slub: Do not use frozen page flag but a bit in the page counters
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f 30
4a92379b
RK
31#include <trace/events/kmem.h>
32
81819f0f
CL
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
25985edc 67 * a partial slab. A new slab has no one operating on it and thus there is
81819f0f
CL
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
2086d26a
CL
134/*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
76be8950 138#define MIN_PARTIAL 5
e95eed57 139
2086d26a
CL
140/*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145#define MAX_PARTIAL 10
146
81819f0f
CL
147#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
672bba3a 149
fa5ec8a1 150/*
3de47213
DR
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
fa5ec8a1 154 */
3de47213 155#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 156
81819f0f
CL
157/*
158 * Set of flags that will prevent slab merging
159 */
160#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
81819f0f
CL
163
164#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 165 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 166
210b5c06
CG
167#define OO_SHIFT 16
168#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 169#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 170
81819f0f 171/* Internal SLUB flags */
f90ec390 172#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181 DOWN, /* No slab functionality available */
51df1142 182 PARTIAL, /* Kmem_cache_node works */
672bba3a 183 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
184 SYSFS /* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
5af328a5 189static LIST_HEAD(slab_caches);
81819f0f 190
02cbc874
CL
191/*
192 * Tracking user of a slab.
193 */
194struct track {
ce71e27c 195 unsigned long addr; /* Called from address */
02cbc874
CL
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199};
200
201enum track_item { TRACK_ALLOC, TRACK_FREE };
202
ab4d5ed5 203#ifdef CONFIG_SYSFS
81819f0f
CL
204static int sysfs_slab_add(struct kmem_cache *);
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 207
81819f0f 208#else
0c710013
CL
209static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
151c602f
CL
212static inline void sysfs_slab_remove(struct kmem_cache *s)
213{
84c1cf62 214 kfree(s->name);
151c602f
CL
215 kfree(s);
216}
8ff12cfc 217
81819f0f
CL
218#endif
219
4fdccdfb 220static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
221{
222#ifdef CONFIG_SLUB_STATS
84e554e6 223 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
224#endif
225}
226
81819f0f
CL
227/********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231int slab_is_available(void)
232{
233 return slab_state >= UP;
234}
235
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
81819f0f 238 return s->node[node];
81819f0f
CL
239}
240
6446faa2 241/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
242static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244{
245 void *base;
246
a973e9dd 247 if (!object)
02cbc874
CL
248 return 1;
249
a973e9dd 250 base = page_address(page);
39b26464 251 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257}
258
7656c72b
CL
259static inline void *get_freepointer(struct kmem_cache *s, void *object)
260{
261 return *(void **)(object + s->offset);
262}
263
1393d9a1
CL
264static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
265{
266 void *p;
267
268#ifdef CONFIG_DEBUG_PAGEALLOC
269 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
270#else
271 p = get_freepointer(s, object);
272#endif
273 return p;
274}
275
7656c72b
CL
276static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277{
278 *(void **)(object + s->offset) = fp;
279}
280
281/* Loop over all objects in a slab */
224a88be
CL
282#define for_each_object(__p, __s, __addr, __objects) \
283 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
284 __p += (__s)->size)
285
7656c72b
CL
286/* Determine object index from a given position */
287static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
288{
289 return (p - addr) / s->size;
290}
291
d71f606f
MK
292static inline size_t slab_ksize(const struct kmem_cache *s)
293{
294#ifdef CONFIG_SLUB_DEBUG
295 /*
296 * Debugging requires use of the padding between object
297 * and whatever may come after it.
298 */
299 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
300 return s->objsize;
301
302#endif
303 /*
304 * If we have the need to store the freelist pointer
305 * back there or track user information then we can
306 * only use the space before that information.
307 */
308 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
309 return s->inuse;
310 /*
311 * Else we can use all the padding etc for the allocation
312 */
313 return s->size;
314}
315
ab9a0f19
LJ
316static inline int order_objects(int order, unsigned long size, int reserved)
317{
318 return ((PAGE_SIZE << order) - reserved) / size;
319}
320
834f3d11 321static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 322 unsigned long size, int reserved)
834f3d11
CL
323{
324 struct kmem_cache_order_objects x = {
ab9a0f19 325 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
326 };
327
328 return x;
329}
330
331static inline int oo_order(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x >> OO_SHIFT;
834f3d11
CL
334}
335
336static inline int oo_objects(struct kmem_cache_order_objects x)
337{
210b5c06 338 return x.x & OO_MASK;
834f3d11
CL
339}
340
41ecc55b 341#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
342/*
343 * Determine a map of object in use on a page.
344 *
345 * Slab lock or node listlock must be held to guarantee that the page does
346 * not vanish from under us.
347 */
348static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
349{
350 void *p;
351 void *addr = page_address(page);
352
353 for (p = page->freelist; p; p = get_freepointer(s, p))
354 set_bit(slab_index(p, s, addr), map);
355}
356
41ecc55b
CL
357/*
358 * Debug settings:
359 */
f0630fff
CL
360#ifdef CONFIG_SLUB_DEBUG_ON
361static int slub_debug = DEBUG_DEFAULT_FLAGS;
362#else
41ecc55b 363static int slub_debug;
f0630fff 364#endif
41ecc55b
CL
365
366static char *slub_debug_slabs;
fa5ec8a1 367static int disable_higher_order_debug;
41ecc55b 368
81819f0f
CL
369/*
370 * Object debugging
371 */
372static void print_section(char *text, u8 *addr, unsigned int length)
373{
374 int i, offset;
375 int newline = 1;
376 char ascii[17];
377
378 ascii[16] = 0;
379
380 for (i = 0; i < length; i++) {
381 if (newline) {
24922684 382 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
383 newline = 0;
384 }
06428780 385 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
386 offset = i % 16;
387 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
388 if (offset == 15) {
06428780 389 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
390 newline = 1;
391 }
392 }
393 if (!newline) {
394 i %= 16;
395 while (i < 16) {
06428780 396 printk(KERN_CONT " ");
81819f0f
CL
397 ascii[i] = ' ';
398 i++;
399 }
06428780 400 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
401 }
402}
403
81819f0f
CL
404static struct track *get_track(struct kmem_cache *s, void *object,
405 enum track_item alloc)
406{
407 struct track *p;
408
409 if (s->offset)
410 p = object + s->offset + sizeof(void *);
411 else
412 p = object + s->inuse;
413
414 return p + alloc;
415}
416
417static void set_track(struct kmem_cache *s, void *object,
ce71e27c 418 enum track_item alloc, unsigned long addr)
81819f0f 419{
1a00df4a 420 struct track *p = get_track(s, object, alloc);
81819f0f 421
81819f0f
CL
422 if (addr) {
423 p->addr = addr;
424 p->cpu = smp_processor_id();
88e4ccf2 425 p->pid = current->pid;
81819f0f
CL
426 p->when = jiffies;
427 } else
428 memset(p, 0, sizeof(struct track));
429}
430
81819f0f
CL
431static void init_tracking(struct kmem_cache *s, void *object)
432{
24922684
CL
433 if (!(s->flags & SLAB_STORE_USER))
434 return;
435
ce71e27c
EGM
436 set_track(s, object, TRACK_FREE, 0UL);
437 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
438}
439
440static void print_track(const char *s, struct track *t)
441{
442 if (!t->addr)
443 return;
444
7daf705f 445 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 446 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
447}
448
449static void print_tracking(struct kmem_cache *s, void *object)
450{
451 if (!(s->flags & SLAB_STORE_USER))
452 return;
453
454 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
455 print_track("Freed", get_track(s, object, TRACK_FREE));
456}
457
458static void print_page_info(struct page *page)
459{
39b26464
CL
460 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
461 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
462
463}
464
465static void slab_bug(struct kmem_cache *s, char *fmt, ...)
466{
467 va_list args;
468 char buf[100];
469
470 va_start(args, fmt);
471 vsnprintf(buf, sizeof(buf), fmt, args);
472 va_end(args);
473 printk(KERN_ERR "========================================"
474 "=====================================\n");
475 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
476 printk(KERN_ERR "----------------------------------------"
477 "-------------------------------------\n\n");
81819f0f
CL
478}
479
24922684
CL
480static void slab_fix(struct kmem_cache *s, char *fmt, ...)
481{
482 va_list args;
483 char buf[100];
484
485 va_start(args, fmt);
486 vsnprintf(buf, sizeof(buf), fmt, args);
487 va_end(args);
488 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
489}
490
491static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
492{
493 unsigned int off; /* Offset of last byte */
a973e9dd 494 u8 *addr = page_address(page);
24922684
CL
495
496 print_tracking(s, p);
497
498 print_page_info(page);
499
500 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
501 p, p - addr, get_freepointer(s, p));
502
503 if (p > addr + 16)
504 print_section("Bytes b4", p - 16, 16);
505
0ebd652b 506 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
507
508 if (s->flags & SLAB_RED_ZONE)
509 print_section("Redzone", p + s->objsize,
510 s->inuse - s->objsize);
511
81819f0f
CL
512 if (s->offset)
513 off = s->offset + sizeof(void *);
514 else
515 off = s->inuse;
516
24922684 517 if (s->flags & SLAB_STORE_USER)
81819f0f 518 off += 2 * sizeof(struct track);
81819f0f
CL
519
520 if (off != s->size)
521 /* Beginning of the filler is the free pointer */
24922684
CL
522 print_section("Padding", p + off, s->size - off);
523
524 dump_stack();
81819f0f
CL
525}
526
527static void object_err(struct kmem_cache *s, struct page *page,
528 u8 *object, char *reason)
529{
3dc50637 530 slab_bug(s, "%s", reason);
24922684 531 print_trailer(s, page, object);
81819f0f
CL
532}
533
24922684 534static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
535{
536 va_list args;
537 char buf[100];
538
24922684
CL
539 va_start(args, fmt);
540 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 541 va_end(args);
3dc50637 542 slab_bug(s, "%s", buf);
24922684 543 print_page_info(page);
81819f0f
CL
544 dump_stack();
545}
546
f7cb1933 547static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
548{
549 u8 *p = object;
550
551 if (s->flags & __OBJECT_POISON) {
552 memset(p, POISON_FREE, s->objsize - 1);
06428780 553 p[s->objsize - 1] = POISON_END;
81819f0f
CL
554 }
555
556 if (s->flags & SLAB_RED_ZONE)
f7cb1933 557 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
558}
559
24922684 560static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
561{
562 while (bytes) {
563 if (*start != (u8)value)
24922684 564 return start;
81819f0f
CL
565 start++;
566 bytes--;
567 }
24922684
CL
568 return NULL;
569}
570
571static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
572 void *from, void *to)
573{
574 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
575 memset(from, data, to - from);
576}
577
578static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
579 u8 *object, char *what,
06428780 580 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
581{
582 u8 *fault;
583 u8 *end;
584
585 fault = check_bytes(start, value, bytes);
586 if (!fault)
587 return 1;
588
589 end = start + bytes;
590 while (end > fault && end[-1] == value)
591 end--;
592
593 slab_bug(s, "%s overwritten", what);
594 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
595 fault, end - 1, fault[0], value);
596 print_trailer(s, page, object);
597
598 restore_bytes(s, what, value, fault, end);
599 return 0;
81819f0f
CL
600}
601
81819f0f
CL
602/*
603 * Object layout:
604 *
605 * object address
606 * Bytes of the object to be managed.
