mm: optimize compound_head() by avoiding a shared page flag
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
69 * Slabs with free elements are kept on a partial list.
70 * There is no list for full slabs. If an object in a full slab is
71 * freed then the slab will show up again on the partial lists.
72 * Otherwise there is no need to track full slabs unless we have to
73 * track full slabs for debugging purposes.
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive The slab is used as a cpu cache. Allocations
82 * may be performed from the slab. The slab is not
83 * on any slab list and cannot be moved onto one.
84 *
85 * PageError Slab requires special handling due to debug
86 * options set. This moves slab handling out of
87 * the fast path.
88 */
89
90/*
91 * Issues still to be resolved:
92 *
93 * - The per cpu array is updated for each new slab and and is a remote
94 * cacheline for most nodes. This could become a bouncing cacheline given
95 * enough frequent updates. There are 16 pointers in a cacheline.so at
96 * max 16 cpus could compete. Likely okay.
97 *
98 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
99 *
100 * - Support DEBUG_SLAB_LEAK. Trouble is we do not know where the full
101 * slabs are in SLUB.
102 *
103 * - SLAB_DEBUG_INITIAL is not supported but I have never seen a use of
104 * it.
105 *
106 * - Variable sizing of the per node arrays
107 */
108
109/* Enable to test recovery from slab corruption on boot */
110#undef SLUB_RESILIENCY_TEST
111
112#if PAGE_SHIFT <= 12
113
114/*
115 * Small page size. Make sure that we do not fragment memory
116 */
117#define DEFAULT_MAX_ORDER 1
118#define DEFAULT_MIN_OBJECTS 4
119
120#else
121
122/*
123 * Large page machines are customarily able to handle larger
124 * page orders.
125 */
126#define DEFAULT_MAX_ORDER 2
127#define DEFAULT_MIN_OBJECTS 8
128
129#endif
130
131/*
132 * Flags from the regular SLAB that SLUB does not support:
133 */
134#define SLUB_UNIMPLEMENTED (SLAB_DEBUG_INITIAL)
135
136#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
137 SLAB_POISON | SLAB_STORE_USER)
138/*
139 * Set of flags that will prevent slab merging
140 */
141#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
142 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
143
144#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
145 SLAB_CACHE_DMA)
146
147#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 148#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
149#endif
150
151#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 152#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
153#endif
154
155/* Internal SLUB flags */
156#define __OBJECT_POISON 0x80000000 /* Poison object */
157
158static int kmem_size = sizeof(struct kmem_cache);
159
160#ifdef CONFIG_SMP
161static struct notifier_block slab_notifier;
162#endif
163
164static enum {
165 DOWN, /* No slab functionality available */
166 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
167 UP, /* Everything works */
168 SYSFS /* Sysfs up */
169} slab_state = DOWN;
170
171/* A list of all slab caches on the system */
172static DECLARE_RWSEM(slub_lock);
173LIST_HEAD(slab_caches);
174
175#ifdef CONFIG_SYSFS
176static int sysfs_slab_add(struct kmem_cache *);
177static int sysfs_slab_alias(struct kmem_cache *, const char *);
178static void sysfs_slab_remove(struct kmem_cache *);
179#else
180static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
181static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
182static void sysfs_slab_remove(struct kmem_cache *s) {}
183#endif
184
185/********************************************************************
186 * Core slab cache functions
187 *******************************************************************/
188
189int slab_is_available(void)
190{
191 return slab_state >= UP;
192}
193
194static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
195{
196#ifdef CONFIG_NUMA
197 return s->node[node];
198#else
199 return &s->local_node;
200#endif
201}
202
203/*
204 * Object debugging
205 */
206static void print_section(char *text, u8 *addr, unsigned int length)
207{
208 int i, offset;
209 int newline = 1;
210 char ascii[17];
211
212 ascii[16] = 0;
213
214 for (i = 0; i < length; i++) {
215 if (newline) {
216 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
217 newline = 0;
218 }
219 printk(" %02x", addr[i]);
220 offset = i % 16;
221 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
222 if (offset == 15) {
223 printk(" %s\n",ascii);
224 newline = 1;
225 }
226 }
227 if (!newline) {
228 i %= 16;
229 while (i < 16) {
230 printk(" ");
231 ascii[i] = ' ';
232 i++;
233 }
234 printk(" %s\n", ascii);
235 }
236}
237
238/*
239 * Slow version of get and set free pointer.
240 *
241 * This requires touching the cache lines of kmem_cache.
242 * The offset can also be obtained from the page. In that
243 * case it is in the cacheline that we already need to touch.
244 */
245static void *get_freepointer(struct kmem_cache *s, void *object)
246{
247 return *(void **)(object + s->offset);
248}
249
250static void set_freepointer(struct kmem_cache *s, void *object, void *fp)
251{
252 *(void **)(object + s->offset) = fp;
253}
254
255/*
256 * Tracking user of a slab.
257 */
258struct track {
259 void *addr; /* Called from address */
260 int cpu; /* Was running on cpu */
261 int pid; /* Pid context */
262 unsigned long when; /* When did the operation occur */
263};
264
265enum track_item { TRACK_ALLOC, TRACK_FREE };
266
267static struct track *get_track(struct kmem_cache *s, void *object,
268 enum track_item alloc)
269{
270 struct track *p;
271
272 if (s->offset)
273 p = object + s->offset + sizeof(void *);
274 else
275 p = object + s->inuse;
276
277 return p + alloc;
278}
279
280static void set_track(struct kmem_cache *s, void *object,
281 enum track_item alloc, void *addr)
282{
283 struct track *p;
284
285 if (s->offset)
286 p = object + s->offset + sizeof(void *);
287 else
288 p = object + s->inuse;
289
290 p += alloc;
291 if (addr) {
292 p->addr = addr;
293 p->cpu = smp_processor_id();
294 p->pid = current ? current->pid : -1;
295 p->when = jiffies;
296 } else
297 memset(p, 0, sizeof(struct track));
298}
299
300#define set_tracking(__s, __o, __a) set_track(__s, __o, __a, \
301 __builtin_return_address(0))
302
303static void init_tracking(struct kmem_cache *s, void *object)
304{
305 if (s->flags & SLAB_STORE_USER) {
306 set_track(s, object, TRACK_FREE, NULL);
307 set_track(s, object, TRACK_ALLOC, NULL);
308 }
309}
310
311static void print_track(const char *s, struct track *t)
312{
313 if (!t->addr)
314 return;
315
316 printk(KERN_ERR "%s: ", s);
317 __print_symbol("%s", (unsigned long)t->addr);
318 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
319}
320
321static void print_trailer(struct kmem_cache *s, u8 *p)
322{
323 unsigned int off; /* Offset of last byte */
324
325 if (s->flags & SLAB_RED_ZONE)
326 print_section("Redzone", p + s->objsize,
327 s->inuse - s->objsize);
328
329 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
330 p + s->offset,
331 get_freepointer(s, p));
332
333 if (s->offset)
334 off = s->offset + sizeof(void *);
335 else
336 off = s->inuse;
337
338 if (s->flags & SLAB_STORE_USER) {
339 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
340 print_track("Last free ", get_track(s, p, TRACK_FREE));
341 off += 2 * sizeof(struct track);
342 }
343
344 if (off != s->size)
345 /* Beginning of the filler is the free pointer */
346 print_section("Filler", p + off, s->size - off);
347}
348
349static void object_err(struct kmem_cache *s, struct page *page,
350 u8 *object, char *reason)
351{
352 u8 *addr = page_address(page);
353
354 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
355 s->name, reason, object, page);
356 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
357 object - addr, page->flags, page->inuse, page->freelist);
358 if (object > addr + 16)
359 print_section("Bytes b4", object - 16, 16);
360 print_section("Object", object, min(s->objsize, 128));
361 print_trailer(s, object);
362 dump_stack();
363}
364
365static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
366{
367 va_list args;
368 char buf[100];
369
370 va_start(args, reason);
371 vsnprintf(buf, sizeof(buf), reason, args);
372 va_end(args);
373 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
374 page);
375 dump_stack();
376}
377
378static void init_object(struct kmem_cache *s, void *object, int active)
379{
380 u8 *p = object;
381
382 if (s->flags & __OBJECT_POISON) {
383 memset(p, POISON_FREE, s->objsize - 1);
384 p[s->objsize -1] = POISON_END;
385 }
386
387 if (s->flags & SLAB_RED_ZONE)
388 memset(p + s->objsize,
389 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
390 s->inuse - s->objsize);
391}
392
393static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
394{
395 while (bytes) {
396 if (*start != (u8)value)
397 return 0;
398 start++;
399 bytes--;
400 }
401 return 1;
402}
403
404
405static int check_valid_pointer(struct kmem_cache *s, struct page *page,
406 void *object)
407{
408 void *base;
409
410 if (!object)
411 return 1;
412
413 base = page_address(page);
414 if (object < base || object >= base + s->objects * s->size ||
415 (object - base) % s->size) {
416 return 0;
417 }
418
419 return 1;
420}
421
422/*
423 * Object layout:
424 *
425 * object address
426 * Bytes of the object to be managed.
427 * If the freepointer may overlay the object then the free
428 * pointer is the first word of the object.
429 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
430 * 0xa5 (POISON_END)
431 *
432 * object + s->objsize
433 * Padding to reach word boundary. This is also used for Redzoning.
434 * Padding is extended to word size if Redzoning is enabled
435 * and objsize == inuse.
436 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
437 * 0xcc (RED_ACTIVE) for objects in use.
438 *
439 * object + s->inuse
440 * A. Free pointer (if we cannot overwrite object on free)
441 * B. Tracking data for SLAB_STORE_USER
442 * C. Padding to reach required alignment boundary
443 * Padding is done using 0x5a (POISON_INUSE)
444 *
445 * object + s->size
446 *
447 * If slabcaches are merged then the objsize and inuse boundaries are to
448 * be ignored. And therefore no slab options that rely on these boundaries
449 * may be used with merged slabcaches.
