sl[au]b: charge slabs to kmemcg explicitly
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
81819f0f
CL
172/*
173 * Set of flags that will prevent slab merging
174 */
175#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
81819f0f
CL
178
179#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 180 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 181
210b5c06
CG
182#define OO_SHIFT 16
183#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 184#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 185
81819f0f 186/* Internal SLUB flags */
f90ec390 187#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 188#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 189
81819f0f
CL
190#ifdef CONFIG_SMP
191static struct notifier_block slab_notifier;
192#endif
193
02cbc874
CL
194/*
195 * Tracking user of a slab.
196 */
d6543e39 197#define TRACK_ADDRS_COUNT 16
02cbc874 198struct track {
ce71e27c 199 unsigned long addr; /* Called from address */
d6543e39
BG
200#ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202#endif
02cbc874
CL
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206};
207
208enum track_item { TRACK_ALLOC, TRACK_FREE };
209
ab4d5ed5 210#ifdef CONFIG_SYSFS
81819f0f
CL
211static int sysfs_slab_add(struct kmem_cache *);
212static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 213static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 214#else
0c710013
CL
215static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
216static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
217 { return 0; }
107dab5c 218static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
219#endif
220
4fdccdfb 221static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
222{
223#ifdef CONFIG_SLUB_STATS
88da03a6
CL
224 /*
225 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 * avoid this_cpu_add()'s irq-disable overhead.
227 */
228 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
229#endif
230}
231
81819f0f
CL
232/********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
235
81819f0f
CL
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
81819f0f 238 return s->node[node];
81819f0f
CL
239}
240
6446faa2 241/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
242static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244{
245 void *base;
246
a973e9dd 247 if (!object)
02cbc874
CL
248 return 1;
249
a973e9dd 250 base = page_address(page);
39b26464 251 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257}
258
7656c72b
CL
259static inline void *get_freepointer(struct kmem_cache *s, void *object)
260{
261 return *(void **)(object + s->offset);
262}
263
0ad9500e
ED
264static void prefetch_freepointer(const struct kmem_cache *s, void *object)
265{
266 prefetch(object + s->offset);
267}
268
1393d9a1
CL
269static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
270{
271 void *p;
272
273#ifdef CONFIG_DEBUG_PAGEALLOC
274 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
275#else
276 p = get_freepointer(s, object);
277#endif
278 return p;
279}
280
7656c72b
CL
281static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
282{
283 *(void **)(object + s->offset) = fp;
284}
285
286/* Loop over all objects in a slab */
224a88be
CL
287#define for_each_object(__p, __s, __addr, __objects) \
288 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
289 __p += (__s)->size)
290
7656c72b
CL
291/* Determine object index from a given position */
292static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
293{
294 return (p - addr) / s->size;
295}
296
d71f606f
MK
297static inline size_t slab_ksize(const struct kmem_cache *s)
298{
299#ifdef CONFIG_SLUB_DEBUG
300 /*
301 * Debugging requires use of the padding between object
302 * and whatever may come after it.
303 */
304 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 305 return s->object_size;
d71f606f
MK
306
307#endif
308 /*
309 * If we have the need to store the freelist pointer
310 * back there or track user information then we can
311 * only use the space before that information.
312 */
313 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
314 return s->inuse;
315 /*
316 * Else we can use all the padding etc for the allocation
317 */
318 return s->size;
319}
320
ab9a0f19
LJ
321static inline int order_objects(int order, unsigned long size, int reserved)
322{
323 return ((PAGE_SIZE << order) - reserved) / size;
324}
325
834f3d11 326static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 327 unsigned long size, int reserved)
834f3d11
CL
328{
329 struct kmem_cache_order_objects x = {
ab9a0f19 330 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
331 };
332
333 return x;
334}
335
336static inline int oo_order(struct kmem_cache_order_objects x)
337{
210b5c06 338 return x.x >> OO_SHIFT;
834f3d11
CL
339}
340
341static inline int oo_objects(struct kmem_cache_order_objects x)
342{
210b5c06 343 return x.x & OO_MASK;
834f3d11
CL
344}
345
881db7fb
CL
346/*
347 * Per slab locking using the pagelock
348 */
349static __always_inline void slab_lock(struct page *page)
350{
351 bit_spin_lock(PG_locked, &page->flags);
352}
353
354static __always_inline void slab_unlock(struct page *page)
355{
356 __bit_spin_unlock(PG_locked, &page->flags);
357}
358
a0320865
DH
359static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360{
361 struct page tmp;
362 tmp.counters = counters_new;
363 /*
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_count. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_count, so
367 * be careful and only assign to the fields we need.
368 */
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
372}
373
1d07171c
CL
374/* Interrupts must be disabled (for the fallback code to work right) */
375static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379{
380 VM_BUG_ON(!irqs_disabled());
2565409f
HC
381#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 383 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 384 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return 1;
388 } else
389#endif
390 {
391 slab_lock(page);
d0e0ac97
CG
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
1d07171c 394 page->freelist = freelist_new;
a0320865 395 set_page_slub_counters(page, counters_new);
1d07171c
CL
396 slab_unlock(page);
397 return 1;
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
407#endif
408
409 return 0;
410}
411
b789ef51
CL
412static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416{
2565409f
HC
417#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 419 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 420 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return 1;
424 } else
425#endif
426 {
1d07171c
CL
427 unsigned long flags;
428
429 local_irq_save(flags);
881db7fb 430 slab_lock(page);
d0e0ac97
CG
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
b789ef51 433 page->freelist = freelist_new;
a0320865 434 set_page_slub_counters(page, counters_new);
881db7fb 435 slab_unlock(page);
1d07171c 436 local_irq_restore(flags);
b789ef51
CL
437 return 1;
438 }
881db7fb 439 slab_unlock(page);
1d07171c 440 local_irq_restore(flags);
b789ef51
CL
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
448#endif
449
450 return 0;
451}
452
41ecc55b 453#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
454/*
455 * Determine a map of object in use on a page.
456 *
881db7fb 457 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
458 * not vanish from under us.
459 */
460static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461{
462 void *p;
463 void *addr = page_address(page);
464
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
467}
468
41ecc55b
CL
469/*
470 * Debug settings:
471 */
f0630fff
CL
472#ifdef CONFIG_SLUB_DEBUG_ON
473static int slub_debug = DEBUG_DEFAULT_FLAGS;
474#else
41ecc55b 475static int slub_debug;
f0630fff 476#endif
41ecc55b
CL
477
478static char *slub_debug_slabs;
fa5ec8a1 479static int disable_higher_order_debug;
41ecc55b 480
81819f0f
CL
481/*
482 * Object debugging
483 */
484static void print_section(char *text, u8 *addr, unsigned int length)
485{
ffc79d28
SAS
486 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
487 length, 1);
81819f0f
CL
488}
489
81819f0f
CL
490static struct track *get_track(struct kmem_cache *s, void *object,
491 enum track_item alloc)
492{
493 struct track *p;
494
495 if (s->offset)
496 p = object + s->offset + sizeof(void *);
497 else
498 p = object + s->inuse;
499
500 return p + alloc;
501}
502
503static void set_track(struct kmem_cache *s, void *object,
ce71e27c 504 enum track_item alloc, unsigned long addr)
81819f0f 505{
1a00df4a 506 struct track *p = get_track(s, object, alloc);
81819f0f 507
81819f0f 508 if (addr) {
d6543e39
BG
509#ifdef CONFIG_STACKTRACE
510 struct stack_trace trace;
511 int i;
512
513 trace.nr_entries = 0;
514 trace.max_entries = TRACK_ADDRS_COUNT;
515 trace.entries = p->addrs;
516 trace.skip = 3;
517 save_stack_trace(&trace);
518
519 /* See rant in lockdep.c */
520 if (trace.nr_entries != 0 &&
521 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
522 trace.nr_entries--;
523
524 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
525 p->addrs[i] = 0;
526#endif
81819f0f
CL
527 p->addr = addr;
528 p->cpu = smp_processor_id();
88e4ccf2 529 p->pid = current->pid;
81819f0f
CL
530 p->when = jiffies;
531 } else
532 memset(p, 0, sizeof(struct track));
533}
534
81819f0f
CL
535static void init_tracking(struct kmem_cache *s, void *object)
536{
24922684
CL
537 if (!(s->flags & SLAB_STORE_USER))
538 return;
539
ce71e27c
EGM
540 set_track(s, object, TRACK_FREE, 0UL);
541 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
542}
543
544static void print_track(const char *s, struct track *t)
545{
546 if (!t->addr)
547 return;
548
f9f58285
FF
549 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
550 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
551#ifdef CONFIG_STACKTRACE
552 {
553 int i;
554 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
555 if (t->addrs[i])
f9f58285 556 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
557 else
558 break;
559 }
560#endif
24922684
CL
561}
562
563static void print_tracking(struct kmem_cache *s, void *object)
564{
565 if (!(s->flags & SLAB_STORE_USER))
566 return;
567
568 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
569 print_track("Freed", get_track(s, object, TRACK_FREE));
570}
571
572static void print_page_info(struct page *page)
573{
f9f58285 574 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 575 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
576
577}
578
579static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580{
ecc42fbe 581 struct va_format vaf;
24922684 582 va_list args;
24922684
CL
583
584 va_start(args, fmt);
ecc42fbe
FF
585 vaf.fmt = fmt;
586 vaf.va = &args;
f9f58285 587 pr_err("=============================================================================\n");
ecc42fbe 588 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 589 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 590
373d4d09 591 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 592 va_end(args);
81819f0f
CL
593}
594
24922684
CL
595static void slab_fix(struct kmem_cache *s, char *fmt, ...)
596{
ecc42fbe 597 struct va_format vaf;
24922684 598 va_list args;
24922684
CL
599
600 va_start(args, fmt);
ecc42fbe
FF
601 vaf.fmt = fmt;
602 vaf.va = &args;
603 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 604 va_end(args);
24922684
CL
605}
606
607static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
608{
609 unsigned int off; /* Offset of last byte */
a973e9dd 610 u8 *addr = page_address(page);
24922684
CL
611
612 print_tracking(s, p);
613
614 print_page_info(page);
615
f9f58285
FF
616 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 p, p - addr, get_freepointer(s, p));
24922684
CL
618
619 if (p > addr + 16)
ffc79d28 620 print_section("Bytes b4 ", p - 16, 16);
81819f0f 621
3b0efdfa 622 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 623 PAGE_SIZE));
81819f0f 624 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
625 print_section("Redzone ", p + s->object_size,
626 s->inuse - s->object_size);
81819f0f 627
81819f0f
CL
628 if (s->offset)
629 off = s->offset + sizeof(void *);
630 else
631 off = s->inuse;
632
24922684 633 if (s->flags & SLAB_STORE_USER)
81819f0f 634 off += 2 * sizeof(struct track);
81819f0f
CL
635
636 if (off != s->size)
637 /* Beginning of the filler is the free pointer */
ffc79d28 638 print_section("Padding ", p + off, s->size - off);
24922684
CL
639
640 dump_stack();
81819f0f
CL
641}
642
643static void object_err(struct kmem_cache *s, struct page *page,
644 u8 *object, char *reason)
645{
3dc50637 646 slab_bug(s, "%s", reason);
24922684 647 print_trailer(s, page, object);
81819f0f
CL
648}
649
d0e0ac97
CG
650static void slab_err(struct kmem_cache *s, struct page *page,
651 const char *fmt, ...)
81819f0f
CL
652{
653 va_list args;
654 char buf[100];
655
24922684
CL
656 va_start(args, fmt);
657 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 658 va_end(args);
3dc50637 659 slab_bug(s, "%s", buf);
24922684 660 print_page_info(page);
81819f0f
CL
661 dump_stack();
662}
663
f7cb1933 664static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
665{
666 u8 *p = object;
667
668 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
669 memset(p, POISON_FREE, s->object_size - 1);
670 p[s->object_size - 1] = POISON_END;
81819f0f
CL
671 }
672
673 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 674 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
675}
676
24922684
CL
677static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
678 void *from, void *to)
679{
680 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
681 memset(from, data, to - from);
682}
683
684static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
685 u8 *object, char *what,
06428780 686 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
687{
688 u8 *fault;
689 u8 *end;
690
79824820 691 fault = memchr_inv(start, value, bytes);
24922684
CL
692 if (!fault)
693 return 1;
694
695 end = start + bytes;
696 while (end > fault && end[-1] == value)
697 end--;
698
699 slab_bug(s, "%s overwritten", what);
f9f58285 700 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
701 fault, end - 1, fault[0], value);
702 print_trailer(s, page, object);
703
704 restore_bytes(s, what, value, fault, end);
705 return 0;
81819f0f
CL
706}
707
81819f0f
CL
708/*
709 * Object layout:
710 *
711 * object address
712 * Bytes of the object to be managed.
713 * If the freepointer may overlay the object then the free
714 * pointer is the first word of the object.
672bba3a 715 *
81819f0f
CL
716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
717 * 0xa5 (POISON_END)
718 *
3b0efdfa 719 * object + s->object_size
81819f0f 720 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 721 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 722 * object_size == inuse.
672bba3a 723 *
81819f0f
CL
724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725 * 0xcc (RED_ACTIVE) for objects in use.
726 *
727 * object + s->inuse
672bba3a
CL
728 * Meta data starts here.
729 *
81819f0f
CL
730 * A. Free pointer (if we cannot overwrite object on free)
731 * B. Tracking data for SLAB_STORE_USER
672bba3a 732 * C. Padding to reach required alignment boundary or at mininum
6446faa2 733 * one word if debugging is on to be able to detect writes
672bba3a
CL
734 * before the word boundary.
735 *
736 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
737 *
738 * object + s->size
672bba3a 739 * Nothing is used beyond s->size.
81819f0f 740 *
3b0efdfa 741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 742 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
743 * may be used with merged slabcaches.
744 */
745
81819f0f
CL
746static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747{
748 unsigned long off = s->inuse; /* The end of info */
749
750 if (s->offset)
751 /* Freepointer is placed after the object. */
752 off += sizeof(void *);
753
754 if (s->flags & SLAB_STORE_USER)
755 /* We also have user information there */
756 off += 2 * sizeof(struct track);
757
758 if (s->size == off)
759 return 1;
760
24922684
CL
761 return check_bytes_and_report(s, page, p, "Object padding",
762 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
763}
764
39b26464 765/* Check the pad bytes at the end of a slab page */
81819f0f
CL
766static int slab_pad_check(struct kmem_cache *s, struct page *page)
767{
24922684
CL
768 u8 *start;
769 u8 *fault;
770 u8 *end;
771 int length;
772 int remainder;
81819f0f
CL
773
774 if (!(s->flags & SLAB_POISON))
775 return 1;
776
a973e9dd 777 start = page_address(page);
ab9a0f19 778 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
779 end = start + length;
780 remainder = length % s->size;
81819f0f
CL
781 if (!remainder)
782 return 1;
783
79824820 784 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
785 if (!fault)
786 return 1;
787 while (end > fault && end[-1] == POISON_INUSE)
788 end--;
789
790 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 791 print_section("Padding ", end - remainder, remainder);
24922684 792
8a3d271d 793 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 794 return 0;
81819f0f
CL
795}
796
797static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 798 void *object, u8 val)
81819f0f
CL
799{
800 u8 *p = object;
3b0efdfa 801 u8 *endobject = object + s->object_size;
81819f0f
CL
802
803 if (s->flags & SLAB_RED_ZONE) {
24922684 804 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 805 endobject, val, s->inuse - s->object_size))
81819f0f 806 return 0;
81819f0f 807 } else {
3b0efdfa 808 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 809 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
810 endobject, POISON_INUSE,
811 s->inuse - s->object_size);
3adbefee 812 }
81819f0f
CL
813 }
814
815 if (s->flags & SLAB_POISON) {
f7cb1933 816 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 817 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 818 POISON_FREE, s->object_size - 1) ||
24922684 819 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 820 p + s->object_size - 1, POISON_END, 1)))
81819f0f 821 return 0;
81819f0f
CL
822 /*
823 * check_pad_bytes cleans up on its own.
824 */
825 check_pad_bytes(s, page, p);
826 }
827
f7cb1933 828 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
829 /*
830 * Object and freepointer overlap. Cannot check
831 * freepointer while object is allocated.
832 */
833 return 1;
834
835 /* Check free pointer validity */
836 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
837 object_err(s, page, p, "Freepointer corrupt");
838 /*
9f6c708e 839 * No choice but to zap it and thus lose the remainder
81819f0f 840 * of the free objects in this slab. May cause
672bba3a 841 * another error because the object count is now wrong.
81819f0f 842 */
a973e9dd 843 set_freepointer(s, p, NULL);
81819f0f
CL
844 return 0;
845 }
846 return 1;
847}
848
849static int check_slab(struct kmem_cache *s, struct page *page)
850{
39b26464
CL
851 int maxobj;
852
81819f0f
CL
853 VM_BUG_ON(!irqs_disabled());
854
855 if (!PageSlab(page)) {
24922684 856 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
857 return 0;
858 }
39b26464 859
ab9a0f19 860 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
861 if (page->objects > maxobj) {
862 slab_err(s, page, "objects %u > max %u",
863 s->name, page->objects, maxobj);
864 return 0;
865 }
866 if (page->inuse > page->objects) {
24922684 867 slab_err(s, page, "inuse %u > max %u",
39b26464 868 s->name, page->inuse, page->objects);
81819f0f
CL
869 return 0;
870 }
871 /* Slab_pad_check fixes things up after itself */
872 slab_pad_check(s, page);
873 return 1;
874}
875
876/*
672bba3a
CL
877 * Determine if a certain object on a page is on the freelist. Must hold the
878 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
879 */
880static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
881{
882 int nr = 0;
881db7fb 883 void *fp;
81819f0f 884 void *object = NULL;
224a88be 885 unsigned long max_objects;
81819f0f 886
881db7fb 887 fp = page->freelist;
39b26464 888 while (fp && nr <= page->objects) {
81819f0f
CL
889 if (fp == search)
890 return 1;
891 if (!check_valid_pointer(s, page, fp)) {
892 if (object) {
893 object_err(s, page, object,
894 "Freechain corrupt");
a973e9dd 895 set_freepointer(s, object, NULL);
81819f0f 896 } else {
24922684 897 slab_err(s, page, "Freepointer corrupt");
a973e9dd 898 page->freelist = NULL;
39b26464 899 page->inuse = page->objects;
24922684 900 slab_fix(s, "Freelist cleared");
81819f0f
CL
901 return 0;
902 }
903 break;
904 }
905 object = fp;
906 fp = get_freepointer(s, object);
907 nr++;
908 }
909
ab9a0f19 910 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
911 if (max_objects > MAX_OBJS_PER_PAGE)
912 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
913
914 if (page->objects != max_objects) {
915 slab_err(s, page, "Wrong number of objects. Found %d but "
916 "should be %d", page->objects, max_objects);
917 page->objects = max_objects;
918 slab_fix(s, "Number of objects adjusted.");
919 }
39b26464 920 if (page->inuse != page->objects - nr) {
70d71228 921 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
922 "counted were %d", page->inuse, page->objects - nr);
923 page->inuse = page->objects - nr;
24922684 924 slab_fix(s, "Object count adjusted.");
81819f0f
CL
925 }
926 return search == NULL;
927}
928
0121c619
CL
929static void trace(struct kmem_cache *s, struct page *page, void *object,
930 int alloc)
3ec09742
CL
931{
932 if (s->flags & SLAB_TRACE) {
f9f58285 933 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
934 s->name,
935 alloc ? "alloc" : "free",
936 object, page->inuse,
937 page->freelist);
938
939 if (!alloc)
d0e0ac97
CG
940 print_section("Object ", (void *)object,
941 s->object_size);
3ec09742
CL
942
943 dump_stack();
944 }
945}
946
c016b0bd
CL
947/*
948 * Hooks for other subsystems that check memory allocations. In a typical
949 * production configuration these hooks all should produce no code at all.