607 * If the freepointer may overlay the object then the free
608 * pointer is the first word of the object.
672bba3a 609 *
81819f0f
CL
610 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
611 * 0xa5 (POISON_END)
612 *
613 * object + s->objsize
614 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
615 * Padding is extended by another word if Redzoning is enabled and
616 * objsize == inuse.
617 *
81819f0f
CL
618 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
619 * 0xcc (RED_ACTIVE) for objects in use.
620 *
621 * object + s->inuse
672bba3a
CL
622 * Meta data starts here.
623 *
81819f0f
CL
624 * A. Free pointer (if we cannot overwrite object on free)
625 * B. Tracking data for SLAB_STORE_USER
672bba3a 626 * C. Padding to reach required alignment boundary or at mininum
6446faa2 627 * one word if debugging is on to be able to detect writes
672bba3a
CL
628 * before the word boundary.
629 *
630 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
631 *
632 * object + s->size
672bba3a 633 * Nothing is used beyond s->size.
81819f0f 634 *
672bba3a
CL
635 * If slabcaches are merged then the objsize and inuse boundaries are mostly
636 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
637 * may be used with merged slabcaches.
638 */
639
81819f0f
CL
640static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
641{
642 unsigned long off = s->inuse; /* The end of info */
643
644 if (s->offset)
645 /* Freepointer is placed after the object. */
646 off += sizeof(void *);
647
648 if (s->flags & SLAB_STORE_USER)
649 /* We also have user information there */
650 off += 2 * sizeof(struct track);
651
652 if (s->size == off)
653 return 1;
654
24922684
CL
655 return check_bytes_and_report(s, page, p, "Object padding",
656 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
657}
658
39b26464 659/* Check the pad bytes at the end of a slab page */
81819f0f
CL
660static int slab_pad_check(struct kmem_cache *s, struct page *page)
661{
24922684
CL
662 u8 *start;
663 u8 *fault;
664 u8 *end;
665 int length;
666 int remainder;
81819f0f
CL
667
668 if (!(s->flags & SLAB_POISON))
669 return 1;
670
a973e9dd 671 start = page_address(page);
ab9a0f19 672 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
673 end = start + length;
674 remainder = length % s->size;
81819f0f
CL
675 if (!remainder)
676 return 1;
677
39b26464 678 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
679 if (!fault)
680 return 1;
681 while (end > fault && end[-1] == POISON_INUSE)
682 end--;
683
684 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 685 print_section("Padding", end - remainder, remainder);
24922684 686
8a3d271d 687 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 688 return 0;
81819f0f
CL
689}
690
691static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 692 void *object, u8 val)
81819f0f
CL
693{
694 u8 *p = object;
695 u8 *endobject = object + s->objsize;
696
697 if (s->flags & SLAB_RED_ZONE) {
24922684 698 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 699 endobject, val, s->inuse - s->objsize))
81819f0f 700 return 0;
81819f0f 701 } else {
3adbefee
IM
702 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
703 check_bytes_and_report(s, page, p, "Alignment padding",
704 endobject, POISON_INUSE, s->inuse - s->objsize);
705 }
81819f0f
CL
706 }
707
708 if (s->flags & SLAB_POISON) {
f7cb1933 709 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
710 (!check_bytes_and_report(s, page, p, "Poison", p,
711 POISON_FREE, s->objsize - 1) ||
712 !check_bytes_and_report(s, page, p, "Poison",
06428780 713 p + s->objsize - 1, POISON_END, 1)))
81819f0f 714 return 0;
81819f0f
CL
715 /*
716 * check_pad_bytes cleans up on its own.
717 */
718 check_pad_bytes(s, page, p);
719 }
720
f7cb1933 721 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
722 /*
723 * Object and freepointer overlap. Cannot check
724 * freepointer while object is allocated.
725 */
726 return 1;
727
728 /* Check free pointer validity */
729 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
730 object_err(s, page, p, "Freepointer corrupt");
731 /*
9f6c708e 732 * No choice but to zap it and thus lose the remainder
81819f0f 733 * of the free objects in this slab. May cause
672bba3a 734 * another error because the object count is now wrong.
81819f0f 735 */
a973e9dd 736 set_freepointer(s, p, NULL);
81819f0f
CL
737 return 0;
738 }
739 return 1;
740}
741
742static int check_slab(struct kmem_cache *s, struct page *page)
743{
39b26464
CL
744 int maxobj;
745
81819f0f
CL
746 VM_BUG_ON(!irqs_disabled());
747
748 if (!PageSlab(page)) {
24922684 749 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
750 return 0;
751 }
39b26464 752
ab9a0f19 753 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
754 if (page->objects > maxobj) {
755 slab_err(s, page, "objects %u > max %u",
756 s->name, page->objects, maxobj);
757 return 0;
758 }
759 if (page->inuse > page->objects) {
24922684 760 slab_err(s, page, "inuse %u > max %u",
39b26464 761 s->name, page->inuse, page->objects);
81819f0f
CL
762 return 0;
763 }
764 /* Slab_pad_check fixes things up after itself */
765 slab_pad_check(s, page);
766 return 1;
767}
768
769/*
672bba3a
CL
770 * Determine if a certain object on a page is on the freelist. Must hold the
771 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
772 */
773static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
774{
775 int nr = 0;
776 void *fp = page->freelist;
777 void *object = NULL;
224a88be 778 unsigned long max_objects;
81819f0f 779
39b26464 780 while (fp && nr <= page->objects) {
81819f0f
CL
781 if (fp == search)
782 return 1;
783 if (!check_valid_pointer(s, page, fp)) {
784 if (object) {
785 object_err(s, page, object,
786 "Freechain corrupt");
a973e9dd 787 set_freepointer(s, object, NULL);
81819f0f
CL
788 break;
789 } else {
24922684 790 slab_err(s, page, "Freepointer corrupt");
a973e9dd 791 page->freelist = NULL;
39b26464 792 page->inuse = page->objects;
24922684 793 slab_fix(s, "Freelist cleared");
81819f0f
CL
794 return 0;
795 }
796 break;
797 }
798 object = fp;
799 fp = get_freepointer(s, object);
800 nr++;
801 }
802
ab9a0f19 803 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
804 if (max_objects > MAX_OBJS_PER_PAGE)
805 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
806
807 if (page->objects != max_objects) {
808 slab_err(s, page, "Wrong number of objects. Found %d but "
809 "should be %d", page->objects, max_objects);
810 page->objects = max_objects;
811 slab_fix(s, "Number of objects adjusted.");
812 }
39b26464 813 if (page->inuse != page->objects - nr) {
70d71228 814 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
815 "counted were %d", page->inuse, page->objects - nr);
816 page->inuse = page->objects - nr;
24922684 817 slab_fix(s, "Object count adjusted.");
81819f0f
CL
818 }
819 return search == NULL;
820}
821
0121c619
CL
822static void trace(struct kmem_cache *s, struct page *page, void *object,
823 int alloc)
3ec09742
CL
824{
825 if (s->flags & SLAB_TRACE) {
826 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
827 s->name,
828 alloc ? "alloc" : "free",
829 object, page->inuse,
830 page->freelist);
831
832 if (!alloc)
833 print_section("Object", (void *)object, s->objsize);
834
835 dump_stack();
836 }
837}
838
c016b0bd
CL
839/*
840 * Hooks for other subsystems that check memory allocations. In a typical
841 * production configuration these hooks all should produce no code at all.
842 */
843static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
844{
c1d50836 845 flags &= gfp_allowed_mask;
c016b0bd
CL
846 lockdep_trace_alloc(flags);
847 might_sleep_if(flags & __GFP_WAIT);
848
849 return should_failslab(s->objsize, flags, s->flags);
850}
851
852static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
853{
c1d50836 854 flags &= gfp_allowed_mask;
b3d41885 855 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
856 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
857}
858
859static inline void slab_free_hook(struct kmem_cache *s, void *x)
860{
861 kmemleak_free_recursive(x, s->flags);
c016b0bd 862
d3f661d6
CL
863 /*
864 * Trouble is that we may no longer disable interupts in the fast path
865 * So in order to make the debug calls that expect irqs to be
866 * disabled we need to disable interrupts temporarily.
867 */
868#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
869 {
870 unsigned long flags;
871
872 local_irq_save(flags);
873 kmemcheck_slab_free(s, x, s->objsize);
874 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
875 local_irq_restore(flags);
876 }
877#endif
f9b615de
TG
878 if (!(s->flags & SLAB_DEBUG_OBJECTS))
879 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
880}
881
643b1138 882/*
672bba3a 883 * Tracking of fully allocated slabs for debugging purposes.
