mempolicy: restructure rebinding-mempolicy functions
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
02af61bb 20#include <linux/kmemtrace.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
81819f0f
CL
31
32/*
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
36 *
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
43 *
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
49 *
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
55 *
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
68 *
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
672bba3a
CL
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 79 * freed then the slab will show up again on the partial lists.
672bba3a
CL
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
81819f0f
CL
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
4b6f0750
CL
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
dfb4f096 101 * freelist that allows lockless access to
894b8788
CL
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
81819f0f
CL
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
894b8788 107 * the fast path and disables lockless freelists.
81819f0f
CL
108 */
109
5577bd8a 110#ifdef CONFIG_SLUB_DEBUG
8a38082d 111#define SLABDEBUG 1
5577bd8a
CL
112#else
113#define SLABDEBUG 0
114#endif
115
81819f0f
CL
116/*
117 * Issues still to be resolved:
118 *
81819f0f
CL
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
81819f0f
CL
121 * - Variable sizing of the per node arrays
122 */
123
124/* Enable to test recovery from slab corruption on boot */
125#undef SLUB_RESILIENCY_TEST
126
2086d26a
CL
127/*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
76be8950 131#define MIN_PARTIAL 5
e95eed57 132
2086d26a
CL
133/*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138#define MAX_PARTIAL 10
139
81819f0f
CL
140#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
672bba3a 142
fa5ec8a1 143/*
3de47213
DR
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
146 * metadata.
fa5ec8a1 147 */
3de47213 148#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 149
81819f0f
CL
150/*
151 * Set of flags that will prevent slab merging
152 */
153#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
155 SLAB_FAILSLAB)
81819f0f
CL
156
157#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 158 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 159
210b5c06
CG
160#define OO_SHIFT 16
161#define OO_MASK ((1 << OO_SHIFT) - 1)
162#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
163
81819f0f 164/* Internal SLUB flags */
1ceef402
CL
165#define __OBJECT_POISON 0x80000000 /* Poison object */
166#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
167
168static int kmem_size = sizeof(struct kmem_cache);
169
170#ifdef CONFIG_SMP
171static struct notifier_block slab_notifier;
172#endif
173
174static enum {
175 DOWN, /* No slab functionality available */
176 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 177 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
178 SYSFS /* Sysfs up */
179} slab_state = DOWN;
180
181/* A list of all slab caches on the system */
182static DECLARE_RWSEM(slub_lock);
5af328a5 183static LIST_HEAD(slab_caches);
81819f0f 184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
188struct track {
ce71e27c 189 unsigned long addr; /* Called from address */
02cbc874
CL
190 int cpu; /* Was running on cpu */
191 int pid; /* Pid context */
192 unsigned long when; /* When did the operation occur */
193};
194
195enum track_item { TRACK_ALLOC, TRACK_FREE };
196
f6acb635 197#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
198static int sysfs_slab_add(struct kmem_cache *);
199static int sysfs_slab_alias(struct kmem_cache *, const char *);
200static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 201
81819f0f 202#else
0c710013
CL
203static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
204static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
205 { return 0; }
151c602f
CL
206static inline void sysfs_slab_remove(struct kmem_cache *s)
207{
208 kfree(s);
209}
8ff12cfc 210
81819f0f
CL
211#endif
212
84e554e6 213static inline void stat(struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
214{
215#ifdef CONFIG_SLUB_STATS
84e554e6 216 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
217#endif
218}
219
81819f0f
CL
220/********************************************************************
221 * Core slab cache functions
222 *******************************************************************/
223
224int slab_is_available(void)
225{
226 return slab_state >= UP;
227}
228
229static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
230{
231#ifdef CONFIG_NUMA
232 return s->node[node];
233#else
234 return &s->local_node;
235#endif
236}
237
6446faa2 238/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
239static inline int check_valid_pointer(struct kmem_cache *s,
240 struct page *page, const void *object)
241{
242 void *base;
243
a973e9dd 244 if (!object)
02cbc874
CL
245 return 1;
246
a973e9dd 247 base = page_address(page);
39b26464 248 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
249 (object - base) % s->size) {
250 return 0;
251 }
252
253 return 1;
254}
255
7656c72b
CL
256static inline void *get_freepointer(struct kmem_cache *s, void *object)
257{
258 return *(void **)(object + s->offset);
259}
260
261static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
262{
263 *(void **)(object + s->offset) = fp;
264}
265
266/* Loop over all objects in a slab */
224a88be
CL
267#define for_each_object(__p, __s, __addr, __objects) \
268 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
269 __p += (__s)->size)
270
271/* Scan freelist */
272#define for_each_free_object(__p, __s, __free) \
a973e9dd 273 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
274
275/* Determine object index from a given position */
276static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
277{
278 return (p - addr) / s->size;
279}
280
834f3d11
CL
281static inline struct kmem_cache_order_objects oo_make(int order,
282 unsigned long size)
283{
284 struct kmem_cache_order_objects x = {
210b5c06 285 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
286 };
287
288 return x;
289}
290
291static inline int oo_order(struct kmem_cache_order_objects x)
292{
210b5c06 293 return x.x >> OO_SHIFT;
834f3d11
CL
294}
295
296static inline int oo_objects(struct kmem_cache_order_objects x)
297{
210b5c06 298 return x.x & OO_MASK;
834f3d11
CL
299}
300
41ecc55b
CL
301#ifdef CONFIG_SLUB_DEBUG
302/*
303 * Debug settings:
304 */
f0630fff
CL
305#ifdef CONFIG_SLUB_DEBUG_ON
306static int slub_debug = DEBUG_DEFAULT_FLAGS;
307#else
41ecc55b 308static int slub_debug;
f0630fff 309#endif
41ecc55b
CL
310
311static char *slub_debug_slabs;
fa5ec8a1 312static int disable_higher_order_debug;
41ecc55b 313
81819f0f
CL
314/*
315 * Object debugging
316 */
317static void print_section(char *text, u8 *addr, unsigned int length)
318{
319 int i, offset;
320 int newline = 1;
321 char ascii[17];
322
323 ascii[16] = 0;
324
325 for (i = 0; i < length; i++) {
326 if (newline) {
24922684 327 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
328 newline = 0;
329 }
06428780 330 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
331 offset = i % 16;
332 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
333 if (offset == 15) {
06428780 334 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
335 newline = 1;
336 }
337 }
338 if (!newline) {
339 i %= 16;
340 while (i < 16) {
06428780 341 printk(KERN_CONT " ");
81819f0f
CL
342 ascii[i] = ' ';
343 i++;
344 }
06428780 345 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
346 }
347}
348
81819f0f
CL
349static struct track *get_track(struct kmem_cache *s, void *object,
350 enum track_item alloc)
351{
352 struct track *p;
353
354 if (s->offset)
355 p = object + s->offset + sizeof(void *);
356 else
357 p = object + s->inuse;
358
359 return p + alloc;
360}
361
362static void set_track(struct kmem_cache *s, void *object,
ce71e27c 363 enum track_item alloc, unsigned long addr)
81819f0f 364{
1a00df4a 365 struct track *p = get_track(s, object, alloc);
81819f0f 366
81819f0f
CL
367 if (addr) {
368 p->addr = addr;
369 p->cpu = smp_processor_id();
88e4ccf2 370 p->pid = current->pid;
81819f0f
CL
371 p->when = jiffies;
372 } else
373 memset(p, 0, sizeof(struct track));
374}
375
81819f0f
CL
376static void init_tracking(struct kmem_cache *s, void *object)
377{
24922684
CL
378 if (!(s->flags & SLAB_STORE_USER))
379 return;
380
ce71e27c
EGM
381 set_track(s, object, TRACK_FREE, 0UL);
382 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
383}
384
385static void print_track(const char *s, struct track *t)
386{
387 if (!t->addr)
388 return;
389
7daf705f 390 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 391 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
392}
393
394static void print_tracking(struct kmem_cache *s, void *object)
395{
396 if (!(s->flags & SLAB_STORE_USER))
397 return;
398
399 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
400 print_track("Freed", get_track(s, object, TRACK_FREE));
401}
402
403static void print_page_info(struct page *page)
404{
39b26464
CL
405 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
406 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
407
408}
409
410static void slab_bug(struct kmem_cache *s, char *fmt, ...)
411{
412 va_list args;
413 char buf[100];
414
415 va_start(args, fmt);
416 vsnprintf(buf, sizeof(buf), fmt, args);
417 va_end(args);
418 printk(KERN_ERR "========================================"
419 "=====================================\n");
420 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
421 printk(KERN_ERR "----------------------------------------"
422 "-------------------------------------\n\n");
81819f0f
CL
423}
424
24922684
CL
425static void slab_fix(struct kmem_cache *s, char *fmt, ...)
426{
427 va_list args;
428 char buf[100];
429
430 va_start(args, fmt);
431 vsnprintf(buf, sizeof(buf), fmt, args);
432 va_end(args);
433 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
434}
435
436static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
437{
438 unsigned int off; /* Offset of last byte */
a973e9dd 439 u8 *addr = page_address(page);
24922684
CL
440
441 print_tracking(s, p);
442
443 print_page_info(page);
444
445 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
446 p, p - addr, get_freepointer(s, p));
447
448 if (p > addr + 16)
449 print_section("Bytes b4", p - 16, 16);
450
0ebd652b 451 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
452
453 if (s->flags & SLAB_RED_ZONE)
454 print_section("Redzone", p + s->objsize,
455 s->inuse - s->objsize);
456
81819f0f
CL
457 if (s->offset)
458 off = s->offset + sizeof(void *);
459 else
460 off = s->inuse;
461
24922684 462 if (s->flags & SLAB_STORE_USER)
81819f0f 463 off += 2 * sizeof(struct track);
81819f0f
CL
464
465 if (off != s->size)
466 /* Beginning of the filler is the free pointer */
24922684
CL
467 print_section("Padding", p + off, s->size - off);
468
469 dump_stack();
81819f0f
CL
470}
471
472static void object_err(struct kmem_cache *s, struct page *page,
473 u8 *object, char *reason)
474{
3dc50637 475 slab_bug(s, "%s", reason);
24922684 476 print_trailer(s, page, object);
81819f0f
CL
477}
478
24922684 479static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
480{
481 va_list args;
482 char buf[100];
483
24922684
CL
484 va_start(args, fmt);
485 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 486 va_end(args);
3dc50637 487 slab_bug(s, "%s", buf);
24922684 488 print_page_info(page);
81819f0f
CL
489 dump_stack();
490}
491
492static void init_object(struct kmem_cache *s, void *object, int active)
493{
494 u8 *p = object;
495
496 if (s->flags & __OBJECT_POISON) {
497 memset(p, POISON_FREE, s->objsize - 1);
06428780 498 p[s->objsize - 1] = POISON_END;
81819f0f
CL
499 }
500
501 if (s->flags & SLAB_RED_ZONE)
502 memset(p + s->objsize,
503 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
504 s->inuse - s->objsize);
505}
506
24922684 507static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
508{
509 while (bytes) {
510 if (*start != (u8)value)
24922684 511 return start;
81819f0f
CL
512 start++;
513 bytes--;
514 }
24922684
CL
515 return NULL;
516}
517
518static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
519 void *from, void *to)
520{
521 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
522 memset(from, data, to - from);
523}
524
525static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
526 u8 *object, char *what,
06428780 527 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
528{
529 u8 *fault;
530 u8 *end;
531
532 fault = check_bytes(start, value, bytes);
533 if (!fault)
534 return 1;
535
536 end = start + bytes;
537 while (end > fault && end[-1] == value)
538 end--;
539
540 slab_bug(s, "%s overwritten", what);
541 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
542 fault, end - 1, fault[0], value);
543 print_trailer(s, page, object);
544
545 restore_bytes(s, what, value, fault, end);
546 return 0;
81819f0f
CL
547}
548
81819f0f
CL
549/*
550 * Object layout:
551 *
552 * object address
553 * Bytes of the object to be managed.
554 * If the freepointer may overlay the object then the free
555 * pointer is the first word of the object.
672bba3a 556 *
81819f0f
CL
557 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
558 * 0xa5 (POISON_END)
559 *
560 * object + s->objsize
561 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
562 * Padding is extended by another word if Redzoning is enabled and
563 * objsize == inuse.
564 *
81819f0f
CL
565 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
566 * 0xcc (RED_ACTIVE) for objects in use.
567 *
568 * object + s->inuse
672bba3a
CL
569 * Meta data starts here.
570 *
81819f0f
CL
571 * A. Free pointer (if we cannot overwrite object on free)
572 * B. Tracking data for SLAB_STORE_USER
672bba3a 573 * C. Padding to reach required alignment boundary or at mininum
6446faa2 574 * one word if debugging is on to be able to detect writes
672bba3a
CL
575 * before the word boundary.
576 *
577 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
578 *
579 * object + s->size
672bba3a 580 * Nothing is used beyond s->size.
81819f0f 581 *
672bba3a
CL
582 * If slabcaches are merged then the objsize and inuse boundaries are mostly
583 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
584 * may be used with merged slabcaches.
585 */
586
81819f0f
CL
587static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
588{
589 unsigned long off = s->inuse; /* The end of info */
590
591 if (s->offset)
592 /* Freepointer is placed after the object. */
593 off += sizeof(void *);
594
595 if (s->flags & SLAB_STORE_USER)
596 /* We also have user information there */
597 off += 2 * sizeof(struct track);
598
599 if (s->size == off)
600 return 1;
601
24922684
CL
602 return check_bytes_and_report(s, page, p, "Object padding",
603 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
604}
605
39b26464 606/* Check the pad bytes at the end of a slab page */
81819f0f
CL
607static int slab_pad_check(struct kmem_cache *s, struct page *page)
608{
24922684
CL
609 u8 *start;
610 u8 *fault;
611 u8 *end;
612 int length;
613 int remainder;
81819f0f
CL
614
615 if (!(s->flags & SLAB_POISON))
616 return 1;
617
a973e9dd 618 start = page_address(page);
834f3d11 619 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
620 end = start + length;
621 remainder = length % s->size;
81819f0f
CL
622 if (!remainder)
623 return 1;
624
39b26464 625 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
626 if (!fault)
627 return 1;
628 while (end > fault && end[-1] == POISON_INUSE)
629 end--;
630
631 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 632 print_section("Padding", end - remainder, remainder);
24922684 633
8a3d271d 634 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 635 return 0;
81819f0f
CL
636}
637
638static int check_object(struct kmem_cache *s, struct page *page,
639 void *object, int active)
640{
641 u8 *p = object;
642 u8 *endobject = object + s->objsize;
643
644 if (s->flags & SLAB_RED_ZONE) {
645 unsigned int red =
646 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
647
24922684
CL
648 if (!check_bytes_and_report(s, page, object, "Redzone",
649 endobject, red, s->inuse - s->objsize))
81819f0f 650 return 0;
81819f0f 651 } else {
3adbefee
IM
652 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
653 check_bytes_and_report(s, page, p, "Alignment padding",
654 endobject, POISON_INUSE, s->inuse - s->objsize);
655 }
81819f0f
CL
656 }
657
658 if (s->flags & SLAB_POISON) {
659 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
660 (!check_bytes_and_report(s, page, p, "Poison", p,
661 POISON_FREE, s->objsize - 1) ||
662 !check_bytes_and_report(s, page, p, "Poison",
06428780 663 p + s->objsize - 1, POISON_END, 1)))
81819f0f 664 return 0;
81819f0f
CL
665 /*
666 * check_pad_bytes cleans up on its own.
667 */
668 check_pad_bytes(s, page, p);
669 }
670
671 if (!s->offset && active)
672 /*
673 * Object and freepointer overlap. Cannot check
674 * freepointer while object is allocated.
675 */
676 return 1;
677
678 /* Check free pointer validity */
679 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
680 object_err(s, page, p, "Freepointer corrupt");
681 /*
9f6c708e 682 * No choice but to zap it and thus lose the remainder
81819f0f 683 * of the free objects in this slab. May cause
672bba3a 684 * another error because the object count is now wrong.
81819f0f 685 */
a973e9dd 686 set_freepointer(s, p, NULL);
81819f0f
CL
687 return 0;
688 }
689 return 1;
690}
691
692static int check_slab(struct kmem_cache *s, struct page *page)
693{
39b26464
CL
694 int maxobj;
695
81819f0f
CL
696 VM_BUG_ON(!irqs_disabled());
697
698 if (!PageSlab(page)) {
24922684 699 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
700 return 0;
701 }
39b26464
CL
702
703 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
704 if (page->objects > maxobj) {
705 slab_err(s, page, "objects %u > max %u",
706 s->name, page->objects, maxobj);
707 return 0;
708 }
709 if (page->inuse > page->objects) {
24922684 710 slab_err(s, page, "inuse %u > max %u",
39b26464 711 s->name, page->inuse, page->objects);
81819f0f
CL
712 return 0;
713 }
714 /* Slab_pad_check fixes things up after itself */
715 slab_pad_check(s, page);
716 return 1;
717}
718
719/*
672bba3a
CL
720 * Determine if a certain object on a page is on the freelist. Must hold the
721 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
722 */
723static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
724{
725 int nr = 0;
726 void *fp = page->freelist;
727 void *object = NULL;
224a88be 728 unsigned long max_objects;
81819f0f 729
39b26464 730 while (fp && nr <= page->objects) {
81819f0f
CL
731 if (fp == search)
732 return 1;
733 if (!check_valid_pointer(s, page, fp)) {
734 if (object) {
735 object_err(s, page, object,
736 "Freechain corrupt");
a973e9dd 737 set_freepointer(s, object, NULL);
81819f0f
CL
738 break;
739 } else {
24922684 740 slab_err(s, page, "Freepointer corrupt");
a973e9dd 741 page->freelist = NULL;
39b26464 742 page->inuse = page->objects;
24922684 743 slab_fix(s, "Freelist cleared");
81819f0f
CL
744 return 0;
745 }
746 break;
747 }
748 object = fp;
749 fp = get_freepointer(s, object);
750 nr++;
751 }
752
224a88be 753 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
754 if (max_objects > MAX_OBJS_PER_PAGE)
755 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
756
757 if (page->objects != max_objects) {
758 slab_err(s, page, "Wrong number of objects. Found %d but "
759 "should be %d", page->objects, max_objects);
760 page->objects = max_objects;
761 slab_fix(s, "Number of objects adjusted.");
762 }
39b26464 763 if (page->inuse != page->objects - nr) {
70d71228 764 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
765 "counted were %d", page->inuse, page->objects - nr);
766 page->inuse = page->objects - nr;
24922684 767 slab_fix(s, "Object count adjusted.");
81819f0f
CL
768 }
769 return search == NULL;
770}
771
0121c619
CL
772static void trace(struct kmem_cache *s, struct page *page, void *object,
773 int alloc)
3ec09742
CL
774{
775 if (s->flags & SLAB_TRACE) {
776 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
777 s->name,
778 alloc ? "alloc" : "free",
779 object, page->inuse,
780 page->freelist);
781
782 if (!alloc)
783 print_section("Object", (void *)object, s->objsize);
784
785 dump_stack();
786 }
787}
788
643b1138 789/*
672bba3a 790 * Tracking of fully allocated slabs for debugging purposes.