950 */
d56791b3
RB
951static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
952{
953 kmemleak_alloc(ptr, size, 1, flags);
954}
955
956static inline void kfree_hook(const void *x)
957{
958 kmemleak_free(x);
959}
960
c016b0bd
CL
961static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
962{
c1d50836 963 flags &= gfp_allowed_mask;
c016b0bd
CL
964 lockdep_trace_alloc(flags);
965 might_sleep_if(flags & __GFP_WAIT);
966
3b0efdfa 967 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
968}
969
d0e0ac97
CG
970static inline void slab_post_alloc_hook(struct kmem_cache *s,
971 gfp_t flags, void *object)
c016b0bd 972{
c1d50836 973 flags &= gfp_allowed_mask;
b3d41885 974 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 975 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
976}
977
978static inline void slab_free_hook(struct kmem_cache *s, void *x)
979{
980 kmemleak_free_recursive(x, s->flags);
c016b0bd 981
d3f661d6 982 /*
d1756174 983 * Trouble is that we may no longer disable interrupts in the fast path
d3f661d6
CL
984 * So in order to make the debug calls that expect irqs to be
985 * disabled we need to disable interrupts temporarily.
986 */
987#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 {
989 unsigned long flags;
990
991 local_irq_save(flags);
3b0efdfa
CL
992 kmemcheck_slab_free(s, x, s->object_size);
993 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
994 local_irq_restore(flags);
995 }
996#endif
f9b615de 997 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 998 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
999}
1000
643b1138 1001/*
672bba3a 1002 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1003 */
5cc6eee8
CL
1004static void add_full(struct kmem_cache *s,
1005 struct kmem_cache_node *n, struct page *page)
643b1138 1006{
5cc6eee8
CL
1007 if (!(s->flags & SLAB_STORE_USER))
1008 return;
1009
255d0884 1010 lockdep_assert_held(&n->list_lock);
643b1138 1011 list_add(&page->lru, &n->full);
643b1138
CL
1012}
1013
c65c1877 1014static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1015{
643b1138
CL
1016 if (!(s->flags & SLAB_STORE_USER))
1017 return;
1018
255d0884 1019 lockdep_assert_held(&n->list_lock);
643b1138 1020 list_del(&page->lru);
643b1138
CL
1021}
1022
0f389ec6
CL
1023/* Tracking of the number of slabs for debugging purposes */
1024static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1025{
1026 struct kmem_cache_node *n = get_node(s, node);
1027
1028 return atomic_long_read(&n->nr_slabs);
1029}
1030
26c02cf0
AB
1031static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1032{
1033 return atomic_long_read(&n->nr_slabs);
1034}
1035
205ab99d 1036static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1037{
1038 struct kmem_cache_node *n = get_node(s, node);
1039
1040 /*
1041 * May be called early in order to allocate a slab for the
1042 * kmem_cache_node structure. Solve the chicken-egg
1043 * dilemma by deferring the increment of the count during
1044 * bootstrap (see early_kmem_cache_node_alloc).
1045 */
338b2642 1046 if (likely(n)) {
0f389ec6 1047 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1048 atomic_long_add(objects, &n->total_objects);
1049 }
0f389ec6 1050}
205ab99d 1051static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1052{
1053 struct kmem_cache_node *n = get_node(s, node);
1054
1055 atomic_long_dec(&n->nr_slabs);
205ab99d 1056 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1057}
1058
1059/* Object debug checks for alloc/free paths */
3ec09742
CL
1060static void setup_object_debug(struct kmem_cache *s, struct page *page,
1061 void *object)
1062{
1063 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1064 return;
1065
f7cb1933 1066 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1067 init_tracking(s, object);
1068}
1069
d0e0ac97
CG
1070static noinline int alloc_debug_processing(struct kmem_cache *s,
1071 struct page *page,
ce71e27c 1072 void *object, unsigned long addr)
81819f0f
CL
1073{
1074 if (!check_slab(s, page))
1075 goto bad;
1076
81819f0f
CL
1077 if (!check_valid_pointer(s, page, object)) {
1078 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1079 goto bad;
81819f0f
CL
1080 }
1081
f7cb1933 1082 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1083 goto bad;
81819f0f 1084
3ec09742
CL
1085 /* Success perform special debug activities for allocs */
1086 if (s->flags & SLAB_STORE_USER)
1087 set_track(s, object, TRACK_ALLOC, addr);
1088 trace(s, page, object, 1);
f7cb1933 1089 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1090 return 1;
3ec09742 1091
81819f0f
CL
1092bad:
1093 if (PageSlab(page)) {
1094 /*
1095 * If this is a slab page then lets do the best we can
1096 * to avoid issues in the future. Marking all objects
672bba3a 1097 * as used avoids touching the remaining objects.
81819f0f 1098 */
24922684 1099 slab_fix(s, "Marking all objects used");
39b26464 1100 page->inuse = page->objects;
a973e9dd 1101 page->freelist = NULL;
81819f0f
CL
1102 }
1103 return 0;
1104}
1105
19c7ff9e
CL
1106static noinline struct kmem_cache_node *free_debug_processing(
1107 struct kmem_cache *s, struct page *page, void *object,
1108 unsigned long addr, unsigned long *flags)
81819f0f 1109{
19c7ff9e 1110 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1111
19c7ff9e 1112 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1113 slab_lock(page);
1114
81819f0f
CL
1115 if (!check_slab(s, page))
1116 goto fail;
1117
1118 if (!check_valid_pointer(s, page, object)) {
70d71228 1119 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1120 goto fail;
1121 }
1122
1123 if (on_freelist(s, page, object)) {
24922684 1124 object_err(s, page, object, "Object already free");
81819f0f
CL
1125 goto fail;
1126 }
1127
f7cb1933 1128 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1129 goto out;
81819f0f 1130
1b4f59e3 1131 if (unlikely(s != page->slab_cache)) {
3adbefee 1132 if (!PageSlab(page)) {
70d71228
CL
1133 slab_err(s, page, "Attempt to free object(0x%p) "
1134 "outside of slab", object);
1b4f59e3 1135 } else if (!page->slab_cache) {
f9f58285
FF
1136 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1137 object);
70d71228 1138 dump_stack();
06428780 1139 } else
24922684
CL
1140 object_err(s, page, object,
1141 "page slab pointer corrupt.");
81819f0f
CL
1142 goto fail;
1143 }
3ec09742 1144
3ec09742
CL
1145 if (s->flags & SLAB_STORE_USER)
1146 set_track(s, object, TRACK_FREE, addr);
1147 trace(s, page, object, 0);
f7cb1933 1148 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1149out:
881db7fb 1150 slab_unlock(page);
19c7ff9e
CL
1151 /*
1152 * Keep node_lock to preserve integrity
1153 * until the object is actually freed
1154 */
1155 return n;
3ec09742 1156
81819f0f 1157fail:
19c7ff9e
CL
1158 slab_unlock(page);
1159 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1160 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1161 return NULL;
81819f0f
CL
1162}
1163
41ecc55b
CL
1164static int __init setup_slub_debug(char *str)
1165{
f0630fff
CL
1166 slub_debug = DEBUG_DEFAULT_FLAGS;
1167 if (*str++ != '=' || !*str)
1168 /*
1169 * No options specified. Switch on full debugging.
1170 */
1171 goto out;
1172
1173 if (*str == ',')
1174 /*
1175 * No options but restriction on slabs. This means full
1176 * debugging for slabs matching a pattern.
1177 */
1178 goto check_slabs;
1179
fa5ec8a1
DR
1180 if (tolower(*str) == 'o') {
1181 /*
1182 * Avoid enabling debugging on caches if its minimum order
1183 * would increase as a result.
1184 */
1185 disable_higher_order_debug = 1;
1186 goto out;
1187 }
1188
f0630fff
CL
1189 slub_debug = 0;
1190 if (*str == '-')
1191 /*
1192 * Switch off all debugging measures.
1193 */
1194 goto out;
1195
1196 /*
1197 * Determine which debug features should be switched on
1198 */
06428780 1199 for (; *str && *str != ','; str++) {
f0630fff
CL
1200 switch (tolower(*str)) {
1201 case 'f':
1202 slub_debug |= SLAB_DEBUG_FREE;
1203 break;
1204 case 'z':
1205 slub_debug |= SLAB_RED_ZONE;
1206 break;
1207 case 'p':
1208 slub_debug |= SLAB_POISON;
1209 break;
1210 case 'u':
1211 slub_debug |= SLAB_STORE_USER;
1212 break;
1213 case 't':
1214 slub_debug |= SLAB_TRACE;
1215 break;
4c13dd3b
DM
1216 case 'a':
1217 slub_debug |= SLAB_FAILSLAB;
1218 break;
f0630fff 1219 default:
f9f58285
FF
1220 pr_err("slub_debug option '%c' unknown. skipped\n",
1221 *str);
f0630fff 1222 }
41ecc55b
CL
1223 }
1224
f0630fff 1225check_slabs:
41ecc55b
CL
1226 if (*str == ',')
1227 slub_debug_slabs = str + 1;
f0630fff 1228out:
41ecc55b
CL
1229 return 1;
1230}
1231
1232__setup("slub_debug", setup_slub_debug);
1233
3b0efdfa 1234static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1235 unsigned long flags, const char *name,
51cc5068 1236 void (*ctor)(void *))
41ecc55b
CL
1237{
1238 /*
e153362a 1239 * Enable debugging if selected on the kernel commandline.
41ecc55b 1240 */
c6f58d9b
CL
1241 if (slub_debug && (!slub_debug_slabs || (name &&
1242 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1243 flags |= slub_debug;
ba0268a8
CL
1244
1245 return flags;
41ecc55b
CL
1246}
1247#else
3ec09742
CL
1248static inline void setup_object_debug(struct kmem_cache *s,
1249 struct page *page, void *object) {}
41ecc55b 1250
3ec09742 1251static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1252 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1253
19c7ff9e
CL
1254static inline struct kmem_cache_node *free_debug_processing(
1255 struct kmem_cache *s, struct page *page, void *object,
1256 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1257
41ecc55b
CL
1258static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1259 { return 1; }
1260static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1261 void *object, u8 val) { return 1; }
5cc6eee8
CL
1262static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1263 struct page *page) {}
c65c1877
PZ
1264static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1265 struct page *page) {}
3b0efdfa 1266static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1267 unsigned long flags, const char *name,
51cc5068 1268 void (*ctor)(void *))
ba0268a8
CL
1269{
1270 return flags;
1271}
41ecc55b 1272#define slub_debug 0
0f389ec6 1273
fdaa45e9
IM
1274#define disable_higher_order_debug 0
1275
0f389ec6
CL
1276static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1277 { return 0; }
26c02cf0
AB
1278static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1279 { return 0; }
205ab99d
CL
1280static inline void inc_slabs_node(struct kmem_cache *s, int node,
1281 int objects) {}
1282static inline void dec_slabs_node(struct kmem_cache *s, int node,
1283 int objects) {}
7d550c56 1284
d56791b3
RB
1285static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1286{
1287 kmemleak_alloc(ptr, size, 1, flags);
1288}
1289
1290static inline void kfree_hook(const void *x)
1291{
1292 kmemleak_free(x);
1293}
1294
7d550c56
CL
1295static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1296 { return 0; }
1297
1298static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
d56791b3
RB
1299 void *object)
1300{
1301 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1302 flags & gfp_allowed_mask);
1303}
7d550c56 1304
d56791b3
RB
1305static inline void slab_free_hook(struct kmem_cache *s, void *x)
1306{
1307 kmemleak_free_recursive(x, s->flags);
1308}
7d550c56 1309
ab4d5ed5 1310#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1311
81819f0f
CL
1312/*
1313 * Slab allocation and freeing
1314 */
5dfb4175
VD
1315static inline struct page *alloc_slab_page(struct kmem_cache *s,
1316 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1317{
5dfb4175 1318 struct page *page;
65c3376a
CL
1319 int order = oo_order(oo);
1320
b1eeab67
VN
1321 flags |= __GFP_NOTRACK;
1322
5dfb4175
VD
1323 if (memcg_charge_slab(s, flags, order))
1324 return NULL;
1325
2154a336 1326 if (node == NUMA_NO_NODE)
5dfb4175 1327 page = alloc_pages(flags, order);
65c3376a 1328 else
5dfb4175
VD
1329 page = alloc_pages_exact_node(node, flags, order);
1330
1331 if (!page)
1332 memcg_uncharge_slab(s, order);
1333
1334 return page;
65c3376a
CL
1335}
1336
81819f0f
CL
1337static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1338{
06428780 1339 struct page *page;
834f3d11 1340 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1341 gfp_t alloc_gfp;
81819f0f 1342
7e0528da
CL
1343 flags &= gfp_allowed_mask;
1344
1345 if (flags & __GFP_WAIT)
1346 local_irq_enable();
1347
b7a49f0d 1348 flags |= s->allocflags;
e12ba74d 1349
ba52270d
PE
1350 /*
1351 * Let the initial higher-order allocation fail under memory pressure
1352 * so we fall-back to the minimum order allocation.
1353 */
1354 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1355
5dfb4175 1356 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1357 if (unlikely(!page)) {
1358 oo = s->min;
80c3a998 1359 alloc_gfp = flags;
65c3376a
CL
1360 /*
1361 * Allocation may have failed due to fragmentation.
1362 * Try a lower order alloc if possible
1363 */
5dfb4175 1364 page = alloc_slab_page(s, alloc_gfp, node, oo);
81819f0f 1365
7e0528da
CL
1366 if (page)
1367 stat(s, ORDER_FALLBACK);
65c3376a 1368 }
5a896d9e 1369
737b719e 1370 if (kmemcheck_enabled && page
5086c389 1371 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1372 int pages = 1 << oo_order(oo);
1373
80c3a998 1374 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1375
1376 /*
1377 * Objects from caches that have a constructor don't get
1378 * cleared when they're allocated, so we need to do it here.
1379 */
1380 if (s->ctor)
1381 kmemcheck_mark_uninitialized_pages(page, pages);
1382 else
1383 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1384 }
1385
737b719e
DR
1386 if (flags & __GFP_WAIT)
1387 local_irq_disable();
1388 if (!page)
1389 return NULL;
1390
834f3d11 1391 page->objects = oo_objects(oo);
81819f0f
CL
1392 mod_zone_page_state(page_zone(page),
1393 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1394 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1395 1 << oo_order(oo));
81819f0f
CL
1396
1397 return page;
1398}
1399
1400static void setup_object(struct kmem_cache *s, struct page *page,
1401 void *object)
1402{
3ec09742 1403 setup_object_debug(s, page, object);
4f104934 1404 if (unlikely(s->ctor))
51cc5068 1405 s->ctor(object);
81819f0f
CL
1406}
1407
1408static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1409{
1410 struct page *page;
81819f0f 1411 void *start;
81819f0f
CL
1412 void *last;
1413 void *p;
1f458cbf 1414 int order;
81819f0f 1415
6cb06229 1416 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1417
6cb06229
CL
1418 page = allocate_slab(s,
1419 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1420 if (!page)
1421 goto out;
1422
1f458cbf 1423 order = compound_order(page);
205ab99d 1424 inc_slabs_node(s, page_to_nid(page), page->objects);
1f458cbf 1425 memcg_bind_pages(s, order);
1b4f59e3 1426 page->slab_cache = s;
c03f94cc 1427 __SetPageSlab(page);
072bb0aa
MG
1428 if (page->pfmemalloc)
1429 SetPageSlabPfmemalloc(page);
81819f0f
CL
1430
1431 start = page_address(page);
81819f0f
CL
1432
1433 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1434 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f
CL
1435
1436 last = start;
224a88be 1437 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1438 setup_object(s, page, last);
1439 set_freepointer(s, last, p);
1440 last = p;
1441 }
1442 setup_object(s, page, last);
a973e9dd 1443 set_freepointer(s, last, NULL);
81819f0f
CL
1444
1445 page->freelist = start;
e6e82ea1 1446 page->inuse = page->objects;
8cb0a506 1447 page->frozen = 1;
81819f0f 1448out:
81819f0f
CL
1449 return page;
1450}
1451
1452static void __free_slab(struct kmem_cache *s, struct page *page)
1453{
834f3d11
CL
1454 int order = compound_order(page);
1455 int pages = 1 << order;
81819f0f 1456
af537b0a 1457 if (kmem_cache_debug(s)) {
81819f0f
CL
1458 void *p;
1459
1460 slab_pad_check(s, page);
224a88be
CL
1461 for_each_object(p, s, page_address(page),
1462 page->objects)
f7cb1933 1463 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1464 }
1465
b1eeab67 1466 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1467
81819f0f
CL
1468 mod_zone_page_state(page_zone(page),
1469 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1470 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1471 -pages);
81819f0f 1472
072bb0aa 1473 __ClearPageSlabPfmemalloc(page);
49bd5221 1474 __ClearPageSlab(page);
1f458cbf
GC
1475
1476 memcg_release_pages(s, order);
22b751c3 1477 page_mapcount_reset(page);
1eb5ac64
NP
1478 if (current->reclaim_state)
1479 current->reclaim_state->reclaimed_slab += pages;
5dfb4175
VD
1480 __free_pages(page, order);
1481 memcg_uncharge_slab(s, order);
81819f0f
CL
1482}
1483
da9a638c
LJ
1484#define need_reserve_slab_rcu \
1485 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1486
81819f0f
CL
1487static void rcu_free_slab(struct rcu_head *h)
1488{
1489 struct page *page;
1490
da9a638c
LJ
1491 if (need_reserve_slab_rcu)
1492 page = virt_to_head_page(h);
1493 else
1494 page = container_of((struct list_head *)h, struct page, lru);
1495
1b4f59e3 1496 __free_slab(page->slab_cache, page);
81819f0f
CL
1497}
1498
1499static void free_slab(struct kmem_cache *s, struct page *page)
1500{
1501 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1502 struct rcu_head *head;
1503
1504 if (need_reserve_slab_rcu) {
1505 int order = compound_order(page);
1506 int offset = (PAGE_SIZE << order) - s->reserved;
1507
1508 VM_BUG_ON(s->reserved != sizeof(*head));
1509 head = page_address(page) + offset;
1510 } else {
1511 /*
1512 * RCU free overloads the RCU head over the LRU
1513 */
1514 head = (void *)&page->lru;
1515 }
81819f0f
CL
1516
1517 call_rcu(head, rcu_free_slab);
1518 } else
1519 __free_slab(s, page);
1520}
1521
1522static void discard_slab(struct kmem_cache *s, struct page *page)
1523{
205ab99d 1524 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1525 free_slab(s, page);
1526}
1527
1528/*
5cc6eee8 1529 * Management of partially allocated slabs.
81819f0f 1530 */
1e4dd946
SR
1531static inline void
1532__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1533{
e95eed57 1534 n->nr_partial++;
136333d1 1535 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1536 list_add_tail(&page->lru, &n->partial);
1537 else
1538 list_add(&page->lru, &n->partial);
81819f0f
CL
1539}
1540
1e4dd946
SR
1541static inline void add_partial(struct kmem_cache_node *n,
1542 struct page *page, int tail)
62e346a8 1543{
c65c1877 1544 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1545 __add_partial(n, page, tail);
1546}
c65c1877 1547
1e4dd946
SR
1548static inline void
1549__remove_partial(struct kmem_cache_node *n, struct page *page)
1550{
62e346a8
CL
1551 list_del(&page->lru);
1552 n->nr_partial--;
1553}
1554
1e4dd946
SR
1555static inline void remove_partial(struct kmem_cache_node *n,
1556 struct page *page)
1557{
1558 lockdep_assert_held(&n->list_lock);
1559 __remove_partial(n, page);
1560}
1561
81819f0f 1562/*
7ced3719
CL
1563 * Remove slab from the partial list, freeze it and
1564 * return the pointer to the freelist.