643b1138 884 */
e95eed57 885static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 886{
643b1138
CL
887 spin_lock(&n->list_lock);
888 list_add(&page->lru, &n->full);
889 spin_unlock(&n->list_lock);
890}
891
892static void remove_full(struct kmem_cache *s, struct page *page)
893{
894 struct kmem_cache_node *n;
895
896 if (!(s->flags & SLAB_STORE_USER))
897 return;
898
899 n = get_node(s, page_to_nid(page));
900
901 spin_lock(&n->list_lock);
902 list_del(&page->lru);
903 spin_unlock(&n->list_lock);
904}
905
0f389ec6
CL
906/* Tracking of the number of slabs for debugging purposes */
907static inline unsigned long slabs_node(struct kmem_cache *s, int node)
908{
909 struct kmem_cache_node *n = get_node(s, node);
910
911 return atomic_long_read(&n->nr_slabs);
912}
913
26c02cf0
AB
914static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
915{
916 return atomic_long_read(&n->nr_slabs);
917}
918
205ab99d 919static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
920{
921 struct kmem_cache_node *n = get_node(s, node);
922
923 /*
924 * May be called early in order to allocate a slab for the
925 * kmem_cache_node structure. Solve the chicken-egg
926 * dilemma by deferring the increment of the count during
927 * bootstrap (see early_kmem_cache_node_alloc).
928 */
7340cc84 929 if (n) {
0f389ec6 930 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
931 atomic_long_add(objects, &n->total_objects);
932 }
0f389ec6 933}
205ab99d 934static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
935{
936 struct kmem_cache_node *n = get_node(s, node);
937
938 atomic_long_dec(&n->nr_slabs);
205ab99d 939 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
940}
941
942/* Object debug checks for alloc/free paths */
3ec09742
CL
943static void setup_object_debug(struct kmem_cache *s, struct page *page,
944 void *object)
945{
946 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
947 return;
948
f7cb1933 949 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
950 init_tracking(s, object);
951}
952
1537066c 953static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 954 void *object, unsigned long addr)
81819f0f
CL
955{
956 if (!check_slab(s, page))
957 goto bad;
958
d692ef6d 959 if (!on_freelist(s, page, object)) {
24922684 960 object_err(s, page, object, "Object already allocated");
70d71228 961 goto bad;
81819f0f
CL
962 }
963
964 if (!check_valid_pointer(s, page, object)) {
965 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 966 goto bad;
81819f0f
CL
967 }
968
f7cb1933 969 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 970 goto bad;
81819f0f 971
3ec09742
CL
972 /* Success perform special debug activities for allocs */
973 if (s->flags & SLAB_STORE_USER)
974 set_track(s, object, TRACK_ALLOC, addr);
975 trace(s, page, object, 1);
f7cb1933 976 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 977 return 1;
3ec09742 978
81819f0f
CL
979bad:
980 if (PageSlab(page)) {
981 /*
982 * If this is a slab page then lets do the best we can
983 * to avoid issues in the future. Marking all objects
672bba3a 984 * as used avoids touching the remaining objects.
81819f0f 985 */
24922684 986 slab_fix(s, "Marking all objects used");
39b26464 987 page->inuse = page->objects;
a973e9dd 988 page->freelist = NULL;
81819f0f
CL
989 }
990 return 0;
991}
992
1537066c
CL
993static noinline int free_debug_processing(struct kmem_cache *s,
994 struct page *page, void *object, unsigned long addr)
81819f0f
CL
995{
996 if (!check_slab(s, page))
997 goto fail;
998
999 if (!check_valid_pointer(s, page, object)) {
70d71228 1000 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1001 goto fail;
1002 }
1003
1004 if (on_freelist(s, page, object)) {
24922684 1005 object_err(s, page, object, "Object already free");
81819f0f
CL
1006 goto fail;
1007 }
1008
f7cb1933 1009 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
81819f0f
CL
1010 return 0;
1011
1012 if (unlikely(s != page->slab)) {
3adbefee 1013 if (!PageSlab(page)) {
70d71228
CL
1014 slab_err(s, page, "Attempt to free object(0x%p) "
1015 "outside of slab", object);
3adbefee 1016 } else if (!page->slab) {
81819f0f 1017 printk(KERN_ERR
70d71228 1018 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1019 object);
70d71228 1020 dump_stack();
06428780 1021 } else
24922684
CL
1022 object_err(s, page, object,
1023 "page slab pointer corrupt.");
81819f0f
CL
1024 goto fail;
1025 }
3ec09742
CL
1026
1027 /* Special debug activities for freeing objects */
50d5c41c 1028 if (!page->frozen && !page->freelist)
3ec09742
CL
1029 remove_full(s, page);
1030 if (s->flags & SLAB_STORE_USER)
1031 set_track(s, object, TRACK_FREE, addr);
1032 trace(s, page, object, 0);
f7cb1933 1033 init_object(s, object, SLUB_RED_INACTIVE);
81819f0f 1034 return 1;
3ec09742 1035
81819f0f 1036fail:
24922684 1037 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
1038 return 0;
1039}
1040
41ecc55b
CL
1041static int __init setup_slub_debug(char *str)
1042{
f0630fff
CL
1043 slub_debug = DEBUG_DEFAULT_FLAGS;
1044 if (*str++ != '=' || !*str)
1045 /*
1046 * No options specified. Switch on full debugging.
1047 */
1048 goto out;
1049
1050 if (*str == ',')
1051 /*
1052 * No options but restriction on slabs. This means full
1053 * debugging for slabs matching a pattern.
1054 */
1055 goto check_slabs;
1056
fa5ec8a1
DR
1057 if (tolower(*str) == 'o') {
1058 /*
1059 * Avoid enabling debugging on caches if its minimum order
1060 * would increase as a result.
1061 */
1062 disable_higher_order_debug = 1;
1063 goto out;
1064 }
1065
f0630fff
CL
1066 slub_debug = 0;
1067 if (*str == '-')
1068 /*
1069 * Switch off all debugging measures.
1070 */
1071 goto out;
1072
1073 /*
1074 * Determine which debug features should be switched on
1075 */
06428780 1076 for (; *str && *str != ','; str++) {
f0630fff
CL
1077 switch (tolower(*str)) {
1078 case 'f':
1079 slub_debug |= SLAB_DEBUG_FREE;
1080 break;
1081 case 'z':
1082 slub_debug |= SLAB_RED_ZONE;
1083 break;
1084 case 'p':
1085 slub_debug |= SLAB_POISON;
1086 break;
1087 case 'u':
1088 slub_debug |= SLAB_STORE_USER;
1089 break;
1090 case 't':
1091 slub_debug |= SLAB_TRACE;
1092 break;
4c13dd3b
DM
1093 case 'a':
1094 slub_debug |= SLAB_FAILSLAB;
1095 break;
f0630fff
CL
1096 default:
1097 printk(KERN_ERR "slub_debug option '%c' "
06428780 1098 "unknown. skipped\n", *str);
f0630fff 1099 }
41ecc55b
CL
1100 }
1101
f0630fff 1102check_slabs:
41ecc55b
CL
1103 if (*str == ',')
1104 slub_debug_slabs = str + 1;
f0630fff 1105out:
41ecc55b
CL
1106 return 1;
1107}
1108
1109__setup("slub_debug", setup_slub_debug);
1110
ba0268a8
CL
1111static unsigned long kmem_cache_flags(unsigned long objsize,
1112 unsigned long flags, const char *name,
51cc5068 1113 void (*ctor)(void *))
41ecc55b
CL
1114{
1115 /*
e153362a 1116 * Enable debugging if selected on the kernel commandline.
41ecc55b 1117 */
e153362a 1118 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1119 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1120 flags |= slub_debug;
ba0268a8
CL
1121
1122 return flags;
41ecc55b
CL
1123}
1124#else
3ec09742
CL
1125static inline void setup_object_debug(struct kmem_cache *s,
1126 struct page *page, void *object) {}
41ecc55b 1127
3ec09742 1128static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1129 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1130
3ec09742 1131static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1132 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1133
41ecc55b
CL
1134static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1135 { return 1; }
1136static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1137 void *object, u8 val) { return 1; }
3ec09742 1138static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1139static inline unsigned long kmem_cache_flags(unsigned long objsize,
1140 unsigned long flags, const char *name,
51cc5068 1141 void (*ctor)(void *))
ba0268a8
CL
1142{
1143 return flags;
1144}
41ecc55b 1145#define slub_debug 0
0f389ec6 1146
fdaa45e9
IM
1147#define disable_higher_order_debug 0
1148
0f389ec6
CL
1149static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1150 { return 0; }
26c02cf0
AB
1151static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1152 { return 0; }
205ab99d
CL
1153static inline void inc_slabs_node(struct kmem_cache *s, int node,
1154 int objects) {}
1155static inline void dec_slabs_node(struct kmem_cache *s, int node,
1156 int objects) {}
7d550c56
CL
1157
1158static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1159 { return 0; }
1160
1161static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1162 void *object) {}
1163
1164static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1165
ab4d5ed5 1166#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1167
81819f0f
CL
1168/*
1169 * Slab allocation and freeing
1170 */
65c3376a
CL
1171static inline struct page *alloc_slab_page(gfp_t flags, int node,
1172 struct kmem_cache_order_objects oo)
1173{
1174 int order = oo_order(oo);
1175
b1eeab67
VN
1176 flags |= __GFP_NOTRACK;
1177
2154a336 1178 if (node == NUMA_NO_NODE)
65c3376a
CL
1179 return alloc_pages(flags, order);
1180 else
6b65aaf3 1181 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1182}
1183
81819f0f
CL
1184static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1185{
06428780 1186 struct page *page;
834f3d11 1187 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1188 gfp_t alloc_gfp;
81819f0f 1189
7e0528da
CL
1190 flags &= gfp_allowed_mask;
1191
1192 if (flags & __GFP_WAIT)
1193 local_irq_enable();
1194
b7a49f0d 1195 flags |= s->allocflags;
e12ba74d 1196
ba52270d
PE
1197 /*
1198 * Let the initial higher-order allocation fail under memory pressure
1199 * so we fall-back to the minimum order allocation.
1200 */
1201 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1202
1203 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1204 if (unlikely(!page)) {
1205 oo = s->min;
1206 /*
1207 * Allocation may have failed due to fragmentation.
1208 * Try a lower order alloc if possible
1209 */
1210 page = alloc_slab_page(flags, node, oo);
81819f0f 1211
7e0528da
CL
1212 if (page)
1213 stat(s, ORDER_FALLBACK);
65c3376a 1214 }
5a896d9e 1215
7e0528da
CL
1216 if (flags & __GFP_WAIT)
1217 local_irq_disable();
1218
1219 if (!page)
1220 return NULL;
1221
5a896d9e 1222 if (kmemcheck_enabled
5086c389 1223 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1224 int pages = 1 << oo_order(oo);
1225
1226 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1227
1228 /*
1229 * Objects from caches that have a constructor don't get
1230 * cleared when they're allocated, so we need to do it here.