643b1138 791 */
e95eed57 792static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 793{
643b1138
CL
794 spin_lock(&n->list_lock);
795 list_add(&page->lru, &n->full);
796 spin_unlock(&n->list_lock);
797}
798
799static void remove_full(struct kmem_cache *s, struct page *page)
800{
801 struct kmem_cache_node *n;
802
803 if (!(s->flags & SLAB_STORE_USER))
804 return;
805
806 n = get_node(s, page_to_nid(page));
807
808 spin_lock(&n->list_lock);
809 list_del(&page->lru);
810 spin_unlock(&n->list_lock);
811}
812
0f389ec6
CL
813/* Tracking of the number of slabs for debugging purposes */
814static inline unsigned long slabs_node(struct kmem_cache *s, int node)
815{
816 struct kmem_cache_node *n = get_node(s, node);
817
818 return atomic_long_read(&n->nr_slabs);
819}
820
26c02cf0
AB
821static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
822{
823 return atomic_long_read(&n->nr_slabs);
824}
825
205ab99d 826static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
827{
828 struct kmem_cache_node *n = get_node(s, node);
829
830 /*
831 * May be called early in order to allocate a slab for the
832 * kmem_cache_node structure. Solve the chicken-egg
833 * dilemma by deferring the increment of the count during
834 * bootstrap (see early_kmem_cache_node_alloc).
835 */
205ab99d 836 if (!NUMA_BUILD || n) {
0f389ec6 837 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
838 atomic_long_add(objects, &n->total_objects);
839 }
0f389ec6 840}
205ab99d 841static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
842{
843 struct kmem_cache_node *n = get_node(s, node);
844
845 atomic_long_dec(&n->nr_slabs);
205ab99d 846 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
847}
848
849/* Object debug checks for alloc/free paths */
3ec09742
CL
850static void setup_object_debug(struct kmem_cache *s, struct page *page,
851 void *object)
852{
853 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
854 return;
855
856 init_object(s, object, 0);
857 init_tracking(s, object);
858}
859
860static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 861 void *object, unsigned long addr)
81819f0f
CL
862{
863 if (!check_slab(s, page))
864 goto bad;
865
d692ef6d 866 if (!on_freelist(s, page, object)) {
24922684 867 object_err(s, page, object, "Object already allocated");
70d71228 868 goto bad;
81819f0f
CL
869 }
870
871 if (!check_valid_pointer(s, page, object)) {
872 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 873 goto bad;
81819f0f
CL
874 }
875
d692ef6d 876 if (!check_object(s, page, object, 0))
81819f0f 877 goto bad;
81819f0f 878
3ec09742
CL
879 /* Success perform special debug activities for allocs */
880 if (s->flags & SLAB_STORE_USER)
881 set_track(s, object, TRACK_ALLOC, addr);
882 trace(s, page, object, 1);
883 init_object(s, object, 1);
81819f0f 884 return 1;
3ec09742 885
81819f0f
CL
886bad:
887 if (PageSlab(page)) {
888 /*
889 * If this is a slab page then lets do the best we can
890 * to avoid issues in the future. Marking all objects
672bba3a 891 * as used avoids touching the remaining objects.
81819f0f 892 */
24922684 893 slab_fix(s, "Marking all objects used");
39b26464 894 page->inuse = page->objects;
a973e9dd 895 page->freelist = NULL;
81819f0f
CL
896 }
897 return 0;
898}
899
3ec09742 900static int free_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 901 void *object, unsigned long addr)
81819f0f
CL
902{
903 if (!check_slab(s, page))
904 goto fail;
905
906 if (!check_valid_pointer(s, page, object)) {
70d71228 907 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
908 goto fail;
909 }
910
911 if (on_freelist(s, page, object)) {
24922684 912 object_err(s, page, object, "Object already free");
81819f0f
CL
913 goto fail;
914 }
915
916 if (!check_object(s, page, object, 1))
917 return 0;
918
919 if (unlikely(s != page->slab)) {
3adbefee 920 if (!PageSlab(page)) {
70d71228
CL
921 slab_err(s, page, "Attempt to free object(0x%p) "
922 "outside of slab", object);
3adbefee 923 } else if (!page->slab) {
81819f0f 924 printk(KERN_ERR
70d71228 925 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 926 object);
70d71228 927 dump_stack();
06428780 928 } else
24922684
CL
929 object_err(s, page, object,
930 "page slab pointer corrupt.");
81819f0f
CL
931 goto fail;
932 }
3ec09742
CL
933
934 /* Special debug activities for freeing objects */
8a38082d 935 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
936 remove_full(s, page);
937 if (s->flags & SLAB_STORE_USER)
938 set_track(s, object, TRACK_FREE, addr);
939 trace(s, page, object, 0);
940 init_object(s, object, 0);
81819f0f 941 return 1;
3ec09742 942
81819f0f 943fail:
24922684 944 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
945 return 0;
946}
947
41ecc55b
CL
948static int __init setup_slub_debug(char *str)
949{
f0630fff
CL
950 slub_debug = DEBUG_DEFAULT_FLAGS;
951 if (*str++ != '=' || !*str)
952 /*
953 * No options specified. Switch on full debugging.
954 */
955 goto out;
956
957 if (*str == ',')
958 /*
959 * No options but restriction on slabs. This means full
960 * debugging for slabs matching a pattern.
961 */
962 goto check_slabs;
963
fa5ec8a1
DR
964 if (tolower(*str) == 'o') {
965 /*
966 * Avoid enabling debugging on caches if its minimum order
967 * would increase as a result.
968 */
969 disable_higher_order_debug = 1;
970 goto out;
971 }
972
f0630fff
CL
973 slub_debug = 0;
974 if (*str == '-')
975 /*
976 * Switch off all debugging measures.
977 */
978 goto out;
979
980 /*
981 * Determine which debug features should be switched on
982 */
06428780 983 for (; *str && *str != ','; str++) {
f0630fff
CL
984 switch (tolower(*str)) {
985 case 'f':
986 slub_debug |= SLAB_DEBUG_FREE;
987 break;
988 case 'z':
989 slub_debug |= SLAB_RED_ZONE;
990 break;
991 case 'p':
992 slub_debug |= SLAB_POISON;
993 break;
994 case 'u':
995 slub_debug |= SLAB_STORE_USER;
996 break;
997 case 't':
998 slub_debug |= SLAB_TRACE;
999 break;
4c13dd3b
DM
1000 case 'a':
1001 slub_debug |= SLAB_FAILSLAB;
1002 break;
f0630fff
CL
1003 default:
1004 printk(KERN_ERR "slub_debug option '%c' "
06428780 1005 "unknown. skipped\n", *str);
f0630fff 1006 }
41ecc55b
CL
1007 }
1008
f0630fff 1009check_slabs:
41ecc55b
CL
1010 if (*str == ',')
1011 slub_debug_slabs = str + 1;
f0630fff 1012out:
41ecc55b
CL
1013 return 1;
1014}
1015
1016__setup("slub_debug", setup_slub_debug);
1017
ba0268a8
CL
1018static unsigned long kmem_cache_flags(unsigned long objsize,
1019 unsigned long flags, const char *name,
51cc5068 1020 void (*ctor)(void *))
41ecc55b
CL
1021{
1022 /*
e153362a 1023 * Enable debugging if selected on the kernel commandline.
41ecc55b 1024 */
e153362a 1025 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1026 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1027 flags |= slub_debug;
ba0268a8
CL
1028
1029 return flags;
41ecc55b
CL
1030}
1031#else
3ec09742
CL
1032static inline void setup_object_debug(struct kmem_cache *s,
1033 struct page *page, void *object) {}
41ecc55b 1034
3ec09742 1035static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1036 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1037
3ec09742 1038static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1039 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1040
41ecc55b
CL
1041static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1042 { return 1; }
1043static inline int check_object(struct kmem_cache *s, struct page *page,
1044 void *object, int active) { return 1; }
3ec09742 1045static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1046static inline unsigned long kmem_cache_flags(unsigned long objsize,
1047 unsigned long flags, const char *name,
51cc5068 1048 void (*ctor)(void *))
ba0268a8
CL
1049{
1050 return flags;
1051}
41ecc55b 1052#define slub_debug 0
0f389ec6 1053
fdaa45e9
IM
1054#define disable_higher_order_debug 0
1055
0f389ec6
CL
1056static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1057 { return 0; }
26c02cf0
AB
1058static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1059 { return 0; }
205ab99d
CL
1060static inline void inc_slabs_node(struct kmem_cache *s, int node,
1061 int objects) {}
1062static inline void dec_slabs_node(struct kmem_cache *s, int node,
1063 int objects) {}
41ecc55b 1064#endif
205ab99d 1065
81819f0f
CL
1066/*
1067 * Slab allocation and freeing
1068 */
65c3376a
CL
1069static inline struct page *alloc_slab_page(gfp_t flags, int node,
1070 struct kmem_cache_order_objects oo)
1071{
1072 int order = oo_order(oo);
1073
b1eeab67
VN
1074 flags |= __GFP_NOTRACK;
1075
65c3376a
CL
1076 if (node == -1)
1077 return alloc_pages(flags, order);
1078 else
6b65aaf3 1079 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1080}
1081
81819f0f
CL
1082static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1083{
06428780 1084 struct page *page;
834f3d11 1085 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1086 gfp_t alloc_gfp;
81819f0f 1087
b7a49f0d 1088 flags |= s->allocflags;
e12ba74d 1089
ba52270d
PE
1090 /*
1091 * Let the initial higher-order allocation fail under memory pressure
1092 * so we fall-back to the minimum order allocation.
1093 */
1094 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1095
1096 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1097 if (unlikely(!page)) {
1098 oo = s->min;
1099 /*
1100 * Allocation may have failed due to fragmentation.
1101 * Try a lower order alloc if possible
1102 */
1103 page = alloc_slab_page(flags, node, oo);
1104 if (!page)
1105 return NULL;
81819f0f 1106
84e554e6 1107 stat(s, ORDER_FALLBACK);
65c3376a 1108 }
5a896d9e
VN
1109
1110 if (kmemcheck_enabled
5086c389 1111 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1112 int pages = 1 << oo_order(oo);
1113
1114 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1115
1116 /*
1117 * Objects from caches that have a constructor don't get
1118 * cleared when they're allocated, so we need to do it here.
1119 */
1120 if (s->ctor)
1121 kmemcheck_mark_uninitialized_pages(page, pages);
1122 else
1123 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1124 }
1125
834f3d11 1126 page->objects = oo_objects(oo);
81819f0f
CL
1127 mod_zone_page_state(page_zone(page),
1128 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1129 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1130 1 << oo_order(oo));
81819f0f
CL
1131
1132 return page;
1133}
1134
1135static void setup_object(struct kmem_cache *s, struct page *page,
1136 void *object)
1137{
3ec09742 1138 setup_object_debug(s, page, object);
4f104934 1139 if (unlikely(s->ctor))
51cc5068 1140 s->ctor(object);
81819f0f
CL
1141}
1142
1143static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1144{
1145 struct page *page;
81819f0f 1146 void *start;
81819f0f
CL
1147 void *last;
1148 void *p;
1149
6cb06229 1150 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1151
6cb06229
CL
1152 page = allocate_slab(s,
1153 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1154 if (!page)
1155 goto out;
1156
205ab99d 1157 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1158 page->slab = s;
1159 page->flags |= 1 << PG_slab;
1160 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1161 SLAB_STORE_USER | SLAB_TRACE))
8a38082d 1162 __SetPageSlubDebug(page);
81819f0f
CL
1163
1164 start = page_address(page);
81819f0f
CL
1165
1166 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1167 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1168
1169 last = start;
224a88be 1170 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1171 setup_object(s, page, last);
1172 set_freepointer(s, last, p);
1173 last = p;
1174 }
1175 setup_object(s, page, last);
a973e9dd 1176 set_freepointer(s, last, NULL);
81819f0f
CL
1177
1178 page->freelist = start;
1179 page->inuse = 0;
1180out:
81819f0f
CL
1181 return page;
1182}
1183
1184static void __free_slab(struct kmem_cache *s, struct page *page)
1185{
834f3d11
CL
1186 int order = compound_order(page);
1187 int pages = 1 << order;
81819f0f 1188
8a38082d 1189 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
81819f0f
CL
1190 void *p;
1191
1192 slab_pad_check(s, page);
224a88be
CL
1193 for_each_object(p, s, page_address(page),
1194 page->objects)
81819f0f 1195 check_object(s, page, p, 0);
8a38082d 1196 __ClearPageSlubDebug(page);
81819f0f
CL
1197 }
1198
b1eeab67 1199 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1200
81819f0f
CL
1201 mod_zone_page_state(page_zone(page),
1202 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1203 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1204 -pages);
81819f0f 1205
49bd5221
CL
1206 __ClearPageSlab(page);
1207 reset_page_mapcount(page);
1eb5ac64
NP
1208 if (current->reclaim_state)
1209 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1210 __free_pages(page, order);
81819f0f
CL
1211}
1212
1213static void rcu_free_slab(struct rcu_head *h)
1214{
1215 struct page *page;
1216
1217 page = container_of((struct list_head *)h, struct page, lru);
1218 __free_slab(page->slab, page);
1219}
1220
1221static void free_slab(struct kmem_cache *s, struct page *page)
1222{
1223 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1224 /*
1225 * RCU free overloads the RCU head over the LRU
1226 */
1227 struct rcu_head *head = (void *)&page->lru;
1228
1229 call_rcu(head, rcu_free_slab);
1230 } else
1231 __free_slab(s, page);
1232}
1233
1234static void discard_slab(struct kmem_cache *s, struct page *page)
1235{
205ab99d 1236 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1237 free_slab(s, page);
1238}
1239
1240/*
1241 * Per slab locking using the pagelock
1242 */
1243static __always_inline void slab_lock(struct page *page)
1244{
1245 bit_spin_lock(PG_locked, &page->flags);
1246}
1247
1248static __always_inline void slab_unlock(struct page *page)
1249{
a76d3546 1250 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1251}
1252
1253static __always_inline int slab_trylock(struct page *page)
1254{
1255 int rc = 1;
1256
1257 rc = bit_spin_trylock(PG_locked, &page->flags);
1258 return rc;
1259}
1260
1261/*
1262 * Management of partially allocated slabs
1263 */
7c2e132c
CL
1264static void add_partial(struct kmem_cache_node *n,
1265 struct page *page, int tail)
81819f0f 1266{
e95eed57
CL
1267 spin_lock(&n->list_lock);
1268 n->nr_partial++;
7c2e132c
CL
1269 if (tail)
1270 list_add_tail(&page->lru, &n->partial);
1271 else
1272 list_add(&page->lru, &n->partial);
81819f0f
CL
1273 spin_unlock(&n->list_lock);
1274}
1275
0121c619 1276static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1277{
1278 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1279
1280 spin_lock(&n->list_lock);
1281 list_del(&page->lru);
1282 n->nr_partial--;
1283 spin_unlock(&n->list_lock);
1284}
1285
1286/*
672bba3a 1287 * Lock slab and remove from the partial list.
81819f0f 1288 *
672bba3a 1289 * Must hold list_lock.
81819f0f 1290 */
0121c619
CL
1291static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1292 struct page *page)
81819f0f
CL
1293{
1294 if (slab_trylock(page)) {
1295 list_del(&page->lru);
1296 n->nr_partial--;
8a38082d 1297 __SetPageSlubFrozen(page);
81819f0f
CL
1298 return 1;
1299 }
1300 return 0;
1301}
1302
1303/*
672bba3a 1304 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1305 */
1306static struct page *get_partial_node(struct kmem_cache_node *n)
1307{
1308 struct page *page;
1309
1310 /*
1311 * Racy check. If we mistakenly see no partial slabs then we
1312 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1313 * partial slab and there is none available then get_partials()
1314 * will return NULL.
