mm: slab.h: wrap the whole file with guarding macro
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
81819f0f
CL
172/*
173 * Set of flags that will prevent slab merging
174 */
175#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
81819f0f
CL
178
179#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 180 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 181
210b5c06
CG
182#define OO_SHIFT 16
183#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 184#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 185
81819f0f 186/* Internal SLUB flags */
f90ec390 187#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 188#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 189
81819f0f
CL
190#ifdef CONFIG_SMP
191static struct notifier_block slab_notifier;
192#endif
193
02cbc874
CL
194/*
195 * Tracking user of a slab.
196 */
d6543e39 197#define TRACK_ADDRS_COUNT 16
02cbc874 198struct track {
ce71e27c 199 unsigned long addr; /* Called from address */
d6543e39
BG
200#ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202#endif
02cbc874
CL
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206};
207
208enum track_item { TRACK_ALLOC, TRACK_FREE };
209
ab4d5ed5 210#ifdef CONFIG_SYSFS
81819f0f
CL
211static int sysfs_slab_add(struct kmem_cache *);
212static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 213static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 214#else
0c710013
CL
215static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
216static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
217 { return 0; }
107dab5c 218static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
219#endif
220
4fdccdfb 221static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
222{
223#ifdef CONFIG_SLUB_STATS
88da03a6
CL
224 /*
225 * The rmw is racy on a preemptible kernel but this is acceptable, so
226 * avoid this_cpu_add()'s irq-disable overhead.
227 */
228 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
229#endif
230}
231
81819f0f
CL
232/********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
235
6446faa2 236/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
237static inline int check_valid_pointer(struct kmem_cache *s,
238 struct page *page, const void *object)
239{
240 void *base;
241
a973e9dd 242 if (!object)
02cbc874
CL
243 return 1;
244
a973e9dd 245 base = page_address(page);
39b26464 246 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
247 (object - base) % s->size) {
248 return 0;
249 }
250
251 return 1;
252}
253
7656c72b
CL
254static inline void *get_freepointer(struct kmem_cache *s, void *object)
255{
256 return *(void **)(object + s->offset);
257}
258
0ad9500e
ED
259static void prefetch_freepointer(const struct kmem_cache *s, void *object)
260{
261 prefetch(object + s->offset);
262}
263
1393d9a1
CL
264static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
265{
266 void *p;
267
268#ifdef CONFIG_DEBUG_PAGEALLOC
269 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
270#else
271 p = get_freepointer(s, object);
272#endif
273 return p;
274}
275
7656c72b
CL
276static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277{
278 *(void **)(object + s->offset) = fp;
279}
280
281/* Loop over all objects in a slab */
224a88be
CL
282#define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
284 __p += (__s)->size)
285
7656c72b
CL
286/* Determine object index from a given position */
287static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
288{
289 return (p - addr) / s->size;
290}
291
d71f606f
MK
292static inline size_t slab_ksize(const struct kmem_cache *s)
293{
294#ifdef CONFIG_SLUB_DEBUG
295 /*
296 * Debugging requires use of the padding between object
297 * and whatever may come after it.
298 */
299 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 300 return s->object_size;
d71f606f
MK
301
302#endif
303 /*
304 * If we have the need to store the freelist pointer
305 * back there or track user information then we can
306 * only use the space before that information.
307 */
308 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
309 return s->inuse;
310 /*
311 * Else we can use all the padding etc for the allocation
312 */
313 return s->size;
314}
315
ab9a0f19
LJ
316static inline int order_objects(int order, unsigned long size, int reserved)
317{
318 return ((PAGE_SIZE << order) - reserved) / size;
319}
320
834f3d11 321static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 322 unsigned long size, int reserved)
834f3d11
CL
323{
324 struct kmem_cache_order_objects x = {
ab9a0f19 325 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
326 };
327
328 return x;
329}
330
331static inline int oo_order(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x >> OO_SHIFT;
834f3d11
CL
334}
335
336static inline int oo_objects(struct kmem_cache_order_objects x)
337{
210b5c06 338 return x.x & OO_MASK;
834f3d11
CL
339}
340
881db7fb
CL
341/*
342 * Per slab locking using the pagelock
343 */
344static __always_inline void slab_lock(struct page *page)
345{
346 bit_spin_lock(PG_locked, &page->flags);
347}
348
349static __always_inline void slab_unlock(struct page *page)
350{
351 __bit_spin_unlock(PG_locked, &page->flags);
352}
353
a0320865
DH
354static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
355{
356 struct page tmp;
357 tmp.counters = counters_new;
358 /*
359 * page->counters can cover frozen/inuse/objects as well
360 * as page->_count. If we assign to ->counters directly
361 * we run the risk of losing updates to page->_count, so
362 * be careful and only assign to the fields we need.
363 */
364 page->frozen = tmp.frozen;
365 page->inuse = tmp.inuse;
366 page->objects = tmp.objects;
367}
368
1d07171c
CL
369/* Interrupts must be disabled (for the fallback code to work right) */
370static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
371 void *freelist_old, unsigned long counters_old,
372 void *freelist_new, unsigned long counters_new,
373 const char *n)
374{
375 VM_BUG_ON(!irqs_disabled());
2565409f
HC
376#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
377 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 378 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 379 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
380 freelist_old, counters_old,
381 freelist_new, counters_new))
382 return 1;
383 } else
384#endif
385 {
386 slab_lock(page);
d0e0ac97
CG
387 if (page->freelist == freelist_old &&
388 page->counters == counters_old) {
1d07171c 389 page->freelist = freelist_new;
a0320865 390 set_page_slub_counters(page, counters_new);
1d07171c
CL
391 slab_unlock(page);
392 return 1;
393 }
394 slab_unlock(page);
395 }
396
397 cpu_relax();
398 stat(s, CMPXCHG_DOUBLE_FAIL);
399
400#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 401 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
402#endif
403
404 return 0;
405}
406
b789ef51
CL
407static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
408 void *freelist_old, unsigned long counters_old,
409 void *freelist_new, unsigned long counters_new,
410 const char *n)
411{
2565409f
HC
412#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
413 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 414 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 415 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
416 freelist_old, counters_old,
417 freelist_new, counters_new))
418 return 1;
419 } else
420#endif
421 {
1d07171c
CL
422 unsigned long flags;
423
424 local_irq_save(flags);
881db7fb 425 slab_lock(page);
d0e0ac97
CG
426 if (page->freelist == freelist_old &&
427 page->counters == counters_old) {
b789ef51 428 page->freelist = freelist_new;
a0320865 429 set_page_slub_counters(page, counters_new);
881db7fb 430 slab_unlock(page);
1d07171c 431 local_irq_restore(flags);
b789ef51
CL
432 return 1;
433 }
881db7fb 434 slab_unlock(page);
1d07171c 435 local_irq_restore(flags);
b789ef51
CL
436 }
437
438 cpu_relax();
439 stat(s, CMPXCHG_DOUBLE_FAIL);
440
441#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 442 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
443#endif
444
445 return 0;
446}
447
41ecc55b 448#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
449/*
450 * Determine a map of object in use on a page.
451 *
881db7fb 452 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
453 * not vanish from under us.
454 */
455static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
456{
457 void *p;
458 void *addr = page_address(page);
459
460 for (p = page->freelist; p; p = get_freepointer(s, p))
461 set_bit(slab_index(p, s, addr), map);
462}
463
41ecc55b
CL
464/*
465 * Debug settings:
466 */
f0630fff
CL
467#ifdef CONFIG_SLUB_DEBUG_ON
468static int slub_debug = DEBUG_DEFAULT_FLAGS;
469#else
41ecc55b 470static int slub_debug;
f0630fff 471#endif
41ecc55b
CL
472
473static char *slub_debug_slabs;
fa5ec8a1 474static int disable_higher_order_debug;
41ecc55b 475
81819f0f
CL
476/*
477 * Object debugging
478 */
479static void print_section(char *text, u8 *addr, unsigned int length)
480{
ffc79d28
SAS
481 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
482 length, 1);
81819f0f
CL
483}
484
81819f0f
CL
485static struct track *get_track(struct kmem_cache *s, void *object,
486 enum track_item alloc)
487{
488 struct track *p;
489
490 if (s->offset)
491 p = object + s->offset + sizeof(void *);
492 else
493 p = object + s->inuse;
494
495 return p + alloc;
496}
497
498static void set_track(struct kmem_cache *s, void *object,
ce71e27c 499 enum track_item alloc, unsigned long addr)
81819f0f 500{
1a00df4a 501 struct track *p = get_track(s, object, alloc);
81819f0f 502
81819f0f 503 if (addr) {
d6543e39
BG
504#ifdef CONFIG_STACKTRACE
505 struct stack_trace trace;
506 int i;
507
508 trace.nr_entries = 0;
509 trace.max_entries = TRACK_ADDRS_COUNT;
510 trace.entries = p->addrs;
511 trace.skip = 3;
512 save_stack_trace(&trace);
513
514 /* See rant in lockdep.c */
515 if (trace.nr_entries != 0 &&
516 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
517 trace.nr_entries--;
518
519 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
520 p->addrs[i] = 0;
521#endif
81819f0f
CL
522 p->addr = addr;
523 p->cpu = smp_processor_id();
88e4ccf2 524 p->pid = current->pid;
81819f0f
CL
525 p->when = jiffies;
526 } else
527 memset(p, 0, sizeof(struct track));
528}
529
81819f0f
CL
530static void init_tracking(struct kmem_cache *s, void *object)
531{
24922684
CL
532 if (!(s->flags & SLAB_STORE_USER))
533 return;
534
ce71e27c
EGM
535 set_track(s, object, TRACK_FREE, 0UL);
536 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
537}
538
539static void print_track(const char *s, struct track *t)
540{
541 if (!t->addr)
542 return;
543
f9f58285
FF
544 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
545 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
546#ifdef CONFIG_STACKTRACE
547 {
548 int i;
549 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
550 if (t->addrs[i])
f9f58285 551 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
552 else
553 break;
554 }
555#endif
24922684
CL
556}
557
558static void print_tracking(struct kmem_cache *s, void *object)
559{
560 if (!(s->flags & SLAB_STORE_USER))
561 return;
562
563 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
564 print_track("Freed", get_track(s, object, TRACK_FREE));
565}
566
567static void print_page_info(struct page *page)
568{
f9f58285 569 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 570 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
571
572}
573
574static void slab_bug(struct kmem_cache *s, char *fmt, ...)
575{
ecc42fbe 576 struct va_format vaf;
24922684 577 va_list args;
24922684
CL
578
579 va_start(args, fmt);
ecc42fbe
FF
580 vaf.fmt = fmt;
581 vaf.va = &args;
f9f58285 582 pr_err("=============================================================================\n");
ecc42fbe 583 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 584 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 585
373d4d09 586 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 587 va_end(args);
81819f0f
CL
588}
589
24922684
CL
590static void slab_fix(struct kmem_cache *s, char *fmt, ...)
591{
ecc42fbe 592 struct va_format vaf;
24922684 593 va_list args;
24922684
CL
594
595 va_start(args, fmt);
ecc42fbe
FF
596 vaf.fmt = fmt;
597 vaf.va = &args;
598 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 599 va_end(args);
24922684
CL
600}
601
602static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
603{
604 unsigned int off; /* Offset of last byte */
a973e9dd 605 u8 *addr = page_address(page);
24922684
CL
606
607 print_tracking(s, p);
608
609 print_page_info(page);
610
f9f58285
FF
611 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
612 p, p - addr, get_freepointer(s, p));
24922684
CL
613
614 if (p > addr + 16)
ffc79d28 615 print_section("Bytes b4 ", p - 16, 16);
81819f0f 616
3b0efdfa 617 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 618 PAGE_SIZE));
81819f0f 619 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
620 print_section("Redzone ", p + s->object_size,
621 s->inuse - s->object_size);
81819f0f 622
81819f0f
CL
623 if (s->offset)
624 off = s->offset + sizeof(void *);
625 else
626 off = s->inuse;
627
24922684 628 if (s->flags & SLAB_STORE_USER)
81819f0f 629 off += 2 * sizeof(struct track);
81819f0f
CL
630
631 if (off != s->size)
632 /* Beginning of the filler is the free pointer */
ffc79d28 633 print_section("Padding ", p + off, s->size - off);
24922684
CL
634
635 dump_stack();
81819f0f
CL
636}
637
638static void object_err(struct kmem_cache *s, struct page *page,
639 u8 *object, char *reason)
640{
3dc50637 641 slab_bug(s, "%s", reason);
24922684 642 print_trailer(s, page, object);
81819f0f
CL
643}
644
d0e0ac97
CG
645static void slab_err(struct kmem_cache *s, struct page *page,
646 const char *fmt, ...)
81819f0f
CL
647{
648 va_list args;
649 char buf[100];
650
24922684
CL
651 va_start(args, fmt);
652 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 653 va_end(args);
3dc50637 654 slab_bug(s, "%s", buf);
24922684 655 print_page_info(page);
81819f0f
CL
656 dump_stack();
657}
658
f7cb1933 659static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
660{
661 u8 *p = object;
662
663 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
664 memset(p, POISON_FREE, s->object_size - 1);
665 p[s->object_size - 1] = POISON_END;
81819f0f
CL
666 }
667
668 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 669 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
670}
671
24922684
CL
672static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
673 void *from, void *to)
674{
675 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
676 memset(from, data, to - from);
677}
678
679static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
680 u8 *object, char *what,
06428780 681 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
682{
683 u8 *fault;
684 u8 *end;
685
79824820 686 fault = memchr_inv(start, value, bytes);
24922684
CL
687 if (!fault)
688 return 1;
689
690 end = start + bytes;
691 while (end > fault && end[-1] == value)
692 end--;
693
694 slab_bug(s, "%s overwritten", what);
f9f58285 695 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
696 fault, end - 1, fault[0], value);
697 print_trailer(s, page, object);
698
699 restore_bytes(s, what, value, fault, end);
700 return 0;
81819f0f
CL
701}
702
81819f0f
CL
703/*
704 * Object layout:
705 *
706 * object address
707 * Bytes of the object to be managed.
708 * If the freepointer may overlay the object then the free
709 * pointer is the first word of the object.
672bba3a 710 *
81819f0f
CL
711 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
712 * 0xa5 (POISON_END)
713 *
3b0efdfa 714 * object + s->object_size
81819f0f 715 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 716 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 717 * object_size == inuse.
672bba3a 718 *
81819f0f
CL
719 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
720 * 0xcc (RED_ACTIVE) for objects in use.
721 *
722 * object + s->inuse
672bba3a
CL
723 * Meta data starts here.
724 *
81819f0f
CL
725 * A. Free pointer (if we cannot overwrite object on free)
726 * B. Tracking data for SLAB_STORE_USER
672bba3a 727 * C. Padding to reach required alignment boundary or at mininum
6446faa2 728 * one word if debugging is on to be able to detect writes
672bba3a
CL
729 * before the word boundary.
730 *
731 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
732 *
733 * object + s->size
672bba3a 734 * Nothing is used beyond s->size.
81819f0f 735 *
3b0efdfa 736 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 737 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
738 * may be used with merged slabcaches.
739 */
740
81819f0f
CL
741static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
742{
743 unsigned long off = s->inuse; /* The end of info */
744
745 if (s->offset)
746 /* Freepointer is placed after the object. */
747 off += sizeof(void *);
748
749 if (s->flags & SLAB_STORE_USER)
750 /* We also have user information there */
751 off += 2 * sizeof(struct track);
752
753 if (s->size == off)
754 return 1;
755
24922684
CL
756 return check_bytes_and_report(s, page, p, "Object padding",
757 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
758}
759
39b26464 760/* Check the pad bytes at the end of a slab page */
81819f0f
CL
761static int slab_pad_check(struct kmem_cache *s, struct page *page)
762{
24922684
CL
763 u8 *start;
764 u8 *fault;
765 u8 *end;
766 int length;
767 int remainder;
81819f0f
CL
768
769 if (!(s->flags & SLAB_POISON))
770 return 1;
771
a973e9dd 772 start = page_address(page);
ab9a0f19 773 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
774 end = start + length;
775 remainder = length % s->size;
81819f0f
CL
776 if (!remainder)
777 return 1;
778
79824820 779 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
780 if (!fault)
781 return 1;
782 while (end > fault && end[-1] == POISON_INUSE)
783 end--;
784
785 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 786 print_section("Padding ", end - remainder, remainder);
24922684 787
8a3d271d 788 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 789 return 0;
81819f0f
CL
790}
791
792static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 793 void *object, u8 val)
81819f0f
CL
794{
795 u8 *p = object;
3b0efdfa 796 u8 *endobject = object + s->object_size;
81819f0f
CL
797
798 if (s->flags & SLAB_RED_ZONE) {
24922684 799 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 800 endobject, val, s->inuse - s->object_size))
81819f0f 801 return 0;
81819f0f 802 } else {
3b0efdfa 803 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 804 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
805 endobject, POISON_INUSE,
806 s->inuse - s->object_size);
3adbefee 807 }
81819f0f
CL
808 }
809
810 if (s->flags & SLAB_POISON) {
f7cb1933 811 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 812 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 813 POISON_FREE, s->object_size - 1) ||
24922684 814 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 815 p + s->object_size - 1, POISON_END, 1)))
81819f0f 816 return 0;
81819f0f
CL
817 /*
818 * check_pad_bytes cleans up on its own.
819 */
820 check_pad_bytes(s, page, p);
821 }
822
f7cb1933 823 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
824 /*
825 * Object and freepointer overlap. Cannot check
826 * freepointer while object is allocated.
827 */
828 return 1;
829
830 /* Check free pointer validity */
831 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
832 object_err(s, page, p, "Freepointer corrupt");
833 /*
9f6c708e 834 * No choice but to zap it and thus lose the remainder
81819f0f 835 * of the free objects in this slab. May cause
672bba3a 836 * another error because the object count is now wrong.
81819f0f 837 */
a973e9dd 838 set_freepointer(s, p, NULL);
81819f0f
CL
839 return 0;
840 }
841 return 1;
842}
843
844static int check_slab(struct kmem_cache *s, struct page *page)
845{
39b26464
CL
846 int maxobj;
847
81819f0f
CL
848 VM_BUG_ON(!irqs_disabled());
849
850 if (!PageSlab(page)) {
24922684 851 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
852 return 0;
853 }
39b26464 854
ab9a0f19 855 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
856 if (page->objects > maxobj) {
857 slab_err(s, page, "objects %u > max %u",
858 s->name, page->objects, maxobj);
859 return 0;
860 }
861 if (page->inuse > page->objects) {
24922684 862 slab_err(s, page, "inuse %u > max %u",
39b26464 863 s->name, page->inuse, page->objects);
81819f0f
CL
864 return 0;
865 }
866 /* Slab_pad_check fixes things up after itself */
867 slab_pad_check(s, page);
868 return 1;
869}
870
871/*
672bba3a
CL
872 * Determine if a certain object on a page is on the freelist. Must hold the
873 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
874 */
875static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
876{
877 int nr = 0;
881db7fb 878 void *fp;
81819f0f 879 void *object = NULL;
224a88be 880 unsigned long max_objects;
81819f0f 881
881db7fb 882 fp = page->freelist;
39b26464 883 while (fp && nr <= page->objects) {
81819f0f
CL
884 if (fp == search)
885 return 1;
886 if (!check_valid_pointer(s, page, fp)) {
887 if (object) {
888 object_err(s, page, object,
889 "Freechain corrupt");
a973e9dd 890 set_freepointer(s, object, NULL);
81819f0f 891 } else {
24922684 892 slab_err(s, page, "Freepointer corrupt");
a973e9dd 893 page->freelist = NULL;
39b26464 894 page->inuse = page->objects;
24922684 895 slab_fix(s, "Freelist cleared");
81819f0f
CL
896 return 0;
897 }
898 break;
899 }
900 object = fp;
901 fp = get_freepointer(s, object);
902 nr++;
903 }
904
ab9a0f19 905 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
906 if (max_objects > MAX_OBJS_PER_PAGE)
907 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
908
909 if (page->objects != max_objects) {
910 slab_err(s, page, "Wrong number of objects. Found %d but "
911 "should be %d", page->objects, max_objects);
912 page->objects = max_objects;
913 slab_fix(s, "Number of objects adjusted.");
914 }
39b26464 915 if (page->inuse != page->objects - nr) {
70d71228 916 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
917 "counted were %d", page->inuse, page->objects - nr);
918 page->inuse = page->objects - nr;
24922684 919 slab_fix(s, "Object count adjusted.");
81819f0f
CL
920 }
921 return search == NULL;
922}
923
0121c619
CL
924static void trace(struct kmem_cache *s, struct page *page, void *object,
925 int alloc)
3ec09742
CL
926{
927 if (s->flags & SLAB_TRACE) {
f9f58285 928 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
929 s->name,
930 alloc ? "alloc" : "free",
931 object, page->inuse,
932 page->freelist);
933
934 if (!alloc)
d0e0ac97
CG
935 print_section("Object ", (void *)object,
936 s->object_size);
3ec09742
CL
937
938 dump_stack();
939 }
940}
941
c016b0bd
CL
942/*
943 * Hooks for other subsystems that check memory allocations. In a typical
944 * production configuration these hooks all should produce no code at all.
