slub: Do not hold slub_lock when calling sysfs_slab_add()
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
81819f0f 32
4a92379b
RK
33#include <trace/events/kmem.h>
34
81819f0f
CL
35/*
36 * Lock order:
881db7fb
CL
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 40 *
881db7fb
CL
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
81819f0f
CL
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
b789ef51
CL
134/* Enable to log cmpxchg failures */
135#undef SLUB_DEBUG_CMPXCHG
136
2086d26a
CL
137/*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
76be8950 141#define MIN_PARTIAL 5
e95eed57 142
2086d26a
CL
143/*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148#define MAX_PARTIAL 10
149
81819f0f
CL
150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
672bba3a 152
fa5ec8a1 153/*
3de47213
DR
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
fa5ec8a1 157 */
3de47213 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 159
81819f0f
CL
160/*
161 * Set of flags that will prevent slab merging
162 */
163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
81819f0f
CL
166
167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 168 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 169
210b5c06
CG
170#define OO_SHIFT 16
171#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 172#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 173
81819f0f 174/* Internal SLUB flags */
f90ec390 175#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 176#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
177
178static int kmem_size = sizeof(struct kmem_cache);
179
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
184static enum {
185 DOWN, /* No slab functionality available */
51df1142 186 PARTIAL, /* Kmem_cache_node works */
672bba3a 187 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
188 SYSFS /* Sysfs up */
189} slab_state = DOWN;
190
191/* A list of all slab caches on the system */
192static DECLARE_RWSEM(slub_lock);
5af328a5 193static LIST_HEAD(slab_caches);
81819f0f 194
02cbc874
CL
195/*
196 * Tracking user of a slab.
197 */
d6543e39 198#define TRACK_ADDRS_COUNT 16
02cbc874 199struct track {
ce71e27c 200 unsigned long addr; /* Called from address */
d6543e39
BG
201#ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203#endif
02cbc874
CL
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207};
208
209enum track_item { TRACK_ALLOC, TRACK_FREE };
210
ab4d5ed5 211#ifdef CONFIG_SYSFS
81819f0f
CL
212static int sysfs_slab_add(struct kmem_cache *);
213static int sysfs_slab_alias(struct kmem_cache *, const char *);
214static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 215
81819f0f 216#else
0c710013
CL
217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
151c602f
CL
220static inline void sysfs_slab_remove(struct kmem_cache *s)
221{
84c1cf62 222 kfree(s->name);
151c602f
CL
223 kfree(s);
224}
8ff12cfc 225
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
84e554e6 231 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
232#endif
233}
234
81819f0f
CL
235/********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239int slab_is_available(void)
240{
241 return slab_state >= UP;
242}
243
244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245{
81819f0f 246 return s->node[node];
81819f0f
CL
247}
248
6446faa2 249/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
250static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252{
253 void *base;
254
a973e9dd 255 if (!object)
02cbc874
CL
256 return 1;
257
a973e9dd 258 base = page_address(page);
39b26464 259 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265}
266
7656c72b
CL
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
269 return *(void **)(object + s->offset);
270}
271
0ad9500e
ED
272static void prefetch_freepointer(const struct kmem_cache *s, void *object)
273{
274 prefetch(object + s->offset);
275}
276
1393d9a1
CL
277static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
278{
279 void *p;
280
281#ifdef CONFIG_DEBUG_PAGEALLOC
282 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
283#else
284 p = get_freepointer(s, object);
285#endif
286 return p;
287}
288
7656c72b
CL
289static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
290{
291 *(void **)(object + s->offset) = fp;
292}
293
294/* Loop over all objects in a slab */
224a88be
CL
295#define for_each_object(__p, __s, __addr, __objects) \
296 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
297 __p += (__s)->size)
298
7656c72b
CL
299/* Determine object index from a given position */
300static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
301{
302 return (p - addr) / s->size;
303}
304
d71f606f
MK
305static inline size_t slab_ksize(const struct kmem_cache *s)
306{
307#ifdef CONFIG_SLUB_DEBUG
308 /*
309 * Debugging requires use of the padding between object
310 * and whatever may come after it.
311 */
312 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
313 return s->objsize;
314
315#endif
316 /*
317 * If we have the need to store the freelist pointer
318 * back there or track user information then we can
319 * only use the space before that information.
320 */
321 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
322 return s->inuse;
323 /*
324 * Else we can use all the padding etc for the allocation
325 */
326 return s->size;
327}
328
ab9a0f19
LJ
329static inline int order_objects(int order, unsigned long size, int reserved)
330{
331 return ((PAGE_SIZE << order) - reserved) / size;
332}
333
834f3d11 334static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 335 unsigned long size, int reserved)
834f3d11
CL
336{
337 struct kmem_cache_order_objects x = {
ab9a0f19 338 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
339 };
340
341 return x;
342}
343
344static inline int oo_order(struct kmem_cache_order_objects x)
345{
210b5c06 346 return x.x >> OO_SHIFT;
834f3d11
CL
347}
348
349static inline int oo_objects(struct kmem_cache_order_objects x)
350{
210b5c06 351 return x.x & OO_MASK;
834f3d11
CL
352}
353
881db7fb
CL
354/*
355 * Per slab locking using the pagelock
356 */
357static __always_inline void slab_lock(struct page *page)
358{
359 bit_spin_lock(PG_locked, &page->flags);
360}
361
362static __always_inline void slab_unlock(struct page *page)
363{
364 __bit_spin_unlock(PG_locked, &page->flags);
365}
366
1d07171c
CL
367/* Interrupts must be disabled (for the fallback code to work right) */
368static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
369 void *freelist_old, unsigned long counters_old,
370 void *freelist_new, unsigned long counters_new,
371 const char *n)
372{
373 VM_BUG_ON(!irqs_disabled());
2565409f
HC
374#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
375 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 376 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 377 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
378 freelist_old, counters_old,
379 freelist_new, counters_new))
380 return 1;
381 } else
382#endif
383 {
384 slab_lock(page);
385 if (page->freelist == freelist_old && page->counters == counters_old) {
386 page->freelist = freelist_new;
387 page->counters = counters_new;
388 slab_unlock(page);
389 return 1;
390 }
391 slab_unlock(page);
392 }
393
394 cpu_relax();
395 stat(s, CMPXCHG_DOUBLE_FAIL);
396
397#ifdef SLUB_DEBUG_CMPXCHG
398 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
399#endif
400
401 return 0;
402}
403
b789ef51
CL
404static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
405 void *freelist_old, unsigned long counters_old,
406 void *freelist_new, unsigned long counters_new,
407 const char *n)
408{
2565409f
HC
409#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
410 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 411 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 412 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
413 freelist_old, counters_old,
414 freelist_new, counters_new))
415 return 1;
416 } else
417#endif
418 {
1d07171c
CL
419 unsigned long flags;
420
421 local_irq_save(flags);
881db7fb 422 slab_lock(page);
b789ef51
CL
423 if (page->freelist == freelist_old && page->counters == counters_old) {
424 page->freelist = freelist_new;
425 page->counters = counters_new;
881db7fb 426 slab_unlock(page);
1d07171c 427 local_irq_restore(flags);
b789ef51
CL
428 return 1;
429 }
881db7fb 430 slab_unlock(page);
1d07171c 431 local_irq_restore(flags);
b789ef51
CL
432 }
433
434 cpu_relax();
435 stat(s, CMPXCHG_DOUBLE_FAIL);
436
437#ifdef SLUB_DEBUG_CMPXCHG
438 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
439#endif
440
441 return 0;
442}
443
41ecc55b 444#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
445/*
446 * Determine a map of object in use on a page.
447 *
881db7fb 448 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
449 * not vanish from under us.
450 */
451static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
452{
453 void *p;
454 void *addr = page_address(page);
455
456 for (p = page->freelist; p; p = get_freepointer(s, p))
457 set_bit(slab_index(p, s, addr), map);
458}
459
41ecc55b
CL
460/*
461 * Debug settings:
462 */
f0630fff
CL
463#ifdef CONFIG_SLUB_DEBUG_ON
464static int slub_debug = DEBUG_DEFAULT_FLAGS;
465#else
41ecc55b 466static int slub_debug;
f0630fff 467#endif
41ecc55b
CL
468
469static char *slub_debug_slabs;
fa5ec8a1 470static int disable_higher_order_debug;
41ecc55b 471
81819f0f
CL
472/*
473 * Object debugging
474 */
475static void print_section(char *text, u8 *addr, unsigned int length)
476{
ffc79d28
SAS
477 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
478 length, 1);
81819f0f
CL
479}
480
81819f0f
CL
481static struct track *get_track(struct kmem_cache *s, void *object,
482 enum track_item alloc)
483{
484 struct track *p;
485
486 if (s->offset)
487 p = object + s->offset + sizeof(void *);
488 else
489 p = object + s->inuse;
490
491 return p + alloc;
492}
493
494static void set_track(struct kmem_cache *s, void *object,
ce71e27c 495 enum track_item alloc, unsigned long addr)
81819f0f 496{
1a00df4a 497 struct track *p = get_track(s, object, alloc);
81819f0f 498
81819f0f 499 if (addr) {
d6543e39
BG
500#ifdef CONFIG_STACKTRACE
501 struct stack_trace trace;
502 int i;
503
504 trace.nr_entries = 0;
505 trace.max_entries = TRACK_ADDRS_COUNT;
506 trace.entries = p->addrs;
507 trace.skip = 3;
508 save_stack_trace(&trace);
509
510 /* See rant in lockdep.c */
511 if (trace.nr_entries != 0 &&
512 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
513 trace.nr_entries--;
514
515 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
516 p->addrs[i] = 0;
517#endif
81819f0f
CL
518 p->addr = addr;
519 p->cpu = smp_processor_id();
88e4ccf2 520 p->pid = current->pid;
81819f0f
CL
521 p->when = jiffies;
522 } else
523 memset(p, 0, sizeof(struct track));
524}
525
81819f0f
CL
526static void init_tracking(struct kmem_cache *s, void *object)
527{
24922684
CL
528 if (!(s->flags & SLAB_STORE_USER))
529 return;
530
ce71e27c
EGM
531 set_track(s, object, TRACK_FREE, 0UL);
532 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
533}
534
535static void print_track(const char *s, struct track *t)
536{
537 if (!t->addr)
538 return;
539
7daf705f 540 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 541 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
542#ifdef CONFIG_STACKTRACE
543 {
544 int i;
545 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
546 if (t->addrs[i])
547 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
548 else
549 break;
550 }
551#endif
24922684
CL
552}
553
554static void print_tracking(struct kmem_cache *s, void *object)
555{
556 if (!(s->flags & SLAB_STORE_USER))
557 return;
558
559 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
560 print_track("Freed", get_track(s, object, TRACK_FREE));
561}
562
563static void print_page_info(struct page *page)
564{
39b26464
CL
565 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
566 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
567
568}
569
570static void slab_bug(struct kmem_cache *s, char *fmt, ...)
571{
572 va_list args;
573 char buf[100];
574
575 va_start(args, fmt);
576 vsnprintf(buf, sizeof(buf), fmt, args);
577 va_end(args);
578 printk(KERN_ERR "========================================"
579 "=====================================\n");
265d47e7 580 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
581 printk(KERN_ERR "----------------------------------------"
582 "-------------------------------------\n\n");
81819f0f
CL
583}
584
24922684
CL
585static void slab_fix(struct kmem_cache *s, char *fmt, ...)
586{
587 va_list args;
588 char buf[100];
589
590 va_start(args, fmt);
591 vsnprintf(buf, sizeof(buf), fmt, args);
592 va_end(args);
593 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
594}
595
596static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
597{
598 unsigned int off; /* Offset of last byte */
a973e9dd 599 u8 *addr = page_address(page);
24922684
CL
600
601 print_tracking(s, p);
602
603 print_page_info(page);
604
605 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
606 p, p - addr, get_freepointer(s, p));
607
608 if (p > addr + 16)
ffc79d28 609 print_section("Bytes b4 ", p - 16, 16);
81819f0f 610
ffc79d28
SAS
611 print_section("Object ", p, min_t(unsigned long, s->objsize,
612 PAGE_SIZE));
81819f0f 613 if (s->flags & SLAB_RED_ZONE)
ffc79d28 614 print_section("Redzone ", p + s->objsize,
81819f0f
CL
615 s->inuse - s->objsize);
616
81819f0f
CL
617 if (s->offset)
618 off = s->offset + sizeof(void *);
619 else
620 off = s->inuse;
621
24922684 622 if (s->flags & SLAB_STORE_USER)
81819f0f 623 off += 2 * sizeof(struct track);
81819f0f
CL
624
625 if (off != s->size)
626 /* Beginning of the filler is the free pointer */
ffc79d28 627 print_section("Padding ", p + off, s->size - off);
24922684
CL
628
629 dump_stack();
81819f0f
CL
630}
631
632static void object_err(struct kmem_cache *s, struct page *page,
633 u8 *object, char *reason)
634{
3dc50637 635 slab_bug(s, "%s", reason);
24922684 636 print_trailer(s, page, object);
81819f0f
CL
637}
638
24922684 639static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
640{
641 va_list args;
642 char buf[100];
643
24922684
CL
644 va_start(args, fmt);
645 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 646 va_end(args);
3dc50637 647 slab_bug(s, "%s", buf);
24922684 648 print_page_info(page);
81819f0f
CL
649 dump_stack();
650}
651
f7cb1933 652static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
653{
654 u8 *p = object;
655
656 if (s->flags & __OBJECT_POISON) {
657 memset(p, POISON_FREE, s->objsize - 1);
06428780 658 p[s->objsize - 1] = POISON_END;
81819f0f
CL
659 }
660
661 if (s->flags & SLAB_RED_ZONE)
f7cb1933 662 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
663}
664
24922684
CL
665static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
666 void *from, void *to)
667{
668 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
669 memset(from, data, to - from);
670}
671
672static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
673 u8 *object, char *what,
06428780 674 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
675{
676 u8 *fault;
677 u8 *end;
678
79824820 679 fault = memchr_inv(start, value, bytes);
24922684
CL
680 if (!fault)
681 return 1;
682
683 end = start + bytes;
684 while (end > fault && end[-1] == value)
685 end--;
686
687 slab_bug(s, "%s overwritten", what);
688 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
689 fault, end - 1, fault[0], value);
690 print_trailer(s, page, object);
691
692 restore_bytes(s, what, value, fault, end);
693 return 0;
81819f0f
CL
694}
695
81819f0f
CL
696/*
697 * Object layout:
698 *
699 * object address
700 * Bytes of the object to be managed.
701 * If the freepointer may overlay the object then the free
702 * pointer is the first word of the object.
672bba3a 703 *
81819f0f
CL
704 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
705 * 0xa5 (POISON_END)
706 *
707 * object + s->objsize
708 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
709 * Padding is extended by another word if Redzoning is enabled and
710 * objsize == inuse.
711 *
81819f0f
CL
712 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
713 * 0xcc (RED_ACTIVE) for objects in use.
714 *
715 * object + s->inuse
672bba3a
CL
716 * Meta data starts here.
717 *
81819f0f
CL
718 * A. Free pointer (if we cannot overwrite object on free)
719 * B. Tracking data for SLAB_STORE_USER
672bba3a 720 * C. Padding to reach required alignment boundary or at mininum
6446faa2 721 * one word if debugging is on to be able to detect writes
672bba3a
CL
722 * before the word boundary.
723 *
724 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
725 *
726 * object + s->size
672bba3a 727 * Nothing is used beyond s->size.
81819f0f 728 *
672bba3a
CL
729 * If slabcaches are merged then the objsize and inuse boundaries are mostly
730 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
731 * may be used with merged slabcaches.
732 */
733
81819f0f
CL
734static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
735{
736 unsigned long off = s->inuse; /* The end of info */
737
738 if (s->offset)
739 /* Freepointer is placed after the object. */
740 off += sizeof(void *);
741
742 if (s->flags & SLAB_STORE_USER)
743 /* We also have user information there */
744 off += 2 * sizeof(struct track);
745
746 if (s->size == off)
747 return 1;
748
24922684
CL
749 return check_bytes_and_report(s, page, p, "Object padding",
750 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
751}
752
39b26464 753/* Check the pad bytes at the end of a slab page */
81819f0f
CL
754static int slab_pad_check(struct kmem_cache *s, struct page *page)
755{
24922684
CL
756 u8 *start;
757 u8 *fault;
758 u8 *end;
759 int length;
760 int remainder;
81819f0f
CL
761
762 if (!(s->flags & SLAB_POISON))
763 return 1;
764
a973e9dd 765 start = page_address(page);
ab9a0f19 766 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
767 end = start + length;
768 remainder = length % s->size;
81819f0f
CL
769 if (!remainder)
770 return 1;
771
79824820 772 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
773 if (!fault)
774 return 1;
775 while (end > fault && end[-1] == POISON_INUSE)
776 end--;
777
778 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 779 print_section("Padding ", end - remainder, remainder);
24922684 780
8a3d271d 781 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 782 return 0;
81819f0f
CL
783}
784
785static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 786 void *object, u8 val)
81819f0f
CL
787{
788 u8 *p = object;
789 u8 *endobject = object + s->objsize;
790
791 if (s->flags & SLAB_RED_ZONE) {
24922684 792 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 793 endobject, val, s->inuse - s->objsize))
81819f0f 794 return 0;
81819f0f 795 } else {
3adbefee
IM
796 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
797 check_bytes_and_report(s, page, p, "Alignment padding",
798 endobject, POISON_INUSE, s->inuse - s->objsize);
799 }
81819f0f
CL
800 }
801
802 if (s->flags & SLAB_POISON) {
f7cb1933 803 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
804 (!check_bytes_and_report(s, page, p, "Poison", p,
805 POISON_FREE, s->objsize - 1) ||
806 !check_bytes_and_report(s, page, p, "Poison",
06428780 807 p + s->objsize - 1, POISON_END, 1)))
81819f0f 808 return 0;
81819f0f
CL
809 /*
810 * check_pad_bytes cleans up on its own.
811 */
812 check_pad_bytes(s, page, p);
813 }
814
f7cb1933 815 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
816 /*
817 * Object and freepointer overlap. Cannot check
818 * freepointer while object is allocated.
819 */
820 return 1;
821
822 /* Check free pointer validity */
823 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
824 object_err(s, page, p, "Freepointer corrupt");
825 /*
9f6c708e 826 * No choice but to zap it and thus lose the remainder
81819f0f 827 * of the free objects in this slab. May cause
672bba3a 828 * another error because the object count is now wrong.
81819f0f 829 */
a973e9dd 830 set_freepointer(s, p, NULL);
81819f0f
CL
831 return 0;
832 }
833 return 1;
834}
835
836static int check_slab(struct kmem_cache *s, struct page *page)
837{
39b26464
CL
838 int maxobj;
839
81819f0f
CL
840 VM_BUG_ON(!irqs_disabled());
841
842 if (!PageSlab(page)) {
24922684 843 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
844 return 0;
845 }
39b26464 846
ab9a0f19 847 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
848 if (page->objects > maxobj) {
849 slab_err(s, page, "objects %u > max %u",
850 s->name, page->objects, maxobj);
851 return 0;
852 }
853 if (page->inuse > page->objects) {
24922684 854 slab_err(s, page, "inuse %u > max %u",
39b26464 855 s->name, page->inuse, page->objects);
81819f0f
CL
856 return 0;
857 }
858 /* Slab_pad_check fixes things up after itself */
859 slab_pad_check(s, page);
860 return 1;
861}
862
863/*
672bba3a
CL
864 * Determine if a certain object on a page is on the freelist. Must hold the
865 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
866 */
867static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
868{
869 int nr = 0;
881db7fb 870 void *fp;
81819f0f 871 void *object = NULL;
224a88be 872 unsigned long max_objects;
81819f0f 873
881db7fb 874 fp = page->freelist;
39b26464 875 while (fp && nr <= page->objects) {
81819f0f
CL
876 if (fp == search)
877 return 1;
878 if (!check_valid_pointer(s, page, fp)) {
879 if (object) {
880 object_err(s, page, object,
881 "Freechain corrupt");
a973e9dd 882 set_freepointer(s, object, NULL);
81819f0f
CL
883 break;
884 } else {
24922684 885 slab_err(s, page, "Freepointer corrupt");
a973e9dd 886 page->freelist = NULL;
39b26464 887 page->inuse = page->objects;
24922684 888 slab_fix(s, "Freelist cleared");
81819f0f
CL
889 return 0;
890 }
891 break;
892 }
893 object = fp;
894 fp = get_freepointer(s, object);
895 nr++;
896 }
897
ab9a0f19 898 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
899 if (max_objects > MAX_OBJS_PER_PAGE)
900 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
901
902 if (page->objects != max_objects) {
903 slab_err(s, page, "Wrong number of objects. Found %d but "
904 "should be %d", page->objects, max_objects);
905 page->objects = max_objects;
906 slab_fix(s, "Number of objects adjusted.");
907 }
39b26464 908 if (page->inuse != page->objects - nr) {
70d71228 909 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
910 "counted were %d", page->inuse, page->objects - nr);
911 page->inuse = page->objects - nr;
24922684 912 slab_fix(s, "Object count adjusted.");
81819f0f
CL
913 }
914 return search == NULL;
915}
916
0121c619
CL
917static void trace(struct kmem_cache *s, struct page *page, void *object,
918 int alloc)
3ec09742
CL
919{
920 if (s->flags & SLAB_TRACE) {
921 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
922 s->name,
923 alloc ? "alloc" : "free",
924 object, page->inuse,
925 page->freelist);
926
927 if (!alloc)
ffc79d28 928 print_section("Object ", (void *)object, s->objsize);
3ec09742
CL
929
930 dump_stack();
931 }
932}
933
c016b0bd
CL
934/*
935 * Hooks for other subsystems that check memory allocations. In a typical
936 * production configuration these hooks all should produce no code at all.