450 */
451
452static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
453 void *from, void *to)
454{
455 printk(KERN_ERR "@@@ SLUB: %s Restoring %s (0x%x) from 0x%p-0x%p\n",
456 s->name, message, data, from, to - 1);
457 memset(from, data, to - from);
458}
459
460static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
461{
462 unsigned long off = s->inuse; /* The end of info */
463
464 if (s->offset)
465 /* Freepointer is placed after the object. */
466 off += sizeof(void *);
467
468 if (s->flags & SLAB_STORE_USER)
469 /* We also have user information there */
470 off += 2 * sizeof(struct track);
471
472 if (s->size == off)
473 return 1;
474
475 if (check_bytes(p + off, POISON_INUSE, s->size - off))
476 return 1;
477
478 object_err(s, page, p, "Object padding check fails");
479
480 /*
481 * Restore padding
482 */
483 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
484 return 0;
485}
486
487static int slab_pad_check(struct kmem_cache *s, struct page *page)
488{
489 u8 *p;
490 int length, remainder;
491
492 if (!(s->flags & SLAB_POISON))
493 return 1;
494
495 p = page_address(page);
496 length = s->objects * s->size;
497 remainder = (PAGE_SIZE << s->order) - length;
498 if (!remainder)
499 return 1;
500
501 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
502 printk(KERN_ERR "SLUB: %s slab 0x%p: Padding fails check\n",
503 s->name, p);
504 dump_stack();
505 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
506 p + length + remainder);
507 return 0;
508 }
509 return 1;
510}
511
512static int check_object(struct kmem_cache *s, struct page *page,
513 void *object, int active)
514{
515 u8 *p = object;
516 u8 *endobject = object + s->objsize;
517
518 if (s->flags & SLAB_RED_ZONE) {
519 unsigned int red =
520 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
521
522 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
523 object_err(s, page, object,
524 active ? "Redzone Active" : "Redzone Inactive");
525 restore_bytes(s, "redzone", red,
526 endobject, object + s->inuse);
527 return 0;
528 }
529 } else {
530 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
531 !check_bytes(endobject, POISON_INUSE,
532 s->inuse - s->objsize)) {
533 object_err(s, page, p, "Alignment padding check fails");
534 /*
535 * Fix it so that there will not be another report.
536 *
537 * Hmmm... We may be corrupting an object that now expects
538 * to be longer than allowed.
539 */
540 restore_bytes(s, "alignment padding", POISON_INUSE,
541 endobject, object + s->inuse);
542 }
543 }
544
545 if (s->flags & SLAB_POISON) {
546 if (!active && (s->flags & __OBJECT_POISON) &&
547 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
548 p[s->objsize - 1] != POISON_END)) {
549
550 object_err(s, page, p, "Poison check failed");
551 restore_bytes(s, "Poison", POISON_FREE,
552 p, p + s->objsize -1);
553 restore_bytes(s, "Poison", POISON_END,
554 p + s->objsize - 1, p + s->objsize);
555 return 0;
556 }
557 /*
558 * check_pad_bytes cleans up on its own.
559 */
560 check_pad_bytes(s, page, p);
561 }
562
563 if (!s->offset && active)
564 /*
565 * Object and freepointer overlap. Cannot check
566 * freepointer while object is allocated.
567 */
568 return 1;
569
570 /* Check free pointer validity */
571 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
572 object_err(s, page, p, "Freepointer corrupt");
573 /*
574 * No choice but to zap it and thus loose the remainder
575 * of the free objects in this slab. May cause
576 * another error because the object count maybe
577 * wrong now.
578 */
579 set_freepointer(s, p, NULL);
580 return 0;
581 }
582 return 1;
583}
584
585static int check_slab(struct kmem_cache *s, struct page *page)
586{
587 VM_BUG_ON(!irqs_disabled());
588
589 if (!PageSlab(page)) {
590 printk(KERN_ERR "SLUB: %s Not a valid slab page @0x%p "
591 "flags=%lx mapping=0x%p count=%d \n",
592 s->name, page, page->flags, page->mapping,
593 page_count(page));
594 return 0;
595 }
596 if (page->offset * sizeof(void *) != s->offset) {
597 printk(KERN_ERR "SLUB: %s Corrupted offset %lu in slab @0x%p"
598 " flags=0x%lx mapping=0x%p count=%d\n",
599 s->name,
600 (unsigned long)(page->offset * sizeof(void *)),
601 page,
602 page->flags,
603 page->mapping,
604 page_count(page));
605 dump_stack();
606 return 0;
607 }
608 if (page->inuse > s->objects) {
609 printk(KERN_ERR "SLUB: %s Inuse %u > max %u in slab "
610 "page @0x%p flags=%lx mapping=0x%p count=%d\n",
611 s->name, page->inuse, s->objects, page, page->flags,
612 page->mapping, page_count(page));
613 dump_stack();
614 return 0;
615 }
616 /* Slab_pad_check fixes things up after itself */
617 slab_pad_check(s, page);
618 return 1;
619}
620
621/*
622 * Determine if a certain object on a page is on the freelist and
623 * therefore free. Must hold the slab lock for cpu slabs to
624 * guarantee that the chains are consistent.
625 */
626static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
627{
628 int nr = 0;
629 void *fp = page->freelist;
630 void *object = NULL;
631
632 while (fp && nr <= s->objects) {
633 if (fp == search)
634 return 1;
635 if (!check_valid_pointer(s, page, fp)) {
636 if (object) {
637 object_err(s, page, object,
638 "Freechain corrupt");
639 set_freepointer(s, object, NULL);
640 break;
641 } else {
642 printk(KERN_ERR "SLUB: %s slab 0x%p "
643 "freepointer 0x%p corrupted.\n",
644 s->name, page, fp);
645 dump_stack();
646 page->freelist = NULL;
647 page->inuse = s->objects;
648 return 0;
649 }
650 break;
651 }
652 object = fp;
653 fp = get_freepointer(s, object);
654 nr++;
655 }
656
657 if (page->inuse != s->objects - nr) {
658 printk(KERN_ERR "slab %s: page 0x%p wrong object count."
659 " counter is %d but counted were %d\n",
660 s->name, page, page->inuse,
661 s->objects - nr);
662 page->inuse = s->objects - nr;
663 }
664 return search == NULL;
665}
666
667static int alloc_object_checks(struct kmem_cache *s, struct page *page,
668 void *object)
669{
670 if (!check_slab(s, page))
671 goto bad;
672
673 if (object && !on_freelist(s, page, object)) {
674 printk(KERN_ERR "SLUB: %s Object 0x%p@0x%p "
675 "already allocated.\n",
676 s->name, object, page);
677 goto dump;
678 }
679
680 if (!check_valid_pointer(s, page, object)) {
681 object_err(s, page, object, "Freelist Pointer check fails");
682 goto dump;
683 }
684
685 if (!object)
686 return 1;
687
688 if (!check_object(s, page, object, 0))
689 goto bad;
690 init_object(s, object, 1);
691
692 if (s->flags & SLAB_TRACE) {
693 printk(KERN_INFO "TRACE %s alloc 0x%p inuse=%d fp=0x%p\n",
694 s->name, object, page->inuse,
695 page->freelist);
696 dump_stack();
697 }
698 return 1;
699dump:
700 dump_stack();
701bad:
702 if (PageSlab(page)) {
703 /*
704 * If this is a slab page then lets do the best we can
705 * to avoid issues in the future. Marking all objects
706 * as used avoids touching the remainder.
707 */
708 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
709 s->name, page);
710 page->inuse = s->objects;
711 page->freelist = NULL;
712 /* Fix up fields that may be corrupted */
713 page->offset = s->offset / sizeof(void *);
714 }
715 return 0;
716}
717
718static int free_object_checks(struct kmem_cache *s, struct page *page,
719 void *object)
720{
721 if (!check_slab(s, page))
722 goto fail;
723
724 if (!check_valid_pointer(s, page, object)) {
725 printk(KERN_ERR "SLUB: %s slab 0x%p invalid "
726 "object pointer 0x%p\n",
727 s->name, page, object);
728 goto fail;
729 }
730
731 if (on_freelist(s, page, object)) {
732 printk(KERN_ERR "SLUB: %s slab 0x%p object "
733 "0x%p already free.\n", s->name, page, object);
734 goto fail;
735 }
736
737 if (!check_object(s, page, object, 1))
738 return 0;
739
740 if (unlikely(s != page->slab)) {
741 if (!PageSlab(page))
742 printk(KERN_ERR "slab_free %s size %d: attempt to"
743 "free object(0x%p) outside of slab.\n",
744 s->name, s->size, object);
745 else
746 if (!page->slab)
747 printk(KERN_ERR
748 "slab_free : no slab(NULL) for object 0x%p.\n",
749 object);
750 else
751 printk(KERN_ERR "slab_free %s(%d): object at 0x%p"
752 " belongs to slab %s(%d)\n",
753 s->name, s->size, object,
754 page->slab->name, page->slab->size);
755 goto fail;
756 }
757 if (s->flags & SLAB_TRACE) {
758 printk(KERN_INFO "TRACE %s free 0x%p inuse=%d fp=0x%p\n",
759 s->name, object, page->inuse,
760 page->freelist);
761 print_section("Object", object, s->objsize);
762 dump_stack();
763 }
764 init_object(s, object, 0);
765 return 1;
766fail:
767 dump_stack();
768 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
769 s->name, page, object);
770 return 0;
771}
772
773/*
774 * Slab allocation and freeing
775 */
776static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
777{
778 struct page * page;
779 int pages = 1 << s->order;
780
781 if (s->order)
782 flags |= __GFP_COMP;
783
784 if (s->flags & SLAB_CACHE_DMA)
785 flags |= SLUB_DMA;
786
787 if (node == -1)
788 page = alloc_pages(flags, s->order);
789 else
790 page = alloc_pages_node(node, flags, s->order);
791
792 if (!page)
793 return NULL;
794
795 mod_zone_page_state(page_zone(page),
796 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
797 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
798 pages);
799
800 return page;
801}
802
803static void setup_object(struct kmem_cache *s, struct page *page,
804 void *object)
805{
806 if (PageError(page)) {
807 init_object(s, object, 0);
808 init_tracking(s, object);
809 }
810
811 if (unlikely(s->ctor)) {
812 int mode = SLAB_CTOR_CONSTRUCTOR;
813
814 if (!(s->flags & __GFP_WAIT))
815 mode |= SLAB_CTOR_ATOMIC;
816
817 s->ctor(object, s, mode);
818 }
819}
820
821static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
822{
823 struct page *page;
824 struct kmem_cache_node *n;
825 void *start;
826 void *end;
827 void *last;
828 void *p;
829
830 if (flags & __GFP_NO_GROW)
831 return NULL;
832
833 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
834
835 if (flags & __GFP_WAIT)
836 local_irq_enable();
837
838 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
839 if (!page)
840 goto out;
841
842 n = get_node(s, page_to_nid(page));
843 if (n)
844 atomic_long_inc(&n->nr_slabs);
845 page->offset = s->offset / sizeof(void *);
846 page->slab = s;
847 page->flags |= 1 << PG_slab;
848 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
849 SLAB_STORE_USER | SLAB_TRACE))
850 page->flags |= 1 << PG_error;
851
852 start = page_address(page);
853 end = start + s->objects * s->size;
854
855 if (unlikely(s->flags & SLAB_POISON))
856 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
857
858 last = start;
859 for (p = start + s->size; p < end; p += s->size) {
860 setup_object(s, page, last);
861 set_freepointer(s, last, p);
862 last = p;
863 }
864 setup_object(s, page, last);
865 set_freepointer(s, last, NULL);
866
867 page->freelist = start;
868 page->inuse = 0;
869out:
870 if (flags & __GFP_WAIT)
871 local_irq_disable();
872 return page;
873}
874
875static void __free_slab(struct kmem_cache *s, struct page *page)
876{
877 int pages = 1 << s->order;
878
879 if (unlikely(PageError(page) || s->dtor)) {
880 void *start = page_address(page);
881 void *end = start + (pages << PAGE_SHIFT);
882 void *p;
883
884 slab_pad_check(s, page);
885 for (p = start; p <= end - s->size; p += s->size) {
886 if (s->dtor)
887 s->dtor(p, s, 0);
888 check_object(s, page, p, 0);
889 }
890 }
891
892 mod_zone_page_state(page_zone(page),
893 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
894 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
895 - pages);
896
897 page->mapping = NULL;
898 __free_pages(page, s->order);
899}
900
901static void rcu_free_slab(struct rcu_head *h)
902{
903 struct page *page;
904
905 page = container_of((struct list_head *)h, struct page, lru);
906 __free_slab(page->slab, page);
907}
908
909static void free_slab(struct kmem_cache *s, struct page *page)
910{
911 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
912 /*
913 * RCU free overloads the RCU head over the LRU
914 */
915 struct rcu_head *head = (void *)&page->lru;
916
917 call_rcu(head, rcu_free_slab);
918 } else
919 __free_slab(s, page);
920}
921
922static void discard_slab(struct kmem_cache *s, struct page *page)
923{
924 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
925
926 atomic_long_dec(&n->nr_slabs);
927 reset_page_mapcount(page);
928 page->flags &= ~(1 << PG_slab | 1 << PG_error);
929 free_slab(s, page);
930}
931
932/*
933 * Per slab locking using the pagelock
934 */
935static __always_inline void slab_lock(struct page *page)
936{
937 bit_spin_lock(PG_locked, &page->flags);
938}
939
940static __always_inline void slab_unlock(struct page *page)
941{
942 bit_spin_unlock(PG_locked, &page->flags);
943}
944
945static __always_inline int slab_trylock(struct page *page)
946{
947 int rc = 1;
948
949 rc = bit_spin_trylock(PG_locked, &page->flags);
950 return rc;
951}
952
953/*
954 * Management of partially allocated slabs
955 */
956static void add_partial(struct kmem_cache *s, struct page *page)
957{
958 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
959
960 spin_lock(&n->list_lock);
961 n->nr_partial++;
962 list_add(&page->lru, &n->partial);
963 spin_unlock(&n->list_lock);
964}
965
966static void remove_partial(struct kmem_cache *s,
967 struct page *page)
968{
969 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
970
971 spin_lock(&n->list_lock);
972 list_del(&page->lru);
973 n->nr_partial--;
974 spin_unlock(&n->list_lock);
975}
976
977/*
978 * Lock page and remove it from the partial list
979 *
980 * Must hold list_lock
981 */
982static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
983{
984 if (slab_trylock(page)) {
985 list_del(&page->lru);
986 n->nr_partial--;
987 return 1;
988 }
989 return 0;
990}
991
992/*
993 * Try to get a partial slab from a specific node
994 */
995static struct page *get_partial_node(struct kmem_cache_node *n)
996{
997 struct page *page;
998
999 /*
1000 * Racy check. If we mistakenly see no partial slabs then we
1001 * just allocate an empty slab. If we mistakenly try to get a
1002 * partial slab then get_partials() will return NULL.