81819f0f 1565 *
497b66f2 1566 * Returns a list of objects or NULL if it fails.
81819f0f 1567 */
497b66f2 1568static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1569 struct kmem_cache_node *n, struct page *page,
633b0764 1570 int mode, int *objects)
81819f0f 1571{
2cfb7455
CL
1572 void *freelist;
1573 unsigned long counters;
1574 struct page new;
1575
c65c1877
PZ
1576 lockdep_assert_held(&n->list_lock);
1577
2cfb7455
CL
1578 /*
1579 * Zap the freelist and set the frozen bit.
1580 * The old freelist is the list of objects for the
1581 * per cpu allocation list.
1582 */
7ced3719
CL
1583 freelist = page->freelist;
1584 counters = page->counters;
1585 new.counters = counters;
633b0764 1586 *objects = new.objects - new.inuse;
23910c50 1587 if (mode) {
7ced3719 1588 new.inuse = page->objects;
23910c50
PE
1589 new.freelist = NULL;
1590 } else {
1591 new.freelist = freelist;
1592 }
2cfb7455 1593
a0132ac0 1594 VM_BUG_ON(new.frozen);
7ced3719 1595 new.frozen = 1;
2cfb7455 1596
7ced3719 1597 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1598 freelist, counters,
02d7633f 1599 new.freelist, new.counters,
7ced3719 1600 "acquire_slab"))
7ced3719 1601 return NULL;
2cfb7455
CL
1602
1603 remove_partial(n, page);
7ced3719 1604 WARN_ON(!freelist);
49e22585 1605 return freelist;
81819f0f
CL
1606}
1607
633b0764 1608static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1609static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1610
81819f0f 1611/*
672bba3a 1612 * Try to allocate a partial slab from a specific node.
81819f0f 1613 */
8ba00bb6
JK
1614static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1615 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1616{
49e22585
CL
1617 struct page *page, *page2;
1618 void *object = NULL;
633b0764
JK
1619 int available = 0;
1620 int objects;
81819f0f
CL
1621
1622 /*
1623 * Racy check. If we mistakenly see no partial slabs then we
1624 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1625 * partial slab and there is none available then get_partials()
1626 * will return NULL.
81819f0f
CL
1627 */
1628 if (!n || !n->nr_partial)
1629 return NULL;
1630
1631 spin_lock(&n->list_lock);
49e22585 1632 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1633 void *t;
49e22585 1634
8ba00bb6
JK
1635 if (!pfmemalloc_match(page, flags))
1636 continue;
1637
633b0764 1638 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1639 if (!t)
1640 break;
1641
633b0764 1642 available += objects;
12d79634 1643 if (!object) {
49e22585 1644 c->page = page;
49e22585 1645 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1646 object = t;
49e22585 1647 } else {
633b0764 1648 put_cpu_partial(s, page, 0);
8028dcea 1649 stat(s, CPU_PARTIAL_NODE);
49e22585 1650 }
345c905d
JK
1651 if (!kmem_cache_has_cpu_partial(s)
1652 || available > s->cpu_partial / 2)
49e22585
CL
1653 break;
1654
497b66f2 1655 }
81819f0f 1656 spin_unlock(&n->list_lock);
497b66f2 1657 return object;
81819f0f
CL
1658}
1659
1660/*
672bba3a 1661 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1662 */
de3ec035 1663static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1664 struct kmem_cache_cpu *c)
81819f0f
CL
1665{
1666#ifdef CONFIG_NUMA
1667 struct zonelist *zonelist;
dd1a239f 1668 struct zoneref *z;
54a6eb5c
MG
1669 struct zone *zone;
1670 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1671 void *object;
cc9a6c87 1672 unsigned int cpuset_mems_cookie;
81819f0f
CL
1673
1674 /*
672bba3a
CL
1675 * The defrag ratio allows a configuration of the tradeoffs between
1676 * inter node defragmentation and node local allocations. A lower
1677 * defrag_ratio increases the tendency to do local allocations
1678 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1679 *
672bba3a
CL
1680 * If the defrag_ratio is set to 0 then kmalloc() always
1681 * returns node local objects. If the ratio is higher then kmalloc()
1682 * may return off node objects because partial slabs are obtained
1683 * from other nodes and filled up.
81819f0f 1684 *
6446faa2 1685 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1686 * defrag_ratio = 1000) then every (well almost) allocation will
1687 * first attempt to defrag slab caches on other nodes. This means
1688 * scanning over all nodes to look for partial slabs which may be
1689 * expensive if we do it every time we are trying to find a slab
1690 * with available objects.
81819f0f 1691 */
9824601e
CL
1692 if (!s->remote_node_defrag_ratio ||
1693 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1694 return NULL;
1695
cc9a6c87 1696 do {
d26914d1 1697 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1698 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1699 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1700 struct kmem_cache_node *n;
1701
1702 n = get_node(s, zone_to_nid(zone));
1703
1704 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1705 n->nr_partial > s->min_partial) {
8ba00bb6 1706 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1707 if (object) {
1708 /*
d26914d1
MG
1709 * Don't check read_mems_allowed_retry()
1710 * here - if mems_allowed was updated in
1711 * parallel, that was a harmless race
1712 * between allocation and the cpuset
1713 * update
cc9a6c87 1714 */
cc9a6c87
MG
1715 return object;
1716 }
c0ff7453 1717 }
81819f0f 1718 }
d26914d1 1719 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1720#endif
1721 return NULL;
1722}
1723
1724/*
1725 * Get a partial page, lock it and return it.
1726 */
497b66f2 1727static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1728 struct kmem_cache_cpu *c)
81819f0f 1729{
497b66f2 1730 void *object;
2154a336 1731 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1732
8ba00bb6 1733 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1734 if (object || node != NUMA_NO_NODE)
1735 return object;
81819f0f 1736
acd19fd1 1737 return get_any_partial(s, flags, c);
81819f0f
CL
1738}
1739
8a5ec0ba
CL
1740#ifdef CONFIG_PREEMPT
1741/*
1742 * Calculate the next globally unique transaction for disambiguiation
1743 * during cmpxchg. The transactions start with the cpu number and are then
1744 * incremented by CONFIG_NR_CPUS.
1745 */
1746#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1747#else
1748/*
1749 * No preemption supported therefore also no need to check for
1750 * different cpus.
1751 */
1752#define TID_STEP 1
1753#endif
1754
1755static inline unsigned long next_tid(unsigned long tid)
1756{
1757 return tid + TID_STEP;
1758}
1759
1760static inline unsigned int tid_to_cpu(unsigned long tid)
1761{
1762 return tid % TID_STEP;
1763}
1764
1765static inline unsigned long tid_to_event(unsigned long tid)
1766{
1767 return tid / TID_STEP;
1768}
1769
1770static inline unsigned int init_tid(int cpu)
1771{
1772 return cpu;
1773}
1774
1775static inline void note_cmpxchg_failure(const char *n,
1776 const struct kmem_cache *s, unsigned long tid)
1777{
1778#ifdef SLUB_DEBUG_CMPXCHG
1779 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1780
f9f58285 1781 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1782
1783#ifdef CONFIG_PREEMPT
1784 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1785 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1786 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1787 else
1788#endif
1789 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1790 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1791 tid_to_event(tid), tid_to_event(actual_tid));
1792 else
f9f58285 1793 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1794 actual_tid, tid, next_tid(tid));
1795#endif
4fdccdfb 1796 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1797}
1798
788e1aad 1799static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1800{
8a5ec0ba
CL
1801 int cpu;
1802
1803 for_each_possible_cpu(cpu)
1804 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1805}
2cfb7455 1806
81819f0f
CL
1807/*
1808 * Remove the cpu slab
1809 */
d0e0ac97
CG
1810static void deactivate_slab(struct kmem_cache *s, struct page *page,
1811 void *freelist)
81819f0f 1812{
2cfb7455 1813 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1814 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1815 int lock = 0;
1816 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1817 void *nextfree;
136333d1 1818 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1819 struct page new;
1820 struct page old;
1821
1822 if (page->freelist) {
84e554e6 1823 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1824 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1825 }
1826
894b8788 1827 /*
2cfb7455
CL
1828 * Stage one: Free all available per cpu objects back
1829 * to the page freelist while it is still frozen. Leave the
1830 * last one.
1831 *
1832 * There is no need to take the list->lock because the page
1833 * is still frozen.
1834 */
1835 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1836 void *prior;
1837 unsigned long counters;
1838
1839 do {
1840 prior = page->freelist;
1841 counters = page->counters;
1842 set_freepointer(s, freelist, prior);
1843 new.counters = counters;
1844 new.inuse--;
a0132ac0 1845 VM_BUG_ON(!new.frozen);
2cfb7455 1846
1d07171c 1847 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1848 prior, counters,
1849 freelist, new.counters,
1850 "drain percpu freelist"));
1851
1852 freelist = nextfree;
1853 }
1854
894b8788 1855 /*
2cfb7455
CL
1856 * Stage two: Ensure that the page is unfrozen while the
1857 * list presence reflects the actual number of objects
1858 * during unfreeze.
1859 *
1860 * We setup the list membership and then perform a cmpxchg
1861 * with the count. If there is a mismatch then the page
1862 * is not unfrozen but the page is on the wrong list.
1863 *
1864 * Then we restart the process which may have to remove
1865 * the page from the list that we just put it on again
1866 * because the number of objects in the slab may have
1867 * changed.
894b8788 1868 */
2cfb7455 1869redo:
894b8788 1870
2cfb7455
CL
1871 old.freelist = page->freelist;
1872 old.counters = page->counters;
a0132ac0 1873 VM_BUG_ON(!old.frozen);
7c2e132c 1874
2cfb7455
CL
1875 /* Determine target state of the slab */
1876 new.counters = old.counters;
1877 if (freelist) {
1878 new.inuse--;
1879 set_freepointer(s, freelist, old.freelist);
1880 new.freelist = freelist;
1881 } else
1882 new.freelist = old.freelist;
1883
1884 new.frozen = 0;
1885
81107188 1886 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1887 m = M_FREE;
1888 else if (new.freelist) {
1889 m = M_PARTIAL;
1890 if (!lock) {
1891 lock = 1;
1892 /*
1893 * Taking the spinlock removes the possiblity
1894 * that acquire_slab() will see a slab page that
1895 * is frozen
1896 */
1897 spin_lock(&n->list_lock);
1898 }
1899 } else {
1900 m = M_FULL;
1901 if (kmem_cache_debug(s) && !lock) {
1902 lock = 1;
1903 /*
1904 * This also ensures that the scanning of full
1905 * slabs from diagnostic functions will not see
1906 * any frozen slabs.
1907 */
1908 spin_lock(&n->list_lock);
1909 }
1910 }
1911
1912 if (l != m) {
1913
1914 if (l == M_PARTIAL)
1915
1916 remove_partial(n, page);
1917
1918 else if (l == M_FULL)
894b8788 1919
c65c1877 1920 remove_full(s, n, page);
2cfb7455
CL
1921
1922 if (m == M_PARTIAL) {
1923
1924 add_partial(n, page, tail);
136333d1 1925 stat(s, tail);
2cfb7455
CL
1926
1927 } else if (m == M_FULL) {
894b8788 1928
2cfb7455
CL
1929 stat(s, DEACTIVATE_FULL);
1930 add_full(s, n, page);
1931
1932 }
1933 }
1934
1935 l = m;
1d07171c 1936 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1937 old.freelist, old.counters,
1938 new.freelist, new.counters,
1939 "unfreezing slab"))
1940 goto redo;
1941
2cfb7455
CL
1942 if (lock)
1943 spin_unlock(&n->list_lock);
1944
1945 if (m == M_FREE) {
1946 stat(s, DEACTIVATE_EMPTY);
1947 discard_slab(s, page);
1948 stat(s, FREE_SLAB);
894b8788 1949 }
81819f0f
CL
1950}
1951
d24ac77f
JK
1952/*
1953 * Unfreeze all the cpu partial slabs.
1954 *
59a09917
CL
1955 * This function must be called with interrupts disabled
1956 * for the cpu using c (or some other guarantee must be there
1957 * to guarantee no concurrent accesses).
d24ac77f 1958 */
59a09917
CL
1959static void unfreeze_partials(struct kmem_cache *s,
1960 struct kmem_cache_cpu *c)
49e22585 1961{
345c905d 1962#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1963 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1964 struct page *page, *discard_page = NULL;
49e22585
CL
1965
1966 while ((page = c->partial)) {
49e22585
CL
1967 struct page new;
1968 struct page old;
1969
1970 c->partial = page->next;
43d77867
JK
1971
1972 n2 = get_node(s, page_to_nid(page));
1973 if (n != n2) {
1974 if (n)
1975 spin_unlock(&n->list_lock);
1976
1977 n = n2;
1978 spin_lock(&n->list_lock);
1979 }
49e22585
CL
1980
1981 do {
1982
1983 old.freelist = page->freelist;
1984 old.counters = page->counters;
a0132ac0 1985 VM_BUG_ON(!old.frozen);
49e22585
CL
1986
1987 new.counters = old.counters;
1988 new.freelist = old.freelist;
1989
1990 new.frozen = 0;
1991
d24ac77f 1992 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1993 old.freelist, old.counters,
1994 new.freelist, new.counters,
1995 "unfreezing slab"));
1996
43d77867 1997 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1998 page->next = discard_page;
1999 discard_page = page;
43d77867
JK
2000 } else {
2001 add_partial(n, page, DEACTIVATE_TO_TAIL);
2002 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2003 }
2004 }
2005
2006 if (n)
2007 spin_unlock(&n->list_lock);
9ada1934
SL
2008
2009 while (discard_page) {
2010 page = discard_page;
2011 discard_page = discard_page->next;
2012
2013 stat(s, DEACTIVATE_EMPTY);
2014 discard_slab(s, page);
2015 stat(s, FREE_SLAB);
2016 }
345c905d 2017#endif
49e22585
CL
2018}
2019
2020/*
2021 * Put a page that was just frozen (in __slab_free) into a partial page
2022 * slot if available. This is done without interrupts disabled and without
2023 * preemption disabled. The cmpxchg is racy and may put the partial page
2024 * onto a random cpus partial slot.
2025 *
2026 * If we did not find a slot then simply move all the partials to the
2027 * per node partial list.
2028 */
633b0764 2029static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2030{
345c905d 2031#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2032 struct page *oldpage;
2033 int pages;
2034 int pobjects;
2035
2036 do {
2037 pages = 0;
2038 pobjects = 0;
2039 oldpage = this_cpu_read(s->cpu_slab->partial);
2040
2041 if (oldpage) {
2042 pobjects = oldpage->pobjects;
2043 pages = oldpage->pages;
2044 if (drain && pobjects > s->cpu_partial) {
2045 unsigned long flags;
2046 /*
2047 * partial array is full. Move the existing
2048 * set to the per node partial list.
2049 */
2050 local_irq_save(flags);
59a09917 2051 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2052 local_irq_restore(flags);
e24fc410 2053 oldpage = NULL;
49e22585
CL
2054 pobjects = 0;
2055 pages = 0;
8028dcea 2056 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2057 }
2058 }
2059
2060 pages++;
2061 pobjects += page->objects - page->inuse;
2062
2063 page->pages = pages;
2064 page->pobjects = pobjects;
2065 page->next = oldpage;
2066
d0e0ac97
CG
2067 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2068 != oldpage);
345c905d 2069#endif
49e22585
CL
2070}
2071
dfb4f096 2072static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2073{
84e554e6 2074 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2075 deactivate_slab(s, c->page, c->freelist);
2076
2077 c->tid = next_tid(c->tid);
2078 c->page = NULL;
2079 c->freelist = NULL;
81819f0f
CL
2080}
2081
2082/*
2083 * Flush cpu slab.
6446faa2 2084 *
81819f0f
CL
2085 * Called from IPI handler with interrupts disabled.
2086 */
0c710013 2087static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2088{
9dfc6e68 2089 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2090
49e22585
CL
2091 if (likely(c)) {
2092 if (c->page)
2093 flush_slab(s, c);
2094
59a09917 2095 unfreeze_partials(s, c);
49e22585 2096 }
81819f0f
CL
2097}
2098
2099static void flush_cpu_slab(void *d)
2100{
2101 struct kmem_cache *s = d;
81819f0f 2102
dfb4f096 2103 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2104}
2105
a8364d55
GBY
2106static bool has_cpu_slab(int cpu, void *info)
2107{
2108 struct kmem_cache *s = info;
2109 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2110
02e1a9cd 2111 return c->page || c->partial;
a8364d55
GBY
2112}
2113
81819f0f
CL
2114static void flush_all(struct kmem_cache *s)
2115{
a8364d55 2116 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2117}
2118
dfb4f096
CL
2119/*
2120 * Check if the objects in a per cpu structure fit numa
2121 * locality expectations.
2122 */
57d437d2 2123static inline int node_match(struct page *page, int node)
dfb4f096
CL
2124{
2125#ifdef CONFIG_NUMA
4d7868e6 2126 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2127 return 0;
2128#endif
2129 return 1;
2130}
2131
9a02d699 2132#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2133static int count_free(struct page *page)
2134{
2135 return page->objects - page->inuse;
2136}
2137
9a02d699
DR
2138static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2139{
2140 return atomic_long_read(&n->total_objects);
2141}
2142#endif /* CONFIG_SLUB_DEBUG */
2143
2144#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2145static unsigned long count_partial(struct kmem_cache_node *n,
2146 int (*get_count)(struct page *))
2147{
2148 unsigned long flags;
2149 unsigned long x = 0;
2150 struct page *page;
2151
2152 spin_lock_irqsave(&n->list_lock, flags);
2153 list_for_each_entry(page, &n->partial, lru)
2154 x += get_count(page);
2155 spin_unlock_irqrestore(&n->list_lock, flags);
2156 return x;
2157}
9a02d699 2158#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2159
781b2ba6
PE
2160static noinline void
2161slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2162{
9a02d699
DR
2163#ifdef CONFIG_SLUB_DEBUG
2164 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2165 DEFAULT_RATELIMIT_BURST);
781b2ba6
PE
2166 int node;
2167
9a02d699
DR
2168 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2169 return;
2170
f9f58285 2171 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2172 nid, gfpflags);
f9f58285
FF
2173 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2174 s->name, s->object_size, s->size, oo_order(s->oo),
2175 oo_order(s->min));
781b2ba6 2176
3b0efdfa 2177 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2178 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2179 s->name);
fa5ec8a1 2180
781b2ba6
PE
2181 for_each_online_node(node) {
2182 struct kmem_cache_node *n = get_node(s, node);
2183 unsigned long nr_slabs;
2184 unsigned long nr_objs;
2185 unsigned long nr_free;
2186
2187 if (!n)
2188 continue;
2189
26c02cf0
AB
2190 nr_free = count_partial(n, count_free);
2191 nr_slabs = node_nr_slabs(n);
2192 nr_objs = node_nr_objs(n);
781b2ba6 2193
f9f58285 2194 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2195 node, nr_slabs, nr_objs, nr_free);
2196 }
9a02d699 2197#endif
781b2ba6
PE
2198}
2199
497b66f2
CL
2200static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2201 int node, struct kmem_cache_cpu **pc)
2202{
6faa6833 2203 void *freelist;
188fd063
CL
2204 struct kmem_cache_cpu *c = *pc;
2205 struct page *page;
497b66f2 2206
188fd063 2207 freelist = get_partial(s, flags, node, c);
497b66f2 2208
188fd063
CL
2209 if (freelist)
2210 return freelist;
2211
2212 page = new_slab(s, flags, node);
497b66f2
CL
2213 if (page) {
2214 c = __this_cpu_ptr(s->cpu_slab);
2215 if (c->page)
2216 flush_slab(s, c);
2217
2218 /*
2219 * No other reference to the page yet so we can
2220 * muck around with it freely without cmpxchg
2221 */
6faa6833 2222 freelist = page->freelist;
497b66f2
CL
2223 page->freelist = NULL;
2224
2225 stat(s, ALLOC_SLAB);
497b66f2
CL
2226 c->page = page;
2227 *pc = c;
2228 } else
6faa6833 2229 freelist = NULL;
497b66f2 2230
6faa6833 2231 return freelist;
497b66f2
CL
2232}
2233
072bb0aa
MG
2234static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2235{
2236 if (unlikely(PageSlabPfmemalloc(page)))
2237 return gfp_pfmemalloc_allowed(gfpflags);
2238
2239 return true;
2240}
2241
213eeb9f 2242/*
d0e0ac97
CG
2243 * Check the page->freelist of a page and either transfer the freelist to the
2244 * per cpu freelist or deactivate the page.