937 */
938static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
939{
c1d50836 940 flags &= gfp_allowed_mask;
c016b0bd
CL
941 lockdep_trace_alloc(flags);
942 might_sleep_if(flags & __GFP_WAIT);
943
944 return should_failslab(s->objsize, flags, s->flags);
945}
946
947static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
948{
c1d50836 949 flags &= gfp_allowed_mask;
b3d41885 950 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
951 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
952}
953
954static inline void slab_free_hook(struct kmem_cache *s, void *x)
955{
956 kmemleak_free_recursive(x, s->flags);
c016b0bd 957
d3f661d6
CL
958 /*
959 * Trouble is that we may no longer disable interupts in the fast path
960 * So in order to make the debug calls that expect irqs to be
961 * disabled we need to disable interrupts temporarily.
962 */
963#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
964 {
965 unsigned long flags;
966
967 local_irq_save(flags);
968 kmemcheck_slab_free(s, x, s->objsize);
969 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
970 local_irq_restore(flags);
971 }
972#endif
f9b615de
TG
973 if (!(s->flags & SLAB_DEBUG_OBJECTS))
974 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
975}
976
643b1138 977/*
672bba3a 978 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
979 *
980 * list_lock must be held.
643b1138 981 */
5cc6eee8
CL
982static void add_full(struct kmem_cache *s,
983 struct kmem_cache_node *n, struct page *page)
643b1138 984{
5cc6eee8
CL
985 if (!(s->flags & SLAB_STORE_USER))
986 return;
987
643b1138 988 list_add(&page->lru, &n->full);
643b1138
CL
989}
990
5cc6eee8
CL
991/*
992 * list_lock must be held.
993 */
643b1138
CL
994static void remove_full(struct kmem_cache *s, struct page *page)
995{
643b1138
CL
996 if (!(s->flags & SLAB_STORE_USER))
997 return;
998
643b1138 999 list_del(&page->lru);
643b1138
CL
1000}
1001
0f389ec6
CL
1002/* Tracking of the number of slabs for debugging purposes */
1003static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1004{
1005 struct kmem_cache_node *n = get_node(s, node);
1006
1007 return atomic_long_read(&n->nr_slabs);
1008}
1009
26c02cf0
AB
1010static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1011{
1012 return atomic_long_read(&n->nr_slabs);
1013}
1014
205ab99d 1015static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1016{
1017 struct kmem_cache_node *n = get_node(s, node);
1018
1019 /*
1020 * May be called early in order to allocate a slab for the
1021 * kmem_cache_node structure. Solve the chicken-egg
1022 * dilemma by deferring the increment of the count during
1023 * bootstrap (see early_kmem_cache_node_alloc).
1024 */
7340cc84 1025 if (n) {
0f389ec6 1026 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1027 atomic_long_add(objects, &n->total_objects);
1028 }
0f389ec6 1029}
205ab99d 1030static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1031{
1032 struct kmem_cache_node *n = get_node(s, node);
1033
1034 atomic_long_dec(&n->nr_slabs);
205ab99d 1035 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1036}
1037
1038/* Object debug checks for alloc/free paths */
3ec09742
CL
1039static void setup_object_debug(struct kmem_cache *s, struct page *page,
1040 void *object)
1041{
1042 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1043 return;
1044
f7cb1933 1045 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1046 init_tracking(s, object);
1047}
1048
1537066c 1049static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1050 void *object, unsigned long addr)
81819f0f
CL
1051{
1052 if (!check_slab(s, page))
1053 goto bad;
1054
81819f0f
CL
1055 if (!check_valid_pointer(s, page, object)) {
1056 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1057 goto bad;
81819f0f
CL
1058 }
1059
f7cb1933 1060 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1061 goto bad;
81819f0f 1062
3ec09742
CL
1063 /* Success perform special debug activities for allocs */
1064 if (s->flags & SLAB_STORE_USER)
1065 set_track(s, object, TRACK_ALLOC, addr);
1066 trace(s, page, object, 1);
f7cb1933 1067 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1068 return 1;
3ec09742 1069
81819f0f
CL
1070bad:
1071 if (PageSlab(page)) {
1072 /*
1073 * If this is a slab page then lets do the best we can
1074 * to avoid issues in the future. Marking all objects
672bba3a 1075 * as used avoids touching the remaining objects.
81819f0f 1076 */
24922684 1077 slab_fix(s, "Marking all objects used");
39b26464 1078 page->inuse = page->objects;
a973e9dd 1079 page->freelist = NULL;
81819f0f
CL
1080 }
1081 return 0;
1082}
1083
1537066c
CL
1084static noinline int free_debug_processing(struct kmem_cache *s,
1085 struct page *page, void *object, unsigned long addr)
81819f0f 1086{
5c2e4bbb
CL
1087 unsigned long flags;
1088 int rc = 0;
1089
1090 local_irq_save(flags);
881db7fb
CL
1091 slab_lock(page);
1092
81819f0f
CL
1093 if (!check_slab(s, page))
1094 goto fail;
1095
1096 if (!check_valid_pointer(s, page, object)) {
70d71228 1097 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1098 goto fail;
1099 }
1100
1101 if (on_freelist(s, page, object)) {
24922684 1102 object_err(s, page, object, "Object already free");
81819f0f
CL
1103 goto fail;
1104 }
1105
f7cb1933 1106 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1107 goto out;
81819f0f
CL
1108
1109 if (unlikely(s != page->slab)) {
3adbefee 1110 if (!PageSlab(page)) {
70d71228
CL
1111 slab_err(s, page, "Attempt to free object(0x%p) "
1112 "outside of slab", object);
3adbefee 1113 } else if (!page->slab) {
81819f0f 1114 printk(KERN_ERR
70d71228 1115 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1116 object);
70d71228 1117 dump_stack();
06428780 1118 } else
24922684
CL
1119 object_err(s, page, object,
1120 "page slab pointer corrupt.");
81819f0f
CL
1121 goto fail;
1122 }
3ec09742 1123
3ec09742
CL
1124 if (s->flags & SLAB_STORE_USER)
1125 set_track(s, object, TRACK_FREE, addr);
1126 trace(s, page, object, 0);
f7cb1933 1127 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1128 rc = 1;
1129out:
881db7fb 1130 slab_unlock(page);
5c2e4bbb
CL
1131 local_irq_restore(flags);
1132 return rc;
3ec09742 1133
81819f0f 1134fail:
24922684 1135 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1136 goto out;
81819f0f
CL
1137}
1138
41ecc55b
CL
1139static int __init setup_slub_debug(char *str)
1140{
f0630fff
CL
1141 slub_debug = DEBUG_DEFAULT_FLAGS;
1142 if (*str++ != '=' || !*str)
1143 /*
1144 * No options specified. Switch on full debugging.
1145 */
1146 goto out;
1147
1148 if (*str == ',')
1149 /*
1150 * No options but restriction on slabs. This means full
1151 * debugging for slabs matching a pattern.
1152 */
1153 goto check_slabs;
1154
fa5ec8a1
DR
1155 if (tolower(*str) == 'o') {
1156 /*
1157 * Avoid enabling debugging on caches if its minimum order
1158 * would increase as a result.
1159 */
1160 disable_higher_order_debug = 1;
1161 goto out;
1162 }
1163
f0630fff
CL
1164 slub_debug = 0;
1165 if (*str == '-')
1166 /*
1167 * Switch off all debugging measures.
1168 */
1169 goto out;
1170
1171 /*
1172 * Determine which debug features should be switched on
1173 */
06428780 1174 for (; *str && *str != ','; str++) {
f0630fff
CL
1175 switch (tolower(*str)) {
1176 case 'f':
1177 slub_debug |= SLAB_DEBUG_FREE;
1178 break;
1179 case 'z':
1180 slub_debug |= SLAB_RED_ZONE;
1181 break;
1182 case 'p':
1183 slub_debug |= SLAB_POISON;
1184 break;
1185 case 'u':
1186 slub_debug |= SLAB_STORE_USER;
1187 break;
1188 case 't':
1189 slub_debug |= SLAB_TRACE;
1190 break;
4c13dd3b
DM
1191 case 'a':
1192 slub_debug |= SLAB_FAILSLAB;
1193 break;
f0630fff
CL
1194 default:
1195 printk(KERN_ERR "slub_debug option '%c' "
06428780 1196 "unknown. skipped\n", *str);
f0630fff 1197 }
41ecc55b
CL
1198 }
1199
f0630fff 1200check_slabs:
41ecc55b
CL
1201 if (*str == ',')
1202 slub_debug_slabs = str + 1;
f0630fff 1203out:
41ecc55b
CL
1204 return 1;
1205}
1206
1207__setup("slub_debug", setup_slub_debug);
1208
ba0268a8
CL
1209static unsigned long kmem_cache_flags(unsigned long objsize,
1210 unsigned long flags, const char *name,
51cc5068 1211 void (*ctor)(void *))
41ecc55b
CL
1212{
1213 /*
e153362a 1214 * Enable debugging if selected on the kernel commandline.
41ecc55b 1215 */
e153362a 1216 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1217 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1218 flags |= slub_debug;
ba0268a8
CL
1219
1220 return flags;
41ecc55b
CL
1221}
1222#else
3ec09742
CL
1223static inline void setup_object_debug(struct kmem_cache *s,
1224 struct page *page, void *object) {}
41ecc55b 1225
3ec09742 1226static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1227 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1228
3ec09742 1229static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1230 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1231
41ecc55b
CL
1232static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1233 { return 1; }
1234static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1235 void *object, u8 val) { return 1; }
5cc6eee8
CL
1236static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1237 struct page *page) {}
2cfb7455 1238static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1239static inline unsigned long kmem_cache_flags(unsigned long objsize,
1240 unsigned long flags, const char *name,
51cc5068 1241 void (*ctor)(void *))
ba0268a8
CL
1242{
1243 return flags;
1244}
41ecc55b 1245#define slub_debug 0
0f389ec6 1246
fdaa45e9
IM
1247#define disable_higher_order_debug 0
1248
0f389ec6
CL
1249static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1250 { return 0; }
26c02cf0
AB
1251static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1252 { return 0; }
205ab99d
CL
1253static inline void inc_slabs_node(struct kmem_cache *s, int node,
1254 int objects) {}
1255static inline void dec_slabs_node(struct kmem_cache *s, int node,
1256 int objects) {}
7d550c56
CL
1257
1258static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1259 { return 0; }
1260
1261static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1262 void *object) {}
1263
1264static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1265
ab4d5ed5 1266#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1267
81819f0f
CL
1268/*
1269 * Slab allocation and freeing
1270 */
65c3376a
CL
1271static inline struct page *alloc_slab_page(gfp_t flags, int node,
1272 struct kmem_cache_order_objects oo)
1273{
1274 int order = oo_order(oo);
1275
b1eeab67
VN
1276 flags |= __GFP_NOTRACK;
1277
2154a336 1278 if (node == NUMA_NO_NODE)
65c3376a
CL
1279 return alloc_pages(flags, order);
1280 else
6b65aaf3 1281 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1282}
1283
81819f0f
CL
1284static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1285{
06428780 1286 struct page *page;
834f3d11 1287 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1288 gfp_t alloc_gfp;
81819f0f 1289
7e0528da
CL
1290 flags &= gfp_allowed_mask;
1291
1292 if (flags & __GFP_WAIT)
1293 local_irq_enable();
1294
b7a49f0d 1295 flags |= s->allocflags;
e12ba74d 1296
ba52270d
PE
1297 /*
1298 * Let the initial higher-order allocation fail under memory pressure
1299 * so we fall-back to the minimum order allocation.
1300 */
1301 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1302
1303 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1304 if (unlikely(!page)) {
1305 oo = s->min;
1306 /*
1307 * Allocation may have failed due to fragmentation.
1308 * Try a lower order alloc if possible
1309 */
1310 page = alloc_slab_page(flags, node, oo);
81819f0f 1311
7e0528da
CL
1312 if (page)
1313 stat(s, ORDER_FALLBACK);
65c3376a 1314 }
5a896d9e 1315
7e0528da
CL
1316 if (flags & __GFP_WAIT)
1317 local_irq_disable();
1318
1319 if (!page)
1320 return NULL;
1321
5a896d9e 1322 if (kmemcheck_enabled
5086c389 1323 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1324 int pages = 1 << oo_order(oo);
1325
1326 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1327
1328 /*
1329 * Objects from caches that have a constructor don't get
1330 * cleared when they're allocated, so we need to do it here.
1331 */
1332 if (s->ctor)
1333 kmemcheck_mark_uninitialized_pages(page, pages);
1334 else
1335 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1336 }
1337
834f3d11 1338 page->objects = oo_objects(oo);
81819f0f
CL
1339 mod_zone_page_state(page_zone(page),
1340 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1341 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1342 1 << oo_order(oo));
81819f0f
CL
1343
1344 return page;
1345}
1346
1347static void setup_object(struct kmem_cache *s, struct page *page,
1348 void *object)
1349{
3ec09742 1350 setup_object_debug(s, page, object);
4f104934 1351 if (unlikely(s->ctor))
51cc5068 1352 s->ctor(object);
81819f0f
CL
1353}
1354
1355static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1356{
1357 struct page *page;
81819f0f 1358 void *start;
81819f0f
CL
1359 void *last;
1360 void *p;
1361
6cb06229 1362 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1363
6cb06229
CL
1364 page = allocate_slab(s,
1365 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1366 if (!page)
1367 goto out;
1368
205ab99d 1369 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1370 page->slab = s;
1371 page->flags |= 1 << PG_slab;
81819f0f
CL
1372
1373 start = page_address(page);
81819f0f
CL
1374
1375 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1376 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1377
1378 last = start;
224a88be 1379 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1380 setup_object(s, page, last);
1381 set_freepointer(s, last, p);
1382 last = p;
1383 }
1384 setup_object(s, page, last);
a973e9dd 1385 set_freepointer(s, last, NULL);
81819f0f
CL
1386
1387 page->freelist = start;
e6e82ea1 1388 page->inuse = page->objects;
8cb0a506 1389 page->frozen = 1;
81819f0f 1390out:
81819f0f
CL
1391 return page;
1392}
1393
1394static void __free_slab(struct kmem_cache *s, struct page *page)
1395{
834f3d11
CL
1396 int order = compound_order(page);
1397 int pages = 1 << order;
81819f0f 1398
af537b0a 1399 if (kmem_cache_debug(s)) {
81819f0f
CL
1400 void *p;
1401
1402 slab_pad_check(s, page);
224a88be
CL
1403 for_each_object(p, s, page_address(page),
1404 page->objects)
f7cb1933 1405 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1406 }
1407
b1eeab67 1408 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1409
81819f0f
CL
1410 mod_zone_page_state(page_zone(page),
1411 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1412 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1413 -pages);
81819f0f 1414
49bd5221
CL
1415 __ClearPageSlab(page);
1416 reset_page_mapcount(page);
1eb5ac64
NP
1417 if (current->reclaim_state)
1418 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1419 __free_pages(page, order);
81819f0f
CL
1420}
1421
da9a638c
LJ
1422#define need_reserve_slab_rcu \
1423 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1424
81819f0f
CL
1425static void rcu_free_slab(struct rcu_head *h)
1426{
1427 struct page *page;
1428
da9a638c
LJ
1429 if (need_reserve_slab_rcu)
1430 page = virt_to_head_page(h);
1431 else
1432 page = container_of((struct list_head *)h, struct page, lru);
1433
81819f0f
CL
1434 __free_slab(page->slab, page);
1435}
1436
1437static void free_slab(struct kmem_cache *s, struct page *page)
1438{
1439 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1440 struct rcu_head *head;
1441
1442 if (need_reserve_slab_rcu) {
1443 int order = compound_order(page);
1444 int offset = (PAGE_SIZE << order) - s->reserved;
1445
1446 VM_BUG_ON(s->reserved != sizeof(*head));
1447 head = page_address(page) + offset;
1448 } else {
1449 /*
1450 * RCU free overloads the RCU head over the LRU
1451 */
1452 head = (void *)&page->lru;
1453 }
81819f0f
CL
1454
1455 call_rcu(head, rcu_free_slab);
1456 } else
1457 __free_slab(s, page);
1458}
1459
1460static void discard_slab(struct kmem_cache *s, struct page *page)
1461{
205ab99d 1462 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1463 free_slab(s, page);
1464}
1465
1466/*
5cc6eee8
CL
1467 * Management of partially allocated slabs.
1468 *
1469 * list_lock must be held.
81819f0f 1470 */
5cc6eee8 1471static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1472 struct page *page, int tail)
81819f0f 1473{
e95eed57 1474 n->nr_partial++;
136333d1 1475 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1476 list_add_tail(&page->lru, &n->partial);
1477 else
1478 list_add(&page->lru, &n->partial);
81819f0f
CL
1479}
1480
5cc6eee8
CL
1481/*
1482 * list_lock must be held.
1483 */
1484static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1485 struct page *page)
1486{
1487 list_del(&page->lru);
1488 n->nr_partial--;
1489}
1490
81819f0f 1491/*
5cc6eee8
CL
1492 * Lock slab, remove from the partial list and put the object into the
1493 * per cpu freelist.
81819f0f 1494 *
497b66f2
CL
1495 * Returns a list of objects or NULL if it fails.
1496 *
672bba3a 1497 * Must hold list_lock.
81819f0f 1498 */
497b66f2 1499static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1500 struct kmem_cache_node *n, struct page *page,
49e22585 1501 int mode)
81819f0f 1502{
2cfb7455
CL
1503 void *freelist;
1504 unsigned long counters;
1505 struct page new;
1506
2cfb7455
CL
1507 /*
1508 * Zap the freelist and set the frozen bit.
1509 * The old freelist is the list of objects for the
1510 * per cpu allocation list.
1511 */
1512 do {
1513 freelist = page->freelist;
1514 counters = page->counters;
1515 new.counters = counters;
49e22585
CL
1516 if (mode)
1517 new.inuse = page->objects;
2cfb7455
CL
1518
1519 VM_BUG_ON(new.frozen);
1520 new.frozen = 1;
1521
1d07171c 1522 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1523 freelist, counters,
1524 NULL, new.counters,
1525 "lock and freeze"));
1526
1527 remove_partial(n, page);
49e22585 1528 return freelist;
81819f0f
CL
1529}
1530
49e22585
CL
1531static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1532
81819f0f 1533/*
672bba3a 1534 * Try to allocate a partial slab from a specific node.
81819f0f 1535 */
497b66f2 1536static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1537 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1538{
49e22585
CL
1539 struct page *page, *page2;
1540 void *object = NULL;
81819f0f
CL
1541
1542 /*
1543 * Racy check. If we mistakenly see no partial slabs then we
1544 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1545 * partial slab and there is none available then get_partials()
1546 * will return NULL.