1003 */
1004 if (!n || !n->nr_partial)
1005 return NULL;
1006
1007 spin_lock(&n->list_lock);
1008 list_for_each_entry(page, &n->partial, lru)
1009 if (lock_and_del_slab(n, page))
1010 goto out;
1011 page = NULL;
1012out:
1013 spin_unlock(&n->list_lock);
1014 return page;
1015}
1016
1017/*
1018 * Get a page from somewhere. Search in increasing NUMA
1019 * distances.
1020 */
1021static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1022{
1023#ifdef CONFIG_NUMA
1024 struct zonelist *zonelist;
1025 struct zone **z;
1026 struct page *page;
1027
1028 /*
1029 * The defrag ratio allows to configure the tradeoffs between
1030 * inter node defragmentation and node local allocations.
1031 * A lower defrag_ratio increases the tendency to do local
1032 * allocations instead of scanning throught the partial
1033 * lists on other nodes.
1034 *
1035 * If defrag_ratio is set to 0 then kmalloc() always
1036 * returns node local objects. If its higher then kmalloc()
1037 * may return off node objects in order to avoid fragmentation.
1038 *
1039 * A higher ratio means slabs may be taken from other nodes
1040 * thus reducing the number of partial slabs on those nodes.
1041 *
1042 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1043 * defrag_ratio = 1000) then every (well almost) allocation
1044 * will first attempt to defrag slab caches on other nodes. This
1045 * means scanning over all nodes to look for partial slabs which
1046 * may be a bit expensive to do on every slab allocation.
1047 */
1048 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1049 return NULL;
1050
1051 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1052 ->node_zonelists[gfp_zone(flags)];
1053 for (z = zonelist->zones; *z; z++) {
1054 struct kmem_cache_node *n;
1055
1056 n = get_node(s, zone_to_nid(*z));
1057
1058 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1059 n->nr_partial > 2) {
1060 page = get_partial_node(n);
1061 if (page)
1062 return page;
1063 }
1064 }
1065#endif
1066 return NULL;
1067}
1068
1069/*
1070 * Get a partial page, lock it and return it.
1071 */
1072static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1073{
1074 struct page *page;
1075 int searchnode = (node == -1) ? numa_node_id() : node;
1076
1077 page = get_partial_node(get_node(s, searchnode));
1078 if (page || (flags & __GFP_THISNODE))
1079 return page;
1080
1081 return get_any_partial(s, flags);
1082}
1083
1084/*
1085 * Move a page back to the lists.
1086 *
1087 * Must be called with the slab lock held.
1088 *
1089 * On exit the slab lock will have been dropped.
1090 */
1091static void putback_slab(struct kmem_cache *s, struct page *page)
1092{
1093 if (page->inuse) {
1094 if (page->freelist)
1095 add_partial(s, page);
1096 slab_unlock(page);
1097 } else {
1098 slab_unlock(page);
1099 discard_slab(s, page);
1100 }
1101}
1102
1103/*
1104 * Remove the cpu slab
1105 */
1106static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1107{
1108 s->cpu_slab[cpu] = NULL;
1109 ClearPageActive(page);
1110
1111 putback_slab(s, page);
1112}
1113
1114static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1115{
1116 slab_lock(page);
1117 deactivate_slab(s, page, cpu);
1118}
1119
1120/*
1121 * Flush cpu slab.
1122 * Called from IPI handler with interrupts disabled.
1123 */
1124static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1125{
1126 struct page *page = s->cpu_slab[cpu];
1127
1128 if (likely(page))
1129 flush_slab(s, page, cpu);
1130}
1131
1132static void flush_cpu_slab(void *d)
1133{
1134 struct kmem_cache *s = d;
1135 int cpu = smp_processor_id();
1136
1137 __flush_cpu_slab(s, cpu);
1138}
1139
1140static void flush_all(struct kmem_cache *s)
1141{
1142#ifdef CONFIG_SMP
1143 on_each_cpu(flush_cpu_slab, s, 1, 1);
1144#else
1145 unsigned long flags;
1146
1147 local_irq_save(flags);
1148 flush_cpu_slab(s);
1149 local_irq_restore(flags);
1150#endif
1151}
1152
1153/*
1154 * slab_alloc is optimized to only modify two cachelines on the fast path
1155 * (aside from the stack):
1156 *
1157 * 1. The page struct
1158 * 2. The first cacheline of the object to be allocated.
1159 *
1160 * The only cache lines that are read (apart from code) is the
1161 * per cpu array in the kmem_cache struct.
1162 *
1163 * Fastpath is not possible if we need to get a new slab or have
1164 * debugging enabled (which means all slabs are marked with PageError)
1165 */
1166static __always_inline void *slab_alloc(struct kmem_cache *s,
1167 gfp_t gfpflags, int node)
1168{
1169 struct page *page;
1170 void **object;
1171 unsigned long flags;
1172 int cpu;
1173
1174 local_irq_save(flags);
1175 cpu = smp_processor_id();
1176 page = s->cpu_slab[cpu];
1177 if (!page)
1178 goto new_slab;
1179
1180 slab_lock(page);
1181 if (unlikely(node != -1 && page_to_nid(page) != node))
1182 goto another_slab;
1183redo:
1184 object = page->freelist;
1185 if (unlikely(!object))
1186 goto another_slab;
1187 if (unlikely(PageError(page)))
1188 goto debug;
1189
1190have_object:
1191 page->inuse++;
1192 page->freelist = object[page->offset];
1193 slab_unlock(page);
1194 local_irq_restore(flags);
1195 return object;
1196
1197another_slab:
1198 deactivate_slab(s, page, cpu);
1199
1200new_slab:
1201 page = get_partial(s, gfpflags, node);
1202 if (likely(page)) {
1203have_slab:
1204 s->cpu_slab[cpu] = page;
1205 SetPageActive(page);
1206 goto redo;
1207 }
1208
1209 page = new_slab(s, gfpflags, node);
1210 if (page) {
1211 cpu = smp_processor_id();
1212 if (s->cpu_slab[cpu]) {
1213 /*
1214 * Someone else populated the cpu_slab while we enabled
1215 * interrupts, or we have got scheduled on another cpu.
1216 * The page may not be on the requested node.
1217 */
1218 if (node == -1 ||
1219 page_to_nid(s->cpu_slab[cpu]) == node) {
1220 /*
1221 * Current cpuslab is acceptable and we
1222 * want the current one since its cache hot
1223 */
1224 discard_slab(s, page);
1225 page = s->cpu_slab[cpu];
1226 slab_lock(page);
1227 goto redo;
1228 }
1229 /* Dump the current slab */
1230 flush_slab(s, s->cpu_slab[cpu], cpu);
1231 }
1232 slab_lock(page);
1233 goto have_slab;
1234 }
1235 local_irq_restore(flags);
1236 return NULL;
1237debug:
1238 if (!alloc_object_checks(s, page, object))
1239 goto another_slab;
1240 if (s->flags & SLAB_STORE_USER)
1241 set_tracking(s, object, TRACK_ALLOC);
1242 goto have_object;
1243}
1244
1245void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1246{
1247 return slab_alloc(s, gfpflags, -1);
1248}
1249EXPORT_SYMBOL(kmem_cache_alloc);
1250
1251#ifdef CONFIG_NUMA
1252void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1253{
1254 return slab_alloc(s, gfpflags, node);
1255}
1256EXPORT_SYMBOL(kmem_cache_alloc_node);
1257#endif
1258
1259/*
1260 * The fastpath only writes the cacheline of the page struct and the first
1261 * cacheline of the object.