945 */
d56791b3
RB
946static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
947{
948 kmemleak_alloc(ptr, size, 1, flags);
949}
950
951static inline void kfree_hook(const void *x)
952{
953 kmemleak_free(x);
954}
955
c016b0bd
CL
956static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
957{
c1d50836 958 flags &= gfp_allowed_mask;
c016b0bd
CL
959 lockdep_trace_alloc(flags);
960 might_sleep_if(flags & __GFP_WAIT);
961
3b0efdfa 962 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
963}
964
d0e0ac97
CG
965static inline void slab_post_alloc_hook(struct kmem_cache *s,
966 gfp_t flags, void *object)
c016b0bd 967{
c1d50836 968 flags &= gfp_allowed_mask;
b3d41885 969 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 970 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
971}
972
973static inline void slab_free_hook(struct kmem_cache *s, void *x)
974{
975 kmemleak_free_recursive(x, s->flags);
c016b0bd 976
d3f661d6 977 /*
d1756174 978 * Trouble is that we may no longer disable interrupts in the fast path
d3f661d6
CL
979 * So in order to make the debug calls that expect irqs to be
980 * disabled we need to disable interrupts temporarily.
981 */
982#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
983 {
984 unsigned long flags;
985
986 local_irq_save(flags);
3b0efdfa
CL
987 kmemcheck_slab_free(s, x, s->object_size);
988 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
989 local_irq_restore(flags);
990 }
991#endif
f9b615de 992 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 993 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
994}
995
643b1138 996/*
672bba3a 997 * Tracking of fully allocated slabs for debugging purposes.
643b1138 998 */
5cc6eee8
CL
999static void add_full(struct kmem_cache *s,
1000 struct kmem_cache_node *n, struct page *page)
643b1138 1001{
5cc6eee8
CL
1002 if (!(s->flags & SLAB_STORE_USER))
1003 return;
1004
255d0884 1005 lockdep_assert_held(&n->list_lock);
643b1138 1006 list_add(&page->lru, &n->full);
643b1138
CL
1007}
1008
c65c1877 1009static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1010{
643b1138
CL
1011 if (!(s->flags & SLAB_STORE_USER))
1012 return;
1013
255d0884 1014 lockdep_assert_held(&n->list_lock);
643b1138 1015 list_del(&page->lru);
643b1138
CL
1016}
1017
0f389ec6
CL
1018/* Tracking of the number of slabs for debugging purposes */
1019static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1020{
1021 struct kmem_cache_node *n = get_node(s, node);
1022
1023 return atomic_long_read(&n->nr_slabs);
1024}
1025
26c02cf0
AB
1026static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1027{
1028 return atomic_long_read(&n->nr_slabs);
1029}
1030
205ab99d 1031static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1032{
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 /*
1036 * May be called early in order to allocate a slab for the
1037 * kmem_cache_node structure. Solve the chicken-egg
1038 * dilemma by deferring the increment of the count during
1039 * bootstrap (see early_kmem_cache_node_alloc).
1040 */
338b2642 1041 if (likely(n)) {
0f389ec6 1042 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1043 atomic_long_add(objects, &n->total_objects);
1044 }
0f389ec6 1045}
205ab99d 1046static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1047{
1048 struct kmem_cache_node *n = get_node(s, node);
1049
1050 atomic_long_dec(&n->nr_slabs);
205ab99d 1051 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1052}
1053
1054/* Object debug checks for alloc/free paths */
3ec09742
CL
1055static void setup_object_debug(struct kmem_cache *s, struct page *page,
1056 void *object)
1057{
1058 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1059 return;
1060
f7cb1933 1061 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1062 init_tracking(s, object);
1063}
1064
d0e0ac97
CG
1065static noinline int alloc_debug_processing(struct kmem_cache *s,
1066 struct page *page,
ce71e27c 1067 void *object, unsigned long addr)
81819f0f
CL
1068{
1069 if (!check_slab(s, page))
1070 goto bad;
1071
81819f0f
CL
1072 if (!check_valid_pointer(s, page, object)) {
1073 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1074 goto bad;
81819f0f
CL
1075 }
1076
f7cb1933 1077 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1078 goto bad;
81819f0f 1079
3ec09742
CL
1080 /* Success perform special debug activities for allocs */
1081 if (s->flags & SLAB_STORE_USER)
1082 set_track(s, object, TRACK_ALLOC, addr);
1083 trace(s, page, object, 1);
f7cb1933 1084 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1085 return 1;
3ec09742 1086
81819f0f
CL
1087bad:
1088 if (PageSlab(page)) {
1089 /*
1090 * If this is a slab page then lets do the best we can
1091 * to avoid issues in the future. Marking all objects
672bba3a 1092 * as used avoids touching the remaining objects.
81819f0f 1093 */
24922684 1094 slab_fix(s, "Marking all objects used");
39b26464 1095 page->inuse = page->objects;
a973e9dd 1096 page->freelist = NULL;
81819f0f
CL
1097 }
1098 return 0;
1099}
1100
19c7ff9e
CL
1101static noinline struct kmem_cache_node *free_debug_processing(
1102 struct kmem_cache *s, struct page *page, void *object,
1103 unsigned long addr, unsigned long *flags)
81819f0f 1104{
19c7ff9e 1105 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1106
19c7ff9e 1107 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1108 slab_lock(page);
1109
81819f0f
CL
1110 if (!check_slab(s, page))
1111 goto fail;
1112
1113 if (!check_valid_pointer(s, page, object)) {
70d71228 1114 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1115 goto fail;
1116 }
1117
1118 if (on_freelist(s, page, object)) {
24922684 1119 object_err(s, page, object, "Object already free");
81819f0f
CL
1120 goto fail;
1121 }
1122
f7cb1933 1123 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1124 goto out;
81819f0f 1125
1b4f59e3 1126 if (unlikely(s != page->slab_cache)) {
3adbefee 1127 if (!PageSlab(page)) {
70d71228
CL
1128 slab_err(s, page, "Attempt to free object(0x%p) "
1129 "outside of slab", object);
1b4f59e3 1130 } else if (!page->slab_cache) {
f9f58285
FF
1131 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1132 object);
70d71228 1133 dump_stack();
06428780 1134 } else
24922684
CL
1135 object_err(s, page, object,
1136 "page slab pointer corrupt.");
81819f0f
CL
1137 goto fail;
1138 }
3ec09742 1139
3ec09742
CL
1140 if (s->flags & SLAB_STORE_USER)
1141 set_track(s, object, TRACK_FREE, addr);
1142 trace(s, page, object, 0);
f7cb1933 1143 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1144out:
881db7fb 1145 slab_unlock(page);
19c7ff9e
CL
1146 /*
1147 * Keep node_lock to preserve integrity
1148 * until the object is actually freed
1149 */
1150 return n;
3ec09742 1151
81819f0f 1152fail:
19c7ff9e
CL
1153 slab_unlock(page);
1154 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1155 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1156 return NULL;
81819f0f
CL
1157}
1158
41ecc55b
CL
1159static int __init setup_slub_debug(char *str)
1160{
f0630fff
CL
1161 slub_debug = DEBUG_DEFAULT_FLAGS;
1162 if (*str++ != '=' || !*str)
1163 /*
1164 * No options specified. Switch on full debugging.
1165 */
1166 goto out;
1167
1168 if (*str == ',')
1169 /*
1170 * No options but restriction on slabs. This means full
1171 * debugging for slabs matching a pattern.
1172 */
1173 goto check_slabs;
1174
fa5ec8a1
DR
1175 if (tolower(*str) == 'o') {
1176 /*
1177 * Avoid enabling debugging on caches if its minimum order
1178 * would increase as a result.
1179 */
1180 disable_higher_order_debug = 1;
1181 goto out;
1182 }
1183
f0630fff
CL
1184 slub_debug = 0;
1185 if (*str == '-')
1186 /*
1187 * Switch off all debugging measures.
1188 */
1189 goto out;
1190
1191 /*
1192 * Determine which debug features should be switched on
1193 */
06428780 1194 for (; *str && *str != ','; str++) {
f0630fff
CL
1195 switch (tolower(*str)) {
1196 case 'f':
1197 slub_debug |= SLAB_DEBUG_FREE;
1198 break;
1199 case 'z':
1200 slub_debug |= SLAB_RED_ZONE;
1201 break;
1202 case 'p':
1203 slub_debug |= SLAB_POISON;
1204 break;
1205 case 'u':
1206 slub_debug |= SLAB_STORE_USER;
1207 break;
1208 case 't':
1209 slub_debug |= SLAB_TRACE;
1210 break;
4c13dd3b
DM
1211 case 'a':
1212 slub_debug |= SLAB_FAILSLAB;
1213 break;
f0630fff 1214 default:
f9f58285
FF
1215 pr_err("slub_debug option '%c' unknown. skipped\n",
1216 *str);
f0630fff 1217 }
41ecc55b
CL
1218 }
1219
f0630fff 1220check_slabs:
41ecc55b
CL
1221 if (*str == ',')
1222 slub_debug_slabs = str + 1;
f0630fff 1223out:
41ecc55b
CL
1224 return 1;
1225}
1226
1227__setup("slub_debug", setup_slub_debug);
1228
3b0efdfa 1229static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1230 unsigned long flags, const char *name,
51cc5068 1231 void (*ctor)(void *))
41ecc55b
CL
1232{
1233 /*
e153362a 1234 * Enable debugging if selected on the kernel commandline.
41ecc55b 1235 */
c6f58d9b
CL
1236 if (slub_debug && (!slub_debug_slabs || (name &&
1237 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1238 flags |= slub_debug;
ba0268a8
CL
1239
1240 return flags;
41ecc55b
CL
1241}
1242#else
3ec09742
CL
1243static inline void setup_object_debug(struct kmem_cache *s,
1244 struct page *page, void *object) {}
41ecc55b 1245
3ec09742 1246static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1247 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1248
19c7ff9e
CL
1249static inline struct kmem_cache_node *free_debug_processing(
1250 struct kmem_cache *s, struct page *page, void *object,
1251 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1252
41ecc55b
CL
1253static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1254 { return 1; }
1255static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1256 void *object, u8 val) { return 1; }
5cc6eee8
CL
1257static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1258 struct page *page) {}
c65c1877
PZ
1259static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1260 struct page *page) {}
3b0efdfa 1261static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1262 unsigned long flags, const char *name,
51cc5068 1263 void (*ctor)(void *))
ba0268a8
CL
1264{
1265 return flags;
1266}
41ecc55b 1267#define slub_debug 0
0f389ec6 1268
fdaa45e9
IM
1269#define disable_higher_order_debug 0
1270
0f389ec6
CL
1271static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1272 { return 0; }
26c02cf0
AB
1273static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1274 { return 0; }
205ab99d
CL
1275static inline void inc_slabs_node(struct kmem_cache *s, int node,
1276 int objects) {}
1277static inline void dec_slabs_node(struct kmem_cache *s, int node,
1278 int objects) {}
7d550c56 1279
d56791b3
RB
1280static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1281{
1282 kmemleak_alloc(ptr, size, 1, flags);
1283}
1284
1285static inline void kfree_hook(const void *x)
1286{
1287 kmemleak_free(x);
1288}
1289
7d550c56
CL
1290static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1291 { return 0; }
1292
1293static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
d56791b3
RB
1294 void *object)
1295{
1296 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1297 flags & gfp_allowed_mask);
1298}
7d550c56 1299
d56791b3
RB
1300static inline void slab_free_hook(struct kmem_cache *s, void *x)
1301{
1302 kmemleak_free_recursive(x, s->flags);
1303}
7d550c56 1304
ab4d5ed5 1305#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1306
81819f0f
CL
1307/*
1308 * Slab allocation and freeing
1309 */
5dfb4175
VD
1310static inline struct page *alloc_slab_page(struct kmem_cache *s,
1311 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1312{
5dfb4175 1313 struct page *page;
65c3376a
CL
1314 int order = oo_order(oo);
1315
b1eeab67
VN
1316 flags |= __GFP_NOTRACK;
1317
5dfb4175
VD
1318 if (memcg_charge_slab(s, flags, order))
1319 return NULL;
1320
2154a336 1321 if (node == NUMA_NO_NODE)
5dfb4175 1322 page = alloc_pages(flags, order);
65c3376a 1323 else
5dfb4175
VD
1324 page = alloc_pages_exact_node(node, flags, order);
1325
1326 if (!page)
1327 memcg_uncharge_slab(s, order);
1328
1329 return page;
65c3376a
CL
1330}
1331
81819f0f
CL
1332static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1333{
06428780 1334 struct page *page;
834f3d11 1335 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1336 gfp_t alloc_gfp;
81819f0f 1337
7e0528da
CL
1338 flags &= gfp_allowed_mask;
1339
1340 if (flags & __GFP_WAIT)
1341 local_irq_enable();
1342
b7a49f0d 1343 flags |= s->allocflags;
e12ba74d 1344
ba52270d
PE
1345 /*
1346 * Let the initial higher-order allocation fail under memory pressure
1347 * so we fall-back to the minimum order allocation.
1348 */
1349 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1350
5dfb4175 1351 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1352 if (unlikely(!page)) {
1353 oo = s->min;
80c3a998 1354 alloc_gfp = flags;
65c3376a
CL
1355 /*
1356 * Allocation may have failed due to fragmentation.
1357 * Try a lower order alloc if possible
1358 */
5dfb4175 1359 page = alloc_slab_page(s, alloc_gfp, node, oo);
81819f0f 1360
7e0528da
CL
1361 if (page)
1362 stat(s, ORDER_FALLBACK);
65c3376a 1363 }
5a896d9e 1364
737b719e 1365 if (kmemcheck_enabled && page
5086c389 1366 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1367 int pages = 1 << oo_order(oo);
1368
80c3a998 1369 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1370
1371 /*
1372 * Objects from caches that have a constructor don't get
1373 * cleared when they're allocated, so we need to do it here.
1374 */
1375 if (s->ctor)
1376 kmemcheck_mark_uninitialized_pages(page, pages);
1377 else
1378 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1379 }
1380
737b719e
DR
1381 if (flags & __GFP_WAIT)
1382 local_irq_disable();
1383 if (!page)
1384 return NULL;
1385
834f3d11 1386 page->objects = oo_objects(oo);
81819f0f
CL
1387 mod_zone_page_state(page_zone(page),
1388 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1389 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1390 1 << oo_order(oo));
81819f0f
CL
1391
1392 return page;
1393}
1394
1395static void setup_object(struct kmem_cache *s, struct page *page,
1396 void *object)
1397{
3ec09742 1398 setup_object_debug(s, page, object);
4f104934 1399 if (unlikely(s->ctor))
51cc5068 1400 s->ctor(object);
81819f0f
CL
1401}
1402
1403static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1404{
1405 struct page *page;
81819f0f 1406 void *start;
81819f0f
CL
1407 void *last;
1408 void *p;
1f458cbf 1409 int order;
81819f0f 1410
6cb06229 1411 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1412
6cb06229
CL
1413 page = allocate_slab(s,
1414 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1415 if (!page)
1416 goto out;
1417
1f458cbf 1418 order = compound_order(page);
205ab99d 1419 inc_slabs_node(s, page_to_nid(page), page->objects);
1b4f59e3 1420 page->slab_cache = s;
c03f94cc 1421 __SetPageSlab(page);
072bb0aa
MG
1422 if (page->pfmemalloc)
1423 SetPageSlabPfmemalloc(page);
81819f0f
CL
1424
1425 start = page_address(page);
81819f0f
CL
1426
1427 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1428 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f
CL
1429
1430 last = start;
224a88be 1431 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1432 setup_object(s, page, last);
1433 set_freepointer(s, last, p);
1434 last = p;
1435 }
1436 setup_object(s, page, last);
a973e9dd 1437 set_freepointer(s, last, NULL);
81819f0f
CL
1438
1439 page->freelist = start;
e6e82ea1 1440 page->inuse = page->objects;
8cb0a506 1441 page->frozen = 1;
81819f0f 1442out:
81819f0f
CL
1443 return page;
1444}
1445
1446static void __free_slab(struct kmem_cache *s, struct page *page)
1447{
834f3d11
CL
1448 int order = compound_order(page);
1449 int pages = 1 << order;
81819f0f 1450
af537b0a 1451 if (kmem_cache_debug(s)) {
81819f0f
CL
1452 void *p;
1453
1454 slab_pad_check(s, page);
224a88be
CL
1455 for_each_object(p, s, page_address(page),
1456 page->objects)
f7cb1933 1457 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1458 }
1459
b1eeab67 1460 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1461
81819f0f
CL
1462 mod_zone_page_state(page_zone(page),
1463 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1464 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1465 -pages);
81819f0f 1466
072bb0aa 1467 __ClearPageSlabPfmemalloc(page);
49bd5221 1468 __ClearPageSlab(page);
1f458cbf 1469
22b751c3 1470 page_mapcount_reset(page);
1eb5ac64
NP
1471 if (current->reclaim_state)
1472 current->reclaim_state->reclaimed_slab += pages;
5dfb4175
VD
1473 __free_pages(page, order);
1474 memcg_uncharge_slab(s, order);
81819f0f
CL
1475}
1476
da9a638c
LJ
1477#define need_reserve_slab_rcu \
1478 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1479
81819f0f
CL
1480static void rcu_free_slab(struct rcu_head *h)
1481{
1482 struct page *page;
1483
da9a638c
LJ
1484 if (need_reserve_slab_rcu)
1485 page = virt_to_head_page(h);
1486 else
1487 page = container_of((struct list_head *)h, struct page, lru);
1488
1b4f59e3 1489 __free_slab(page->slab_cache, page);
81819f0f
CL
1490}
1491
1492static void free_slab(struct kmem_cache *s, struct page *page)
1493{
1494 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1495 struct rcu_head *head;
1496
1497 if (need_reserve_slab_rcu) {
1498 int order = compound_order(page);
1499 int offset = (PAGE_SIZE << order) - s->reserved;
1500
1501 VM_BUG_ON(s->reserved != sizeof(*head));
1502 head = page_address(page) + offset;
1503 } else {
1504 /*
1505 * RCU free overloads the RCU head over the LRU
1506 */
1507 head = (void *)&page->lru;
1508 }
81819f0f
CL
1509
1510 call_rcu(head, rcu_free_slab);
1511 } else
1512 __free_slab(s, page);
1513}
1514
1515static void discard_slab(struct kmem_cache *s, struct page *page)
1516{
205ab99d 1517 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1518 free_slab(s, page);
1519}
1520
1521/*
5cc6eee8 1522 * Management of partially allocated slabs.