213eeb9f
CL
2245 *
2246 * The page is still frozen if the return value is not NULL.
2247 *
2248 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2249 *
2250 * This function must be called with interrupt disabled.
213eeb9f
CL
2251 */
2252static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2253{
2254 struct page new;
2255 unsigned long counters;
2256 void *freelist;
2257
2258 do {
2259 freelist = page->freelist;
2260 counters = page->counters;
6faa6833 2261
213eeb9f 2262 new.counters = counters;
a0132ac0 2263 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2264
2265 new.inuse = page->objects;
2266 new.frozen = freelist != NULL;
2267
d24ac77f 2268 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2269 freelist, counters,
2270 NULL, new.counters,
2271 "get_freelist"));
2272
2273 return freelist;
2274}
2275
81819f0f 2276/*
894b8788
CL
2277 * Slow path. The lockless freelist is empty or we need to perform
2278 * debugging duties.
2279 *
894b8788
CL
2280 * Processing is still very fast if new objects have been freed to the
2281 * regular freelist. In that case we simply take over the regular freelist
2282 * as the lockless freelist and zap the regular freelist.
81819f0f 2283 *
894b8788
CL
2284 * If that is not working then we fall back to the partial lists. We take the
2285 * first element of the freelist as the object to allocate now and move the
2286 * rest of the freelist to the lockless freelist.
81819f0f 2287 *
894b8788 2288 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2289 * we need to allocate a new slab. This is the slowest path since it involves
2290 * a call to the page allocator and the setup of a new slab.
81819f0f 2291 */
ce71e27c
EGM
2292static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2293 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2294{
6faa6833 2295 void *freelist;
f6e7def7 2296 struct page *page;
8a5ec0ba
CL
2297 unsigned long flags;
2298
2299 local_irq_save(flags);
2300#ifdef CONFIG_PREEMPT
2301 /*
2302 * We may have been preempted and rescheduled on a different
2303 * cpu before disabling interrupts. Need to reload cpu area
2304 * pointer.
2305 */
2306 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2307#endif
81819f0f 2308
f6e7def7
CL
2309 page = c->page;
2310 if (!page)
81819f0f 2311 goto new_slab;
49e22585 2312redo:
6faa6833 2313
57d437d2 2314 if (unlikely(!node_match(page, node))) {
e36a2652 2315 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2316 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2317 c->page = NULL;
2318 c->freelist = NULL;
fc59c053
CL
2319 goto new_slab;
2320 }
6446faa2 2321
072bb0aa
MG
2322 /*
2323 * By rights, we should be searching for a slab page that was
2324 * PFMEMALLOC but right now, we are losing the pfmemalloc
2325 * information when the page leaves the per-cpu allocator
2326 */
2327 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2328 deactivate_slab(s, page, c->freelist);
2329 c->page = NULL;
2330 c->freelist = NULL;
2331 goto new_slab;
2332 }
2333
73736e03 2334 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2335 freelist = c->freelist;
2336 if (freelist)
73736e03 2337 goto load_freelist;
03e404af 2338
f6e7def7 2339 freelist = get_freelist(s, page);
6446faa2 2340
6faa6833 2341 if (!freelist) {
03e404af
CL
2342 c->page = NULL;
2343 stat(s, DEACTIVATE_BYPASS);
fc59c053 2344 goto new_slab;
03e404af 2345 }
6446faa2 2346
84e554e6 2347 stat(s, ALLOC_REFILL);
6446faa2 2348
894b8788 2349load_freelist:
507effea
CL
2350 /*
2351 * freelist is pointing to the list of objects to be used.
2352 * page is pointing to the page from which the objects are obtained.
2353 * That page must be frozen for per cpu allocations to work.
2354 */
a0132ac0 2355 VM_BUG_ON(!c->page->frozen);
6faa6833 2356 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2357 c->tid = next_tid(c->tid);
2358 local_irq_restore(flags);
6faa6833 2359 return freelist;
81819f0f 2360
81819f0f 2361new_slab:
2cfb7455 2362
49e22585 2363 if (c->partial) {
f6e7def7
CL
2364 page = c->page = c->partial;
2365 c->partial = page->next;
49e22585
CL
2366 stat(s, CPU_PARTIAL_ALLOC);
2367 c->freelist = NULL;
2368 goto redo;
81819f0f
CL
2369 }
2370
188fd063 2371 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2372
f4697436 2373 if (unlikely(!freelist)) {
9a02d699 2374 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2375 local_irq_restore(flags);
2376 return NULL;
81819f0f 2377 }
2cfb7455 2378
f6e7def7 2379 page = c->page;
5091b74a 2380 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2381 goto load_freelist;
2cfb7455 2382
497b66f2 2383 /* Only entered in the debug case */
d0e0ac97
CG
2384 if (kmem_cache_debug(s) &&
2385 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2386 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2387
f6e7def7 2388 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2389 c->page = NULL;
2390 c->freelist = NULL;
a71ae47a 2391 local_irq_restore(flags);
6faa6833 2392 return freelist;
894b8788
CL
2393}
2394
2395/*
2396 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2397 * have the fastpath folded into their functions. So no function call
2398 * overhead for requests that can be satisfied on the fastpath.
2399 *
2400 * The fastpath works by first checking if the lockless freelist can be used.
2401 * If not then __slab_alloc is called for slow processing.
2402 *
2403 * Otherwise we can simply pick the next object from the lockless free list.
2404 */
2b847c3c 2405static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2406 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2407{
894b8788 2408 void **object;
dfb4f096 2409 struct kmem_cache_cpu *c;
57d437d2 2410 struct page *page;
8a5ec0ba 2411 unsigned long tid;
1f84260c 2412
c016b0bd 2413 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2414 return NULL;
1f84260c 2415
d79923fa 2416 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2417redo:
8a5ec0ba
CL
2418 /*
2419 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2420 * enabled. We may switch back and forth between cpus while
2421 * reading from one cpu area. That does not matter as long
2422 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2423 *
2424 * Preemption is disabled for the retrieval of the tid because that
2425 * must occur from the current processor. We cannot allow rescheduling
2426 * on a different processor between the determination of the pointer
2427 * and the retrieval of the tid.
8a5ec0ba 2428 */
7cccd80b 2429 preempt_disable();
9dfc6e68 2430 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2431
8a5ec0ba
CL
2432 /*
2433 * The transaction ids are globally unique per cpu and per operation on
2434 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2435 * occurs on the right processor and that there was no operation on the
2436 * linked list in between.
2437 */
2438 tid = c->tid;
7cccd80b 2439 preempt_enable();
8a5ec0ba 2440
9dfc6e68 2441 object = c->freelist;
57d437d2 2442 page = c->page;
8eae1492 2443 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2444 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2445 stat(s, ALLOC_SLOWPATH);
2446 } else {
0ad9500e
ED
2447 void *next_object = get_freepointer_safe(s, object);
2448
8a5ec0ba 2449 /*
25985edc 2450 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2451 * operation and if we are on the right processor.
2452 *
d0e0ac97
CG
2453 * The cmpxchg does the following atomically (without lock
2454 * semantics!)
8a5ec0ba
CL
2455 * 1. Relocate first pointer to the current per cpu area.
2456 * 2. Verify that tid and freelist have not been changed
2457 * 3. If they were not changed replace tid and freelist
2458 *
d0e0ac97
CG
2459 * Since this is without lock semantics the protection is only
2460 * against code executing on this cpu *not* from access by
2461 * other cpus.
8a5ec0ba 2462 */
933393f5 2463 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2464 s->cpu_slab->freelist, s->cpu_slab->tid,
2465 object, tid,
0ad9500e 2466 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2467
2468 note_cmpxchg_failure("slab_alloc", s, tid);
2469 goto redo;
2470 }
0ad9500e 2471 prefetch_freepointer(s, next_object);
84e554e6 2472 stat(s, ALLOC_FASTPATH);
894b8788 2473 }
8a5ec0ba 2474
74e2134f 2475 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2476 memset(object, 0, s->object_size);
d07dbea4 2477
c016b0bd 2478 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2479
894b8788 2480 return object;
81819f0f
CL
2481}
2482
2b847c3c
EG
2483static __always_inline void *slab_alloc(struct kmem_cache *s,
2484 gfp_t gfpflags, unsigned long addr)
2485{
2486 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2487}
2488
81819f0f
CL
2489void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2490{
2b847c3c 2491 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2492
d0e0ac97
CG
2493 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2494 s->size, gfpflags);
5b882be4
EGM
2495
2496 return ret;
81819f0f
CL
2497}
2498EXPORT_SYMBOL(kmem_cache_alloc);
2499
0f24f128 2500#ifdef CONFIG_TRACING
4a92379b
RK
2501void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2502{
2b847c3c 2503 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2504 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2505 return ret;
2506}
2507EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2508#endif
2509
81819f0f
CL
2510#ifdef CONFIG_NUMA
2511void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2512{
2b847c3c 2513 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2514
ca2b84cb 2515 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2516 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2517
2518 return ret;
81819f0f
CL
2519}
2520EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2521
0f24f128 2522#ifdef CONFIG_TRACING
4a92379b 2523void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2524 gfp_t gfpflags,
4a92379b 2525 int node, size_t size)
5b882be4 2526{
2b847c3c 2527 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2528
2529 trace_kmalloc_node(_RET_IP_, ret,
2530 size, s->size, gfpflags, node);
2531 return ret;
5b882be4 2532}
4a92379b 2533EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2534#endif
5d1f57e4 2535#endif
5b882be4 2536
81819f0f 2537/*
894b8788
CL
2538 * Slow patch handling. This may still be called frequently since objects
2539 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2540 *
894b8788
CL
2541 * So we still attempt to reduce cache line usage. Just take the slab
2542 * lock and free the item. If there is no additional partial page
2543 * handling required then we can return immediately.
81819f0f 2544 */
894b8788 2545static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2546 void *x, unsigned long addr)
81819f0f
CL
2547{
2548 void *prior;
2549 void **object = (void *)x;
2cfb7455 2550 int was_frozen;
2cfb7455
CL
2551 struct page new;
2552 unsigned long counters;
2553 struct kmem_cache_node *n = NULL;
61728d1e 2554 unsigned long uninitialized_var(flags);
81819f0f 2555
8a5ec0ba 2556 stat(s, FREE_SLOWPATH);
81819f0f 2557
19c7ff9e
CL
2558 if (kmem_cache_debug(s) &&
2559 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2560 return;
6446faa2 2561
2cfb7455 2562 do {
837d678d
JK
2563 if (unlikely(n)) {
2564 spin_unlock_irqrestore(&n->list_lock, flags);
2565 n = NULL;
2566 }
2cfb7455
CL
2567 prior = page->freelist;
2568 counters = page->counters;
2569 set_freepointer(s, object, prior);
2570 new.counters = counters;
2571 was_frozen = new.frozen;
2572 new.inuse--;
837d678d 2573 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2574
c65c1877 2575 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2576
2577 /*
d0e0ac97
CG
2578 * Slab was on no list before and will be
2579 * partially empty
2580 * We can defer the list move and instead
2581 * freeze it.
49e22585
CL
2582 */
2583 new.frozen = 1;
2584
c65c1877 2585 } else { /* Needs to be taken off a list */
49e22585
CL
2586
2587 n = get_node(s, page_to_nid(page));
2588 /*
2589 * Speculatively acquire the list_lock.
2590 * If the cmpxchg does not succeed then we may
2591 * drop the list_lock without any processing.
2592 *
2593 * Otherwise the list_lock will synchronize with
2594 * other processors updating the list of slabs.
2595 */
2596 spin_lock_irqsave(&n->list_lock, flags);
2597
2598 }
2cfb7455 2599 }
81819f0f 2600
2cfb7455
CL
2601 } while (!cmpxchg_double_slab(s, page,
2602 prior, counters,
2603 object, new.counters,
2604 "__slab_free"));
81819f0f 2605
2cfb7455 2606 if (likely(!n)) {
49e22585
CL
2607
2608 /*
2609 * If we just froze the page then put it onto the
2610 * per cpu partial list.
2611 */
8028dcea 2612 if (new.frozen && !was_frozen) {
49e22585 2613 put_cpu_partial(s, page, 1);
8028dcea
AS
2614 stat(s, CPU_PARTIAL_FREE);
2615 }
49e22585 2616 /*
2cfb7455
CL
2617 * The list lock was not taken therefore no list
2618 * activity can be necessary.
2619 */
2620 if (was_frozen)
2621 stat(s, FREE_FROZEN);
80f08c19 2622 return;
2cfb7455 2623 }
81819f0f 2624
837d678d
JK
2625 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2626 goto slab_empty;
2627
81819f0f 2628 /*
837d678d
JK
2629 * Objects left in the slab. If it was not on the partial list before
2630 * then add it.
81819f0f 2631 */
345c905d
JK
2632 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2633 if (kmem_cache_debug(s))
c65c1877 2634 remove_full(s, n, page);
837d678d
JK
2635 add_partial(n, page, DEACTIVATE_TO_TAIL);
2636 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2637 }
80f08c19 2638 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2639 return;
2640
2641slab_empty:
a973e9dd 2642 if (prior) {
81819f0f 2643 /*
6fbabb20 2644 * Slab on the partial list.
81819f0f 2645 */
5cc6eee8 2646 remove_partial(n, page);
84e554e6 2647 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2648 } else {
6fbabb20 2649 /* Slab must be on the full list */
c65c1877
PZ
2650 remove_full(s, n, page);
2651 }
2cfb7455 2652
80f08c19 2653 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2654 stat(s, FREE_SLAB);
81819f0f 2655 discard_slab(s, page);
81819f0f
CL
2656}
2657
894b8788
CL
2658/*
2659 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2660 * can perform fastpath freeing without additional function calls.
2661 *
2662 * The fastpath is only possible if we are freeing to the current cpu slab
2663 * of this processor. This typically the case if we have just allocated
2664 * the item before.
2665 *
2666 * If fastpath is not possible then fall back to __slab_free where we deal
2667 * with all sorts of special processing.
2668 */
06428780 2669static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2670 struct page *page, void *x, unsigned long addr)
894b8788
CL
2671{
2672 void **object = (void *)x;
dfb4f096 2673 struct kmem_cache_cpu *c;
8a5ec0ba 2674 unsigned long tid;
1f84260c 2675
c016b0bd
CL
2676 slab_free_hook(s, x);
2677
8a5ec0ba
CL
2678redo:
2679 /*
2680 * Determine the currently cpus per cpu slab.
2681 * The cpu may change afterward. However that does not matter since
2682 * data is retrieved via this pointer. If we are on the same cpu
2683 * during the cmpxchg then the free will succedd.
2684 */
7cccd80b 2685 preempt_disable();
9dfc6e68 2686 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2687
8a5ec0ba 2688 tid = c->tid;
7cccd80b 2689 preempt_enable();
c016b0bd 2690
442b06bc 2691 if (likely(page == c->page)) {
ff12059e 2692 set_freepointer(s, object, c->freelist);
8a5ec0ba 2693
933393f5 2694 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2695 s->cpu_slab->freelist, s->cpu_slab->tid,
2696 c->freelist, tid,
2697 object, next_tid(tid)))) {
2698
2699 note_cmpxchg_failure("slab_free", s, tid);
2700 goto redo;
2701 }
84e554e6 2702 stat(s, FREE_FASTPATH);
894b8788 2703 } else
ff12059e 2704 __slab_free(s, page, x, addr);
894b8788 2705
894b8788
CL
2706}
2707
81819f0f
CL
2708void kmem_cache_free(struct kmem_cache *s, void *x)
2709{
b9ce5ef4
GC
2710 s = cache_from_obj(s, x);
2711 if (!s)
79576102 2712 return;
b9ce5ef4 2713 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2714 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2715}
2716EXPORT_SYMBOL(kmem_cache_free);
2717
81819f0f 2718/*
672bba3a
CL
2719 * Object placement in a slab is made very easy because we always start at
2720 * offset 0. If we tune the size of the object to the alignment then we can
2721 * get the required alignment by putting one properly sized object after
2722 * another.
81819f0f
CL
2723 *
2724 * Notice that the allocation order determines the sizes of the per cpu
2725 * caches. Each processor has always one slab available for allocations.
2726 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2727 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2728 * locking overhead.
81819f0f
CL
2729 */
2730
2731/*
2732 * Mininum / Maximum order of slab pages. This influences locking overhead
2733 * and slab fragmentation. A higher order reduces the number of partial slabs
2734 * and increases the number of allocations possible without having to
2735 * take the list_lock.
2736 */
2737static int slub_min_order;
114e9e89 2738static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2739static int slub_min_objects;
81819f0f
CL
2740
2741/*
2742 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2743 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2744 */
2745static int slub_nomerge;
2746
81819f0f
CL
2747/*
2748 * Calculate the order of allocation given an slab object size.
2749 *
672bba3a
CL
2750 * The order of allocation has significant impact on performance and other
2751 * system components. Generally order 0 allocations should be preferred since
2752 * order 0 does not cause fragmentation in the page allocator. Larger objects
2753 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2754 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2755 * would be wasted.
2756 *
2757 * In order to reach satisfactory performance we must ensure that a minimum
2758 * number of objects is in one slab. Otherwise we may generate too much
2759 * activity on the partial lists which requires taking the list_lock. This is
2760 * less a concern for large slabs though which are rarely used.
81819f0f 2761 *
672bba3a
CL
2762 * slub_max_order specifies the order where we begin to stop considering the
2763 * number of objects in a slab as critical. If we reach slub_max_order then
2764 * we try to keep the page order as low as possible. So we accept more waste
2765 * of space in favor of a small page order.
81819f0f 2766 *
672bba3a
CL
2767 * Higher order allocations also allow the placement of more objects in a
2768 * slab and thereby reduce object handling overhead. If the user has
2769 * requested a higher mininum order then we start with that one instead of
2770 * the smallest order which will fit the object.
81819f0f 2771 */
5e6d444e 2772static inline int slab_order(int size, int min_objects,
ab9a0f19 2773 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2774{
2775 int order;
2776 int rem;
6300ea75 2777 int min_order = slub_min_order;
81819f0f 2778
ab9a0f19 2779 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2780 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2781
6300ea75 2782 for (order = max(min_order,
5e6d444e
CL
2783 fls(min_objects * size - 1) - PAGE_SHIFT);
2784 order <= max_order; order++) {
81819f0f 2785
5e6d444e 2786 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2787
ab9a0f19 2788 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2789 continue;
2790
ab9a0f19 2791 rem = (slab_size - reserved) % size;
81819f0f 2792
5e6d444e 2793 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2794 break;
2795
2796 }
672bba3a 2797
81819f0f
CL
2798 return order;
2799}
2800
ab9a0f19 2801static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2802{
2803 int order;
2804 int min_objects;
2805 int fraction;
e8120ff1 2806 int max_objects;
5e6d444e
CL
2807
2808 /*
2809 * Attempt to find best configuration for a slab. This
2810 * works by first attempting to generate a layout with
2811 * the best configuration and backing off gradually.