1262 *
1263 * No special cachelines need to be read
1264 */
1265static void slab_free(struct kmem_cache *s, struct page *page, void *x)
1266{
1267 void *prior;
1268 void **object = (void *)x;
1269 unsigned long flags;
1270
1271 local_irq_save(flags);
1272 slab_lock(page);
1273
1274 if (unlikely(PageError(page)))
1275 goto debug;
1276checks_ok:
1277 prior = object[page->offset] = page->freelist;
1278 page->freelist = object;
1279 page->inuse--;
1280
1281 if (unlikely(PageActive(page)))
1282 /*
1283 * Cpu slabs are never on partial lists and are
1284 * never freed.
1285 */
1286 goto out_unlock;
1287
1288 if (unlikely(!page->inuse))
1289 goto slab_empty;
1290
1291 /*
1292 * Objects left in the slab. If it
1293 * was not on the partial list before
1294 * then add it.
1295 */
1296 if (unlikely(!prior))
1297 add_partial(s, page);
1298
1299out_unlock:
1300 slab_unlock(page);
1301 local_irq_restore(flags);
1302 return;
1303
1304slab_empty:
1305 if (prior)
1306 /*
1307 * Partially used slab that is on the partial list.
1308 */
1309 remove_partial(s, page);
1310
1311 slab_unlock(page);
1312 discard_slab(s, page);
1313 local_irq_restore(flags);
1314 return;
1315
1316debug:
1317 if (free_object_checks(s, page, x))
1318 goto checks_ok;
1319 goto out_unlock;
1320}
1321
1322void kmem_cache_free(struct kmem_cache *s, void *x)
1323{
1324 struct page * page;
1325
1326 page = virt_to_page(x);
1327
d85f3385 1328 page = compound_head(page);
81819f0f
CL
1329
1330 if (unlikely(PageError(page) && (s->flags & SLAB_STORE_USER)))
1331 set_tracking(s, x, TRACK_FREE);
1332 slab_free(s, page, x);
1333}
1334EXPORT_SYMBOL(kmem_cache_free);
1335
1336/* Figure out on which slab object the object resides */
1337static struct page *get_object_page(const void *x)
1338{
d85f3385 1339 struct page *page = compound_head(virt_to_page(x));
81819f0f
CL
1340
1341 if (!PageSlab(page))
1342 return NULL;
1343
1344 return page;
1345}
1346
1347/*
1348 * kmem_cache_open produces objects aligned at "size" and the first object
1349 * is placed at offset 0 in the slab (We have no metainformation on the
1350 * slab, all slabs are in essence "off slab").
1351 *
1352 * In order to get the desired alignment one just needs to align the
1353 * size.
1354 *
1355 * Notice that the allocation order determines the sizes of the per cpu
1356 * caches. Each processor has always one slab available for allocations.
1357 * Increasing the allocation order reduces the number of times that slabs
1358 * must be moved on and off the partial lists and therefore may influence
1359 * locking overhead.
1360 *
1361 * The offset is used to relocate the free list link in each object. It is
1362 * therefore possible to move the free list link behind the object. This
1363 * is necessary for RCU to work properly and also useful for debugging.
1364 */
1365
1366/*
1367 * Mininum / Maximum order of slab pages. This influences locking overhead
1368 * and slab fragmentation. A higher order reduces the number of partial slabs
1369 * and increases the number of allocations possible without having to
1370 * take the list_lock.
1371 */
1372static int slub_min_order;
1373static int slub_max_order = DEFAULT_MAX_ORDER;
1374
1375/*
1376 * Minimum number of objects per slab. This is necessary in order to
1377 * reduce locking overhead. Similar to the queue size in SLAB.
1378 */
1379static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1380
1381/*
1382 * Merge control. If this is set then no merging of slab caches will occur.
1383 */
1384static int slub_nomerge;
1385
1386/*
1387 * Debug settings:
1388 */
1389static int slub_debug;
1390
1391static char *slub_debug_slabs;
1392
1393/*
1394 * Calculate the order of allocation given an slab object size.
1395 *
1396 * The order of allocation has significant impact on other elements
1397 * of the system. Generally order 0 allocations should be preferred
1398 * since they do not cause fragmentation in the page allocator. Larger
1399 * objects may have problems with order 0 because there may be too much
1400 * space left unused in a slab. We go to a higher order if more than 1/8th
1401 * of the slab would be wasted.
1402 *
1403 * In order to reach satisfactory performance we must ensure that
1404 * a minimum number of objects is in one slab. Otherwise we may
1405 * generate too much activity on the partial lists. This is less a
1406 * concern for large slabs though. slub_max_order specifies the order
1407 * where we begin to stop considering the number of objects in a slab.
1408 *
1409 * Higher order allocations also allow the placement of more objects
1410 * in a slab and thereby reduce object handling overhead. If the user
1411 * has requested a higher mininum order then we start with that one
1412 * instead of zero.
1413 */
1414static int calculate_order(int size)
1415{
1416 int order;
1417 int rem;
1418
1419 for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT);
1420 order < MAX_ORDER; order++) {
1421 unsigned long slab_size = PAGE_SIZE << order;
1422
1423 if (slub_max_order > order &&
1424 slab_size < slub_min_objects * size)
1425 continue;
1426
1427 if (slab_size < size)
1428 continue;
1429
1430 rem = slab_size % size;
1431
1432 if (rem <= (PAGE_SIZE << order) / 8)
1433 break;
1434
1435 }
1436 if (order >= MAX_ORDER)
1437 return -E2BIG;
1438 return order;
1439}
1440
1441/*
1442 * Function to figure out which alignment to use from the
1443 * various ways of specifying it.
1444 */
1445static unsigned long calculate_alignment(unsigned long flags,
1446 unsigned long align, unsigned long size)
1447{
1448 /*
1449 * If the user wants hardware cache aligned objects then
1450 * follow that suggestion if the object is sufficiently
1451 * large.
1452 *
1453 * The hardware cache alignment cannot override the
1454 * specified alignment though. If that is greater
1455 * then use it.
1456 */
1457 if ((flags & (SLAB_MUST_HWCACHE_ALIGN | SLAB_HWCACHE_ALIGN)) &&
1458 size > L1_CACHE_BYTES / 2)
1459 return max_t(unsigned long, align, L1_CACHE_BYTES);
1460
1461 if (align < ARCH_SLAB_MINALIGN)
1462 return ARCH_SLAB_MINALIGN;
1463
1464 return ALIGN(align, sizeof(void *));
1465}
1466
1467static void init_kmem_cache_node(struct kmem_cache_node *n)
1468{
1469 n->nr_partial = 0;
1470 atomic_long_set(&n->nr_slabs, 0);
1471 spin_lock_init(&n->list_lock);
1472 INIT_LIST_HEAD(&n->partial);
1473}
1474
1475#ifdef CONFIG_NUMA
1476/*
1477 * No kmalloc_node yet so do it by hand. We know that this is the first
1478 * slab on the node for this slabcache. There are no concurrent accesses
1479 * possible.
1480 *
1481 * Note that this function only works on the kmalloc_node_cache
1482 * when allocating for the kmalloc_node_cache.
1483 */
1484static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1485 int node)
1486{
1487 struct page *page;
1488 struct kmem_cache_node *n;
1489
1490 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1491
1492 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1493 /* new_slab() disables interupts */
1494 local_irq_enable();
1495
1496 BUG_ON(!page);
1497 n = page->freelist;
1498 BUG_ON(!n);
1499 page->freelist = get_freepointer(kmalloc_caches, n);
1500 page->inuse++;
1501 kmalloc_caches->node[node] = n;
1502 init_object(kmalloc_caches, n, 1);
1503 init_kmem_cache_node(n);
1504 atomic_long_inc(&n->nr_slabs);
1505 add_partial(kmalloc_caches, page);
1506 return n;
1507}
1508
1509static void free_kmem_cache_nodes(struct kmem_cache *s)
1510{
1511 int node;
1512
1513 for_each_online_node(node) {
1514 struct kmem_cache_node *n = s->node[node];
1515 if (n && n != &s->local_node)
1516 kmem_cache_free(kmalloc_caches, n);
1517 s->node[node] = NULL;
1518 }
1519}
1520
1521static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1522{
1523 int node;
1524 int local_node;
1525
1526 if (slab_state >= UP)
1527 local_node = page_to_nid(virt_to_page(s));
1528 else
1529 local_node = 0;
1530
1531 for_each_online_node(node) {
1532 struct kmem_cache_node *n;
1533
1534 if (local_node == node)
1535 n = &s->local_node;
1536 else {
1537 if (slab_state == DOWN) {
1538 n = early_kmem_cache_node_alloc(gfpflags,
1539 node);
1540 continue;
1541 }
1542 n = kmem_cache_alloc_node(kmalloc_caches,
1543 gfpflags, node);
1544
1545 if (!n) {
1546 free_kmem_cache_nodes(s);
1547 return 0;
1548 }
1549
1550 }
1551 s->node[node] = n;
1552 init_kmem_cache_node(n);
1553 }
1554 return 1;
1555}
1556#else
1557static void free_kmem_cache_nodes(struct kmem_cache *s)
1558{
1559}
1560
1561static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1562{
1563 init_kmem_cache_node(&s->local_node);
1564 return 1;
1565}
1566#endif
1567
1568/*
1569 * calculate_sizes() determines the order and the distribution of data within
1570 * a slab object.
1571 */
1572static int calculate_sizes(struct kmem_cache *s)
1573{
1574 unsigned long flags = s->flags;
1575 unsigned long size = s->objsize;
1576 unsigned long align = s->align;
1577
1578 /*
1579 * Determine if we can poison the object itself. If the user of
1580 * the slab may touch the object after free or before allocation
1581 * then we should never poison the object itself.
1582 */
1583 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1584 !s->ctor && !s->dtor)
1585 s->flags |= __OBJECT_POISON;
1586 else
1587 s->flags &= ~__OBJECT_POISON;
1588
1589 /*
1590 * Round up object size to the next word boundary. We can only
1591 * place the free pointer at word boundaries and this determines
1592 * the possible location of the free pointer.
1593 */
1594 size = ALIGN(size, sizeof(void *));
1595
1596 /*
1597 * If we are redzoning then check if there is some space between the
1598 * end of the object and the free pointer. If not then add an
1599 * additional word, so that we can establish a redzone between
1600 * the object and the freepointer to be able to check for overwrites.
1601 */
1602 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1603 size += sizeof(void *);
1604
1605 /*
1606 * With that we have determined how much of the slab is in actual
1607 * use by the object. This is the potential offset to the free
1608 * pointer.
1609 */
1610 s->inuse = size;
1611
1612 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1613 s->ctor || s->dtor)) {
1614 /*
1615 * Relocate free pointer after the object if it is not
1616 * permitted to overwrite the first word of the object on
1617 * kmem_cache_free.
1618 *
1619 * This is the case if we do RCU, have a constructor or
1620 * destructor or are poisoning the objects.
1621 */
1622 s->offset = size;
1623 size += sizeof(void *);
1624 }
1625
1626 if (flags & SLAB_STORE_USER)
1627 /*
1628 * Need to store information about allocs and frees after
1629 * the object.