81819f0f 1523 */
1e4dd946
SR
1524static inline void
1525__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1526{
e95eed57 1527 n->nr_partial++;
136333d1 1528 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1529 list_add_tail(&page->lru, &n->partial);
1530 else
1531 list_add(&page->lru, &n->partial);
81819f0f
CL
1532}
1533
1e4dd946
SR
1534static inline void add_partial(struct kmem_cache_node *n,
1535 struct page *page, int tail)
62e346a8 1536{
c65c1877 1537 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1538 __add_partial(n, page, tail);
1539}
c65c1877 1540
1e4dd946
SR
1541static inline void
1542__remove_partial(struct kmem_cache_node *n, struct page *page)
1543{
62e346a8
CL
1544 list_del(&page->lru);
1545 n->nr_partial--;
1546}
1547
1e4dd946
SR
1548static inline void remove_partial(struct kmem_cache_node *n,
1549 struct page *page)
1550{
1551 lockdep_assert_held(&n->list_lock);
1552 __remove_partial(n, page);
1553}
1554
81819f0f 1555/*
7ced3719
CL
1556 * Remove slab from the partial list, freeze it and
1557 * return the pointer to the freelist.
81819f0f 1558 *
497b66f2 1559 * Returns a list of objects or NULL if it fails.
81819f0f 1560 */
497b66f2 1561static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1562 struct kmem_cache_node *n, struct page *page,
633b0764 1563 int mode, int *objects)
81819f0f 1564{
2cfb7455
CL
1565 void *freelist;
1566 unsigned long counters;
1567 struct page new;
1568
c65c1877
PZ
1569 lockdep_assert_held(&n->list_lock);
1570
2cfb7455
CL
1571 /*
1572 * Zap the freelist and set the frozen bit.
1573 * The old freelist is the list of objects for the
1574 * per cpu allocation list.
1575 */
7ced3719
CL
1576 freelist = page->freelist;
1577 counters = page->counters;
1578 new.counters = counters;
633b0764 1579 *objects = new.objects - new.inuse;
23910c50 1580 if (mode) {
7ced3719 1581 new.inuse = page->objects;
23910c50
PE
1582 new.freelist = NULL;
1583 } else {
1584 new.freelist = freelist;
1585 }
2cfb7455 1586
a0132ac0 1587 VM_BUG_ON(new.frozen);
7ced3719 1588 new.frozen = 1;
2cfb7455 1589
7ced3719 1590 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1591 freelist, counters,
02d7633f 1592 new.freelist, new.counters,
7ced3719 1593 "acquire_slab"))
7ced3719 1594 return NULL;
2cfb7455
CL
1595
1596 remove_partial(n, page);
7ced3719 1597 WARN_ON(!freelist);
49e22585 1598 return freelist;
81819f0f
CL
1599}
1600
633b0764 1601static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1602static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1603
81819f0f 1604/*
672bba3a 1605 * Try to allocate a partial slab from a specific node.
81819f0f 1606 */
8ba00bb6
JK
1607static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1608 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1609{
49e22585
CL
1610 struct page *page, *page2;
1611 void *object = NULL;
633b0764
JK
1612 int available = 0;
1613 int objects;
81819f0f
CL
1614
1615 /*
1616 * Racy check. If we mistakenly see no partial slabs then we
1617 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1618 * partial slab and there is none available then get_partials()
1619 * will return NULL.
81819f0f
CL
1620 */
1621 if (!n || !n->nr_partial)
1622 return NULL;
1623
1624 spin_lock(&n->list_lock);
49e22585 1625 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1626 void *t;
49e22585 1627
8ba00bb6
JK
1628 if (!pfmemalloc_match(page, flags))
1629 continue;
1630
633b0764 1631 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1632 if (!t)
1633 break;
1634
633b0764 1635 available += objects;
12d79634 1636 if (!object) {
49e22585 1637 c->page = page;
49e22585 1638 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1639 object = t;
49e22585 1640 } else {
633b0764 1641 put_cpu_partial(s, page, 0);
8028dcea 1642 stat(s, CPU_PARTIAL_NODE);
49e22585 1643 }
345c905d
JK
1644 if (!kmem_cache_has_cpu_partial(s)
1645 || available > s->cpu_partial / 2)
49e22585
CL
1646 break;
1647
497b66f2 1648 }
81819f0f 1649 spin_unlock(&n->list_lock);
497b66f2 1650 return object;
81819f0f
CL
1651}
1652
1653/*
672bba3a 1654 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1655 */
de3ec035 1656static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1657 struct kmem_cache_cpu *c)
81819f0f
CL
1658{
1659#ifdef CONFIG_NUMA
1660 struct zonelist *zonelist;
dd1a239f 1661 struct zoneref *z;
54a6eb5c
MG
1662 struct zone *zone;
1663 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1664 void *object;
cc9a6c87 1665 unsigned int cpuset_mems_cookie;
81819f0f
CL
1666
1667 /*
672bba3a
CL
1668 * The defrag ratio allows a configuration of the tradeoffs between
1669 * inter node defragmentation and node local allocations. A lower
1670 * defrag_ratio increases the tendency to do local allocations
1671 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1672 *
672bba3a
CL
1673 * If the defrag_ratio is set to 0 then kmalloc() always
1674 * returns node local objects. If the ratio is higher then kmalloc()
1675 * may return off node objects because partial slabs are obtained
1676 * from other nodes and filled up.
81819f0f 1677 *
6446faa2 1678 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1679 * defrag_ratio = 1000) then every (well almost) allocation will
1680 * first attempt to defrag slab caches on other nodes. This means
1681 * scanning over all nodes to look for partial slabs which may be
1682 * expensive if we do it every time we are trying to find a slab
1683 * with available objects.
81819f0f 1684 */
9824601e
CL
1685 if (!s->remote_node_defrag_ratio ||
1686 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1687 return NULL;
1688
cc9a6c87 1689 do {
d26914d1 1690 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1691 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1692 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1693 struct kmem_cache_node *n;
1694
1695 n = get_node(s, zone_to_nid(zone));
1696
1697 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1698 n->nr_partial > s->min_partial) {
8ba00bb6 1699 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1700 if (object) {
1701 /*
d26914d1
MG
1702 * Don't check read_mems_allowed_retry()
1703 * here - if mems_allowed was updated in
1704 * parallel, that was a harmless race
1705 * between allocation and the cpuset
1706 * update
cc9a6c87 1707 */
cc9a6c87
MG
1708 return object;
1709 }
c0ff7453 1710 }
81819f0f 1711 }
d26914d1 1712 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1713#endif
1714 return NULL;
1715}
1716
1717/*
1718 * Get a partial page, lock it and return it.
1719 */
497b66f2 1720static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1721 struct kmem_cache_cpu *c)
81819f0f 1722{
497b66f2 1723 void *object;
844e4d66 1724 int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node;
81819f0f 1725
8ba00bb6 1726 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1727 if (object || node != NUMA_NO_NODE)
1728 return object;
81819f0f 1729
acd19fd1 1730 return get_any_partial(s, flags, c);
81819f0f
CL
1731}
1732
8a5ec0ba
CL
1733#ifdef CONFIG_PREEMPT
1734/*
1735 * Calculate the next globally unique transaction for disambiguiation
1736 * during cmpxchg. The transactions start with the cpu number and are then
1737 * incremented by CONFIG_NR_CPUS.
1738 */
1739#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1740#else
1741/*
1742 * No preemption supported therefore also no need to check for
1743 * different cpus.
1744 */
1745#define TID_STEP 1
1746#endif
1747
1748static inline unsigned long next_tid(unsigned long tid)
1749{
1750 return tid + TID_STEP;
1751}
1752
1753static inline unsigned int tid_to_cpu(unsigned long tid)
1754{
1755 return tid % TID_STEP;
1756}
1757
1758static inline unsigned long tid_to_event(unsigned long tid)
1759{
1760 return tid / TID_STEP;
1761}
1762
1763static inline unsigned int init_tid(int cpu)
1764{
1765 return cpu;
1766}
1767
1768static inline void note_cmpxchg_failure(const char *n,
1769 const struct kmem_cache *s, unsigned long tid)
1770{
1771#ifdef SLUB_DEBUG_CMPXCHG
1772 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1773
f9f58285 1774 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1775
1776#ifdef CONFIG_PREEMPT
1777 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1778 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1779 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1780 else
1781#endif
1782 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1783 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1784 tid_to_event(tid), tid_to_event(actual_tid));
1785 else
f9f58285 1786 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1787 actual_tid, tid, next_tid(tid));
1788#endif
4fdccdfb 1789 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1790}
1791
788e1aad 1792static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1793{
8a5ec0ba
CL
1794 int cpu;
1795
1796 for_each_possible_cpu(cpu)
1797 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1798}
2cfb7455 1799
81819f0f
CL
1800/*
1801 * Remove the cpu slab
1802 */
d0e0ac97
CG
1803static void deactivate_slab(struct kmem_cache *s, struct page *page,
1804 void *freelist)
81819f0f 1805{
2cfb7455 1806 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1807 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1808 int lock = 0;
1809 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1810 void *nextfree;
136333d1 1811 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1812 struct page new;
1813 struct page old;
1814
1815 if (page->freelist) {
84e554e6 1816 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1817 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1818 }
1819
894b8788 1820 /*
2cfb7455
CL
1821 * Stage one: Free all available per cpu objects back
1822 * to the page freelist while it is still frozen. Leave the
1823 * last one.
1824 *
1825 * There is no need to take the list->lock because the page
1826 * is still frozen.
1827 */
1828 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1829 void *prior;
1830 unsigned long counters;
1831
1832 do {
1833 prior = page->freelist;
1834 counters = page->counters;
1835 set_freepointer(s, freelist, prior);
1836 new.counters = counters;
1837 new.inuse--;
a0132ac0 1838 VM_BUG_ON(!new.frozen);
2cfb7455 1839
1d07171c 1840 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1841 prior, counters,
1842 freelist, new.counters,
1843 "drain percpu freelist"));
1844
1845 freelist = nextfree;
1846 }
1847
894b8788 1848 /*
2cfb7455
CL
1849 * Stage two: Ensure that the page is unfrozen while the
1850 * list presence reflects the actual number of objects
1851 * during unfreeze.
1852 *
1853 * We setup the list membership and then perform a cmpxchg
1854 * with the count. If there is a mismatch then the page
1855 * is not unfrozen but the page is on the wrong list.
1856 *
1857 * Then we restart the process which may have to remove
1858 * the page from the list that we just put it on again
1859 * because the number of objects in the slab may have
1860 * changed.
894b8788 1861 */
2cfb7455 1862redo:
894b8788 1863
2cfb7455
CL
1864 old.freelist = page->freelist;
1865 old.counters = page->counters;
a0132ac0 1866 VM_BUG_ON(!old.frozen);
7c2e132c 1867
2cfb7455
CL
1868 /* Determine target state of the slab */
1869 new.counters = old.counters;
1870 if (freelist) {
1871 new.inuse--;
1872 set_freepointer(s, freelist, old.freelist);
1873 new.freelist = freelist;
1874 } else
1875 new.freelist = old.freelist;
1876
1877 new.frozen = 0;
1878
8a5b20ae 1879 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1880 m = M_FREE;
1881 else if (new.freelist) {
1882 m = M_PARTIAL;
1883 if (!lock) {
1884 lock = 1;
1885 /*
1886 * Taking the spinlock removes the possiblity
1887 * that acquire_slab() will see a slab page that
1888 * is frozen
1889 */
1890 spin_lock(&n->list_lock);
1891 }
1892 } else {
1893 m = M_FULL;
1894 if (kmem_cache_debug(s) && !lock) {
1895 lock = 1;
1896 /*
1897 * This also ensures that the scanning of full
1898 * slabs from diagnostic functions will not see
1899 * any frozen slabs.
1900 */
1901 spin_lock(&n->list_lock);
1902 }
1903 }
1904
1905 if (l != m) {
1906
1907 if (l == M_PARTIAL)
1908
1909 remove_partial(n, page);
1910
1911 else if (l == M_FULL)
894b8788 1912
c65c1877 1913 remove_full(s, n, page);
2cfb7455
CL
1914
1915 if (m == M_PARTIAL) {
1916
1917 add_partial(n, page, tail);
136333d1 1918 stat(s, tail);
2cfb7455
CL
1919
1920 } else if (m == M_FULL) {
894b8788 1921
2cfb7455
CL
1922 stat(s, DEACTIVATE_FULL);
1923 add_full(s, n, page);
1924
1925 }
1926 }
1927
1928 l = m;
1d07171c 1929 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1930 old.freelist, old.counters,
1931 new.freelist, new.counters,
1932 "unfreezing slab"))
1933 goto redo;
1934
2cfb7455
CL
1935 if (lock)
1936 spin_unlock(&n->list_lock);
1937
1938 if (m == M_FREE) {
1939 stat(s, DEACTIVATE_EMPTY);
1940 discard_slab(s, page);
1941 stat(s, FREE_SLAB);
894b8788 1942 }
81819f0f
CL
1943}
1944
d24ac77f
JK
1945/*
1946 * Unfreeze all the cpu partial slabs.
1947 *
59a09917
CL
1948 * This function must be called with interrupts disabled
1949 * for the cpu using c (or some other guarantee must be there
1950 * to guarantee no concurrent accesses).
d24ac77f 1951 */
59a09917
CL
1952static void unfreeze_partials(struct kmem_cache *s,
1953 struct kmem_cache_cpu *c)
49e22585 1954{
345c905d 1955#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1956 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1957 struct page *page, *discard_page = NULL;
49e22585
CL
1958
1959 while ((page = c->partial)) {
49e22585
CL
1960 struct page new;
1961 struct page old;
1962
1963 c->partial = page->next;
43d77867
JK
1964
1965 n2 = get_node(s, page_to_nid(page));
1966 if (n != n2) {
1967 if (n)
1968 spin_unlock(&n->list_lock);
1969
1970 n = n2;
1971 spin_lock(&n->list_lock);
1972 }
49e22585
CL
1973
1974 do {
1975
1976 old.freelist = page->freelist;
1977 old.counters = page->counters;
a0132ac0 1978 VM_BUG_ON(!old.frozen);
49e22585
CL
1979
1980 new.counters = old.counters;
1981 new.freelist = old.freelist;
1982
1983 new.frozen = 0;
1984
d24ac77f 1985 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1986 old.freelist, old.counters,
1987 new.freelist, new.counters,
1988 "unfreezing slab"));
1989
8a5b20ae 1990 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
1991 page->next = discard_page;
1992 discard_page = page;
43d77867
JK
1993 } else {
1994 add_partial(n, page, DEACTIVATE_TO_TAIL);
1995 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1996 }
1997 }
1998
1999 if (n)
2000 spin_unlock(&n->list_lock);
9ada1934
SL
2001
2002 while (discard_page) {
2003 page = discard_page;
2004 discard_page = discard_page->next;
2005
2006 stat(s, DEACTIVATE_EMPTY);
2007 discard_slab(s, page);
2008 stat(s, FREE_SLAB);
2009 }
345c905d 2010#endif
49e22585
CL
2011}
2012
2013/*
2014 * Put a page that was just frozen (in __slab_free) into a partial page
2015 * slot if available. This is done without interrupts disabled and without
2016 * preemption disabled. The cmpxchg is racy and may put the partial page
2017 * onto a random cpus partial slot.
2018 *
2019 * If we did not find a slot then simply move all the partials to the
2020 * per node partial list.
2021 */
633b0764 2022static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2023{
345c905d 2024#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2025 struct page *oldpage;
2026 int pages;
2027 int pobjects;
2028
2029 do {
2030 pages = 0;
2031 pobjects = 0;
2032 oldpage = this_cpu_read(s->cpu_slab->partial);
2033
2034 if (oldpage) {
2035 pobjects = oldpage->pobjects;
2036 pages = oldpage->pages;
2037 if (drain && pobjects > s->cpu_partial) {
2038 unsigned long flags;
2039 /*
2040 * partial array is full. Move the existing
2041 * set to the per node partial list.
2042 */
2043 local_irq_save(flags);
59a09917 2044 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2045 local_irq_restore(flags);
e24fc410 2046 oldpage = NULL;
49e22585
CL
2047 pobjects = 0;
2048 pages = 0;
8028dcea 2049 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2050 }
2051 }
2052
2053 pages++;
2054 pobjects += page->objects - page->inuse;
2055
2056 page->pages = pages;
2057 page->pobjects = pobjects;
2058 page->next = oldpage;
2059
d0e0ac97
CG
2060 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2061 != oldpage);
345c905d 2062#endif
49e22585
CL
2063}
2064
dfb4f096 2065static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2066{
84e554e6 2067 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2068 deactivate_slab(s, c->page, c->freelist);
2069
2070 c->tid = next_tid(c->tid);
2071 c->page = NULL;
2072 c->freelist = NULL;
81819f0f
CL
2073}
2074
2075/*
2076 * Flush cpu slab.
6446faa2 2077 *
81819f0f
CL
2078 * Called from IPI handler with interrupts disabled.
2079 */
0c710013 2080static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2081{
9dfc6e68 2082 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2083
49e22585
CL
2084 if (likely(c)) {
2085 if (c->page)
2086 flush_slab(s, c);
2087
59a09917 2088 unfreeze_partials(s, c);
49e22585 2089 }
81819f0f
CL
2090}
2091
2092static void flush_cpu_slab(void *d)
2093{
2094 struct kmem_cache *s = d;
81819f0f 2095
dfb4f096 2096 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2097}
2098
a8364d55
GBY
2099static bool has_cpu_slab(int cpu, void *info)
2100{
2101 struct kmem_cache *s = info;
2102 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2103
02e1a9cd 2104 return c->page || c->partial;
a8364d55
GBY
2105}
2106
81819f0f
CL
2107static void flush_all(struct kmem_cache *s)
2108{
a8364d55 2109 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2110}
2111
dfb4f096
CL
2112/*
2113 * Check if the objects in a per cpu structure fit numa
2114 * locality expectations.