81819f0f
CL
1315 */
1316 if (!n || !n->nr_partial)
1317 return NULL;
1318
1319 spin_lock(&n->list_lock);
1320 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1321 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1322 goto out;
1323 page = NULL;
1324out:
1325 spin_unlock(&n->list_lock);
1326 return page;
1327}
1328
1329/*
672bba3a 1330 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1331 */
1332static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1333{
1334#ifdef CONFIG_NUMA
1335 struct zonelist *zonelist;
dd1a239f 1336 struct zoneref *z;
54a6eb5c
MG
1337 struct zone *zone;
1338 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1339 struct page *page;
1340
1341 /*
672bba3a
CL
1342 * The defrag ratio allows a configuration of the tradeoffs between
1343 * inter node defragmentation and node local allocations. A lower
1344 * defrag_ratio increases the tendency to do local allocations
1345 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1346 *
672bba3a
CL
1347 * If the defrag_ratio is set to 0 then kmalloc() always
1348 * returns node local objects. If the ratio is higher then kmalloc()
1349 * may return off node objects because partial slabs are obtained
1350 * from other nodes and filled up.
81819f0f 1351 *
6446faa2 1352 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1353 * defrag_ratio = 1000) then every (well almost) allocation will
1354 * first attempt to defrag slab caches on other nodes. This means
1355 * scanning over all nodes to look for partial slabs which may be
1356 * expensive if we do it every time we are trying to find a slab
1357 * with available objects.
81819f0f 1358 */
9824601e
CL
1359 if (!s->remote_node_defrag_ratio ||
1360 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1361 return NULL;
1362
0e88460d 1363 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1364 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1365 struct kmem_cache_node *n;
1366
54a6eb5c 1367 n = get_node(s, zone_to_nid(zone));
81819f0f 1368
54a6eb5c 1369 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1370 n->nr_partial > s->min_partial) {
81819f0f
CL
1371 page = get_partial_node(n);
1372 if (page)
1373 return page;
1374 }
1375 }
1376#endif
1377 return NULL;
1378}
1379
1380/*
1381 * Get a partial page, lock it and return it.
1382 */
1383static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1384{
1385 struct page *page;
1386 int searchnode = (node == -1) ? numa_node_id() : node;
1387
1388 page = get_partial_node(get_node(s, searchnode));
1389 if (page || (flags & __GFP_THISNODE))
1390 return page;
1391
1392 return get_any_partial(s, flags);
1393}
1394
1395/*
1396 * Move a page back to the lists.
1397 *
1398 * Must be called with the slab lock held.
1399 *
1400 * On exit the slab lock will have been dropped.
1401 */
7c2e132c 1402static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1403{
e95eed57
CL
1404 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1405
8a38082d 1406 __ClearPageSlubFrozen(page);
81819f0f 1407 if (page->inuse) {
e95eed57 1408
a973e9dd 1409 if (page->freelist) {
7c2e132c 1410 add_partial(n, page, tail);
84e554e6 1411 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1412 } else {
84e554e6 1413 stat(s, DEACTIVATE_FULL);
8a38082d
AW
1414 if (SLABDEBUG && PageSlubDebug(page) &&
1415 (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1416 add_full(n, page);
1417 }
81819f0f
CL
1418 slab_unlock(page);
1419 } else {
84e554e6 1420 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1421 if (n->nr_partial < s->min_partial) {
e95eed57 1422 /*
672bba3a
CL
1423 * Adding an empty slab to the partial slabs in order
1424 * to avoid page allocator overhead. This slab needs
1425 * to come after the other slabs with objects in
6446faa2
CL
1426 * so that the others get filled first. That way the
1427 * size of the partial list stays small.
1428 *
0121c619
CL
1429 * kmem_cache_shrink can reclaim any empty slabs from
1430 * the partial list.
e95eed57 1431 */
7c2e132c 1432 add_partial(n, page, 1);
e95eed57
CL
1433 slab_unlock(page);
1434 } else {
1435 slab_unlock(page);
84e554e6 1436 stat(s, FREE_SLAB);
e95eed57
CL
1437 discard_slab(s, page);
1438 }
81819f0f
CL
1439 }
1440}
1441
1442/*
1443 * Remove the cpu slab
1444 */
dfb4f096 1445static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1446{
dfb4f096 1447 struct page *page = c->page;
7c2e132c 1448 int tail = 1;
8ff12cfc 1449
b773ad73 1450 if (page->freelist)
84e554e6 1451 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1452 /*
6446faa2 1453 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1454 * because both freelists are empty. So this is unlikely
1455 * to occur.
1456 */
a973e9dd 1457 while (unlikely(c->freelist)) {
894b8788
CL
1458 void **object;
1459
7c2e132c
CL
1460 tail = 0; /* Hot objects. Put the slab first */
1461
894b8788 1462 /* Retrieve object from cpu_freelist */
dfb4f096 1463 object = c->freelist;
ff12059e 1464 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1465
1466 /* And put onto the regular freelist */
ff12059e 1467 set_freepointer(s, object, page->freelist);
894b8788
CL
1468 page->freelist = object;
1469 page->inuse--;
1470 }
dfb4f096 1471 c->page = NULL;
7c2e132c 1472 unfreeze_slab(s, page, tail);
81819f0f
CL
1473}
1474
dfb4f096 1475static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1476{
84e554e6 1477 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1478 slab_lock(c->page);
1479 deactivate_slab(s, c);
81819f0f
CL
1480}
1481
1482/*
1483 * Flush cpu slab.
6446faa2 1484 *
81819f0f
CL
1485 * Called from IPI handler with interrupts disabled.
1486 */
0c710013 1487static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1488{
9dfc6e68 1489 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1490
dfb4f096
CL
1491 if (likely(c && c->page))
1492 flush_slab(s, c);
81819f0f
CL
1493}
1494
1495static void flush_cpu_slab(void *d)
1496{
1497 struct kmem_cache *s = d;
81819f0f 1498
dfb4f096 1499 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1500}
1501
1502static void flush_all(struct kmem_cache *s)
1503{
15c8b6c1 1504 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1505}
1506
dfb4f096
CL
1507/*
1508 * Check if the objects in a per cpu structure fit numa
1509 * locality expectations.
1510 */
1511static inline int node_match(struct kmem_cache_cpu *c, int node)
1512{
1513#ifdef CONFIG_NUMA
1514 if (node != -1 && c->node != node)
1515 return 0;
1516#endif
1517 return 1;
1518}
1519
781b2ba6
PE
1520static int count_free(struct page *page)
1521{
1522 return page->objects - page->inuse;
1523}
1524
1525static unsigned long count_partial(struct kmem_cache_node *n,
1526 int (*get_count)(struct page *))
1527{
1528 unsigned long flags;
1529 unsigned long x = 0;
1530 struct page *page;
1531
1532 spin_lock_irqsave(&n->list_lock, flags);
1533 list_for_each_entry(page, &n->partial, lru)
1534 x += get_count(page);
1535 spin_unlock_irqrestore(&n->list_lock, flags);
1536 return x;
1537}
1538
26c02cf0
AB
1539static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1540{
1541#ifdef CONFIG_SLUB_DEBUG
1542 return atomic_long_read(&n->total_objects);
1543#else
1544 return 0;
1545#endif
1546}
1547
781b2ba6
PE
1548static noinline void
1549slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1550{
1551 int node;
1552
1553 printk(KERN_WARNING
1554 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1555 nid, gfpflags);
1556 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1557 "default order: %d, min order: %d\n", s->name, s->objsize,
1558 s->size, oo_order(s->oo), oo_order(s->min));
1559
fa5ec8a1
DR
1560 if (oo_order(s->min) > get_order(s->objsize))
1561 printk(KERN_WARNING " %s debugging increased min order, use "
1562 "slub_debug=O to disable.\n", s->name);
1563
781b2ba6
PE
1564 for_each_online_node(node) {
1565 struct kmem_cache_node *n = get_node(s, node);
1566 unsigned long nr_slabs;
1567 unsigned long nr_objs;
1568 unsigned long nr_free;
1569
1570 if (!n)
1571 continue;
1572
26c02cf0
AB
1573 nr_free = count_partial(n, count_free);
1574 nr_slabs = node_nr_slabs(n);
1575 nr_objs = node_nr_objs(n);
781b2ba6
PE
1576
1577 printk(KERN_WARNING
1578 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1579 node, nr_slabs, nr_objs, nr_free);
1580 }
1581}
1582
81819f0f 1583/*
894b8788
CL
1584 * Slow path. The lockless freelist is empty or we need to perform
1585 * debugging duties.
1586 *
1587 * Interrupts are disabled.
81819f0f 1588 *
894b8788
CL
1589 * Processing is still very fast if new objects have been freed to the
1590 * regular freelist. In that case we simply take over the regular freelist
1591 * as the lockless freelist and zap the regular freelist.
81819f0f 1592 *
894b8788
CL
1593 * If that is not working then we fall back to the partial lists. We take the
1594 * first element of the freelist as the object to allocate now and move the
1595 * rest of the freelist to the lockless freelist.
81819f0f 1596 *
894b8788 1597 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1598 * we need to allocate a new slab. This is the slowest path since it involves
1599 * a call to the page allocator and the setup of a new slab.
81819f0f 1600 */
ce71e27c
EGM
1601static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1602 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1603{
81819f0f 1604 void **object;
dfb4f096 1605 struct page *new;
81819f0f 1606
e72e9c23
LT
1607 /* We handle __GFP_ZERO in the caller */
1608 gfpflags &= ~__GFP_ZERO;
1609
dfb4f096 1610 if (!c->page)
81819f0f
CL
1611 goto new_slab;
1612
dfb4f096
CL
1613 slab_lock(c->page);
1614 if (unlikely(!node_match(c, node)))
81819f0f 1615 goto another_slab;
6446faa2 1616
84e554e6 1617 stat(s, ALLOC_REFILL);
6446faa2 1618
894b8788 1619load_freelist:
dfb4f096 1620 object = c->page->freelist;
a973e9dd 1621 if (unlikely(!object))
81819f0f 1622 goto another_slab;
8a38082d 1623 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
81819f0f
CL
1624 goto debug;
1625
ff12059e 1626 c->freelist = get_freepointer(s, object);
39b26464 1627 c->page->inuse = c->page->objects;
a973e9dd 1628 c->page->freelist = NULL;
dfb4f096 1629 c->node = page_to_nid(c->page);
1f84260c 1630unlock_out:
dfb4f096 1631 slab_unlock(c->page);
84e554e6 1632 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1633 return object;
1634
1635another_slab:
dfb4f096 1636 deactivate_slab(s, c);
81819f0f
CL
1637
1638new_slab:
dfb4f096
CL
1639 new = get_partial(s, gfpflags, node);
1640 if (new) {
1641 c->page = new;
84e554e6 1642 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1643 goto load_freelist;
81819f0f
CL
1644 }
1645
b811c202
CL
1646 if (gfpflags & __GFP_WAIT)
1647 local_irq_enable();
1648
dfb4f096 1649 new = new_slab(s, gfpflags, node);
b811c202
CL
1650
1651 if (gfpflags & __GFP_WAIT)
1652 local_irq_disable();
1653
dfb4f096 1654 if (new) {
9dfc6e68 1655 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1656 stat(s, ALLOC_SLAB);
05aa3450 1657 if (c->page)
dfb4f096 1658 flush_slab(s, c);
dfb4f096 1659 slab_lock(new);
8a38082d 1660 __SetPageSlubFrozen(new);
dfb4f096 1661 c->page = new;
4b6f0750 1662 goto load_freelist;
81819f0f 1663 }
95f85989
PE
1664 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1665 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1666 return NULL;
81819f0f 1667debug:
dfb4f096 1668 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1669 goto another_slab;
894b8788 1670
dfb4f096 1671 c->page->inuse++;
ff12059e 1672 c->page->freelist = get_freepointer(s, object);
ee3c72a1 1673 c->node = -1;
1f84260c 1674 goto unlock_out;
894b8788
CL
1675}
1676
1677/*
1678 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1679 * have the fastpath folded into their functions. So no function call
1680 * overhead for requests that can be satisfied on the fastpath.
1681 *
1682 * The fastpath works by first checking if the lockless freelist can be used.
1683 * If not then __slab_alloc is called for slow processing.
1684 *
1685 * Otherwise we can simply pick the next object from the lockless free list.
1686 */
06428780 1687static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1688 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1689{
894b8788 1690 void **object;
dfb4f096 1691 struct kmem_cache_cpu *c;
1f84260c
CL
1692 unsigned long flags;
1693
dcce284a 1694 gfpflags &= gfp_allowed_mask;
7e85ee0c 1695
cf40bd16 1696 lockdep_trace_alloc(gfpflags);
89124d70 1697 might_sleep_if(gfpflags & __GFP_WAIT);
3c506efd 1698
4c13dd3b 1699 if (should_failslab(s->objsize, gfpflags, s->flags))
773ff60e 1700 return NULL;
1f84260c 1701
894b8788 1702 local_irq_save(flags);
9dfc6e68
CL
1703 c = __this_cpu_ptr(s->cpu_slab);
1704 object = c->freelist;
9dfc6e68 1705 if (unlikely(!object || !node_match(c, node)))
894b8788 1706
dfb4f096 1707 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1708
1709 else {
ff12059e 1710 c->freelist = get_freepointer(s, object);
84e554e6 1711 stat(s, ALLOC_FASTPATH);
894b8788
CL
1712 }
1713 local_irq_restore(flags);
d07dbea4 1714
74e2134f 1715 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1716 memset(object, 0, s->objsize);
d07dbea4 1717
ff12059e
CL
1718 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1719 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
5a896d9e 1720
894b8788 1721 return object;
81819f0f
CL
1722}
1723
1724void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1725{
5b882be4
EGM
1726 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1727
ca2b84cb 1728 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1729
1730 return ret;
81819f0f
CL
1731}
1732EXPORT_SYMBOL(kmem_cache_alloc);
1733
0f24f128 1734#ifdef CONFIG_TRACING
5b882be4
EGM
1735void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1736{
1737 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1738}
1739EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1740#endif
1741
81819f0f
CL
1742#ifdef CONFIG_NUMA
1743void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1744{
5b882be4
EGM
1745 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1746
ca2b84cb
EGM
1747 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1748 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1749
1750 return ret;
81819f0f
CL
1751}
1752EXPORT_SYMBOL(kmem_cache_alloc_node);
1753#endif
1754
0f24f128 1755#ifdef CONFIG_TRACING
5b882be4
EGM
1756void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1757 gfp_t gfpflags,
1758 int node)
1759{
1760 return slab_alloc(s, gfpflags, node, _RET_IP_);
1761}
1762EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1763#endif
1764
81819f0f 1765/*
894b8788
CL
1766 * Slow patch handling. This may still be called frequently since objects
1767 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1768 *
894b8788
CL
1769 * So we still attempt to reduce cache line usage. Just take the slab
1770 * lock and free the item. If there is no additional partial page
1771 * handling required then we can return immediately.
81819f0f 1772 */
894b8788 1773static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 1774 void *x, unsigned long addr)
81819f0f
CL
1775{
1776 void *prior;
1777 void **object = (void *)x;
81819f0f 1778
84e554e6 1779 stat(s, FREE_SLOWPATH);
81819f0f
CL
1780 slab_lock(page);
1781
8a38082d 1782 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
81819f0f 1783 goto debug;
6446faa2 1784
81819f0f 1785checks_ok:
ff12059e
CL
1786 prior = page->freelist;
1787 set_freepointer(s, object, prior);
81819f0f
CL
1788 page->freelist = object;
1789 page->inuse--;
1790
8a38082d 1791 if (unlikely(PageSlubFrozen(page))) {
84e554e6 1792 stat(s, FREE_FROZEN);
81819f0f 1793 goto out_unlock;
8ff12cfc 1794 }
81819f0f
CL
1795
1796 if (unlikely(!page->inuse))
1797 goto slab_empty;
1798
1799 /*
6446faa2 1800 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1801 * then add it.
1802 */
a973e9dd 1803 if (unlikely(!prior)) {
7c2e132c 1804 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 1805 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 1806 }
81819f0f
CL
1807
1808out_unlock:
1809 slab_unlock(page);
81819f0f
CL
1810 return;
1811
1812slab_empty:
a973e9dd 1813 if (prior) {
81819f0f 1814 /*
672bba3a 1815 * Slab still on the partial list.
81819f0f
CL
1816 */
1817 remove_partial(s, page);
84e554e6 1818 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 1819 }
81819f0f 1820 slab_unlock(page);
84e554e6 1821 stat(s, FREE_SLAB);
81819f0f 1822 discard_slab(s, page);
81819f0f
CL
1823 return;
1824
1825debug:
3ec09742 1826 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1827 goto out_unlock;
77c5e2d0 1828 goto checks_ok;
81819f0f
CL
1829}
1830
894b8788
CL
1831/*
1832 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1833 * can perform fastpath freeing without additional function calls.
1834 *
1835 * The fastpath is only possible if we are freeing to the current cpu slab
1836 * of this processor. This typically the case if we have just allocated
1837 * the item before.
1838 *
1839 * If fastpath is not possible then fall back to __slab_free where we deal
1840 * with all sorts of special processing.