1630 */
1631 size += 2 * sizeof(struct track);
1632
1633 if (flags & DEBUG_DEFAULT_FLAGS)
1634 /*
1635 * Add some empty padding so that we can catch
1636 * overwrites from earlier objects rather than let
1637 * tracking information or the free pointer be
1638 * corrupted if an user writes before the start
1639 * of the object.
1640 */
1641 size += sizeof(void *);
1642 /*
1643 * Determine the alignment based on various parameters that the
1644 * user specified (this is unecessarily complex due to the attempt
1645 * to be compatible with SLAB. Should be cleaned up some day).
1646 */
1647 align = calculate_alignment(flags, align, s->objsize);
1648
1649 /*
1650 * SLUB stores one object immediately after another beginning from
1651 * offset 0. In order to align the objects we have to simply size
1652 * each object to conform to the alignment.
1653 */
1654 size = ALIGN(size, align);
1655 s->size = size;
1656
1657 s->order = calculate_order(size);
1658 if (s->order < 0)
1659 return 0;
1660
1661 /*
1662 * Determine the number of objects per slab
1663 */
1664 s->objects = (PAGE_SIZE << s->order) / size;
1665
1666 /*
1667 * Verify that the number of objects is within permitted limits.
1668 * The page->inuse field is only 16 bit wide! So we cannot have
1669 * more than 64k objects per slab.
1670 */
1671 if (!s->objects || s->objects > 65535)
1672 return 0;
1673 return 1;
1674
1675}
1676
1677static int __init finish_bootstrap(void)
1678{
1679 struct list_head *h;
1680 int err;
1681
1682 slab_state = SYSFS;
1683
1684 list_for_each(h, &slab_caches) {
1685 struct kmem_cache *s =
1686 container_of(h, struct kmem_cache, list);
1687
1688 err = sysfs_slab_add(s);
1689 BUG_ON(err);
1690 }
1691 return 0;
1692}
1693
1694static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1695 const char *name, size_t size,
1696 size_t align, unsigned long flags,
1697 void (*ctor)(void *, struct kmem_cache *, unsigned long),
1698 void (*dtor)(void *, struct kmem_cache *, unsigned long))
1699{
1700 memset(s, 0, kmem_size);
1701 s->name = name;
1702 s->ctor = ctor;
1703 s->dtor = dtor;
1704 s->objsize = size;
1705 s->flags = flags;
1706 s->align = align;
1707
1708 BUG_ON(flags & SLUB_UNIMPLEMENTED);
1709
1710 /*
1711 * The page->offset field is only 16 bit wide. This is an offset
1712 * in units of words from the beginning of an object. If the slab
1713 * size is bigger then we cannot move the free pointer behind the
1714 * object anymore.
1715 *
1716 * On 32 bit platforms the limit is 256k. On 64bit platforms
1717 * the limit is 512k.
1718 *
1719 * Debugging or ctor/dtors may create a need to move the free
1720 * pointer. Fail if this happens.
1721 */
1722 if (s->size >= 65535 * sizeof(void *)) {
1723 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1724 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1725 BUG_ON(ctor || dtor);
1726 }
1727 else
1728 /*
1729 * Enable debugging if selected on the kernel commandline.
1730 */
1731 if (slub_debug && (!slub_debug_slabs ||
1732 strncmp(slub_debug_slabs, name,
1733 strlen(slub_debug_slabs)) == 0))
1734 s->flags |= slub_debug;
1735
1736 if (!calculate_sizes(s))
1737 goto error;
1738
1739 s->refcount = 1;
1740#ifdef CONFIG_NUMA
1741 s->defrag_ratio = 100;
1742#endif
1743
1744 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
1745 return 1;
1746error:
1747 if (flags & SLAB_PANIC)
1748 panic("Cannot create slab %s size=%lu realsize=%u "
1749 "order=%u offset=%u flags=%lx\n",
1750 s->name, (unsigned long)size, s->size, s->order,
1751 s->offset, flags);
1752 return 0;
1753}
1754EXPORT_SYMBOL(kmem_cache_open);
1755
1756/*
1757 * Check if a given pointer is valid
1758 */
1759int kmem_ptr_validate(struct kmem_cache *s, const void *object)
1760{
1761 struct page * page;
1762 void *addr;
1763
1764 page = get_object_page(object);
1765
1766 if (!page || s != page->slab)
1767 /* No slab or wrong slab */
1768 return 0;
1769
1770 addr = page_address(page);
1771 if (object < addr || object >= addr + s->objects * s->size)
1772 /* Out of bounds */
1773 return 0;
1774
1775 if ((object - addr) % s->size)
1776 /* Improperly aligned */
1777 return 0;
1778
1779 /*
1780 * We could also check if the object is on the slabs freelist.
1781 * But this would be too expensive and it seems that the main
1782 * purpose of kmem_ptr_valid is to check if the object belongs
1783 * to a certain slab.
1784 */
1785 return 1;
1786}
1787EXPORT_SYMBOL(kmem_ptr_validate);
1788
1789/*
1790 * Determine the size of a slab object
1791 */
1792unsigned int kmem_cache_size(struct kmem_cache *s)
1793{
1794 return s->objsize;
1795}
1796EXPORT_SYMBOL(kmem_cache_size);
1797
1798const char *kmem_cache_name(struct kmem_cache *s)
1799{
1800 return s->name;
1801}
1802EXPORT_SYMBOL(kmem_cache_name);
1803
1804/*
1805 * Attempt to free all slabs on a node
1806 */
1807static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
1808 struct list_head *list)
1809{
1810 int slabs_inuse = 0;
1811 unsigned long flags;
1812 struct page *page, *h;
1813
1814 spin_lock_irqsave(&n->list_lock, flags);
1815 list_for_each_entry_safe(page, h, list, lru)
1816 if (!page->inuse) {
1817 list_del(&page->lru);
1818 discard_slab(s, page);
1819 } else
1820 slabs_inuse++;
1821 spin_unlock_irqrestore(&n->list_lock, flags);
1822 return slabs_inuse;
1823}
1824
1825/*
1826 * Release all resources used by slab cache
1827 */
1828static int kmem_cache_close(struct kmem_cache *s)
1829{
1830 int node;
1831
1832 flush_all(s);
1833
1834 /* Attempt to free all objects */
1835 for_each_online_node(node) {
1836 struct kmem_cache_node *n = get_node(s, node);
1837
1838 free_list(s, n, &n->partial);
1839 if (atomic_long_read(&n->nr_slabs))
1840 return 1;
1841 }
1842 free_kmem_cache_nodes(s);
1843 return 0;
1844}
1845
1846/*
1847 * Close a cache and release the kmem_cache structure
1848 * (must be used for caches created using kmem_cache_create)
1849 */
1850void kmem_cache_destroy(struct kmem_cache *s)
1851{
1852 down_write(&slub_lock);
1853 s->refcount--;
1854 if (!s->refcount) {
1855 list_del(&s->list);
1856 if (kmem_cache_close(s))
1857 WARN_ON(1);
1858 sysfs_slab_remove(s);
1859 kfree(s);
1860 }
1861 up_write(&slub_lock);
1862}
1863EXPORT_SYMBOL(kmem_cache_destroy);
1864
1865/********************************************************************
1866 * Kmalloc subsystem
1867 *******************************************************************/
1868
1869struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
1870EXPORT_SYMBOL(kmalloc_caches);
1871
1872#ifdef CONFIG_ZONE_DMA
1873static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
1874#endif
1875
1876static int __init setup_slub_min_order(char *str)
1877{
1878 get_option (&str, &slub_min_order);
1879
1880 return 1;
1881}
1882
1883__setup("slub_min_order=", setup_slub_min_order);
1884
1885static int __init setup_slub_max_order(char *str)
1886{
1887 get_option (&str, &slub_max_order);
1888
1889 return 1;
1890}
1891
1892__setup("slub_max_order=", setup_slub_max_order);
1893
1894static int __init setup_slub_min_objects(char *str)
1895{
1896 get_option (&str, &slub_min_objects);
1897
1898 return 1;
1899}
1900
1901__setup("slub_min_objects=", setup_slub_min_objects);
1902
1903static int __init setup_slub_nomerge(char *str)
1904{
1905 slub_nomerge = 1;
1906 return 1;
1907}
1908
1909__setup("slub_nomerge", setup_slub_nomerge);
1910
1911static int __init setup_slub_debug(char *str)
1912{
1913 if (!str || *str != '=')
1914 slub_debug = DEBUG_DEFAULT_FLAGS;
1915 else {
1916 str++;
1917 if (*str == 0 || *str == ',')
1918 slub_debug = DEBUG_DEFAULT_FLAGS;
1919 else
1920 for( ;*str && *str != ','; str++)
1921 switch (*str) {
1922 case 'f' : case 'F' :
1923 slub_debug |= SLAB_DEBUG_FREE;
1924 break;
1925 case 'z' : case 'Z' :
1926 slub_debug |= SLAB_RED_ZONE;
1927 break;
1928 case 'p' : case 'P' :
1929 slub_debug |= SLAB_POISON;
1930 break;
1931 case 'u' : case 'U' :
1932 slub_debug |= SLAB_STORE_USER;
1933 break;
1934 case 't' : case 'T' :
1935 slub_debug |= SLAB_TRACE;
1936 break;
1937 default:
1938 printk(KERN_ERR "slub_debug option '%c' "
1939 "unknown. skipped\n",*str);
1940 }
1941 }
1942
1943 if (*str == ',')
1944 slub_debug_slabs = str + 1;
1945 return 1;
1946}
1947
1948__setup("slub_debug", setup_slub_debug);
1949
1950static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
1951 const char *name, int size, gfp_t gfp_flags)
1952{
1953 unsigned int flags = 0;
1954
1955 if (gfp_flags & SLUB_DMA)
1956 flags = SLAB_CACHE_DMA;
1957
1958 down_write(&slub_lock);
1959 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
1960 flags, NULL, NULL))
1961 goto panic;
1962
1963 list_add(&s->list, &slab_caches);
1964 up_write(&slub_lock);
1965 if (sysfs_slab_add(s))
1966 goto panic;
1967 return s;
1968
1969panic:
1970 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
1971}
1972
1973static struct kmem_cache *get_slab(size_t size, gfp_t flags)
1974{
1975 int index = kmalloc_index(size);
1976
614410d5 1977 if (!index)
81819f0f
CL
1978 return NULL;
1979
1980 /* Allocation too large? */
1981 BUG_ON(index < 0);
1982
1983#ifdef CONFIG_ZONE_DMA
1984 if ((flags & SLUB_DMA)) {
1985 struct kmem_cache *s;
1986 struct kmem_cache *x;
1987 char *text;
1988 size_t realsize;
1989
1990 s = kmalloc_caches_dma[index];
1991 if (s)
1992 return s;
1993
1994 /* Dynamically create dma cache */
1995 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
1996 if (!x)
1997 panic("Unable to allocate memory for dma cache\n");
1998
1999 if (index <= KMALLOC_SHIFT_HIGH)
2000 realsize = 1 << index;
2001 else {
2002 if (index == 1)
2003 realsize = 96;
2004 else
2005 realsize = 192;
2006 }
2007
2008 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2009 (unsigned int)realsize);
2010 s = create_kmalloc_cache(x, text, realsize, flags);
2011 kmalloc_caches_dma[index] = s;
2012 return s;
2013 }
2014#endif
2015 return &kmalloc_caches[index];
2016}
2017
2018void *__kmalloc(size_t size, gfp_t flags)
2019{
2020 struct kmem_cache *s = get_slab(size, flags);
2021
2022 if (s)
2023 return kmem_cache_alloc(s, flags);
2024 return NULL;
2025}
2026EXPORT_SYMBOL(__kmalloc);
2027
2028#ifdef CONFIG_NUMA
2029void *__kmalloc_node(size_t size, gfp_t flags, int node)
2030{
2031 struct kmem_cache *s = get_slab(size, flags);
2032
2033 if (s)
2034 return kmem_cache_alloc_node(s, flags, node);
2035 return NULL;
2036}
2037EXPORT_SYMBOL(__kmalloc_node);
2038#endif
2039
2040size_t ksize(const void *object)
2041{
2042 struct page *page = get_object_page(object);
2043 struct kmem_cache *s;
2044
2045 BUG_ON(!page);
2046 s = page->slab;
2047 BUG_ON(!s);
2048
2049 /*
2050 * Debugging requires use of the padding between object
2051 * and whatever may come after it.