2115 */
57d437d2 2116static inline int node_match(struct page *page, int node)
dfb4f096
CL
2117{
2118#ifdef CONFIG_NUMA
4d7868e6 2119 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2120 return 0;
2121#endif
2122 return 1;
2123}
2124
9a02d699 2125#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2126static int count_free(struct page *page)
2127{
2128 return page->objects - page->inuse;
2129}
2130
9a02d699
DR
2131static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2132{
2133 return atomic_long_read(&n->total_objects);
2134}
2135#endif /* CONFIG_SLUB_DEBUG */
2136
2137#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2138static unsigned long count_partial(struct kmem_cache_node *n,
2139 int (*get_count)(struct page *))
2140{
2141 unsigned long flags;
2142 unsigned long x = 0;
2143 struct page *page;
2144
2145 spin_lock_irqsave(&n->list_lock, flags);
2146 list_for_each_entry(page, &n->partial, lru)
2147 x += get_count(page);
2148 spin_unlock_irqrestore(&n->list_lock, flags);
2149 return x;
2150}
9a02d699 2151#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2152
781b2ba6
PE
2153static noinline void
2154slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2155{
9a02d699
DR
2156#ifdef CONFIG_SLUB_DEBUG
2157 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2158 DEFAULT_RATELIMIT_BURST);
781b2ba6 2159 int node;
fa45dc25 2160 struct kmem_cache_node *n;
781b2ba6 2161
9a02d699
DR
2162 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2163 return;
2164
f9f58285 2165 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2166 nid, gfpflags);
f9f58285
FF
2167 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2168 s->name, s->object_size, s->size, oo_order(s->oo),
2169 oo_order(s->min));
781b2ba6 2170
3b0efdfa 2171 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2172 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2173 s->name);
fa5ec8a1 2174
fa45dc25 2175 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2176 unsigned long nr_slabs;
2177 unsigned long nr_objs;
2178 unsigned long nr_free;
2179
26c02cf0
AB
2180 nr_free = count_partial(n, count_free);
2181 nr_slabs = node_nr_slabs(n);
2182 nr_objs = node_nr_objs(n);
781b2ba6 2183
f9f58285 2184 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2185 node, nr_slabs, nr_objs, nr_free);
2186 }
9a02d699 2187#endif
781b2ba6
PE
2188}
2189
497b66f2
CL
2190static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2191 int node, struct kmem_cache_cpu **pc)
2192{
6faa6833 2193 void *freelist;
188fd063
CL
2194 struct kmem_cache_cpu *c = *pc;
2195 struct page *page;
497b66f2 2196
188fd063 2197 freelist = get_partial(s, flags, node, c);
497b66f2 2198
188fd063
CL
2199 if (freelist)
2200 return freelist;
2201
2202 page = new_slab(s, flags, node);
497b66f2 2203 if (page) {
7c8e0181 2204 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2205 if (c->page)
2206 flush_slab(s, c);
2207
2208 /*
2209 * No other reference to the page yet so we can
2210 * muck around with it freely without cmpxchg
2211 */
6faa6833 2212 freelist = page->freelist;
497b66f2
CL
2213 page->freelist = NULL;
2214
2215 stat(s, ALLOC_SLAB);
497b66f2
CL
2216 c->page = page;
2217 *pc = c;
2218 } else
6faa6833 2219 freelist = NULL;
497b66f2 2220
6faa6833 2221 return freelist;
497b66f2
CL
2222}
2223
072bb0aa
MG
2224static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2225{
2226 if (unlikely(PageSlabPfmemalloc(page)))
2227 return gfp_pfmemalloc_allowed(gfpflags);
2228
2229 return true;
2230}
2231
213eeb9f 2232/*
d0e0ac97
CG
2233 * Check the page->freelist of a page and either transfer the freelist to the
2234 * per cpu freelist or deactivate the page.
213eeb9f
CL
2235 *
2236 * The page is still frozen if the return value is not NULL.
2237 *
2238 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2239 *
2240 * This function must be called with interrupt disabled.
213eeb9f
CL
2241 */
2242static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2243{
2244 struct page new;
2245 unsigned long counters;
2246 void *freelist;
2247
2248 do {
2249 freelist = page->freelist;
2250 counters = page->counters;
6faa6833 2251
213eeb9f 2252 new.counters = counters;
a0132ac0 2253 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2254
2255 new.inuse = page->objects;
2256 new.frozen = freelist != NULL;
2257
d24ac77f 2258 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2259 freelist, counters,
2260 NULL, new.counters,
2261 "get_freelist"));
2262
2263 return freelist;
2264}
2265
81819f0f 2266/*
894b8788
CL
2267 * Slow path. The lockless freelist is empty or we need to perform
2268 * debugging duties.
2269 *
894b8788
CL
2270 * Processing is still very fast if new objects have been freed to the
2271 * regular freelist. In that case we simply take over the regular freelist
2272 * as the lockless freelist and zap the regular freelist.
81819f0f 2273 *
894b8788
CL
2274 * If that is not working then we fall back to the partial lists. We take the
2275 * first element of the freelist as the object to allocate now and move the
2276 * rest of the freelist to the lockless freelist.
81819f0f 2277 *
894b8788 2278 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2279 * we need to allocate a new slab. This is the slowest path since it involves
2280 * a call to the page allocator and the setup of a new slab.
81819f0f 2281 */
ce71e27c
EGM
2282static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2283 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2284{
6faa6833 2285 void *freelist;
f6e7def7 2286 struct page *page;
8a5ec0ba
CL
2287 unsigned long flags;
2288
2289 local_irq_save(flags);
2290#ifdef CONFIG_PREEMPT
2291 /*
2292 * We may have been preempted and rescheduled on a different
2293 * cpu before disabling interrupts. Need to reload cpu area
2294 * pointer.
2295 */
2296 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2297#endif
81819f0f 2298
f6e7def7
CL
2299 page = c->page;
2300 if (!page)
81819f0f 2301 goto new_slab;
49e22585 2302redo:
6faa6833 2303
57d437d2 2304 if (unlikely(!node_match(page, node))) {
e36a2652 2305 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2306 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2307 c->page = NULL;
2308 c->freelist = NULL;
fc59c053
CL
2309 goto new_slab;
2310 }
6446faa2 2311
072bb0aa
MG
2312 /*
2313 * By rights, we should be searching for a slab page that was
2314 * PFMEMALLOC but right now, we are losing the pfmemalloc
2315 * information when the page leaves the per-cpu allocator
2316 */
2317 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2318 deactivate_slab(s, page, c->freelist);
2319 c->page = NULL;
2320 c->freelist = NULL;
2321 goto new_slab;
2322 }
2323
73736e03 2324 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2325 freelist = c->freelist;
2326 if (freelist)
73736e03 2327 goto load_freelist;
03e404af 2328
f6e7def7 2329 freelist = get_freelist(s, page);
6446faa2 2330
6faa6833 2331 if (!freelist) {
03e404af
CL
2332 c->page = NULL;
2333 stat(s, DEACTIVATE_BYPASS);
fc59c053 2334 goto new_slab;
03e404af 2335 }
6446faa2 2336
84e554e6 2337 stat(s, ALLOC_REFILL);
6446faa2 2338
894b8788 2339load_freelist:
507effea
CL
2340 /*
2341 * freelist is pointing to the list of objects to be used.
2342 * page is pointing to the page from which the objects are obtained.
2343 * That page must be frozen for per cpu allocations to work.
2344 */
a0132ac0 2345 VM_BUG_ON(!c->page->frozen);
6faa6833 2346 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2347 c->tid = next_tid(c->tid);
2348 local_irq_restore(flags);
6faa6833 2349 return freelist;
81819f0f 2350
81819f0f 2351new_slab:
2cfb7455 2352
49e22585 2353 if (c->partial) {
f6e7def7
CL
2354 page = c->page = c->partial;
2355 c->partial = page->next;
49e22585
CL
2356 stat(s, CPU_PARTIAL_ALLOC);
2357 c->freelist = NULL;
2358 goto redo;
81819f0f
CL
2359 }
2360
188fd063 2361 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2362
f4697436 2363 if (unlikely(!freelist)) {
9a02d699 2364 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2365 local_irq_restore(flags);
2366 return NULL;
81819f0f 2367 }
2cfb7455 2368
f6e7def7 2369 page = c->page;
5091b74a 2370 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2371 goto load_freelist;
2cfb7455 2372
497b66f2 2373 /* Only entered in the debug case */
d0e0ac97
CG
2374 if (kmem_cache_debug(s) &&
2375 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2376 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2377
f6e7def7 2378 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2379 c->page = NULL;
2380 c->freelist = NULL;
a71ae47a 2381 local_irq_restore(flags);
6faa6833 2382 return freelist;
894b8788
CL
2383}
2384
2385/*
2386 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2387 * have the fastpath folded into their functions. So no function call
2388 * overhead for requests that can be satisfied on the fastpath.
2389 *
2390 * The fastpath works by first checking if the lockless freelist can be used.
2391 * If not then __slab_alloc is called for slow processing.
2392 *
2393 * Otherwise we can simply pick the next object from the lockless free list.
2394 */
2b847c3c 2395static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2396 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2397{
894b8788 2398 void **object;
dfb4f096 2399 struct kmem_cache_cpu *c;
57d437d2 2400 struct page *page;
8a5ec0ba 2401 unsigned long tid;
1f84260c 2402
c016b0bd 2403 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2404 return NULL;
1f84260c 2405
d79923fa 2406 s = memcg_kmem_get_cache(s, gfpflags);
8a5ec0ba 2407redo:
8a5ec0ba
CL
2408 /*
2409 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2410 * enabled. We may switch back and forth between cpus while
2411 * reading from one cpu area. That does not matter as long
2412 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2413 *
2414 * Preemption is disabled for the retrieval of the tid because that
2415 * must occur from the current processor. We cannot allow rescheduling
2416 * on a different processor between the determination of the pointer
2417 * and the retrieval of the tid.
8a5ec0ba 2418 */
7cccd80b 2419 preempt_disable();
7c8e0181 2420 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2421
8a5ec0ba
CL
2422 /*
2423 * The transaction ids are globally unique per cpu and per operation on
2424 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2425 * occurs on the right processor and that there was no operation on the
2426 * linked list in between.
2427 */
2428 tid = c->tid;
7cccd80b 2429 preempt_enable();
8a5ec0ba 2430
9dfc6e68 2431 object = c->freelist;
57d437d2 2432 page = c->page;
8eae1492 2433 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2434 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2435 stat(s, ALLOC_SLOWPATH);
2436 } else {
0ad9500e
ED
2437 void *next_object = get_freepointer_safe(s, object);
2438
8a5ec0ba 2439 /*
25985edc 2440 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2441 * operation and if we are on the right processor.
2442 *
d0e0ac97
CG
2443 * The cmpxchg does the following atomically (without lock
2444 * semantics!)
8a5ec0ba
CL
2445 * 1. Relocate first pointer to the current per cpu area.
2446 * 2. Verify that tid and freelist have not been changed
2447 * 3. If they were not changed replace tid and freelist
2448 *
d0e0ac97
CG
2449 * Since this is without lock semantics the protection is only
2450 * against code executing on this cpu *not* from access by
2451 * other cpus.
8a5ec0ba 2452 */
933393f5 2453 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2454 s->cpu_slab->freelist, s->cpu_slab->tid,
2455 object, tid,
0ad9500e 2456 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2457
2458 note_cmpxchg_failure("slab_alloc", s, tid);
2459 goto redo;
2460 }
0ad9500e 2461 prefetch_freepointer(s, next_object);
84e554e6 2462 stat(s, ALLOC_FASTPATH);
894b8788 2463 }
8a5ec0ba 2464
74e2134f 2465 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2466 memset(object, 0, s->object_size);
d07dbea4 2467
c016b0bd 2468 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2469
894b8788 2470 return object;
81819f0f
CL
2471}
2472
2b847c3c
EG
2473static __always_inline void *slab_alloc(struct kmem_cache *s,
2474 gfp_t gfpflags, unsigned long addr)
2475{
2476 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2477}
2478
81819f0f
CL
2479void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2480{
2b847c3c 2481 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2482
d0e0ac97
CG
2483 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2484 s->size, gfpflags);
5b882be4
EGM
2485
2486 return ret;
81819f0f
CL
2487}
2488EXPORT_SYMBOL(kmem_cache_alloc);
2489
0f24f128 2490#ifdef CONFIG_TRACING
4a92379b
RK
2491void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2492{
2b847c3c 2493 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2494 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2495 return ret;
2496}
2497EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2498#endif
2499
81819f0f
CL
2500#ifdef CONFIG_NUMA
2501void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2502{
2b847c3c 2503 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2504
ca2b84cb 2505 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2506 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2507
2508 return ret;
81819f0f
CL
2509}
2510EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2511
0f24f128 2512#ifdef CONFIG_TRACING
4a92379b 2513void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2514 gfp_t gfpflags,
4a92379b 2515 int node, size_t size)
5b882be4 2516{
2b847c3c 2517 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2518
2519 trace_kmalloc_node(_RET_IP_, ret,
2520 size, s->size, gfpflags, node);
2521 return ret;
5b882be4 2522}
4a92379b 2523EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2524#endif
5d1f57e4 2525#endif
5b882be4 2526
81819f0f 2527/*
894b8788
CL
2528 * Slow patch handling. This may still be called frequently since objects
2529 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2530 *
894b8788
CL
2531 * So we still attempt to reduce cache line usage. Just take the slab
2532 * lock and free the item. If there is no additional partial page
2533 * handling required then we can return immediately.
81819f0f 2534 */
894b8788 2535static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2536 void *x, unsigned long addr)
81819f0f
CL
2537{
2538 void *prior;
2539 void **object = (void *)x;
2cfb7455 2540 int was_frozen;
2cfb7455
CL
2541 struct page new;
2542 unsigned long counters;
2543 struct kmem_cache_node *n = NULL;
61728d1e 2544 unsigned long uninitialized_var(flags);
81819f0f 2545
8a5ec0ba 2546 stat(s, FREE_SLOWPATH);
81819f0f 2547
19c7ff9e
CL
2548 if (kmem_cache_debug(s) &&
2549 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2550 return;
6446faa2 2551
2cfb7455 2552 do {
837d678d
JK
2553 if (unlikely(n)) {
2554 spin_unlock_irqrestore(&n->list_lock, flags);
2555 n = NULL;
2556 }
2cfb7455
CL
2557 prior = page->freelist;
2558 counters = page->counters;
2559 set_freepointer(s, object, prior);
2560 new.counters = counters;
2561 was_frozen = new.frozen;
2562 new.inuse--;
837d678d 2563 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2564
c65c1877 2565 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2566
2567 /*
d0e0ac97
CG
2568 * Slab was on no list before and will be
2569 * partially empty
2570 * We can defer the list move and instead
2571 * freeze it.
49e22585
CL
2572 */
2573 new.frozen = 1;
2574
c65c1877 2575 } else { /* Needs to be taken off a list */
49e22585
CL
2576
2577 n = get_node(s, page_to_nid(page));
2578 /*
2579 * Speculatively acquire the list_lock.
2580 * If the cmpxchg does not succeed then we may
2581 * drop the list_lock without any processing.
2582 *
2583 * Otherwise the list_lock will synchronize with
2584 * other processors updating the list of slabs.
2585 */
2586 spin_lock_irqsave(&n->list_lock, flags);
2587
2588 }
2cfb7455 2589 }
81819f0f 2590
2cfb7455
CL
2591 } while (!cmpxchg_double_slab(s, page,
2592 prior, counters,
2593 object, new.counters,
2594 "__slab_free"));
81819f0f 2595
2cfb7455 2596 if (likely(!n)) {
49e22585
CL
2597
2598 /*
2599 * If we just froze the page then put it onto the
2600 * per cpu partial list.
2601 */
8028dcea 2602 if (new.frozen && !was_frozen) {
49e22585 2603 put_cpu_partial(s, page, 1);
8028dcea
AS
2604 stat(s, CPU_PARTIAL_FREE);
2605 }
49e22585 2606 /*
2cfb7455
CL
2607 * The list lock was not taken therefore no list
2608 * activity can be necessary.
2609 */
2610 if (was_frozen)
2611 stat(s, FREE_FROZEN);
80f08c19 2612 return;
2cfb7455 2613 }
81819f0f 2614
8a5b20ae 2615 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2616 goto slab_empty;
2617
81819f0f 2618 /*
837d678d
JK
2619 * Objects left in the slab. If it was not on the partial list before
2620 * then add it.
81819f0f 2621 */
345c905d
JK
2622 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2623 if (kmem_cache_debug(s))
c65c1877 2624 remove_full(s, n, page);
837d678d
JK
2625 add_partial(n, page, DEACTIVATE_TO_TAIL);
2626 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2627 }
80f08c19 2628 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2629 return;
2630
2631slab_empty:
a973e9dd 2632 if (prior) {
81819f0f 2633 /*
6fbabb20 2634 * Slab on the partial list.
81819f0f 2635 */
5cc6eee8 2636 remove_partial(n, page);
84e554e6 2637 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2638 } else {
6fbabb20 2639 /* Slab must be on the full list */
c65c1877
PZ
2640 remove_full(s, n, page);
2641 }
2cfb7455 2642
80f08c19 2643 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2644 stat(s, FREE_SLAB);
81819f0f 2645 discard_slab(s, page);
81819f0f
CL
2646}
2647
894b8788
CL
2648/*
2649 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2650 * can perform fastpath freeing without additional function calls.
2651 *
2652 * The fastpath is only possible if we are freeing to the current cpu slab
2653 * of this processor. This typically the case if we have just allocated
2654 * the item before.
2655 *
2656 * If fastpath is not possible then fall back to __slab_free where we deal
2657 * with all sorts of special processing.
2658 */
06428780 2659static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2660 struct page *page, void *x, unsigned long addr)
894b8788
CL
2661{
2662 void **object = (void *)x;
dfb4f096 2663 struct kmem_cache_cpu *c;
8a5ec0ba 2664 unsigned long tid;
1f84260c 2665
c016b0bd
CL
2666 slab_free_hook(s, x);
2667
8a5ec0ba
CL
2668redo:
2669 /*
2670 * Determine the currently cpus per cpu slab.
2671 * The cpu may change afterward. However that does not matter since
2672 * data is retrieved via this pointer. If we are on the same cpu
2673 * during the cmpxchg then the free will succedd.
2674 */
7cccd80b 2675 preempt_disable();
7c8e0181 2676 c = this_cpu_ptr(s->cpu_slab);
c016b0bd 2677
8a5ec0ba 2678 tid = c->tid;
7cccd80b 2679 preempt_enable();
c016b0bd 2680
442b06bc 2681 if (likely(page == c->page)) {
ff12059e 2682 set_freepointer(s, object, c->freelist);
8a5ec0ba 2683
933393f5 2684 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2685 s->cpu_slab->freelist, s->cpu_slab->tid,
2686 c->freelist, tid,
2687 object, next_tid(tid)))) {
2688
2689 note_cmpxchg_failure("slab_free", s, tid);
2690 goto redo;
2691 }
84e554e6 2692 stat(s, FREE_FASTPATH);
894b8788 2693 } else
ff12059e 2694 __slab_free(s, page, x, addr);
894b8788 2695
894b8788
CL
2696}
2697
81819f0f
CL
2698void kmem_cache_free(struct kmem_cache *s, void *x)
2699{
b9ce5ef4
GC
2700 s = cache_from_obj(s, x);
2701 if (!s)
79576102 2702 return;
b9ce5ef4 2703 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2704 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2705}
2706EXPORT_SYMBOL(kmem_cache_free);
2707
81819f0f 2708/*
672bba3a
CL
2709 * Object placement in a slab is made very easy because we always start at
2710 * offset 0. If we tune the size of the object to the alignment then we can
2711 * get the required alignment by putting one properly sized object after
2712 * another.
81819f0f
CL
2713 *
2714 * Notice that the allocation order determines the sizes of the per cpu
2715 * caches. Each processor has always one slab available for allocations.
2716 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2717 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2718 * locking overhead.
81819f0f
CL
2719 */
2720
2721/*
2722 * Mininum / Maximum order of slab pages. This influences locking overhead
2723 * and slab fragmentation. A higher order reduces the number of partial slabs
2724 * and increases the number of allocations possible without having to
2725 * take the list_lock.
2726 */
2727static int slub_min_order;
114e9e89 2728static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2729static int slub_min_objects;
81819f0f
CL
2730
2731/*
2732 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2733 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2734 */
2735static int slub_nomerge;
2736
81819f0f
CL
2737/*
2738 * Calculate the order of allocation given an slab object size.
2739 *
672bba3a
CL
2740 * The order of allocation has significant impact on performance and other
2741 * system components. Generally order 0 allocations should be preferred since
2742 * order 0 does not cause fragmentation in the page allocator. Larger objects
2743 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2744 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2745 * would be wasted.
2746 *
2747 * In order to reach satisfactory performance we must ensure that a minimum
2748 * number of objects is in one slab. Otherwise we may generate too much
2749 * activity on the partial lists which requires taking the list_lock. This is
2750 * less a concern for large slabs though which are rarely used.
81819f0f 2751 *
672bba3a
CL
2752 * slub_max_order specifies the order where we begin to stop considering the
2753 * number of objects in a slab as critical. If we reach slub_max_order then
2754 * we try to keep the page order as low as possible. So we accept more waste
2755 * of space in favor of a small page order.
81819f0f 2756 *
672bba3a
CL
2757 * Higher order allocations also allow the placement of more objects in a
2758 * slab and thereby reduce object handling overhead. If the user has
2759 * requested a higher mininum order then we start with that one instead of
2760 * the smallest order which will fit the object.