81819f0f
CL
1547 */
1548 if (!n || !n->nr_partial)
1549 return NULL;
1550
1551 spin_lock(&n->list_lock);
49e22585 1552 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1553 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1554 int available;
1555
1556 if (!t)
1557 break;
1558
12d79634 1559 if (!object) {
49e22585
CL
1560 c->page = page;
1561 c->node = page_to_nid(page);
1562 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1563 object = t;
1564 available = page->objects - page->inuse;
1565 } else {
1566 page->freelist = t;
1567 available = put_cpu_partial(s, page, 0);
1568 }
1569 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1570 break;
1571
497b66f2 1572 }
81819f0f 1573 spin_unlock(&n->list_lock);
497b66f2 1574 return object;
81819f0f
CL
1575}
1576
1577/*
672bba3a 1578 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1579 */
acd19fd1
CL
1580static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1581 struct kmem_cache_cpu *c)
81819f0f
CL
1582{
1583#ifdef CONFIG_NUMA
1584 struct zonelist *zonelist;
dd1a239f 1585 struct zoneref *z;
54a6eb5c
MG
1586 struct zone *zone;
1587 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1588 void *object;
81819f0f
CL
1589
1590 /*
672bba3a
CL
1591 * The defrag ratio allows a configuration of the tradeoffs between
1592 * inter node defragmentation and node local allocations. A lower
1593 * defrag_ratio increases the tendency to do local allocations
1594 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1595 *
672bba3a
CL
1596 * If the defrag_ratio is set to 0 then kmalloc() always
1597 * returns node local objects. If the ratio is higher then kmalloc()
1598 * may return off node objects because partial slabs are obtained
1599 * from other nodes and filled up.
81819f0f 1600 *
6446faa2 1601 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1602 * defrag_ratio = 1000) then every (well almost) allocation will
1603 * first attempt to defrag slab caches on other nodes. This means
1604 * scanning over all nodes to look for partial slabs which may be
1605 * expensive if we do it every time we are trying to find a slab
1606 * with available objects.
81819f0f 1607 */
9824601e
CL
1608 if (!s->remote_node_defrag_ratio ||
1609 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1610 return NULL;
1611
c0ff7453 1612 get_mems_allowed();
0e88460d 1613 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1614 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1615 struct kmem_cache_node *n;
1616
54a6eb5c 1617 n = get_node(s, zone_to_nid(zone));
81819f0f 1618
54a6eb5c 1619 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1620 n->nr_partial > s->min_partial) {
497b66f2
CL
1621 object = get_partial_node(s, n, c);
1622 if (object) {
c0ff7453 1623 put_mems_allowed();
497b66f2 1624 return object;
c0ff7453 1625 }
81819f0f
CL
1626 }
1627 }
c0ff7453 1628 put_mems_allowed();
81819f0f
CL
1629#endif
1630 return NULL;
1631}
1632
1633/*
1634 * Get a partial page, lock it and return it.
1635 */
497b66f2 1636static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1637 struct kmem_cache_cpu *c)
81819f0f 1638{
497b66f2 1639 void *object;
2154a336 1640 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1641
497b66f2
CL
1642 object = get_partial_node(s, get_node(s, searchnode), c);
1643 if (object || node != NUMA_NO_NODE)
1644 return object;
81819f0f 1645
acd19fd1 1646 return get_any_partial(s, flags, c);
81819f0f
CL
1647}
1648
8a5ec0ba
CL
1649#ifdef CONFIG_PREEMPT
1650/*
1651 * Calculate the next globally unique transaction for disambiguiation
1652 * during cmpxchg. The transactions start with the cpu number and are then
1653 * incremented by CONFIG_NR_CPUS.
1654 */
1655#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1656#else
1657/*
1658 * No preemption supported therefore also no need to check for
1659 * different cpus.
1660 */
1661#define TID_STEP 1
1662#endif
1663
1664static inline unsigned long next_tid(unsigned long tid)
1665{
1666 return tid + TID_STEP;
1667}
1668
1669static inline unsigned int tid_to_cpu(unsigned long tid)
1670{
1671 return tid % TID_STEP;
1672}
1673
1674static inline unsigned long tid_to_event(unsigned long tid)
1675{
1676 return tid / TID_STEP;
1677}
1678
1679static inline unsigned int init_tid(int cpu)
1680{
1681 return cpu;
1682}
1683
1684static inline void note_cmpxchg_failure(const char *n,
1685 const struct kmem_cache *s, unsigned long tid)
1686{
1687#ifdef SLUB_DEBUG_CMPXCHG
1688 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1689
1690 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1691
1692#ifdef CONFIG_PREEMPT
1693 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1694 printk("due to cpu change %d -> %d\n",
1695 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1696 else
1697#endif
1698 if (tid_to_event(tid) != tid_to_event(actual_tid))
1699 printk("due to cpu running other code. Event %ld->%ld\n",
1700 tid_to_event(tid), tid_to_event(actual_tid));
1701 else
1702 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1703 actual_tid, tid, next_tid(tid));
1704#endif
4fdccdfb 1705 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1706}
1707
8a5ec0ba
CL
1708void init_kmem_cache_cpus(struct kmem_cache *s)
1709{
8a5ec0ba
CL
1710 int cpu;
1711
1712 for_each_possible_cpu(cpu)
1713 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1714}
2cfb7455 1715
81819f0f
CL
1716/*
1717 * Remove the cpu slab
1718 */
dfb4f096 1719static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1720{
2cfb7455 1721 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1722 struct page *page = c->page;
2cfb7455
CL
1723 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1724 int lock = 0;
1725 enum slab_modes l = M_NONE, m = M_NONE;
1726 void *freelist;
1727 void *nextfree;
136333d1 1728 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1729 struct page new;
1730 struct page old;
1731
1732 if (page->freelist) {
84e554e6 1733 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1734 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1735 }
1736
1737 c->tid = next_tid(c->tid);
1738 c->page = NULL;
1739 freelist = c->freelist;
1740 c->freelist = NULL;
1741
894b8788 1742 /*
2cfb7455
CL
1743 * Stage one: Free all available per cpu objects back
1744 * to the page freelist while it is still frozen. Leave the
1745 * last one.
1746 *
1747 * There is no need to take the list->lock because the page
1748 * is still frozen.
1749 */
1750 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1751 void *prior;
1752 unsigned long counters;
1753
1754 do {
1755 prior = page->freelist;
1756 counters = page->counters;
1757 set_freepointer(s, freelist, prior);
1758 new.counters = counters;
1759 new.inuse--;
1760 VM_BUG_ON(!new.frozen);
1761
1d07171c 1762 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1763 prior, counters,
1764 freelist, new.counters,
1765 "drain percpu freelist"));
1766
1767 freelist = nextfree;
1768 }
1769
894b8788 1770 /*
2cfb7455
CL
1771 * Stage two: Ensure that the page is unfrozen while the
1772 * list presence reflects the actual number of objects
1773 * during unfreeze.
1774 *
1775 * We setup the list membership and then perform a cmpxchg
1776 * with the count. If there is a mismatch then the page
1777 * is not unfrozen but the page is on the wrong list.
1778 *
1779 * Then we restart the process which may have to remove
1780 * the page from the list that we just put it on again
1781 * because the number of objects in the slab may have
1782 * changed.
894b8788 1783 */
2cfb7455 1784redo:
894b8788 1785
2cfb7455
CL
1786 old.freelist = page->freelist;
1787 old.counters = page->counters;
1788 VM_BUG_ON(!old.frozen);
7c2e132c 1789
2cfb7455
CL
1790 /* Determine target state of the slab */
1791 new.counters = old.counters;
1792 if (freelist) {
1793 new.inuse--;
1794 set_freepointer(s, freelist, old.freelist);
1795 new.freelist = freelist;
1796 } else
1797 new.freelist = old.freelist;
1798
1799 new.frozen = 0;
1800
81107188 1801 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1802 m = M_FREE;
1803 else if (new.freelist) {
1804 m = M_PARTIAL;
1805 if (!lock) {
1806 lock = 1;
1807 /*
1808 * Taking the spinlock removes the possiblity
1809 * that acquire_slab() will see a slab page that
1810 * is frozen
1811 */
1812 spin_lock(&n->list_lock);
1813 }
1814 } else {
1815 m = M_FULL;
1816 if (kmem_cache_debug(s) && !lock) {
1817 lock = 1;
1818 /*
1819 * This also ensures that the scanning of full
1820 * slabs from diagnostic functions will not see
1821 * any frozen slabs.
1822 */
1823 spin_lock(&n->list_lock);
1824 }
1825 }
1826
1827 if (l != m) {
1828
1829 if (l == M_PARTIAL)
1830
1831 remove_partial(n, page);
1832
1833 else if (l == M_FULL)
894b8788 1834
2cfb7455
CL
1835 remove_full(s, page);
1836
1837 if (m == M_PARTIAL) {
1838
1839 add_partial(n, page, tail);
136333d1 1840 stat(s, tail);
2cfb7455
CL
1841
1842 } else if (m == M_FULL) {
894b8788 1843
2cfb7455
CL
1844 stat(s, DEACTIVATE_FULL);
1845 add_full(s, n, page);
1846
1847 }
1848 }
1849
1850 l = m;
1d07171c 1851 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1852 old.freelist, old.counters,
1853 new.freelist, new.counters,
1854 "unfreezing slab"))
1855 goto redo;
1856
2cfb7455
CL
1857 if (lock)
1858 spin_unlock(&n->list_lock);
1859
1860 if (m == M_FREE) {
1861 stat(s, DEACTIVATE_EMPTY);
1862 discard_slab(s, page);
1863 stat(s, FREE_SLAB);
894b8788 1864 }
81819f0f
CL
1865}
1866
49e22585
CL
1867/* Unfreeze all the cpu partial slabs */
1868static void unfreeze_partials(struct kmem_cache *s)
1869{
1870 struct kmem_cache_node *n = NULL;
1871 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1872 struct page *page, *discard_page = NULL;
49e22585
CL
1873
1874 while ((page = c->partial)) {
1875 enum slab_modes { M_PARTIAL, M_FREE };
1876 enum slab_modes l, m;
1877 struct page new;
1878 struct page old;
1879
1880 c->partial = page->next;
1881 l = M_FREE;
1882
1883 do {
1884
1885 old.freelist = page->freelist;
1886 old.counters = page->counters;
1887 VM_BUG_ON(!old.frozen);
1888
1889 new.counters = old.counters;
1890 new.freelist = old.freelist;
1891
1892 new.frozen = 0;
1893
dcc3be6a 1894 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
49e22585
CL
1895 m = M_FREE;
1896 else {
1897 struct kmem_cache_node *n2 = get_node(s,
1898 page_to_nid(page));
1899
1900 m = M_PARTIAL;
1901 if (n != n2) {
1902 if (n)
1903 spin_unlock(&n->list_lock);
1904
1905 n = n2;
1906 spin_lock(&n->list_lock);
1907 }
1908 }
1909
1910 if (l != m) {
4c493a5a 1911 if (l == M_PARTIAL) {
49e22585 1912 remove_partial(n, page);
4c493a5a
SL
1913 stat(s, FREE_REMOVE_PARTIAL);
1914 } else {
f64ae042
SL
1915 add_partial(n, page,
1916 DEACTIVATE_TO_TAIL);
4c493a5a
SL
1917 stat(s, FREE_ADD_PARTIAL);
1918 }
49e22585
CL
1919
1920 l = m;
1921 }
1922
1923 } while (!cmpxchg_double_slab(s, page,
1924 old.freelist, old.counters,
1925 new.freelist, new.counters,
1926 "unfreezing slab"));
1927
1928 if (m == M_FREE) {
9ada1934
SL
1929 page->next = discard_page;
1930 discard_page = page;
49e22585
CL
1931 }
1932 }
1933
1934 if (n)
1935 spin_unlock(&n->list_lock);
9ada1934
SL
1936
1937 while (discard_page) {
1938 page = discard_page;
1939 discard_page = discard_page->next;
1940
1941 stat(s, DEACTIVATE_EMPTY);
1942 discard_slab(s, page);
1943 stat(s, FREE_SLAB);
1944 }
49e22585
CL
1945}
1946
1947/*
1948 * Put a page that was just frozen (in __slab_free) into a partial page
1949 * slot if available. This is done without interrupts disabled and without
1950 * preemption disabled. The cmpxchg is racy and may put the partial page
1951 * onto a random cpus partial slot.
1952 *
1953 * If we did not find a slot then simply move all the partials to the
1954 * per node partial list.
1955 */
1956int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1957{
1958 struct page *oldpage;
1959 int pages;
1960 int pobjects;
1961
1962 do {
1963 pages = 0;
1964 pobjects = 0;
1965 oldpage = this_cpu_read(s->cpu_slab->partial);
1966
1967 if (oldpage) {
1968 pobjects = oldpage->pobjects;
1969 pages = oldpage->pages;
1970 if (drain && pobjects > s->cpu_partial) {
1971 unsigned long flags;
1972 /*
1973 * partial array is full. Move the existing
1974 * set to the per node partial list.
1975 */
1976 local_irq_save(flags);
1977 unfreeze_partials(s);
1978 local_irq_restore(flags);
1979 pobjects = 0;
1980 pages = 0;
1981 }
1982 }
1983
1984 pages++;
1985 pobjects += page->objects - page->inuse;
1986
1987 page->pages = pages;
1988 page->pobjects = pobjects;
1989 page->next = oldpage;
1990
933393f5 1991 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1992 stat(s, CPU_PARTIAL_FREE);
1993 return pobjects;
1994}
1995
dfb4f096 1996static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1997{
84e554e6 1998 stat(s, CPUSLAB_FLUSH);
dfb4f096 1999 deactivate_slab(s, c);
81819f0f
CL
2000}
2001
2002/*
2003 * Flush cpu slab.
6446faa2 2004 *
81819f0f
CL
2005 * Called from IPI handler with interrupts disabled.
2006 */
0c710013 2007static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2008{
9dfc6e68 2009 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2010
49e22585
CL
2011 if (likely(c)) {
2012 if (c->page)
2013 flush_slab(s, c);
2014
2015 unfreeze_partials(s);
2016 }
81819f0f
CL
2017}
2018
2019static void flush_cpu_slab(void *d)
2020{
2021 struct kmem_cache *s = d;
81819f0f 2022
dfb4f096 2023 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2024}
2025
2026static void flush_all(struct kmem_cache *s)
2027{
15c8b6c1 2028 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
2029}
2030
dfb4f096
CL
2031/*
2032 * Check if the objects in a per cpu structure fit numa
2033 * locality expectations.
2034 */
2035static inline int node_match(struct kmem_cache_cpu *c, int node)
2036{
2037#ifdef CONFIG_NUMA
2154a336 2038 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
2039 return 0;
2040#endif
2041 return 1;
2042}
2043
781b2ba6
PE
2044static int count_free(struct page *page)
2045{
2046 return page->objects - page->inuse;
2047}
2048
2049static unsigned long count_partial(struct kmem_cache_node *n,
2050 int (*get_count)(struct page *))
2051{
2052 unsigned long flags;
2053 unsigned long x = 0;
2054 struct page *page;
2055
2056 spin_lock_irqsave(&n->list_lock, flags);
2057 list_for_each_entry(page, &n->partial, lru)
2058 x += get_count(page);
2059 spin_unlock_irqrestore(&n->list_lock, flags);
2060 return x;
2061}
2062
26c02cf0
AB
2063static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2064{
2065#ifdef CONFIG_SLUB_DEBUG
2066 return atomic_long_read(&n->total_objects);
2067#else
2068 return 0;
2069#endif
2070}
2071
781b2ba6
PE
2072static noinline void
2073slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2074{
2075 int node;
2076
2077 printk(KERN_WARNING
2078 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2079 nid, gfpflags);
2080 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2081 "default order: %d, min order: %d\n", s->name, s->objsize,
2082 s->size, oo_order(s->oo), oo_order(s->min));
2083
fa5ec8a1
DR
2084 if (oo_order(s->min) > get_order(s->objsize))
2085 printk(KERN_WARNING " %s debugging increased min order, use "
2086 "slub_debug=O to disable.\n", s->name);
2087
781b2ba6
PE
2088 for_each_online_node(node) {
2089 struct kmem_cache_node *n = get_node(s, node);
2090 unsigned long nr_slabs;
2091 unsigned long nr_objs;
2092 unsigned long nr_free;
2093
2094 if (!n)
2095 continue;
2096
26c02cf0
AB
2097 nr_free = count_partial(n, count_free);
2098 nr_slabs = node_nr_slabs(n);
2099 nr_objs = node_nr_objs(n);
781b2ba6
PE
2100
2101 printk(KERN_WARNING
2102 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2103 node, nr_slabs, nr_objs, nr_free);
2104 }
2105}
2106
497b66f2
CL
2107static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2108 int node, struct kmem_cache_cpu **pc)
2109{
2110 void *object;
2111 struct kmem_cache_cpu *c;
2112 struct page *page = new_slab(s, flags, node);
2113
2114 if (page) {
2115 c = __this_cpu_ptr(s->cpu_slab);
2116 if (c->page)
2117 flush_slab(s, c);
2118
2119 /*
2120 * No other reference to the page yet so we can
2121 * muck around with it freely without cmpxchg
2122 */
2123 object = page->freelist;
2124 page->freelist = NULL;
2125
2126 stat(s, ALLOC_SLAB);
2127 c->node = page_to_nid(page);
2128 c->page = page;
2129 *pc = c;
2130 } else
2131 object = NULL;
2132
2133 return object;
2134}
2135
213eeb9f
CL
2136/*
2137 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2138 * or deactivate the page.
2139 *
2140 * The page is still frozen if the return value is not NULL.
2141 *
2142 * If this function returns NULL then the page has been unfrozen.
2143 */
2144static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2145{
2146 struct page new;
2147 unsigned long counters;
2148 void *freelist;
2149
2150 do {
2151 freelist = page->freelist;
2152 counters = page->counters;
2153 new.counters = counters;
2154 VM_BUG_ON(!new.frozen);
2155
2156 new.inuse = page->objects;
2157 new.frozen = freelist != NULL;
2158
2159 } while (!cmpxchg_double_slab(s, page,
2160 freelist, counters,
2161 NULL, new.counters,
2162 "get_freelist"));
2163
2164 return freelist;
2165}
2166
81819f0f 2167/*
894b8788
CL
2168 * Slow path. The lockless freelist is empty or we need to perform
2169 * debugging duties.
2170 *
894b8788
CL
2171 * Processing is still very fast if new objects have been freed to the
2172 * regular freelist. In that case we simply take over the regular freelist
2173 * as the lockless freelist and zap the regular freelist.
81819f0f 2174 *
894b8788
CL
2175 * If that is not working then we fall back to the partial lists. We take the
2176 * first element of the freelist as the object to allocate now and move the
2177 * rest of the freelist to the lockless freelist.
81819f0f 2178 *
894b8788 2179 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2180 * we need to allocate a new slab. This is the slowest path since it involves
2181 * a call to the page allocator and the setup of a new slab.
81819f0f 2182 */
ce71e27c
EGM
2183static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2184 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2185{
81819f0f 2186 void **object;
8a5ec0ba
CL
2187 unsigned long flags;
2188
2189 local_irq_save(flags);
2190#ifdef CONFIG_PREEMPT
2191 /*
2192 * We may have been preempted and rescheduled on a different
2193 * cpu before disabling interrupts. Need to reload cpu area
2194 * pointer.