2812 *
2813 * First we reduce the acceptable waste in a slab. Then
2814 * we reduce the minimum objects required in a slab.
2815 */
2816 min_objects = slub_min_objects;
9b2cd506
CL
2817 if (!min_objects)
2818 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2819 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2820 min_objects = min(min_objects, max_objects);
2821
5e6d444e 2822 while (min_objects > 1) {
c124f5b5 2823 fraction = 16;
5e6d444e
CL
2824 while (fraction >= 4) {
2825 order = slab_order(size, min_objects,
ab9a0f19 2826 slub_max_order, fraction, reserved);
5e6d444e
CL
2827 if (order <= slub_max_order)
2828 return order;
2829 fraction /= 2;
2830 }
5086c389 2831 min_objects--;
5e6d444e
CL
2832 }
2833
2834 /*
2835 * We were unable to place multiple objects in a slab. Now
2836 * lets see if we can place a single object there.
2837 */
ab9a0f19 2838 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2839 if (order <= slub_max_order)
2840 return order;
2841
2842 /*
2843 * Doh this slab cannot be placed using slub_max_order.
2844 */
ab9a0f19 2845 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2846 if (order < MAX_ORDER)
5e6d444e
CL
2847 return order;
2848 return -ENOSYS;
2849}
2850
5595cffc 2851static void
4053497d 2852init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2853{
2854 n->nr_partial = 0;
81819f0f
CL
2855 spin_lock_init(&n->list_lock);
2856 INIT_LIST_HEAD(&n->partial);
8ab1372f 2857#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2858 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2859 atomic_long_set(&n->total_objects, 0);
643b1138 2860 INIT_LIST_HEAD(&n->full);
8ab1372f 2861#endif
81819f0f
CL
2862}
2863
55136592 2864static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2865{
6c182dc0 2866 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2867 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2868
8a5ec0ba 2869 /*
d4d84fef
CM
2870 * Must align to double word boundary for the double cmpxchg
2871 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2872 */
d4d84fef
CM
2873 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2874 2 * sizeof(void *));
8a5ec0ba
CL
2875
2876 if (!s->cpu_slab)
2877 return 0;
2878
2879 init_kmem_cache_cpus(s);
4c93c355 2880
8a5ec0ba 2881 return 1;
4c93c355 2882}
4c93c355 2883
51df1142
CL
2884static struct kmem_cache *kmem_cache_node;
2885
81819f0f
CL
2886/*
2887 * No kmalloc_node yet so do it by hand. We know that this is the first
2888 * slab on the node for this slabcache. There are no concurrent accesses
2889 * possible.
2890 *
721ae22a
ZYW
2891 * Note that this function only works on the kmem_cache_node
2892 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2893 * memory on a fresh node that has no slab structures yet.
81819f0f 2894 */
55136592 2895static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2896{
2897 struct page *page;
2898 struct kmem_cache_node *n;
2899
51df1142 2900 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2901
51df1142 2902 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2903
2904 BUG_ON(!page);
a2f92ee7 2905 if (page_to_nid(page) != node) {
f9f58285
FF
2906 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2907 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
2908 }
2909
81819f0f
CL
2910 n = page->freelist;
2911 BUG_ON(!n);
51df1142 2912 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2913 page->inuse = 1;
8cb0a506 2914 page->frozen = 0;
51df1142 2915 kmem_cache_node->node[node] = n;
8ab1372f 2916#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2917 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2918 init_tracking(kmem_cache_node, n);
8ab1372f 2919#endif
4053497d 2920 init_kmem_cache_node(n);
51df1142 2921 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2922
67b6c900 2923 /*
1e4dd946
SR
2924 * No locks need to be taken here as it has just been
2925 * initialized and there is no concurrent access.
67b6c900 2926 */
1e4dd946 2927 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2928}
2929
2930static void free_kmem_cache_nodes(struct kmem_cache *s)
2931{
2932 int node;
2933
f64dc58c 2934 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2935 struct kmem_cache_node *n = s->node[node];
51df1142 2936
73367bd8 2937 if (n)
51df1142
CL
2938 kmem_cache_free(kmem_cache_node, n);
2939
81819f0f
CL
2940 s->node[node] = NULL;
2941 }
2942}
2943
55136592 2944static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2945{
2946 int node;
81819f0f 2947
f64dc58c 2948 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2949 struct kmem_cache_node *n;
2950
73367bd8 2951 if (slab_state == DOWN) {
55136592 2952 early_kmem_cache_node_alloc(node);
73367bd8
AD
2953 continue;
2954 }
51df1142 2955 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2956 GFP_KERNEL, node);
81819f0f 2957
73367bd8
AD
2958 if (!n) {
2959 free_kmem_cache_nodes(s);
2960 return 0;
81819f0f 2961 }
73367bd8 2962
81819f0f 2963 s->node[node] = n;
4053497d 2964 init_kmem_cache_node(n);
81819f0f
CL
2965 }
2966 return 1;
2967}
81819f0f 2968
c0bdb232 2969static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2970{
2971 if (min < MIN_PARTIAL)
2972 min = MIN_PARTIAL;
2973 else if (min > MAX_PARTIAL)
2974 min = MAX_PARTIAL;
2975 s->min_partial = min;
2976}
2977
81819f0f
CL
2978/*
2979 * calculate_sizes() determines the order and the distribution of data within
2980 * a slab object.
2981 */
06b285dc 2982static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2983{
2984 unsigned long flags = s->flags;
3b0efdfa 2985 unsigned long size = s->object_size;
834f3d11 2986 int order;
81819f0f 2987
d8b42bf5
CL
2988 /*
2989 * Round up object size to the next word boundary. We can only
2990 * place the free pointer at word boundaries and this determines
2991 * the possible location of the free pointer.
2992 */
2993 size = ALIGN(size, sizeof(void *));
2994
2995#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2996 /*
2997 * Determine if we can poison the object itself. If the user of
2998 * the slab may touch the object after free or before allocation
2999 * then we should never poison the object itself.
3000 */
3001 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3002 !s->ctor)
81819f0f
CL
3003 s->flags |= __OBJECT_POISON;
3004 else
3005 s->flags &= ~__OBJECT_POISON;
3006
81819f0f
CL
3007
3008 /*
672bba3a 3009 * If we are Redzoning then check if there is some space between the
81819f0f 3010 * end of the object and the free pointer. If not then add an
672bba3a 3011 * additional word to have some bytes to store Redzone information.
81819f0f 3012 */
3b0efdfa 3013 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3014 size += sizeof(void *);
41ecc55b 3015#endif
81819f0f
CL
3016
3017 /*
672bba3a
CL
3018 * With that we have determined the number of bytes in actual use
3019 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3020 */
3021 s->inuse = size;
3022
3023 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3024 s->ctor)) {
81819f0f
CL
3025 /*
3026 * Relocate free pointer after the object if it is not
3027 * permitted to overwrite the first word of the object on
3028 * kmem_cache_free.
3029 *
3030 * This is the case if we do RCU, have a constructor or
3031 * destructor or are poisoning the objects.
3032 */
3033 s->offset = size;
3034 size += sizeof(void *);
3035 }
3036
c12b3c62 3037#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3038 if (flags & SLAB_STORE_USER)
3039 /*
3040 * Need to store information about allocs and frees after
3041 * the object.
3042 */
3043 size += 2 * sizeof(struct track);
3044
be7b3fbc 3045 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3046 /*
3047 * Add some empty padding so that we can catch
3048 * overwrites from earlier objects rather than let
3049 * tracking information or the free pointer be
0211a9c8 3050 * corrupted if a user writes before the start
81819f0f
CL
3051 * of the object.
3052 */
3053 size += sizeof(void *);
41ecc55b 3054#endif
672bba3a 3055
81819f0f
CL
3056 /*
3057 * SLUB stores one object immediately after another beginning from
3058 * offset 0. In order to align the objects we have to simply size
3059 * each object to conform to the alignment.
3060 */
45906855 3061 size = ALIGN(size, s->align);
81819f0f 3062 s->size = size;
06b285dc
CL
3063 if (forced_order >= 0)
3064 order = forced_order;
3065 else
ab9a0f19 3066 order = calculate_order(size, s->reserved);
81819f0f 3067
834f3d11 3068 if (order < 0)
81819f0f
CL
3069 return 0;
3070
b7a49f0d 3071 s->allocflags = 0;
834f3d11 3072 if (order)
b7a49f0d
CL
3073 s->allocflags |= __GFP_COMP;
3074
3075 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3076 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3077
3078 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3079 s->allocflags |= __GFP_RECLAIMABLE;
3080
81819f0f
CL
3081 /*
3082 * Determine the number of objects per slab
3083 */
ab9a0f19
LJ
3084 s->oo = oo_make(order, size, s->reserved);
3085 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3086 if (oo_objects(s->oo) > oo_objects(s->max))
3087 s->max = s->oo;
81819f0f 3088
834f3d11 3089 return !!oo_objects(s->oo);
81819f0f
CL
3090}
3091
8a13a4cc 3092static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3093{
8a13a4cc 3094 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3095 s->reserved = 0;
81819f0f 3096
da9a638c
LJ
3097 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3098 s->reserved = sizeof(struct rcu_head);
81819f0f 3099
06b285dc 3100 if (!calculate_sizes(s, -1))
81819f0f 3101 goto error;
3de47213
DR
3102 if (disable_higher_order_debug) {
3103 /*
3104 * Disable debugging flags that store metadata if the min slab
3105 * order increased.
3106 */
3b0efdfa 3107 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3108 s->flags &= ~DEBUG_METADATA_FLAGS;
3109 s->offset = 0;
3110 if (!calculate_sizes(s, -1))
3111 goto error;
3112 }
3113 }
81819f0f 3114
2565409f
HC
3115#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3116 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3117 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3118 /* Enable fast mode */
3119 s->flags |= __CMPXCHG_DOUBLE;
3120#endif
3121
3b89d7d8
DR
3122 /*
3123 * The larger the object size is, the more pages we want on the partial
3124 * list to avoid pounding the page allocator excessively.
3125 */
49e22585
CL
3126 set_min_partial(s, ilog2(s->size) / 2);
3127
3128 /*
3129 * cpu_partial determined the maximum number of objects kept in the
3130 * per cpu partial lists of a processor.
3131 *
3132 * Per cpu partial lists mainly contain slabs that just have one
3133 * object freed. If they are used for allocation then they can be
3134 * filled up again with minimal effort. The slab will never hit the
3135 * per node partial lists and therefore no locking will be required.
3136 *
3137 * This setting also determines
3138 *
3139 * A) The number of objects from per cpu partial slabs dumped to the
3140 * per node list when we reach the limit.
9f264904 3141 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3142 * per node list when we run out of per cpu objects. We only fetch
3143 * 50% to keep some capacity around for frees.
49e22585 3144 */
345c905d 3145 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3146 s->cpu_partial = 0;
3147 else if (s->size >= PAGE_SIZE)
49e22585
CL
3148 s->cpu_partial = 2;
3149 else if (s->size >= 1024)
3150 s->cpu_partial = 6;
3151 else if (s->size >= 256)
3152 s->cpu_partial = 13;
3153 else
3154 s->cpu_partial = 30;
3155
81819f0f 3156#ifdef CONFIG_NUMA
e2cb96b7 3157 s->remote_node_defrag_ratio = 1000;
81819f0f 3158#endif
55136592 3159 if (!init_kmem_cache_nodes(s))
dfb4f096 3160 goto error;
81819f0f 3161
55136592 3162 if (alloc_kmem_cache_cpus(s))
278b1bb1 3163 return 0;
ff12059e 3164
4c93c355 3165 free_kmem_cache_nodes(s);
81819f0f
CL
3166error:
3167 if (flags & SLAB_PANIC)
3168 panic("Cannot create slab %s size=%lu realsize=%u "
3169 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3170 s->name, (unsigned long)s->size, s->size,
3171 oo_order(s->oo), s->offset, flags);
278b1bb1 3172 return -EINVAL;
81819f0f 3173}
81819f0f 3174
33b12c38
CL
3175static void list_slab_objects(struct kmem_cache *s, struct page *page,
3176 const char *text)
3177{
3178#ifdef CONFIG_SLUB_DEBUG
3179 void *addr = page_address(page);
3180 void *p;
a5dd5c11
NK
3181 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3182 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3183 if (!map)
3184 return;
945cf2b6 3185 slab_err(s, page, text, s->name);
33b12c38 3186 slab_lock(page);
33b12c38 3187
5f80b13a 3188 get_map(s, page, map);
33b12c38
CL
3189 for_each_object(p, s, addr, page->objects) {
3190
3191 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3192 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3193 print_tracking(s, p);
3194 }
3195 }
3196 slab_unlock(page);
bbd7d57b 3197 kfree(map);
33b12c38
CL
3198#endif
3199}
3200
81819f0f 3201/*
599870b1 3202 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3203 * This is called from kmem_cache_close(). We must be the last thread
3204 * using the cache and therefore we do not need to lock anymore.
81819f0f 3205 */
599870b1 3206static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3207{
81819f0f
CL
3208 struct page *page, *h;
3209
33b12c38 3210 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3211 if (!page->inuse) {
1e4dd946 3212 __remove_partial(n, page);
81819f0f 3213 discard_slab(s, page);
33b12c38
CL
3214 } else {
3215 list_slab_objects(s, page,
945cf2b6 3216 "Objects remaining in %s on kmem_cache_close()");
599870b1 3217 }
33b12c38 3218 }
81819f0f
CL
3219}
3220
3221/*
672bba3a 3222 * Release all resources used by a slab cache.
81819f0f 3223 */
0c710013 3224static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3225{
3226 int node;
3227
3228 flush_all(s);
81819f0f 3229 /* Attempt to free all objects */
f64dc58c 3230 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3231 struct kmem_cache_node *n = get_node(s, node);
3232
599870b1
CL
3233 free_partial(s, n);
3234 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3235 return 1;
3236 }
945cf2b6 3237 free_percpu(s->cpu_slab);
81819f0f
CL
3238 free_kmem_cache_nodes(s);
3239 return 0;
3240}
3241
945cf2b6 3242int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3243{
41a21285 3244 return kmem_cache_close(s);
81819f0f 3245}
81819f0f
CL
3246
3247/********************************************************************
3248 * Kmalloc subsystem
3249 *******************************************************************/
3250
81819f0f
CL
3251static int __init setup_slub_min_order(char *str)
3252{
06428780 3253 get_option(&str, &slub_min_order);
81819f0f
CL
3254
3255 return 1;
3256}
3257
3258__setup("slub_min_order=", setup_slub_min_order);
3259
3260static int __init setup_slub_max_order(char *str)
3261{
06428780 3262 get_option(&str, &slub_max_order);
818cf590 3263 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3264
3265 return 1;
3266}
3267
3268__setup("slub_max_order=", setup_slub_max_order);
3269
3270static int __init setup_slub_min_objects(char *str)
3271{
06428780 3272 get_option(&str, &slub_min_objects);
81819f0f
CL
3273
3274 return 1;
3275}
3276
3277__setup("slub_min_objects=", setup_slub_min_objects);
3278
3279static int __init setup_slub_nomerge(char *str)
3280{
3281 slub_nomerge = 1;
3282 return 1;
3283}
3284
3285__setup("slub_nomerge", setup_slub_nomerge);
3286
81819f0f
CL
3287void *__kmalloc(size_t size, gfp_t flags)
3288{
aadb4bc4 3289 struct kmem_cache *s;
5b882be4 3290 void *ret;
81819f0f 3291
95a05b42 3292 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3293 return kmalloc_large(size, flags);
aadb4bc4 3294
2c59dd65 3295 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3296
3297 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3298 return s;
3299
2b847c3c 3300 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3301
ca2b84cb 3302 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3303
3304 return ret;
81819f0f
CL
3305}
3306EXPORT_SYMBOL(__kmalloc);
3307
5d1f57e4 3308#ifdef CONFIG_NUMA
f619cfe1
CL
3309static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3310{
b1eeab67 3311 struct page *page;
e4f7c0b4 3312 void *ptr = NULL;
f619cfe1 3313
d79923fa 3314 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
b1eeab67 3315 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3316 if (page)
e4f7c0b4
CM
3317 ptr = page_address(page);
3318
d56791b3 3319 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3320 return ptr;
f619cfe1
CL
3321}
3322
81819f0f
CL
3323void *__kmalloc_node(size_t size, gfp_t flags, int node)
3324{
aadb4bc4 3325 struct kmem_cache *s;
5b882be4 3326 void *ret;
81819f0f 3327
95a05b42 3328 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3329 ret = kmalloc_large_node(size, flags, node);
3330
ca2b84cb
EGM
3331 trace_kmalloc_node(_RET_IP_, ret,
3332 size, PAGE_SIZE << get_order(size),
3333 flags, node);
5b882be4
EGM
3334
3335 return ret;
3336 }
aadb4bc4 3337
2c59dd65 3338 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3339
3340 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3341 return s;
3342
2b847c3c 3343 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3344
ca2b84cb 3345 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3346
3347 return ret;
81819f0f
CL
3348}
3349EXPORT_SYMBOL(__kmalloc_node);
3350#endif
3351
3352size_t ksize(const void *object)
3353{
272c1d21 3354 struct page *page;
81819f0f 3355
ef8b4520 3356 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3357 return 0;
3358
294a80a8 3359 page = virt_to_head_page(object);
294a80a8 3360
76994412
PE
3361 if (unlikely(!PageSlab(page))) {
3362 WARN_ON(!PageCompound(page));
294a80a8 3363 return PAGE_SIZE << compound_order(page);
76994412 3364 }
81819f0f 3365
1b4f59e3 3366 return slab_ksize(page->slab_cache);
81819f0f 3367}
b1aabecd 3368EXPORT_SYMBOL(ksize);
81819f0f
CL
3369
3370void kfree(const void *x)
3371{
81819f0f 3372 struct page *page;
5bb983b0 3373 void *object = (void *)x;
81819f0f 3374
2121db74
PE
3375 trace_kfree(_RET_IP_, x);
3376
2408c550 3377 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3378 return;
3379
b49af68f 3380 page = virt_to_head_page(x);
aadb4bc4 3381 if (unlikely(!PageSlab(page))) {
0937502a 3382 BUG_ON(!PageCompound(page));
d56791b3 3383 kfree_hook(x);
d79923fa 3384 __free_memcg_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3385 return;
3386 }
1b4f59e3 3387 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3388}
3389EXPORT_SYMBOL(kfree);
3390
2086d26a 3391/*
672bba3a
CL
3392 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3393 * the remaining slabs by the number of items in use. The slabs with the
3394 * most items in use come first. New allocations will then fill those up
3395 * and thus they can be removed from the partial lists.
3396 *
3397 * The slabs with the least items are placed last. This results in them
3398 * being allocated from last increasing the chance that the last objects
3399 * are freed in them.
2086d26a
CL
3400 */
3401int kmem_cache_shrink(struct kmem_cache *s)
3402{
3403 int node;
3404 int i;
3405 struct kmem_cache_node *n;
3406 struct page *page;
3407 struct page *t;
205ab99d 3408 int objects = oo_objects(s->max);
2086d26a 3409 struct list_head *slabs_by_inuse =
834f3d11 3410 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3411 unsigned long flags;
3412
3413 if (!slabs_by_inuse)
3414 return -ENOMEM;
3415
3416 flush_all(s);
f64dc58c 3417 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3418 n = get_node(s, node);
3419
3420 if (!n->nr_partial)
3421 continue;
3422
834f3d11 3423 for (i = 0; i < objects; i++)
2086d26a
CL
3424 INIT_LIST_HEAD(slabs_by_inuse + i);
3425
3426 spin_lock_irqsave(&n->list_lock, flags);
3427
3428 /*
672bba3a 3429 * Build lists indexed by the items in use in each slab.