81819f0f 2761 */
5e6d444e 2762static inline int slab_order(int size, int min_objects,
ab9a0f19 2763 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2764{
2765 int order;
2766 int rem;
6300ea75 2767 int min_order = slub_min_order;
81819f0f 2768
ab9a0f19 2769 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2770 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2771
6300ea75 2772 for (order = max(min_order,
5e6d444e
CL
2773 fls(min_objects * size - 1) - PAGE_SHIFT);
2774 order <= max_order; order++) {
81819f0f 2775
5e6d444e 2776 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2777
ab9a0f19 2778 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2779 continue;
2780
ab9a0f19 2781 rem = (slab_size - reserved) % size;
81819f0f 2782
5e6d444e 2783 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2784 break;
2785
2786 }
672bba3a 2787
81819f0f
CL
2788 return order;
2789}
2790
ab9a0f19 2791static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2792{
2793 int order;
2794 int min_objects;
2795 int fraction;
e8120ff1 2796 int max_objects;
5e6d444e
CL
2797
2798 /*
2799 * Attempt to find best configuration for a slab. This
2800 * works by first attempting to generate a layout with
2801 * the best configuration and backing off gradually.
2802 *
2803 * First we reduce the acceptable waste in a slab. Then
2804 * we reduce the minimum objects required in a slab.
2805 */
2806 min_objects = slub_min_objects;
9b2cd506
CL
2807 if (!min_objects)
2808 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2809 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2810 min_objects = min(min_objects, max_objects);
2811
5e6d444e 2812 while (min_objects > 1) {
c124f5b5 2813 fraction = 16;
5e6d444e
CL
2814 while (fraction >= 4) {
2815 order = slab_order(size, min_objects,
ab9a0f19 2816 slub_max_order, fraction, reserved);
5e6d444e
CL
2817 if (order <= slub_max_order)
2818 return order;
2819 fraction /= 2;
2820 }
5086c389 2821 min_objects--;
5e6d444e
CL
2822 }
2823
2824 /*
2825 * We were unable to place multiple objects in a slab. Now
2826 * lets see if we can place a single object there.
2827 */
ab9a0f19 2828 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2829 if (order <= slub_max_order)
2830 return order;
2831
2832 /*
2833 * Doh this slab cannot be placed using slub_max_order.
2834 */
ab9a0f19 2835 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2836 if (order < MAX_ORDER)
5e6d444e
CL
2837 return order;
2838 return -ENOSYS;
2839}
2840
5595cffc 2841static void
4053497d 2842init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2843{
2844 n->nr_partial = 0;
81819f0f
CL
2845 spin_lock_init(&n->list_lock);
2846 INIT_LIST_HEAD(&n->partial);
8ab1372f 2847#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2848 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2849 atomic_long_set(&n->total_objects, 0);
643b1138 2850 INIT_LIST_HEAD(&n->full);
8ab1372f 2851#endif
81819f0f
CL
2852}
2853
55136592 2854static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2855{
6c182dc0 2856 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2857 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2858
8a5ec0ba 2859 /*
d4d84fef
CM
2860 * Must align to double word boundary for the double cmpxchg
2861 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2862 */
d4d84fef
CM
2863 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2864 2 * sizeof(void *));
8a5ec0ba
CL
2865
2866 if (!s->cpu_slab)
2867 return 0;
2868
2869 init_kmem_cache_cpus(s);
4c93c355 2870
8a5ec0ba 2871 return 1;
4c93c355 2872}
4c93c355 2873
51df1142
CL
2874static struct kmem_cache *kmem_cache_node;
2875
81819f0f
CL
2876/*
2877 * No kmalloc_node yet so do it by hand. We know that this is the first
2878 * slab on the node for this slabcache. There are no concurrent accesses
2879 * possible.
2880 *
721ae22a
ZYW
2881 * Note that this function only works on the kmem_cache_node
2882 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2883 * memory on a fresh node that has no slab structures yet.
81819f0f 2884 */
55136592 2885static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2886{
2887 struct page *page;
2888 struct kmem_cache_node *n;
2889
51df1142 2890 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2891
51df1142 2892 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2893
2894 BUG_ON(!page);
a2f92ee7 2895 if (page_to_nid(page) != node) {
f9f58285
FF
2896 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2897 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
2898 }
2899
81819f0f
CL
2900 n = page->freelist;
2901 BUG_ON(!n);
51df1142 2902 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2903 page->inuse = 1;
8cb0a506 2904 page->frozen = 0;
51df1142 2905 kmem_cache_node->node[node] = n;
8ab1372f 2906#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2907 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2908 init_tracking(kmem_cache_node, n);
8ab1372f 2909#endif
4053497d 2910 init_kmem_cache_node(n);
51df1142 2911 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2912
67b6c900 2913 /*
1e4dd946
SR
2914 * No locks need to be taken here as it has just been
2915 * initialized and there is no concurrent access.
67b6c900 2916 */
1e4dd946 2917 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2918}
2919
2920static void free_kmem_cache_nodes(struct kmem_cache *s)
2921{
2922 int node;
fa45dc25 2923 struct kmem_cache_node *n;
81819f0f 2924
fa45dc25
CL
2925 for_each_kmem_cache_node(s, node, n) {
2926 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
2927 s->node[node] = NULL;
2928 }
2929}
2930
55136592 2931static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2932{
2933 int node;
81819f0f 2934
f64dc58c 2935 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2936 struct kmem_cache_node *n;
2937
73367bd8 2938 if (slab_state == DOWN) {
55136592 2939 early_kmem_cache_node_alloc(node);
73367bd8
AD
2940 continue;
2941 }
51df1142 2942 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2943 GFP_KERNEL, node);
81819f0f 2944
73367bd8
AD
2945 if (!n) {
2946 free_kmem_cache_nodes(s);
2947 return 0;
81819f0f 2948 }
73367bd8 2949
81819f0f 2950 s->node[node] = n;
4053497d 2951 init_kmem_cache_node(n);
81819f0f
CL
2952 }
2953 return 1;
2954}
81819f0f 2955
c0bdb232 2956static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2957{
2958 if (min < MIN_PARTIAL)
2959 min = MIN_PARTIAL;
2960 else if (min > MAX_PARTIAL)
2961 min = MAX_PARTIAL;
2962 s->min_partial = min;
2963}
2964
81819f0f
CL
2965/*
2966 * calculate_sizes() determines the order and the distribution of data within
2967 * a slab object.
2968 */
06b285dc 2969static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2970{
2971 unsigned long flags = s->flags;
3b0efdfa 2972 unsigned long size = s->object_size;
834f3d11 2973 int order;
81819f0f 2974
d8b42bf5
CL
2975 /*
2976 * Round up object size to the next word boundary. We can only
2977 * place the free pointer at word boundaries and this determines
2978 * the possible location of the free pointer.
2979 */
2980 size = ALIGN(size, sizeof(void *));
2981
2982#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2983 /*
2984 * Determine if we can poison the object itself. If the user of
2985 * the slab may touch the object after free or before allocation
2986 * then we should never poison the object itself.
2987 */
2988 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2989 !s->ctor)
81819f0f
CL
2990 s->flags |= __OBJECT_POISON;
2991 else
2992 s->flags &= ~__OBJECT_POISON;
2993
81819f0f
CL
2994
2995 /*
672bba3a 2996 * If we are Redzoning then check if there is some space between the
81819f0f 2997 * end of the object and the free pointer. If not then add an
672bba3a 2998 * additional word to have some bytes to store Redzone information.
81819f0f 2999 */
3b0efdfa 3000 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3001 size += sizeof(void *);
41ecc55b 3002#endif
81819f0f
CL
3003
3004 /*
672bba3a
CL
3005 * With that we have determined the number of bytes in actual use
3006 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3007 */
3008 s->inuse = size;
3009
3010 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3011 s->ctor)) {
81819f0f
CL
3012 /*
3013 * Relocate free pointer after the object if it is not
3014 * permitted to overwrite the first word of the object on
3015 * kmem_cache_free.
3016 *
3017 * This is the case if we do RCU, have a constructor or
3018 * destructor or are poisoning the objects.
3019 */
3020 s->offset = size;
3021 size += sizeof(void *);
3022 }
3023
c12b3c62 3024#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3025 if (flags & SLAB_STORE_USER)
3026 /*
3027 * Need to store information about allocs and frees after
3028 * the object.
3029 */
3030 size += 2 * sizeof(struct track);
3031
be7b3fbc 3032 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3033 /*
3034 * Add some empty padding so that we can catch
3035 * overwrites from earlier objects rather than let
3036 * tracking information or the free pointer be
0211a9c8 3037 * corrupted if a user writes before the start
81819f0f
CL
3038 * of the object.
3039 */
3040 size += sizeof(void *);
41ecc55b 3041#endif
672bba3a 3042
81819f0f
CL
3043 /*
3044 * SLUB stores one object immediately after another beginning from
3045 * offset 0. In order to align the objects we have to simply size
3046 * each object to conform to the alignment.
3047 */
45906855 3048 size = ALIGN(size, s->align);
81819f0f 3049 s->size = size;
06b285dc
CL
3050 if (forced_order >= 0)
3051 order = forced_order;
3052 else
ab9a0f19 3053 order = calculate_order(size, s->reserved);
81819f0f 3054
834f3d11 3055 if (order < 0)
81819f0f
CL
3056 return 0;
3057
b7a49f0d 3058 s->allocflags = 0;
834f3d11 3059 if (order)
b7a49f0d
CL
3060 s->allocflags |= __GFP_COMP;
3061
3062 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3063 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3064
3065 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3066 s->allocflags |= __GFP_RECLAIMABLE;
3067
81819f0f
CL
3068 /*
3069 * Determine the number of objects per slab
3070 */
ab9a0f19
LJ
3071 s->oo = oo_make(order, size, s->reserved);
3072 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3073 if (oo_objects(s->oo) > oo_objects(s->max))
3074 s->max = s->oo;
81819f0f 3075
834f3d11 3076 return !!oo_objects(s->oo);
81819f0f
CL
3077}
3078
8a13a4cc 3079static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3080{
8a13a4cc 3081 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3082 s->reserved = 0;
81819f0f 3083
da9a638c
LJ
3084 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3085 s->reserved = sizeof(struct rcu_head);
81819f0f 3086
06b285dc 3087 if (!calculate_sizes(s, -1))
81819f0f 3088 goto error;
3de47213
DR
3089 if (disable_higher_order_debug) {
3090 /*
3091 * Disable debugging flags that store metadata if the min slab
3092 * order increased.
3093 */
3b0efdfa 3094 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3095 s->flags &= ~DEBUG_METADATA_FLAGS;
3096 s->offset = 0;
3097 if (!calculate_sizes(s, -1))
3098 goto error;
3099 }
3100 }
81819f0f 3101
2565409f
HC
3102#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3103 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3104 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3105 /* Enable fast mode */
3106 s->flags |= __CMPXCHG_DOUBLE;
3107#endif
3108
3b89d7d8
DR
3109 /*
3110 * The larger the object size is, the more pages we want on the partial
3111 * list to avoid pounding the page allocator excessively.
3112 */
49e22585
CL
3113 set_min_partial(s, ilog2(s->size) / 2);
3114
3115 /*
3116 * cpu_partial determined the maximum number of objects kept in the
3117 * per cpu partial lists of a processor.
3118 *
3119 * Per cpu partial lists mainly contain slabs that just have one
3120 * object freed. If they are used for allocation then they can be
3121 * filled up again with minimal effort. The slab will never hit the
3122 * per node partial lists and therefore no locking will be required.
3123 *
3124 * This setting also determines
3125 *
3126 * A) The number of objects from per cpu partial slabs dumped to the
3127 * per node list when we reach the limit.
9f264904 3128 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3129 * per node list when we run out of per cpu objects. We only fetch
3130 * 50% to keep some capacity around for frees.
49e22585 3131 */
345c905d 3132 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3133 s->cpu_partial = 0;
3134 else if (s->size >= PAGE_SIZE)
49e22585
CL
3135 s->cpu_partial = 2;
3136 else if (s->size >= 1024)
3137 s->cpu_partial = 6;
3138 else if (s->size >= 256)
3139 s->cpu_partial = 13;
3140 else
3141 s->cpu_partial = 30;
3142
81819f0f 3143#ifdef CONFIG_NUMA
e2cb96b7 3144 s->remote_node_defrag_ratio = 1000;
81819f0f 3145#endif
55136592 3146 if (!init_kmem_cache_nodes(s))
dfb4f096 3147 goto error;
81819f0f 3148
55136592 3149 if (alloc_kmem_cache_cpus(s))
278b1bb1 3150 return 0;
ff12059e 3151
4c93c355 3152 free_kmem_cache_nodes(s);
81819f0f
CL
3153error:
3154 if (flags & SLAB_PANIC)
3155 panic("Cannot create slab %s size=%lu realsize=%u "
3156 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3157 s->name, (unsigned long)s->size, s->size,
3158 oo_order(s->oo), s->offset, flags);
278b1bb1 3159 return -EINVAL;
81819f0f 3160}
81819f0f 3161
33b12c38
CL
3162static void list_slab_objects(struct kmem_cache *s, struct page *page,
3163 const char *text)
3164{
3165#ifdef CONFIG_SLUB_DEBUG
3166 void *addr = page_address(page);
3167 void *p;
a5dd5c11
NK
3168 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3169 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3170 if (!map)
3171 return;
945cf2b6 3172 slab_err(s, page, text, s->name);
33b12c38 3173 slab_lock(page);
33b12c38 3174
5f80b13a 3175 get_map(s, page, map);
33b12c38
CL
3176 for_each_object(p, s, addr, page->objects) {
3177
3178 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3179 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3180 print_tracking(s, p);
3181 }
3182 }
3183 slab_unlock(page);
bbd7d57b 3184 kfree(map);
33b12c38
CL
3185#endif
3186}
3187
81819f0f 3188/*
599870b1 3189 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3190 * This is called from kmem_cache_close(). We must be the last thread
3191 * using the cache and therefore we do not need to lock anymore.
81819f0f 3192 */
599870b1 3193static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3194{
81819f0f
CL
3195 struct page *page, *h;
3196
33b12c38 3197 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3198 if (!page->inuse) {
1e4dd946 3199 __remove_partial(n, page);
81819f0f 3200 discard_slab(s, page);
33b12c38
CL
3201 } else {
3202 list_slab_objects(s, page,
945cf2b6 3203 "Objects remaining in %s on kmem_cache_close()");
599870b1 3204 }
33b12c38 3205 }
81819f0f
CL
3206}
3207
3208/*
672bba3a 3209 * Release all resources used by a slab cache.
81819f0f 3210 */
0c710013 3211static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3212{
3213 int node;
fa45dc25 3214 struct kmem_cache_node *n;
81819f0f
CL
3215
3216 flush_all(s);
81819f0f 3217 /* Attempt to free all objects */
fa45dc25 3218 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3219 free_partial(s, n);
3220 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3221 return 1;
3222 }
945cf2b6 3223 free_percpu(s->cpu_slab);
81819f0f
CL
3224 free_kmem_cache_nodes(s);
3225 return 0;
3226}
3227
945cf2b6 3228int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3229{
41a21285 3230 return kmem_cache_close(s);
81819f0f 3231}
81819f0f
CL
3232
3233/********************************************************************
3234 * Kmalloc subsystem
3235 *******************************************************************/
3236
81819f0f
CL
3237static int __init setup_slub_min_order(char *str)
3238{
06428780 3239 get_option(&str, &slub_min_order);
81819f0f
CL
3240
3241 return 1;
3242}
3243
3244__setup("slub_min_order=", setup_slub_min_order);
3245
3246static int __init setup_slub_max_order(char *str)
3247{
06428780 3248 get_option(&str, &slub_max_order);
818cf590 3249 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3250
3251 return 1;
3252}
3253
3254__setup("slub_max_order=", setup_slub_max_order);
3255
3256static int __init setup_slub_min_objects(char *str)
3257{
06428780 3258 get_option(&str, &slub_min_objects);
81819f0f
CL
3259
3260 return 1;
3261}
3262
3263__setup("slub_min_objects=", setup_slub_min_objects);
3264
3265static int __init setup_slub_nomerge(char *str)
3266{
3267 slub_nomerge = 1;
3268 return 1;
3269}
3270
3271__setup("slub_nomerge", setup_slub_nomerge);
3272
81819f0f
CL
3273void *__kmalloc(size_t size, gfp_t flags)
3274{
aadb4bc4 3275 struct kmem_cache *s;
5b882be4 3276 void *ret;
81819f0f 3277
95a05b42 3278 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3279 return kmalloc_large(size, flags);
aadb4bc4 3280
2c59dd65 3281 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3282
3283 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3284 return s;
3285
2b847c3c 3286 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3287
ca2b84cb 3288 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3289
3290 return ret;
81819f0f
CL
3291}
3292EXPORT_SYMBOL(__kmalloc);
3293
5d1f57e4 3294#ifdef CONFIG_NUMA
f619cfe1
CL
3295static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3296{
b1eeab67 3297 struct page *page;
e4f7c0b4 3298 void *ptr = NULL;
f619cfe1 3299
52383431
VD
3300 flags |= __GFP_COMP | __GFP_NOTRACK;
3301 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3302 if (page)
e4f7c0b4
CM
3303 ptr = page_address(page);
3304
d56791b3 3305 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3306 return ptr;
f619cfe1
CL
3307}
3308
81819f0f
CL
3309void *__kmalloc_node(size_t size, gfp_t flags, int node)
3310{
aadb4bc4 3311 struct kmem_cache *s;
5b882be4 3312 void *ret;
81819f0f 3313
95a05b42 3314 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3315 ret = kmalloc_large_node(size, flags, node);
3316
ca2b84cb
EGM
3317 trace_kmalloc_node(_RET_IP_, ret,
3318 size, PAGE_SIZE << get_order(size),
3319 flags, node);
5b882be4
EGM
3320
3321 return ret;
3322 }
aadb4bc4 3323
2c59dd65 3324 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3325
3326 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3327 return s;
3328
2b847c3c 3329 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3330
ca2b84cb 3331 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3332
3333 return ret;
81819f0f
CL
3334}
3335EXPORT_SYMBOL(__kmalloc_node);
3336#endif
3337
3338size_t ksize(const void *object)
3339{
272c1d21 3340 struct page *page;
81819f0f 3341
ef8b4520 3342 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3343 return 0;
3344
294a80a8 3345 page = virt_to_head_page(object);
294a80a8 3346
76994412
PE
3347 if (unlikely(!PageSlab(page))) {
3348 WARN_ON(!PageCompound(page));
294a80a8 3349 return PAGE_SIZE << compound_order(page);
76994412 3350 }
81819f0f 3351
1b4f59e3 3352 return slab_ksize(page->slab_cache);
81819f0f 3353}
b1aabecd 3354EXPORT_SYMBOL(ksize);
81819f0f
CL
3355
3356void kfree(const void *x)
3357{
81819f0f 3358 struct page *page;
5bb983b0 3359 void *object = (void *)x;
81819f0f 3360
2121db74
PE
3361 trace_kfree(_RET_IP_, x);
3362
2408c550 3363 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3364 return;
3365
b49af68f 3366 page = virt_to_head_page(x);
aadb4bc4 3367 if (unlikely(!PageSlab(page))) {
0937502a 3368 BUG_ON(!PageCompound(page));
d56791b3 3369 kfree_hook(x);
52383431 3370 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3371 return;
3372 }
1b4f59e3 3373 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3374}
3375EXPORT_SYMBOL(kfree);
3376
2086d26a 3377/*
672bba3a
CL
3378 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3379 * the remaining slabs by the number of items in use. The slabs with the
3380 * most items in use come first. New allocations will then fill those up
3381 * and thus they can be removed from the partial lists.
3382 *
3383 * The slabs with the least items are placed last. This results in them
3384 * being allocated from last increasing the chance that the last objects
3385 * are freed in them.