1841 */
06428780 1842static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1843 struct page *page, void *x, unsigned long addr)
894b8788
CL
1844{
1845 void **object = (void *)x;
dfb4f096 1846 struct kmem_cache_cpu *c;
1f84260c
CL
1847 unsigned long flags;
1848
06f22f13 1849 kmemleak_free_recursive(x, s->flags);
894b8788 1850 local_irq_save(flags);
9dfc6e68 1851 c = __this_cpu_ptr(s->cpu_slab);
ff12059e
CL
1852 kmemcheck_slab_free(s, object, s->objsize);
1853 debug_check_no_locks_freed(object, s->objsize);
3ac7fe5a 1854 if (!(s->flags & SLAB_DEBUG_OBJECTS))
ff12059e 1855 debug_check_no_obj_freed(object, s->objsize);
ee3c72a1 1856 if (likely(page == c->page && c->node >= 0)) {
ff12059e 1857 set_freepointer(s, object, c->freelist);
dfb4f096 1858 c->freelist = object;
84e554e6 1859 stat(s, FREE_FASTPATH);
894b8788 1860 } else
ff12059e 1861 __slab_free(s, page, x, addr);
894b8788
CL
1862
1863 local_irq_restore(flags);
1864}
1865
81819f0f
CL
1866void kmem_cache_free(struct kmem_cache *s, void *x)
1867{
77c5e2d0 1868 struct page *page;
81819f0f 1869
b49af68f 1870 page = virt_to_head_page(x);
81819f0f 1871
ce71e27c 1872 slab_free(s, page, x, _RET_IP_);
5b882be4 1873
ca2b84cb 1874 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1875}
1876EXPORT_SYMBOL(kmem_cache_free);
1877
e9beef18 1878/* Figure out on which slab page the object resides */
81819f0f
CL
1879static struct page *get_object_page(const void *x)
1880{
b49af68f 1881 struct page *page = virt_to_head_page(x);
81819f0f
CL
1882
1883 if (!PageSlab(page))
1884 return NULL;
1885
1886 return page;
1887}
1888
1889/*
672bba3a
CL
1890 * Object placement in a slab is made very easy because we always start at
1891 * offset 0. If we tune the size of the object to the alignment then we can
1892 * get the required alignment by putting one properly sized object after
1893 * another.
81819f0f
CL
1894 *
1895 * Notice that the allocation order determines the sizes of the per cpu
1896 * caches. Each processor has always one slab available for allocations.
1897 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1898 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1899 * locking overhead.
81819f0f
CL
1900 */
1901
1902/*
1903 * Mininum / Maximum order of slab pages. This influences locking overhead
1904 * and slab fragmentation. A higher order reduces the number of partial slabs
1905 * and increases the number of allocations possible without having to
1906 * take the list_lock.
1907 */
1908static int slub_min_order;
114e9e89 1909static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1910static int slub_min_objects;
81819f0f
CL
1911
1912/*
1913 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1914 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1915 */
1916static int slub_nomerge;
1917
81819f0f
CL
1918/*
1919 * Calculate the order of allocation given an slab object size.
1920 *
672bba3a
CL
1921 * The order of allocation has significant impact on performance and other
1922 * system components. Generally order 0 allocations should be preferred since
1923 * order 0 does not cause fragmentation in the page allocator. Larger objects
1924 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1925 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1926 * would be wasted.
1927 *
1928 * In order to reach satisfactory performance we must ensure that a minimum
1929 * number of objects is in one slab. Otherwise we may generate too much
1930 * activity on the partial lists which requires taking the list_lock. This is
1931 * less a concern for large slabs though which are rarely used.
81819f0f 1932 *
672bba3a
CL
1933 * slub_max_order specifies the order where we begin to stop considering the
1934 * number of objects in a slab as critical. If we reach slub_max_order then
1935 * we try to keep the page order as low as possible. So we accept more waste
1936 * of space in favor of a small page order.
81819f0f 1937 *
672bba3a
CL
1938 * Higher order allocations also allow the placement of more objects in a
1939 * slab and thereby reduce object handling overhead. If the user has
1940 * requested a higher mininum order then we start with that one instead of
1941 * the smallest order which will fit the object.
81819f0f 1942 */
5e6d444e
CL
1943static inline int slab_order(int size, int min_objects,
1944 int max_order, int fract_leftover)
81819f0f
CL
1945{
1946 int order;
1947 int rem;
6300ea75 1948 int min_order = slub_min_order;
81819f0f 1949
210b5c06
CG
1950 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1951 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1952
6300ea75 1953 for (order = max(min_order,
5e6d444e
CL
1954 fls(min_objects * size - 1) - PAGE_SHIFT);
1955 order <= max_order; order++) {
81819f0f 1956
5e6d444e 1957 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1958
5e6d444e 1959 if (slab_size < min_objects * size)
81819f0f
CL
1960 continue;
1961
1962 rem = slab_size % size;
1963
5e6d444e 1964 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1965 break;
1966
1967 }
672bba3a 1968
81819f0f
CL
1969 return order;
1970}
1971
5e6d444e
CL
1972static inline int calculate_order(int size)
1973{
1974 int order;
1975 int min_objects;
1976 int fraction;
e8120ff1 1977 int max_objects;
5e6d444e
CL
1978
1979 /*
1980 * Attempt to find best configuration for a slab. This
1981 * works by first attempting to generate a layout with
1982 * the best configuration and backing off gradually.
1983 *
1984 * First we reduce the acceptable waste in a slab. Then
1985 * we reduce the minimum objects required in a slab.
1986 */
1987 min_objects = slub_min_objects;
9b2cd506
CL
1988 if (!min_objects)
1989 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
1990 max_objects = (PAGE_SIZE << slub_max_order)/size;
1991 min_objects = min(min_objects, max_objects);
1992
5e6d444e 1993 while (min_objects > 1) {
c124f5b5 1994 fraction = 16;
5e6d444e
CL
1995 while (fraction >= 4) {
1996 order = slab_order(size, min_objects,
1997 slub_max_order, fraction);
1998 if (order <= slub_max_order)
1999 return order;
2000 fraction /= 2;
2001 }
5086c389 2002 min_objects--;
5e6d444e
CL
2003 }
2004
2005 /*
2006 * We were unable to place multiple objects in a slab. Now
2007 * lets see if we can place a single object there.
2008 */
2009 order = slab_order(size, 1, slub_max_order, 1);
2010 if (order <= slub_max_order)
2011 return order;
2012
2013 /*
2014 * Doh this slab cannot be placed using slub_max_order.
2015 */
2016 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2017 if (order < MAX_ORDER)
5e6d444e
CL
2018 return order;
2019 return -ENOSYS;
2020}
2021
81819f0f 2022/*
672bba3a 2023 * Figure out what the alignment of the objects will be.
81819f0f
CL
2024 */
2025static unsigned long calculate_alignment(unsigned long flags,
2026 unsigned long align, unsigned long size)
2027{
2028 /*
6446faa2
CL
2029 * If the user wants hardware cache aligned objects then follow that
2030 * suggestion if the object is sufficiently large.
81819f0f 2031 *
6446faa2
CL
2032 * The hardware cache alignment cannot override the specified
2033 * alignment though. If that is greater then use it.
81819f0f 2034 */
b6210386
NP
2035 if (flags & SLAB_HWCACHE_ALIGN) {
2036 unsigned long ralign = cache_line_size();
2037 while (size <= ralign / 2)
2038 ralign /= 2;
2039 align = max(align, ralign);
2040 }
81819f0f
CL
2041
2042 if (align < ARCH_SLAB_MINALIGN)
b6210386 2043 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2044
2045 return ALIGN(align, sizeof(void *));
2046}
2047
5595cffc
PE
2048static void
2049init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2050{
2051 n->nr_partial = 0;
81819f0f
CL
2052 spin_lock_init(&n->list_lock);
2053 INIT_LIST_HEAD(&n->partial);
8ab1372f 2054#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2055 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2056 atomic_long_set(&n->total_objects, 0);
643b1138 2057 INIT_LIST_HEAD(&n->full);
8ab1372f 2058#endif
81819f0f
CL
2059}
2060
91efd773 2061static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
4c93c355 2062
9dfc6e68 2063static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
4c93c355 2064{
756dee75 2065 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
9dfc6e68
CL
2066 /*
2067 * Boot time creation of the kmalloc array. Use static per cpu data
2068 * since the per cpu allocator is not available yet.
2069 */
1154fab7 2070 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
9dfc6e68
CL
2071 else
2072 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
4c93c355 2073
9dfc6e68
CL
2074 if (!s->cpu_slab)
2075 return 0;
4c93c355 2076
4c93c355
CL
2077 return 1;
2078}
4c93c355 2079
81819f0f
CL
2080#ifdef CONFIG_NUMA
2081/*
2082 * No kmalloc_node yet so do it by hand. We know that this is the first
2083 * slab on the node for this slabcache. There are no concurrent accesses
2084 * possible.
2085 *
2086 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2087 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2088 * memory on a fresh node that has no slab structures yet.
81819f0f 2089 */
0094de92 2090static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
81819f0f
CL
2091{
2092 struct page *page;
2093 struct kmem_cache_node *n;
ba84c73c 2094 unsigned long flags;
81819f0f
CL
2095
2096 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2097
a2f92ee7 2098 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2099
2100 BUG_ON(!page);
a2f92ee7
CL
2101 if (page_to_nid(page) != node) {
2102 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2103 "node %d\n", node);
2104 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2105 "in order to be able to continue\n");
2106 }
2107
81819f0f
CL
2108 n = page->freelist;
2109 BUG_ON(!n);
2110 page->freelist = get_freepointer(kmalloc_caches, n);
2111 page->inuse++;
2112 kmalloc_caches->node[node] = n;
8ab1372f 2113#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2114 init_object(kmalloc_caches, n, 1);
2115 init_tracking(kmalloc_caches, n);
8ab1372f 2116#endif
5595cffc 2117 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2118 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2119
ba84c73c 2120 /*
2121 * lockdep requires consistent irq usage for each lock
2122 * so even though there cannot be a race this early in
2123 * the boot sequence, we still disable irqs.
2124 */
2125 local_irq_save(flags);
7c2e132c 2126 add_partial(n, page, 0);
ba84c73c 2127 local_irq_restore(flags);
81819f0f
CL
2128}
2129
2130static void free_kmem_cache_nodes(struct kmem_cache *s)
2131{
2132 int node;
2133
f64dc58c 2134 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2135 struct kmem_cache_node *n = s->node[node];
2136 if (n && n != &s->local_node)
2137 kmem_cache_free(kmalloc_caches, n);
2138 s->node[node] = NULL;
2139 }
2140}
2141
2142static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2143{
2144 int node;
2145 int local_node;
2146
91efd773 2147 if (slab_state >= UP && (s < kmalloc_caches ||
111c7d82 2148 s >= kmalloc_caches + KMALLOC_CACHES))
81819f0f
CL
2149 local_node = page_to_nid(virt_to_page(s));
2150 else
2151 local_node = 0;
2152
f64dc58c 2153 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2154 struct kmem_cache_node *n;
2155
2156 if (local_node == node)
2157 n = &s->local_node;
2158 else {
2159 if (slab_state == DOWN) {
0094de92 2160 early_kmem_cache_node_alloc(gfpflags, node);
81819f0f
CL
2161 continue;
2162 }
2163 n = kmem_cache_alloc_node(kmalloc_caches,
2164 gfpflags, node);
2165
2166 if (!n) {
2167 free_kmem_cache_nodes(s);
2168 return 0;
2169 }
2170
2171 }
2172 s->node[node] = n;
5595cffc 2173 init_kmem_cache_node(n, s);
81819f0f
CL
2174 }
2175 return 1;
2176}
2177#else
2178static void free_kmem_cache_nodes(struct kmem_cache *s)
2179{
2180}
2181
2182static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2183{
5595cffc 2184 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2185 return 1;
2186}
2187#endif
2188
c0bdb232 2189static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2190{
2191 if (min < MIN_PARTIAL)
2192 min = MIN_PARTIAL;
2193 else if (min > MAX_PARTIAL)
2194 min = MAX_PARTIAL;
2195 s->min_partial = min;
2196}
2197
81819f0f
CL
2198/*
2199 * calculate_sizes() determines the order and the distribution of data within
2200 * a slab object.
2201 */
06b285dc 2202static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2203{
2204 unsigned long flags = s->flags;
2205 unsigned long size = s->objsize;
2206 unsigned long align = s->align;
834f3d11 2207 int order;
81819f0f 2208
d8b42bf5
CL
2209 /*
2210 * Round up object size to the next word boundary. We can only
2211 * place the free pointer at word boundaries and this determines
2212 * the possible location of the free pointer.
2213 */
2214 size = ALIGN(size, sizeof(void *));
2215
2216#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2217 /*
2218 * Determine if we can poison the object itself. If the user of
2219 * the slab may touch the object after free or before allocation
2220 * then we should never poison the object itself.
2221 */
2222 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2223 !s->ctor)
81819f0f
CL
2224 s->flags |= __OBJECT_POISON;
2225 else
2226 s->flags &= ~__OBJECT_POISON;
2227
81819f0f
CL
2228
2229 /*
672bba3a 2230 * If we are Redzoning then check if there is some space between the
81819f0f 2231 * end of the object and the free pointer. If not then add an
672bba3a 2232 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2233 */
2234 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2235 size += sizeof(void *);
41ecc55b 2236#endif
81819f0f
CL
2237
2238 /*
672bba3a
CL
2239 * With that we have determined the number of bytes in actual use
2240 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2241 */
2242 s->inuse = size;
2243
2244 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2245 s->ctor)) {
81819f0f
CL
2246 /*
2247 * Relocate free pointer after the object if it is not
2248 * permitted to overwrite the first word of the object on
2249 * kmem_cache_free.
2250 *
2251 * This is the case if we do RCU, have a constructor or
2252 * destructor or are poisoning the objects.
2253 */
2254 s->offset = size;
2255 size += sizeof(void *);
2256 }
2257
c12b3c62 2258#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2259 if (flags & SLAB_STORE_USER)
2260 /*
2261 * Need to store information about allocs and frees after
2262 * the object.
2263 */
2264 size += 2 * sizeof(struct track);
2265
be7b3fbc 2266 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2267 /*
2268 * Add some empty padding so that we can catch
2269 * overwrites from earlier objects rather than let
2270 * tracking information or the free pointer be
0211a9c8 2271 * corrupted if a user writes before the start
81819f0f
CL
2272 * of the object.
2273 */
2274 size += sizeof(void *);
41ecc55b 2275#endif
672bba3a 2276
81819f0f
CL
2277 /*
2278 * Determine the alignment based on various parameters that the
65c02d4c
CL
2279 * user specified and the dynamic determination of cache line size
2280 * on bootup.
81819f0f
CL
2281 */
2282 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2283 s->align = align;
81819f0f
CL
2284
2285 /*
2286 * SLUB stores one object immediately after another beginning from
2287 * offset 0. In order to align the objects we have to simply size
2288 * each object to conform to the alignment.
2289 */
2290 size = ALIGN(size, align);
2291 s->size = size;
06b285dc
CL
2292 if (forced_order >= 0)
2293 order = forced_order;
2294 else
2295 order = calculate_order(size);
81819f0f 2296
834f3d11 2297 if (order < 0)
81819f0f
CL
2298 return 0;
2299
b7a49f0d 2300 s->allocflags = 0;
834f3d11 2301 if (order)
b7a49f0d
CL
2302 s->allocflags |= __GFP_COMP;
2303
2304 if (s->flags & SLAB_CACHE_DMA)
2305 s->allocflags |= SLUB_DMA;
2306
2307 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2308 s->allocflags |= __GFP_RECLAIMABLE;
2309
81819f0f
CL
2310 /*
2311 * Determine the number of objects per slab
2312 */
834f3d11 2313 s->oo = oo_make(order, size);
65c3376a 2314 s->min = oo_make(get_order(size), size);
205ab99d
CL
2315 if (oo_objects(s->oo) > oo_objects(s->max))
2316 s->max = s->oo;
81819f0f 2317
834f3d11 2318 return !!oo_objects(s->oo);
81819f0f
CL
2319
2320}
2321
81819f0f
CL
2322static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2323 const char *name, size_t size,
2324 size_t align, unsigned long flags,
51cc5068 2325 void (*ctor)(void *))
81819f0f
CL
2326{
2327 memset(s, 0, kmem_size);
2328 s->name = name;
2329 s->ctor = ctor;
81819f0f 2330 s->objsize = size;
81819f0f 2331 s->align = align;
ba0268a8 2332 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2333
06b285dc 2334 if (!calculate_sizes(s, -1))
81819f0f 2335 goto error;
3de47213
DR
2336 if (disable_higher_order_debug) {
2337 /*
2338 * Disable debugging flags that store metadata if the min slab
2339 * order increased.
2340 */
2341 if (get_order(s->size) > get_order(s->objsize)) {
2342 s->flags &= ~DEBUG_METADATA_FLAGS;
2343 s->offset = 0;
2344 if (!calculate_sizes(s, -1))
2345 goto error;
2346 }
2347 }
81819f0f 2348
3b89d7d8
DR
2349 /*
2350 * The larger the object size is, the more pages we want on the partial
2351 * list to avoid pounding the page allocator excessively.
2352 */
c0bdb232 2353 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2354 s->refcount = 1;
2355#ifdef CONFIG_NUMA
e2cb96b7 2356 s->remote_node_defrag_ratio = 1000;
81819f0f 2357#endif
dfb4f096
CL
2358 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2359 goto error;
81819f0f 2360
dfb4f096 2361 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2362 return 1;
ff12059e 2363
4c93c355 2364 free_kmem_cache_nodes(s);
81819f0f
CL
2365error:
2366 if (flags & SLAB_PANIC)
2367 panic("Cannot create slab %s size=%lu realsize=%u "
2368 "order=%u offset=%u flags=%lx\n",
834f3d11 2369 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2370 s->offset, flags);
2371 return 0;
2372}
81819f0f
CL
2373
2374/*
2375 * Check if a given pointer is valid
2376 */
2377int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2378{
06428780 2379 struct page *page;
81819f0f 2380
d3e06e2b
PE
2381 if (!kern_ptr_validate(object, s->size))
2382 return 0;
2383
81819f0f
CL
2384 page = get_object_page(object);
2385
2386 if (!page || s != page->slab)
2387 /* No slab or wrong slab */
2388 return 0;
2389
abcd08a6 2390 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2391 return 0;
2392
2393 /*
2394 * We could also check if the object is on the slabs freelist.