2195 */
2196 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2197#endif
81819f0f 2198
497b66f2 2199 if (!c->page)
81819f0f 2200 goto new_slab;
49e22585 2201redo:
fc59c053 2202 if (unlikely(!node_match(c, node))) {
e36a2652 2203 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2204 deactivate_slab(s, c);
2205 goto new_slab;
2206 }
6446faa2 2207
73736e03
ED
2208 /* must check again c->freelist in case of cpu migration or IRQ */
2209 object = c->freelist;
2210 if (object)
2211 goto load_freelist;
03e404af 2212
2cfb7455 2213 stat(s, ALLOC_SLOWPATH);
03e404af 2214
213eeb9f 2215 object = get_freelist(s, c->page);
6446faa2 2216
49e22585 2217 if (!object) {
03e404af
CL
2218 c->page = NULL;
2219 stat(s, DEACTIVATE_BYPASS);
fc59c053 2220 goto new_slab;
03e404af 2221 }
6446faa2 2222
84e554e6 2223 stat(s, ALLOC_REFILL);
6446faa2 2224
894b8788 2225load_freelist:
ff12059e 2226 c->freelist = get_freepointer(s, object);
8a5ec0ba
CL
2227 c->tid = next_tid(c->tid);
2228 local_irq_restore(flags);
81819f0f
CL
2229 return object;
2230
81819f0f 2231new_slab:
2cfb7455 2232
49e22585
CL
2233 if (c->partial) {
2234 c->page = c->partial;
2235 c->partial = c->page->next;
2236 c->node = page_to_nid(c->page);
2237 stat(s, CPU_PARTIAL_ALLOC);
2238 c->freelist = NULL;
2239 goto redo;
81819f0f
CL
2240 }
2241
49e22585 2242 /* Then do expensive stuff like retrieving pages from the partial lists */
497b66f2 2243 object = get_partial(s, gfpflags, node, c);
b811c202 2244
497b66f2 2245 if (unlikely(!object)) {
01ad8a7b 2246
497b66f2 2247 object = new_slab_objects(s, gfpflags, node, &c);
2cfb7455 2248
497b66f2
CL
2249 if (unlikely(!object)) {
2250 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2251 slab_out_of_memory(s, gfpflags, node);
9e577e8b 2252
497b66f2
CL
2253 local_irq_restore(flags);
2254 return NULL;
2255 }
81819f0f 2256 }
2cfb7455 2257
497b66f2 2258 if (likely(!kmem_cache_debug(s)))
4b6f0750 2259 goto load_freelist;
2cfb7455 2260
497b66f2
CL
2261 /* Only entered in the debug case */
2262 if (!alloc_debug_processing(s, c->page, object, addr))
2263 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2264
2cfb7455 2265 c->freelist = get_freepointer(s, object);
442b06bc 2266 deactivate_slab(s, c);
15b7c514 2267 c->node = NUMA_NO_NODE;
a71ae47a
CL
2268 local_irq_restore(flags);
2269 return object;
894b8788
CL
2270}
2271
2272/*
2273 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2274 * have the fastpath folded into their functions. So no function call
2275 * overhead for requests that can be satisfied on the fastpath.
2276 *
2277 * The fastpath works by first checking if the lockless freelist can be used.
2278 * If not then __slab_alloc is called for slow processing.
2279 *
2280 * Otherwise we can simply pick the next object from the lockless free list.
2281 */
06428780 2282static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2283 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2284{
894b8788 2285 void **object;
dfb4f096 2286 struct kmem_cache_cpu *c;
8a5ec0ba 2287 unsigned long tid;
1f84260c 2288
c016b0bd 2289 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2290 return NULL;
1f84260c 2291
8a5ec0ba 2292redo:
8a5ec0ba
CL
2293
2294 /*
2295 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2296 * enabled. We may switch back and forth between cpus while
2297 * reading from one cpu area. That does not matter as long
2298 * as we end up on the original cpu again when doing the cmpxchg.
2299 */
9dfc6e68 2300 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2301
8a5ec0ba
CL
2302 /*
2303 * The transaction ids are globally unique per cpu and per operation on
2304 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2305 * occurs on the right processor and that there was no operation on the
2306 * linked list in between.
2307 */
2308 tid = c->tid;
2309 barrier();
8a5ec0ba 2310
9dfc6e68 2311 object = c->freelist;
9dfc6e68 2312 if (unlikely(!object || !node_match(c, node)))
894b8788 2313
dfb4f096 2314 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2315
2316 else {
0ad9500e
ED
2317 void *next_object = get_freepointer_safe(s, object);
2318
8a5ec0ba 2319 /*
25985edc 2320 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2321 * operation and if we are on the right processor.
2322 *
2323 * The cmpxchg does the following atomically (without lock semantics!)
2324 * 1. Relocate first pointer to the current per cpu area.
2325 * 2. Verify that tid and freelist have not been changed
2326 * 3. If they were not changed replace tid and freelist
2327 *
2328 * Since this is without lock semantics the protection is only against
2329 * code executing on this cpu *not* from access by other cpus.
2330 */
933393f5 2331 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2332 s->cpu_slab->freelist, s->cpu_slab->tid,
2333 object, tid,
0ad9500e 2334 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2335
2336 note_cmpxchg_failure("slab_alloc", s, tid);
2337 goto redo;
2338 }
0ad9500e 2339 prefetch_freepointer(s, next_object);
84e554e6 2340 stat(s, ALLOC_FASTPATH);
894b8788 2341 }
8a5ec0ba 2342
74e2134f 2343 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2344 memset(object, 0, s->objsize);
d07dbea4 2345
c016b0bd 2346 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2347
894b8788 2348 return object;
81819f0f
CL
2349}
2350
2351void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2352{
2154a336 2353 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2354
ca2b84cb 2355 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2356
2357 return ret;
81819f0f
CL
2358}
2359EXPORT_SYMBOL(kmem_cache_alloc);
2360
0f24f128 2361#ifdef CONFIG_TRACING
4a92379b
RK
2362void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2363{
2364 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2365 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2366 return ret;
2367}
2368EXPORT_SYMBOL(kmem_cache_alloc_trace);
2369
2370void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2371{
4a92379b
RK
2372 void *ret = kmalloc_order(size, flags, order);
2373 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2374 return ret;
5b882be4 2375}
4a92379b 2376EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2377#endif
2378
81819f0f
CL
2379#ifdef CONFIG_NUMA
2380void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2381{
5b882be4
EGM
2382 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2383
ca2b84cb
EGM
2384 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2385 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2386
2387 return ret;
81819f0f
CL
2388}
2389EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2390
0f24f128 2391#ifdef CONFIG_TRACING
4a92379b 2392void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2393 gfp_t gfpflags,
4a92379b 2394 int node, size_t size)
5b882be4 2395{
4a92379b
RK
2396 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2397
2398 trace_kmalloc_node(_RET_IP_, ret,
2399 size, s->size, gfpflags, node);
2400 return ret;
5b882be4 2401}
4a92379b 2402EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2403#endif
5d1f57e4 2404#endif
5b882be4 2405
81819f0f 2406/*
894b8788
CL
2407 * Slow patch handling. This may still be called frequently since objects
2408 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2409 *
894b8788
CL
2410 * So we still attempt to reduce cache line usage. Just take the slab
2411 * lock and free the item. If there is no additional partial page
2412 * handling required then we can return immediately.
81819f0f 2413 */
894b8788 2414static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2415 void *x, unsigned long addr)
81819f0f
CL
2416{
2417 void *prior;
2418 void **object = (void *)x;
2cfb7455
CL
2419 int was_frozen;
2420 int inuse;
2421 struct page new;
2422 unsigned long counters;
2423 struct kmem_cache_node *n = NULL;
61728d1e 2424 unsigned long uninitialized_var(flags);
81819f0f 2425
8a5ec0ba 2426 stat(s, FREE_SLOWPATH);
81819f0f 2427
8dc16c6c 2428 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2429 return;
6446faa2 2430
2cfb7455
CL
2431 do {
2432 prior = page->freelist;
2433 counters = page->counters;
2434 set_freepointer(s, object, prior);
2435 new.counters = counters;
2436 was_frozen = new.frozen;
2437 new.inuse--;
2438 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2439
2440 if (!kmem_cache_debug(s) && !prior)
2441
2442 /*
2443 * Slab was on no list before and will be partially empty
2444 * We can defer the list move and instead freeze it.
2445 */
2446 new.frozen = 1;
2447
2448 else { /* Needs to be taken off a list */
2449
2450 n = get_node(s, page_to_nid(page));
2451 /*
2452 * Speculatively acquire the list_lock.
2453 * If the cmpxchg does not succeed then we may
2454 * drop the list_lock without any processing.
2455 *
2456 * Otherwise the list_lock will synchronize with
2457 * other processors updating the list of slabs.
2458 */
2459 spin_lock_irqsave(&n->list_lock, flags);
2460
2461 }
2cfb7455
CL
2462 }
2463 inuse = new.inuse;
81819f0f 2464
2cfb7455
CL
2465 } while (!cmpxchg_double_slab(s, page,
2466 prior, counters,
2467 object, new.counters,
2468 "__slab_free"));
81819f0f 2469
2cfb7455 2470 if (likely(!n)) {
49e22585
CL
2471
2472 /*
2473 * If we just froze the page then put it onto the
2474 * per cpu partial list.
2475 */
2476 if (new.frozen && !was_frozen)
2477 put_cpu_partial(s, page, 1);
2478
2479 /*
2cfb7455
CL
2480 * The list lock was not taken therefore no list
2481 * activity can be necessary.
2482 */
2483 if (was_frozen)
2484 stat(s, FREE_FROZEN);
80f08c19 2485 return;
2cfb7455 2486 }
81819f0f
CL
2487
2488 /*
2cfb7455
CL
2489 * was_frozen may have been set after we acquired the list_lock in
2490 * an earlier loop. So we need to check it here again.
81819f0f 2491 */
2cfb7455
CL
2492 if (was_frozen)
2493 stat(s, FREE_FROZEN);
2494 else {
2495 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2496 goto slab_empty;
81819f0f 2497
2cfb7455
CL
2498 /*
2499 * Objects left in the slab. If it was not on the partial list before
2500 * then add it.
2501 */
2502 if (unlikely(!prior)) {
2503 remove_full(s, page);
136333d1 2504 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2505 stat(s, FREE_ADD_PARTIAL);
2506 }
8ff12cfc 2507 }
80f08c19 2508 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2509 return;
2510
2511slab_empty:
a973e9dd 2512 if (prior) {
81819f0f 2513 /*
6fbabb20 2514 * Slab on the partial list.
81819f0f 2515 */
5cc6eee8 2516 remove_partial(n, page);
84e554e6 2517 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2518 } else
2519 /* Slab must be on the full list */
2520 remove_full(s, page);
2cfb7455 2521
80f08c19 2522 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2523 stat(s, FREE_SLAB);
81819f0f 2524 discard_slab(s, page);
81819f0f
CL
2525}
2526
894b8788
CL
2527/*
2528 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2529 * can perform fastpath freeing without additional function calls.
2530 *
2531 * The fastpath is only possible if we are freeing to the current cpu slab
2532 * of this processor. This typically the case if we have just allocated
2533 * the item before.
2534 *
2535 * If fastpath is not possible then fall back to __slab_free where we deal
2536 * with all sorts of special processing.
2537 */
06428780 2538static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2539 struct page *page, void *x, unsigned long addr)
894b8788
CL
2540{
2541 void **object = (void *)x;
dfb4f096 2542 struct kmem_cache_cpu *c;
8a5ec0ba 2543 unsigned long tid;
1f84260c 2544
c016b0bd
CL
2545 slab_free_hook(s, x);
2546
8a5ec0ba
CL
2547redo:
2548 /*
2549 * Determine the currently cpus per cpu slab.
2550 * The cpu may change afterward. However that does not matter since
2551 * data is retrieved via this pointer. If we are on the same cpu
2552 * during the cmpxchg then the free will succedd.
2553 */
9dfc6e68 2554 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2555
8a5ec0ba
CL
2556 tid = c->tid;
2557 barrier();
c016b0bd 2558
442b06bc 2559 if (likely(page == c->page)) {
ff12059e 2560 set_freepointer(s, object, c->freelist);
8a5ec0ba 2561
933393f5 2562 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2563 s->cpu_slab->freelist, s->cpu_slab->tid,
2564 c->freelist, tid,
2565 object, next_tid(tid)))) {
2566
2567 note_cmpxchg_failure("slab_free", s, tid);
2568 goto redo;
2569 }
84e554e6 2570 stat(s, FREE_FASTPATH);
894b8788 2571 } else
ff12059e 2572 __slab_free(s, page, x, addr);
894b8788 2573
894b8788
CL
2574}
2575
81819f0f
CL
2576void kmem_cache_free(struct kmem_cache *s, void *x)
2577{
77c5e2d0 2578 struct page *page;
81819f0f 2579
b49af68f 2580 page = virt_to_head_page(x);
81819f0f 2581
ce71e27c 2582 slab_free(s, page, x, _RET_IP_);
5b882be4 2583
ca2b84cb 2584 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2585}
2586EXPORT_SYMBOL(kmem_cache_free);
2587
81819f0f 2588/*
672bba3a
CL
2589 * Object placement in a slab is made very easy because we always start at
2590 * offset 0. If we tune the size of the object to the alignment then we can
2591 * get the required alignment by putting one properly sized object after
2592 * another.
81819f0f
CL
2593 *
2594 * Notice that the allocation order determines the sizes of the per cpu
2595 * caches. Each processor has always one slab available for allocations.
2596 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2597 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2598 * locking overhead.
81819f0f
CL
2599 */
2600
2601/*
2602 * Mininum / Maximum order of slab pages. This influences locking overhead
2603 * and slab fragmentation. A higher order reduces the number of partial slabs
2604 * and increases the number of allocations possible without having to
2605 * take the list_lock.
2606 */
2607static int slub_min_order;
114e9e89 2608static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2609static int slub_min_objects;
81819f0f
CL
2610
2611/*
2612 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2613 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2614 */
2615static int slub_nomerge;
2616
81819f0f
CL
2617/*
2618 * Calculate the order of allocation given an slab object size.
2619 *
672bba3a
CL
2620 * The order of allocation has significant impact on performance and other
2621 * system components. Generally order 0 allocations should be preferred since
2622 * order 0 does not cause fragmentation in the page allocator. Larger objects
2623 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2624 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2625 * would be wasted.
2626 *
2627 * In order to reach satisfactory performance we must ensure that a minimum
2628 * number of objects is in one slab. Otherwise we may generate too much
2629 * activity on the partial lists which requires taking the list_lock. This is
2630 * less a concern for large slabs though which are rarely used.
81819f0f 2631 *
672bba3a
CL
2632 * slub_max_order specifies the order where we begin to stop considering the
2633 * number of objects in a slab as critical. If we reach slub_max_order then
2634 * we try to keep the page order as low as possible. So we accept more waste
2635 * of space in favor of a small page order.
81819f0f 2636 *
672bba3a
CL
2637 * Higher order allocations also allow the placement of more objects in a
2638 * slab and thereby reduce object handling overhead. If the user has
2639 * requested a higher mininum order then we start with that one instead of
2640 * the smallest order which will fit the object.
81819f0f 2641 */
5e6d444e 2642static inline int slab_order(int size, int min_objects,
ab9a0f19 2643 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2644{
2645 int order;
2646 int rem;
6300ea75 2647 int min_order = slub_min_order;
81819f0f 2648
ab9a0f19 2649 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2650 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2651
6300ea75 2652 for (order = max(min_order,
5e6d444e
CL
2653 fls(min_objects * size - 1) - PAGE_SHIFT);
2654 order <= max_order; order++) {
81819f0f 2655
5e6d444e 2656 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2657
ab9a0f19 2658 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2659 continue;
2660
ab9a0f19 2661 rem = (slab_size - reserved) % size;
81819f0f 2662
5e6d444e 2663 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2664 break;
2665
2666 }
672bba3a 2667
81819f0f
CL
2668 return order;
2669}
2670
ab9a0f19 2671static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2672{
2673 int order;
2674 int min_objects;
2675 int fraction;
e8120ff1 2676 int max_objects;
5e6d444e
CL
2677
2678 /*
2679 * Attempt to find best configuration for a slab. This
2680 * works by first attempting to generate a layout with
2681 * the best configuration and backing off gradually.
2682 *
2683 * First we reduce the acceptable waste in a slab. Then
2684 * we reduce the minimum objects required in a slab.
2685 */
2686 min_objects = slub_min_objects;
9b2cd506
CL
2687 if (!min_objects)
2688 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2689 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2690 min_objects = min(min_objects, max_objects);
2691
5e6d444e 2692 while (min_objects > 1) {
c124f5b5 2693 fraction = 16;
5e6d444e
CL
2694 while (fraction >= 4) {
2695 order = slab_order(size, min_objects,
ab9a0f19 2696 slub_max_order, fraction, reserved);
5e6d444e
CL
2697 if (order <= slub_max_order)
2698 return order;
2699 fraction /= 2;
2700 }
5086c389 2701 min_objects--;
5e6d444e
CL
2702 }
2703
2704 /*
2705 * We were unable to place multiple objects in a slab. Now
2706 * lets see if we can place a single object there.
2707 */
ab9a0f19 2708 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2709 if (order <= slub_max_order)
2710 return order;
2711
2712 /*
2713 * Doh this slab cannot be placed using slub_max_order.
2714 */
ab9a0f19 2715 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2716 if (order < MAX_ORDER)
5e6d444e
CL
2717 return order;
2718 return -ENOSYS;
2719}
2720
81819f0f 2721/*
672bba3a 2722 * Figure out what the alignment of the objects will be.
81819f0f
CL
2723 */
2724static unsigned long calculate_alignment(unsigned long flags,
2725 unsigned long align, unsigned long size)
2726{
2727 /*
6446faa2
CL
2728 * If the user wants hardware cache aligned objects then follow that
2729 * suggestion if the object is sufficiently large.
81819f0f 2730 *
6446faa2
CL
2731 * The hardware cache alignment cannot override the specified
2732 * alignment though. If that is greater then use it.
81819f0f 2733 */
b6210386
NP
2734 if (flags & SLAB_HWCACHE_ALIGN) {
2735 unsigned long ralign = cache_line_size();
2736 while (size <= ralign / 2)
2737 ralign /= 2;
2738 align = max(align, ralign);
2739 }
81819f0f
CL
2740
2741 if (align < ARCH_SLAB_MINALIGN)
b6210386 2742 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2743
2744 return ALIGN(align, sizeof(void *));
2745}
2746
5595cffc
PE
2747static void
2748init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2749{
2750 n->nr_partial = 0;
81819f0f
CL
2751 spin_lock_init(&n->list_lock);
2752 INIT_LIST_HEAD(&n->partial);
8ab1372f 2753#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2754 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2755 atomic_long_set(&n->total_objects, 0);
643b1138 2756 INIT_LIST_HEAD(&n->full);
8ab1372f 2757#endif
81819f0f
CL
2758}
2759
55136592 2760static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2761{
6c182dc0
CL
2762 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2763 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2764
8a5ec0ba 2765 /*
d4d84fef
CM
2766 * Must align to double word boundary for the double cmpxchg
2767 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2768 */
d4d84fef
CM
2769 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2770 2 * sizeof(void *));
8a5ec0ba
CL
2771
2772 if (!s->cpu_slab)
2773 return 0;
2774
2775 init_kmem_cache_cpus(s);
4c93c355 2776
8a5ec0ba 2777 return 1;
4c93c355 2778}
4c93c355 2779
51df1142
CL
2780static struct kmem_cache *kmem_cache_node;
2781
81819f0f
CL
2782/*
2783 * No kmalloc_node yet so do it by hand. We know that this is the first
2784 * slab on the node for this slabcache. There are no concurrent accesses
2785 * possible.
2786 *
2787 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2788 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2789 * memory on a fresh node that has no slab structures yet.