2086d26a 3386 */
03afc0e2 3387int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3388{
3389 int node;
3390 int i;
3391 struct kmem_cache_node *n;
3392 struct page *page;
3393 struct page *t;
205ab99d 3394 int objects = oo_objects(s->max);
2086d26a 3395 struct list_head *slabs_by_inuse =
834f3d11 3396 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3397 unsigned long flags;
3398
3399 if (!slabs_by_inuse)
3400 return -ENOMEM;
3401
3402 flush_all(s);
fa45dc25 3403 for_each_kmem_cache_node(s, node, n) {
2086d26a
CL
3404 if (!n->nr_partial)
3405 continue;
3406
834f3d11 3407 for (i = 0; i < objects; i++)
2086d26a
CL
3408 INIT_LIST_HEAD(slabs_by_inuse + i);
3409
3410 spin_lock_irqsave(&n->list_lock, flags);
3411
3412 /*
672bba3a 3413 * Build lists indexed by the items in use in each slab.
2086d26a 3414 *
672bba3a
CL
3415 * Note that concurrent frees may occur while we hold the
3416 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3417 */
3418 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3419 list_move(&page->lru, slabs_by_inuse + page->inuse);
3420 if (!page->inuse)
3421 n->nr_partial--;
2086d26a
CL
3422 }
3423
2086d26a 3424 /*
672bba3a
CL
3425 * Rebuild the partial list with the slabs filled up most
3426 * first and the least used slabs at the end.
2086d26a 3427 */
69cb8e6b 3428 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3429 list_splice(slabs_by_inuse + i, n->partial.prev);
3430
2086d26a 3431 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3432
3433 /* Release empty slabs */
3434 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3435 discard_slab(s, page);
2086d26a
CL
3436 }
3437
3438 kfree(slabs_by_inuse);
3439 return 0;
3440}
2086d26a 3441
b9049e23
YG
3442static int slab_mem_going_offline_callback(void *arg)
3443{
3444 struct kmem_cache *s;
3445
18004c5d 3446 mutex_lock(&slab_mutex);
b9049e23 3447 list_for_each_entry(s, &slab_caches, list)
03afc0e2 3448 __kmem_cache_shrink(s);
18004c5d 3449 mutex_unlock(&slab_mutex);
b9049e23
YG
3450
3451 return 0;
3452}
3453
3454static void slab_mem_offline_callback(void *arg)
3455{
3456 struct kmem_cache_node *n;
3457 struct kmem_cache *s;
3458 struct memory_notify *marg = arg;
3459 int offline_node;
3460
b9d5ab25 3461 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3462
3463 /*
3464 * If the node still has available memory. we need kmem_cache_node
3465 * for it yet.
3466 */
3467 if (offline_node < 0)
3468 return;
3469
18004c5d 3470 mutex_lock(&slab_mutex);
b9049e23
YG
3471 list_for_each_entry(s, &slab_caches, list) {
3472 n = get_node(s, offline_node);
3473 if (n) {
3474 /*
3475 * if n->nr_slabs > 0, slabs still exist on the node
3476 * that is going down. We were unable to free them,
c9404c9c 3477 * and offline_pages() function shouldn't call this
b9049e23
YG
3478 * callback. So, we must fail.
3479 */
0f389ec6 3480 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3481
3482 s->node[offline_node] = NULL;
8de66a0c 3483 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3484 }
3485 }
18004c5d 3486 mutex_unlock(&slab_mutex);
b9049e23
YG
3487}
3488
3489static int slab_mem_going_online_callback(void *arg)
3490{
3491 struct kmem_cache_node *n;
3492 struct kmem_cache *s;
3493 struct memory_notify *marg = arg;
b9d5ab25 3494 int nid = marg->status_change_nid_normal;
b9049e23
YG
3495 int ret = 0;
3496
3497 /*
3498 * If the node's memory is already available, then kmem_cache_node is
3499 * already created. Nothing to do.
3500 */
3501 if (nid < 0)
3502 return 0;
3503
3504 /*
0121c619 3505 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3506 * allocate a kmem_cache_node structure in order to bring the node
3507 * online.
3508 */
18004c5d 3509 mutex_lock(&slab_mutex);
b9049e23
YG
3510 list_for_each_entry(s, &slab_caches, list) {
3511 /*
3512 * XXX: kmem_cache_alloc_node will fallback to other nodes
3513 * since memory is not yet available from the node that
3514 * is brought up.
3515 */
8de66a0c 3516 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3517 if (!n) {
3518 ret = -ENOMEM;
3519 goto out;
3520 }
4053497d 3521 init_kmem_cache_node(n);
b9049e23
YG
3522 s->node[nid] = n;
3523 }
3524out:
18004c5d 3525 mutex_unlock(&slab_mutex);
b9049e23
YG
3526 return ret;
3527}
3528
3529static int slab_memory_callback(struct notifier_block *self,
3530 unsigned long action, void *arg)
3531{
3532 int ret = 0;
3533
3534 switch (action) {
3535 case MEM_GOING_ONLINE:
3536 ret = slab_mem_going_online_callback(arg);
3537 break;
3538 case MEM_GOING_OFFLINE:
3539 ret = slab_mem_going_offline_callback(arg);
3540 break;
3541 case MEM_OFFLINE:
3542 case MEM_CANCEL_ONLINE:
3543 slab_mem_offline_callback(arg);
3544 break;
3545 case MEM_ONLINE:
3546 case MEM_CANCEL_OFFLINE:
3547 break;
3548 }
dc19f9db
KH
3549 if (ret)
3550 ret = notifier_from_errno(ret);
3551 else
3552 ret = NOTIFY_OK;
b9049e23
YG
3553 return ret;
3554}
3555
3ac38faa
AM
3556static struct notifier_block slab_memory_callback_nb = {
3557 .notifier_call = slab_memory_callback,
3558 .priority = SLAB_CALLBACK_PRI,
3559};
b9049e23 3560
81819f0f
CL
3561/********************************************************************
3562 * Basic setup of slabs
3563 *******************************************************************/
3564
51df1142
CL
3565/*
3566 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3567 * the page allocator. Allocate them properly then fix up the pointers
3568 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3569 */
3570
dffb4d60 3571static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3572{
3573 int node;
dffb4d60 3574 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3575 struct kmem_cache_node *n;
51df1142 3576
dffb4d60 3577 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3578
7d557b3c
GC
3579 /*
3580 * This runs very early, and only the boot processor is supposed to be
3581 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3582 * IPIs around.
3583 */
3584 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3585 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3586 struct page *p;
3587
fa45dc25
CL
3588 list_for_each_entry(p, &n->partial, lru)
3589 p->slab_cache = s;
51df1142 3590
607bf324 3591#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3592 list_for_each_entry(p, &n->full, lru)
3593 p->slab_cache = s;
51df1142 3594#endif
51df1142 3595 }
dffb4d60
CL
3596 list_add(&s->list, &slab_caches);
3597 return s;
51df1142
CL
3598}
3599
81819f0f
CL
3600void __init kmem_cache_init(void)
3601{
dffb4d60
CL
3602 static __initdata struct kmem_cache boot_kmem_cache,
3603 boot_kmem_cache_node;
51df1142 3604
fc8d8620
SG
3605 if (debug_guardpage_minorder())
3606 slub_max_order = 0;
3607
dffb4d60
CL
3608 kmem_cache_node = &boot_kmem_cache_node;
3609 kmem_cache = &boot_kmem_cache;
51df1142 3610
dffb4d60
CL
3611 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3612 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3613
3ac38faa 3614 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3615
3616 /* Able to allocate the per node structures */
3617 slab_state = PARTIAL;
3618
dffb4d60
CL
3619 create_boot_cache(kmem_cache, "kmem_cache",
3620 offsetof(struct kmem_cache, node) +
3621 nr_node_ids * sizeof(struct kmem_cache_node *),
3622 SLAB_HWCACHE_ALIGN);
8a13a4cc 3623
dffb4d60 3624 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3625
51df1142
CL
3626 /*
3627 * Allocate kmem_cache_node properly from the kmem_cache slab.
3628 * kmem_cache_node is separately allocated so no need to
3629 * update any list pointers.
3630 */
dffb4d60 3631 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3632
3633 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3634 create_kmalloc_caches(0);
81819f0f
CL
3635
3636#ifdef CONFIG_SMP
3637 register_cpu_notifier(&slab_notifier);
9dfc6e68 3638#endif
81819f0f 3639
f9f58285 3640 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3641 cache_line_size(),
81819f0f
CL
3642 slub_min_order, slub_max_order, slub_min_objects,
3643 nr_cpu_ids, nr_node_ids);
3644}
3645
7e85ee0c
PE
3646void __init kmem_cache_init_late(void)
3647{
7e85ee0c
PE
3648}
3649
81819f0f
CL
3650/*
3651 * Find a mergeable slab cache
3652 */
3653static int slab_unmergeable(struct kmem_cache *s)
3654{
3655 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3656 return 1;
3657
a44cb944
VD
3658 if (!is_root_cache(s))
3659 return 1;
3660
c59def9f 3661 if (s->ctor)
81819f0f
CL
3662 return 1;
3663
8ffa6875
CL
3664 /*
3665 * We may have set a slab to be unmergeable during bootstrap.
3666 */
3667 if (s->refcount < 0)
3668 return 1;
3669
81819f0f
CL
3670 return 0;
3671}
3672
a44cb944
VD
3673static struct kmem_cache *find_mergeable(size_t size, size_t align,
3674 unsigned long flags, const char *name, void (*ctor)(void *))
81819f0f 3675{
5b95a4ac 3676 struct kmem_cache *s;
81819f0f
CL
3677
3678 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3679 return NULL;
3680
c59def9f 3681 if (ctor)
81819f0f
CL
3682 return NULL;
3683
3684 size = ALIGN(size, sizeof(void *));
3685 align = calculate_alignment(flags, align, size);
3686 size = ALIGN(size, align);
ba0268a8 3687 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3688
5b95a4ac 3689 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3690 if (slab_unmergeable(s))
3691 continue;
3692
3693 if (size > s->size)
3694 continue;
3695
ba0268a8 3696 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
a44cb944 3697 continue;
81819f0f
CL
3698 /*
3699 * Check if alignment is compatible.
3700 * Courtesy of Adrian Drzewiecki
3701 */
06428780 3702 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3703 continue;
3704
3705 if (s->size - size >= sizeof(void *))
3706 continue;
3707
3708 return s;
3709 }
3710 return NULL;
3711}
3712
2633d7a0 3713struct kmem_cache *
a44cb944
VD
3714__kmem_cache_alias(const char *name, size_t size, size_t align,
3715 unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3716{
3717 struct kmem_cache *s;
3718
a44cb944 3719 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3720 if (s) {
84d0ddd6
VD
3721 int i;
3722 struct kmem_cache *c;
3723
81819f0f 3724 s->refcount++;
84d0ddd6 3725
81819f0f
CL
3726 /*
3727 * Adjust the object sizes so that we clear
3728 * the complete object on kzalloc.
3729 */
3b0efdfa 3730 s->object_size = max(s->object_size, (int)size);
81819f0f 3731 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3732
84d0ddd6
VD
3733 for_each_memcg_cache_index(i) {
3734 c = cache_from_memcg_idx(s, i);
3735 if (!c)
3736 continue;
3737 c->object_size = s->object_size;
3738 c->inuse = max_t(int, c->inuse,
3739 ALIGN(size, sizeof(void *)));
3740 }
3741
7b8f3b66 3742 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3743 s->refcount--;
cbb79694 3744 s = NULL;
7b8f3b66 3745 }
a0e1d1be 3746 }
6446faa2 3747
cbb79694
CL
3748 return s;
3749}
84c1cf62 3750
8a13a4cc 3751int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3752{
aac3a166
PE
3753 int err;
3754
3755 err = kmem_cache_open(s, flags);
3756 if (err)
3757 return err;
20cea968 3758
45530c44
CL
3759 /* Mutex is not taken during early boot */
3760 if (slab_state <= UP)
3761 return 0;
3762
107dab5c 3763 memcg_propagate_slab_attrs(s);
aac3a166 3764 err = sysfs_slab_add(s);
aac3a166
PE
3765 if (err)
3766 kmem_cache_close(s);
20cea968 3767
aac3a166 3768 return err;
81819f0f 3769}
81819f0f 3770
81819f0f 3771#ifdef CONFIG_SMP
81819f0f 3772/*
672bba3a
CL
3773 * Use the cpu notifier to insure that the cpu slabs are flushed when
3774 * necessary.
81819f0f 3775 */
0db0628d 3776static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3777 unsigned long action, void *hcpu)
3778{
3779 long cpu = (long)hcpu;
5b95a4ac
CL
3780 struct kmem_cache *s;
3781 unsigned long flags;
81819f0f
CL
3782
3783 switch (action) {
3784 case CPU_UP_CANCELED:
8bb78442 3785 case CPU_UP_CANCELED_FROZEN:
81819f0f 3786 case CPU_DEAD:
8bb78442 3787 case CPU_DEAD_FROZEN:
18004c5d 3788 mutex_lock(&slab_mutex);
5b95a4ac
CL
3789 list_for_each_entry(s, &slab_caches, list) {
3790 local_irq_save(flags);
3791 __flush_cpu_slab(s, cpu);
3792 local_irq_restore(flags);
3793 }
18004c5d 3794 mutex_unlock(&slab_mutex);
81819f0f
CL
3795 break;
3796 default:
3797 break;
3798 }
3799 return NOTIFY_OK;
3800}
3801
0db0628d 3802static struct notifier_block slab_notifier = {
3adbefee 3803 .notifier_call = slab_cpuup_callback
06428780 3804};
81819f0f
CL
3805
3806#endif
3807
ce71e27c 3808void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3809{
aadb4bc4 3810 struct kmem_cache *s;
94b528d0 3811 void *ret;
aadb4bc4 3812
95a05b42 3813 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3814 return kmalloc_large(size, gfpflags);
3815
2c59dd65 3816 s = kmalloc_slab(size, gfpflags);
81819f0f 3817
2408c550 3818 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3819 return s;
81819f0f 3820
2b847c3c 3821 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3822
25985edc 3823 /* Honor the call site pointer we received. */
ca2b84cb 3824 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3825
3826 return ret;
81819f0f
CL
3827}
3828
5d1f57e4 3829#ifdef CONFIG_NUMA
81819f0f 3830void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3831 int node, unsigned long caller)
81819f0f 3832{
aadb4bc4 3833 struct kmem_cache *s;
94b528d0 3834 void *ret;
aadb4bc4 3835
95a05b42 3836 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3837 ret = kmalloc_large_node(size, gfpflags, node);
3838
3839 trace_kmalloc_node(caller, ret,
3840 size, PAGE_SIZE << get_order(size),
3841 gfpflags, node);
3842
3843 return ret;
3844 }
eada35ef 3845
2c59dd65 3846 s = kmalloc_slab(size, gfpflags);
81819f0f 3847
2408c550 3848 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3849 return s;
81819f0f 3850
2b847c3c 3851 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3852
25985edc 3853 /* Honor the call site pointer we received. */
ca2b84cb 3854 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3855
3856 return ret;
81819f0f 3857}
5d1f57e4 3858#endif
81819f0f 3859
ab4d5ed5 3860#ifdef CONFIG_SYSFS
205ab99d
CL
3861static int count_inuse(struct page *page)
3862{
3863 return page->inuse;
3864}
3865
3866static int count_total(struct page *page)
3867{
3868 return page->objects;
3869}
ab4d5ed5 3870#endif
205ab99d 3871
ab4d5ed5 3872#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3873static int validate_slab(struct kmem_cache *s, struct page *page,
3874 unsigned long *map)
53e15af0
CL
3875{
3876 void *p;
a973e9dd 3877 void *addr = page_address(page);
53e15af0
CL
3878
3879 if (!check_slab(s, page) ||
3880 !on_freelist(s, page, NULL))
3881 return 0;
3882
3883 /* Now we know that a valid freelist exists */
39b26464 3884 bitmap_zero(map, page->objects);
53e15af0 3885
5f80b13a
CL
3886 get_map(s, page, map);
3887 for_each_object(p, s, addr, page->objects) {
3888 if (test_bit(slab_index(p, s, addr), map))
3889 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3890 return 0;
53e15af0
CL
3891 }
3892
224a88be 3893 for_each_object(p, s, addr, page->objects)
7656c72b 3894 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3895 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3896 return 0;
3897 return 1;
3898}
3899
434e245d
CL
3900static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3901 unsigned long *map)
53e15af0 3902{
881db7fb
CL
3903 slab_lock(page);
3904 validate_slab(s, page, map);
3905 slab_unlock(page);
53e15af0
CL
3906}
3907
434e245d
CL
3908static int validate_slab_node(struct kmem_cache *s,
3909 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3910{
3911 unsigned long count = 0;
3912 struct page *page;
3913 unsigned long flags;
3914
3915 spin_lock_irqsave(&n->list_lock, flags);
3916
3917 list_for_each_entry(page, &n->partial, lru) {
434e245d 3918 validate_slab_slab(s, page, map);
53e15af0
CL
3919 count++;
3920 }
3921 if (count != n->nr_partial)
f9f58285
FF
3922 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3923 s->name, count, n->nr_partial);
53e15af0
CL
3924
3925 if (!(s->flags & SLAB_STORE_USER))
3926 goto out;
3927
3928 list_for_each_entry(page, &n->full, lru) {
434e245d 3929 validate_slab_slab(s, page, map);
53e15af0
CL
3930 count++;
3931 }
3932 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3933 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3934 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
3935
3936out:
3937 spin_unlock_irqrestore(&n->list_lock, flags);
3938 return count;
3939}
3940
434e245d 3941static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3942{
3943 int node;
3944 unsigned long count = 0;
205ab99d 3945 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 3946 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 3947 struct kmem_cache_node *n;
434e245d
CL
3948
3949 if (!map)
3950 return -ENOMEM;
53e15af0
CL
3951
3952 flush_all(s);
fa45dc25 3953 for_each_kmem_cache_node(s, node, n)
434e245d 3954 count += validate_slab_node(s, n, map);
434e245d 3955 kfree(map);
53e15af0
CL
3956 return count;
3957}
88a420e4 3958/*
672bba3a 3959 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3960 * and freed.
3961 */
3962
3963struct location {
3964 unsigned long count;
ce71e27c 3965 unsigned long addr;
45edfa58
CL
3966 long long sum_time;
3967 long min_time;
3968 long max_time;
3969 long min_pid;
3970 long max_pid;
174596a0 3971 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3972 nodemask_t nodes;
88a420e4
CL
3973};
3974
3975struct loc_track {
3976 unsigned long max;
3977 unsigned long count;
3978 struct location *loc;
3979};
3980
3981static void free_loc_track(struct loc_track *t)
3982{
3983 if (t->max)
3984 free_pages((unsigned long)t->loc,
3985 get_order(sizeof(struct location) * t->max));
3986}
3987
68dff6a9 3988static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3989{
3990 struct location *l;
3991 int order;
3992
88a420e4
CL
3993 order = get_order(sizeof(struct location) * max);
3994
68dff6a9 3995 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3996 if (!l)
3997 return 0;
3998
3999 if (t->count) {
4000 memcpy(l, t->loc, sizeof(struct location) * t->count);
4001 free_loc_track(t);
4002 }
4003 t->max = max;
4004 t->loc = l;
4005 return 1;
4006}
4007
4008static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4009 const struct track *track)
88a420e4
CL
4010{
4011 long start, end, pos;
4012 struct location *l;
ce71e27c 4013 unsigned long caddr;
45edfa58 4014 unsigned long age = jiffies - track->when;
88a420e4
CL
4015
4016 start = -1;
4017 end = t->count;
4018
4019 for ( ; ; ) {
4020 pos = start + (end - start + 1) / 2;
4021
4022 /*
4023 * There is nothing at "end". If we end up there
4024 * we need to add something to before end.