2395 * But this would be too expensive and it seems that the main
6446faa2 2396 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2397 * to a certain slab.
2398 */
2399 return 1;
2400}
2401EXPORT_SYMBOL(kmem_ptr_validate);
2402
2403/*
2404 * Determine the size of a slab object
2405 */
2406unsigned int kmem_cache_size(struct kmem_cache *s)
2407{
2408 return s->objsize;
2409}
2410EXPORT_SYMBOL(kmem_cache_size);
2411
2412const char *kmem_cache_name(struct kmem_cache *s)
2413{
2414 return s->name;
2415}
2416EXPORT_SYMBOL(kmem_cache_name);
2417
33b12c38
CL
2418static void list_slab_objects(struct kmem_cache *s, struct page *page,
2419 const char *text)
2420{
2421#ifdef CONFIG_SLUB_DEBUG
2422 void *addr = page_address(page);
2423 void *p;
bbd7d57b
ED
2424 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2425 GFP_ATOMIC);
33b12c38 2426
bbd7d57b
ED
2427 if (!map)
2428 return;
33b12c38
CL
2429 slab_err(s, page, "%s", text);
2430 slab_lock(page);
2431 for_each_free_object(p, s, page->freelist)
2432 set_bit(slab_index(p, s, addr), map);
2433
2434 for_each_object(p, s, addr, page->objects) {
2435
2436 if (!test_bit(slab_index(p, s, addr), map)) {
2437 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2438 p, p - addr);
2439 print_tracking(s, p);
2440 }
2441 }
2442 slab_unlock(page);
bbd7d57b 2443 kfree(map);
33b12c38
CL
2444#endif
2445}
2446
81819f0f 2447/*
599870b1 2448 * Attempt to free all partial slabs on a node.
81819f0f 2449 */
599870b1 2450static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2451{
81819f0f
CL
2452 unsigned long flags;
2453 struct page *page, *h;
2454
2455 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2456 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2457 if (!page->inuse) {
2458 list_del(&page->lru);
2459 discard_slab(s, page);
599870b1 2460 n->nr_partial--;
33b12c38
CL
2461 } else {
2462 list_slab_objects(s, page,
2463 "Objects remaining on kmem_cache_close()");
599870b1 2464 }
33b12c38 2465 }
81819f0f 2466 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2467}
2468
2469/*
672bba3a 2470 * Release all resources used by a slab cache.
81819f0f 2471 */
0c710013 2472static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2473{
2474 int node;
2475
2476 flush_all(s);
9dfc6e68 2477 free_percpu(s->cpu_slab);
81819f0f 2478 /* Attempt to free all objects */
f64dc58c 2479 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2480 struct kmem_cache_node *n = get_node(s, node);
2481
599870b1
CL
2482 free_partial(s, n);
2483 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2484 return 1;
2485 }
2486 free_kmem_cache_nodes(s);
2487 return 0;
2488}
2489
2490/*
2491 * Close a cache and release the kmem_cache structure
2492 * (must be used for caches created using kmem_cache_create)
2493 */
2494void kmem_cache_destroy(struct kmem_cache *s)
2495{
2496 down_write(&slub_lock);
2497 s->refcount--;
2498 if (!s->refcount) {
2499 list_del(&s->list);
a0e1d1be 2500 up_write(&slub_lock);
d629d819
PE
2501 if (kmem_cache_close(s)) {
2502 printk(KERN_ERR "SLUB %s: %s called for cache that "
2503 "still has objects.\n", s->name, __func__);
2504 dump_stack();
2505 }
d76b1590
ED
2506 if (s->flags & SLAB_DESTROY_BY_RCU)
2507 rcu_barrier();
81819f0f 2508 sysfs_slab_remove(s);
a0e1d1be
CL
2509 } else
2510 up_write(&slub_lock);
81819f0f
CL
2511}
2512EXPORT_SYMBOL(kmem_cache_destroy);
2513
2514/********************************************************************
2515 * Kmalloc subsystem
2516 *******************************************************************/
2517
756dee75 2518struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
81819f0f
CL
2519EXPORT_SYMBOL(kmalloc_caches);
2520
81819f0f
CL
2521static int __init setup_slub_min_order(char *str)
2522{
06428780 2523 get_option(&str, &slub_min_order);
81819f0f
CL
2524
2525 return 1;
2526}
2527
2528__setup("slub_min_order=", setup_slub_min_order);
2529
2530static int __init setup_slub_max_order(char *str)
2531{
06428780 2532 get_option(&str, &slub_max_order);
818cf590 2533 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2534
2535 return 1;
2536}
2537
2538__setup("slub_max_order=", setup_slub_max_order);
2539
2540static int __init setup_slub_min_objects(char *str)
2541{
06428780 2542 get_option(&str, &slub_min_objects);
81819f0f
CL
2543
2544 return 1;
2545}
2546
2547__setup("slub_min_objects=", setup_slub_min_objects);
2548
2549static int __init setup_slub_nomerge(char *str)
2550{
2551 slub_nomerge = 1;
2552 return 1;
2553}
2554
2555__setup("slub_nomerge", setup_slub_nomerge);
2556
81819f0f
CL
2557static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2558 const char *name, int size, gfp_t gfp_flags)
2559{
2560 unsigned int flags = 0;
2561
2562 if (gfp_flags & SLUB_DMA)
2563 flags = SLAB_CACHE_DMA;
2564
83b519e8
PE
2565 /*
2566 * This function is called with IRQs disabled during early-boot on
2567 * single CPU so there's no need to take slub_lock here.
2568 */
81819f0f 2569 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2570 flags, NULL))
81819f0f
CL
2571 goto panic;
2572
2573 list_add(&s->list, &slab_caches);
83b519e8 2574
81819f0f
CL
2575 if (sysfs_slab_add(s))
2576 goto panic;
2577 return s;
2578
2579panic:
2580 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2581}
2582
2e443fd0 2583#ifdef CONFIG_ZONE_DMA
ffadd4d0 2584static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
1ceef402
CL
2585
2586static void sysfs_add_func(struct work_struct *w)
2587{
2588 struct kmem_cache *s;
2589
2590 down_write(&slub_lock);
2591 list_for_each_entry(s, &slab_caches, list) {
2592 if (s->flags & __SYSFS_ADD_DEFERRED) {
2593 s->flags &= ~__SYSFS_ADD_DEFERRED;
2594 sysfs_slab_add(s);
2595 }
2596 }
2597 up_write(&slub_lock);
2598}
2599
2600static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2601
2e443fd0
CL
2602static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2603{
2604 struct kmem_cache *s;
2e443fd0
CL
2605 char *text;
2606 size_t realsize;
964cf35c 2607 unsigned long slabflags;
756dee75 2608 int i;
2e443fd0
CL
2609
2610 s = kmalloc_caches_dma[index];
2611 if (s)
2612 return s;
2613
2614 /* Dynamically create dma cache */
1ceef402
CL
2615 if (flags & __GFP_WAIT)
2616 down_write(&slub_lock);
2617 else {
2618 if (!down_write_trylock(&slub_lock))
2619 goto out;
2620 }
2621
2622 if (kmalloc_caches_dma[index])
2623 goto unlock_out;
2e443fd0 2624
7b55f620 2625 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2626 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2627 (unsigned int)realsize);
9dfc6e68 2628
756dee75
CL
2629 s = NULL;
2630 for (i = 0; i < KMALLOC_CACHES; i++)
2631 if (!kmalloc_caches[i].size)
2632 break;
9dfc6e68 2633
756dee75
CL
2634 BUG_ON(i >= KMALLOC_CACHES);
2635 s = kmalloc_caches + i;
1ceef402 2636
964cf35c
NP
2637 /*
2638 * Must defer sysfs creation to a workqueue because we don't know
2639 * what context we are called from. Before sysfs comes up, we don't
2640 * need to do anything because our sysfs initcall will start by
2641 * adding all existing slabs to sysfs.
2642 */
5caf5c7d 2643 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
964cf35c
NP
2644 if (slab_state >= SYSFS)
2645 slabflags |= __SYSFS_ADD_DEFERRED;
2646
7738dd9e 2647 if (!text || !kmem_cache_open(s, flags, text,
964cf35c 2648 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
756dee75 2649 s->size = 0;
1ceef402
CL
2650 kfree(text);
2651 goto unlock_out;
dfce8648 2652 }
1ceef402
CL
2653
2654 list_add(&s->list, &slab_caches);
2655 kmalloc_caches_dma[index] = s;
2656
964cf35c
NP
2657 if (slab_state >= SYSFS)
2658 schedule_work(&sysfs_add_work);
1ceef402
CL
2659
2660unlock_out:
dfce8648 2661 up_write(&slub_lock);
1ceef402 2662out:
dfce8648 2663 return kmalloc_caches_dma[index];
2e443fd0
CL
2664}
2665#endif
2666
f1b26339
CL
2667/*
2668 * Conversion table for small slabs sizes / 8 to the index in the
2669 * kmalloc array. This is necessary for slabs < 192 since we have non power
2670 * of two cache sizes there. The size of larger slabs can be determined using
2671 * fls.
2672 */
2673static s8 size_index[24] = {
2674 3, /* 8 */
2675 4, /* 16 */
2676 5, /* 24 */
2677 5, /* 32 */
2678 6, /* 40 */
2679 6, /* 48 */
2680 6, /* 56 */
2681 6, /* 64 */
2682 1, /* 72 */
2683 1, /* 80 */
2684 1, /* 88 */
2685 1, /* 96 */
2686 7, /* 104 */
2687 7, /* 112 */
2688 7, /* 120 */
2689 7, /* 128 */
2690 2, /* 136 */
2691 2, /* 144 */
2692 2, /* 152 */
2693 2, /* 160 */
2694 2, /* 168 */
2695 2, /* 176 */
2696 2, /* 184 */
2697 2 /* 192 */
2698};
2699
acdfcd04
AK
2700static inline int size_index_elem(size_t bytes)
2701{
2702 return (bytes - 1) / 8;
2703}
2704
81819f0f
CL
2705static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2706{
f1b26339 2707 int index;
81819f0f 2708
f1b26339
CL
2709 if (size <= 192) {
2710 if (!size)
2711 return ZERO_SIZE_PTR;
81819f0f 2712
acdfcd04 2713 index = size_index[size_index_elem(size)];
aadb4bc4 2714 } else
f1b26339 2715 index = fls(size - 1);
81819f0f
CL
2716
2717#ifdef CONFIG_ZONE_DMA
f1b26339 2718 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2719 return dma_kmalloc_cache(index, flags);
f1b26339 2720
81819f0f
CL
2721#endif
2722 return &kmalloc_caches[index];
2723}
2724
2725void *__kmalloc(size_t size, gfp_t flags)
2726{
aadb4bc4 2727 struct kmem_cache *s;
5b882be4 2728 void *ret;
81819f0f 2729
ffadd4d0 2730 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2731 return kmalloc_large(size, flags);
aadb4bc4
CL
2732
2733 s = get_slab(size, flags);
2734
2735 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2736 return s;
2737
5b882be4
EGM
2738 ret = slab_alloc(s, flags, -1, _RET_IP_);
2739
ca2b84cb 2740 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2741
2742 return ret;
81819f0f
CL
2743}
2744EXPORT_SYMBOL(__kmalloc);
2745
f619cfe1
CL
2746static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2747{
b1eeab67 2748 struct page *page;
e4f7c0b4 2749 void *ptr = NULL;
f619cfe1 2750
b1eeab67
VN
2751 flags |= __GFP_COMP | __GFP_NOTRACK;
2752 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2753 if (page)
e4f7c0b4
CM
2754 ptr = page_address(page);
2755
2756 kmemleak_alloc(ptr, size, 1, flags);
2757 return ptr;
f619cfe1
CL
2758}
2759
81819f0f
CL
2760#ifdef CONFIG_NUMA
2761void *__kmalloc_node(size_t size, gfp_t flags, int node)
2762{
aadb4bc4 2763 struct kmem_cache *s;
5b882be4 2764 void *ret;
81819f0f 2765
057685cf 2766 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2767 ret = kmalloc_large_node(size, flags, node);
2768
ca2b84cb
EGM
2769 trace_kmalloc_node(_RET_IP_, ret,
2770 size, PAGE_SIZE << get_order(size),
2771 flags, node);
5b882be4
EGM
2772
2773 return ret;
2774 }
aadb4bc4
CL
2775
2776 s = get_slab(size, flags);
2777
2778 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2779 return s;
2780
5b882be4
EGM
2781 ret = slab_alloc(s, flags, node, _RET_IP_);
2782
ca2b84cb 2783 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2784
2785 return ret;
81819f0f
CL
2786}
2787EXPORT_SYMBOL(__kmalloc_node);
2788#endif
2789
2790size_t ksize(const void *object)
2791{
272c1d21 2792 struct page *page;
81819f0f
CL
2793 struct kmem_cache *s;
2794
ef8b4520 2795 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2796 return 0;
2797
294a80a8 2798 page = virt_to_head_page(object);
294a80a8 2799
76994412
PE
2800 if (unlikely(!PageSlab(page))) {
2801 WARN_ON(!PageCompound(page));
294a80a8 2802 return PAGE_SIZE << compound_order(page);
76994412 2803 }
81819f0f 2804 s = page->slab;
81819f0f 2805
ae20bfda 2806#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2807 /*
2808 * Debugging requires use of the padding between object
2809 * and whatever may come after it.
2810 */
2811 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2812 return s->objsize;
2813
ae20bfda 2814#endif
81819f0f
CL
2815 /*
2816 * If we have the need to store the freelist pointer
2817 * back there or track user information then we can
2818 * only use the space before that information.
2819 */
2820 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2821 return s->inuse;
81819f0f
CL
2822 /*
2823 * Else we can use all the padding etc for the allocation
2824 */
2825 return s->size;
2826}
b1aabecd 2827EXPORT_SYMBOL(ksize);
81819f0f
CL
2828
2829void kfree(const void *x)
2830{
81819f0f 2831 struct page *page;
5bb983b0 2832 void *object = (void *)x;
81819f0f 2833
2121db74
PE
2834 trace_kfree(_RET_IP_, x);
2835
2408c550 2836 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2837 return;
2838
b49af68f 2839 page = virt_to_head_page(x);
aadb4bc4 2840 if (unlikely(!PageSlab(page))) {
0937502a 2841 BUG_ON(!PageCompound(page));
e4f7c0b4 2842 kmemleak_free(x);
aadb4bc4
CL
2843 put_page(page);
2844 return;
2845 }
ce71e27c 2846 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2847}
2848EXPORT_SYMBOL(kfree);
2849
2086d26a 2850/*
672bba3a
CL
2851 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2852 * the remaining slabs by the number of items in use. The slabs with the
2853 * most items in use come first. New allocations will then fill those up
2854 * and thus they can be removed from the partial lists.
2855 *
2856 * The slabs with the least items are placed last. This results in them
2857 * being allocated from last increasing the chance that the last objects
2858 * are freed in them.
2086d26a
CL
2859 */
2860int kmem_cache_shrink(struct kmem_cache *s)
2861{
2862 int node;
2863 int i;
2864 struct kmem_cache_node *n;
2865 struct page *page;
2866 struct page *t;
205ab99d 2867 int objects = oo_objects(s->max);
2086d26a 2868 struct list_head *slabs_by_inuse =
834f3d11 2869 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2870 unsigned long flags;
2871
2872 if (!slabs_by_inuse)
2873 return -ENOMEM;
2874
2875 flush_all(s);
f64dc58c 2876 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2877 n = get_node(s, node);
2878
2879 if (!n->nr_partial)
2880 continue;
2881
834f3d11 2882 for (i = 0; i < objects; i++)
2086d26a
CL
2883 INIT_LIST_HEAD(slabs_by_inuse + i);
2884
2885 spin_lock_irqsave(&n->list_lock, flags);
2886
2887 /*
672bba3a 2888 * Build lists indexed by the items in use in each slab.
2086d26a 2889 *
672bba3a
CL
2890 * Note that concurrent frees may occur while we hold the
2891 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2892 */
2893 list_for_each_entry_safe(page, t, &n->partial, lru) {
2894 if (!page->inuse && slab_trylock(page)) {
2895 /*
2896 * Must hold slab lock here because slab_free
2897 * may have freed the last object and be
2898 * waiting to release the slab.
2899 */
2900 list_del(&page->lru);
2901 n->nr_partial--;
2902 slab_unlock(page);
2903 discard_slab(s, page);
2904 } else {
fcda3d89
CL
2905 list_move(&page->lru,
2906 slabs_by_inuse + page->inuse);
2086d26a
CL
2907 }
2908 }
2909
2086d26a 2910 /*
672bba3a
CL
2911 * Rebuild the partial list with the slabs filled up most
2912 * first and the least used slabs at the end.
2086d26a 2913 */
834f3d11 2914 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2915 list_splice(slabs_by_inuse + i, n->partial.prev);
2916
2086d26a
CL
2917 spin_unlock_irqrestore(&n->list_lock, flags);
2918 }
2919
2920 kfree(slabs_by_inuse);
2921 return 0;
2922}
2923EXPORT_SYMBOL(kmem_cache_shrink);
2924
b9049e23
YG
2925#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2926static int slab_mem_going_offline_callback(void *arg)
2927{
2928 struct kmem_cache *s;
2929
2930 down_read(&slub_lock);
2931 list_for_each_entry(s, &slab_caches, list)
2932 kmem_cache_shrink(s);
2933 up_read(&slub_lock);
2934
2935 return 0;
2936}
2937
2938static void slab_mem_offline_callback(void *arg)
2939{
2940 struct kmem_cache_node *n;
2941 struct kmem_cache *s;
2942 struct memory_notify *marg = arg;
2943 int offline_node;
2944
2945 offline_node = marg->status_change_nid;
2946
2947 /*
2948 * If the node still has available memory. we need kmem_cache_node
2949 * for it yet.