1231 */
1232 if (s->ctor)
1233 kmemcheck_mark_uninitialized_pages(page, pages);
1234 else
1235 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1236 }
1237
834f3d11 1238 page->objects = oo_objects(oo);
81819f0f
CL
1239 mod_zone_page_state(page_zone(page),
1240 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1241 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1242 1 << oo_order(oo));
81819f0f
CL
1243
1244 return page;
1245}
1246
1247static void setup_object(struct kmem_cache *s, struct page *page,
1248 void *object)
1249{
3ec09742 1250 setup_object_debug(s, page, object);
4f104934 1251 if (unlikely(s->ctor))
51cc5068 1252 s->ctor(object);
81819f0f
CL
1253}
1254
1255static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1256{
1257 struct page *page;
81819f0f 1258 void *start;
81819f0f
CL
1259 void *last;
1260 void *p;
1261
6cb06229 1262 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1263
6cb06229
CL
1264 page = allocate_slab(s,
1265 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1266 if (!page)
1267 goto out;
1268
205ab99d 1269 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1270 page->slab = s;
1271 page->flags |= 1 << PG_slab;
81819f0f
CL
1272
1273 start = page_address(page);
81819f0f
CL
1274
1275 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1276 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1277
1278 last = start;
224a88be 1279 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1280 setup_object(s, page, last);
1281 set_freepointer(s, last, p);
1282 last = p;
1283 }
1284 setup_object(s, page, last);
a973e9dd 1285 set_freepointer(s, last, NULL);
81819f0f
CL
1286
1287 page->freelist = start;
1288 page->inuse = 0;
1289out:
81819f0f
CL
1290 return page;
1291}
1292
1293static void __free_slab(struct kmem_cache *s, struct page *page)
1294{
834f3d11
CL
1295 int order = compound_order(page);
1296 int pages = 1 << order;
81819f0f 1297
af537b0a 1298 if (kmem_cache_debug(s)) {
81819f0f
CL
1299 void *p;
1300
1301 slab_pad_check(s, page);
224a88be
CL
1302 for_each_object(p, s, page_address(page),
1303 page->objects)
f7cb1933 1304 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1305 }
1306
b1eeab67 1307 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1308
81819f0f
CL
1309 mod_zone_page_state(page_zone(page),
1310 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1311 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1312 -pages);
81819f0f 1313
49bd5221
CL
1314 __ClearPageSlab(page);
1315 reset_page_mapcount(page);
1eb5ac64
NP
1316 if (current->reclaim_state)
1317 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1318 __free_pages(page, order);
81819f0f
CL
1319}
1320
da9a638c
LJ
1321#define need_reserve_slab_rcu \
1322 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1323
81819f0f
CL
1324static void rcu_free_slab(struct rcu_head *h)
1325{
1326 struct page *page;
1327
da9a638c
LJ
1328 if (need_reserve_slab_rcu)
1329 page = virt_to_head_page(h);
1330 else
1331 page = container_of((struct list_head *)h, struct page, lru);
1332
81819f0f
CL
1333 __free_slab(page->slab, page);
1334}
1335
1336static void free_slab(struct kmem_cache *s, struct page *page)
1337{
1338 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1339 struct rcu_head *head;
1340
1341 if (need_reserve_slab_rcu) {
1342 int order = compound_order(page);
1343 int offset = (PAGE_SIZE << order) - s->reserved;
1344
1345 VM_BUG_ON(s->reserved != sizeof(*head));
1346 head = page_address(page) + offset;
1347 } else {
1348 /*
1349 * RCU free overloads the RCU head over the LRU
1350 */
1351 head = (void *)&page->lru;
1352 }
81819f0f
CL
1353
1354 call_rcu(head, rcu_free_slab);
1355 } else
1356 __free_slab(s, page);
1357}
1358
1359static void discard_slab(struct kmem_cache *s, struct page *page)
1360{
205ab99d 1361 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1362 free_slab(s, page);
1363}
1364
1365/*
1366 * Per slab locking using the pagelock
1367 */
1368static __always_inline void slab_lock(struct page *page)
1369{
1370 bit_spin_lock(PG_locked, &page->flags);
1371}
1372
1373static __always_inline void slab_unlock(struct page *page)
1374{
a76d3546 1375 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1376}
1377
1378static __always_inline int slab_trylock(struct page *page)
1379{
1380 int rc = 1;
1381
1382 rc = bit_spin_trylock(PG_locked, &page->flags);
1383 return rc;
1384}
1385
1386/*
1387 * Management of partially allocated slabs
1388 */
7c2e132c
CL
1389static void add_partial(struct kmem_cache_node *n,
1390 struct page *page, int tail)
81819f0f 1391{
e95eed57
CL
1392 spin_lock(&n->list_lock);
1393 n->nr_partial++;
7c2e132c
CL
1394 if (tail)
1395 list_add_tail(&page->lru, &n->partial);
1396 else
1397 list_add(&page->lru, &n->partial);
81819f0f
CL
1398 spin_unlock(&n->list_lock);
1399}
1400
62e346a8
CL
1401static inline void __remove_partial(struct kmem_cache_node *n,
1402 struct page *page)
1403{
1404 list_del(&page->lru);
1405 n->nr_partial--;
1406}
1407
0121c619 1408static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1409{
1410 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1411
1412 spin_lock(&n->list_lock);
62e346a8 1413 __remove_partial(n, page);
81819f0f
CL
1414 spin_unlock(&n->list_lock);
1415}
1416
1417/*
672bba3a 1418 * Lock slab and remove from the partial list.
81819f0f 1419 *
672bba3a 1420 * Must hold list_lock.
81819f0f 1421 */
0121c619
CL
1422static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1423 struct page *page)
81819f0f
CL
1424{
1425 if (slab_trylock(page)) {
62e346a8 1426 __remove_partial(n, page);
50d5c41c 1427 page->frozen = 1;
81819f0f
CL
1428 return 1;
1429 }
1430 return 0;
1431}
1432
1433/*
672bba3a 1434 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1435 */
1436static struct page *get_partial_node(struct kmem_cache_node *n)
1437{
1438 struct page *page;
1439
1440 /*
1441 * Racy check. If we mistakenly see no partial slabs then we
1442 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1443 * partial slab and there is none available then get_partials()
1444 * will return NULL.
81819f0f
CL
1445 */
1446 if (!n || !n->nr_partial)
1447 return NULL;
1448
1449 spin_lock(&n->list_lock);
1450 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1451 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1452 goto out;
1453 page = NULL;
1454out:
1455 spin_unlock(&n->list_lock);
1456 return page;
1457}
1458
1459/*
672bba3a 1460 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1461 */
1462static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1463{
1464#ifdef CONFIG_NUMA
1465 struct zonelist *zonelist;
dd1a239f 1466 struct zoneref *z;
54a6eb5c
MG
1467 struct zone *zone;
1468 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1469 struct page *page;
1470
1471 /*
672bba3a
CL
1472 * The defrag ratio allows a configuration of the tradeoffs between
1473 * inter node defragmentation and node local allocations. A lower
1474 * defrag_ratio increases the tendency to do local allocations
1475 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1476 *
672bba3a
CL
1477 * If the defrag_ratio is set to 0 then kmalloc() always
1478 * returns node local objects. If the ratio is higher then kmalloc()
1479 * may return off node objects because partial slabs are obtained
1480 * from other nodes and filled up.
81819f0f 1481 *
6446faa2 1482 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1483 * defrag_ratio = 1000) then every (well almost) allocation will
1484 * first attempt to defrag slab caches on other nodes. This means
1485 * scanning over all nodes to look for partial slabs which may be
1486 * expensive if we do it every time we are trying to find a slab
1487 * with available objects.
81819f0f 1488 */
9824601e
CL
1489 if (!s->remote_node_defrag_ratio ||
1490 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1491 return NULL;
1492
c0ff7453 1493 get_mems_allowed();
0e88460d 1494 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1495 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1496 struct kmem_cache_node *n;
1497
54a6eb5c 1498 n = get_node(s, zone_to_nid(zone));
81819f0f 1499
54a6eb5c 1500 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1501 n->nr_partial > s->min_partial) {
81819f0f 1502 page = get_partial_node(n);
c0ff7453
MX
1503 if (page) {
1504 put_mems_allowed();
81819f0f 1505 return page;
c0ff7453 1506 }
81819f0f
CL
1507 }
1508 }
c0ff7453 1509 put_mems_allowed();
81819f0f
CL
1510#endif
1511 return NULL;
1512}
1513
1514/*
1515 * Get a partial page, lock it and return it.
1516 */
1517static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1518{
1519 struct page *page;
2154a336 1520 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1521
1522 page = get_partial_node(get_node(s, searchnode));
33de04ec 1523 if (page || node != NUMA_NO_NODE)
81819f0f
CL
1524 return page;
1525
1526 return get_any_partial(s, flags);
1527}
1528
1529/*
1530 * Move a page back to the lists.
1531 *
1532 * Must be called with the slab lock held.
1533 *
1534 * On exit the slab lock will have been dropped.
1535 */
7c2e132c 1536static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
3478973d 1537 __releases(bitlock)
81819f0f 1538{
e95eed57
CL
1539 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1540
50d5c41c 1541 page->frozen = 0;
81819f0f 1542 if (page->inuse) {
e95eed57 1543
a973e9dd 1544 if (page->freelist) {
7c2e132c 1545 add_partial(n, page, tail);
84e554e6 1546 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1547 } else {
84e554e6 1548 stat(s, DEACTIVATE_FULL);
af537b0a 1549 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1550 add_full(n, page);
1551 }
81819f0f
CL
1552 slab_unlock(page);
1553 } else {
84e554e6 1554 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1555 if (n->nr_partial < s->min_partial) {
e95eed57 1556 /*
672bba3a
CL
1557 * Adding an empty slab to the partial slabs in order
1558 * to avoid page allocator overhead. This slab needs
1559 * to come after the other slabs with objects in
6446faa2
CL
1560 * so that the others get filled first. That way the
1561 * size of the partial list stays small.