2052 */
2053 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2054 return s->objsize;
2055
2056 /*
2057 * If we have the need to store the freelist pointer
2058 * back there or track user information then we can
2059 * only use the space before that information.
2060 */
2061 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2062 return s->inuse;
2063
2064 /*
2065 * Else we can use all the padding etc for the allocation
2066 */
2067 return s->size;
2068}
2069EXPORT_SYMBOL(ksize);
2070
2071void kfree(const void *x)
2072{
2073 struct kmem_cache *s;
2074 struct page *page;
2075
2076 if (!x)
2077 return;
2078
d85f3385 2079 page = compound_head(virt_to_page(x));
81819f0f
CL
2080
2081 s = page->slab;
2082
2083 if (unlikely(PageError(page) && (s->flags & SLAB_STORE_USER)))
2084 set_tracking(s, (void *)x, TRACK_FREE);
2085 slab_free(s, page, (void *)x);
2086}
2087EXPORT_SYMBOL(kfree);
2088
2089/**
2090 * krealloc - reallocate memory. The contents will remain unchanged.
2091 *
2092 * @p: object to reallocate memory for.
2093 * @new_size: how many bytes of memory are required.
2094 * @flags: the type of memory to allocate.
2095 *
2096 * The contents of the object pointed to are preserved up to the
2097 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2098 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2099 * %NULL pointer, the object pointed to is freed.
2100 */
2101void *krealloc(const void *p, size_t new_size, gfp_t flags)
2102{
2103 struct kmem_cache *new_cache;
2104 void *ret;
2105 struct page *page;
2106
2107 if (unlikely(!p))
2108 return kmalloc(new_size, flags);
2109
2110 if (unlikely(!new_size)) {
2111 kfree(p);
2112 return NULL;
2113 }
2114
d85f3385 2115 page = compound_head(virt_to_page(p));
81819f0f
CL
2116
2117 new_cache = get_slab(new_size, flags);
2118
2119 /*
2120 * If new size fits in the current cache, bail out.
2121 */
2122 if (likely(page->slab == new_cache))
2123 return (void *)p;
2124
2125 ret = kmalloc(new_size, flags);
2126 if (ret) {
2127 memcpy(ret, p, min(new_size, ksize(p)));
2128 kfree(p);
2129 }
2130 return ret;
2131}
2132EXPORT_SYMBOL(krealloc);
2133
2134/********************************************************************
2135 * Basic setup of slabs
2136 *******************************************************************/
2137
2138void __init kmem_cache_init(void)
2139{
2140 int i;
2141
2142#ifdef CONFIG_NUMA
2143 /*
2144 * Must first have the slab cache available for the allocations of the
2145 * struct kmalloc_cache_node's. There is special bootstrap code in
2146 * kmem_cache_open for slab_state == DOWN.
2147 */
2148 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2149 sizeof(struct kmem_cache_node), GFP_KERNEL);
2150#endif
2151
2152 /* Able to allocate the per node structures */
2153 slab_state = PARTIAL;
2154
2155 /* Caches that are not of the two-to-the-power-of size */
2156 create_kmalloc_cache(&kmalloc_caches[1],
2157 "kmalloc-96", 96, GFP_KERNEL);
2158 create_kmalloc_cache(&kmalloc_caches[2],
2159 "kmalloc-192", 192, GFP_KERNEL);
2160
2161 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2162 create_kmalloc_cache(&kmalloc_caches[i],
2163 "kmalloc", 1 << i, GFP_KERNEL);
2164
2165 slab_state = UP;
2166
2167 /* Provide the correct kmalloc names now that the caches are up */
2168 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2169 kmalloc_caches[i]. name =
2170 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2171
2172#ifdef CONFIG_SMP
2173 register_cpu_notifier(&slab_notifier);
2174#endif
2175
2176 if (nr_cpu_ids) /* Remove when nr_cpu_ids is fixed upstream ! */
2177 kmem_size = offsetof(struct kmem_cache, cpu_slab)
2178 + nr_cpu_ids * sizeof(struct page *);
2179
2180 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2181 " Processors=%d, Nodes=%d\n",
2182 KMALLOC_SHIFT_HIGH, L1_CACHE_BYTES,
2183 slub_min_order, slub_max_order, slub_min_objects,
2184 nr_cpu_ids, nr_node_ids);
2185}
2186
2187/*
2188 * Find a mergeable slab cache
2189 */
2190static int slab_unmergeable(struct kmem_cache *s)
2191{
2192 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2193 return 1;
2194
2195 if (s->ctor || s->dtor)
2196 return 1;
2197
2198 return 0;
2199}
2200
2201static struct kmem_cache *find_mergeable(size_t size,
2202 size_t align, unsigned long flags,
2203 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2204 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2205{
2206 struct list_head *h;
2207
2208 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2209 return NULL;
2210
2211 if (ctor || dtor)
2212 return NULL;
2213
2214 size = ALIGN(size, sizeof(void *));
2215 align = calculate_alignment(flags, align, size);
2216 size = ALIGN(size, align);
2217
2218 list_for_each(h, &slab_caches) {
2219 struct kmem_cache *s =
2220 container_of(h, struct kmem_cache, list);
2221
2222 if (slab_unmergeable(s))
2223 continue;
2224
2225 if (size > s->size)
2226 continue;
2227
2228 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2229 (s->flags & SLUB_MERGE_SAME))
2230 continue;
2231 /*
2232 * Check if alignment is compatible.
2233 * Courtesy of Adrian Drzewiecki
2234 */
2235 if ((s->size & ~(align -1)) != s->size)
2236 continue;
2237
2238 if (s->size - size >= sizeof(void *))
2239 continue;
2240
2241 return s;
2242 }
2243 return NULL;
2244}
2245
2246struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2247 size_t align, unsigned long flags,
2248 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2249 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2250{
2251 struct kmem_cache *s;
2252
2253 down_write(&slub_lock);
2254 s = find_mergeable(size, align, flags, dtor, ctor);
2255 if (s) {
2256 s->refcount++;
2257 /*
2258 * Adjust the object sizes so that we clear
2259 * the complete object on kzalloc.
2260 */
2261 s->objsize = max(s->objsize, (int)size);
2262 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2263 if (sysfs_slab_alias(s, name))
2264 goto err;
2265 } else {
2266 s = kmalloc(kmem_size, GFP_KERNEL);
2267 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2268 size, align, flags, ctor, dtor)) {
2269 if (sysfs_slab_add(s)) {
2270 kfree(s);
2271 goto err;
2272 }
2273 list_add(&s->list, &slab_caches);
2274 } else
2275 kfree(s);
2276 }
2277 up_write(&slub_lock);
2278 return s;
2279
2280err:
2281 up_write(&slub_lock);
2282 if (flags & SLAB_PANIC)
2283 panic("Cannot create slabcache %s\n", name);
2284 else
2285 s = NULL;
2286 return s;
2287}
2288EXPORT_SYMBOL(kmem_cache_create);
2289
2290void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2291{
2292 void *x;
2293
2294 x = kmem_cache_alloc(s, flags);
2295 if (x)
2296 memset(x, 0, s->objsize);
2297 return x;
2298}
2299EXPORT_SYMBOL(kmem_cache_zalloc);
2300
2301#ifdef CONFIG_SMP
2302static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2303{
2304 struct list_head *h;
2305
2306 down_read(&slub_lock);
2307 list_for_each(h, &slab_caches) {
2308 struct kmem_cache *s =
2309 container_of(h, struct kmem_cache, list);
2310
2311 func(s, cpu);
2312 }
2313 up_read(&slub_lock);
2314}
2315
2316/*
2317 * Use the cpu notifier to insure that the slab are flushed
2318 * when necessary.
2319 */
2320static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2321 unsigned long action, void *hcpu)
2322{
2323 long cpu = (long)hcpu;
2324
2325 switch (action) {
2326 case CPU_UP_CANCELED:
2327 case CPU_DEAD:
2328 for_all_slabs(__flush_cpu_slab, cpu);
2329 break;
2330 default:
2331 break;
2332 }
2333 return NOTIFY_OK;
2334}
2335
2336static struct notifier_block __cpuinitdata slab_notifier =
2337 { &slab_cpuup_callback, NULL, 0 };
2338
2339#endif
2340
2341/***************************************************************
2342 * Compatiblility definitions
2343 **************************************************************/
2344
2345int kmem_cache_shrink(struct kmem_cache *s)
2346{
2347 flush_all(s);
2348 return 0;
2349}
2350EXPORT_SYMBOL(kmem_cache_shrink);
2351
2352#ifdef CONFIG_NUMA
2353
2354/*****************************************************************
2355 * Generic reaper used to support the page allocator
2356 * (the cpu slabs are reaped by a per slab workqueue).
2357 *
2358 * Maybe move this to the page allocator?