2950 */
2951 if (offline_node < 0)
2952 return;
2953
2954 down_read(&slub_lock);
2955 list_for_each_entry(s, &slab_caches, list) {
2956 n = get_node(s, offline_node);
2957 if (n) {
2958 /*
2959 * if n->nr_slabs > 0, slabs still exist on the node
2960 * that is going down. We were unable to free them,
c9404c9c 2961 * and offline_pages() function shouldn't call this
b9049e23
YG
2962 * callback. So, we must fail.
2963 */
0f389ec6 2964 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2965
2966 s->node[offline_node] = NULL;
2967 kmem_cache_free(kmalloc_caches, n);
2968 }
2969 }
2970 up_read(&slub_lock);
2971}
2972
2973static int slab_mem_going_online_callback(void *arg)
2974{
2975 struct kmem_cache_node *n;
2976 struct kmem_cache *s;
2977 struct memory_notify *marg = arg;
2978 int nid = marg->status_change_nid;
2979 int ret = 0;
2980
2981 /*
2982 * If the node's memory is already available, then kmem_cache_node is
2983 * already created. Nothing to do.
2984 */
2985 if (nid < 0)
2986 return 0;
2987
2988 /*
0121c619 2989 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2990 * allocate a kmem_cache_node structure in order to bring the node
2991 * online.
2992 */
2993 down_read(&slub_lock);
2994 list_for_each_entry(s, &slab_caches, list) {
2995 /*
2996 * XXX: kmem_cache_alloc_node will fallback to other nodes
2997 * since memory is not yet available from the node that
2998 * is brought up.
2999 */
3000 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3001 if (!n) {
3002 ret = -ENOMEM;
3003 goto out;
3004 }
5595cffc 3005 init_kmem_cache_node(n, s);
b9049e23
YG
3006 s->node[nid] = n;
3007 }
3008out:
3009 up_read(&slub_lock);
3010 return ret;
3011}
3012
3013static int slab_memory_callback(struct notifier_block *self,
3014 unsigned long action, void *arg)
3015{
3016 int ret = 0;
3017
3018 switch (action) {
3019 case MEM_GOING_ONLINE:
3020 ret = slab_mem_going_online_callback(arg);
3021 break;
3022 case MEM_GOING_OFFLINE:
3023 ret = slab_mem_going_offline_callback(arg);
3024 break;
3025 case MEM_OFFLINE:
3026 case MEM_CANCEL_ONLINE:
3027 slab_mem_offline_callback(arg);
3028 break;
3029 case MEM_ONLINE:
3030 case MEM_CANCEL_OFFLINE:
3031 break;
3032 }
dc19f9db
KH
3033 if (ret)
3034 ret = notifier_from_errno(ret);
3035 else
3036 ret = NOTIFY_OK;
b9049e23
YG
3037 return ret;
3038}
3039
3040#endif /* CONFIG_MEMORY_HOTPLUG */
3041
81819f0f
CL
3042/********************************************************************
3043 * Basic setup of slabs
3044 *******************************************************************/
3045
3046void __init kmem_cache_init(void)
3047{
3048 int i;
4b356be0 3049 int caches = 0;
81819f0f
CL
3050
3051#ifdef CONFIG_NUMA
3052 /*
3053 * Must first have the slab cache available for the allocations of the
672bba3a 3054 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3055 * kmem_cache_open for slab_state == DOWN.
3056 */
3057 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
83b519e8 3058 sizeof(struct kmem_cache_node), GFP_NOWAIT);
8ffa6875 3059 kmalloc_caches[0].refcount = -1;
4b356be0 3060 caches++;
b9049e23 3061
0c40ba4f 3062 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3063#endif
3064
3065 /* Able to allocate the per node structures */
3066 slab_state = PARTIAL;
3067
3068 /* Caches that are not of the two-to-the-power-of size */
acdfcd04 3069 if (KMALLOC_MIN_SIZE <= 32) {
4b356be0 3070 create_kmalloc_cache(&kmalloc_caches[1],
83b519e8 3071 "kmalloc-96", 96, GFP_NOWAIT);
4b356be0 3072 caches++;
acdfcd04
AK
3073 }
3074 if (KMALLOC_MIN_SIZE <= 64) {
4b356be0 3075 create_kmalloc_cache(&kmalloc_caches[2],
83b519e8 3076 "kmalloc-192", 192, GFP_NOWAIT);
4b356be0
CL
3077 caches++;
3078 }
81819f0f 3079
ffadd4d0 3080 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
81819f0f 3081 create_kmalloc_cache(&kmalloc_caches[i],
83b519e8 3082 "kmalloc", 1 << i, GFP_NOWAIT);
4b356be0
CL
3083 caches++;
3084 }
81819f0f 3085
f1b26339
CL
3086
3087 /*
3088 * Patch up the size_index table if we have strange large alignment
3089 * requirements for the kmalloc array. This is only the case for
6446faa2 3090 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3091 *
3092 * Largest permitted alignment is 256 bytes due to the way we
3093 * handle the index determination for the smaller caches.
3094 *
3095 * Make sure that nothing crazy happens if someone starts tinkering
3096 * around with ARCH_KMALLOC_MINALIGN
3097 */
3098 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3099 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3100
acdfcd04
AK
3101 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3102 int elem = size_index_elem(i);
3103 if (elem >= ARRAY_SIZE(size_index))
3104 break;
3105 size_index[elem] = KMALLOC_SHIFT_LOW;
3106 }
f1b26339 3107
acdfcd04
AK
3108 if (KMALLOC_MIN_SIZE == 64) {
3109 /*
3110 * The 96 byte size cache is not used if the alignment
3111 * is 64 byte.
3112 */
3113 for (i = 64 + 8; i <= 96; i += 8)
3114 size_index[size_index_elem(i)] = 7;
3115 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3116 /*
3117 * The 192 byte sized cache is not used if the alignment
3118 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3119 * instead.
3120 */
3121 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3122 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3123 }
3124
81819f0f
CL
3125 slab_state = UP;
3126
3127 /* Provide the correct kmalloc names now that the caches are up */
ffadd4d0 3128 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
81819f0f 3129 kmalloc_caches[i]. name =
83b519e8 3130 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
81819f0f
CL
3131
3132#ifdef CONFIG_SMP
3133 register_cpu_notifier(&slab_notifier);
9dfc6e68
CL
3134#endif
3135#ifdef CONFIG_NUMA
3136 kmem_size = offsetof(struct kmem_cache, node) +
3137 nr_node_ids * sizeof(struct kmem_cache_node *);
4c93c355
CL
3138#else
3139 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3140#endif
3141
3adbefee
IM
3142 printk(KERN_INFO
3143 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3144 " CPUs=%d, Nodes=%d\n",
3145 caches, cache_line_size(),
81819f0f
CL
3146 slub_min_order, slub_max_order, slub_min_objects,
3147 nr_cpu_ids, nr_node_ids);
3148}
3149
7e85ee0c
PE
3150void __init kmem_cache_init_late(void)
3151{
7e85ee0c
PE
3152}
3153
81819f0f
CL
3154/*
3155 * Find a mergeable slab cache
3156 */
3157static int slab_unmergeable(struct kmem_cache *s)
3158{
3159 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3160 return 1;
3161
c59def9f 3162 if (s->ctor)
81819f0f
CL
3163 return 1;
3164
8ffa6875
CL
3165 /*
3166 * We may have set a slab to be unmergeable during bootstrap.
3167 */
3168 if (s->refcount < 0)
3169 return 1;
3170
81819f0f
CL
3171 return 0;
3172}
3173
3174static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3175 size_t align, unsigned long flags, const char *name,
51cc5068 3176 void (*ctor)(void *))
81819f0f 3177{
5b95a4ac 3178 struct kmem_cache *s;
81819f0f
CL
3179
3180 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3181 return NULL;
3182
c59def9f 3183 if (ctor)
81819f0f
CL
3184 return NULL;
3185
3186 size = ALIGN(size, sizeof(void *));
3187 align = calculate_alignment(flags, align, size);
3188 size = ALIGN(size, align);
ba0268a8 3189 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3190
5b95a4ac 3191 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3192 if (slab_unmergeable(s))
3193 continue;
3194
3195 if (size > s->size)
3196 continue;
3197
ba0268a8 3198 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3199 continue;
3200 /*
3201 * Check if alignment is compatible.
3202 * Courtesy of Adrian Drzewiecki
3203 */
06428780 3204 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3205 continue;
3206
3207 if (s->size - size >= sizeof(void *))
3208 continue;
3209
3210 return s;
3211 }
3212 return NULL;
3213}
3214
3215struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3216 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3217{
3218 struct kmem_cache *s;
3219
fe1ff49d
BH
3220 if (WARN_ON(!name))
3221 return NULL;
3222
81819f0f 3223 down_write(&slub_lock);
ba0268a8 3224 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3225 if (s) {
3226 s->refcount++;
3227 /*
3228 * Adjust the object sizes so that we clear
3229 * the complete object on kzalloc.
3230 */
3231 s->objsize = max(s->objsize, (int)size);
3232 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3233 up_write(&slub_lock);
6446faa2 3234
7b8f3b66
DR
3235 if (sysfs_slab_alias(s, name)) {
3236 down_write(&slub_lock);
3237 s->refcount--;
3238 up_write(&slub_lock);
81819f0f 3239 goto err;
7b8f3b66 3240 }
a0e1d1be
CL
3241 return s;
3242 }
6446faa2 3243
a0e1d1be
CL
3244 s = kmalloc(kmem_size, GFP_KERNEL);
3245 if (s) {
3246 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3247 size, align, flags, ctor)) {
81819f0f 3248 list_add(&s->list, &slab_caches);
a0e1d1be 3249 up_write(&slub_lock);
7b8f3b66
DR
3250 if (sysfs_slab_add(s)) {
3251 down_write(&slub_lock);
3252 list_del(&s->list);
3253 up_write(&slub_lock);
3254 kfree(s);
a0e1d1be 3255 goto err;
7b8f3b66 3256 }
a0e1d1be
CL
3257 return s;
3258 }
3259 kfree(s);
81819f0f
CL
3260 }
3261 up_write(&slub_lock);
81819f0f
CL
3262
3263err:
81819f0f
CL
3264 if (flags & SLAB_PANIC)
3265 panic("Cannot create slabcache %s\n", name);
3266 else
3267 s = NULL;
3268 return s;
3269}
3270EXPORT_SYMBOL(kmem_cache_create);
3271
81819f0f 3272#ifdef CONFIG_SMP
81819f0f 3273/*
672bba3a
CL
3274 * Use the cpu notifier to insure that the cpu slabs are flushed when
3275 * necessary.
81819f0f
CL
3276 */
3277static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3278 unsigned long action, void *hcpu)
3279{
3280 long cpu = (long)hcpu;
5b95a4ac
CL
3281 struct kmem_cache *s;
3282 unsigned long flags;
81819f0f
CL
3283
3284 switch (action) {
3285 case CPU_UP_CANCELED:
8bb78442 3286 case CPU_UP_CANCELED_FROZEN:
81819f0f 3287 case CPU_DEAD:
8bb78442 3288 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3289 down_read(&slub_lock);
3290 list_for_each_entry(s, &slab_caches, list) {
3291 local_irq_save(flags);
3292 __flush_cpu_slab(s, cpu);
3293 local_irq_restore(flags);
3294 }
3295 up_read(&slub_lock);
81819f0f
CL
3296 break;
3297 default:
3298 break;
3299 }
3300 return NOTIFY_OK;
3301}
3302
06428780 3303static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3304 .notifier_call = slab_cpuup_callback
06428780 3305};
81819f0f
CL
3306
3307#endif
3308
ce71e27c 3309void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3310{
aadb4bc4 3311 struct kmem_cache *s;
94b528d0 3312 void *ret;
aadb4bc4 3313
ffadd4d0 3314 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3315 return kmalloc_large(size, gfpflags);
3316
aadb4bc4 3317 s = get_slab(size, gfpflags);
81819f0f 3318
2408c550 3319 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3320 return s;
81819f0f 3321
94b528d0
EGM
3322 ret = slab_alloc(s, gfpflags, -1, caller);
3323
3324 /* Honor the call site pointer we recieved. */
ca2b84cb 3325 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3326
3327 return ret;
81819f0f
CL
3328}
3329
3330void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3331 int node, unsigned long caller)
81819f0f 3332{
aadb4bc4 3333 struct kmem_cache *s;
94b528d0 3334 void *ret;
aadb4bc4 3335
d3e14aa3
XF
3336 if (unlikely(size > SLUB_MAX_SIZE)) {
3337 ret = kmalloc_large_node(size, gfpflags, node);
3338
3339 trace_kmalloc_node(caller, ret,
3340 size, PAGE_SIZE << get_order(size),
3341 gfpflags, node);
3342
3343 return ret;
3344 }
eada35ef 3345
aadb4bc4 3346 s = get_slab(size, gfpflags);
81819f0f 3347
2408c550 3348 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3349 return s;
81819f0f 3350
94b528d0
EGM
3351 ret = slab_alloc(s, gfpflags, node, caller);
3352
3353 /* Honor the call site pointer we recieved. */
ca2b84cb 3354 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3355
3356 return ret;
81819f0f
CL
3357}
3358
f6acb635 3359#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3360static int count_inuse(struct page *page)
3361{
3362 return page->inuse;
3363}
3364
3365static int count_total(struct page *page)
3366{
3367 return page->objects;
3368}
3369
434e245d
CL
3370static int validate_slab(struct kmem_cache *s, struct page *page,
3371 unsigned long *map)
53e15af0
CL
3372{
3373 void *p;
a973e9dd 3374 void *addr = page_address(page);
53e15af0
CL
3375
3376 if (!check_slab(s, page) ||
3377 !on_freelist(s, page, NULL))
3378 return 0;
3379
3380 /* Now we know that a valid freelist exists */
39b26464 3381 bitmap_zero(map, page->objects);
53e15af0 3382
7656c72b
CL
3383 for_each_free_object(p, s, page->freelist) {
3384 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3385 if (!check_object(s, page, p, 0))
3386 return 0;
3387 }
3388
224a88be 3389 for_each_object(p, s, addr, page->objects)
7656c72b 3390 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3391 if (!check_object(s, page, p, 1))
3392 return 0;
3393 return 1;
3394}
3395
434e245d
CL
3396static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3397 unsigned long *map)
53e15af0
CL
3398{
3399 if (slab_trylock(page)) {
434e245d 3400 validate_slab(s, page, map);
53e15af0
CL
3401 slab_unlock(page);
3402 } else
3403 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3404 s->name, page);
3405
3406 if (s->flags & DEBUG_DEFAULT_FLAGS) {
8a38082d
AW
3407 if (!PageSlubDebug(page))
3408 printk(KERN_ERR "SLUB %s: SlubDebug not set "
53e15af0
CL
3409 "on slab 0x%p\n", s->name, page);
3410 } else {
8a38082d
AW
3411 if (PageSlubDebug(page))
3412 printk(KERN_ERR "SLUB %s: SlubDebug set on "
53e15af0
CL
3413 "slab 0x%p\n", s->name, page);
3414 }
3415}
3416
434e245d
CL
3417static int validate_slab_node(struct kmem_cache *s,
3418 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3419{
3420 unsigned long count = 0;
3421 struct page *page;
3422 unsigned long flags;
3423
3424 spin_lock_irqsave(&n->list_lock, flags);
3425
3426 list_for_each_entry(page, &n->partial, lru) {
434e245d 3427 validate_slab_slab(s, page, map);
53e15af0
CL
3428 count++;
3429 }
3430 if (count != n->nr_partial)
3431 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3432 "counter=%ld\n", s->name, count, n->nr_partial);
3433
3434 if (!(s->flags & SLAB_STORE_USER))
3435 goto out;
3436
3437 list_for_each_entry(page, &n->full, lru) {
434e245d 3438 validate_slab_slab(s, page, map);
53e15af0
CL
3439 count++;
3440 }
3441 if (count != atomic_long_read(&n->nr_slabs))
3442 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3443 "counter=%ld\n", s->name, count,
3444 atomic_long_read(&n->nr_slabs));
3445
3446out:
3447 spin_unlock_irqrestore(&n->list_lock, flags);
3448 return count;
3449}
3450
434e245d 3451static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3452{
3453 int node;
3454 unsigned long count = 0;
205ab99d 3455 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3456 sizeof(unsigned long), GFP_KERNEL);
3457
3458 if (!map)
3459 return -ENOMEM;
53e15af0
CL
3460
3461 flush_all(s);
f64dc58c 3462 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3463 struct kmem_cache_node *n = get_node(s, node);
3464
434e245d 3465 count += validate_slab_node(s, n, map);
53e15af0 3466 }
434e245d 3467 kfree(map);
53e15af0
CL
3468 return count;
3469}
3470
b3459709
CL
3471#ifdef SLUB_RESILIENCY_TEST
3472static void resiliency_test(void)
3473{
3474 u8 *p;
3475
3476 printk(KERN_ERR "SLUB resiliency testing\n");
3477 printk(KERN_ERR "-----------------------\n");
3478 printk(KERN_ERR "A. Corruption after allocation\n");
3479
3480 p = kzalloc(16, GFP_KERNEL);
3481 p[16] = 0x12;
3482 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3483 " 0x12->0x%p\n\n", p + 16);
3484
3485 validate_slab_cache(kmalloc_caches + 4);
3486
3487 /* Hmmm... The next two are dangerous */
3488 p = kzalloc(32, GFP_KERNEL);
3489 p[32 + sizeof(void *)] = 0x34;
3490 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3491 " 0x34 -> -0x%p\n", p);
3492 printk(KERN_ERR
3493 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3494
3495 validate_slab_cache(kmalloc_caches + 5);
3496 p = kzalloc(64, GFP_KERNEL);
3497 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3498 *p = 0x56;
3499 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3500 p);
3adbefee
IM
3501 printk(KERN_ERR
3502 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3503 validate_slab_cache(kmalloc_caches + 6);
3504
3505 printk(KERN_ERR "\nB. Corruption after free\n");
3506 p = kzalloc(128, GFP_KERNEL);
3507 kfree(p);
3508 *p = 0x78;
3509 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3510 validate_slab_cache(kmalloc_caches + 7);
3511
3512 p = kzalloc(256, GFP_KERNEL);
3513 kfree(p);
3514 p[50] = 0x9a;
3adbefee
IM
3515 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3516 p);
b3459709
CL
3517 validate_slab_cache(kmalloc_caches + 8);
3518
3519 p = kzalloc(512, GFP_KERNEL);
3520 kfree(p);
3521 p[512] = 0xab;
3522 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3523 validate_slab_cache(kmalloc_caches + 9);
3524}
3525#else
3526static void resiliency_test(void) {};
3527#endif
3528
88a420e4 3529/*
672bba3a 3530 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3531 * and freed.