1562 *
0121c619
CL
1563 * kmem_cache_shrink can reclaim any empty slabs from
1564 * the partial list.
e95eed57 1565 */
7c2e132c 1566 add_partial(n, page, 1);
e95eed57
CL
1567 slab_unlock(page);
1568 } else {
1569 slab_unlock(page);
84e554e6 1570 stat(s, FREE_SLAB);
e95eed57
CL
1571 discard_slab(s, page);
1572 }
81819f0f
CL
1573 }
1574}
1575
8a5ec0ba
CL
1576#ifdef CONFIG_PREEMPT
1577/*
1578 * Calculate the next globally unique transaction for disambiguiation
1579 * during cmpxchg. The transactions start with the cpu number and are then
1580 * incremented by CONFIG_NR_CPUS.
1581 */
1582#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1583#else
1584/*
1585 * No preemption supported therefore also no need to check for
1586 * different cpus.
1587 */
1588#define TID_STEP 1
1589#endif
1590
1591static inline unsigned long next_tid(unsigned long tid)
1592{
1593 return tid + TID_STEP;
1594}
1595
1596static inline unsigned int tid_to_cpu(unsigned long tid)
1597{
1598 return tid % TID_STEP;
1599}
1600
1601static inline unsigned long tid_to_event(unsigned long tid)
1602{
1603 return tid / TID_STEP;
1604}
1605
1606static inline unsigned int init_tid(int cpu)
1607{
1608 return cpu;
1609}
1610
1611static inline void note_cmpxchg_failure(const char *n,
1612 const struct kmem_cache *s, unsigned long tid)
1613{
1614#ifdef SLUB_DEBUG_CMPXCHG
1615 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1616
1617 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1618
1619#ifdef CONFIG_PREEMPT
1620 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1621 printk("due to cpu change %d -> %d\n",
1622 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1623 else
1624#endif
1625 if (tid_to_event(tid) != tid_to_event(actual_tid))
1626 printk("due to cpu running other code. Event %ld->%ld\n",
1627 tid_to_event(tid), tid_to_event(actual_tid));
1628 else
1629 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1630 actual_tid, tid, next_tid(tid));
1631#endif
4fdccdfb 1632 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1633}
1634
8a5ec0ba
CL
1635void init_kmem_cache_cpus(struct kmem_cache *s)
1636{
8a5ec0ba
CL
1637 int cpu;
1638
1639 for_each_possible_cpu(cpu)
1640 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1641}
81819f0f
CL
1642/*
1643 * Remove the cpu slab
1644 */
dfb4f096 1645static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3478973d 1646 __releases(bitlock)
81819f0f 1647{
dfb4f096 1648 struct page *page = c->page;
7c2e132c 1649 int tail = 1;
8ff12cfc 1650
b773ad73 1651 if (page->freelist)
84e554e6 1652 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1653 /*
6446faa2 1654 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1655 * because both freelists are empty. So this is unlikely
1656 * to occur.
1657 */
a973e9dd 1658 while (unlikely(c->freelist)) {
894b8788
CL
1659 void **object;
1660
7c2e132c
CL
1661 tail = 0; /* Hot objects. Put the slab first */
1662
894b8788 1663 /* Retrieve object from cpu_freelist */
dfb4f096 1664 object = c->freelist;
ff12059e 1665 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1666
1667 /* And put onto the regular freelist */
ff12059e 1668 set_freepointer(s, object, page->freelist);
894b8788
CL
1669 page->freelist = object;
1670 page->inuse--;
1671 }
dfb4f096 1672 c->page = NULL;
8a5ec0ba 1673 c->tid = next_tid(c->tid);
7c2e132c 1674 unfreeze_slab(s, page, tail);
81819f0f
CL
1675}
1676
dfb4f096 1677static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1678{
84e554e6 1679 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1680 slab_lock(c->page);
1681 deactivate_slab(s, c);
81819f0f
CL
1682}
1683
1684/*
1685 * Flush cpu slab.
6446faa2 1686 *
81819f0f
CL
1687 * Called from IPI handler with interrupts disabled.
1688 */
0c710013 1689static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1690{
9dfc6e68 1691 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1692
dfb4f096
CL
1693 if (likely(c && c->page))
1694 flush_slab(s, c);
81819f0f
CL
1695}
1696
1697static void flush_cpu_slab(void *d)
1698{
1699 struct kmem_cache *s = d;
81819f0f 1700
dfb4f096 1701 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1702}
1703
1704static void flush_all(struct kmem_cache *s)
1705{
15c8b6c1 1706 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1707}
1708
dfb4f096
CL
1709/*
1710 * Check if the objects in a per cpu structure fit numa
1711 * locality expectations.
1712 */
1713static inline int node_match(struct kmem_cache_cpu *c, int node)
1714{
1715#ifdef CONFIG_NUMA
2154a336 1716 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1717 return 0;
1718#endif
1719 return 1;
1720}
1721
781b2ba6
PE
1722static int count_free(struct page *page)
1723{
1724 return page->objects - page->inuse;
1725}
1726
1727static unsigned long count_partial(struct kmem_cache_node *n,
1728 int (*get_count)(struct page *))
1729{
1730 unsigned long flags;
1731 unsigned long x = 0;
1732 struct page *page;
1733
1734 spin_lock_irqsave(&n->list_lock, flags);
1735 list_for_each_entry(page, &n->partial, lru)
1736 x += get_count(page);
1737 spin_unlock_irqrestore(&n->list_lock, flags);
1738 return x;
1739}
1740
26c02cf0
AB
1741static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1742{
1743#ifdef CONFIG_SLUB_DEBUG
1744 return atomic_long_read(&n->total_objects);
1745#else
1746 return 0;
1747#endif
1748}
1749
781b2ba6
PE
1750static noinline void
1751slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1752{
1753 int node;
1754
1755 printk(KERN_WARNING
1756 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1757 nid, gfpflags);
1758 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1759 "default order: %d, min order: %d\n", s->name, s->objsize,
1760 s->size, oo_order(s->oo), oo_order(s->min));
1761
fa5ec8a1
DR
1762 if (oo_order(s->min) > get_order(s->objsize))
1763 printk(KERN_WARNING " %s debugging increased min order, use "
1764 "slub_debug=O to disable.\n", s->name);
1765
781b2ba6
PE
1766 for_each_online_node(node) {
1767 struct kmem_cache_node *n = get_node(s, node);
1768 unsigned long nr_slabs;
1769 unsigned long nr_objs;
1770 unsigned long nr_free;
1771
1772 if (!n)
1773 continue;
1774
26c02cf0
AB
1775 nr_free = count_partial(n, count_free);
1776 nr_slabs = node_nr_slabs(n);
1777 nr_objs = node_nr_objs(n);
781b2ba6
PE
1778
1779 printk(KERN_WARNING
1780 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1781 node, nr_slabs, nr_objs, nr_free);
1782 }
1783}
1784
81819f0f 1785/*
894b8788
CL
1786 * Slow path. The lockless freelist is empty or we need to perform
1787 * debugging duties.
1788 *
1789 * Interrupts are disabled.
81819f0f 1790 *
894b8788
CL
1791 * Processing is still very fast if new objects have been freed to the
1792 * regular freelist. In that case we simply take over the regular freelist
1793 * as the lockless freelist and zap the regular freelist.
81819f0f 1794 *
894b8788
CL
1795 * If that is not working then we fall back to the partial lists. We take the
1796 * first element of the freelist as the object to allocate now and move the
1797 * rest of the freelist to the lockless freelist.
81819f0f 1798 *
894b8788 1799 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1800 * we need to allocate a new slab. This is the slowest path since it involves
1801 * a call to the page allocator and the setup of a new slab.
81819f0f 1802 */
ce71e27c
EGM
1803static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1804 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1805{
81819f0f 1806 void **object;
01ad8a7b 1807 struct page *page;
8a5ec0ba
CL
1808 unsigned long flags;
1809
1810 local_irq_save(flags);
1811#ifdef CONFIG_PREEMPT
1812 /*
1813 * We may have been preempted and rescheduled on a different
1814 * cpu before disabling interrupts. Need to reload cpu area
1815 * pointer.
1816 */
1817 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 1818#endif
81819f0f 1819
e72e9c23
LT
1820 /* We handle __GFP_ZERO in the caller */
1821 gfpflags &= ~__GFP_ZERO;
1822
01ad8a7b
CL
1823 page = c->page;
1824 if (!page)
81819f0f
CL
1825 goto new_slab;
1826
01ad8a7b 1827 slab_lock(page);
dfb4f096 1828 if (unlikely(!node_match(c, node)))
81819f0f 1829 goto another_slab;
6446faa2 1830
84e554e6 1831 stat(s, ALLOC_REFILL);
6446faa2 1832
894b8788 1833load_freelist:
01ad8a7b 1834 object = page->freelist;
a973e9dd 1835 if (unlikely(!object))
81819f0f 1836 goto another_slab;
af537b0a 1837 if (kmem_cache_debug(s))
81819f0f
CL
1838 goto debug;
1839
ff12059e 1840 c->freelist = get_freepointer(s, object);
01ad8a7b
CL
1841 page->inuse = page->objects;
1842 page->freelist = NULL;
01ad8a7b 1843
01ad8a7b 1844 slab_unlock(page);
8a5ec0ba
CL
1845 c->tid = next_tid(c->tid);
1846 local_irq_restore(flags);
84e554e6 1847 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1848 return object;
1849
1850another_slab:
dfb4f096 1851 deactivate_slab(s, c);
81819f0f
CL
1852
1853new_slab:
01ad8a7b
CL
1854 page = get_partial(s, gfpflags, node);
1855 if (page) {
84e554e6 1856 stat(s, ALLOC_FROM_PARTIAL);
dc1fb7f4
CL
1857 c->node = page_to_nid(page);
1858 c->page = page;
894b8788 1859 goto load_freelist;
81819f0f
CL
1860 }
1861
01ad8a7b 1862 page = new_slab(s, gfpflags, node);
b811c202 1863
01ad8a7b 1864 if (page) {
9dfc6e68 1865 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1866 stat(s, ALLOC_SLAB);
05aa3450 1867 if (c->page)
dfb4f096 1868 flush_slab(s, c);
01ad8a7b
CL
1869
1870 slab_lock(page);
50d5c41c 1871 page->frozen = 1;
bd07d87f
DR
1872 c->node = page_to_nid(page);
1873 c->page = page;
4b6f0750 1874 goto load_freelist;
81819f0f 1875 }
95f85989
PE
1876 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1877 slab_out_of_memory(s, gfpflags, node);
2fd66c51 1878 local_irq_restore(flags);
71c7a06f 1879 return NULL;
81819f0f 1880debug:
01ad8a7b 1881 if (!alloc_debug_processing(s, page, object, addr))
81819f0f 1882 goto another_slab;
894b8788 1883
01ad8a7b
CL
1884 page->inuse++;
1885 page->freelist = get_freepointer(s, object);
442b06bc
CL
1886 deactivate_slab(s, c);
1887 c->page = NULL;
15b7c514 1888 c->node = NUMA_NO_NODE;
a71ae47a
CL
1889 local_irq_restore(flags);
1890 return object;
894b8788
CL
1891}
1892
1893/*
1894 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1895 * have the fastpath folded into their functions. So no function call
1896 * overhead for requests that can be satisfied on the fastpath.