81819f0f 2790 */
55136592 2791static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2792{
2793 struct page *page;
2794 struct kmem_cache_node *n;
2795
51df1142 2796 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2797
51df1142 2798 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2799
2800 BUG_ON(!page);
a2f92ee7
CL
2801 if (page_to_nid(page) != node) {
2802 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2803 "node %d\n", node);
2804 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2805 "in order to be able to continue\n");
2806 }
2807
81819f0f
CL
2808 n = page->freelist;
2809 BUG_ON(!n);
51df1142 2810 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2811 page->inuse = 1;
8cb0a506 2812 page->frozen = 0;
51df1142 2813 kmem_cache_node->node[node] = n;
8ab1372f 2814#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2815 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2816 init_tracking(kmem_cache_node, n);
8ab1372f 2817#endif
51df1142
CL
2818 init_kmem_cache_node(n, kmem_cache_node);
2819 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2820
136333d1 2821 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2822}
2823
2824static void free_kmem_cache_nodes(struct kmem_cache *s)
2825{
2826 int node;
2827
f64dc58c 2828 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2829 struct kmem_cache_node *n = s->node[node];
51df1142 2830
73367bd8 2831 if (n)
51df1142
CL
2832 kmem_cache_free(kmem_cache_node, n);
2833
81819f0f
CL
2834 s->node[node] = NULL;
2835 }
2836}
2837
55136592 2838static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2839{
2840 int node;
81819f0f 2841
f64dc58c 2842 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2843 struct kmem_cache_node *n;
2844
73367bd8 2845 if (slab_state == DOWN) {
55136592 2846 early_kmem_cache_node_alloc(node);
73367bd8
AD
2847 continue;
2848 }
51df1142 2849 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2850 GFP_KERNEL, node);
81819f0f 2851
73367bd8
AD
2852 if (!n) {
2853 free_kmem_cache_nodes(s);
2854 return 0;
81819f0f 2855 }
73367bd8 2856
81819f0f 2857 s->node[node] = n;
5595cffc 2858 init_kmem_cache_node(n, s);
81819f0f
CL
2859 }
2860 return 1;
2861}
81819f0f 2862
c0bdb232 2863static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2864{
2865 if (min < MIN_PARTIAL)
2866 min = MIN_PARTIAL;
2867 else if (min > MAX_PARTIAL)
2868 min = MAX_PARTIAL;
2869 s->min_partial = min;
2870}
2871
81819f0f
CL
2872/*
2873 * calculate_sizes() determines the order and the distribution of data within
2874 * a slab object.
2875 */
06b285dc 2876static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2877{
2878 unsigned long flags = s->flags;
2879 unsigned long size = s->objsize;
2880 unsigned long align = s->align;
834f3d11 2881 int order;
81819f0f 2882
d8b42bf5
CL
2883 /*
2884 * Round up object size to the next word boundary. We can only
2885 * place the free pointer at word boundaries and this determines
2886 * the possible location of the free pointer.
2887 */
2888 size = ALIGN(size, sizeof(void *));
2889
2890#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2891 /*
2892 * Determine if we can poison the object itself. If the user of
2893 * the slab may touch the object after free or before allocation
2894 * then we should never poison the object itself.
2895 */
2896 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2897 !s->ctor)
81819f0f
CL
2898 s->flags |= __OBJECT_POISON;
2899 else
2900 s->flags &= ~__OBJECT_POISON;
2901
81819f0f
CL
2902
2903 /*
672bba3a 2904 * If we are Redzoning then check if there is some space between the
81819f0f 2905 * end of the object and the free pointer. If not then add an
672bba3a 2906 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2907 */
2908 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2909 size += sizeof(void *);
41ecc55b 2910#endif
81819f0f
CL
2911
2912 /*
672bba3a
CL
2913 * With that we have determined the number of bytes in actual use
2914 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2915 */
2916 s->inuse = size;
2917
2918 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2919 s->ctor)) {
81819f0f
CL
2920 /*
2921 * Relocate free pointer after the object if it is not
2922 * permitted to overwrite the first word of the object on
2923 * kmem_cache_free.
2924 *
2925 * This is the case if we do RCU, have a constructor or
2926 * destructor or are poisoning the objects.
2927 */
2928 s->offset = size;
2929 size += sizeof(void *);
2930 }
2931
c12b3c62 2932#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2933 if (flags & SLAB_STORE_USER)
2934 /*
2935 * Need to store information about allocs and frees after
2936 * the object.
2937 */
2938 size += 2 * sizeof(struct track);
2939
be7b3fbc 2940 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2941 /*
2942 * Add some empty padding so that we can catch
2943 * overwrites from earlier objects rather than let
2944 * tracking information or the free pointer be
0211a9c8 2945 * corrupted if a user writes before the start
81819f0f
CL
2946 * of the object.
2947 */
2948 size += sizeof(void *);
41ecc55b 2949#endif
672bba3a 2950
81819f0f
CL
2951 /*
2952 * Determine the alignment based on various parameters that the
65c02d4c
CL
2953 * user specified and the dynamic determination of cache line size
2954 * on bootup.
81819f0f
CL
2955 */
2956 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2957 s->align = align;
81819f0f
CL
2958
2959 /*
2960 * SLUB stores one object immediately after another beginning from
2961 * offset 0. In order to align the objects we have to simply size
2962 * each object to conform to the alignment.
2963 */
2964 size = ALIGN(size, align);
2965 s->size = size;
06b285dc
CL
2966 if (forced_order >= 0)
2967 order = forced_order;
2968 else
ab9a0f19 2969 order = calculate_order(size, s->reserved);
81819f0f 2970
834f3d11 2971 if (order < 0)
81819f0f
CL
2972 return 0;
2973
b7a49f0d 2974 s->allocflags = 0;
834f3d11 2975 if (order)
b7a49f0d
CL
2976 s->allocflags |= __GFP_COMP;
2977
2978 if (s->flags & SLAB_CACHE_DMA)
2979 s->allocflags |= SLUB_DMA;
2980
2981 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2982 s->allocflags |= __GFP_RECLAIMABLE;
2983
81819f0f
CL
2984 /*
2985 * Determine the number of objects per slab
2986 */
ab9a0f19
LJ
2987 s->oo = oo_make(order, size, s->reserved);
2988 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2989 if (oo_objects(s->oo) > oo_objects(s->max))
2990 s->max = s->oo;
81819f0f 2991
834f3d11 2992 return !!oo_objects(s->oo);
81819f0f
CL
2993
2994}
2995
55136592 2996static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2997 const char *name, size_t size,
2998 size_t align, unsigned long flags,
51cc5068 2999 void (*ctor)(void *))
81819f0f
CL
3000{
3001 memset(s, 0, kmem_size);
3002 s->name = name;
3003 s->ctor = ctor;
81819f0f 3004 s->objsize = size;
81819f0f 3005 s->align = align;
ba0268a8 3006 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3007 s->reserved = 0;
81819f0f 3008
da9a638c
LJ
3009 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3010 s->reserved = sizeof(struct rcu_head);
81819f0f 3011
06b285dc 3012 if (!calculate_sizes(s, -1))
81819f0f 3013 goto error;
3de47213
DR
3014 if (disable_higher_order_debug) {
3015 /*
3016 * Disable debugging flags that store metadata if the min slab
3017 * order increased.
3018 */
3019 if (get_order(s->size) > get_order(s->objsize)) {
3020 s->flags &= ~DEBUG_METADATA_FLAGS;
3021 s->offset = 0;
3022 if (!calculate_sizes(s, -1))
3023 goto error;
3024 }
3025 }
81819f0f 3026
2565409f
HC
3027#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3028 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3029 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3030 /* Enable fast mode */
3031 s->flags |= __CMPXCHG_DOUBLE;
3032#endif
3033
3b89d7d8
DR
3034 /*
3035 * The larger the object size is, the more pages we want on the partial
3036 * list to avoid pounding the page allocator excessively.
3037 */
49e22585
CL
3038 set_min_partial(s, ilog2(s->size) / 2);
3039
3040 /*
3041 * cpu_partial determined the maximum number of objects kept in the
3042 * per cpu partial lists of a processor.
3043 *
3044 * Per cpu partial lists mainly contain slabs that just have one
3045 * object freed. If they are used for allocation then they can be
3046 * filled up again with minimal effort. The slab will never hit the
3047 * per node partial lists and therefore no locking will be required.
3048 *
3049 * This setting also determines
3050 *
3051 * A) The number of objects from per cpu partial slabs dumped to the
3052 * per node list when we reach the limit.
9f264904 3053 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3054 * per node list when we run out of per cpu objects. We only fetch 50%
3055 * to keep some capacity around for frees.
3056 */
8f1e33da
CL
3057 if (kmem_cache_debug(s))
3058 s->cpu_partial = 0;
3059 else if (s->size >= PAGE_SIZE)
49e22585
CL
3060 s->cpu_partial = 2;
3061 else if (s->size >= 1024)
3062 s->cpu_partial = 6;
3063 else if (s->size >= 256)
3064 s->cpu_partial = 13;
3065 else
3066 s->cpu_partial = 30;
3067
81819f0f
CL
3068 s->refcount = 1;
3069#ifdef CONFIG_NUMA
e2cb96b7 3070 s->remote_node_defrag_ratio = 1000;
81819f0f 3071#endif
55136592 3072 if (!init_kmem_cache_nodes(s))
dfb4f096 3073 goto error;
81819f0f 3074
55136592 3075 if (alloc_kmem_cache_cpus(s))
81819f0f 3076 return 1;
ff12059e 3077
4c93c355 3078 free_kmem_cache_nodes(s);
81819f0f
CL
3079error:
3080 if (flags & SLAB_PANIC)
3081 panic("Cannot create slab %s size=%lu realsize=%u "
3082 "order=%u offset=%u flags=%lx\n",
834f3d11 3083 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3084 s->offset, flags);
3085 return 0;
3086}
81819f0f 3087
81819f0f
CL
3088/*
3089 * Determine the size of a slab object
3090 */
3091unsigned int kmem_cache_size(struct kmem_cache *s)
3092{
3093 return s->objsize;
3094}
3095EXPORT_SYMBOL(kmem_cache_size);
3096
33b12c38
CL
3097static void list_slab_objects(struct kmem_cache *s, struct page *page,
3098 const char *text)
3099{
3100#ifdef CONFIG_SLUB_DEBUG
3101 void *addr = page_address(page);
3102 void *p;
a5dd5c11
NK
3103 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3104 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3105 if (!map)
3106 return;
33b12c38
CL
3107 slab_err(s, page, "%s", text);
3108 slab_lock(page);
33b12c38 3109
5f80b13a 3110 get_map(s, page, map);
33b12c38
CL
3111 for_each_object(p, s, addr, page->objects) {
3112
3113 if (!test_bit(slab_index(p, s, addr), map)) {
3114 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3115 p, p - addr);
3116 print_tracking(s, p);
3117 }
3118 }
3119 slab_unlock(page);
bbd7d57b 3120 kfree(map);
33b12c38
CL
3121#endif
3122}
3123
81819f0f 3124/*
599870b1 3125 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3126 * This is called from kmem_cache_close(). We must be the last thread
3127 * using the cache and therefore we do not need to lock anymore.
81819f0f 3128 */
599870b1 3129static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3130{
81819f0f
CL
3131 struct page *page, *h;
3132
33b12c38 3133 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3134 if (!page->inuse) {
5cc6eee8 3135 remove_partial(n, page);
81819f0f 3136 discard_slab(s, page);
33b12c38
CL
3137 } else {
3138 list_slab_objects(s, page,
3139 "Objects remaining on kmem_cache_close()");
599870b1 3140 }
33b12c38 3141 }
81819f0f
CL
3142}
3143
3144/*
672bba3a 3145 * Release all resources used by a slab cache.
81819f0f 3146 */
0c710013 3147static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3148{
3149 int node;
3150
3151 flush_all(s);
9dfc6e68 3152 free_percpu(s->cpu_slab);
81819f0f 3153 /* Attempt to free all objects */
f64dc58c 3154 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3155 struct kmem_cache_node *n = get_node(s, node);
3156
599870b1
CL
3157 free_partial(s, n);
3158 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3159 return 1;
3160 }
3161 free_kmem_cache_nodes(s);
3162 return 0;
3163}
3164
3165/*
3166 * Close a cache and release the kmem_cache structure
3167 * (must be used for caches created using kmem_cache_create)
3168 */
3169void kmem_cache_destroy(struct kmem_cache *s)
3170{
3171 down_write(&slub_lock);
3172 s->refcount--;
3173 if (!s->refcount) {
3174 list_del(&s->list);
69cb8e6b 3175 up_write(&slub_lock);
d629d819
PE
3176 if (kmem_cache_close(s)) {
3177 printk(KERN_ERR "SLUB %s: %s called for cache that "
3178 "still has objects.\n", s->name, __func__);
3179 dump_stack();
3180 }
d76b1590
ED
3181 if (s->flags & SLAB_DESTROY_BY_RCU)
3182 rcu_barrier();
81819f0f 3183 sysfs_slab_remove(s);
69cb8e6b
CL
3184 } else
3185 up_write(&slub_lock);
81819f0f
CL
3186}
3187EXPORT_SYMBOL(kmem_cache_destroy);
3188
3189/********************************************************************
3190 * Kmalloc subsystem
3191 *******************************************************************/
3192
51df1142 3193struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3194EXPORT_SYMBOL(kmalloc_caches);
3195
51df1142
CL
3196static struct kmem_cache *kmem_cache;
3197
55136592 3198#ifdef CONFIG_ZONE_DMA
51df1142 3199static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3200#endif
3201
81819f0f
CL
3202static int __init setup_slub_min_order(char *str)
3203{
06428780 3204 get_option(&str, &slub_min_order);
81819f0f
CL
3205
3206 return 1;
3207}
3208
3209__setup("slub_min_order=", setup_slub_min_order);
3210
3211static int __init setup_slub_max_order(char *str)
3212{
06428780 3213 get_option(&str, &slub_max_order);
818cf590 3214 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3215
3216 return 1;
3217}
3218
3219__setup("slub_max_order=", setup_slub_max_order);
3220
3221static int __init setup_slub_min_objects(char *str)
3222{
06428780 3223 get_option(&str, &slub_min_objects);
81819f0f
CL
3224
3225 return 1;
3226}
3227
3228__setup("slub_min_objects=", setup_slub_min_objects);
3229
3230static int __init setup_slub_nomerge(char *str)
3231{
3232 slub_nomerge = 1;
3233 return 1;
3234}
3235
3236__setup("slub_nomerge", setup_slub_nomerge);
3237
51df1142
CL
3238static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3239 int size, unsigned int flags)
81819f0f 3240{
51df1142
CL
3241 struct kmem_cache *s;
3242
3243 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3244
83b519e8
PE
3245 /*
3246 * This function is called with IRQs disabled during early-boot on
3247 * single CPU so there's no need to take slub_lock here.
3248 */
55136592 3249 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3250 flags, NULL))
81819f0f
CL
3251 goto panic;
3252
3253 list_add(&s->list, &slab_caches);
51df1142 3254 return s;
81819f0f
CL
3255
3256panic:
3257 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3258 return NULL;
81819f0f
CL
3259}
3260
f1b26339
CL
3261/*
3262 * Conversion table for small slabs sizes / 8 to the index in the
3263 * kmalloc array. This is necessary for slabs < 192 since we have non power
3264 * of two cache sizes there. The size of larger slabs can be determined using
3265 * fls.
3266 */
3267static s8 size_index[24] = {
3268 3, /* 8 */
3269 4, /* 16 */
3270 5, /* 24 */
3271 5, /* 32 */
3272 6, /* 40 */
3273 6, /* 48 */
3274 6, /* 56 */
3275 6, /* 64 */
3276 1, /* 72 */
3277 1, /* 80 */
3278 1, /* 88 */
3279 1, /* 96 */
3280 7, /* 104 */
3281 7, /* 112 */
3282 7, /* 120 */
3283 7, /* 128 */
3284 2, /* 136 */
3285 2, /* 144 */
3286 2, /* 152 */
3287 2, /* 160 */
3288 2, /* 168 */
3289 2, /* 176 */
3290 2, /* 184 */
3291 2 /* 192 */
3292};
3293
acdfcd04
AK
3294static inline int size_index_elem(size_t bytes)
3295{
3296 return (bytes - 1) / 8;
3297}
3298
81819f0f
CL
3299static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3300{
f1b26339 3301 int index;
81819f0f 3302
f1b26339
CL
3303 if (size <= 192) {
3304 if (!size)
3305 return ZERO_SIZE_PTR;
81819f0f 3306
acdfcd04 3307 index = size_index[size_index_elem(size)];
aadb4bc4 3308 } else
f1b26339 3309 index = fls(size - 1);
81819f0f
CL
3310
3311#ifdef CONFIG_ZONE_DMA
f1b26339 3312 if (unlikely((flags & SLUB_DMA)))
51df1142 3313 return kmalloc_dma_caches[index];
f1b26339 3314
81819f0f 3315#endif
51df1142 3316 return kmalloc_caches[index];
81819f0f
CL
3317}
3318
3319void *__kmalloc(size_t size, gfp_t flags)
3320{
aadb4bc4 3321 struct kmem_cache *s;
5b882be4 3322 void *ret;
81819f0f 3323
ffadd4d0 3324 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3325 return kmalloc_large(size, flags);
aadb4bc4
CL
3326
3327 s = get_slab(size, flags);
3328
3329 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3330 return s;
3331
2154a336 3332 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3333
ca2b84cb 3334 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3335
3336 return ret;
81819f0f
CL
3337}
3338EXPORT_SYMBOL(__kmalloc);
3339
5d1f57e4 3340#ifdef CONFIG_NUMA
f619cfe1
CL
3341static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3342{
b1eeab67 3343 struct page *page;
e4f7c0b4 3344 void *ptr = NULL;
f619cfe1 3345
b1eeab67
VN
3346 flags |= __GFP_COMP | __GFP_NOTRACK;
3347 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3348 if (page)
e4f7c0b4
CM
3349 ptr = page_address(page);
3350
3351 kmemleak_alloc(ptr, size, 1, flags);
3352 return ptr;
f619cfe1
CL
3353}
3354
81819f0f
CL
3355void *__kmalloc_node(size_t size, gfp_t flags, int node)
3356{
aadb4bc4 3357 struct kmem_cache *s;
5b882be4 3358 void *ret;
81819f0f 3359
057685cf 3360 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3361 ret = kmalloc_large_node(size, flags, node);
3362
ca2b84cb
EGM
3363 trace_kmalloc_node(_RET_IP_, ret,
3364 size, PAGE_SIZE << get_order(size),
3365 flags, node);
5b882be4
EGM
3366
3367 return ret;
3368 }
aadb4bc4
CL
3369
3370 s = get_slab(size, flags);
3371
3372 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3373 return s;
3374
5b882be4
EGM
3375 ret = slab_alloc(s, flags, node, _RET_IP_);
3376
ca2b84cb 3377 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3378
3379 return ret;
81819f0f
CL
3380}
3381EXPORT_SYMBOL(__kmalloc_node);
3382#endif
3383
3384size_t ksize(const void *object)
3385{
272c1d21 3386 struct page *page;
81819f0f 3387
ef8b4520 3388 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3389 return 0;
3390
294a80a8 3391 page = virt_to_head_page(object);
294a80a8 3392
76994412
PE
3393 if (unlikely(!PageSlab(page))) {
3394 WARN_ON(!PageCompound(page));
294a80a8 3395 return PAGE_SIZE << compound_order(page);
76994412 3396 }
81819f0f 3397
b3d41885 3398 return slab_ksize(page->slab);
81819f0f 3399}
b1aabecd 3400EXPORT_SYMBOL(ksize);
81819f0f 3401
d18a90dd
BG
3402#ifdef CONFIG_SLUB_DEBUG
3403bool verify_mem_not_deleted(const void *x)
3404{
3405 struct page *page;
3406 void *object = (void *)x;
3407 unsigned long flags;
3408 bool rv;
3409
3410 if (unlikely(ZERO_OR_NULL_PTR(x)))
3411 return false;
3412
3413 local_irq_save(flags);
3414
3415 page = virt_to_head_page(x);
3416 if (unlikely(!PageSlab(page))) {
3417 /* maybe it was from stack? */
3418 rv = true;
3419 goto out_unlock;
3420 }
3421
3422 slab_lock(page);
3423 if (on_freelist(page->slab, page, object)) {
3424 object_err(page->slab, page, object, "Object is on free-list");
3425 rv = false;
3426 } else {
3427 rv = true;
3428 }
3429 slab_unlock(page);
3430
3431out_unlock:
3432 local_irq_restore(flags);
3433 return rv;
3434}
3435EXPORT_SYMBOL(verify_mem_not_deleted);
3436#endif
3437
81819f0f
CL
3438void kfree(const void *x)
3439{
81819f0f 3440 struct page *page;
5bb983b0 3441 void *object = (void *)x;
81819f0f 3442
2121db74
PE
3443 trace_kfree(_RET_IP_, x);
3444
2408c550 3445 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3446 return;
3447
b49af68f 3448 page = virt_to_head_page(x);
aadb4bc4 3449 if (unlikely(!PageSlab(page))) {
0937502a 3450 BUG_ON(!PageCompound(page));
e4f7c0b4 3451 kmemleak_free(x);
aadb4bc4
CL
3452 put_page(page);
3453 return;
3454 }
ce71e27c 3455 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3456}
3457EXPORT_SYMBOL(kfree);
3458
2086d26a 3459/*
672bba3a
CL
3460 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3461 * the remaining slabs by the number of items in use. The slabs with the
3462 * most items in use come first. New allocations will then fill those up
3463 * and thus they can be removed from the partial lists.