4025 */
4026 if (pos == end)
4027 break;
4028
4029 caddr = t->loc[pos].addr;
45edfa58
CL
4030 if (track->addr == caddr) {
4031
4032 l = &t->loc[pos];
4033 l->count++;
4034 if (track->when) {
4035 l->sum_time += age;
4036 if (age < l->min_time)
4037 l->min_time = age;
4038 if (age > l->max_time)
4039 l->max_time = age;
4040
4041 if (track->pid < l->min_pid)
4042 l->min_pid = track->pid;
4043 if (track->pid > l->max_pid)
4044 l->max_pid = track->pid;
4045
174596a0
RR
4046 cpumask_set_cpu(track->cpu,
4047 to_cpumask(l->cpus));
45edfa58
CL
4048 }
4049 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4050 return 1;
4051 }
4052
45edfa58 4053 if (track->addr < caddr)
88a420e4
CL
4054 end = pos;
4055 else
4056 start = pos;
4057 }
4058
4059 /*
672bba3a 4060 * Not found. Insert new tracking element.
88a420e4 4061 */
68dff6a9 4062 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4063 return 0;
4064
4065 l = t->loc + pos;
4066 if (pos < t->count)
4067 memmove(l + 1, l,
4068 (t->count - pos) * sizeof(struct location));
4069 t->count++;
4070 l->count = 1;
45edfa58
CL
4071 l->addr = track->addr;
4072 l->sum_time = age;
4073 l->min_time = age;
4074 l->max_time = age;
4075 l->min_pid = track->pid;
4076 l->max_pid = track->pid;
174596a0
RR
4077 cpumask_clear(to_cpumask(l->cpus));
4078 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4079 nodes_clear(l->nodes);
4080 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4081 return 1;
4082}
4083
4084static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4085 struct page *page, enum track_item alloc,
a5dd5c11 4086 unsigned long *map)
88a420e4 4087{
a973e9dd 4088 void *addr = page_address(page);
88a420e4
CL
4089 void *p;
4090
39b26464 4091 bitmap_zero(map, page->objects);
5f80b13a 4092 get_map(s, page, map);
88a420e4 4093
224a88be 4094 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4095 if (!test_bit(slab_index(p, s, addr), map))
4096 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4097}
4098
4099static int list_locations(struct kmem_cache *s, char *buf,
4100 enum track_item alloc)
4101{
e374d483 4102 int len = 0;
88a420e4 4103 unsigned long i;
68dff6a9 4104 struct loc_track t = { 0, 0, NULL };
88a420e4 4105 int node;
bbd7d57b
ED
4106 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4107 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4108 struct kmem_cache_node *n;
88a420e4 4109
bbd7d57b
ED
4110 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4111 GFP_TEMPORARY)) {
4112 kfree(map);
68dff6a9 4113 return sprintf(buf, "Out of memory\n");
bbd7d57b 4114 }
88a420e4
CL
4115 /* Push back cpu slabs */
4116 flush_all(s);
4117
fa45dc25 4118 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4119 unsigned long flags;
4120 struct page *page;
4121
9e86943b 4122 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4123 continue;
4124
4125 spin_lock_irqsave(&n->list_lock, flags);
4126 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4127 process_slab(&t, s, page, alloc, map);
88a420e4 4128 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4129 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4130 spin_unlock_irqrestore(&n->list_lock, flags);
4131 }
4132
4133 for (i = 0; i < t.count; i++) {
45edfa58 4134 struct location *l = &t.loc[i];
88a420e4 4135
9c246247 4136 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4137 break;
e374d483 4138 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4139
4140 if (l->addr)
62c70bce 4141 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4142 else
e374d483 4143 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4144
4145 if (l->sum_time != l->min_time) {
e374d483 4146 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4147 l->min_time,
4148 (long)div_u64(l->sum_time, l->count),
4149 l->max_time);
45edfa58 4150 } else
e374d483 4151 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4152 l->min_time);
4153
4154 if (l->min_pid != l->max_pid)
e374d483 4155 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4156 l->min_pid, l->max_pid);
4157 else
e374d483 4158 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4159 l->min_pid);
4160
174596a0
RR
4161 if (num_online_cpus() > 1 &&
4162 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4163 len < PAGE_SIZE - 60) {
4164 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4165 len += cpulist_scnprintf(buf + len,
4166 PAGE_SIZE - len - 50,
174596a0 4167 to_cpumask(l->cpus));
45edfa58
CL
4168 }
4169
62bc62a8 4170 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4171 len < PAGE_SIZE - 60) {
4172 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4173 len += nodelist_scnprintf(buf + len,
4174 PAGE_SIZE - len - 50,
4175 l->nodes);
45edfa58
CL
4176 }
4177
e374d483 4178 len += sprintf(buf + len, "\n");
88a420e4
CL
4179 }
4180
4181 free_loc_track(&t);
bbd7d57b 4182 kfree(map);
88a420e4 4183 if (!t.count)
e374d483
HH
4184 len += sprintf(buf, "No data\n");
4185 return len;
88a420e4 4186}
ab4d5ed5 4187#endif
88a420e4 4188
a5a84755
CL
4189#ifdef SLUB_RESILIENCY_TEST
4190static void resiliency_test(void)
4191{
4192 u8 *p;
4193
95a05b42 4194 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4195
f9f58285
FF
4196 pr_err("SLUB resiliency testing\n");
4197 pr_err("-----------------------\n");
4198 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4199
4200 p = kzalloc(16, GFP_KERNEL);
4201 p[16] = 0x12;
f9f58285
FF
4202 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4203 p + 16);
a5a84755
CL
4204
4205 validate_slab_cache(kmalloc_caches[4]);
4206
4207 /* Hmmm... The next two are dangerous */
4208 p = kzalloc(32, GFP_KERNEL);
4209 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4210 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4211 p);
4212 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4213
4214 validate_slab_cache(kmalloc_caches[5]);
4215 p = kzalloc(64, GFP_KERNEL);
4216 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4217 *p = 0x56;
f9f58285
FF
4218 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4219 p);
4220 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4221 validate_slab_cache(kmalloc_caches[6]);
4222
f9f58285 4223 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4224 p = kzalloc(128, GFP_KERNEL);
4225 kfree(p);
4226 *p = 0x78;
f9f58285 4227 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4228 validate_slab_cache(kmalloc_caches[7]);
4229
4230 p = kzalloc(256, GFP_KERNEL);
4231 kfree(p);
4232 p[50] = 0x9a;
f9f58285 4233 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4234 validate_slab_cache(kmalloc_caches[8]);
4235
4236 p = kzalloc(512, GFP_KERNEL);
4237 kfree(p);
4238 p[512] = 0xab;
f9f58285 4239 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4240 validate_slab_cache(kmalloc_caches[9]);
4241}
4242#else
4243#ifdef CONFIG_SYSFS
4244static void resiliency_test(void) {};
4245#endif
4246#endif
4247
ab4d5ed5 4248#ifdef CONFIG_SYSFS
81819f0f 4249enum slab_stat_type {
205ab99d
CL
4250 SL_ALL, /* All slabs */
4251 SL_PARTIAL, /* Only partially allocated slabs */
4252 SL_CPU, /* Only slabs used for cpu caches */
4253 SL_OBJECTS, /* Determine allocated objects not slabs */
4254 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4255};
4256
205ab99d 4257#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4258#define SO_PARTIAL (1 << SL_PARTIAL)
4259#define SO_CPU (1 << SL_CPU)
4260#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4261#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4262
62e5c4b4
CG
4263static ssize_t show_slab_objects(struct kmem_cache *s,
4264 char *buf, unsigned long flags)
81819f0f
CL
4265{
4266 unsigned long total = 0;
81819f0f
CL
4267 int node;
4268 int x;
4269 unsigned long *nodes;
81819f0f 4270
e35e1a97 4271 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4272 if (!nodes)
4273 return -ENOMEM;
81819f0f 4274
205ab99d
CL
4275 if (flags & SO_CPU) {
4276 int cpu;
81819f0f 4277
205ab99d 4278 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4279 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4280 cpu);
ec3ab083 4281 int node;
49e22585 4282 struct page *page;
dfb4f096 4283
bc6697d8 4284 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4285 if (!page)
4286 continue;
205ab99d 4287
ec3ab083
CL
4288 node = page_to_nid(page);
4289 if (flags & SO_TOTAL)
4290 x = page->objects;
4291 else if (flags & SO_OBJECTS)
4292 x = page->inuse;
4293 else
4294 x = 1;
49e22585 4295
ec3ab083
CL
4296 total += x;
4297 nodes[node] += x;
4298
4299 page = ACCESS_ONCE(c->partial);
49e22585 4300 if (page) {
8afb1474
LZ
4301 node = page_to_nid(page);
4302 if (flags & SO_TOTAL)
4303 WARN_ON_ONCE(1);
4304 else if (flags & SO_OBJECTS)
4305 WARN_ON_ONCE(1);
4306 else
4307 x = page->pages;
bc6697d8
ED
4308 total += x;
4309 nodes[node] += x;
49e22585 4310 }
81819f0f
CL
4311 }
4312 }
4313
bfc8c901 4314 get_online_mems();
ab4d5ed5 4315#ifdef CONFIG_SLUB_DEBUG
205ab99d 4316 if (flags & SO_ALL) {
fa45dc25
CL
4317 struct kmem_cache_node *n;
4318
4319 for_each_kmem_cache_node(s, node, n) {
205ab99d 4320
d0e0ac97
CG
4321 if (flags & SO_TOTAL)
4322 x = atomic_long_read(&n->total_objects);
4323 else if (flags & SO_OBJECTS)
4324 x = atomic_long_read(&n->total_objects) -
4325 count_partial(n, count_free);
81819f0f 4326 else
205ab99d 4327 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4328 total += x;
4329 nodes[node] += x;
4330 }
4331
ab4d5ed5
CL
4332 } else
4333#endif
4334 if (flags & SO_PARTIAL) {
fa45dc25 4335 struct kmem_cache_node *n;
81819f0f 4336
fa45dc25 4337 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4338 if (flags & SO_TOTAL)
4339 x = count_partial(n, count_total);
4340 else if (flags & SO_OBJECTS)
4341 x = count_partial(n, count_inuse);
81819f0f 4342 else
205ab99d 4343 x = n->nr_partial;
81819f0f
CL
4344 total += x;
4345 nodes[node] += x;
4346 }
4347 }
81819f0f
CL
4348 x = sprintf(buf, "%lu", total);
4349#ifdef CONFIG_NUMA
fa45dc25 4350 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4351 if (nodes[node])
4352 x += sprintf(buf + x, " N%d=%lu",
4353 node, nodes[node]);
4354#endif
bfc8c901 4355 put_online_mems();
81819f0f
CL
4356 kfree(nodes);
4357 return x + sprintf(buf + x, "\n");
4358}
4359
ab4d5ed5 4360#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4361static int any_slab_objects(struct kmem_cache *s)
4362{
4363 int node;
fa45dc25 4364 struct kmem_cache_node *n;
81819f0f 4365
fa45dc25 4366 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4367 if (atomic_long_read(&n->total_objects))
81819f0f 4368 return 1;
fa45dc25 4369
81819f0f
CL
4370 return 0;
4371}
ab4d5ed5 4372#endif
81819f0f
CL
4373
4374#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4375#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4376
4377struct slab_attribute {
4378 struct attribute attr;
4379 ssize_t (*show)(struct kmem_cache *s, char *buf);
4380 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4381};
4382
4383#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4384 static struct slab_attribute _name##_attr = \
4385 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4386
4387#define SLAB_ATTR(_name) \
4388 static struct slab_attribute _name##_attr = \
ab067e99 4389 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4390
81819f0f
CL
4391static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4392{
4393 return sprintf(buf, "%d\n", s->size);
4394}
4395SLAB_ATTR_RO(slab_size);
4396
4397static ssize_t align_show(struct kmem_cache *s, char *buf)
4398{
4399 return sprintf(buf, "%d\n", s->align);
4400}
4401SLAB_ATTR_RO(align);
4402
4403static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4404{
3b0efdfa 4405 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4406}
4407SLAB_ATTR_RO(object_size);
4408
4409static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4410{
834f3d11 4411 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4412}
4413SLAB_ATTR_RO(objs_per_slab);
4414
06b285dc
CL
4415static ssize_t order_store(struct kmem_cache *s,
4416 const char *buf, size_t length)
4417{
0121c619
CL
4418 unsigned long order;
4419 int err;
4420
3dbb95f7 4421 err = kstrtoul(buf, 10, &order);
0121c619
CL
4422 if (err)
4423 return err;
06b285dc
CL
4424
4425 if (order > slub_max_order || order < slub_min_order)
4426 return -EINVAL;
4427
4428 calculate_sizes(s, order);
4429 return length;
4430}
4431
81819f0f
CL
4432static ssize_t order_show(struct kmem_cache *s, char *buf)
4433{
834f3d11 4434 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4435}
06b285dc 4436SLAB_ATTR(order);
81819f0f 4437
73d342b1
DR
4438static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4439{
4440 return sprintf(buf, "%lu\n", s->min_partial);
4441}
4442
4443static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4444 size_t length)
4445{
4446 unsigned long min;
4447 int err;
4448
3dbb95f7 4449 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4450 if (err)
4451 return err;
4452
c0bdb232 4453 set_min_partial(s, min);
73d342b1
DR
4454 return length;
4455}
4456SLAB_ATTR(min_partial);
4457
49e22585
CL
4458static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4459{
4460 return sprintf(buf, "%u\n", s->cpu_partial);
4461}
4462
4463static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4464 size_t length)
4465{
4466 unsigned long objects;
4467 int err;
4468
3dbb95f7 4469 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4470 if (err)
4471 return err;
345c905d 4472 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4473 return -EINVAL;
49e22585
CL
4474
4475 s->cpu_partial = objects;
4476 flush_all(s);
4477 return length;
4478}
4479SLAB_ATTR(cpu_partial);
4480
81819f0f
CL
4481static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4482{
62c70bce
JP
4483 if (!s->ctor)
4484 return 0;
4485 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4486}
4487SLAB_ATTR_RO(ctor);
4488
81819f0f
CL
4489static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4490{
4491 return sprintf(buf, "%d\n", s->refcount - 1);
4492}
4493SLAB_ATTR_RO(aliases);
4494
81819f0f
CL
4495static ssize_t partial_show(struct kmem_cache *s, char *buf)
4496{
d9acf4b7 4497 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4498}
4499SLAB_ATTR_RO(partial);
4500
4501static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4502{
d9acf4b7 4503 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4504}
4505SLAB_ATTR_RO(cpu_slabs);
4506
4507static ssize_t objects_show(struct kmem_cache *s, char *buf)
4508{
205ab99d 4509 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4510}
4511SLAB_ATTR_RO(objects);
4512
205ab99d
CL
4513static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4514{
4515 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4516}
4517SLAB_ATTR_RO(objects_partial);
4518
49e22585
CL
4519static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4520{
4521 int objects = 0;
4522 int pages = 0;
4523 int cpu;
4524 int len;
4525
4526 for_each_online_cpu(cpu) {
4527 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4528
4529 if (page) {
4530 pages += page->pages;
4531 objects += page->pobjects;
4532 }
4533 }
4534
4535 len = sprintf(buf, "%d(%d)", objects, pages);
4536
4537#ifdef CONFIG_SMP
4538 for_each_online_cpu(cpu) {
4539 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4540
4541 if (page && len < PAGE_SIZE - 20)
4542 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4543 page->pobjects, page->pages);
4544 }
4545#endif
4546 return len + sprintf(buf + len, "\n");
4547}
4548SLAB_ATTR_RO(slabs_cpu_partial);
4549
a5a84755
CL
4550static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4551{
4552 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4553}
4554
4555static ssize_t reclaim_account_store(struct kmem_cache *s,
4556 const char *buf, size_t length)
4557{
4558 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4559 if (buf[0] == '1')
4560 s->flags |= SLAB_RECLAIM_ACCOUNT;
4561 return length;
4562}
4563SLAB_ATTR(reclaim_account);
4564
4565static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4566{
4567 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4568}
4569SLAB_ATTR_RO(hwcache_align);
4570
4571#ifdef CONFIG_ZONE_DMA
4572static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4573{
4574 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4575}
4576SLAB_ATTR_RO(cache_dma);
4577#endif
4578
4579static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4580{
4581 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4582}
4583SLAB_ATTR_RO(destroy_by_rcu);
4584
ab9a0f19
LJ
4585static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4586{
4587 return sprintf(buf, "%d\n", s->reserved);
4588}
4589SLAB_ATTR_RO(reserved);
4590
ab4d5ed5 4591#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4592static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4593{
4594 return show_slab_objects(s, buf, SO_ALL);
4595}
4596SLAB_ATTR_RO(slabs);
4597
205ab99d
CL
4598static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4599{
4600 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4601}
4602SLAB_ATTR_RO(total_objects);
4603
81819f0f
CL
4604static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4605{
4606 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4607}
4608
4609static ssize_t sanity_checks_store(struct kmem_cache *s,
4610 const char *buf, size_t length)
4611{
4612 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4613 if (buf[0] == '1') {
4614 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4615 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4616 }
81819f0f
CL
4617 return length;
4618}
4619SLAB_ATTR(sanity_checks);
4620
4621static ssize_t trace_show(struct kmem_cache *s, char *buf)
4622{
4623 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4624}
4625
4626static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4627 size_t length)
4628{
4629 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4630 if (buf[0] == '1') {
4631 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4632 s->flags |= SLAB_TRACE;
b789ef51 4633 }
81819f0f
CL
4634 return length;
4635}
4636SLAB_ATTR(trace);
4637
81819f0f
CL
4638static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4639{
4640 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4641}
4642
4643static ssize_t red_zone_store(struct kmem_cache *s,
4644 const char *buf, size_t length)
4645{
4646 if (any_slab_objects(s))
4647 return -EBUSY;
4648
4649 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4650 if (buf[0] == '1') {
4651 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4652 s->flags |= SLAB_RED_ZONE;
b789ef51 4653 }
06b285dc 4654 calculate_sizes(s, -1);
81819f0f
CL
4655 return length;
4656}
4657SLAB_ATTR(red_zone);
4658
4659static ssize_t poison_show(struct kmem_cache *s, char *buf)
4660{
4661 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4662}
4663
4664static ssize_t poison_store(struct kmem_cache *s,
4665 const char *buf, size_t length)
4666{
4667 if (any_slab_objects(s))
4668 return -EBUSY;
4669
4670 s->flags &= ~SLAB_POISON;
b789ef51
CL
4671 if (buf[0] == '1') {
4672 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4673 s->flags |= SLAB_POISON;
b789ef51 4674 }
06b285dc 4675 calculate_sizes(s, -1);
81819f0f
CL
4676 return length;
4677}
4678SLAB_ATTR(poison);
4679
4680static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4681{
4682 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4683}
4684
4685static ssize_t store_user_store(struct kmem_cache *s,