1897 *
1898 * The fastpath works by first checking if the lockless freelist can be used.
1899 * If not then __slab_alloc is called for slow processing.
1900 *
1901 * Otherwise we can simply pick the next object from the lockless free list.
1902 */
06428780 1903static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1904 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1905{
894b8788 1906 void **object;
dfb4f096 1907 struct kmem_cache_cpu *c;
8a5ec0ba 1908 unsigned long tid;
1f84260c 1909
c016b0bd 1910 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1911 return NULL;
1f84260c 1912
8a5ec0ba 1913redo:
8a5ec0ba
CL
1914
1915 /*
1916 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1917 * enabled. We may switch back and forth between cpus while
1918 * reading from one cpu area. That does not matter as long
1919 * as we end up on the original cpu again when doing the cmpxchg.
1920 */
9dfc6e68 1921 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 1922
8a5ec0ba
CL
1923 /*
1924 * The transaction ids are globally unique per cpu and per operation on
1925 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1926 * occurs on the right processor and that there was no operation on the
1927 * linked list in between.
1928 */
1929 tid = c->tid;
1930 barrier();
8a5ec0ba 1931
9dfc6e68 1932 object = c->freelist;
9dfc6e68 1933 if (unlikely(!object || !node_match(c, node)))
894b8788 1934
dfb4f096 1935 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1936
1937 else {
8a5ec0ba 1938 /*
25985edc 1939 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
1940 * operation and if we are on the right processor.
1941 *
1942 * The cmpxchg does the following atomically (without lock semantics!)
1943 * 1. Relocate first pointer to the current per cpu area.
1944 * 2. Verify that tid and freelist have not been changed
1945 * 3. If they were not changed replace tid and freelist
1946 *
1947 * Since this is without lock semantics the protection is only against
1948 * code executing on this cpu *not* from access by other cpus.
1949 */
30106b8c 1950 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
1951 s->cpu_slab->freelist, s->cpu_slab->tid,
1952 object, tid,
1393d9a1 1953 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
1954
1955 note_cmpxchg_failure("slab_alloc", s, tid);
1956 goto redo;
1957 }
84e554e6 1958 stat(s, ALLOC_FASTPATH);
894b8788 1959 }
8a5ec0ba 1960
74e2134f 1961 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1962 memset(object, 0, s->objsize);
d07dbea4 1963
c016b0bd 1964 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1965
894b8788 1966 return object;
81819f0f
CL
1967}
1968
1969void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1970{
2154a336 1971 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1972
ca2b84cb 1973 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1974
1975 return ret;
81819f0f
CL
1976}
1977EXPORT_SYMBOL(kmem_cache_alloc);
1978
0f24f128 1979#ifdef CONFIG_TRACING
4a92379b
RK
1980void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1981{
1982 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1983 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1984 return ret;
1985}
1986EXPORT_SYMBOL(kmem_cache_alloc_trace);
1987
1988void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 1989{
4a92379b
RK
1990 void *ret = kmalloc_order(size, flags, order);
1991 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1992 return ret;
5b882be4 1993}
4a92379b 1994EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
1995#endif
1996
81819f0f
CL
1997#ifdef CONFIG_NUMA
1998void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1999{
5b882be4
EGM
2000 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2001
ca2b84cb
EGM
2002 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2003 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2004
2005 return ret;
81819f0f
CL
2006}
2007EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2008
0f24f128 2009#ifdef CONFIG_TRACING
4a92379b 2010void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2011 gfp_t gfpflags,
4a92379b 2012 int node, size_t size)
5b882be4 2013{
4a92379b
RK
2014 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2015
2016 trace_kmalloc_node(_RET_IP_, ret,
2017 size, s->size, gfpflags, node);
2018 return ret;
5b882be4 2019}
4a92379b 2020EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2021#endif
5d1f57e4 2022#endif
5b882be4 2023
81819f0f 2024/*
894b8788
CL
2025 * Slow patch handling. This may still be called frequently since objects
2026 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2027 *
894b8788
CL
2028 * So we still attempt to reduce cache line usage. Just take the slab
2029 * lock and free the item. If there is no additional partial page
2030 * handling required then we can return immediately.
81819f0f 2031 */
894b8788 2032static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2033 void *x, unsigned long addr)
81819f0f
CL
2034{
2035 void *prior;
2036 void **object = (void *)x;
8a5ec0ba 2037 unsigned long flags;
81819f0f 2038
8a5ec0ba 2039 local_irq_save(flags);
81819f0f 2040 slab_lock(page);
8a5ec0ba 2041 stat(s, FREE_SLOWPATH);
81819f0f 2042
8dc16c6c
CL
2043 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2044 goto out_unlock;
6446faa2 2045
ff12059e
CL
2046 prior = page->freelist;
2047 set_freepointer(s, object, prior);
81819f0f
CL
2048 page->freelist = object;
2049 page->inuse--;
2050
50d5c41c 2051 if (unlikely(page->frozen)) {
84e554e6 2052 stat(s, FREE_FROZEN);
81819f0f 2053 goto out_unlock;
8ff12cfc 2054 }
81819f0f
CL
2055
2056 if (unlikely(!page->inuse))
2057 goto slab_empty;
2058
2059 /*
6446faa2 2060 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
2061 * then add it.
2062 */
a973e9dd 2063 if (unlikely(!prior)) {
7c2e132c 2064 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 2065 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2066 }
81819f0f
CL
2067
2068out_unlock:
2069 slab_unlock(page);
8a5ec0ba 2070 local_irq_restore(flags);
81819f0f
CL
2071 return;
2072
2073slab_empty:
a973e9dd 2074 if (prior) {
81819f0f 2075 /*
672bba3a 2076 * Slab still on the partial list.
81819f0f
CL
2077 */
2078 remove_partial(s, page);
84e554e6 2079 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 2080 }
81819f0f 2081 slab_unlock(page);
8a5ec0ba 2082 local_irq_restore(flags);
84e554e6 2083 stat(s, FREE_SLAB);
81819f0f 2084 discard_slab(s, page);
81819f0f
CL
2085}
2086
894b8788
CL
2087/*
2088 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2089 * can perform fastpath freeing without additional function calls.
2090 *
2091 * The fastpath is only possible if we are freeing to the current cpu slab
2092 * of this processor. This typically the case if we have just allocated
2093 * the item before.
2094 *
2095 * If fastpath is not possible then fall back to __slab_free where we deal
2096 * with all sorts of special processing.
2097 */
06428780 2098static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2099 struct page *page, void *x, unsigned long addr)
894b8788
CL
2100{
2101 void **object = (void *)x;
dfb4f096 2102 struct kmem_cache_cpu *c;
8a5ec0ba 2103 unsigned long tid;
1f84260c 2104
c016b0bd
CL
2105 slab_free_hook(s, x);
2106
8a5ec0ba 2107redo:
a24c5a0e 2108
8a5ec0ba
CL
2109 /*
2110 * Determine the currently cpus per cpu slab.
2111 * The cpu may change afterward. However that does not matter since
2112 * data is retrieved via this pointer. If we are on the same cpu
2113 * during the cmpxchg then the free will succedd.
2114 */
9dfc6e68 2115 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2116
8a5ec0ba
CL
2117 tid = c->tid;
2118 barrier();
c016b0bd 2119
442b06bc 2120 if (likely(page == c->page)) {
ff12059e 2121 set_freepointer(s, object, c->freelist);
8a5ec0ba 2122
30106b8c 2123 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2124 s->cpu_slab->freelist, s->cpu_slab->tid,
2125 c->freelist, tid,
2126 object, next_tid(tid)))) {
2127
2128 note_cmpxchg_failure("slab_free", s, tid);
2129 goto redo;
2130 }
84e554e6 2131 stat(s, FREE_FASTPATH);
894b8788 2132 } else
ff12059e 2133 __slab_free(s, page, x, addr);
894b8788 2134
894b8788
CL
2135}
2136
81819f0f
CL
2137void kmem_cache_free(struct kmem_cache *s, void *x)
2138{
77c5e2d0 2139 struct page *page;
81819f0f 2140
b49af68f 2141 page = virt_to_head_page(x);
81819f0f 2142
ce71e27c 2143 slab_free(s, page, x, _RET_IP_);
5b882be4 2144
ca2b84cb 2145 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2146}
2147EXPORT_SYMBOL(kmem_cache_free);
2148
81819f0f 2149/*
672bba3a
CL
2150 * Object placement in a slab is made very easy because we always start at
2151 * offset 0. If we tune the size of the object to the alignment then we can
2152 * get the required alignment by putting one properly sized object after
2153 * another.
81819f0f
CL
2154 *
2155 * Notice that the allocation order determines the sizes of the per cpu
2156 * caches. Each processor has always one slab available for allocations.
2157 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2158 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2159 * locking overhead.
81819f0f
CL
2160 */
2161
2162/*
2163 * Mininum / Maximum order of slab pages. This influences locking overhead
2164 * and slab fragmentation. A higher order reduces the number of partial slabs
2165 * and increases the number of allocations possible without having to
2166 * take the list_lock.
2167 */
2168static int slub_min_order;
114e9e89 2169static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2170static int slub_min_objects;
81819f0f
CL
2171
2172/*
2173 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2174 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2175 */
2176static int slub_nomerge;
2177
81819f0f
CL
2178/*
2179 * Calculate the order of allocation given an slab object size.