3532 */
3533
3534struct location {
3535 unsigned long count;
ce71e27c 3536 unsigned long addr;
45edfa58
CL
3537 long long sum_time;
3538 long min_time;
3539 long max_time;
3540 long min_pid;
3541 long max_pid;
174596a0 3542 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3543 nodemask_t nodes;
88a420e4
CL
3544};
3545
3546struct loc_track {
3547 unsigned long max;
3548 unsigned long count;
3549 struct location *loc;
3550};
3551
3552static void free_loc_track(struct loc_track *t)
3553{
3554 if (t->max)
3555 free_pages((unsigned long)t->loc,
3556 get_order(sizeof(struct location) * t->max));
3557}
3558
68dff6a9 3559static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3560{
3561 struct location *l;
3562 int order;
3563
88a420e4
CL
3564 order = get_order(sizeof(struct location) * max);
3565
68dff6a9 3566 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3567 if (!l)
3568 return 0;
3569
3570 if (t->count) {
3571 memcpy(l, t->loc, sizeof(struct location) * t->count);
3572 free_loc_track(t);
3573 }
3574 t->max = max;
3575 t->loc = l;
3576 return 1;
3577}
3578
3579static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3580 const struct track *track)
88a420e4
CL
3581{
3582 long start, end, pos;
3583 struct location *l;
ce71e27c 3584 unsigned long caddr;
45edfa58 3585 unsigned long age = jiffies - track->when;
88a420e4
CL
3586
3587 start = -1;
3588 end = t->count;
3589
3590 for ( ; ; ) {
3591 pos = start + (end - start + 1) / 2;
3592
3593 /*
3594 * There is nothing at "end". If we end up there
3595 * we need to add something to before end.
3596 */
3597 if (pos == end)
3598 break;
3599
3600 caddr = t->loc[pos].addr;
45edfa58
CL
3601 if (track->addr == caddr) {
3602
3603 l = &t->loc[pos];
3604 l->count++;
3605 if (track->when) {
3606 l->sum_time += age;
3607 if (age < l->min_time)
3608 l->min_time = age;
3609 if (age > l->max_time)
3610 l->max_time = age;
3611
3612 if (track->pid < l->min_pid)
3613 l->min_pid = track->pid;
3614 if (track->pid > l->max_pid)
3615 l->max_pid = track->pid;
3616
174596a0
RR
3617 cpumask_set_cpu(track->cpu,
3618 to_cpumask(l->cpus));
45edfa58
CL
3619 }
3620 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3621 return 1;
3622 }
3623
45edfa58 3624 if (track->addr < caddr)
88a420e4
CL
3625 end = pos;
3626 else
3627 start = pos;
3628 }
3629
3630 /*
672bba3a 3631 * Not found. Insert new tracking element.
88a420e4 3632 */
68dff6a9 3633 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3634 return 0;
3635
3636 l = t->loc + pos;
3637 if (pos < t->count)
3638 memmove(l + 1, l,
3639 (t->count - pos) * sizeof(struct location));
3640 t->count++;
3641 l->count = 1;
45edfa58
CL
3642 l->addr = track->addr;
3643 l->sum_time = age;
3644 l->min_time = age;
3645 l->max_time = age;
3646 l->min_pid = track->pid;
3647 l->max_pid = track->pid;
174596a0
RR
3648 cpumask_clear(to_cpumask(l->cpus));
3649 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3650 nodes_clear(l->nodes);
3651 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3652 return 1;
3653}
3654
3655static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b
ED
3656 struct page *page, enum track_item alloc,
3657 long *map)
88a420e4 3658{
a973e9dd 3659 void *addr = page_address(page);
88a420e4
CL
3660 void *p;
3661
39b26464 3662 bitmap_zero(map, page->objects);
7656c72b
CL
3663 for_each_free_object(p, s, page->freelist)
3664 set_bit(slab_index(p, s, addr), map);
88a420e4 3665
224a88be 3666 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3667 if (!test_bit(slab_index(p, s, addr), map))
3668 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3669}
3670
3671static int list_locations(struct kmem_cache *s, char *buf,
3672 enum track_item alloc)
3673{
e374d483 3674 int len = 0;
88a420e4 3675 unsigned long i;
68dff6a9 3676 struct loc_track t = { 0, 0, NULL };
88a420e4 3677 int node;
bbd7d57b
ED
3678 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3679 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3680
bbd7d57b
ED
3681 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3682 GFP_TEMPORARY)) {
3683 kfree(map);
68dff6a9 3684 return sprintf(buf, "Out of memory\n");
bbd7d57b 3685 }
88a420e4
CL
3686 /* Push back cpu slabs */
3687 flush_all(s);
3688
f64dc58c 3689 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3690 struct kmem_cache_node *n = get_node(s, node);
3691 unsigned long flags;
3692 struct page *page;
3693
9e86943b 3694 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3695 continue;
3696
3697 spin_lock_irqsave(&n->list_lock, flags);
3698 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3699 process_slab(&t, s, page, alloc, map);
88a420e4 3700 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3701 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3702 spin_unlock_irqrestore(&n->list_lock, flags);
3703 }
3704
3705 for (i = 0; i < t.count; i++) {
45edfa58 3706 struct location *l = &t.loc[i];
88a420e4 3707
9c246247 3708 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3709 break;
e374d483 3710 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3711
3712 if (l->addr)
e374d483 3713 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3714 else
e374d483 3715 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3716
3717 if (l->sum_time != l->min_time) {
e374d483 3718 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3719 l->min_time,
3720 (long)div_u64(l->sum_time, l->count),
3721 l->max_time);
45edfa58 3722 } else
e374d483 3723 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3724 l->min_time);
3725
3726 if (l->min_pid != l->max_pid)
e374d483 3727 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3728 l->min_pid, l->max_pid);
3729 else
e374d483 3730 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3731 l->min_pid);
3732
174596a0
RR
3733 if (num_online_cpus() > 1 &&
3734 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3735 len < PAGE_SIZE - 60) {
3736 len += sprintf(buf + len, " cpus=");
3737 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3738 to_cpumask(l->cpus));
45edfa58
CL
3739 }
3740
62bc62a8 3741 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3742 len < PAGE_SIZE - 60) {
3743 len += sprintf(buf + len, " nodes=");
3744 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3745 l->nodes);
3746 }
3747
e374d483 3748 len += sprintf(buf + len, "\n");
88a420e4
CL
3749 }
3750
3751 free_loc_track(&t);
bbd7d57b 3752 kfree(map);
88a420e4 3753 if (!t.count)
e374d483
HH
3754 len += sprintf(buf, "No data\n");
3755 return len;
88a420e4
CL
3756}
3757
81819f0f 3758enum slab_stat_type {
205ab99d
CL
3759 SL_ALL, /* All slabs */
3760 SL_PARTIAL, /* Only partially allocated slabs */
3761 SL_CPU, /* Only slabs used for cpu caches */
3762 SL_OBJECTS, /* Determine allocated objects not slabs */
3763 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3764};
3765
205ab99d 3766#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3767#define SO_PARTIAL (1 << SL_PARTIAL)
3768#define SO_CPU (1 << SL_CPU)
3769#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3770#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3771
62e5c4b4
CG
3772static ssize_t show_slab_objects(struct kmem_cache *s,
3773 char *buf, unsigned long flags)
81819f0f
CL
3774{
3775 unsigned long total = 0;
81819f0f
CL
3776 int node;
3777 int x;
3778 unsigned long *nodes;
3779 unsigned long *per_cpu;
3780
3781 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3782 if (!nodes)
3783 return -ENOMEM;
81819f0f
CL
3784 per_cpu = nodes + nr_node_ids;
3785
205ab99d
CL
3786 if (flags & SO_CPU) {
3787 int cpu;
81819f0f 3788
205ab99d 3789 for_each_possible_cpu(cpu) {
9dfc6e68 3790 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3791
205ab99d
CL
3792 if (!c || c->node < 0)
3793 continue;
3794
3795 if (c->page) {
3796 if (flags & SO_TOTAL)
3797 x = c->page->objects;
3798 else if (flags & SO_OBJECTS)
3799 x = c->page->inuse;
81819f0f
CL
3800 else
3801 x = 1;
205ab99d 3802
81819f0f 3803 total += x;
205ab99d 3804 nodes[c->node] += x;
81819f0f 3805 }
205ab99d 3806 per_cpu[c->node]++;
81819f0f
CL
3807 }
3808 }
3809
205ab99d
CL
3810 if (flags & SO_ALL) {
3811 for_each_node_state(node, N_NORMAL_MEMORY) {
3812 struct kmem_cache_node *n = get_node(s, node);
3813
3814 if (flags & SO_TOTAL)
3815 x = atomic_long_read(&n->total_objects);
3816 else if (flags & SO_OBJECTS)
3817 x = atomic_long_read(&n->total_objects) -
3818 count_partial(n, count_free);
81819f0f 3819
81819f0f 3820 else
205ab99d 3821 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3822 total += x;
3823 nodes[node] += x;
3824 }
3825
205ab99d
CL
3826 } else if (flags & SO_PARTIAL) {
3827 for_each_node_state(node, N_NORMAL_MEMORY) {
3828 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3829
205ab99d
CL
3830 if (flags & SO_TOTAL)
3831 x = count_partial(n, count_total);
3832 else if (flags & SO_OBJECTS)
3833 x = count_partial(n, count_inuse);
81819f0f 3834 else
205ab99d 3835 x = n->nr_partial;
81819f0f
CL
3836 total += x;
3837 nodes[node] += x;
3838 }
3839 }
81819f0f
CL
3840 x = sprintf(buf, "%lu", total);
3841#ifdef CONFIG_NUMA
f64dc58c 3842 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3843 if (nodes[node])
3844 x += sprintf(buf + x, " N%d=%lu",
3845 node, nodes[node]);
3846#endif
3847 kfree(nodes);
3848 return x + sprintf(buf + x, "\n");
3849}
3850
3851static int any_slab_objects(struct kmem_cache *s)
3852{
3853 int node;
81819f0f 3854
dfb4f096 3855 for_each_online_node(node) {
81819f0f
CL
3856 struct kmem_cache_node *n = get_node(s, node);
3857
dfb4f096
CL
3858 if (!n)
3859 continue;
3860
4ea33e2d 3861 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3862 return 1;
3863 }
3864 return 0;
3865}
3866
3867#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3868#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3869
3870struct slab_attribute {
3871 struct attribute attr;
3872 ssize_t (*show)(struct kmem_cache *s, char *buf);
3873 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3874};
3875
3876#define SLAB_ATTR_RO(_name) \
3877 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3878
3879#define SLAB_ATTR(_name) \
3880 static struct slab_attribute _name##_attr = \
3881 __ATTR(_name, 0644, _name##_show, _name##_store)
3882
81819f0f
CL
3883static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3884{
3885 return sprintf(buf, "%d\n", s->size);
3886}
3887SLAB_ATTR_RO(slab_size);
3888
3889static ssize_t align_show(struct kmem_cache *s, char *buf)
3890{
3891 return sprintf(buf, "%d\n", s->align);
3892}
3893SLAB_ATTR_RO(align);
3894
3895static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3896{
3897 return sprintf(buf, "%d\n", s->objsize);
3898}
3899SLAB_ATTR_RO(object_size);
3900
3901static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3902{
834f3d11 3903 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3904}
3905SLAB_ATTR_RO(objs_per_slab);
3906
06b285dc
CL
3907static ssize_t order_store(struct kmem_cache *s,
3908 const char *buf, size_t length)
3909{
0121c619
CL
3910 unsigned long order;
3911 int err;
3912
3913 err = strict_strtoul(buf, 10, &order);
3914 if (err)
3915 return err;
06b285dc
CL
3916
3917 if (order > slub_max_order || order < slub_min_order)
3918 return -EINVAL;
3919
3920 calculate_sizes(s, order);
3921 return length;
3922}
3923
81819f0f
CL
3924static ssize_t order_show(struct kmem_cache *s, char *buf)
3925{
834f3d11 3926 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3927}
06b285dc 3928SLAB_ATTR(order);
81819f0f 3929
73d342b1
DR
3930static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3931{
3932 return sprintf(buf, "%lu\n", s->min_partial);
3933}
3934
3935static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3936 size_t length)
3937{
3938 unsigned long min;
3939 int err;
3940
3941 err = strict_strtoul(buf, 10, &min);
3942 if (err)
3943 return err;
3944
c0bdb232 3945 set_min_partial(s, min);
73d342b1
DR
3946 return length;
3947}
3948SLAB_ATTR(min_partial);
3949
81819f0f
CL
3950static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3951{
3952 if (s->ctor) {
3953 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3954
3955 return n + sprintf(buf + n, "\n");
3956 }
3957 return 0;
3958}
3959SLAB_ATTR_RO(ctor);
3960
81819f0f
CL
3961static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3962{
3963 return sprintf(buf, "%d\n", s->refcount - 1);
3964}
3965SLAB_ATTR_RO(aliases);
3966
3967static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3968{
205ab99d 3969 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3970}
3971SLAB_ATTR_RO(slabs);
3972
3973static ssize_t partial_show(struct kmem_cache *s, char *buf)
3974{
d9acf4b7 3975 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3976}
3977SLAB_ATTR_RO(partial);
3978
3979static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3980{
d9acf4b7 3981 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3982}
3983SLAB_ATTR_RO(cpu_slabs);
3984
3985static ssize_t objects_show(struct kmem_cache *s, char *buf)
3986{
205ab99d 3987 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3988}
3989SLAB_ATTR_RO(objects);
3990
205ab99d
CL
3991static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3992{
3993 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3994}
3995SLAB_ATTR_RO(objects_partial);
3996
3997static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3998{
3999 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4000}
4001SLAB_ATTR_RO(total_objects);
4002
81819f0f
CL
4003static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4004{
4005 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4006}
4007
4008static ssize_t sanity_checks_store(struct kmem_cache *s,
4009 const char *buf, size_t length)
4010{
4011 s->flags &= ~SLAB_DEBUG_FREE;
4012 if (buf[0] == '1')
4013 s->flags |= SLAB_DEBUG_FREE;
4014 return length;
4015}
4016SLAB_ATTR(sanity_checks);
4017
4018static ssize_t trace_show(struct kmem_cache *s, char *buf)
4019{
4020 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4021}
4022
4023static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4024 size_t length)
4025{
4026 s->flags &= ~SLAB_TRACE;
4027 if (buf[0] == '1')
4028 s->flags |= SLAB_TRACE;
4029 return length;
4030}
4031SLAB_ATTR(trace);
4032
4c13dd3b
DM
4033#ifdef CONFIG_FAILSLAB
4034static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4035{
4036 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4037}
4038
4039static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4040 size_t length)
4041{
4042 s->flags &= ~SLAB_FAILSLAB;
4043 if (buf[0] == '1')
4044 s->flags |= SLAB_FAILSLAB;
4045 return length;
4046}
4047SLAB_ATTR(failslab);
4048#endif
4049
81819f0f
CL
4050static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4051{
4052 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4053}
4054
4055static ssize_t reclaim_account_store(struct kmem_cache *s,
4056 const char *buf, size_t length)
4057{
4058 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4059 if (buf[0] == '1')
4060 s->flags |= SLAB_RECLAIM_ACCOUNT;
4061 return length;
4062}
4063SLAB_ATTR(reclaim_account);
4064
4065static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4066{
5af60839 4067 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4068}
4069SLAB_ATTR_RO(hwcache_align);
4070
4071#ifdef CONFIG_ZONE_DMA
4072static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4073{
4074 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4075}
4076SLAB_ATTR_RO(cache_dma);
4077#endif
4078
4079static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4080{
4081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4082}
4083SLAB_ATTR_RO(destroy_by_rcu);
4084
4085static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4086{
4087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4088}
4089
4090static ssize_t red_zone_store(struct kmem_cache *s,
4091 const char *buf, size_t length)
4092{
4093 if (any_slab_objects(s))
4094 return -EBUSY;
4095
4096 s->flags &= ~SLAB_RED_ZONE;
4097 if (buf[0] == '1')
4098 s->flags |= SLAB_RED_ZONE;
06b285dc 4099 calculate_sizes(s, -1);