3464 *
3465 * The slabs with the least items are placed last. This results in them
3466 * being allocated from last increasing the chance that the last objects
3467 * are freed in them.
2086d26a
CL
3468 */
3469int kmem_cache_shrink(struct kmem_cache *s)
3470{
3471 int node;
3472 int i;
3473 struct kmem_cache_node *n;
3474 struct page *page;
3475 struct page *t;
205ab99d 3476 int objects = oo_objects(s->max);
2086d26a 3477 struct list_head *slabs_by_inuse =
834f3d11 3478 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3479 unsigned long flags;
3480
3481 if (!slabs_by_inuse)
3482 return -ENOMEM;
3483
3484 flush_all(s);
f64dc58c 3485 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3486 n = get_node(s, node);
3487
3488 if (!n->nr_partial)
3489 continue;
3490
834f3d11 3491 for (i = 0; i < objects; i++)
2086d26a
CL
3492 INIT_LIST_HEAD(slabs_by_inuse + i);
3493
3494 spin_lock_irqsave(&n->list_lock, flags);
3495
3496 /*
672bba3a 3497 * Build lists indexed by the items in use in each slab.
2086d26a 3498 *
672bba3a
CL
3499 * Note that concurrent frees may occur while we hold the
3500 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3501 */
3502 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3503 list_move(&page->lru, slabs_by_inuse + page->inuse);
3504 if (!page->inuse)
3505 n->nr_partial--;
2086d26a
CL
3506 }
3507
2086d26a 3508 /*
672bba3a
CL
3509 * Rebuild the partial list with the slabs filled up most
3510 * first and the least used slabs at the end.
2086d26a 3511 */
69cb8e6b 3512 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3513 list_splice(slabs_by_inuse + i, n->partial.prev);
3514
2086d26a 3515 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3516
3517 /* Release empty slabs */
3518 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3519 discard_slab(s, page);
2086d26a
CL
3520 }
3521
3522 kfree(slabs_by_inuse);
3523 return 0;
3524}
3525EXPORT_SYMBOL(kmem_cache_shrink);
3526
92a5bbc1 3527#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3528static int slab_mem_going_offline_callback(void *arg)
3529{
3530 struct kmem_cache *s;
3531
3532 down_read(&slub_lock);
3533 list_for_each_entry(s, &slab_caches, list)
3534 kmem_cache_shrink(s);
3535 up_read(&slub_lock);
3536
3537 return 0;
3538}
3539
3540static void slab_mem_offline_callback(void *arg)
3541{
3542 struct kmem_cache_node *n;
3543 struct kmem_cache *s;
3544 struct memory_notify *marg = arg;
3545 int offline_node;
3546
3547 offline_node = marg->status_change_nid;
3548
3549 /*
3550 * If the node still has available memory. we need kmem_cache_node
3551 * for it yet.
3552 */
3553 if (offline_node < 0)
3554 return;
3555
3556 down_read(&slub_lock);
3557 list_for_each_entry(s, &slab_caches, list) {
3558 n = get_node(s, offline_node);
3559 if (n) {
3560 /*
3561 * if n->nr_slabs > 0, slabs still exist on the node
3562 * that is going down. We were unable to free them,
c9404c9c 3563 * and offline_pages() function shouldn't call this
b9049e23
YG
3564 * callback. So, we must fail.
3565 */
0f389ec6 3566 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3567
3568 s->node[offline_node] = NULL;
8de66a0c 3569 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3570 }
3571 }
3572 up_read(&slub_lock);
3573}
3574
3575static int slab_mem_going_online_callback(void *arg)
3576{
3577 struct kmem_cache_node *n;
3578 struct kmem_cache *s;
3579 struct memory_notify *marg = arg;
3580 int nid = marg->status_change_nid;
3581 int ret = 0;
3582
3583 /*
3584 * If the node's memory is already available, then kmem_cache_node is
3585 * already created. Nothing to do.
3586 */
3587 if (nid < 0)
3588 return 0;
3589
3590 /*
0121c619 3591 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3592 * allocate a kmem_cache_node structure in order to bring the node
3593 * online.
3594 */
3595 down_read(&slub_lock);
3596 list_for_each_entry(s, &slab_caches, list) {
3597 /*
3598 * XXX: kmem_cache_alloc_node will fallback to other nodes
3599 * since memory is not yet available from the node that
3600 * is brought up.
3601 */
8de66a0c 3602 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3603 if (!n) {
3604 ret = -ENOMEM;
3605 goto out;
3606 }
5595cffc 3607 init_kmem_cache_node(n, s);
b9049e23
YG
3608 s->node[nid] = n;
3609 }
3610out:
3611 up_read(&slub_lock);
3612 return ret;
3613}
3614
3615static int slab_memory_callback(struct notifier_block *self,
3616 unsigned long action, void *arg)
3617{
3618 int ret = 0;
3619
3620 switch (action) {
3621 case MEM_GOING_ONLINE:
3622 ret = slab_mem_going_online_callback(arg);
3623 break;
3624 case MEM_GOING_OFFLINE:
3625 ret = slab_mem_going_offline_callback(arg);
3626 break;
3627 case MEM_OFFLINE:
3628 case MEM_CANCEL_ONLINE:
3629 slab_mem_offline_callback(arg);
3630 break;
3631 case MEM_ONLINE:
3632 case MEM_CANCEL_OFFLINE:
3633 break;
3634 }
dc19f9db
KH
3635 if (ret)
3636 ret = notifier_from_errno(ret);
3637 else
3638 ret = NOTIFY_OK;
b9049e23
YG
3639 return ret;
3640}
3641
3642#endif /* CONFIG_MEMORY_HOTPLUG */
3643
81819f0f
CL
3644/********************************************************************
3645 * Basic setup of slabs
3646 *******************************************************************/
3647
51df1142
CL
3648/*
3649 * Used for early kmem_cache structures that were allocated using
3650 * the page allocator
3651 */
3652
3653static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3654{
3655 int node;
3656
3657 list_add(&s->list, &slab_caches);
3658 s->refcount = -1;
3659
3660 for_each_node_state(node, N_NORMAL_MEMORY) {
3661 struct kmem_cache_node *n = get_node(s, node);
3662 struct page *p;
3663
3664 if (n) {
3665 list_for_each_entry(p, &n->partial, lru)
3666 p->slab = s;
3667
607bf324 3668#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3669 list_for_each_entry(p, &n->full, lru)
3670 p->slab = s;
3671#endif
3672 }
3673 }
3674}
3675
81819f0f
CL
3676void __init kmem_cache_init(void)
3677{
3678 int i;
4b356be0 3679 int caches = 0;
51df1142
CL
3680 struct kmem_cache *temp_kmem_cache;
3681 int order;
51df1142
CL
3682 struct kmem_cache *temp_kmem_cache_node;
3683 unsigned long kmalloc_size;
3684
fc8d8620
SG
3685 if (debug_guardpage_minorder())
3686 slub_max_order = 0;
3687
51df1142
CL
3688 kmem_size = offsetof(struct kmem_cache, node) +
3689 nr_node_ids * sizeof(struct kmem_cache_node *);
3690
3691 /* Allocate two kmem_caches from the page allocator */
3692 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3693 order = get_order(2 * kmalloc_size);
3694 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3695
81819f0f
CL
3696 /*
3697 * Must first have the slab cache available for the allocations of the
672bba3a 3698 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3699 * kmem_cache_open for slab_state == DOWN.
3700 */
51df1142
CL
3701 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3702
3703 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3704 sizeof(struct kmem_cache_node),
3705 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3706
0c40ba4f 3707 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3708
3709 /* Able to allocate the per node structures */
3710 slab_state = PARTIAL;
3711
51df1142
CL
3712 temp_kmem_cache = kmem_cache;
3713 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3714 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3715 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3716 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3717
51df1142
CL
3718 /*
3719 * Allocate kmem_cache_node properly from the kmem_cache slab.
3720 * kmem_cache_node is separately allocated so no need to
3721 * update any list pointers.
3722 */
3723 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3724
51df1142
CL
3725 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3726 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3727
3728 kmem_cache_bootstrap_fixup(kmem_cache_node);
3729
3730 caches++;
51df1142
CL
3731 kmem_cache_bootstrap_fixup(kmem_cache);
3732 caches++;
3733 /* Free temporary boot structure */
3734 free_pages((unsigned long)temp_kmem_cache, order);
3735
3736 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3737
3738 /*
3739 * Patch up the size_index table if we have strange large alignment
3740 * requirements for the kmalloc array. This is only the case for
6446faa2 3741 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3742 *
3743 * Largest permitted alignment is 256 bytes due to the way we
3744 * handle the index determination for the smaller caches.
3745 *
3746 * Make sure that nothing crazy happens if someone starts tinkering
3747 * around with ARCH_KMALLOC_MINALIGN
3748 */
3749 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3750 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3751
acdfcd04
AK
3752 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3753 int elem = size_index_elem(i);
3754 if (elem >= ARRAY_SIZE(size_index))
3755 break;
3756 size_index[elem] = KMALLOC_SHIFT_LOW;
3757 }
f1b26339 3758
acdfcd04
AK
3759 if (KMALLOC_MIN_SIZE == 64) {
3760 /*
3761 * The 96 byte size cache is not used if the alignment
3762 * is 64 byte.
3763 */
3764 for (i = 64 + 8; i <= 96; i += 8)
3765 size_index[size_index_elem(i)] = 7;
3766 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3767 /*
3768 * The 192 byte sized cache is not used if the alignment
3769 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3770 * instead.
3771 */
3772 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3773 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3774 }
3775
51df1142
CL
3776 /* Caches that are not of the two-to-the-power-of size */
3777 if (KMALLOC_MIN_SIZE <= 32) {
3778 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3779 caches++;
3780 }
3781
3782 if (KMALLOC_MIN_SIZE <= 64) {
3783 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3784 caches++;
3785 }
3786
3787 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3788 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3789 caches++;
3790 }
3791
81819f0f
CL
3792 slab_state = UP;
3793
3794 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3795 if (KMALLOC_MIN_SIZE <= 32) {
3796 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3797 BUG_ON(!kmalloc_caches[1]->name);
3798 }
3799
3800 if (KMALLOC_MIN_SIZE <= 64) {
3801 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3802 BUG_ON(!kmalloc_caches[2]->name);
3803 }
3804
d7278bd7
CL
3805 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3806 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3807
3808 BUG_ON(!s);
51df1142 3809 kmalloc_caches[i]->name = s;
d7278bd7 3810 }
81819f0f
CL
3811
3812#ifdef CONFIG_SMP
3813 register_cpu_notifier(&slab_notifier);
9dfc6e68 3814#endif
81819f0f 3815
55136592 3816#ifdef CONFIG_ZONE_DMA
51df1142
CL
3817 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3818 struct kmem_cache *s = kmalloc_caches[i];
55136592 3819
51df1142 3820 if (s && s->size) {
55136592
CL
3821 char *name = kasprintf(GFP_NOWAIT,
3822 "dma-kmalloc-%d", s->objsize);
3823
3824 BUG_ON(!name);
51df1142
CL
3825 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3826 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3827 }
3828 }
3829#endif
3adbefee
IM
3830 printk(KERN_INFO
3831 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3832 " CPUs=%d, Nodes=%d\n",
3833 caches, cache_line_size(),
81819f0f
CL
3834 slub_min_order, slub_max_order, slub_min_objects,
3835 nr_cpu_ids, nr_node_ids);
3836}
3837
7e85ee0c
PE
3838void __init kmem_cache_init_late(void)
3839{
7e85ee0c
PE
3840}
3841
81819f0f
CL
3842/*
3843 * Find a mergeable slab cache
3844 */
3845static int slab_unmergeable(struct kmem_cache *s)
3846{
3847 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3848 return 1;
3849
c59def9f 3850 if (s->ctor)
81819f0f
CL
3851 return 1;
3852
8ffa6875
CL
3853 /*
3854 * We may have set a slab to be unmergeable during bootstrap.
3855 */
3856 if (s->refcount < 0)
3857 return 1;
3858
81819f0f
CL
3859 return 0;
3860}
3861
3862static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3863 size_t align, unsigned long flags, const char *name,
51cc5068 3864 void (*ctor)(void *))
81819f0f 3865{
5b95a4ac 3866 struct kmem_cache *s;
81819f0f
CL
3867
3868 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3869 return NULL;
3870
c59def9f 3871 if (ctor)
81819f0f
CL
3872 return NULL;
3873
3874 size = ALIGN(size, sizeof(void *));
3875 align = calculate_alignment(flags, align, size);
3876 size = ALIGN(size, align);
ba0268a8 3877 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3878
5b95a4ac 3879 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3880 if (slab_unmergeable(s))
3881 continue;
3882
3883 if (size > s->size)
3884 continue;
3885
ba0268a8 3886 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3887 continue;
3888 /*
3889 * Check if alignment is compatible.
3890 * Courtesy of Adrian Drzewiecki
3891 */
06428780 3892 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3893 continue;
3894
3895 if (s->size - size >= sizeof(void *))
3896 continue;
3897
3898 return s;
3899 }
3900 return NULL;
3901}
3902
3903struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3904 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3905{
3906 struct kmem_cache *s;
84c1cf62 3907 char *n;
81819f0f 3908
fe1ff49d
BH
3909 if (WARN_ON(!name))
3910 return NULL;
3911
81819f0f 3912 down_write(&slub_lock);
ba0268a8 3913 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3914 if (s) {
3915 s->refcount++;
3916 /*
3917 * Adjust the object sizes so that we clear
3918 * the complete object on kzalloc.
3919 */
3920 s->objsize = max(s->objsize, (int)size);
3921 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3922
7b8f3b66 3923 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3924 s->refcount--;
81819f0f 3925 goto err;
7b8f3b66 3926 }
2bce6485 3927 up_write(&slub_lock);
a0e1d1be
CL
3928 return s;
3929 }
6446faa2 3930
84c1cf62
PE
3931 n = kstrdup(name, GFP_KERNEL);
3932 if (!n)
3933 goto err;
3934
a0e1d1be
CL
3935 s = kmalloc(kmem_size, GFP_KERNEL);
3936 if (s) {
84c1cf62 3937 if (kmem_cache_open(s, n,
c59def9f 3938 size, align, flags, ctor)) {
81819f0f 3939 list_add(&s->list, &slab_caches);
66c4c35c 3940 up_write(&slub_lock);
7b8f3b66 3941 if (sysfs_slab_add(s)) {
66c4c35c 3942 down_write(&slub_lock);
7b8f3b66 3943 list_del(&s->list);
84c1cf62 3944 kfree(n);
7b8f3b66 3945 kfree(s);
a0e1d1be 3946 goto err;
7b8f3b66 3947 }
a0e1d1be
CL
3948 return s;
3949 }
84c1cf62 3950 kfree(n);
a0e1d1be 3951 kfree(s);
81819f0f 3952 }
68cee4f1 3953err:
81819f0f 3954 up_write(&slub_lock);
81819f0f 3955
81819f0f
CL
3956 if (flags & SLAB_PANIC)
3957 panic("Cannot create slabcache %s\n", name);
3958 else
3959 s = NULL;
3960 return s;
3961}
3962EXPORT_SYMBOL(kmem_cache_create);
3963
81819f0f 3964#ifdef CONFIG_SMP
81819f0f 3965/*
672bba3a
CL
3966 * Use the cpu notifier to insure that the cpu slabs are flushed when
3967 * necessary.
81819f0f
CL
3968 */
3969static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3970 unsigned long action, void *hcpu)
3971{
3972 long cpu = (long)hcpu;
5b95a4ac
CL
3973 struct kmem_cache *s;
3974 unsigned long flags;
81819f0f
CL
3975
3976 switch (action) {
3977 case CPU_UP_CANCELED:
8bb78442 3978 case CPU_UP_CANCELED_FROZEN:
81819f0f 3979 case CPU_DEAD:
8bb78442 3980 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3981 down_read(&slub_lock);
3982 list_for_each_entry(s, &slab_caches, list) {
3983 local_irq_save(flags);
3984 __flush_cpu_slab(s, cpu);
3985 local_irq_restore(flags);
3986 }
3987 up_read(&slub_lock);
81819f0f
CL
3988 break;
3989 default:
3990 break;
3991 }
3992 return NOTIFY_OK;
3993}
3994
06428780 3995static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3996 .notifier_call = slab_cpuup_callback
06428780 3997};
81819f0f
CL
3998
3999#endif
4000
ce71e27c 4001void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4002{
aadb4bc4 4003 struct kmem_cache *s;
94b528d0 4004 void *ret;
aadb4bc4 4005
ffadd4d0 4006 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4007 return kmalloc_large(size, gfpflags);
4008
aadb4bc4 4009 s = get_slab(size, gfpflags);
81819f0f 4010
2408c550 4011 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4012 return s;
81819f0f 4013
2154a336 4014 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4015
25985edc 4016 /* Honor the call site pointer we received. */
ca2b84cb 4017 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4018
4019 return ret;
81819f0f
CL
4020}
4021
5d1f57e4 4022#ifdef CONFIG_NUMA
81819f0f 4023void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4024 int node, unsigned long caller)
81819f0f 4025{
aadb4bc4 4026 struct kmem_cache *s;
94b528d0 4027 void *ret;
aadb4bc4 4028
d3e14aa3
XF
4029 if (unlikely(size > SLUB_MAX_SIZE)) {
4030 ret = kmalloc_large_node(size, gfpflags, node);
4031
4032 trace_kmalloc_node(caller, ret,
4033 size, PAGE_SIZE << get_order(size),
4034 gfpflags, node);
4035
4036 return ret;
4037 }
eada35ef 4038
aadb4bc4 4039 s = get_slab(size, gfpflags);
81819f0f 4040
2408c550 4041 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4042 return s;
81819f0f 4043
94b528d0
EGM
4044 ret = slab_alloc(s, gfpflags, node, caller);
4045
25985edc 4046 /* Honor the call site pointer we received. */
ca2b84cb 4047 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4048
4049 return ret;
81819f0f 4050}
5d1f57e4 4051#endif
81819f0f 4052
ab4d5ed5 4053#ifdef CONFIG_SYSFS
205ab99d
CL
4054static int count_inuse(struct page *page)
4055{
4056 return page->inuse;
4057}
4058
4059static int count_total(struct page *page)
4060{
4061 return page->objects;
4062}
ab4d5ed5 4063#endif
205ab99d 4064
ab4d5ed5 4065#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4066static int validate_slab(struct kmem_cache *s, struct page *page,
4067 unsigned long *map)
53e15af0
CL
4068{
4069 void *p;
a973e9dd 4070 void *addr = page_address(page);
53e15af0
CL
4071
4072 if (!check_slab(s, page) ||
4073 !on_freelist(s, page, NULL))
4074 return 0;
4075
4076 /* Now we know that a valid freelist exists */
39b26464 4077 bitmap_zero(map, page->objects);
53e15af0 4078
5f80b13a
CL
4079 get_map(s, page, map);
4080 for_each_object(p, s, addr, page->objects) {
4081 if (test_bit(slab_index(p, s, addr), map))
4082 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4083 return 0;
53e15af0
CL
4084 }
4085
224a88be 4086 for_each_object(p, s, addr, page->objects)
7656c72b 4087 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4088 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4089 return 0;
4090 return 1;
4091}
4092
434e245d
CL
4093static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4094 unsigned long *map)
53e15af0 4095{
881db7fb
CL
4096 slab_lock(page);
4097 validate_slab(s, page, map);
4098 slab_unlock(page);
53e15af0
CL
4099}
4100
434e245d
CL
4101static int validate_slab_node(struct kmem_cache *s,
4102 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4103{
4104 unsigned long count = 0;
4105 struct page *page;
4106 unsigned long flags;
4107
4108 spin_lock_irqsave(&n->list_lock, flags);
4109
4110 list_for_each_entry(page, &n->partial, lru) {
434e245d 4111 validate_slab_slab(s, page, map);
53e15af0
CL
4112 count++;
4113 }
4114 if (count != n->nr_partial)
4115 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4116 "counter=%ld\n", s->name, count, n->nr_partial);
4117
4118 if (!(s->flags & SLAB_STORE_USER))
4119 goto out;
4120
4121 list_for_each_entry(page, &n->full, lru) {
434e245d 4122 validate_slab_slab(s, page, map);
53e15af0
CL
4123 count++;
4124 }
4125 if (count != atomic_long_read(&n->nr_slabs))
4126 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4127 "counter=%ld\n", s->name, count,
4128 atomic_long_read(&n->nr_slabs));
4129
4130out:
4131 spin_unlock_irqrestore(&n->list_lock, flags);
4132 return count;
4133}
4134
434e245d 4135static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4136{
4137 int node;
4138 unsigned long count = 0;
205ab99d 4139 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4140 sizeof(unsigned long), GFP_KERNEL);
4141
4142 if (!map)
4143 return -ENOMEM;
53e15af0
CL
4144
4145 flush_all(s);
f64dc58c 4146 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4147 struct kmem_cache_node *n = get_node(s, node);
4148
434e245d 4149 count += validate_slab_node(s, n, map);
53e15af0 4150 }
434e245d 4151 kfree(map);
53e15af0
CL
4152 return count;
4153}
88a420e4 4154/*
672bba3a 4155 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4156 * and freed.