2359 ****************************************************************/
2360
2361static DEFINE_PER_CPU(unsigned long, reap_node);
2362
2363static void init_reap_node(int cpu)
2364{
2365 int node;
2366
2367 node = next_node(cpu_to_node(cpu), node_online_map);
2368 if (node == MAX_NUMNODES)
2369 node = first_node(node_online_map);
2370
2371 __get_cpu_var(reap_node) = node;
2372}
2373
2374static void next_reap_node(void)
2375{
2376 int node = __get_cpu_var(reap_node);
2377
2378 /*
2379 * Also drain per cpu pages on remote zones
2380 */
2381 if (node != numa_node_id())
2382 drain_node_pages(node);
2383
2384 node = next_node(node, node_online_map);
2385 if (unlikely(node >= MAX_NUMNODES))
2386 node = first_node(node_online_map);
2387 __get_cpu_var(reap_node) = node;
2388}
2389#else
2390#define init_reap_node(cpu) do { } while (0)
2391#define next_reap_node(void) do { } while (0)
2392#endif
2393
2394#define REAPTIMEOUT_CPUC (2*HZ)
2395
2396#ifdef CONFIG_SMP
2397static DEFINE_PER_CPU(struct delayed_work, reap_work);
2398
2399static void cache_reap(struct work_struct *unused)
2400{
2401 next_reap_node();
2402 refresh_cpu_vm_stats(smp_processor_id());
2403 schedule_delayed_work(&__get_cpu_var(reap_work),
2404 REAPTIMEOUT_CPUC);
2405}
2406
2407static void __devinit start_cpu_timer(int cpu)
2408{
2409 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
2410
2411 /*
2412 * When this gets called from do_initcalls via cpucache_init(),
2413 * init_workqueues() has already run, so keventd will be setup
2414 * at that time.
2415 */
2416 if (keventd_up() && reap_work->work.func == NULL) {
2417 init_reap_node(cpu);
2418 INIT_DELAYED_WORK(reap_work, cache_reap);
2419 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
2420 }
2421}
2422
2423static int __init cpucache_init(void)
2424{
2425 int cpu;
2426
2427 /*
2428 * Register the timers that drain pcp pages and update vm statistics
2429 */
2430 for_each_online_cpu(cpu)
2431 start_cpu_timer(cpu);
2432 return 0;
2433}
2434__initcall(cpucache_init);
2435#endif
2436
2437#ifdef SLUB_RESILIENCY_TEST
2438static unsigned long validate_slab_cache(struct kmem_cache *s);
2439
2440static void resiliency_test(void)
2441{
2442 u8 *p;
2443
2444 printk(KERN_ERR "SLUB resiliency testing\n");
2445 printk(KERN_ERR "-----------------------\n");
2446 printk(KERN_ERR "A. Corruption after allocation\n");
2447
2448 p = kzalloc(16, GFP_KERNEL);
2449 p[16] = 0x12;
2450 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2451 " 0x12->0x%p\n\n", p + 16);
2452
2453 validate_slab_cache(kmalloc_caches + 4);
2454
2455 /* Hmmm... The next two are dangerous */
2456 p = kzalloc(32, GFP_KERNEL);
2457 p[32 + sizeof(void *)] = 0x34;
2458 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2459 " 0x34 -> -0x%p\n", p);
2460 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2461
2462 validate_slab_cache(kmalloc_caches + 5);
2463 p = kzalloc(64, GFP_KERNEL);
2464 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2465 *p = 0x56;
2466 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2467 p);
2468 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2469 validate_slab_cache(kmalloc_caches + 6);
2470
2471 printk(KERN_ERR "\nB. Corruption after free\n");
2472 p = kzalloc(128, GFP_KERNEL);
2473 kfree(p);
2474 *p = 0x78;
2475 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2476 validate_slab_cache(kmalloc_caches + 7);
2477
2478 p = kzalloc(256, GFP_KERNEL);
2479 kfree(p);
2480 p[50] = 0x9a;
2481 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2482 validate_slab_cache(kmalloc_caches + 8);
2483
2484 p = kzalloc(512, GFP_KERNEL);
2485 kfree(p);
2486 p[512] = 0xab;
2487 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2488 validate_slab_cache(kmalloc_caches + 9);
2489}
2490#else
2491static void resiliency_test(void) {};
2492#endif
2493
2494/*
2495 * These are not as efficient as kmalloc for the non debug case.
2496 * We do not have the page struct available so we have to touch one
2497 * cacheline in struct kmem_cache to check slab flags.
2498 */
2499void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2500{
2501 struct kmem_cache *s = get_slab(size, gfpflags);
2502 void *object;
2503
2504 if (!s)
2505 return NULL;
2506
2507 object = kmem_cache_alloc(s, gfpflags);
2508
2509 if (object && (s->flags & SLAB_STORE_USER))
2510 set_track(s, object, TRACK_ALLOC, caller);
2511
2512 return object;
2513}
2514
2515void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2516 int node, void *caller)
2517{
2518 struct kmem_cache *s = get_slab(size, gfpflags);
2519 void *object;
2520
2521 if (!s)
2522 return NULL;
2523
2524 object = kmem_cache_alloc_node(s, gfpflags, node);
2525
2526 if (object && (s->flags & SLAB_STORE_USER))
2527 set_track(s, object, TRACK_ALLOC, caller);
2528
2529 return object;
2530}
2531
2532#ifdef CONFIG_SYSFS
2533
2534static unsigned long count_partial(struct kmem_cache_node *n)
2535{
2536 unsigned long flags;
2537 unsigned long x = 0;
2538 struct page *page;
2539
2540 spin_lock_irqsave(&n->list_lock, flags);
2541 list_for_each_entry(page, &n->partial, lru)
2542 x += page->inuse;
2543 spin_unlock_irqrestore(&n->list_lock, flags);
2544 return x;
2545}
2546
2547enum slab_stat_type {
2548 SL_FULL,
2549 SL_PARTIAL,
2550 SL_CPU,
2551 SL_OBJECTS
2552};
2553
2554#define SO_FULL (1 << SL_FULL)
2555#define SO_PARTIAL (1 << SL_PARTIAL)
2556#define SO_CPU (1 << SL_CPU)
2557#define SO_OBJECTS (1 << SL_OBJECTS)
2558
2559static unsigned long slab_objects(struct kmem_cache *s,
2560 char *buf, unsigned long flags)
2561{
2562 unsigned long total = 0;
2563 int cpu;
2564 int node;
2565 int x;
2566 unsigned long *nodes;
2567 unsigned long *per_cpu;
2568
2569 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
2570 per_cpu = nodes + nr_node_ids;
2571
2572 for_each_possible_cpu(cpu) {
2573 struct page *page = s->cpu_slab[cpu];
2574 int node;
2575
2576 if (page) {
2577 node = page_to_nid(page);
2578 if (flags & SO_CPU) {
2579 int x = 0;
2580
2581 if (flags & SO_OBJECTS)
2582 x = page->inuse;
2583 else
2584 x = 1;
2585 total += x;
2586 nodes[node] += x;
2587 }
2588 per_cpu[node]++;
2589 }
2590 }
2591
2592 for_each_online_node(node) {
2593 struct kmem_cache_node *n = get_node(s, node);
2594
2595 if (flags & SO_PARTIAL) {
2596 if (flags & SO_OBJECTS)
2597 x = count_partial(n);
2598 else
2599 x = n->nr_partial;
2600 total += x;
2601 nodes[node] += x;
2602 }
2603
2604 if (flags & SO_FULL) {
2605 int full_slabs = atomic_read(&n->nr_slabs)
2606 - per_cpu[node]
2607 - n->nr_partial;
2608
2609 if (flags & SO_OBJECTS)
2610 x = full_slabs * s->objects;
2611 else
2612 x = full_slabs;
2613 total += x;
2614 nodes[node] += x;
2615 }
2616 }
2617
2618 x = sprintf(buf, "%lu", total);
2619#ifdef CONFIG_NUMA
2620 for_each_online_node(node)
2621 if (nodes[node])
2622 x += sprintf(buf + x, " N%d=%lu",
2623 node, nodes[node]);
2624#endif
2625 kfree(nodes);
2626 return x + sprintf(buf + x, "\n");
2627}
2628
2629static int any_slab_objects(struct kmem_cache *s)
2630{
2631 int node;
2632 int cpu;
2633
2634 for_each_possible_cpu(cpu)
2635 if (s->cpu_slab[cpu])
2636 return 1;
2637
2638 for_each_node(node) {
2639 struct kmem_cache_node *n = get_node(s, node);
2640
2641 if (n->nr_partial || atomic_read(&n->nr_slabs))
2642 return 1;
2643 }
2644 return 0;
2645}
2646
2647#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
2648#define to_slab(n) container_of(n, struct kmem_cache, kobj);
2649
2650struct slab_attribute {
2651 struct attribute attr;
2652 ssize_t (*show)(struct kmem_cache *s, char *buf);
2653 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
2654};
2655
2656#define SLAB_ATTR_RO(_name) \
2657 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
2658
2659#define SLAB_ATTR(_name) \
2660 static struct slab_attribute _name##_attr = \
2661 __ATTR(_name, 0644, _name##_show, _name##_store)
2662
2663
2664static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
2665{
2666 return sprintf(buf, "%d\n", s->size);
2667}
2668SLAB_ATTR_RO(slab_size);
2669
2670static ssize_t align_show(struct kmem_cache *s, char *buf)
2671{
2672 return sprintf(buf, "%d\n", s->align);
2673}
2674SLAB_ATTR_RO(align);
2675
2676static ssize_t object_size_show(struct kmem_cache *s, char *buf)
2677{
2678 return sprintf(buf, "%d\n", s->objsize);
2679}
2680SLAB_ATTR_RO(object_size);
2681
2682static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
2683{
2684 return sprintf(buf, "%d\n", s->objects);
2685}
2686SLAB_ATTR_RO(objs_per_slab);
2687
2688static ssize_t order_show(struct kmem_cache *s, char *buf)
2689{
2690 return sprintf(buf, "%d\n", s->order);
2691}
2692SLAB_ATTR_RO(order);
2693
2694static ssize_t ctor_show(struct kmem_cache *s, char *buf)
2695{
2696 if (s->ctor) {
2697 int n = sprint_symbol(buf, (unsigned long)s->ctor);
2698
2699 return n + sprintf(buf + n, "\n");
2700 }
2701 return 0;
2702}
2703SLAB_ATTR_RO(ctor);
2704
2705static ssize_t dtor_show(struct kmem_cache *s, char *buf)
2706{
2707 if (s->dtor) {
2708 int n = sprint_symbol(buf, (unsigned long)s->dtor);
2709
2710 return n + sprintf(buf + n, "\n");
2711 }
2712 return 0;
2713}
2714SLAB_ATTR_RO(dtor);
2715
2716static ssize_t aliases_show(struct kmem_cache *s, char *buf)
2717{
2718 return sprintf(buf, "%d\n", s->refcount - 1);
2719}
2720SLAB_ATTR_RO(aliases);
2721
2722static ssize_t slabs_show(struct kmem_cache *s, char *buf)
2723{
2724 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
2725}
2726SLAB_ATTR_RO(slabs);
2727
2728static ssize_t partial_show(struct kmem_cache *s, char *buf)
2729{
2730 return slab_objects(s, buf, SO_PARTIAL);
2731}
2732SLAB_ATTR_RO(partial);
2733
2734static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
2735{
2736 return slab_objects(s, buf, SO_CPU);
2737}