2086d26a 3430 *
672bba3a
CL
3431 * Note that concurrent frees may occur while we hold the
3432 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3433 */
3434 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3435 list_move(&page->lru, slabs_by_inuse + page->inuse);
3436 if (!page->inuse)
3437 n->nr_partial--;
2086d26a
CL
3438 }
3439
2086d26a 3440 /*
672bba3a
CL
3441 * Rebuild the partial list with the slabs filled up most
3442 * first and the least used slabs at the end.
2086d26a 3443 */
69cb8e6b 3444 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3445 list_splice(slabs_by_inuse + i, n->partial.prev);
3446
2086d26a 3447 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3448
3449 /* Release empty slabs */
3450 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3451 discard_slab(s, page);
2086d26a
CL
3452 }
3453
3454 kfree(slabs_by_inuse);
3455 return 0;
3456}
3457EXPORT_SYMBOL(kmem_cache_shrink);
3458
b9049e23
YG
3459static int slab_mem_going_offline_callback(void *arg)
3460{
3461 struct kmem_cache *s;
3462
18004c5d 3463 mutex_lock(&slab_mutex);
b9049e23
YG
3464 list_for_each_entry(s, &slab_caches, list)
3465 kmem_cache_shrink(s);
18004c5d 3466 mutex_unlock(&slab_mutex);
b9049e23
YG
3467
3468 return 0;
3469}
3470
3471static void slab_mem_offline_callback(void *arg)
3472{
3473 struct kmem_cache_node *n;
3474 struct kmem_cache *s;
3475 struct memory_notify *marg = arg;
3476 int offline_node;
3477
b9d5ab25 3478 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3479
3480 /*
3481 * If the node still has available memory. we need kmem_cache_node
3482 * for it yet.
3483 */
3484 if (offline_node < 0)
3485 return;
3486
18004c5d 3487 mutex_lock(&slab_mutex);
b9049e23
YG
3488 list_for_each_entry(s, &slab_caches, list) {
3489 n = get_node(s, offline_node);
3490 if (n) {
3491 /*
3492 * if n->nr_slabs > 0, slabs still exist on the node
3493 * that is going down. We were unable to free them,
c9404c9c 3494 * and offline_pages() function shouldn't call this
b9049e23
YG
3495 * callback. So, we must fail.
3496 */
0f389ec6 3497 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3498
3499 s->node[offline_node] = NULL;
8de66a0c 3500 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3501 }
3502 }
18004c5d 3503 mutex_unlock(&slab_mutex);
b9049e23
YG
3504}
3505
3506static int slab_mem_going_online_callback(void *arg)
3507{
3508 struct kmem_cache_node *n;
3509 struct kmem_cache *s;
3510 struct memory_notify *marg = arg;
b9d5ab25 3511 int nid = marg->status_change_nid_normal;
b9049e23
YG
3512 int ret = 0;
3513
3514 /*
3515 * If the node's memory is already available, then kmem_cache_node is
3516 * already created. Nothing to do.
3517 */
3518 if (nid < 0)
3519 return 0;
3520
3521 /*
0121c619 3522 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3523 * allocate a kmem_cache_node structure in order to bring the node
3524 * online.
3525 */
18004c5d 3526 mutex_lock(&slab_mutex);
b9049e23
YG
3527 list_for_each_entry(s, &slab_caches, list) {
3528 /*
3529 * XXX: kmem_cache_alloc_node will fallback to other nodes
3530 * since memory is not yet available from the node that
3531 * is brought up.
3532 */
8de66a0c 3533 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3534 if (!n) {
3535 ret = -ENOMEM;
3536 goto out;
3537 }
4053497d 3538 init_kmem_cache_node(n);
b9049e23
YG
3539 s->node[nid] = n;
3540 }
3541out:
18004c5d 3542 mutex_unlock(&slab_mutex);
b9049e23
YG
3543 return ret;
3544}
3545
3546static int slab_memory_callback(struct notifier_block *self,
3547 unsigned long action, void *arg)
3548{
3549 int ret = 0;
3550
3551 switch (action) {
3552 case MEM_GOING_ONLINE:
3553 ret = slab_mem_going_online_callback(arg);
3554 break;
3555 case MEM_GOING_OFFLINE:
3556 ret = slab_mem_going_offline_callback(arg);
3557 break;
3558 case MEM_OFFLINE:
3559 case MEM_CANCEL_ONLINE:
3560 slab_mem_offline_callback(arg);
3561 break;
3562 case MEM_ONLINE:
3563 case MEM_CANCEL_OFFLINE:
3564 break;
3565 }
dc19f9db
KH
3566 if (ret)
3567 ret = notifier_from_errno(ret);
3568 else
3569 ret = NOTIFY_OK;
b9049e23
YG
3570 return ret;
3571}
3572
3ac38faa
AM
3573static struct notifier_block slab_memory_callback_nb = {
3574 .notifier_call = slab_memory_callback,
3575 .priority = SLAB_CALLBACK_PRI,
3576};
b9049e23 3577
81819f0f
CL
3578/********************************************************************
3579 * Basic setup of slabs
3580 *******************************************************************/
3581
51df1142
CL
3582/*
3583 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3584 * the page allocator. Allocate them properly then fix up the pointers
3585 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3586 */
3587
dffb4d60 3588static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3589{
3590 int node;
dffb4d60 3591 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
51df1142 3592
dffb4d60 3593 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3594
7d557b3c
GC
3595 /*
3596 * This runs very early, and only the boot processor is supposed to be
3597 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3598 * IPIs around.
3599 */
3600 __flush_cpu_slab(s, smp_processor_id());
51df1142
CL
3601 for_each_node_state(node, N_NORMAL_MEMORY) {
3602 struct kmem_cache_node *n = get_node(s, node);
3603 struct page *p;
3604
3605 if (n) {
3606 list_for_each_entry(p, &n->partial, lru)
1b4f59e3 3607 p->slab_cache = s;
51df1142 3608
607bf324 3609#ifdef CONFIG_SLUB_DEBUG
51df1142 3610 list_for_each_entry(p, &n->full, lru)
1b4f59e3 3611 p->slab_cache = s;
51df1142
CL
3612#endif
3613 }
3614 }
dffb4d60
CL
3615 list_add(&s->list, &slab_caches);
3616 return s;
51df1142
CL
3617}
3618
81819f0f
CL
3619void __init kmem_cache_init(void)
3620{
dffb4d60
CL
3621 static __initdata struct kmem_cache boot_kmem_cache,
3622 boot_kmem_cache_node;
51df1142 3623
fc8d8620
SG
3624 if (debug_guardpage_minorder())
3625 slub_max_order = 0;
3626
dffb4d60
CL
3627 kmem_cache_node = &boot_kmem_cache_node;
3628 kmem_cache = &boot_kmem_cache;
51df1142 3629
dffb4d60
CL
3630 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3631 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3632
3ac38faa 3633 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3634
3635 /* Able to allocate the per node structures */
3636 slab_state = PARTIAL;
3637
dffb4d60
CL
3638 create_boot_cache(kmem_cache, "kmem_cache",
3639 offsetof(struct kmem_cache, node) +
3640 nr_node_ids * sizeof(struct kmem_cache_node *),
3641 SLAB_HWCACHE_ALIGN);
8a13a4cc 3642
dffb4d60 3643 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3644
51df1142
CL
3645 /*
3646 * Allocate kmem_cache_node properly from the kmem_cache slab.
3647 * kmem_cache_node is separately allocated so no need to
3648 * update any list pointers.
3649 */
dffb4d60 3650 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3651
3652 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3653 create_kmalloc_caches(0);
81819f0f
CL
3654
3655#ifdef CONFIG_SMP
3656 register_cpu_notifier(&slab_notifier);
9dfc6e68 3657#endif
81819f0f 3658
f9f58285 3659 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3660 cache_line_size(),
81819f0f
CL
3661 slub_min_order, slub_max_order, slub_min_objects,
3662 nr_cpu_ids, nr_node_ids);
3663}
3664
7e85ee0c
PE
3665void __init kmem_cache_init_late(void)
3666{
7e85ee0c
PE
3667}
3668
81819f0f
CL
3669/*
3670 * Find a mergeable slab cache
3671 */
3672static int slab_unmergeable(struct kmem_cache *s)
3673{
3674 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3675 return 1;
3676
a44cb944
VD
3677 if (!is_root_cache(s))
3678 return 1;
3679
c59def9f 3680 if (s->ctor)
81819f0f
CL
3681 return 1;
3682
8ffa6875
CL
3683 /*
3684 * We may have set a slab to be unmergeable during bootstrap.
3685 */
3686 if (s->refcount < 0)
3687 return 1;
3688
81819f0f
CL
3689 return 0;
3690}
3691
a44cb944
VD
3692static struct kmem_cache *find_mergeable(size_t size, size_t align,
3693 unsigned long flags, const char *name, void (*ctor)(void *))
81819f0f 3694{
5b95a4ac 3695 struct kmem_cache *s;
81819f0f
CL
3696
3697 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3698 return NULL;
3699
c59def9f 3700 if (ctor)
81819f0f
CL
3701 return NULL;
3702
3703 size = ALIGN(size, sizeof(void *));
3704 align = calculate_alignment(flags, align, size);
3705 size = ALIGN(size, align);
ba0268a8 3706 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3707
5b95a4ac 3708 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3709 if (slab_unmergeable(s))
3710 continue;
3711
3712 if (size > s->size)
3713 continue;
3714
ba0268a8 3715 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
a44cb944 3716 continue;
81819f0f
CL
3717 /*
3718 * Check if alignment is compatible.
3719 * Courtesy of Adrian Drzewiecki
3720 */
06428780 3721 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3722 continue;
3723
3724 if (s->size - size >= sizeof(void *))
3725 continue;
3726
3727 return s;
3728 }
3729 return NULL;
3730}
3731
2633d7a0 3732struct kmem_cache *
a44cb944
VD
3733__kmem_cache_alias(const char *name, size_t size, size_t align,
3734 unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3735{
3736 struct kmem_cache *s;
3737
a44cb944 3738 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3739 if (s) {
84d0ddd6
VD
3740 int i;
3741 struct kmem_cache *c;
3742
81819f0f 3743 s->refcount++;
84d0ddd6 3744
81819f0f
CL
3745 /*
3746 * Adjust the object sizes so that we clear
3747 * the complete object on kzalloc.
3748 */
3b0efdfa 3749 s->object_size = max(s->object_size, (int)size);
81819f0f 3750 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3751
84d0ddd6
VD
3752 for_each_memcg_cache_index(i) {
3753 c = cache_from_memcg_idx(s, i);
3754 if (!c)
3755 continue;
3756 c->object_size = s->object_size;
3757 c->inuse = max_t(int, c->inuse,
3758 ALIGN(size, sizeof(void *)));
3759 }
3760
7b8f3b66 3761 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3762 s->refcount--;
cbb79694 3763 s = NULL;
7b8f3b66 3764 }
a0e1d1be 3765 }
6446faa2 3766
cbb79694
CL
3767 return s;
3768}
84c1cf62 3769
8a13a4cc 3770int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3771{
aac3a166
PE
3772 int err;
3773
3774 err = kmem_cache_open(s, flags);
3775 if (err)
3776 return err;
20cea968 3777
45530c44
CL
3778 /* Mutex is not taken during early boot */
3779 if (slab_state <= UP)
3780 return 0;
3781
107dab5c 3782 memcg_propagate_slab_attrs(s);
aac3a166 3783 err = sysfs_slab_add(s);
aac3a166
PE
3784 if (err)
3785 kmem_cache_close(s);
20cea968 3786
aac3a166 3787 return err;
81819f0f 3788}
81819f0f 3789
81819f0f 3790#ifdef CONFIG_SMP
81819f0f 3791/*
672bba3a
CL
3792 * Use the cpu notifier to insure that the cpu slabs are flushed when
3793 * necessary.
81819f0f 3794 */
0db0628d 3795static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3796 unsigned long action, void *hcpu)
3797{
3798 long cpu = (long)hcpu;
5b95a4ac
CL
3799 struct kmem_cache *s;
3800 unsigned long flags;
81819f0f
CL
3801
3802 switch (action) {
3803 case CPU_UP_CANCELED:
8bb78442 3804 case CPU_UP_CANCELED_FROZEN:
81819f0f 3805 case CPU_DEAD:
8bb78442 3806 case CPU_DEAD_FROZEN:
18004c5d 3807 mutex_lock(&slab_mutex);
5b95a4ac
CL
3808 list_for_each_entry(s, &slab_caches, list) {
3809 local_irq_save(flags);
3810 __flush_cpu_slab(s, cpu);
3811 local_irq_restore(flags);
3812 }
18004c5d 3813 mutex_unlock(&slab_mutex);
81819f0f
CL
3814 break;
3815 default:
3816 break;
3817 }
3818 return NOTIFY_OK;
3819}
3820
0db0628d 3821static struct notifier_block slab_notifier = {
3adbefee 3822 .notifier_call = slab_cpuup_callback
06428780 3823};
81819f0f
CL
3824
3825#endif
3826
ce71e27c 3827void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3828{
aadb4bc4 3829 struct kmem_cache *s;
94b528d0 3830 void *ret;
aadb4bc4 3831
95a05b42 3832 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3833 return kmalloc_large(size, gfpflags);
3834
2c59dd65 3835 s = kmalloc_slab(size, gfpflags);
81819f0f 3836
2408c550 3837 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3838 return s;
81819f0f 3839
2b847c3c 3840 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3841
25985edc 3842 /* Honor the call site pointer we received. */
ca2b84cb 3843 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3844
3845 return ret;
81819f0f
CL
3846}
3847
5d1f57e4 3848#ifdef CONFIG_NUMA
81819f0f 3849void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3850 int node, unsigned long caller)
81819f0f 3851{
aadb4bc4 3852 struct kmem_cache *s;
94b528d0 3853 void *ret;
aadb4bc4 3854
95a05b42 3855 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3856 ret = kmalloc_large_node(size, gfpflags, node);
3857
3858 trace_kmalloc_node(caller, ret,
3859 size, PAGE_SIZE << get_order(size),
3860 gfpflags, node);
3861
3862 return ret;
3863 }
eada35ef 3864
2c59dd65 3865 s = kmalloc_slab(size, gfpflags);
81819f0f 3866
2408c550 3867 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3868 return s;
81819f0f 3869
2b847c3c 3870 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3871
25985edc 3872 /* Honor the call site pointer we received. */
ca2b84cb 3873 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3874
3875 return ret;
81819f0f 3876}
5d1f57e4 3877#endif
81819f0f 3878
ab4d5ed5 3879#ifdef CONFIG_SYSFS
205ab99d
CL
3880static int count_inuse(struct page *page)
3881{
3882 return page->inuse;
3883}
3884
3885static int count_total(struct page *page)
3886{
3887 return page->objects;
3888}
ab4d5ed5 3889#endif
205ab99d 3890
ab4d5ed5 3891#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3892static int validate_slab(struct kmem_cache *s, struct page *page,
3893 unsigned long *map)
53e15af0
CL
3894{
3895 void *p;
a973e9dd 3896 void *addr = page_address(page);
53e15af0
CL
3897
3898 if (!check_slab(s, page) ||
3899 !on_freelist(s, page, NULL))
3900 return 0;
3901
3902 /* Now we know that a valid freelist exists */
39b26464 3903 bitmap_zero(map, page->objects);
53e15af0 3904
5f80b13a
CL
3905 get_map(s, page, map);
3906 for_each_object(p, s, addr, page->objects) {
3907 if (test_bit(slab_index(p, s, addr), map))
3908 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3909 return 0;
53e15af0
CL
3910 }
3911
224a88be 3912 for_each_object(p, s, addr, page->objects)
7656c72b 3913 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3914 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3915 return 0;
3916 return 1;
3917}
3918
434e245d
CL
3919static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3920 unsigned long *map)
53e15af0 3921{
881db7fb
CL
3922 slab_lock(page);
3923 validate_slab(s, page, map);
3924 slab_unlock(page);
53e15af0
CL
3925}
3926
434e245d
CL
3927static int validate_slab_node(struct kmem_cache *s,
3928 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3929{
3930 unsigned long count = 0;
3931 struct page *page;
3932 unsigned long flags;
3933
3934 spin_lock_irqsave(&n->list_lock, flags);
3935
3936 list_for_each_entry(page, &n->partial, lru) {
434e245d 3937 validate_slab_slab(s, page, map);
53e15af0
CL
3938 count++;
3939 }
3940 if (count != n->nr_partial)
f9f58285
FF
3941 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3942 s->name, count, n->nr_partial);
53e15af0
CL
3943
3944 if (!(s->flags & SLAB_STORE_USER))
3945 goto out;
3946
3947 list_for_each_entry(page, &n->full, lru) {
434e245d 3948 validate_slab_slab(s, page, map);
53e15af0
CL
3949 count++;
3950 }
3951 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3952 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3953 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
3954
3955out:
3956 spin_unlock_irqrestore(&n->list_lock, flags);
3957 return count;
3958}
3959
434e245d 3960static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3961{
3962 int node;
3963 unsigned long count = 0;
205ab99d 3964 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3965 sizeof(unsigned long), GFP_KERNEL);
3966
3967 if (!map)
3968 return -ENOMEM;
53e15af0
CL
3969
3970 flush_all(s);
f64dc58c 3971 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3972 struct kmem_cache_node *n = get_node(s, node);
3973
434e245d 3974 count += validate_slab_node(s, n, map);
53e15af0 3975 }
434e245d 3976 kfree(map);
53e15af0
CL
3977 return count;
3978}
88a420e4 3979/*
672bba3a 3980 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3981 * and freed.
3982 */
3983
3984struct location {
3985 unsigned long count;
ce71e27c 3986 unsigned long addr;
45edfa58
CL
3987 long long sum_time;
3988 long min_time;
3989 long max_time;
3990 long min_pid;
3991 long max_pid;
174596a0 3992 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3993 nodemask_t nodes;
88a420e4
CL
3994};
3995
3996struct loc_track {
3997 unsigned long max;
3998 unsigned long count;
3999 struct location *loc;
4000};
4001
4002static void free_loc_track(struct loc_track *t)
4003{
4004 if (t->max)
4005 free_pages((unsigned long)t->loc,
4006 get_order(sizeof(struct location) * t->max));
4007}
4008
68dff6a9 4009static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4010{
4011 struct location *l;
4012 int order;
4013
88a420e4
CL
4014 order = get_order(sizeof(struct location) * max);
4015
68dff6a9 4016 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4017 if (!l)
4018 return 0;
4019
4020 if (t->count) {
4021 memcpy(l, t->loc, sizeof(struct location) * t->count);
4022 free_loc_track(t);
4023 }
4024 t->max = max;
4025 t->loc = l;
4026 return 1;
4027}
4028
4029static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4030 const struct track *track)
88a420e4
CL
4031{
4032 long start, end, pos;
4033 struct location *l;
ce71e27c 4034 unsigned long caddr;
45edfa58 4035 unsigned long age = jiffies - track->when;
88a420e4
CL
4036
4037 start = -1;
4038 end = t->count;
4039
4040 for ( ; ; ) {
4041 pos = start + (end - start + 1) / 2;
4042
4043 /*
4044 * There is nothing at "end". If we end up there
4045 * we need to add something to before end.