4157 */
4158
4159struct location {
4160 unsigned long count;
ce71e27c 4161 unsigned long addr;
45edfa58
CL
4162 long long sum_time;
4163 long min_time;
4164 long max_time;
4165 long min_pid;
4166 long max_pid;
174596a0 4167 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4168 nodemask_t nodes;
88a420e4
CL
4169};
4170
4171struct loc_track {
4172 unsigned long max;
4173 unsigned long count;
4174 struct location *loc;
4175};
4176
4177static void free_loc_track(struct loc_track *t)
4178{
4179 if (t->max)
4180 free_pages((unsigned long)t->loc,
4181 get_order(sizeof(struct location) * t->max));
4182}
4183
68dff6a9 4184static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4185{
4186 struct location *l;
4187 int order;
4188
88a420e4
CL
4189 order = get_order(sizeof(struct location) * max);
4190
68dff6a9 4191 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4192 if (!l)
4193 return 0;
4194
4195 if (t->count) {
4196 memcpy(l, t->loc, sizeof(struct location) * t->count);
4197 free_loc_track(t);
4198 }
4199 t->max = max;
4200 t->loc = l;
4201 return 1;
4202}
4203
4204static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4205 const struct track *track)
88a420e4
CL
4206{
4207 long start, end, pos;
4208 struct location *l;
ce71e27c 4209 unsigned long caddr;
45edfa58 4210 unsigned long age = jiffies - track->when;
88a420e4
CL
4211
4212 start = -1;
4213 end = t->count;
4214
4215 for ( ; ; ) {
4216 pos = start + (end - start + 1) / 2;
4217
4218 /*
4219 * There is nothing at "end". If we end up there
4220 * we need to add something to before end.
4221 */
4222 if (pos == end)
4223 break;
4224
4225 caddr = t->loc[pos].addr;
45edfa58
CL
4226 if (track->addr == caddr) {
4227
4228 l = &t->loc[pos];
4229 l->count++;
4230 if (track->when) {
4231 l->sum_time += age;
4232 if (age < l->min_time)
4233 l->min_time = age;
4234 if (age > l->max_time)
4235 l->max_time = age;
4236
4237 if (track->pid < l->min_pid)
4238 l->min_pid = track->pid;
4239 if (track->pid > l->max_pid)
4240 l->max_pid = track->pid;
4241
174596a0
RR
4242 cpumask_set_cpu(track->cpu,
4243 to_cpumask(l->cpus));
45edfa58
CL
4244 }
4245 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4246 return 1;
4247 }
4248
45edfa58 4249 if (track->addr < caddr)
88a420e4
CL
4250 end = pos;
4251 else
4252 start = pos;
4253 }
4254
4255 /*
672bba3a 4256 * Not found. Insert new tracking element.
88a420e4 4257 */
68dff6a9 4258 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4259 return 0;
4260
4261 l = t->loc + pos;
4262 if (pos < t->count)
4263 memmove(l + 1, l,
4264 (t->count - pos) * sizeof(struct location));
4265 t->count++;
4266 l->count = 1;
45edfa58
CL
4267 l->addr = track->addr;
4268 l->sum_time = age;
4269 l->min_time = age;
4270 l->max_time = age;
4271 l->min_pid = track->pid;
4272 l->max_pid = track->pid;
174596a0
RR
4273 cpumask_clear(to_cpumask(l->cpus));
4274 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4275 nodes_clear(l->nodes);
4276 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4277 return 1;
4278}
4279
4280static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4281 struct page *page, enum track_item alloc,
a5dd5c11 4282 unsigned long *map)
88a420e4 4283{
a973e9dd 4284 void *addr = page_address(page);
88a420e4
CL
4285 void *p;
4286
39b26464 4287 bitmap_zero(map, page->objects);
5f80b13a 4288 get_map(s, page, map);
88a420e4 4289
224a88be 4290 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4291 if (!test_bit(slab_index(p, s, addr), map))
4292 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4293}
4294
4295static int list_locations(struct kmem_cache *s, char *buf,
4296 enum track_item alloc)
4297{
e374d483 4298 int len = 0;
88a420e4 4299 unsigned long i;
68dff6a9 4300 struct loc_track t = { 0, 0, NULL };
88a420e4 4301 int node;
bbd7d57b
ED
4302 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4303 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4304
bbd7d57b
ED
4305 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4306 GFP_TEMPORARY)) {
4307 kfree(map);
68dff6a9 4308 return sprintf(buf, "Out of memory\n");
bbd7d57b 4309 }
88a420e4
CL
4310 /* Push back cpu slabs */
4311 flush_all(s);
4312
f64dc58c 4313 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4314 struct kmem_cache_node *n = get_node(s, node);
4315 unsigned long flags;
4316 struct page *page;
4317
9e86943b 4318 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4319 continue;
4320
4321 spin_lock_irqsave(&n->list_lock, flags);
4322 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4323 process_slab(&t, s, page, alloc, map);
88a420e4 4324 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4325 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4326 spin_unlock_irqrestore(&n->list_lock, flags);
4327 }
4328
4329 for (i = 0; i < t.count; i++) {
45edfa58 4330 struct location *l = &t.loc[i];
88a420e4 4331
9c246247 4332 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4333 break;
e374d483 4334 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4335
4336 if (l->addr)
62c70bce 4337 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4338 else
e374d483 4339 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4340
4341 if (l->sum_time != l->min_time) {
e374d483 4342 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4343 l->min_time,
4344 (long)div_u64(l->sum_time, l->count),
4345 l->max_time);
45edfa58 4346 } else
e374d483 4347 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4348 l->min_time);
4349
4350 if (l->min_pid != l->max_pid)
e374d483 4351 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4352 l->min_pid, l->max_pid);
4353 else
e374d483 4354 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4355 l->min_pid);
4356
174596a0
RR
4357 if (num_online_cpus() > 1 &&
4358 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4359 len < PAGE_SIZE - 60) {
4360 len += sprintf(buf + len, " cpus=");
4361 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4362 to_cpumask(l->cpus));
45edfa58
CL
4363 }
4364
62bc62a8 4365 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4366 len < PAGE_SIZE - 60) {
4367 len += sprintf(buf + len, " nodes=");
4368 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4369 l->nodes);
4370 }
4371
e374d483 4372 len += sprintf(buf + len, "\n");
88a420e4
CL
4373 }
4374
4375 free_loc_track(&t);
bbd7d57b 4376 kfree(map);
88a420e4 4377 if (!t.count)
e374d483
HH
4378 len += sprintf(buf, "No data\n");
4379 return len;
88a420e4 4380}
ab4d5ed5 4381#endif
88a420e4 4382
a5a84755
CL
4383#ifdef SLUB_RESILIENCY_TEST
4384static void resiliency_test(void)
4385{
4386 u8 *p;
4387
4388 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4389
4390 printk(KERN_ERR "SLUB resiliency testing\n");
4391 printk(KERN_ERR "-----------------------\n");
4392 printk(KERN_ERR "A. Corruption after allocation\n");
4393
4394 p = kzalloc(16, GFP_KERNEL);
4395 p[16] = 0x12;
4396 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4397 " 0x12->0x%p\n\n", p + 16);
4398
4399 validate_slab_cache(kmalloc_caches[4]);
4400
4401 /* Hmmm... The next two are dangerous */
4402 p = kzalloc(32, GFP_KERNEL);
4403 p[32 + sizeof(void *)] = 0x34;
4404 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4405 " 0x34 -> -0x%p\n", p);
4406 printk(KERN_ERR
4407 "If allocated object is overwritten then not detectable\n\n");
4408
4409 validate_slab_cache(kmalloc_caches[5]);
4410 p = kzalloc(64, GFP_KERNEL);
4411 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4412 *p = 0x56;
4413 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4414 p);
4415 printk(KERN_ERR
4416 "If allocated object is overwritten then not detectable\n\n");
4417 validate_slab_cache(kmalloc_caches[6]);
4418
4419 printk(KERN_ERR "\nB. Corruption after free\n");
4420 p = kzalloc(128, GFP_KERNEL);
4421 kfree(p);
4422 *p = 0x78;
4423 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4424 validate_slab_cache(kmalloc_caches[7]);
4425
4426 p = kzalloc(256, GFP_KERNEL);
4427 kfree(p);
4428 p[50] = 0x9a;
4429 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4430 p);
4431 validate_slab_cache(kmalloc_caches[8]);
4432
4433 p = kzalloc(512, GFP_KERNEL);
4434 kfree(p);
4435 p[512] = 0xab;
4436 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4437 validate_slab_cache(kmalloc_caches[9]);
4438}
4439#else
4440#ifdef CONFIG_SYSFS
4441static void resiliency_test(void) {};
4442#endif
4443#endif
4444
ab4d5ed5 4445#ifdef CONFIG_SYSFS
81819f0f 4446enum slab_stat_type {
205ab99d
CL
4447 SL_ALL, /* All slabs */
4448 SL_PARTIAL, /* Only partially allocated slabs */
4449 SL_CPU, /* Only slabs used for cpu caches */
4450 SL_OBJECTS, /* Determine allocated objects not slabs */
4451 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4452};
4453
205ab99d 4454#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4455#define SO_PARTIAL (1 << SL_PARTIAL)
4456#define SO_CPU (1 << SL_CPU)
4457#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4458#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4459
62e5c4b4
CG
4460static ssize_t show_slab_objects(struct kmem_cache *s,
4461 char *buf, unsigned long flags)
81819f0f
CL
4462{
4463 unsigned long total = 0;
81819f0f
CL
4464 int node;
4465 int x;
4466 unsigned long *nodes;
4467 unsigned long *per_cpu;
4468
4469 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4470 if (!nodes)
4471 return -ENOMEM;
81819f0f
CL
4472 per_cpu = nodes + nr_node_ids;
4473
205ab99d
CL
4474 if (flags & SO_CPU) {
4475 int cpu;
81819f0f 4476
205ab99d 4477 for_each_possible_cpu(cpu) {
9dfc6e68 4478 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
bc6697d8 4479 int node = ACCESS_ONCE(c->node);
49e22585 4480 struct page *page;
dfb4f096 4481
bc6697d8 4482 if (node < 0)
205ab99d 4483 continue;
bc6697d8
ED
4484 page = ACCESS_ONCE(c->page);
4485 if (page) {
4486 if (flags & SO_TOTAL)
4487 x = page->objects;
205ab99d 4488 else if (flags & SO_OBJECTS)
bc6697d8 4489 x = page->inuse;
81819f0f
CL
4490 else
4491 x = 1;
205ab99d 4492
81819f0f 4493 total += x;
bc6697d8 4494 nodes[node] += x;
81819f0f 4495 }
49e22585
CL
4496 page = c->partial;
4497
4498 if (page) {
4499 x = page->pobjects;
bc6697d8
ED
4500 total += x;
4501 nodes[node] += x;
49e22585 4502 }
bc6697d8 4503 per_cpu[node]++;
81819f0f
CL
4504 }
4505 }
4506
04d94879 4507 lock_memory_hotplug();
ab4d5ed5 4508#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4509 if (flags & SO_ALL) {
4510 for_each_node_state(node, N_NORMAL_MEMORY) {
4511 struct kmem_cache_node *n = get_node(s, node);
4512
4513 if (flags & SO_TOTAL)
4514 x = atomic_long_read(&n->total_objects);
4515 else if (flags & SO_OBJECTS)
4516 x = atomic_long_read(&n->total_objects) -
4517 count_partial(n, count_free);
81819f0f 4518
81819f0f 4519 else
205ab99d 4520 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4521 total += x;
4522 nodes[node] += x;
4523 }
4524
ab4d5ed5
CL
4525 } else
4526#endif
4527 if (flags & SO_PARTIAL) {
205ab99d
CL
4528 for_each_node_state(node, N_NORMAL_MEMORY) {
4529 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4530
205ab99d
CL
4531 if (flags & SO_TOTAL)
4532 x = count_partial(n, count_total);
4533 else if (flags & SO_OBJECTS)
4534 x = count_partial(n, count_inuse);
81819f0f 4535 else
205ab99d 4536 x = n->nr_partial;
81819f0f
CL
4537 total += x;
4538 nodes[node] += x;
4539 }
4540 }
81819f0f
CL
4541 x = sprintf(buf, "%lu", total);
4542#ifdef CONFIG_NUMA
f64dc58c 4543 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4544 if (nodes[node])
4545 x += sprintf(buf + x, " N%d=%lu",
4546 node, nodes[node]);
4547#endif
04d94879 4548 unlock_memory_hotplug();
81819f0f
CL
4549 kfree(nodes);
4550 return x + sprintf(buf + x, "\n");
4551}
4552
ab4d5ed5 4553#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4554static int any_slab_objects(struct kmem_cache *s)
4555{
4556 int node;
81819f0f 4557
dfb4f096 4558 for_each_online_node(node) {
81819f0f
CL
4559 struct kmem_cache_node *n = get_node(s, node);
4560
dfb4f096
CL
4561 if (!n)
4562 continue;
4563
4ea33e2d 4564 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4565 return 1;
4566 }
4567 return 0;
4568}
ab4d5ed5 4569#endif
81819f0f
CL
4570
4571#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4572#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4573
4574struct slab_attribute {
4575 struct attribute attr;
4576 ssize_t (*show)(struct kmem_cache *s, char *buf);
4577 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4578};
4579
4580#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4581 static struct slab_attribute _name##_attr = \
4582 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4583
4584#define SLAB_ATTR(_name) \
4585 static struct slab_attribute _name##_attr = \
ab067e99 4586 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4587
81819f0f
CL
4588static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4589{
4590 return sprintf(buf, "%d\n", s->size);
4591}
4592SLAB_ATTR_RO(slab_size);
4593
4594static ssize_t align_show(struct kmem_cache *s, char *buf)
4595{
4596 return sprintf(buf, "%d\n", s->align);
4597}
4598SLAB_ATTR_RO(align);
4599
4600static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4601{
4602 return sprintf(buf, "%d\n", s->objsize);
4603}
4604SLAB_ATTR_RO(object_size);
4605
4606static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4607{
834f3d11 4608 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4609}
4610SLAB_ATTR_RO(objs_per_slab);
4611
06b285dc
CL
4612static ssize_t order_store(struct kmem_cache *s,
4613 const char *buf, size_t length)
4614{
0121c619
CL
4615 unsigned long order;
4616 int err;
4617
4618 err = strict_strtoul(buf, 10, &order);
4619 if (err)
4620 return err;
06b285dc
CL
4621
4622 if (order > slub_max_order || order < slub_min_order)
4623 return -EINVAL;
4624
4625 calculate_sizes(s, order);
4626 return length;
4627}
4628
81819f0f
CL
4629static ssize_t order_show(struct kmem_cache *s, char *buf)
4630{
834f3d11 4631 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4632}
06b285dc 4633SLAB_ATTR(order);
81819f0f 4634
73d342b1
DR
4635static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4636{
4637 return sprintf(buf, "%lu\n", s->min_partial);
4638}
4639
4640static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4641 size_t length)
4642{
4643 unsigned long min;
4644 int err;
4645
4646 err = strict_strtoul(buf, 10, &min);
4647 if (err)
4648 return err;
4649
c0bdb232 4650 set_min_partial(s, min);
73d342b1
DR
4651 return length;
4652}
4653SLAB_ATTR(min_partial);
4654
49e22585
CL
4655static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4656{
4657 return sprintf(buf, "%u\n", s->cpu_partial);
4658}
4659
4660static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4661 size_t length)
4662{
4663 unsigned long objects;
4664 int err;
4665
4666 err = strict_strtoul(buf, 10, &objects);
4667 if (err)
4668 return err;
74ee4ef1
DR
4669 if (objects && kmem_cache_debug(s))
4670 return -EINVAL;
49e22585
CL
4671
4672 s->cpu_partial = objects;
4673 flush_all(s);
4674 return length;
4675}
4676SLAB_ATTR(cpu_partial);
4677
81819f0f
CL
4678static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4679{
62c70bce
JP
4680 if (!s->ctor)
4681 return 0;
4682 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4683}
4684SLAB_ATTR_RO(ctor);
4685
81819f0f
CL
4686static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4687{
4688 return sprintf(buf, "%d\n", s->refcount - 1);
4689}
4690SLAB_ATTR_RO(aliases);
4691
81819f0f
CL
4692static ssize_t partial_show(struct kmem_cache *s, char *buf)
4693{
d9acf4b7 4694 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4695}
4696SLAB_ATTR_RO(partial);
4697
4698static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4699{
d9acf4b7 4700 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4701}
4702SLAB_ATTR_RO(cpu_slabs);
4703
4704static ssize_t objects_show(struct kmem_cache *s, char *buf)
4705{
205ab99d 4706 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4707}
4708SLAB_ATTR_RO(objects);
4709
205ab99d
CL
4710static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4711{
4712 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4713}
4714SLAB_ATTR_RO(objects_partial);
4715
49e22585
CL
4716static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4717{
4718 int objects = 0;
4719 int pages = 0;
4720 int cpu;
4721 int len;
4722
4723 for_each_online_cpu(cpu) {
4724 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4725
4726 if (page) {
4727 pages += page->pages;
4728 objects += page->pobjects;
4729 }
4730 }
4731
4732 len = sprintf(buf, "%d(%d)", objects, pages);
4733
4734#ifdef CONFIG_SMP
4735 for_each_online_cpu(cpu) {
4736 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4737
4738 if (page && len < PAGE_SIZE - 20)
4739 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4740 page->pobjects, page->pages);
4741 }
4742#endif
4743 return len + sprintf(buf + len, "\n");
4744}
4745SLAB_ATTR_RO(slabs_cpu_partial);
4746
a5a84755
CL
4747static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4748{
4749 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4750}
4751
4752static ssize_t reclaim_account_store(struct kmem_cache *s,
4753 const char *buf, size_t length)
4754{
4755 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4756 if (buf[0] == '1')
4757 s->flags |= SLAB_RECLAIM_ACCOUNT;
4758 return length;
4759}
4760SLAB_ATTR(reclaim_account);
4761
4762static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4763{
4764 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4765}
4766SLAB_ATTR_RO(hwcache_align);
4767
4768#ifdef CONFIG_ZONE_DMA
4769static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4770{
4771 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4772}
4773SLAB_ATTR_RO(cache_dma);
4774#endif
4775
4776static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4777{
4778 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4779}
4780SLAB_ATTR_RO(destroy_by_rcu);
4781
ab9a0f19
LJ
4782static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4783{
4784 return sprintf(buf, "%d\n", s->reserved);
4785}
4786SLAB_ATTR_RO(reserved);
4787
ab4d5ed5 4788#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4789static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4790{
4791 return show_slab_objects(s, buf, SO_ALL);
4792}
4793SLAB_ATTR_RO(slabs);
4794
205ab99d
CL
4795static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4796{
4797 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4798}
4799SLAB_ATTR_RO(total_objects);
4800
81819f0f
CL
4801static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4802{
4803 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4804}
4805
4806static ssize_t sanity_checks_store(struct kmem_cache *s,
4807 const char *buf, size_t length)
4808{
4809 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4810 if (buf[0] == '1') {
4811 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4812 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4813 }
81819f0f
CL
4814 return length;
4815}
4816SLAB_ATTR(sanity_checks);