2180 *
672bba3a
CL
2181 * The order of allocation has significant impact on performance and other
2182 * system components. Generally order 0 allocations should be preferred since
2183 * order 0 does not cause fragmentation in the page allocator. Larger objects
2184 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2185 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2186 * would be wasted.
2187 *
2188 * In order to reach satisfactory performance we must ensure that a minimum
2189 * number of objects is in one slab. Otherwise we may generate too much
2190 * activity on the partial lists which requires taking the list_lock. This is
2191 * less a concern for large slabs though which are rarely used.
81819f0f 2192 *
672bba3a
CL
2193 * slub_max_order specifies the order where we begin to stop considering the
2194 * number of objects in a slab as critical. If we reach slub_max_order then
2195 * we try to keep the page order as low as possible. So we accept more waste
2196 * of space in favor of a small page order.
81819f0f 2197 *
672bba3a
CL
2198 * Higher order allocations also allow the placement of more objects in a
2199 * slab and thereby reduce object handling overhead. If the user has
2200 * requested a higher mininum order then we start with that one instead of
2201 * the smallest order which will fit the object.
81819f0f 2202 */
5e6d444e 2203static inline int slab_order(int size, int min_objects,
ab9a0f19 2204 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2205{
2206 int order;
2207 int rem;
6300ea75 2208 int min_order = slub_min_order;
81819f0f 2209
ab9a0f19 2210 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2211 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2212
6300ea75 2213 for (order = max(min_order,
5e6d444e
CL
2214 fls(min_objects * size - 1) - PAGE_SHIFT);
2215 order <= max_order; order++) {
81819f0f 2216
5e6d444e 2217 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2218
ab9a0f19 2219 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2220 continue;
2221
ab9a0f19 2222 rem = (slab_size - reserved) % size;
81819f0f 2223
5e6d444e 2224 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2225 break;
2226
2227 }
672bba3a 2228
81819f0f
CL
2229 return order;
2230}
2231
ab9a0f19 2232static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2233{
2234 int order;
2235 int min_objects;
2236 int fraction;
e8120ff1 2237 int max_objects;
5e6d444e
CL
2238
2239 /*
2240 * Attempt to find best configuration for a slab. This
2241 * works by first attempting to generate a layout with
2242 * the best configuration and backing off gradually.
2243 *
2244 * First we reduce the acceptable waste in a slab. Then
2245 * we reduce the minimum objects required in a slab.
2246 */
2247 min_objects = slub_min_objects;
9b2cd506
CL
2248 if (!min_objects)
2249 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2250 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2251 min_objects = min(min_objects, max_objects);
2252
5e6d444e 2253 while (min_objects > 1) {
c124f5b5 2254 fraction = 16;
5e6d444e
CL
2255 while (fraction >= 4) {
2256 order = slab_order(size, min_objects,
ab9a0f19 2257 slub_max_order, fraction, reserved);
5e6d444e
CL
2258 if (order <= slub_max_order)
2259 return order;
2260 fraction /= 2;
2261 }
5086c389 2262 min_objects--;
5e6d444e
CL
2263 }
2264
2265 /*
2266 * We were unable to place multiple objects in a slab. Now
2267 * lets see if we can place a single object there.
2268 */
ab9a0f19 2269 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2270 if (order <= slub_max_order)
2271 return order;
2272
2273 /*
2274 * Doh this slab cannot be placed using slub_max_order.
2275 */
ab9a0f19 2276 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2277 if (order < MAX_ORDER)
5e6d444e
CL
2278 return order;
2279 return -ENOSYS;
2280}
2281
81819f0f 2282/*
672bba3a 2283 * Figure out what the alignment of the objects will be.
81819f0f
CL
2284 */
2285static unsigned long calculate_alignment(unsigned long flags,
2286 unsigned long align, unsigned long size)
2287{
2288 /*
6446faa2
CL
2289 * If the user wants hardware cache aligned objects then follow that
2290 * suggestion if the object is sufficiently large.
81819f0f 2291 *
6446faa2
CL
2292 * The hardware cache alignment cannot override the specified
2293 * alignment though. If that is greater then use it.
81819f0f 2294 */
b6210386
NP
2295 if (flags & SLAB_HWCACHE_ALIGN) {
2296 unsigned long ralign = cache_line_size();
2297 while (size <= ralign / 2)
2298 ralign /= 2;
2299 align = max(align, ralign);
2300 }
81819f0f
CL
2301
2302 if (align < ARCH_SLAB_MINALIGN)
b6210386 2303 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2304
2305 return ALIGN(align, sizeof(void *));
2306}
2307
5595cffc
PE
2308static void
2309init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2310{
2311 n->nr_partial = 0;
81819f0f
CL
2312 spin_lock_init(&n->list_lock);
2313 INIT_LIST_HEAD(&n->partial);
8ab1372f 2314#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2315 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2316 atomic_long_set(&n->total_objects, 0);
643b1138 2317 INIT_LIST_HEAD(&n->full);
8ab1372f 2318#endif
81819f0f
CL
2319}
2320
55136592 2321static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2322{
6c182dc0
CL
2323 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2324 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2325
8a5ec0ba 2326 /*
d4d84fef
CM
2327 * Must align to double word boundary for the double cmpxchg
2328 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2329 */
d4d84fef
CM
2330 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2331 2 * sizeof(void *));
8a5ec0ba
CL
2332
2333 if (!s->cpu_slab)
2334 return 0;
2335
2336 init_kmem_cache_cpus(s);
4c93c355 2337
8a5ec0ba 2338 return 1;
4c93c355 2339}
4c93c355 2340
51df1142
CL
2341static struct kmem_cache *kmem_cache_node;
2342
81819f0f
CL
2343/*
2344 * No kmalloc_node yet so do it by hand. We know that this is the first
2345 * slab on the node for this slabcache. There are no concurrent accesses
2346 * possible.
2347 *
2348 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2349 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2350 * memory on a fresh node that has no slab structures yet.
81819f0f 2351 */
55136592 2352static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2353{
2354 struct page *page;
2355 struct kmem_cache_node *n;
ba84c73c 2356 unsigned long flags;
81819f0f 2357
51df1142 2358 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2359
51df1142 2360 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2361
2362 BUG_ON(!page);
a2f92ee7
CL
2363 if (page_to_nid(page) != node) {
2364 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2365 "node %d\n", node);
2366 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2367 "in order to be able to continue\n");
2368 }
2369
81819f0f
CL
2370 n = page->freelist;
2371 BUG_ON(!n);
51df1142 2372 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2373 page->inuse++;
51df1142 2374 kmem_cache_node->node[node] = n;
8ab1372f 2375#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2376 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2377 init_tracking(kmem_cache_node, n);
8ab1372f 2378#endif
51df1142
CL
2379 init_kmem_cache_node(n, kmem_cache_node);
2380 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2381
ba84c73c 2382 /*
2383 * lockdep requires consistent irq usage for each lock
2384 * so even though there cannot be a race this early in
2385 * the boot sequence, we still disable irqs.
2386 */
2387 local_irq_save(flags);
7c2e132c 2388 add_partial(n, page, 0);
ba84c73c 2389 local_irq_restore(flags);
81819f0f
CL
2390}
2391
2392static void free_kmem_cache_nodes(struct kmem_cache *s)
2393{
2394 int node;
2395
f64dc58c 2396 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2397 struct kmem_cache_node *n = s->node[node];
51df1142 2398
73367bd8 2399 if (n)
51df1142
CL
2400 kmem_cache_free(kmem_cache_node, n);
2401
81819f0f
CL
2402 s->node[node] = NULL;
2403 }
2404}
2405
55136592 2406static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2407{
2408 int node;
81819f0f 2409
f64dc58c 2410 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2411 struct kmem_cache_node *n;
2412
73367bd8 2413 if (slab_state == DOWN) {
55136592 2414 early_kmem_cache_node_alloc(node);
73367bd8
AD
2415 continue;
2416 }
51df1142 2417 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2418 GFP_KERNEL, node);
81819f0f 2419
73367bd8
AD
2420 if (!n) {
2421 free_kmem_cache_nodes(s);
2422 return 0;
81819f0f 2423 }
73367bd8 2424
81819f0f 2425 s->node[node] = n;
5595cffc 2426 init_kmem_cache_node(n, s);
81819f0f
CL
2427 }
2428 return 1;
2429}
81819f0f 2430
c0bdb232 2431static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2432{
2433 if (min < MIN_PARTIAL)
2434 min = MIN_PARTIAL;
2435 else if (min > MAX_PARTIAL)
2436 min = MAX_PARTIAL;
2437 s->min_partial = min;
2438}
2439
81819f0f
CL
2440/*
2441 * calculate_sizes() determines the order and the distribution of data within
2442 * a slab object.
2443 */
06b285dc 2444static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2445{
2446 unsigned long flags = s->flags;
2447 unsigned long size = s->objsize;
2448 unsigned long align = s->align;
834f3d11 2449 int order;
81819f0f 2450
d8b42bf5
CL
2451 /*
2452 * Round up object size to the next word boundary. We can only
2453 * place the free pointer at word boundaries and this determines
2454 * the possible location of the free pointer.
2455 */
2456 size = ALIGN(size, sizeof(void *));
2457
2458#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2459 /*
2460 * Determine if we can poison the object itself. If the user of
2461 * the slab may touch the object after free or before allocation
2462 * then we should never poison the object itself.
2463 */
2464 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2465 !s->ctor)
81819f0f
CL
2466 s->flags |= __OBJECT_POISON;
2467 else
2468 s->flags &= ~__OBJECT_POISON;
2469
81819f0f
CL
2470
2471 /*
672bba3a 2472 * If we are Redzoning then check if there is some space between the
81819f0f 2473 * end of the object and the free pointer. If not then add an
672bba3a 2474 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2475 */
2476 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2477 size += sizeof(void *);
41ecc55b 2478#endif
81819f0f
CL
2479
2480 /*
672bba3a
CL
2481 * With that we have determined the number of bytes in actual use
2482 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2483 */
2484 s->inuse = size;
2485
2486 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2487 s->ctor)) {
81819f0f
CL
2488 /*
2489 * Relocate free pointer after the object if it is not
2490 * permitted to overwrite the first word of the object on
2491 * kmem_cache_free.