4046 */
4047 if (pos == end)
4048 break;
4049
4050 caddr = t->loc[pos].addr;
45edfa58
CL
4051 if (track->addr == caddr) {
4052
4053 l = &t->loc[pos];
4054 l->count++;
4055 if (track->when) {
4056 l->sum_time += age;
4057 if (age < l->min_time)
4058 l->min_time = age;
4059 if (age > l->max_time)
4060 l->max_time = age;
4061
4062 if (track->pid < l->min_pid)
4063 l->min_pid = track->pid;
4064 if (track->pid > l->max_pid)
4065 l->max_pid = track->pid;
4066
174596a0
RR
4067 cpumask_set_cpu(track->cpu,
4068 to_cpumask(l->cpus));
45edfa58
CL
4069 }
4070 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4071 return 1;
4072 }
4073
45edfa58 4074 if (track->addr < caddr)
88a420e4
CL
4075 end = pos;
4076 else
4077 start = pos;
4078 }
4079
4080 /*
672bba3a 4081 * Not found. Insert new tracking element.
88a420e4 4082 */
68dff6a9 4083 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4084 return 0;
4085
4086 l = t->loc + pos;
4087 if (pos < t->count)
4088 memmove(l + 1, l,
4089 (t->count - pos) * sizeof(struct location));
4090 t->count++;
4091 l->count = 1;
45edfa58
CL
4092 l->addr = track->addr;
4093 l->sum_time = age;
4094 l->min_time = age;
4095 l->max_time = age;
4096 l->min_pid = track->pid;
4097 l->max_pid = track->pid;
174596a0
RR
4098 cpumask_clear(to_cpumask(l->cpus));
4099 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4100 nodes_clear(l->nodes);
4101 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4102 return 1;
4103}
4104
4105static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4106 struct page *page, enum track_item alloc,
a5dd5c11 4107 unsigned long *map)
88a420e4 4108{
a973e9dd 4109 void *addr = page_address(page);
88a420e4
CL
4110 void *p;
4111
39b26464 4112 bitmap_zero(map, page->objects);
5f80b13a 4113 get_map(s, page, map);
88a420e4 4114
224a88be 4115 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4116 if (!test_bit(slab_index(p, s, addr), map))
4117 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4118}
4119
4120static int list_locations(struct kmem_cache *s, char *buf,
4121 enum track_item alloc)
4122{
e374d483 4123 int len = 0;
88a420e4 4124 unsigned long i;
68dff6a9 4125 struct loc_track t = { 0, 0, NULL };
88a420e4 4126 int node;
bbd7d57b
ED
4127 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4128 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4129
bbd7d57b
ED
4130 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4131 GFP_TEMPORARY)) {
4132 kfree(map);
68dff6a9 4133 return sprintf(buf, "Out of memory\n");
bbd7d57b 4134 }
88a420e4
CL
4135 /* Push back cpu slabs */
4136 flush_all(s);
4137
f64dc58c 4138 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4139 struct kmem_cache_node *n = get_node(s, node);
4140 unsigned long flags;
4141 struct page *page;
4142
9e86943b 4143 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4144 continue;
4145
4146 spin_lock_irqsave(&n->list_lock, flags);
4147 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4148 process_slab(&t, s, page, alloc, map);
88a420e4 4149 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4150 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4151 spin_unlock_irqrestore(&n->list_lock, flags);
4152 }
4153
4154 for (i = 0; i < t.count; i++) {
45edfa58 4155 struct location *l = &t.loc[i];
88a420e4 4156
9c246247 4157 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4158 break;
e374d483 4159 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4160
4161 if (l->addr)
62c70bce 4162 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4163 else
e374d483 4164 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4165
4166 if (l->sum_time != l->min_time) {
e374d483 4167 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4168 l->min_time,
4169 (long)div_u64(l->sum_time, l->count),
4170 l->max_time);
45edfa58 4171 } else
e374d483 4172 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4173 l->min_time);
4174
4175 if (l->min_pid != l->max_pid)
e374d483 4176 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4177 l->min_pid, l->max_pid);
4178 else
e374d483 4179 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4180 l->min_pid);
4181
174596a0
RR
4182 if (num_online_cpus() > 1 &&
4183 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4184 len < PAGE_SIZE - 60) {
4185 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4186 len += cpulist_scnprintf(buf + len,
4187 PAGE_SIZE - len - 50,
174596a0 4188 to_cpumask(l->cpus));
45edfa58
CL
4189 }
4190
62bc62a8 4191 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4192 len < PAGE_SIZE - 60) {
4193 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4194 len += nodelist_scnprintf(buf + len,
4195 PAGE_SIZE - len - 50,
4196 l->nodes);
45edfa58
CL
4197 }
4198
e374d483 4199 len += sprintf(buf + len, "\n");
88a420e4
CL
4200 }
4201
4202 free_loc_track(&t);
bbd7d57b 4203 kfree(map);
88a420e4 4204 if (!t.count)
e374d483
HH
4205 len += sprintf(buf, "No data\n");
4206 return len;
88a420e4 4207}
ab4d5ed5 4208#endif
88a420e4 4209
a5a84755
CL
4210#ifdef SLUB_RESILIENCY_TEST
4211static void resiliency_test(void)
4212{
4213 u8 *p;
4214
95a05b42 4215 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4216
f9f58285
FF
4217 pr_err("SLUB resiliency testing\n");
4218 pr_err("-----------------------\n");
4219 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4220
4221 p = kzalloc(16, GFP_KERNEL);
4222 p[16] = 0x12;
f9f58285
FF
4223 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4224 p + 16);
a5a84755
CL
4225
4226 validate_slab_cache(kmalloc_caches[4]);
4227
4228 /* Hmmm... The next two are dangerous */
4229 p = kzalloc(32, GFP_KERNEL);
4230 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4231 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4232 p);
4233 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4234
4235 validate_slab_cache(kmalloc_caches[5]);
4236 p = kzalloc(64, GFP_KERNEL);
4237 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4238 *p = 0x56;
f9f58285
FF
4239 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4240 p);
4241 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4242 validate_slab_cache(kmalloc_caches[6]);
4243
f9f58285 4244 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4245 p = kzalloc(128, GFP_KERNEL);
4246 kfree(p);
4247 *p = 0x78;
f9f58285 4248 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4249 validate_slab_cache(kmalloc_caches[7]);
4250
4251 p = kzalloc(256, GFP_KERNEL);
4252 kfree(p);
4253 p[50] = 0x9a;
f9f58285 4254 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4255 validate_slab_cache(kmalloc_caches[8]);
4256
4257 p = kzalloc(512, GFP_KERNEL);
4258 kfree(p);
4259 p[512] = 0xab;
f9f58285 4260 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4261 validate_slab_cache(kmalloc_caches[9]);
4262}
4263#else
4264#ifdef CONFIG_SYSFS
4265static void resiliency_test(void) {};
4266#endif
4267#endif
4268
ab4d5ed5 4269#ifdef CONFIG_SYSFS
81819f0f 4270enum slab_stat_type {
205ab99d
CL
4271 SL_ALL, /* All slabs */
4272 SL_PARTIAL, /* Only partially allocated slabs */
4273 SL_CPU, /* Only slabs used for cpu caches */
4274 SL_OBJECTS, /* Determine allocated objects not slabs */
4275 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4276};
4277
205ab99d 4278#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4279#define SO_PARTIAL (1 << SL_PARTIAL)
4280#define SO_CPU (1 << SL_CPU)
4281#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4282#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4283
62e5c4b4
CG
4284static ssize_t show_slab_objects(struct kmem_cache *s,
4285 char *buf, unsigned long flags)
81819f0f
CL
4286{
4287 unsigned long total = 0;
81819f0f
CL
4288 int node;
4289 int x;
4290 unsigned long *nodes;
81819f0f 4291
e35e1a97 4292 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4293 if (!nodes)
4294 return -ENOMEM;
81819f0f 4295
205ab99d
CL
4296 if (flags & SO_CPU) {
4297 int cpu;
81819f0f 4298
205ab99d 4299 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4300 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4301 cpu);
ec3ab083 4302 int node;
49e22585 4303 struct page *page;
dfb4f096 4304
bc6697d8 4305 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4306 if (!page)
4307 continue;
205ab99d 4308
ec3ab083
CL
4309 node = page_to_nid(page);
4310 if (flags & SO_TOTAL)
4311 x = page->objects;
4312 else if (flags & SO_OBJECTS)
4313 x = page->inuse;
4314 else
4315 x = 1;
49e22585 4316
ec3ab083
CL
4317 total += x;
4318 nodes[node] += x;
4319
4320 page = ACCESS_ONCE(c->partial);
49e22585 4321 if (page) {
8afb1474
LZ
4322 node = page_to_nid(page);
4323 if (flags & SO_TOTAL)
4324 WARN_ON_ONCE(1);
4325 else if (flags & SO_OBJECTS)
4326 WARN_ON_ONCE(1);
4327 else
4328 x = page->pages;
bc6697d8
ED
4329 total += x;
4330 nodes[node] += x;
49e22585 4331 }
81819f0f
CL
4332 }
4333 }
4334
04d94879 4335 lock_memory_hotplug();
ab4d5ed5 4336#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4337 if (flags & SO_ALL) {
4338 for_each_node_state(node, N_NORMAL_MEMORY) {
4339 struct kmem_cache_node *n = get_node(s, node);
4340
d0e0ac97
CG
4341 if (flags & SO_TOTAL)
4342 x = atomic_long_read(&n->total_objects);
4343 else if (flags & SO_OBJECTS)
4344 x = atomic_long_read(&n->total_objects) -
4345 count_partial(n, count_free);
81819f0f 4346 else
205ab99d 4347 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4348 total += x;
4349 nodes[node] += x;
4350 }
4351
ab4d5ed5
CL
4352 } else
4353#endif
4354 if (flags & SO_PARTIAL) {
205ab99d
CL
4355 for_each_node_state(node, N_NORMAL_MEMORY) {
4356 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4357
205ab99d
CL
4358 if (flags & SO_TOTAL)
4359 x = count_partial(n, count_total);
4360 else if (flags & SO_OBJECTS)
4361 x = count_partial(n, count_inuse);
81819f0f 4362 else
205ab99d 4363 x = n->nr_partial;
81819f0f
CL
4364 total += x;
4365 nodes[node] += x;
4366 }
4367 }
81819f0f
CL
4368 x = sprintf(buf, "%lu", total);
4369#ifdef CONFIG_NUMA
f64dc58c 4370 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4371 if (nodes[node])
4372 x += sprintf(buf + x, " N%d=%lu",
4373 node, nodes[node]);
4374#endif
04d94879 4375 unlock_memory_hotplug();
81819f0f
CL
4376 kfree(nodes);
4377 return x + sprintf(buf + x, "\n");
4378}
4379
ab4d5ed5 4380#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4381static int any_slab_objects(struct kmem_cache *s)
4382{
4383 int node;
81819f0f 4384
dfb4f096 4385 for_each_online_node(node) {
81819f0f
CL
4386 struct kmem_cache_node *n = get_node(s, node);
4387
dfb4f096
CL
4388 if (!n)
4389 continue;
4390
4ea33e2d 4391 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4392 return 1;
4393 }
4394 return 0;
4395}
ab4d5ed5 4396#endif
81819f0f
CL
4397
4398#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4399#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4400
4401struct slab_attribute {
4402 struct attribute attr;
4403 ssize_t (*show)(struct kmem_cache *s, char *buf);
4404 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4405};
4406
4407#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4408 static struct slab_attribute _name##_attr = \
4409 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4410
4411#define SLAB_ATTR(_name) \
4412 static struct slab_attribute _name##_attr = \
ab067e99 4413 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4414
81819f0f
CL
4415static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4416{
4417 return sprintf(buf, "%d\n", s->size);
4418}
4419SLAB_ATTR_RO(slab_size);
4420
4421static ssize_t align_show(struct kmem_cache *s, char *buf)
4422{
4423 return sprintf(buf, "%d\n", s->align);
4424}
4425SLAB_ATTR_RO(align);
4426
4427static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4428{
3b0efdfa 4429 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4430}
4431SLAB_ATTR_RO(object_size);
4432
4433static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4434{
834f3d11 4435 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4436}
4437SLAB_ATTR_RO(objs_per_slab);
4438
06b285dc
CL
4439static ssize_t order_store(struct kmem_cache *s,
4440 const char *buf, size_t length)
4441{
0121c619
CL
4442 unsigned long order;
4443 int err;
4444
3dbb95f7 4445 err = kstrtoul(buf, 10, &order);
0121c619
CL
4446 if (err)
4447 return err;
06b285dc
CL
4448
4449 if (order > slub_max_order || order < slub_min_order)
4450 return -EINVAL;
4451
4452 calculate_sizes(s, order);
4453 return length;
4454}
4455
81819f0f
CL
4456static ssize_t order_show(struct kmem_cache *s, char *buf)
4457{
834f3d11 4458 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4459}
06b285dc 4460SLAB_ATTR(order);
81819f0f 4461
73d342b1
DR
4462static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4463{
4464 return sprintf(buf, "%lu\n", s->min_partial);
4465}
4466
4467static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4468 size_t length)
4469{
4470 unsigned long min;
4471 int err;
4472
3dbb95f7 4473 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4474 if (err)
4475 return err;
4476
c0bdb232 4477 set_min_partial(s, min);
73d342b1
DR
4478 return length;
4479}
4480SLAB_ATTR(min_partial);
4481
49e22585
CL
4482static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4483{
4484 return sprintf(buf, "%u\n", s->cpu_partial);
4485}
4486
4487static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4488 size_t length)
4489{
4490 unsigned long objects;
4491 int err;
4492
3dbb95f7 4493 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4494 if (err)
4495 return err;
345c905d 4496 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4497 return -EINVAL;
49e22585
CL
4498
4499 s->cpu_partial = objects;
4500 flush_all(s);
4501 return length;
4502}
4503SLAB_ATTR(cpu_partial);
4504
81819f0f
CL
4505static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4506{
62c70bce
JP
4507 if (!s->ctor)
4508 return 0;
4509 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4510}
4511SLAB_ATTR_RO(ctor);
4512
81819f0f
CL
4513static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4514{
4515 return sprintf(buf, "%d\n", s->refcount - 1);
4516}
4517SLAB_ATTR_RO(aliases);
4518
81819f0f
CL
4519static ssize_t partial_show(struct kmem_cache *s, char *buf)
4520{
d9acf4b7 4521 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4522}
4523SLAB_ATTR_RO(partial);
4524
4525static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4526{
d9acf4b7 4527 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4528}
4529SLAB_ATTR_RO(cpu_slabs);
4530
4531static ssize_t objects_show(struct kmem_cache *s, char *buf)
4532{
205ab99d 4533 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4534}
4535SLAB_ATTR_RO(objects);
4536
205ab99d
CL
4537static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4538{
4539 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4540}
4541SLAB_ATTR_RO(objects_partial);
4542
49e22585
CL
4543static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4544{
4545 int objects = 0;
4546 int pages = 0;
4547 int cpu;
4548 int len;
4549
4550 for_each_online_cpu(cpu) {
4551 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4552
4553 if (page) {
4554 pages += page->pages;
4555 objects += page->pobjects;
4556 }
4557 }
4558
4559 len = sprintf(buf, "%d(%d)", objects, pages);
4560
4561#ifdef CONFIG_SMP
4562 for_each_online_cpu(cpu) {
4563 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4564
4565 if (page && len < PAGE_SIZE - 20)
4566 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4567 page->pobjects, page->pages);
4568 }
4569#endif
4570 return len + sprintf(buf + len, "\n");
4571}
4572SLAB_ATTR_RO(slabs_cpu_partial);
4573
a5a84755
CL
4574static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4575{
4576 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4577}
4578
4579static ssize_t reclaim_account_store(struct kmem_cache *s,
4580 const char *buf, size_t length)
4581{
4582 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4583 if (buf[0] == '1')
4584 s->flags |= SLAB_RECLAIM_ACCOUNT;
4585 return length;
4586}
4587SLAB_ATTR(reclaim_account);
4588
4589static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4590{
4591 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4592}
4593SLAB_ATTR_RO(hwcache_align);
4594
4595#ifdef CONFIG_ZONE_DMA
4596static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4597{
4598 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4599}
4600SLAB_ATTR_RO(cache_dma);
4601#endif
4602
4603static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4604{
4605 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4606}
4607SLAB_ATTR_RO(destroy_by_rcu);
4608
ab9a0f19
LJ
4609static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4610{
4611 return sprintf(buf, "%d\n", s->reserved);
4612}
4613SLAB_ATTR_RO(reserved);
4614
ab4d5ed5 4615#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4616static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4617{
4618 return show_slab_objects(s, buf, SO_ALL);
4619}
4620SLAB_ATTR_RO(slabs);
4621
205ab99d
CL
4622static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4623{
4624 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4625}
4626SLAB_ATTR_RO(total_objects);
4627
81819f0f
CL
4628static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4629{
4630 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4631}
4632
4633static ssize_t sanity_checks_store(struct kmem_cache *s,
4634 const char *buf, size_t length)
4635{
4636 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4637 if (buf[0] == '1') {
4638 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4639 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4640 }
81819f0f
CL
4641 return length;
4642}
4643SLAB_ATTR(sanity_checks);
4644
4645static ssize_t trace_show(struct kmem_cache *s, char *buf)
4646{
4647 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4648}
4649
4650static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4651 size_t length)
4652{
4653 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4654 if (buf[0] == '1') {
4655 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4656 s->flags |= SLAB_TRACE;
b789ef51 4657 }
81819f0f
CL
4658 return length;
4659}
4660SLAB_ATTR(trace);
4661
81819f0f
CL
4662static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4663{
4664 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4665}
4666
4667static ssize_t red_zone_store(struct kmem_cache *s,
4668 const char *buf, size_t length)
4669{
4670 if (any_slab_objects(s))
4671 return -EBUSY;
4672
4673 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4674 if (buf[0] == '1') {
4675 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4676 s->flags |= SLAB_RED_ZONE;
b789ef51 4677 }
06b285dc 4678 calculate_sizes(s, -1);
81819f0f
CL
4679 return length;
4680}
4681SLAB_ATTR(red_zone);
4682
4683static ssize_t poison_show(struct kmem_cache *s, char *buf)
4684{
4685 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4686}
4687
4688static ssize_t poison_store(struct kmem_cache *s,
4689 const char *buf, size_t length)
4690{
4691 if (any_slab_objects(s))
4692 return -EBUSY;
4693
4694 s->flags &= ~SLAB_POISON;
b789ef51
CL
4695 if (buf[0] == '1') {
4696 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4697 s->flags |= SLAB_POISON;
b789ef51 4698 }
06b285dc 4699 calculate_sizes(s, -1);
81819f0f
CL
4700 return length;
4701}
4702SLAB_ATTR(poison);
4703
4704static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4705{
4706 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4707}
4708
4709static ssize_t store_user_store(struct kmem_cache *s,