4817
4818static ssize_t trace_show(struct kmem_cache *s, char *buf)
4819{
4820 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4821}
4822
4823static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4824 size_t length)
4825{
4826 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4827 if (buf[0] == '1') {
4828 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4829 s->flags |= SLAB_TRACE;
b789ef51 4830 }
81819f0f
CL
4831 return length;
4832}
4833SLAB_ATTR(trace);
4834
81819f0f
CL
4835static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4836{
4837 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4838}
4839
4840static ssize_t red_zone_store(struct kmem_cache *s,
4841 const char *buf, size_t length)
4842{
4843 if (any_slab_objects(s))
4844 return -EBUSY;
4845
4846 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4847 if (buf[0] == '1') {
4848 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4849 s->flags |= SLAB_RED_ZONE;
b789ef51 4850 }
06b285dc 4851 calculate_sizes(s, -1);
81819f0f
CL
4852 return length;
4853}
4854SLAB_ATTR(red_zone);
4855
4856static ssize_t poison_show(struct kmem_cache *s, char *buf)
4857{
4858 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4859}
4860
4861static ssize_t poison_store(struct kmem_cache *s,
4862 const char *buf, size_t length)
4863{
4864 if (any_slab_objects(s))
4865 return -EBUSY;
4866
4867 s->flags &= ~SLAB_POISON;
b789ef51
CL
4868 if (buf[0] == '1') {
4869 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4870 s->flags |= SLAB_POISON;
b789ef51 4871 }
06b285dc 4872 calculate_sizes(s, -1);
81819f0f
CL
4873 return length;
4874}
4875SLAB_ATTR(poison);
4876
4877static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4878{
4879 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4880}
4881
4882static ssize_t store_user_store(struct kmem_cache *s,
4883 const char *buf, size_t length)
4884{
4885 if (any_slab_objects(s))
4886 return -EBUSY;
4887
4888 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4889 if (buf[0] == '1') {
4890 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4891 s->flags |= SLAB_STORE_USER;
b789ef51 4892 }
06b285dc 4893 calculate_sizes(s, -1);
81819f0f
CL
4894 return length;
4895}
4896SLAB_ATTR(store_user);
4897
53e15af0
CL
4898static ssize_t validate_show(struct kmem_cache *s, char *buf)
4899{
4900 return 0;
4901}
4902
4903static ssize_t validate_store(struct kmem_cache *s,
4904 const char *buf, size_t length)
4905{
434e245d
CL
4906 int ret = -EINVAL;
4907
4908 if (buf[0] == '1') {
4909 ret = validate_slab_cache(s);
4910 if (ret >= 0)
4911 ret = length;
4912 }
4913 return ret;
53e15af0
CL
4914}
4915SLAB_ATTR(validate);
a5a84755
CL
4916
4917static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4918{
4919 if (!(s->flags & SLAB_STORE_USER))
4920 return -ENOSYS;
4921 return list_locations(s, buf, TRACK_ALLOC);
4922}
4923SLAB_ATTR_RO(alloc_calls);
4924
4925static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4926{
4927 if (!(s->flags & SLAB_STORE_USER))
4928 return -ENOSYS;
4929 return list_locations(s, buf, TRACK_FREE);
4930}
4931SLAB_ATTR_RO(free_calls);
4932#endif /* CONFIG_SLUB_DEBUG */
4933
4934#ifdef CONFIG_FAILSLAB
4935static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4936{
4937 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4938}
4939
4940static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4941 size_t length)
4942{
4943 s->flags &= ~SLAB_FAILSLAB;
4944 if (buf[0] == '1')
4945 s->flags |= SLAB_FAILSLAB;
4946 return length;
4947}
4948SLAB_ATTR(failslab);
ab4d5ed5 4949#endif
53e15af0 4950
2086d26a
CL
4951static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4952{
4953 return 0;
4954}
4955
4956static ssize_t shrink_store(struct kmem_cache *s,
4957 const char *buf, size_t length)
4958{
4959 if (buf[0] == '1') {
4960 int rc = kmem_cache_shrink(s);
4961
4962 if (rc)
4963 return rc;
4964 } else
4965 return -EINVAL;
4966 return length;
4967}
4968SLAB_ATTR(shrink);
4969
81819f0f 4970#ifdef CONFIG_NUMA
9824601e 4971static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4972{
9824601e 4973 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4974}
4975
9824601e 4976static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4977 const char *buf, size_t length)
4978{
0121c619
CL
4979 unsigned long ratio;
4980 int err;
4981
4982 err = strict_strtoul(buf, 10, &ratio);
4983 if (err)
4984 return err;
4985
e2cb96b7 4986 if (ratio <= 100)
0121c619 4987 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4988
81819f0f
CL
4989 return length;
4990}
9824601e 4991SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4992#endif
4993
8ff12cfc 4994#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4995static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4996{
4997 unsigned long sum = 0;
4998 int cpu;
4999 int len;
5000 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5001
5002 if (!data)
5003 return -ENOMEM;
5004
5005 for_each_online_cpu(cpu) {
9dfc6e68 5006 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5007
5008 data[cpu] = x;
5009 sum += x;
5010 }
5011
5012 len = sprintf(buf, "%lu", sum);
5013
50ef37b9 5014#ifdef CONFIG_SMP
8ff12cfc
CL
5015 for_each_online_cpu(cpu) {
5016 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5017 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5018 }
50ef37b9 5019#endif
8ff12cfc
CL
5020 kfree(data);
5021 return len + sprintf(buf + len, "\n");
5022}
5023
78eb00cc
DR
5024static void clear_stat(struct kmem_cache *s, enum stat_item si)
5025{
5026 int cpu;
5027
5028 for_each_online_cpu(cpu)
9dfc6e68 5029 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5030}
5031
8ff12cfc
CL
5032#define STAT_ATTR(si, text) \
5033static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5034{ \
5035 return show_stat(s, buf, si); \
5036} \
78eb00cc
DR
5037static ssize_t text##_store(struct kmem_cache *s, \
5038 const char *buf, size_t length) \
5039{ \
5040 if (buf[0] != '0') \
5041 return -EINVAL; \
5042 clear_stat(s, si); \
5043 return length; \
5044} \
5045SLAB_ATTR(text); \
8ff12cfc
CL
5046
5047STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5048STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5049STAT_ATTR(FREE_FASTPATH, free_fastpath);
5050STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5051STAT_ATTR(FREE_FROZEN, free_frozen);
5052STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5053STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5054STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5055STAT_ATTR(ALLOC_SLAB, alloc_slab);
5056STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5057STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5058STAT_ATTR(FREE_SLAB, free_slab);
5059STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5060STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5061STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5062STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5063STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5064STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5065STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5066STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5067STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5068STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5069STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5070STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8ff12cfc
CL
5071#endif
5072
06428780 5073static struct attribute *slab_attrs[] = {
81819f0f
CL
5074 &slab_size_attr.attr,
5075 &object_size_attr.attr,
5076 &objs_per_slab_attr.attr,
5077 &order_attr.attr,
73d342b1 5078 &min_partial_attr.attr,
49e22585 5079 &cpu_partial_attr.attr,
81819f0f 5080 &objects_attr.attr,
205ab99d 5081 &objects_partial_attr.attr,
81819f0f
CL
5082 &partial_attr.attr,
5083 &cpu_slabs_attr.attr,
5084 &ctor_attr.attr,
81819f0f
CL
5085 &aliases_attr.attr,
5086 &align_attr.attr,
81819f0f
CL
5087 &hwcache_align_attr.attr,
5088 &reclaim_account_attr.attr,
5089 &destroy_by_rcu_attr.attr,
a5a84755 5090 &shrink_attr.attr,
ab9a0f19 5091 &reserved_attr.attr,
49e22585 5092 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5093#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5094 &total_objects_attr.attr,
5095 &slabs_attr.attr,
5096 &sanity_checks_attr.attr,
5097 &trace_attr.attr,
81819f0f
CL
5098 &red_zone_attr.attr,
5099 &poison_attr.attr,
5100 &store_user_attr.attr,
53e15af0 5101 &validate_attr.attr,
88a420e4
CL
5102 &alloc_calls_attr.attr,
5103 &free_calls_attr.attr,
ab4d5ed5 5104#endif
81819f0f
CL
5105#ifdef CONFIG_ZONE_DMA
5106 &cache_dma_attr.attr,
5107#endif
5108#ifdef CONFIG_NUMA
9824601e 5109 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5110#endif
5111#ifdef CONFIG_SLUB_STATS
5112 &alloc_fastpath_attr.attr,
5113 &alloc_slowpath_attr.attr,
5114 &free_fastpath_attr.attr,
5115 &free_slowpath_attr.attr,
5116 &free_frozen_attr.attr,
5117 &free_add_partial_attr.attr,
5118 &free_remove_partial_attr.attr,
5119 &alloc_from_partial_attr.attr,
5120 &alloc_slab_attr.attr,
5121 &alloc_refill_attr.attr,
e36a2652 5122 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5123 &free_slab_attr.attr,
5124 &cpuslab_flush_attr.attr,
5125 &deactivate_full_attr.attr,
5126 &deactivate_empty_attr.attr,
5127 &deactivate_to_head_attr.attr,
5128 &deactivate_to_tail_attr.attr,
5129 &deactivate_remote_frees_attr.attr,
03e404af 5130 &deactivate_bypass_attr.attr,
65c3376a 5131 &order_fallback_attr.attr,
b789ef51
CL
5132 &cmpxchg_double_fail_attr.attr,
5133 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5134 &cpu_partial_alloc_attr.attr,
5135 &cpu_partial_free_attr.attr,
81819f0f 5136#endif
4c13dd3b
DM
5137#ifdef CONFIG_FAILSLAB
5138 &failslab_attr.attr,
5139#endif
5140
81819f0f
CL
5141 NULL
5142};
5143
5144static struct attribute_group slab_attr_group = {
5145 .attrs = slab_attrs,
5146};
5147
5148static ssize_t slab_attr_show(struct kobject *kobj,
5149 struct attribute *attr,
5150 char *buf)
5151{
5152 struct slab_attribute *attribute;
5153 struct kmem_cache *s;
5154 int err;
5155
5156 attribute = to_slab_attr(attr);
5157 s = to_slab(kobj);
5158
5159 if (!attribute->show)
5160 return -EIO;
5161
5162 err = attribute->show(s, buf);
5163
5164 return err;
5165}
5166
5167static ssize_t slab_attr_store(struct kobject *kobj,
5168 struct attribute *attr,
5169 const char *buf, size_t len)
5170{
5171 struct slab_attribute *attribute;
5172 struct kmem_cache *s;
5173 int err;
5174
5175 attribute = to_slab_attr(attr);
5176 s = to_slab(kobj);
5177
5178 if (!attribute->store)
5179 return -EIO;
5180
5181 err = attribute->store(s, buf, len);
5182
5183 return err;
5184}
5185
151c602f
CL
5186static void kmem_cache_release(struct kobject *kobj)
5187{
5188 struct kmem_cache *s = to_slab(kobj);
5189
84c1cf62 5190 kfree(s->name);
151c602f
CL
5191 kfree(s);
5192}
5193
52cf25d0 5194static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5195 .show = slab_attr_show,
5196 .store = slab_attr_store,
5197};
5198
5199static struct kobj_type slab_ktype = {
5200 .sysfs_ops = &slab_sysfs_ops,
151c602f 5201 .release = kmem_cache_release
81819f0f
CL
5202};
5203
5204static int uevent_filter(struct kset *kset, struct kobject *kobj)
5205{
5206 struct kobj_type *ktype = get_ktype(kobj);
5207
5208 if (ktype == &slab_ktype)
5209 return 1;
5210 return 0;
5211}
5212
9cd43611 5213static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5214 .filter = uevent_filter,
5215};
5216
27c3a314 5217static struct kset *slab_kset;
81819f0f
CL
5218
5219#define ID_STR_LENGTH 64
5220
5221/* Create a unique string id for a slab cache:
6446faa2
CL
5222 *
5223 * Format :[flags-]size
81819f0f
CL
5224 */
5225static char *create_unique_id(struct kmem_cache *s)
5226{
5227 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5228 char *p = name;
5229
5230 BUG_ON(!name);
5231
5232 *p++ = ':';
5233 /*
5234 * First flags affecting slabcache operations. We will only
5235 * get here for aliasable slabs so we do not need to support
5236 * too many flags. The flags here must cover all flags that
5237 * are matched during merging to guarantee that the id is
5238 * unique.
5239 */
5240 if (s->flags & SLAB_CACHE_DMA)
5241 *p++ = 'd';
5242 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5243 *p++ = 'a';
5244 if (s->flags & SLAB_DEBUG_FREE)
5245 *p++ = 'F';
5a896d9e
VN
5246 if (!(s->flags & SLAB_NOTRACK))
5247 *p++ = 't';
81819f0f
CL
5248 if (p != name + 1)
5249 *p++ = '-';
5250 p += sprintf(p, "%07d", s->size);
5251 BUG_ON(p > name + ID_STR_LENGTH - 1);
5252 return name;
5253}
5254
5255static int sysfs_slab_add(struct kmem_cache *s)
5256{
5257 int err;
5258 const char *name;
5259 int unmergeable;
5260
5261 if (slab_state < SYSFS)
5262 /* Defer until later */
5263 return 0;
5264
5265 unmergeable = slab_unmergeable(s);
5266 if (unmergeable) {
5267 /*
5268 * Slabcache can never be merged so we can use the name proper.
5269 * This is typically the case for debug situations. In that
5270 * case we can catch duplicate names easily.
5271 */
27c3a314 5272 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5273 name = s->name;
5274 } else {
5275 /*
5276 * Create a unique name for the slab as a target
5277 * for the symlinks.
5278 */
5279 name = create_unique_id(s);
5280 }
5281
27c3a314 5282 s->kobj.kset = slab_kset;
1eada11c
GKH
5283 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5284 if (err) {
5285 kobject_put(&s->kobj);
81819f0f 5286 return err;
1eada11c 5287 }
81819f0f
CL
5288
5289 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5290 if (err) {
5291 kobject_del(&s->kobj);
5292 kobject_put(&s->kobj);
81819f0f 5293 return err;
5788d8ad 5294 }
81819f0f
CL
5295 kobject_uevent(&s->kobj, KOBJ_ADD);
5296 if (!unmergeable) {
5297 /* Setup first alias */
5298 sysfs_slab_alias(s, s->name);
5299 kfree(name);
5300 }
5301 return 0;
5302}
5303
5304static void sysfs_slab_remove(struct kmem_cache *s)
5305{
2bce6485
CL
5306 if (slab_state < SYSFS)
5307 /*
5308 * Sysfs has not been setup yet so no need to remove the
5309 * cache from sysfs.
5310 */
5311 return;
5312
81819f0f
CL
5313 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5314 kobject_del(&s->kobj);
151c602f 5315 kobject_put(&s->kobj);
81819f0f
CL
5316}
5317
5318/*
5319 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5320 * available lest we lose that information.
81819f0f
CL
5321 */
5322struct saved_alias {
5323 struct kmem_cache *s;
5324 const char *name;
5325 struct saved_alias *next;
5326};
5327
5af328a5 5328static struct saved_alias *alias_list;
81819f0f
CL
5329
5330static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5331{
5332 struct saved_alias *al;
5333
5334 if (slab_state == SYSFS) {
5335 /*
5336 * If we have a leftover link then remove it.
5337 */
27c3a314
GKH
5338 sysfs_remove_link(&slab_kset->kobj, name);
5339 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5340 }
5341
5342 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5343 if (!al)
5344 return -ENOMEM;
5345
5346 al->s = s;
5347 al->name = name;
5348 al->next = alias_list;
5349 alias_list = al;
5350 return 0;
5351}
5352
5353static int __init slab_sysfs_init(void)
5354{
5b95a4ac 5355 struct kmem_cache *s;
81819f0f
CL
5356 int err;
5357
2bce6485
CL
5358 down_write(&slub_lock);
5359
0ff21e46 5360 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5361 if (!slab_kset) {
2bce6485 5362 up_write(&slub_lock);
81819f0f
CL
5363 printk(KERN_ERR "Cannot register slab subsystem.\n");
5364 return -ENOSYS;
5365 }
5366
26a7bd03
CL
5367 slab_state = SYSFS;
5368
5b95a4ac 5369 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5370 err = sysfs_slab_add(s);
5d540fb7
CL
5371 if (err)
5372 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5373 " to sysfs\n", s->name);
26a7bd03 5374 }
81819f0f
CL
5375
5376 while (alias_list) {
5377 struct saved_alias *al = alias_list;
5378
5379 alias_list = alias_list->next;
5380 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5381 if (err)
5382 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5383 " %s to sysfs\n", s->name);
81819f0f
CL
5384 kfree(al);
5385 }
5386
2bce6485 5387 up_write(&slub_lock);
81819f0f
CL
5388 resiliency_test();
5389 return 0;
5390}
5391
5392__initcall(slab_sysfs_init);
ab4d5ed5 5393#endif /* CONFIG_SYSFS */
57ed3eda
PE
5394
5395/*
5396 * The /proc/slabinfo ABI
5397 */
158a9624 5398#ifdef CONFIG_SLABINFO
57ed3eda
PE
5399static void print_slabinfo_header(struct seq_file *m)
5400{
5401 seq_puts(m, "slabinfo - version: 2.1\n");
5402 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5403 "<objperslab> <pagesperslab>");
5404 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5405 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5406 seq_putc(m, '\n');
5407}
5408
5409static void *s_start(struct seq_file *m, loff_t *pos)
5410{
5411 loff_t n = *pos;
5412
5413 down_read(&slub_lock);
5414 if (!n)
5415 print_slabinfo_header(m);
5416
5417 return seq_list_start(&slab_caches, *pos);
5418}
5419
5420static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5421{
5422 return seq_list_next(p, &slab_caches, pos);
5423}
5424
5425static void s_stop(struct seq_file *m, void *p)
5426{
5427 up_read(&slub_lock);
5428}
5429
5430static int s_show(struct seq_file *m, void *p)
5431{
5432 unsigned long nr_partials = 0;
5433 unsigned long nr_slabs = 0;
5434 unsigned long nr_inuse = 0;
205ab99d
CL
5435 unsigned long nr_objs = 0;
5436 unsigned long nr_free = 0;
57ed3eda
PE
5437 struct kmem_cache *s;
5438 int node;
5439
5440 s = list_entry(p, struct kmem_cache, list);
5441
5442 for_each_online_node(node) {
5443 struct kmem_cache_node *n = get_node(s, node);
5444
5445 if (!n)
5446 continue;
5447
5448 nr_partials += n->nr_partial;
5449 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5450 nr_objs += atomic_long_read(&n->total_objects);
5451 nr_free += count_partial(n, count_free);
57ed3eda
PE
5452 }
5453
205ab99d 5454 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5455
5456 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5457 nr_objs, s->size, oo_objects(s->oo),
5458 (1 << oo_order(s->oo)));
57ed3eda
PE
5459 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5460 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5461 0UL);
5462 seq_putc(m, '\n');
5463 return 0;
5464}
5465
7b3c3a50 5466static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5467 .start = s_start,
5468 .next = s_next,
5469 .stop = s_stop,
5470 .show = s_show,
5471};
5472
7b3c3a50
AD
5473static int slabinfo_open(struct inode *inode, struct file *file)
5474{
5475 return seq_open(file, &slabinfo_op);
5476}
5477
5478static const struct file_operations proc_slabinfo_operations = {
5479 .open = slabinfo_open,
5480 .read = seq_read,
5481 .llseek = seq_lseek,
5482 .release = seq_release,
5483};
5484
5485static int __init slab_proc_init(void)
5486{
ab067e99 5487 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5488 return 0;
5489}
5490module_init(slab_proc_init);
158a9624 5491#endif /* CONFIG_SLABINFO */