath_attr.attr,
4339 &free_frozen_attr.attr,
4340 &free_add_partial_attr.attr,
4341 &free_remove_partial_attr.attr,
4342 &alloc_from_partial_attr.attr,
4343 &alloc_slab_attr.attr,
4344 &alloc_refill_attr.attr,
4345 &free_slab_attr.attr,
4346 &cpuslab_flush_attr.attr,
4347 &deactivate_full_attr.attr,
4348 &deactivate_empty_attr.attr,
4349 &deactivate_to_head_attr.attr,
4350 &deactivate_to_tail_attr.attr,
4351 &deactivate_remote_frees_attr.attr,
65c3376a 4352 &order_fallback_attr.attr,
81819f0f 4353#endif
4c13dd3b
DM
4354#ifdef CONFIG_FAILSLAB
4355 &failslab_attr.attr,
4356#endif
4357
81819f0f
CL
4358 NULL
4359};
4360
4361static struct attribute_group slab_attr_group = {
4362 .attrs = slab_attrs,
4363};
4364
4365static ssize_t slab_attr_show(struct kobject *kobj,
4366 struct attribute *attr,
4367 char *buf)
4368{
4369 struct slab_attribute *attribute;
4370 struct kmem_cache *s;
4371 int err;
4372
4373 attribute = to_slab_attr(attr);
4374 s = to_slab(kobj);
4375
4376 if (!attribute->show)
4377 return -EIO;
4378
4379 err = attribute->show(s, buf);
4380
4381 return err;
4382}
4383
4384static ssize_t slab_attr_store(struct kobject *kobj,
4385 struct attribute *attr,
4386 const char *buf, size_t len)
4387{
4388 struct slab_attribute *attribute;
4389 struct kmem_cache *s;
4390 int err;
4391
4392 attribute = to_slab_attr(attr);
4393 s = to_slab(kobj);
4394
4395 if (!attribute->store)
4396 return -EIO;
4397
4398 err = attribute->store(s, buf, len);
4399
4400 return err;
4401}
4402
151c602f
CL
4403static void kmem_cache_release(struct kobject *kobj)
4404{
4405 struct kmem_cache *s = to_slab(kobj);
4406
84c1cf62 4407 kfree(s->name);
151c602f
CL
4408 kfree(s);
4409}
4410
52cf25d0 4411static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4412 .show = slab_attr_show,
4413 .store = slab_attr_store,
4414};
4415
4416static struct kobj_type slab_ktype = {
4417 .sysfs_ops = &slab_sysfs_ops,
151c602f 4418 .release = kmem_cache_release
81819f0f
CL
4419};
4420
4421static int uevent_filter(struct kset *kset, struct kobject *kobj)
4422{
4423 struct kobj_type *ktype = get_ktype(kobj);
4424
4425 if (ktype == &slab_ktype)
4426 return 1;
4427 return 0;
4428}
4429
9cd43611 4430static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4431 .filter = uevent_filter,
4432};
4433
27c3a314 4434static struct kset *slab_kset;
81819f0f
CL
4435
4436#define ID_STR_LENGTH 64
4437
4438/* Create a unique string id for a slab cache:
6446faa2
CL
4439 *
4440 * Format :[flags-]size
81819f0f
CL
4441 */
4442static char *create_unique_id(struct kmem_cache *s)
4443{
4444 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4445 char *p = name;
4446
4447 BUG_ON(!name);
4448
4449 *p++ = ':';
4450 /*
4451 * First flags affecting slabcache operations. We will only
4452 * get here for aliasable slabs so we do not need to support
4453 * too many flags. The flags here must cover all flags that
4454 * are matched during merging to guarantee that the id is
4455 * unique.
4456 */
4457 if (s->flags & SLAB_CACHE_DMA)
4458 *p++ = 'd';
4459 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4460 *p++ = 'a';
4461 if (s->flags & SLAB_DEBUG_FREE)
4462 *p++ = 'F';
5a896d9e
VN
4463 if (!(s->flags & SLAB_NOTRACK))
4464 *p++ = 't';
81819f0f
CL
4465 if (p != name + 1)
4466 *p++ = '-';
4467 p += sprintf(p, "%07d", s->size);
4468 BUG_ON(p > name + ID_STR_LENGTH - 1);
4469 return name;
4470}
4471
4472static int sysfs_slab_add(struct kmem_cache *s)
4473{
4474 int err;
4475 const char *name;
4476 int unmergeable;
4477
4478 if (slab_state < SYSFS)
4479 /* Defer until later */
4480 return 0;
4481
4482 unmergeable = slab_unmergeable(s);
4483 if (unmergeable) {
4484 /*
4485 * Slabcache can never be merged so we can use the name proper.
4486 * This is typically the case for debug situations. In that
4487 * case we can catch duplicate names easily.
4488 */
27c3a314 4489 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4490 name = s->name;
4491 } else {
4492 /*
4493 * Create a unique name for the slab as a target
4494 * for the symlinks.
4495 */
4496 name = create_unique_id(s);
4497 }
4498
27c3a314 4499 s->kobj.kset = slab_kset;
1eada11c
GKH
4500 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4501 if (err) {
4502 kobject_put(&s->kobj);
81819f0f 4503 return err;
1eada11c 4504 }
81819f0f
CL
4505
4506 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4507 if (err) {
4508 kobject_del(&s->kobj);
4509 kobject_put(&s->kobj);
81819f0f 4510 return err;
5788d8ad 4511 }
81819f0f
CL
4512 kobject_uevent(&s->kobj, KOBJ_ADD);
4513 if (!unmergeable) {
4514 /* Setup first alias */
4515 sysfs_slab_alias(s, s->name);
4516 kfree(name);
4517 }
4518 return 0;
4519}
4520
4521static void sysfs_slab_remove(struct kmem_cache *s)
4522{
2bce6485
CL
4523 if (slab_state < SYSFS)
4524 /*
4525 * Sysfs has not been setup yet so no need to remove the
4526 * cache from sysfs.