4710 const char *buf, size_t length)
4711{
4712 if (any_slab_objects(s))
4713 return -EBUSY;
4714
4715 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4716 if (buf[0] == '1') {
4717 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4718 s->flags |= SLAB_STORE_USER;
b789ef51 4719 }
06b285dc 4720 calculate_sizes(s, -1);
81819f0f
CL
4721 return length;
4722}
4723SLAB_ATTR(store_user);
4724
53e15af0
CL
4725static ssize_t validate_show(struct kmem_cache *s, char *buf)
4726{
4727 return 0;
4728}
4729
4730static ssize_t validate_store(struct kmem_cache *s,
4731 const char *buf, size_t length)
4732{
434e245d
CL
4733 int ret = -EINVAL;
4734
4735 if (buf[0] == '1') {
4736 ret = validate_slab_cache(s);
4737 if (ret >= 0)
4738 ret = length;
4739 }
4740 return ret;
53e15af0
CL
4741}
4742SLAB_ATTR(validate);
a5a84755
CL
4743
4744static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4745{
4746 if (!(s->flags & SLAB_STORE_USER))
4747 return -ENOSYS;
4748 return list_locations(s, buf, TRACK_ALLOC);
4749}
4750SLAB_ATTR_RO(alloc_calls);
4751
4752static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4753{
4754 if (!(s->flags & SLAB_STORE_USER))
4755 return -ENOSYS;
4756 return list_locations(s, buf, TRACK_FREE);
4757}
4758SLAB_ATTR_RO(free_calls);
4759#endif /* CONFIG_SLUB_DEBUG */
4760
4761#ifdef CONFIG_FAILSLAB
4762static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4763{
4764 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4765}
4766
4767static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4768 size_t length)
4769{
4770 s->flags &= ~SLAB_FAILSLAB;
4771 if (buf[0] == '1')
4772 s->flags |= SLAB_FAILSLAB;
4773 return length;
4774}
4775SLAB_ATTR(failslab);
ab4d5ed5 4776#endif
53e15af0 4777
2086d26a
CL
4778static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4779{
4780 return 0;
4781}
4782
4783static ssize_t shrink_store(struct kmem_cache *s,
4784 const char *buf, size_t length)
4785{
4786 if (buf[0] == '1') {
4787 int rc = kmem_cache_shrink(s);
4788
4789 if (rc)
4790 return rc;
4791 } else
4792 return -EINVAL;
4793 return length;
4794}
4795SLAB_ATTR(shrink);
4796
81819f0f 4797#ifdef CONFIG_NUMA
9824601e 4798static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4799{
9824601e 4800 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4801}
4802
9824601e 4803static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4804 const char *buf, size_t length)
4805{
0121c619
CL
4806 unsigned long ratio;
4807 int err;
4808
3dbb95f7 4809 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4810 if (err)
4811 return err;
4812
e2cb96b7 4813 if (ratio <= 100)
0121c619 4814 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4815
81819f0f
CL
4816 return length;
4817}
9824601e 4818SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4819#endif
4820
8ff12cfc 4821#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4822static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4823{
4824 unsigned long sum = 0;
4825 int cpu;
4826 int len;
4827 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4828
4829 if (!data)
4830 return -ENOMEM;
4831
4832 for_each_online_cpu(cpu) {
9dfc6e68 4833 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4834
4835 data[cpu] = x;
4836 sum += x;
4837 }
4838
4839 len = sprintf(buf, "%lu", sum);
4840
50ef37b9 4841#ifdef CONFIG_SMP
8ff12cfc
CL
4842 for_each_online_cpu(cpu) {
4843 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4844 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4845 }
50ef37b9 4846#endif
8ff12cfc
CL
4847 kfree(data);
4848 return len + sprintf(buf + len, "\n");
4849}
4850
78eb00cc
DR
4851static void clear_stat(struct kmem_cache *s, enum stat_item si)
4852{
4853 int cpu;
4854
4855 for_each_online_cpu(cpu)
9dfc6e68 4856 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4857}
4858
8ff12cfc
CL
4859#define STAT_ATTR(si, text) \
4860static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4861{ \
4862 return show_stat(s, buf, si); \
4863} \
78eb00cc
DR
4864static ssize_t text##_store(struct kmem_cache *s, \
4865 const char *buf, size_t length) \
4866{ \
4867 if (buf[0] != '0') \
4868 return -EINVAL; \
4869 clear_stat(s, si); \
4870 return length; \
4871} \
4872SLAB_ATTR(text); \
8ff12cfc
CL
4873
4874STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4875STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4876STAT_ATTR(FREE_FASTPATH, free_fastpath);
4877STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4878STAT_ATTR(FREE_FROZEN, free_frozen);
4879STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4880STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4881STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4882STAT_ATTR(ALLOC_SLAB, alloc_slab);
4883STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4884STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4885STAT_ATTR(FREE_SLAB, free_slab);
4886STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4887STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4888STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4889STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4890STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4891STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4892STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4893STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4894STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4895STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4896STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4897STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4898STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4899STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4900#endif
4901
06428780 4902static struct attribute *slab_attrs[] = {
81819f0f
CL
4903 &slab_size_attr.attr,
4904 &object_size_attr.attr,
4905 &objs_per_slab_attr.attr,
4906 &order_attr.attr,
73d342b1 4907 &min_partial_attr.attr,
49e22585 4908 &cpu_partial_attr.attr,
81819f0f 4909 &objects_attr.attr,
205ab99d 4910 &objects_partial_attr.attr,
81819f0f
CL
4911 &partial_attr.attr,
4912 &cpu_slabs_attr.attr,
4913 &ctor_attr.attr,
81819f0f
CL
4914 &aliases_attr.attr,
4915 &align_attr.attr,
81819f0f
CL
4916 &hwcache_align_attr.attr,
4917 &reclaim_account_attr.attr,
4918 &destroy_by_rcu_attr.attr,
a5a84755 4919 &shrink_attr.attr,
ab9a0f19 4920 &reserved_attr.attr,
49e22585 4921 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4922#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4923 &total_objects_attr.attr,
4924 &slabs_attr.attr,
4925 &sanity_checks_attr.attr,
4926 &trace_attr.attr,
81819f0f
CL
4927 &red_zone_attr.attr,
4928 &poison_attr.attr,
4929 &store_user_attr.attr,
53e15af0 4930 &validate_attr.attr,
88a420e4
CL
4931 &alloc_calls_attr.attr,
4932 &free_calls_attr.attr,
ab4d5ed5 4933#endif
81819f0f
CL
4934#ifdef CONFIG_ZONE_DMA
4935 &cache_dma_attr.attr,
4936#endif
4937#ifdef CONFIG_NUMA
9824601e 4938 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4939#endif
4940#ifdef CONFIG_SLUB_STATS
4941 &alloc_fastpath_attr.attr,
4942 &alloc_slowpath_attr.attr,
4943 &free_fastpath_attr.attr,
4944 &free_slowpath_attr.attr,
4945 &free_frozen_attr.attr,
4946 &free_add_partial_attr.attr,
4947 &free_remove_partial_attr.attr,
4948 &alloc_from_partial_attr.attr,
4949 &alloc_slab_attr.attr,
4950 &alloc_refill_attr.attr,
e36a2652 4951 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4952 &free_slab_attr.attr,
4953 &cpuslab_flush_attr.attr,
4954 &deactivate_full_attr.attr,
4955 &deactivate_empty_attr.attr,
4956 &deactivate_to_head_attr.attr,
4957 &deactivate_to_tail_attr.attr,
4958 &deactivate_remote_frees_attr.attr,
03e404af 4959 &deactivate_bypass_attr.attr,
65c3376a 4960 &order_fallback_attr.attr,
b789ef51
CL
4961 &cmpxchg_double_fail_attr.attr,
4962 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4963 &cpu_partial_alloc_attr.attr,
4964 &cpu_partial_free_attr.attr,
8028dcea
AS
4965 &cpu_partial_node_attr.attr,
4966 &cpu_partial_drain_attr.attr,
81819f0f 4967#endif
4c13dd3b
DM
4968#ifdef CONFIG_FAILSLAB
4969 &failslab_attr.attr,
4970#endif
4971
81819f0f
CL
4972 NULL
4973};
4974
4975static struct attribute_group slab_attr_group = {
4976 .attrs = slab_attrs,
4977};
4978
4979static ssize_t slab_attr_show(struct kobject *kobj,
4980 struct attribute *attr,
4981 char *buf)
4982{
4983 struct slab_attribute *attribute;
4984 struct kmem_cache *s;
4985 int err;
4986
4987 attribute = to_slab_attr(attr);
4988 s = to_slab(kobj);
4989
4990 if (!attribute->show)
4991 return -EIO;
4992
4993 err = attribute->show(s, buf);
4994
4995 return err;
4996}
4997
4998static ssize_t slab_attr_store(struct kobject *kobj,
4999 struct attribute *attr,
5000 const char *buf, size_t len)
5001{
5002 struct slab_attribute *attribute;
5003 struct kmem_cache *s;
5004 int err;
5005
5006 attribute = to_slab_attr(attr);
5007 s = to_slab(kobj);
5008
5009 if (!attribute->store)
5010 return -EIO;
5011
5012 err = attribute->store(s, buf, len);
107dab5c
GC
5013#ifdef CONFIG_MEMCG_KMEM
5014 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5015 int i;
81819f0f 5016
107dab5c
GC
5017 mutex_lock(&slab_mutex);
5018 if (s->max_attr_size < len)
5019 s->max_attr_size = len;
5020
ebe945c2
GC
5021 /*
5022 * This is a best effort propagation, so this function's return
5023 * value will be determined by the parent cache only. This is
5024 * basically because not all attributes will have a well
5025 * defined semantics for rollbacks - most of the actions will
5026 * have permanent effects.
5027 *
5028 * Returning the error value of any of the children that fail
5029 * is not 100 % defined, in the sense that users seeing the
5030 * error code won't be able to know anything about the state of
5031 * the cache.
5032 *
5033 * Only returning the error code for the parent cache at least
5034 * has well defined semantics. The cache being written to
5035 * directly either failed or succeeded, in which case we loop
5036 * through the descendants with best-effort propagation.
5037 */
107dab5c 5038 for_each_memcg_cache_index(i) {
2ade4de8 5039 struct kmem_cache *c = cache_from_memcg_idx(s, i);
107dab5c
GC
5040 if (c)
5041 attribute->store(c, buf, len);
5042 }
5043 mutex_unlock(&slab_mutex);
5044 }
5045#endif
81819f0f
CL
5046 return err;
5047}
5048
107dab5c
GC
5049static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5050{
5051#ifdef CONFIG_MEMCG_KMEM
5052 int i;
5053 char *buffer = NULL;
93030d83 5054 struct kmem_cache *root_cache;
107dab5c 5055
93030d83 5056 if (is_root_cache(s))
107dab5c
GC
5057 return;
5058
93030d83
VD
5059 root_cache = s->memcg_params->root_cache;
5060
107dab5c
GC
5061 /*
5062 * This mean this cache had no attribute written. Therefore, no point
5063 * in copying default values around
5064 */
93030d83 5065 if (!root_cache->max_attr_size)
107dab5c
GC
5066 return;
5067
5068 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5069 char mbuf[64];
5070 char *buf;
5071 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5072
5073 if (!attr || !attr->store || !attr->show)
5074 continue;
5075
5076 /*
5077 * It is really bad that we have to allocate here, so we will
5078 * do it only as a fallback. If we actually allocate, though,
5079 * we can just use the allocated buffer until the end.
5080 *
5081 * Most of the slub attributes will tend to be very small in
5082 * size, but sysfs allows buffers up to a page, so they can
5083 * theoretically happen.
5084 */
5085 if (buffer)
5086 buf = buffer;
93030d83 5087 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5088 buf = mbuf;
5089 else {
5090 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5091 if (WARN_ON(!buffer))
5092 continue;
5093 buf = buffer;
5094 }
5095
93030d83 5096 attr->show(root_cache, buf);
107dab5c
GC
5097 attr->store(s, buf, strlen(buf));
5098 }
5099
5100 if (buffer)
5101 free_page((unsigned long)buffer);
5102#endif
5103}
5104
41a21285
CL
5105static void kmem_cache_release(struct kobject *k)
5106{
5107 slab_kmem_cache_release(to_slab(k));
5108}
5109
52cf25d0 5110static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5111 .show = slab_attr_show,
5112 .store = slab_attr_store,
5113};
5114
5115static struct kobj_type slab_ktype = {
5116 .sysfs_ops = &slab_sysfs_ops,
41a21285 5117 .release = kmem_cache_release,
81819f0f
CL
5118};
5119
5120static int uevent_filter(struct kset *kset, struct kobject *kobj)
5121{
5122 struct kobj_type *ktype = get_ktype(kobj);
5123
5124 if (ktype == &slab_ktype)
5125 return 1;
5126 return 0;
5127}
5128
9cd43611 5129static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5130 .filter = uevent_filter,
5131};
5132
27c3a314 5133static struct kset *slab_kset;
81819f0f 5134
9a41707b
VD
5135static inline struct kset *cache_kset(struct kmem_cache *s)
5136{
5137#ifdef CONFIG_MEMCG_KMEM
5138 if (!is_root_cache(s))
5139 return s->memcg_params->root_cache->memcg_kset;
5140#endif
5141 return slab_kset;
5142}
5143
81819f0f
CL
5144#define ID_STR_LENGTH 64
5145
5146/* Create a unique string id for a slab cache:
6446faa2
CL
5147 *
5148 * Format :[flags-]size
81819f0f
CL
5149 */
5150static char *create_unique_id(struct kmem_cache *s)
5151{
5152 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5153 char *p = name;
5154
5155 BUG_ON(!name);
5156
5157 *p++ = ':';
5158 /*
5159 * First flags affecting slabcache operations. We will only
5160 * get here for aliasable slabs so we do not need to support
5161 * too many flags. The flags here must cover all flags that
5162 * are matched during merging to guarantee that the id is
5163 * unique.
5164 */
5165 if (s->flags & SLAB_CACHE_DMA)
5166 *p++ = 'd';
5167 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5168 *p++ = 'a';
5169 if (s->flags & SLAB_DEBUG_FREE)
5170 *p++ = 'F';
5a896d9e
VN
5171 if (!(s->flags & SLAB_NOTRACK))
5172 *p++ = 't';
81819f0f
CL
5173 if (p != name + 1)
5174 *p++ = '-';
5175 p += sprintf(p, "%07d", s->size);
2633d7a0
GC
5176
5177#ifdef CONFIG_MEMCG_KMEM
5178 if (!is_root_cache(s))
d0e0ac97
CG
5179 p += sprintf(p, "-%08d",
5180 memcg_cache_id(s->memcg_params->memcg));
2633d7a0
GC
5181#endif
5182
81819f0f
CL
5183 BUG_ON(p > name + ID_STR_LENGTH - 1);
5184 return name;
5185}
5186
5187static int sysfs_slab_add(struct kmem_cache *s)
5188{
5189 int err;
5190 const char *name;
45530c44 5191 int unmergeable = slab_unmergeable(s);
81819f0f 5192
81819f0f
CL
5193 if (unmergeable) {
5194 /*
5195 * Slabcache can never be merged so we can use the name proper.
5196 * This is typically the case for debug situations. In that
5197 * case we can catch duplicate names easily.
5198 */
27c3a314 5199 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5200 name = s->name;
5201 } else {
5202 /*
5203 * Create a unique name for the slab as a target
5204 * for the symlinks.
5205 */
5206 name = create_unique_id(s);
5207 }
5208
9a41707b 5209 s->kobj.kset = cache_kset(s);
26e4f205 5210 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5211 if (err)
5212 goto out_put_kobj;
81819f0f
CL
5213
5214 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5215 if (err)
5216 goto out_del_kobj;
9a41707b
VD
5217
5218#ifdef CONFIG_MEMCG_KMEM
5219 if (is_root_cache(s)) {
5220 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5221 if (!s->memcg_kset) {
54b6a731
DJ
5222 err = -ENOMEM;
5223 goto out_del_kobj;
9a41707b
VD
5224 }
5225 }
5226#endif
5227
81819f0f
CL
5228 kobject_uevent(&s->kobj, KOBJ_ADD);
5229 if (!unmergeable) {
5230 /* Setup first alias */
5231 sysfs_slab_alias(s, s->name);
81819f0f 5232 }
54b6a731
DJ
5233out:
5234 if (!unmergeable)
5235 kfree(name);
5236 return err;
5237out_del_kobj:
5238 kobject_del(&s->kobj);
5239out_put_kobj:
5240 kobject_put(&s->kobj);
5241 goto out;
81819f0f
CL
5242}
5243
41a21285 5244void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5245{
97d06609 5246 if (slab_state < FULL)
2bce6485
CL
5247 /*
5248 * Sysfs has not been setup yet so no need to remove the
5249 * cache from sysfs.
5250 */
5251 return;
5252
9a41707b
VD
5253#ifdef CONFIG_MEMCG_KMEM
5254 kset_unregister(s->memcg_kset);
5255#endif
81819f0f
CL
5256 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5257 kobject_del(&s->kobj);
151c602f 5258 kobject_put(&s->kobj);
81819f0f
CL
5259}
5260
5261/*
5262 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5263 * available lest we lose that information.
81819f0f
CL
5264 */
5265struct saved_alias {
5266 struct kmem_cache *s;
5267 const char *name;
5268 struct saved_alias *next;
5269};
5270
5af328a5 5271static struct saved_alias *alias_list;
81819f0f
CL
5272
5273static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5274{
5275 struct saved_alias *al;
5276
97d06609 5277 if (slab_state == FULL) {
81819f0f
CL
5278 /*
5279 * If we have a leftover link then remove it.
5280 */
27c3a314
GKH
5281 sysfs_remove_link(&slab_kset->kobj, name);
5282 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5283 }
5284
5285 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5286 if (!al)
5287 return -ENOMEM;
5288
5289 al->s = s;
5290 al->name = name;
5291 al->next = alias_list;
5292 alias_list = al;
5293 return 0;
5294}
5295
5296static int __init slab_sysfs_init(void)
5297{
5b95a4ac 5298 struct kmem_cache *s;
81819f0f
CL
5299 int err;
5300
18004c5d 5301 mutex_lock(&slab_mutex);
2bce6485 5302
0ff21e46 5303 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5304 if (!slab_kset) {
18004c5d 5305 mutex_unlock(&slab_mutex);
f9f58285 5306 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5307 return -ENOSYS;
5308 }
5309
97d06609 5310 slab_state = FULL;
26a7bd03 5311
5b95a4ac 5312 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5313 err = sysfs_slab_add(s);
5d540fb7 5314 if (err)
f9f58285
FF
5315 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5316 s->name);
26a7bd03 5317 }
81819f0f
CL
5318
5319 while (alias_list) {
5320 struct saved_alias *al = alias_list;
5321
5322 alias_list = alias_list->next;
5323 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5324 if (err)
f9f58285
FF
5325 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5326 al->name);
81819f0f
CL
5327 kfree(al);
5328 }
5329
18004c5d 5330 mutex_unlock(&slab_mutex);
81819f0f
CL
5331 resiliency_test();
5332 return 0;
5333}
5334
5335__initcall(slab_sysfs_init);
ab4d5ed5 5336#endif /* CONFIG_SYSFS */
57ed3eda
PE
5337
5338/*
5339 * The /proc/slabinfo ABI
5340 */
158a9624 5341#ifdef CONFIG_SLABINFO
0d7561c6 5342void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5343{
57ed3eda 5344 unsigned long nr_slabs = 0;
205ab99d
CL
5345 unsigned long nr_objs = 0;
5346 unsigned long nr_free = 0;
57ed3eda
PE
5347 int node;
5348
57ed3eda
PE
5349 for_each_online_node(node) {
5350 struct kmem_cache_node *n = get_node(s, node);
5351
5352 if (!n)
5353 continue;
5354
c17fd13e
WL
5355 nr_slabs += node_nr_slabs(n);
5356 nr_objs += node_nr_objs(n);
205ab99d 5357 nr_free += count_partial(n, count_free);
57ed3eda
PE
5358 }
5359
0d7561c6
GC
5360 sinfo->active_objs = nr_objs - nr_free;
5361 sinfo->num_objs = nr_objs;
5362 sinfo->active_slabs = nr_slabs;
5363 sinfo->num_slabs = nr_slabs;
5364 sinfo->objects_per_slab = oo_objects(s->oo);
5365 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5366}
5367
0d7561c6 5368void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5369{
7b3c3a50
AD
5370}
5371
b7454ad3
GC
5372ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5373 size_t count, loff_t *ppos)
7b3c3a50 5374{
b7454ad3 5375 return -EIO;
7b3c3a50 5376}
158a9624 5377#endif /* CONFIG_SLABINFO */