81819f0f
CL
4100 return length;
4101}
4102SLAB_ATTR(red_zone);
4103
4104static ssize_t poison_show(struct kmem_cache *s, char *buf)
4105{
4106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4107}
4108
4109static ssize_t poison_store(struct kmem_cache *s,
4110 const char *buf, size_t length)
4111{
4112 if (any_slab_objects(s))
4113 return -EBUSY;
4114
4115 s->flags &= ~SLAB_POISON;
4116 if (buf[0] == '1')
4117 s->flags |= SLAB_POISON;
06b285dc 4118 calculate_sizes(s, -1);
81819f0f
CL
4119 return length;
4120}
4121SLAB_ATTR(poison);
4122
4123static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4124{
4125 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4126}
4127
4128static ssize_t store_user_store(struct kmem_cache *s,
4129 const char *buf, size_t length)
4130{
4131 if (any_slab_objects(s))
4132 return -EBUSY;
4133
4134 s->flags &= ~SLAB_STORE_USER;
4135 if (buf[0] == '1')
4136 s->flags |= SLAB_STORE_USER;
06b285dc 4137 calculate_sizes(s, -1);
81819f0f
CL
4138 return length;
4139}
4140SLAB_ATTR(store_user);
4141
53e15af0
CL
4142static ssize_t validate_show(struct kmem_cache *s, char *buf)
4143{
4144 return 0;
4145}
4146
4147static ssize_t validate_store(struct kmem_cache *s,
4148 const char *buf, size_t length)
4149{
434e245d
CL
4150 int ret = -EINVAL;
4151
4152 if (buf[0] == '1') {
4153 ret = validate_slab_cache(s);
4154 if (ret >= 0)
4155 ret = length;
4156 }
4157 return ret;
53e15af0
CL
4158}
4159SLAB_ATTR(validate);
4160
2086d26a
CL
4161static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4162{
4163 return 0;
4164}
4165
4166static ssize_t shrink_store(struct kmem_cache *s,
4167 const char *buf, size_t length)
4168{
4169 if (buf[0] == '1') {
4170 int rc = kmem_cache_shrink(s);
4171
4172 if (rc)
4173 return rc;
4174 } else
4175 return -EINVAL;
4176 return length;
4177}
4178SLAB_ATTR(shrink);
4179
88a420e4
CL
4180static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4181{
4182 if (!(s->flags & SLAB_STORE_USER))
4183 return -ENOSYS;
4184 return list_locations(s, buf, TRACK_ALLOC);
4185}
4186SLAB_ATTR_RO(alloc_calls);
4187
4188static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4189{
4190 if (!(s->flags & SLAB_STORE_USER))
4191 return -ENOSYS;
4192 return list_locations(s, buf, TRACK_FREE);
4193}
4194SLAB_ATTR_RO(free_calls);
4195
81819f0f 4196#ifdef CONFIG_NUMA
9824601e 4197static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4198{
9824601e 4199 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4200}
4201
9824601e 4202static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4203 const char *buf, size_t length)
4204{
0121c619
CL
4205 unsigned long ratio;
4206 int err;
4207
4208 err = strict_strtoul(buf, 10, &ratio);
4209 if (err)
4210 return err;
4211
e2cb96b7 4212 if (ratio <= 100)
0121c619 4213 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4214
81819f0f
CL
4215 return length;
4216}
9824601e 4217SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4218#endif
4219
8ff12cfc 4220#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4221static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4222{
4223 unsigned long sum = 0;
4224 int cpu;
4225 int len;
4226 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4227
4228 if (!data)
4229 return -ENOMEM;
4230
4231 for_each_online_cpu(cpu) {
9dfc6e68 4232 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4233
4234 data[cpu] = x;
4235 sum += x;
4236 }
4237
4238 len = sprintf(buf, "%lu", sum);
4239
50ef37b9 4240#ifdef CONFIG_SMP
8ff12cfc
CL
4241 for_each_online_cpu(cpu) {
4242 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4243 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4244 }
50ef37b9 4245#endif
8ff12cfc
CL
4246 kfree(data);
4247 return len + sprintf(buf + len, "\n");
4248}
4249
78eb00cc
DR
4250static void clear_stat(struct kmem_cache *s, enum stat_item si)
4251{
4252 int cpu;
4253
4254 for_each_online_cpu(cpu)
9dfc6e68 4255 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4256}
4257
8ff12cfc
CL
4258#define STAT_ATTR(si, text) \
4259static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4260{ \
4261 return show_stat(s, buf, si); \
4262} \
78eb00cc
DR
4263static ssize_t text##_store(struct kmem_cache *s, \
4264 const char *buf, size_t length) \
4265{ \
4266 if (buf[0] != '0') \
4267 return -EINVAL; \
4268 clear_stat(s, si); \
4269 return length; \
4270} \
4271SLAB_ATTR(text); \
8ff12cfc
CL
4272
4273STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4274STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4275STAT_ATTR(FREE_FASTPATH, free_fastpath);
4276STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4277STAT_ATTR(FREE_FROZEN, free_frozen);
4278STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4279STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4280STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4281STAT_ATTR(ALLOC_SLAB, alloc_slab);
4282STAT_ATTR(ALLOC_REFILL, alloc_refill);
4283STAT_ATTR(FREE_SLAB, free_slab);
4284STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4285STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4286STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4287STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4288STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4289STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4290STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4291#endif
4292
06428780 4293static struct attribute *slab_attrs[] = {
81819f0f
CL
4294 &slab_size_attr.attr,
4295 &object_size_attr.attr,
4296 &objs_per_slab_attr.attr,
4297 &order_attr.attr,
73d342b1 4298 &min_partial_attr.attr,
81819f0f 4299 &objects_attr.attr,
205ab99d
CL
4300 &objects_partial_attr.attr,
4301 &total_objects_attr.attr,
81819f0f
CL
4302 &slabs_attr.attr,
4303 &partial_attr.attr,
4304 &cpu_slabs_attr.attr,
4305 &ctor_attr.attr,
81819f0f
CL
4306 &aliases_attr.attr,
4307 &align_attr.attr,
4308 &sanity_checks_attr.attr,
4309 &trace_attr.attr,
4310 &hwcache_align_attr.attr,
4311 &reclaim_account_attr.attr,
4312 &destroy_by_rcu_attr.attr,
4313 &red_zone_attr.attr,
4314 &poison_attr.attr,
4315 &store_user_attr.attr,
53e15af0 4316 &validate_attr.attr,
2086d26a 4317 &shrink_attr.attr,
88a420e4
CL
4318 &alloc_calls_attr.attr,
4319 &free_calls_attr.attr,
81819f0f
CL
4320#ifdef CONFIG_ZONE_DMA
4321 &cache_dma_attr.attr,
4322#endif
4323#ifdef CONFIG_NUMA
9824601e 4324 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4325#endif
4326#ifdef CONFIG_SLUB_STATS
4327 &alloc_fastpath_attr.attr,
4328 &alloc_slowpath_attr.attr,
4329 &free_fastpath_attr.attr,
4330 &free_slowpath_attr.attr,
4331 &free_frozen_attr.attr,
4332 &free_add_partial_attr.attr,
4333 &free_remove_partial_attr.attr,
4334 &alloc_from_partial_attr.attr,
4335 &alloc_slab_attr.attr,
4336 &alloc_refill_attr.attr,
4337 &free_slab_attr.attr,
4338 &cpuslab_flush_attr.attr,
4339 &deactivate_full_attr.attr,
4340 &deactivate_empty_attr.attr,
4341 &deactivate_to_head_attr.attr,
4342 &deactivate_to_tail_attr.attr,
4343 &deactivate_remote_frees_attr.attr,
65c3376a 4344 &order_fallback_attr.attr,
81819f0f 4345#endif
4c13dd3b
DM
4346#ifdef CONFIG_FAILSLAB
4347 &failslab_attr.attr,
4348#endif
4349
81819f0f
CL
4350 NULL
4351};
4352
4353static struct attribute_group slab_attr_group = {
4354 .attrs = slab_attrs,
4355};
4356
4357static ssize_t slab_attr_show(struct kobject *kobj,
4358 struct attribute *attr,
4359 char *buf)
4360{
4361 struct slab_attribute *attribute;
4362 struct kmem_cache *s;
4363 int err;
4364
4365 attribute = to_slab_attr(attr);
4366 s = to_slab(kobj);
4367
4368 if (!attribute->show)
4369 return -EIO;
4370
4371 err = attribute->show(s, buf);
4372
4373 return err;
4374}
4375
4376static ssize_t slab_attr_store(struct kobject *kobj,
4377 struct attribute *attr,
4378 const char *buf, size_t len)
4379{
4380 struct slab_attribute *attribute;
4381 struct kmem_cache *s;
4382 int err;
4383
4384 attribute = to_slab_attr(attr);
4385 s = to_slab(kobj);
4386
4387 if (!attribute->store)
4388 return -EIO;
4389
4390 err = attribute->store(s, buf, len);
4391
4392 return err;
4393}
4394
151c602f
CL
4395static void kmem_cache_release(struct kobject *kobj)
4396{
4397 struct kmem_cache *s = to_slab(kobj);
4398
4399 kfree(s);
4400}
4401
52cf25d0 4402static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4403 .show = slab_attr_show,
4404 .store = slab_attr_store,
4405};
4406
4407static struct kobj_type slab_ktype = {
4408 .sysfs_ops = &slab_sysfs_ops,
151c602f 4409 .release = kmem_cache_release
81819f0f
CL
4410};
4411
4412static int uevent_filter(struct kset *kset, struct kobject *kobj)
4413{
4414 struct kobj_type *ktype = get_ktype(kobj);
4415
4416 if (ktype == &slab_ktype)
4417 return 1;
4418 return 0;
4419}
4420
9cd43611 4421static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4422 .filter = uevent_filter,
4423};
4424
27c3a314 4425static struct kset *slab_kset;
81819f0f
CL
4426
4427#define ID_STR_LENGTH 64
4428
4429/* Create a unique string id for a slab cache:
6446faa2
CL
4430 *
4431 * Format :[flags-]size
81819f0f
CL
4432 */
4433static char *create_unique_id(struct kmem_cache *s)
4434{
4435 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4436 char *p = name;
4437
4438 BUG_ON(!name);
4439
4440 *p++ = ':';
4441 /*
4442 * First flags affecting slabcache operations. We will only
4443 * get here for aliasable slabs so we do not need to support
4444 * too many flags. The flags here must cover all flags that
4445 * are matched during merging to guarantee that the id is
4446 * unique.
4447 */
4448 if (s->flags & SLAB_CACHE_DMA)
4449 *p++ = 'd';
4450 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4451 *p++ = 'a';
4452 if (s->flags & SLAB_DEBUG_FREE)
4453 *p++ = 'F';
5a896d9e
VN
4454 if (!(s->flags & SLAB_NOTRACK))
4455 *p++ = 't';
81819f0f
CL
4456 if (p != name + 1)
4457 *p++ = '-';
4458 p += sprintf(p, "%07d", s->size);
4459 BUG_ON(p > name + ID_STR_LENGTH - 1);
4460 return name;
4461}
4462
4463static int sysfs_slab_add(struct kmem_cache *s)
4464{
4465 int err;
4466 const char *name;
4467 int unmergeable;
4468
4469 if (slab_state < SYSFS)
4470 /* Defer until later */
4471 return 0;
4472
4473 unmergeable = slab_unmergeable(s);
4474 if (unmergeable) {
4475 /*
4476 * Slabcache can never be merged so we can use the name proper.
4477 * This is typically the case for debug situations. In that
4478 * case we can catch duplicate names easily.
4479 */
27c3a314 4480 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4481 name = s->name;
4482 } else {
4483 /*
4484 * Create a unique name for the slab as a target
4485 * for the symlinks.
4486 */
4487 name = create_unique_id(s);
4488 }
4489
27c3a314 4490 s->kobj.kset = slab_kset;
1eada11c
GKH
4491 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4492 if (err) {
4493 kobject_put(&s->kobj);
81819f0f 4494 return err;
1eada11c 4495 }
81819f0f
CL
4496
4497 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4498 if (err) {
4499 kobject_del(&s->kobj);
4500 kobject_put(&s->kobj);
81819f0f 4501 return err;
5788d8ad 4502 }
81819f0f
CL
4503 kobject_uevent(&s->kobj, KOBJ_ADD);
4504 if (!unmergeable) {
4505 /* Setup first alias */
4506 sysfs_slab_alias(s, s->name);
4507 kfree(name);
4508 }
4509 return 0;
4510}
4511
4512static void sysfs_slab_remove(struct kmem_cache *s)
4513{
4514 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4515 kobject_del(&s->kobj);
151c602f 4516 kobject_put(&s->kobj);
81819f0f
CL
4517}
4518
4519/*
4520 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4521 * available lest we lose that information.
81819f0f
CL
4522 */
4523struct saved_alias {
4524 struct kmem_cache *s;
4525 const char *name;
4526 struct saved_alias *next;
4527};
4528
5af328a5 4529static struct saved_alias *alias_list;
81819f0f
CL
4530
4531static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4532{
4533 struct saved_alias *al;
4534
4535 if (slab_state == SYSFS) {
4536 /*
4537 * If we have a leftover link then remove it.
4538 */
27c3a314
GKH
4539 sysfs_remove_link(&slab_kset->kobj, name);
4540 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4541 }
4542
4543 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4544 if (!al)
4545 return -ENOMEM;
4546
4547 al->s = s;
4548 al->name = name;
4549 al->next = alias_list;
4550 alias_list = al;
4551 return 0;
4552}
4553
4554static int __init slab_sysfs_init(void)
4555{
5b95a4ac 4556 struct kmem_cache *s;
81819f0f
CL
4557 int err;
4558
0ff21e46 4559 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4560 if (!slab_kset) {
81819f0f
CL
4561 printk(KERN_ERR "Cannot register slab subsystem.\n");
4562 return -ENOSYS;
4563 }
4564
26a7bd03
CL
4565 slab_state = SYSFS;
4566
5b95a4ac 4567 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4568 err = sysfs_slab_add(s);
5d540fb7
CL
4569 if (err)
4570 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4571 " to sysfs\n", s->name);
26a7bd03 4572 }
81819f0f
CL
4573
4574 while (alias_list) {
4575 struct saved_alias *al = alias_list;
4576
4577 alias_list = alias_list->next;
4578 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4579 if (err)
4580 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4581 " %s to sysfs\n", s->name);
81819f0f
CL
4582 kfree(al);
4583 }
4584
4585 resiliency_test();
4586 return 0;
4587}
4588
4589__initcall(slab_sysfs_init);
81819f0f 4590#endif
57ed3eda
PE
4591
4592/*
4593 * The /proc/slabinfo ABI
4594 */
158a9624 4595#ifdef CONFIG_SLABINFO
57ed3eda
PE
4596static void print_slabinfo_header(struct seq_file *m)
4597{
4598 seq_puts(m, "slabinfo - version: 2.1\n");
4599 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4600 "<objperslab> <pagesperslab>");
4601 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4602 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4603 seq_putc(m, '\n');
4604}
4605
4606static void *s_start(struct seq_file *m, loff_t *pos)
4607{
4608 loff_t n = *pos;
4609
4610 down_read(&slub_lock);
4611 if (!n)
4612 print_slabinfo_header(m);
4613
4614 return seq_list_start(&slab_caches, *pos);
4615}
4616
4617static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4618{
4619 return seq_list_next(p, &slab_caches, pos);
4620}
4621
4622static void s_stop(struct seq_file *m, void *p)
4623{
4624 up_read(&slub_lock);
4625}
4626
4627static int s_show(struct seq_file *m, void *p)
4628{
4629 unsigned long nr_partials = 0;
4630 unsigned long nr_slabs = 0;
4631 unsigned long nr_inuse = 0;
205ab99d
CL
4632 unsigned long nr_objs = 0;
4633 unsigned long nr_free = 0;
57ed3eda
PE
4634 struct kmem_cache *s;
4635 int node;
4636
4637 s = list_entry(p, struct kmem_cache, list);
4638
4639 for_each_online_node(node) {
4640 struct kmem_cache_node *n = get_node(s, node);
4641
4642 if (!n)
4643 continue;
4644
4645 nr_partials += n->nr_partial;
4646 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4647 nr_objs += atomic_long_read(&n->total_objects);
4648 nr_free += count_partial(n, count_free);
57ed3eda
PE
4649 }
4650
205ab99d 4651 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4652
4653 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4654 nr_objs, s->size, oo_objects(s->oo),
4655 (1 << oo_order(s->oo)));
57ed3eda
PE
4656 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4657 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4658 0UL);
4659 seq_putc(m, '\n');
4660 return 0;
4661}
4662
7b3c3a50 4663static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4664 .start = s_start,
4665 .next = s_next,
4666 .stop = s_stop,
4667 .show = s_show,
4668};
4669
7b3c3a50
AD
4670static int slabinfo_open(struct inode *inode, struct file *file)
4671{
4672 return seq_open(file, &slabinfo_op);
4673}
4674
4675static const struct file_operations proc_slabinfo_operations = {
4676 .open = slabinfo_open,
4677 .read = seq_read,
4678 .llseek = seq_lseek,
4679 .release = seq_release,
4680};
4681
4682static int __init slab_proc_init(void)
4683{
cf5d1131 4684 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4685 return 0;
4686}
4687module_init(slab_proc_init);
158a9624 4688#endif /* CONFIG_SLABINFO */