4527 */
4528 return;
4529
81819f0f
CL
4530 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4531 kobject_del(&s->kobj);
151c602f 4532 kobject_put(&s->kobj);
81819f0f
CL
4533}
4534
4535/*
4536 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4537 * available lest we lose that information.
81819f0f
CL
4538 */
4539struct saved_alias {
4540 struct kmem_cache *s;
4541 const char *name;
4542 struct saved_alias *next;
4543};
4544
5af328a5 4545static struct saved_alias *alias_list;
81819f0f
CL
4546
4547static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4548{
4549 struct saved_alias *al;
4550
4551 if (slab_state == SYSFS) {
4552 /*
4553 * If we have a leftover link then remove it.
4554 */
27c3a314
GKH
4555 sysfs_remove_link(&slab_kset->kobj, name);
4556 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4557 }
4558
4559 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4560 if (!al)
4561 return -ENOMEM;
4562
4563 al->s = s;
4564 al->name = name;
4565 al->next = alias_list;
4566 alias_list = al;
4567 return 0;
4568}
4569
4570static int __init slab_sysfs_init(void)
4571{
5b95a4ac 4572 struct kmem_cache *s;
81819f0f
CL
4573 int err;
4574
2bce6485
CL
4575 down_write(&slub_lock);
4576
0ff21e46 4577 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4578 if (!slab_kset) {
2bce6485 4579 up_write(&slub_lock);
81819f0f
CL
4580 printk(KERN_ERR "Cannot register slab subsystem.\n");
4581 return -ENOSYS;
4582 }
4583
26a7bd03
CL
4584 slab_state = SYSFS;
4585
5b95a4ac 4586 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4587 err = sysfs_slab_add(s);
5d540fb7
CL
4588 if (err)
4589 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4590 " to sysfs\n", s->name);
26a7bd03 4591 }
81819f0f
CL
4592
4593 while (alias_list) {
4594 struct saved_alias *al = alias_list;
4595
4596 alias_list = alias_list->next;
4597 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4598 if (err)
4599 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4600 " %s to sysfs\n", s->name);
81819f0f
CL
4601 kfree(al);
4602 }
4603
2bce6485 4604 up_write(&slub_lock);
81819f0f
CL
4605 resiliency_test();
4606 return 0;
4607}
4608
4609__initcall(slab_sysfs_init);
81819f0f 4610#endif
57ed3eda
PE
4611
4612/*
4613 * The /proc/slabinfo ABI
4614 */
158a9624 4615#ifdef CONFIG_SLABINFO
57ed3eda
PE
4616static void print_slabinfo_header(struct seq_file *m)
4617{
4618 seq_puts(m, "slabinfo - version: 2.1\n");
4619 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4620 "<objperslab> <pagesperslab>");
4621 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4622 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4623 seq_putc(m, '\n');
4624}
4625
4626static void *s_start(struct seq_file *m, loff_t *pos)
4627{
4628 loff_t n = *pos;
4629
4630 down_read(&slub_lock);
4631 if (!n)
4632 print_slabinfo_header(m);
4633
4634 return seq_list_start(&slab_caches, *pos);
4635}
4636
4637static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4638{
4639 return seq_list_next(p, &slab_caches, pos);
4640}
4641
4642static void s_stop(struct seq_file *m, void *p)
4643{
4644 up_read(&slub_lock);
4645}
4646
4647static int s_show(struct seq_file *m, void *p)
4648{
4649 unsigned long nr_partials = 0;
4650 unsigned long nr_slabs = 0;
4651 unsigned long nr_inuse = 0;
205ab99d
CL
4652 unsigned long nr_objs = 0;
4653 unsigned long nr_free = 0;
57ed3eda
PE
4654 struct kmem_cache *s;
4655 int node;
4656
4657 s = list_entry(p, struct kmem_cache, list);
4658
4659 for_each_online_node(node) {
4660 struct kmem_cache_node *n = get_node(s, node);
4661
4662 if (!n)
4663 continue;
4664
4665 nr_partials += n->nr_partial;
4666 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4667 nr_objs += atomic_long_read(&n->total_objects);
4668 nr_free += count_partial(n, count_free);
57ed3eda
PE
4669 }
4670
205ab99d 4671 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4672
4673 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4674 nr_objs, s->size, oo_objects(s->oo),
4675 (1 << oo_order(s->oo)));
57ed3eda
PE
4676 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4677 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4678 0UL);
4679 seq_putc(m, '\n');
4680 return 0;
4681}
4682
7b3c3a50 4683static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4684 .start = s_start,
4685 .next = s_next,
4686 .stop = s_stop,
4687 .show = s_show,
4688};
4689
7b3c3a50
AD
4690static int slabinfo_open(struct inode *inode, struct file *file)
4691{
4692 return seq_open(file, &slabinfo_op);
4693}
4694
4695static const struct file_operations proc_slabinfo_operations = {
4696 .open = slabinfo_open,
4697 .read = seq_read,
4698 .llseek = seq_lseek,
4699 .release = seq_release,
4700};
4701
4702static int __init slab_proc_init(void)
4703{
cf5d1131 4704 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4705 return 0;
4706}
4707module_init(slab_proc_init);
158a9624 4708#endif /* CONFIG_SLABINFO */