2738SLAB_ATTR_RO(cpu_slabs);
2739
2740static ssize_t objects_show(struct kmem_cache *s, char *buf)
2741{
2742 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
2743}
2744SLAB_ATTR_RO(objects);
2745
2746static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
2747{
2748 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
2749}
2750
2751static ssize_t sanity_checks_store(struct kmem_cache *s,
2752 const char *buf, size_t length)
2753{
2754 s->flags &= ~SLAB_DEBUG_FREE;
2755 if (buf[0] == '1')
2756 s->flags |= SLAB_DEBUG_FREE;
2757 return length;
2758}
2759SLAB_ATTR(sanity_checks);
2760
2761static ssize_t trace_show(struct kmem_cache *s, char *buf)
2762{
2763 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
2764}
2765
2766static ssize_t trace_store(struct kmem_cache *s, const char *buf,
2767 size_t length)
2768{
2769 s->flags &= ~SLAB_TRACE;
2770 if (buf[0] == '1')
2771 s->flags |= SLAB_TRACE;
2772 return length;
2773}
2774SLAB_ATTR(trace);
2775
2776static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
2777{
2778 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
2779}
2780
2781static ssize_t reclaim_account_store(struct kmem_cache *s,
2782 const char *buf, size_t length)
2783{
2784 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
2785 if (buf[0] == '1')
2786 s->flags |= SLAB_RECLAIM_ACCOUNT;
2787 return length;
2788}
2789SLAB_ATTR(reclaim_account);
2790
2791static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
2792{
2793 return sprintf(buf, "%d\n", !!(s->flags &
2794 (SLAB_HWCACHE_ALIGN|SLAB_MUST_HWCACHE_ALIGN)));
2795}
2796SLAB_ATTR_RO(hwcache_align);
2797
2798#ifdef CONFIG_ZONE_DMA
2799static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
2800{
2801 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
2802}
2803SLAB_ATTR_RO(cache_dma);
2804#endif
2805
2806static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
2807{
2808 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
2809}
2810SLAB_ATTR_RO(destroy_by_rcu);
2811
2812static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
2813{
2814 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
2815}
2816
2817static ssize_t red_zone_store(struct kmem_cache *s,
2818 const char *buf, size_t length)
2819{
2820 if (any_slab_objects(s))
2821 return -EBUSY;
2822
2823 s->flags &= ~SLAB_RED_ZONE;
2824 if (buf[0] == '1')
2825 s->flags |= SLAB_RED_ZONE;
2826 calculate_sizes(s);
2827 return length;
2828}
2829SLAB_ATTR(red_zone);
2830
2831static ssize_t poison_show(struct kmem_cache *s, char *buf)
2832{
2833 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
2834}
2835
2836static ssize_t poison_store(struct kmem_cache *s,
2837 const char *buf, size_t length)
2838{
2839 if (any_slab_objects(s))
2840 return -EBUSY;
2841
2842 s->flags &= ~SLAB_POISON;
2843 if (buf[0] == '1')
2844 s->flags |= SLAB_POISON;
2845 calculate_sizes(s);
2846 return length;
2847}
2848SLAB_ATTR(poison);
2849
2850static ssize_t store_user_show(struct kmem_cache *s, char *buf)
2851{
2852 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
2853}
2854
2855static ssize_t store_user_store(struct kmem_cache *s,
2856 const char *buf, size_t length)
2857{
2858 if (any_slab_objects(s))
2859 return -EBUSY;
2860
2861 s->flags &= ~SLAB_STORE_USER;
2862 if (buf[0] == '1')
2863 s->flags |= SLAB_STORE_USER;
2864 calculate_sizes(s);
2865 return length;
2866}
2867SLAB_ATTR(store_user);
2868
2869#ifdef CONFIG_NUMA
2870static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
2871{
2872 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
2873}
2874
2875static ssize_t defrag_ratio_store(struct kmem_cache *s,
2876 const char *buf, size_t length)
2877{
2878 int n = simple_strtoul(buf, NULL, 10);
2879
2880 if (n < 100)
2881 s->defrag_ratio = n * 10;
2882 return length;
2883}
2884SLAB_ATTR(defrag_ratio);
2885#endif
2886
2887static struct attribute * slab_attrs[] = {
2888 &slab_size_attr.attr,
2889 &object_size_attr.attr,
2890 &objs_per_slab_attr.attr,
2891 &order_attr.attr,
2892 &objects_attr.attr,
2893 &slabs_attr.attr,
2894 &partial_attr.attr,
2895 &cpu_slabs_attr.attr,
2896 &ctor_attr.attr,
2897 &dtor_attr.attr,
2898 &aliases_attr.attr,
2899 &align_attr.attr,
2900 &sanity_checks_attr.attr,
2901 &trace_attr.attr,
2902 &hwcache_align_attr.attr,
2903 &reclaim_account_attr.attr,
2904 &destroy_by_rcu_attr.attr,
2905 &red_zone_attr.attr,
2906 &poison_attr.attr,
2907 &store_user_attr.attr,
2908#ifdef CONFIG_ZONE_DMA
2909 &cache_dma_attr.attr,
2910#endif
2911#ifdef CONFIG_NUMA
2912 &defrag_ratio_attr.attr,
2913#endif
2914 NULL
2915};
2916
2917static struct attribute_group slab_attr_group = {
2918 .attrs = slab_attrs,
2919};
2920
2921static ssize_t slab_attr_show(struct kobject *kobj,
2922 struct attribute *attr,
2923 char *buf)
2924{
2925 struct slab_attribute *attribute;
2926 struct kmem_cache *s;
2927 int err;
2928
2929 attribute = to_slab_attr(attr);
2930 s = to_slab(kobj);
2931
2932 if (!attribute->show)
2933 return -EIO;
2934
2935 err = attribute->show(s, buf);
2936
2937 return err;
2938}
2939
2940static ssize_t slab_attr_store(struct kobject *kobj,
2941 struct attribute *attr,
2942 const char *buf, size_t len)
2943{
2944 struct slab_attribute *attribute;
2945 struct kmem_cache *s;
2946 int err;
2947
2948 attribute = to_slab_attr(attr);
2949 s = to_slab(kobj);
2950
2951 if (!attribute->store)
2952 return -EIO;
2953
2954 err = attribute->store(s, buf, len);
2955
2956 return err;
2957}
2958
2959static struct sysfs_ops slab_sysfs_ops = {
2960 .show = slab_attr_show,
2961 .store = slab_attr_store,
2962};
2963
2964static struct kobj_type slab_ktype = {
2965 .sysfs_ops = &slab_sysfs_ops,
2966};
2967
2968static int uevent_filter(struct kset *kset, struct kobject *kobj)
2969{
2970 struct kobj_type *ktype = get_ktype(kobj);
2971
2972 if (ktype == &slab_ktype)
2973 return 1;
2974 return 0;
2975}
2976
2977static struct kset_uevent_ops slab_uevent_ops = {
2978 .filter = uevent_filter,
2979};
2980
2981decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
2982
2983#define ID_STR_LENGTH 64
2984
2985/* Create a unique string id for a slab cache:
2986 * format
2987 * :[flags-]size:[memory address of kmemcache]
2988 */
2989static char *create_unique_id(struct kmem_cache *s)
2990{
2991 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
2992 char *p = name;
2993
2994 BUG_ON(!name);
2995
2996 *p++ = ':';
2997 /*
2998 * First flags affecting slabcache operations. We will only
2999 * get here for aliasable slabs so we do not need to support
3000 * too many flags. The flags here must cover all flags that
3001 * are matched during merging to guarantee that the id is
3002 * unique.
3003 */
3004 if (s->flags & SLAB_CACHE_DMA)
3005 *p++ = 'd';
3006 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3007 *p++ = 'a';
3008 if (s->flags & SLAB_DEBUG_FREE)
3009 *p++ = 'F';
3010 if (p != name + 1)
3011 *p++ = '-';
3012 p += sprintf(p, "%07d", s->size);
3013 BUG_ON(p > name + ID_STR_LENGTH - 1);
3014 return name;
3015}
3016
3017static int sysfs_slab_add(struct kmem_cache *s)
3018{
3019 int err;
3020 const char *name;
3021 int unmergeable;
3022
3023 if (slab_state < SYSFS)
3024 /* Defer until later */
3025 return 0;
3026
3027 unmergeable = slab_unmergeable(s);
3028 if (unmergeable) {
3029 /*
3030 * Slabcache can never be merged so we can use the name proper.
3031 * This is typically the case for debug situations. In that
3032 * case we can catch duplicate names easily.
3033 */
3034 sysfs_remove_link(&slab_subsys.kset.kobj, s->name);
3035 name = s->name;
3036 } else {
3037 /*
3038 * Create a unique name for the slab as a target
3039 * for the symlinks.
3040 */
3041 name = create_unique_id(s);
3042 }
3043
3044 kobj_set_kset_s(s, slab_subsys);
3045 kobject_set_name(&s->kobj, name);
3046 kobject_init(&s->kobj);
3047 err = kobject_add(&s->kobj);
3048 if (err)
3049 return err;
3050
3051 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3052 if (err)
3053 return err;
3054 kobject_uevent(&s->kobj, KOBJ_ADD);
3055 if (!unmergeable) {
3056 /* Setup first alias */
3057 sysfs_slab_alias(s, s->name);
3058 kfree(name);
3059 }
3060 return 0;
3061}
3062
3063static void sysfs_slab_remove(struct kmem_cache *s)
3064{
3065 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3066 kobject_del(&s->kobj);
3067}
3068
3069/*
3070 * Need to buffer aliases during bootup until sysfs becomes
3071 * available lest we loose that information.
3072 */
3073struct saved_alias {
3074 struct kmem_cache *s;
3075 const char *name;
3076 struct saved_alias *next;
3077};
3078
3079struct saved_alias *alias_list;
3080
3081static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3082{
3083 struct saved_alias *al;
3084
3085 if (slab_state == SYSFS) {
3086 /*
3087 * If we have a leftover link then remove it.
3088 */
3089 sysfs_remove_link(&slab_subsys.kset.kobj, name);
3090 return sysfs_create_link(&slab_subsys.kset.kobj,
3091 &s->kobj, name);
3092 }
3093
3094 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3095 if (!al)
3096 return -ENOMEM;
3097
3098 al->s = s;
3099 al->name = name;
3100 al->next = alias_list;
3101 alias_list = al;
3102 return 0;
3103}
3104
3105static int __init slab_sysfs_init(void)
3106{
3107 int err;
3108
3109 err = subsystem_register(&slab_subsys);
3110 if (err) {
3111 printk(KERN_ERR "Cannot register slab subsystem.\n");
3112 return -ENOSYS;
3113 }
3114
3115 finish_bootstrap();
3116
3117 while (alias_list) {
3118 struct saved_alias *al = alias_list;
3119
3120 alias_list = alias_list->next;
3121 err = sysfs_slab_alias(al->s, al->name);
3122 BUG_ON(err);
3123 kfree(al);
3124 }
3125
3126 resiliency_test();
3127 return 0;
3128}
3129
3130__initcall(slab_sysfs_init);
3131#else
3132__initcall(finish_bootstrap);
3133#endif