4686 const char *buf, size_t length)
4687{
4688 if (any_slab_objects(s))
4689 return -EBUSY;
4690
4691 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4692 if (buf[0] == '1') {
4693 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4694 s->flags |= SLAB_STORE_USER;
b789ef51 4695 }
06b285dc 4696 calculate_sizes(s, -1);
81819f0f
CL
4697 return length;
4698}
4699SLAB_ATTR(store_user);
4700
53e15af0
CL
4701static ssize_t validate_show(struct kmem_cache *s, char *buf)
4702{
4703 return 0;
4704}
4705
4706static ssize_t validate_store(struct kmem_cache *s,
4707 const char *buf, size_t length)
4708{
434e245d
CL
4709 int ret = -EINVAL;
4710
4711 if (buf[0] == '1') {
4712 ret = validate_slab_cache(s);
4713 if (ret >= 0)
4714 ret = length;
4715 }
4716 return ret;
53e15af0
CL
4717}
4718SLAB_ATTR(validate);
a5a84755
CL
4719
4720static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4721{
4722 if (!(s->flags & SLAB_STORE_USER))
4723 return -ENOSYS;
4724 return list_locations(s, buf, TRACK_ALLOC);
4725}
4726SLAB_ATTR_RO(alloc_calls);
4727
4728static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4729{
4730 if (!(s->flags & SLAB_STORE_USER))
4731 return -ENOSYS;
4732 return list_locations(s, buf, TRACK_FREE);
4733}
4734SLAB_ATTR_RO(free_calls);
4735#endif /* CONFIG_SLUB_DEBUG */
4736
4737#ifdef CONFIG_FAILSLAB
4738static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4739{
4740 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4741}
4742
4743static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4744 size_t length)
4745{
4746 s->flags &= ~SLAB_FAILSLAB;
4747 if (buf[0] == '1')
4748 s->flags |= SLAB_FAILSLAB;
4749 return length;
4750}
4751SLAB_ATTR(failslab);
ab4d5ed5 4752#endif
53e15af0 4753
2086d26a
CL
4754static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4755{
4756 return 0;
4757}
4758
4759static ssize_t shrink_store(struct kmem_cache *s,
4760 const char *buf, size_t length)
4761{
4762 if (buf[0] == '1') {
4763 int rc = kmem_cache_shrink(s);
4764
4765 if (rc)
4766 return rc;
4767 } else
4768 return -EINVAL;
4769 return length;
4770}
4771SLAB_ATTR(shrink);
4772
81819f0f 4773#ifdef CONFIG_NUMA
9824601e 4774static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4775{
9824601e 4776 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4777}
4778
9824601e 4779static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4780 const char *buf, size_t length)
4781{
0121c619
CL
4782 unsigned long ratio;
4783 int err;
4784
3dbb95f7 4785 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4786 if (err)
4787 return err;
4788
e2cb96b7 4789 if (ratio <= 100)
0121c619 4790 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4791
81819f0f
CL
4792 return length;
4793}
9824601e 4794SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4795#endif
4796
8ff12cfc 4797#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4798static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4799{
4800 unsigned long sum = 0;
4801 int cpu;
4802 int len;
4803 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4804
4805 if (!data)
4806 return -ENOMEM;
4807
4808 for_each_online_cpu(cpu) {
9dfc6e68 4809 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4810
4811 data[cpu] = x;
4812 sum += x;
4813 }
4814
4815 len = sprintf(buf, "%lu", sum);
4816
50ef37b9 4817#ifdef CONFIG_SMP
8ff12cfc
CL
4818 for_each_online_cpu(cpu) {
4819 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4820 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4821 }
50ef37b9 4822#endif
8ff12cfc
CL
4823 kfree(data);
4824 return len + sprintf(buf + len, "\n");
4825}
4826
78eb00cc
DR
4827static void clear_stat(struct kmem_cache *s, enum stat_item si)
4828{
4829 int cpu;
4830
4831 for_each_online_cpu(cpu)
9dfc6e68 4832 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4833}
4834
8ff12cfc
CL
4835#define STAT_ATTR(si, text) \
4836static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4837{ \
4838 return show_stat(s, buf, si); \
4839} \
78eb00cc
DR
4840static ssize_t text##_store(struct kmem_cache *s, \
4841 const char *buf, size_t length) \
4842{ \
4843 if (buf[0] != '0') \
4844 return -EINVAL; \
4845 clear_stat(s, si); \
4846 return length; \
4847} \
4848SLAB_ATTR(text); \
8ff12cfc
CL
4849
4850STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4851STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4852STAT_ATTR(FREE_FASTPATH, free_fastpath);
4853STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4854STAT_ATTR(FREE_FROZEN, free_frozen);
4855STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4856STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4857STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4858STAT_ATTR(ALLOC_SLAB, alloc_slab);
4859STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4860STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4861STAT_ATTR(FREE_SLAB, free_slab);
4862STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4863STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4864STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4865STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4866STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4867STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4868STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4869STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4870STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4871STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4872STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4873STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4874STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4875STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4876#endif
4877
06428780 4878static struct attribute *slab_attrs[] = {
81819f0f
CL
4879 &slab_size_attr.attr,
4880 &object_size_attr.attr,
4881 &objs_per_slab_attr.attr,
4882 &order_attr.attr,
73d342b1 4883 &min_partial_attr.attr,
49e22585 4884 &cpu_partial_attr.attr,
81819f0f 4885 &objects_attr.attr,
205ab99d 4886 &objects_partial_attr.attr,
81819f0f
CL
4887 &partial_attr.attr,
4888 &cpu_slabs_attr.attr,
4889 &ctor_attr.attr,
81819f0f
CL
4890 &aliases_attr.attr,
4891 &align_attr.attr,
81819f0f
CL
4892 &hwcache_align_attr.attr,
4893 &reclaim_account_attr.attr,
4894 &destroy_by_rcu_attr.attr,
a5a84755 4895 &shrink_attr.attr,
ab9a0f19 4896 &reserved_attr.attr,
49e22585 4897 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4898#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4899 &total_objects_attr.attr,
4900 &slabs_attr.attr,
4901 &sanity_checks_attr.attr,
4902 &trace_attr.attr,
81819f0f
CL
4903 &red_zone_attr.attr,
4904 &poison_attr.attr,
4905 &store_user_attr.attr,
53e15af0 4906 &validate_attr.attr,
88a420e4
CL
4907 &alloc_calls_attr.attr,
4908 &free_calls_attr.attr,
ab4d5ed5 4909#endif
81819f0f
CL
4910#ifdef CONFIG_ZONE_DMA
4911 &cache_dma_attr.attr,
4912#endif
4913#ifdef CONFIG_NUMA
9824601e 4914 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4915#endif
4916#ifdef CONFIG_SLUB_STATS
4917 &alloc_fastpath_attr.attr,
4918 &alloc_slowpath_attr.attr,
4919 &free_fastpath_attr.attr,
4920 &free_slowpath_attr.attr,
4921 &free_frozen_attr.attr,
4922 &free_add_partial_attr.attr,
4923 &free_remove_partial_attr.attr,
4924 &alloc_from_partial_attr.attr,
4925 &alloc_slab_attr.attr,
4926 &alloc_refill_attr.attr,
e36a2652 4927 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4928 &free_slab_attr.attr,
4929 &cpuslab_flush_attr.attr,
4930 &deactivate_full_attr.attr,
4931 &deactivate_empty_attr.attr,
4932 &deactivate_to_head_attr.attr,
4933 &deactivate_to_tail_attr.attr,
4934 &deactivate_remote_frees_attr.attr,
03e404af 4935 &deactivate_bypass_attr.attr,
65c3376a 4936 &order_fallback_attr.attr,
b789ef51
CL
4937 &cmpxchg_double_fail_attr.attr,
4938 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4939 &cpu_partial_alloc_attr.attr,
4940 &cpu_partial_free_attr.attr,
8028dcea
AS
4941 &cpu_partial_node_attr.attr,
4942 &cpu_partial_drain_attr.attr,
81819f0f 4943#endif
4c13dd3b
DM
4944#ifdef CONFIG_FAILSLAB
4945 &failslab_attr.attr,
4946#endif
4947
81819f0f
CL
4948 NULL
4949};
4950
4951static struct attribute_group slab_attr_group = {
4952 .attrs = slab_attrs,
4953};
4954
4955static ssize_t slab_attr_show(struct kobject *kobj,
4956 struct attribute *attr,
4957 char *buf)
4958{
4959 struct slab_attribute *attribute;
4960 struct kmem_cache *s;
4961 int err;
4962
4963 attribute = to_slab_attr(attr);
4964 s = to_slab(kobj);
4965
4966 if (!attribute->show)
4967 return -EIO;
4968
4969 err = attribute->show(s, buf);
4970
4971 return err;
4972}
4973
4974static ssize_t slab_attr_store(struct kobject *kobj,
4975 struct attribute *attr,
4976 const char *buf, size_t len)
4977{
4978 struct slab_attribute *attribute;
4979 struct kmem_cache *s;
4980 int err;
4981
4982 attribute = to_slab_attr(attr);
4983 s = to_slab(kobj);
4984
4985 if (!attribute->store)
4986 return -EIO;
4987
4988 err = attribute->store(s, buf, len);
107dab5c
GC
4989#ifdef CONFIG_MEMCG_KMEM
4990 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4991 int i;
81819f0f 4992
107dab5c
GC
4993 mutex_lock(&slab_mutex);
4994 if (s->max_attr_size < len)
4995 s->max_attr_size = len;
4996
ebe945c2
GC
4997 /*
4998 * This is a best effort propagation, so this function's return
4999 * value will be determined by the parent cache only. This is
5000 * basically because not all attributes will have a well
5001 * defined semantics for rollbacks - most of the actions will
5002 * have permanent effects.
5003 *
5004 * Returning the error value of any of the children that fail
5005 * is not 100 % defined, in the sense that users seeing the
5006 * error code won't be able to know anything about the state of
5007 * the cache.
5008 *
5009 * Only returning the error code for the parent cache at least
5010 * has well defined semantics. The cache being written to
5011 * directly either failed or succeeded, in which case we loop
5012 * through the descendants with best-effort propagation.
5013 */
107dab5c 5014 for_each_memcg_cache_index(i) {
2ade4de8 5015 struct kmem_cache *c = cache_from_memcg_idx(s, i);
107dab5c
GC
5016 if (c)
5017 attribute->store(c, buf, len);
5018 }
5019 mutex_unlock(&slab_mutex);
5020 }
5021#endif
81819f0f
CL
5022 return err;
5023}
5024
107dab5c
GC
5025static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5026{
5027#ifdef CONFIG_MEMCG_KMEM
5028 int i;
5029 char *buffer = NULL;
93030d83 5030 struct kmem_cache *root_cache;
107dab5c 5031
93030d83 5032 if (is_root_cache(s))
107dab5c
GC
5033 return;
5034
93030d83
VD
5035 root_cache = s->memcg_params->root_cache;
5036
107dab5c
GC
5037 /*
5038 * This mean this cache had no attribute written. Therefore, no point
5039 * in copying default values around
5040 */
93030d83 5041 if (!root_cache->max_attr_size)
107dab5c
GC
5042 return;
5043
5044 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5045 char mbuf[64];
5046 char *buf;
5047 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5048
5049 if (!attr || !attr->store || !attr->show)
5050 continue;
5051
5052 /*
5053 * It is really bad that we have to allocate here, so we will
5054 * do it only as a fallback. If we actually allocate, though,
5055 * we can just use the allocated buffer until the end.
5056 *
5057 * Most of the slub attributes will tend to be very small in
5058 * size, but sysfs allows buffers up to a page, so they can
5059 * theoretically happen.
5060 */
5061 if (buffer)
5062 buf = buffer;
93030d83 5063 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5064 buf = mbuf;
5065 else {
5066 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5067 if (WARN_ON(!buffer))
5068 continue;
5069 buf = buffer;
5070 }
5071
93030d83 5072 attr->show(root_cache, buf);
107dab5c
GC
5073 attr->store(s, buf, strlen(buf));
5074 }
5075
5076 if (buffer)
5077 free_page((unsigned long)buffer);
5078#endif
5079}
5080
41a21285
CL
5081static void kmem_cache_release(struct kobject *k)
5082{
5083 slab_kmem_cache_release(to_slab(k));
5084}
5085
52cf25d0 5086static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5087 .show = slab_attr_show,
5088 .store = slab_attr_store,
5089};
5090
5091static struct kobj_type slab_ktype = {
5092 .sysfs_ops = &slab_sysfs_ops,
41a21285 5093 .release = kmem_cache_release,
81819f0f
CL
5094};
5095
5096static int uevent_filter(struct kset *kset, struct kobject *kobj)
5097{
5098 struct kobj_type *ktype = get_ktype(kobj);
5099
5100 if (ktype == &slab_ktype)
5101 return 1;
5102 return 0;
5103}
5104
9cd43611 5105static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5106 .filter = uevent_filter,
5107};
5108
27c3a314 5109static struct kset *slab_kset;
81819f0f 5110
9a41707b
VD
5111static inline struct kset *cache_kset(struct kmem_cache *s)
5112{
5113#ifdef CONFIG_MEMCG_KMEM
5114 if (!is_root_cache(s))
5115 return s->memcg_params->root_cache->memcg_kset;
5116#endif
5117 return slab_kset;
5118}
5119
81819f0f
CL
5120#define ID_STR_LENGTH 64
5121
5122/* Create a unique string id for a slab cache:
6446faa2
CL
5123 *
5124 * Format :[flags-]size
81819f0f
CL
5125 */
5126static char *create_unique_id(struct kmem_cache *s)
5127{
5128 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5129 char *p = name;
5130
5131 BUG_ON(!name);
5132
5133 *p++ = ':';
5134 /*
5135 * First flags affecting slabcache operations. We will only
5136 * get here for aliasable slabs so we do not need to support
5137 * too many flags. The flags here must cover all flags that
5138 * are matched during merging to guarantee that the id is
5139 * unique.
5140 */
5141 if (s->flags & SLAB_CACHE_DMA)
5142 *p++ = 'd';
5143 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5144 *p++ = 'a';
5145 if (s->flags & SLAB_DEBUG_FREE)
5146 *p++ = 'F';
5a896d9e
VN
5147 if (!(s->flags & SLAB_NOTRACK))
5148 *p++ = 't';
81819f0f
CL
5149 if (p != name + 1)
5150 *p++ = '-';
5151 p += sprintf(p, "%07d", s->size);
2633d7a0
GC
5152
5153#ifdef CONFIG_MEMCG_KMEM
5154 if (!is_root_cache(s))
d0e0ac97
CG
5155 p += sprintf(p, "-%08d",
5156 memcg_cache_id(s->memcg_params->memcg));
2633d7a0
GC
5157#endif
5158
81819f0f
CL
5159 BUG_ON(p > name + ID_STR_LENGTH - 1);
5160 return name;
5161}
5162
5163static int sysfs_slab_add(struct kmem_cache *s)
5164{
5165 int err;
5166 const char *name;
45530c44 5167 int unmergeable = slab_unmergeable(s);
81819f0f 5168
81819f0f
CL
5169 if (unmergeable) {
5170 /*
5171 * Slabcache can never be merged so we can use the name proper.
5172 * This is typically the case for debug situations. In that
5173 * case we can catch duplicate names easily.
5174 */
27c3a314 5175 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5176 name = s->name;
5177 } else {
5178 /*
5179 * Create a unique name for the slab as a target
5180 * for the symlinks.
5181 */
5182 name = create_unique_id(s);
5183 }
5184
9a41707b 5185 s->kobj.kset = cache_kset(s);
26e4f205 5186 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5187 if (err)
5188 goto out_put_kobj;
81819f0f
CL
5189
5190 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5191 if (err)
5192 goto out_del_kobj;
9a41707b
VD
5193
5194#ifdef CONFIG_MEMCG_KMEM
5195 if (is_root_cache(s)) {
5196 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5197 if (!s->memcg_kset) {
54b6a731
DJ
5198 err = -ENOMEM;
5199 goto out_del_kobj;
9a41707b
VD
5200 }
5201 }
5202#endif
5203
81819f0f
CL
5204 kobject_uevent(&s->kobj, KOBJ_ADD);
5205 if (!unmergeable) {
5206 /* Setup first alias */
5207 sysfs_slab_alias(s, s->name);
81819f0f 5208 }
54b6a731
DJ
5209out:
5210 if (!unmergeable)
5211 kfree(name);
5212 return err;
5213out_del_kobj:
5214 kobject_del(&s->kobj);
5215out_put_kobj:
5216 kobject_put(&s->kobj);
5217 goto out;
81819f0f
CL
5218}
5219
41a21285 5220void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5221{
97d06609 5222 if (slab_state < FULL)
2bce6485
CL
5223 /*
5224 * Sysfs has not been setup yet so no need to remove the
5225 * cache from sysfs.
5226 */
5227 return;
5228
9a41707b
VD
5229#ifdef CONFIG_MEMCG_KMEM
5230 kset_unregister(s->memcg_kset);
5231#endif
81819f0f
CL
5232 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5233 kobject_del(&s->kobj);
151c602f 5234 kobject_put(&s->kobj);
81819f0f
CL
5235}
5236
5237/*
5238 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5239 * available lest we lose that information.
81819f0f
CL
5240 */
5241struct saved_alias {
5242 struct kmem_cache *s;
5243 const char *name;
5244 struct saved_alias *next;
5245};
5246
5af328a5 5247static struct saved_alias *alias_list;
81819f0f
CL
5248
5249static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5250{
5251 struct saved_alias *al;
5252
97d06609 5253 if (slab_state == FULL) {
81819f0f
CL
5254 /*
5255 * If we have a leftover link then remove it.
5256 */
27c3a314
GKH
5257 sysfs_remove_link(&slab_kset->kobj, name);
5258 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5259 }
5260
5261 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5262 if (!al)
5263 return -ENOMEM;
5264
5265 al->s = s;
5266 al->name = name;
5267 al->next = alias_list;
5268 alias_list = al;
5269 return 0;
5270}
5271
5272static int __init slab_sysfs_init(void)
5273{
5b95a4ac 5274 struct kmem_cache *s;
81819f0f
CL
5275 int err;
5276
18004c5d 5277 mutex_lock(&slab_mutex);
2bce6485 5278
0ff21e46 5279 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5280 if (!slab_kset) {
18004c5d 5281 mutex_unlock(&slab_mutex);
f9f58285 5282 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5283 return -ENOSYS;
5284 }
5285
97d06609 5286 slab_state = FULL;
26a7bd03 5287
5b95a4ac 5288 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5289 err = sysfs_slab_add(s);
5d540fb7 5290 if (err)
f9f58285
FF
5291 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5292 s->name);
26a7bd03 5293 }
81819f0f
CL
5294
5295 while (alias_list) {
5296 struct saved_alias *al = alias_list;
5297
5298 alias_list = alias_list->next;
5299 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5300 if (err)
f9f58285
FF
5301 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5302 al->name);
81819f0f
CL
5303 kfree(al);
5304 }
5305
18004c5d 5306 mutex_unlock(&slab_mutex);
81819f0f
CL
5307 resiliency_test();
5308 return 0;
5309}
5310
5311__initcall(slab_sysfs_init);
ab4d5ed5 5312#endif /* CONFIG_SYSFS */
57ed3eda
PE
5313
5314/*
5315 * The /proc/slabinfo ABI
5316 */
158a9624 5317#ifdef CONFIG_SLABINFO
0d7561c6 5318void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5319{
57ed3eda 5320 unsigned long nr_slabs = 0;
205ab99d
CL
5321 unsigned long nr_objs = 0;
5322 unsigned long nr_free = 0;
57ed3eda 5323 int node;
fa45dc25 5324 struct kmem_cache_node *n;
57ed3eda 5325
fa45dc25 5326 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5327 nr_slabs += node_nr_slabs(n);
5328 nr_objs += node_nr_objs(n);
205ab99d 5329 nr_free += count_partial(n, count_free);
57ed3eda
PE
5330 }
5331
0d7561c6
GC
5332 sinfo->active_objs = nr_objs - nr_free;
5333 sinfo->num_objs = nr_objs;
5334 sinfo->active_slabs = nr_slabs;
5335 sinfo->num_slabs = nr_slabs;
5336 sinfo->objects_per_slab = oo_objects(s->oo);
5337 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5338}
5339
0d7561c6 5340void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5341{
7b3c3a50
AD
5342}
5343
b7454ad3
GC
5344ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5345 size_t count, loff_t *ppos)
7b3c3a50 5346{
b7454ad3 5347 return -EIO;
7b3c3a50 5348}
158a9624 5349#endif /* CONFIG_SLABINFO */