2492 *
2493 * This is the case if we do RCU, have a constructor or
2494 * destructor or are poisoning the objects.
2495 */
2496 s->offset = size;
2497 size += sizeof(void *);
2498 }
2499
c12b3c62 2500#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2501 if (flags & SLAB_STORE_USER)
2502 /*
2503 * Need to store information about allocs and frees after
2504 * the object.
2505 */
2506 size += 2 * sizeof(struct track);
2507
be7b3fbc 2508 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2509 /*
2510 * Add some empty padding so that we can catch
2511 * overwrites from earlier objects rather than let
2512 * tracking information or the free pointer be
0211a9c8 2513 * corrupted if a user writes before the start
81819f0f
CL
2514 * of the object.
2515 */
2516 size += sizeof(void *);
41ecc55b 2517#endif
672bba3a 2518
81819f0f
CL
2519 /*
2520 * Determine the alignment based on various parameters that the
65c02d4c
CL
2521 * user specified and the dynamic determination of cache line size
2522 * on bootup.
81819f0f
CL
2523 */
2524 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2525 s->align = align;
81819f0f
CL
2526
2527 /*
2528 * SLUB stores one object immediately after another beginning from
2529 * offset 0. In order to align the objects we have to simply size
2530 * each object to conform to the alignment.
2531 */
2532 size = ALIGN(size, align);
2533 s->size = size;
06b285dc
CL
2534 if (forced_order >= 0)
2535 order = forced_order;
2536 else
ab9a0f19 2537 order = calculate_order(size, s->reserved);
81819f0f 2538
834f3d11 2539 if (order < 0)
81819f0f
CL
2540 return 0;
2541
b7a49f0d 2542 s->allocflags = 0;
834f3d11 2543 if (order)
b7a49f0d
CL
2544 s->allocflags |= __GFP_COMP;
2545
2546 if (s->flags & SLAB_CACHE_DMA)
2547 s->allocflags |= SLUB_DMA;
2548
2549 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2550 s->allocflags |= __GFP_RECLAIMABLE;
2551
81819f0f
CL
2552 /*
2553 * Determine the number of objects per slab
2554 */
ab9a0f19
LJ
2555 s->oo = oo_make(order, size, s->reserved);
2556 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2557 if (oo_objects(s->oo) > oo_objects(s->max))
2558 s->max = s->oo;
81819f0f 2559
834f3d11 2560 return !!oo_objects(s->oo);
81819f0f
CL
2561
2562}
2563
55136592 2564static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2565 const char *name, size_t size,
2566 size_t align, unsigned long flags,
51cc5068 2567 void (*ctor)(void *))
81819f0f
CL
2568{
2569 memset(s, 0, kmem_size);
2570 s->name = name;
2571 s->ctor = ctor;
81819f0f 2572 s->objsize = size;
81819f0f 2573 s->align = align;
ba0268a8 2574 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2575 s->reserved = 0;
81819f0f 2576
da9a638c
LJ
2577 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2578 s->reserved = sizeof(struct rcu_head);
81819f0f 2579
06b285dc 2580 if (!calculate_sizes(s, -1))
81819f0f 2581 goto error;
3de47213
DR
2582 if (disable_higher_order_debug) {
2583 /*
2584 * Disable debugging flags that store metadata if the min slab
2585 * order increased.
2586 */
2587 if (get_order(s->size) > get_order(s->objsize)) {
2588 s->flags &= ~DEBUG_METADATA_FLAGS;
2589 s->offset = 0;
2590 if (!calculate_sizes(s, -1))
2591 goto error;
2592 }
2593 }
81819f0f 2594
3b89d7d8
DR
2595 /*
2596 * The larger the object size is, the more pages we want on the partial
2597 * list to avoid pounding the page allocator excessively.
2598 */
c0bdb232 2599 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2600 s->refcount = 1;
2601#ifdef CONFIG_NUMA
e2cb96b7 2602 s->remote_node_defrag_ratio = 1000;
81819f0f 2603#endif
55136592 2604 if (!init_kmem_cache_nodes(s))
dfb4f096 2605 goto error;
81819f0f 2606
55136592 2607 if (alloc_kmem_cache_cpus(s))
81819f0f 2608 return 1;
ff12059e 2609
4c93c355 2610 free_kmem_cache_nodes(s);
81819f0f
CL
2611error:
2612 if (flags & SLAB_PANIC)
2613 panic("Cannot create slab %s size=%lu realsize=%u "
2614 "order=%u offset=%u flags=%lx\n",
834f3d11 2615 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2616 s->offset, flags);
2617 return 0;
2618}
81819f0f 2619
81819f0f
CL
2620/*
2621 * Determine the size of a slab object
2622 */
2623unsigned int kmem_cache_size(struct kmem_cache *s)
2624{
2625 return s->objsize;
2626}
2627EXPORT_SYMBOL(kmem_cache_size);
2628
33b12c38
CL
2629static void list_slab_objects(struct kmem_cache *s, struct page *page,
2630 const char *text)
2631{
2632#ifdef CONFIG_SLUB_DEBUG
2633 void *addr = page_address(page);
2634 void *p;
a5dd5c11
NK
2635 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2636 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2637 if (!map)
2638 return;
33b12c38
CL
2639 slab_err(s, page, "%s", text);
2640 slab_lock(page);
33b12c38 2641
5f80b13a 2642 get_map(s, page, map);
33b12c38
CL
2643 for_each_object(p, s, addr, page->objects) {
2644
2645 if (!test_bit(slab_index(p, s, addr), map)) {
2646 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2647 p, p - addr);
2648 print_tracking(s, p);
2649 }
2650 }
2651 slab_unlock(page);
bbd7d57b 2652 kfree(map);
33b12c38
CL
2653#endif
2654}
2655
81819f0f 2656/*
599870b1 2657 * Attempt to free all partial slabs on a node.
81819f0f 2658 */
599870b1 2659static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2660{
81819f0f
CL
2661 unsigned long flags;
2662 struct page *page, *h;
2663
2664 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2665 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2666 if (!page->inuse) {
62e346a8 2667 __remove_partial(n, page);
81819f0f 2668 discard_slab(s, page);
33b12c38
CL
2669 } else {
2670 list_slab_objects(s, page,
2671 "Objects remaining on kmem_cache_close()");
599870b1 2672 }
33b12c38 2673 }
81819f0f 2674 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2675}
2676
2677/*
672bba3a 2678 * Release all resources used by a slab cache.
81819f0f 2679 */
0c710013 2680static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2681{
2682 int node;
2683
2684 flush_all(s);
9dfc6e68 2685 free_percpu(s->cpu_slab);
81819f0f 2686 /* Attempt to free all objects */
f64dc58c 2687 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2688 struct kmem_cache_node *n = get_node(s, node);
2689
599870b1
CL
2690 free_partial(s, n);
2691 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2692 return 1;
2693 }
2694 free_kmem_cache_nodes(s);
2695 return 0;
2696}
2697
2698/*
2699 * Close a cache and release the kmem_cache structure
2700 * (must be used for caches created using kmem_cache_create)
2701 */
2702void kmem_cache_destroy(struct kmem_cache *s)
2703{
2704 down_write(&slub_lock);
2705 s->refcount--;
2706 if (!s->refcount) {
2707 list_del(&s->list);
d629d819
PE
2708 if (kmem_cache_close(s)) {
2709 printk(KERN_ERR "SLUB %s: %s called for cache that "
2710 "still has objects.\n", s->name, __func__);
2711 dump_stack();
2712 }
d76b1590
ED
2713 if (s->flags & SLAB_DESTROY_BY_RCU)
2714 rcu_barrier();
81819f0f 2715 sysfs_slab_remove(s);
2bce6485
CL
2716 }
2717 up_write(&slub_lock);
81819f0f
CL
2718}
2719EXPORT_SYMBOL(kmem_cache_destroy);
2720
2721/********************************************************************
2722 * Kmalloc subsystem
2723 *******************************************************************/
2724
51df1142 2725struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2726EXPORT_SYMBOL(kmalloc_caches);
2727
51df1142
CL
2728static struct kmem_cache *kmem_cache;
2729
55136592 2730#ifdef CONFIG_ZONE_DMA
51df1142 2731static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2732#endif
2733
81819f0f
CL
2734static int __init setup_slub_min_order(char *str)
2735{
06428780 2736 get_option(&str, &slub_min_order);
81819f0f
CL
2737
2738 return 1;
2739}
2740
2741__setup("slub_min_order=", setup_slub_min_order);
2742
2743static int __init setup_slub_max_order(char *str)
2744{
06428780 2745 get_option(&str, &slub_max_order);
818cf590 2746 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2747
2748 return 1;
2749}
2750
2751__setup("slub_max_order=", setup_slub_max_order);
2752
2753static int __init setup_slub_min_objects(char *str)
2754{
06428780 2755 get_option(&str, &slub_min_objects);
81819f0f
CL
2756
2757 return 1;
2758}
2759
2760__setup("slub_min_objects=", setup_slub_min_objects);
2761
2762static int __init setup_slub_nomerge(char *str)
2763{
2764 slub_nomerge = 1;
2765 return 1;
2766}
2767
2768__setup("slub_nomerge", setup_slub_nomerge);
2769
51df1142
CL
2770static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2771 int size, unsigned int flags)
81819f0f 2772{
51df1142
CL
2773 struct kmem_cache *s;
2774
2775 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2776
83b519e8
PE
2777 /*
2778 * This function is called with IRQs disabled during early-boot on
2779 * single CPU so there's no need to take slub_lock here.
2780 */
55136592 2781 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2782 flags, NULL))
81819f0f
CL
2783 goto panic;
2784
2785 list_add(&s->list, &slab_caches);
51df1142 2786 return s;
81819f0f
CL
2787
2788panic:
2789 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2790 return NULL;
81819f0f
CL
2791}
2792
f1b26339
CL
2793/*
2794 * Conversion table for small slabs sizes / 8 to the index in the
2795 * kmalloc array. This is necessary for slabs < 192 since we have non power
2796 * of two cache sizes there. The size of larger slabs can be determined using
2797 * fls.
2798 */
2799static s8 size_index[24] = {
2800 3, /* 8 */
2801 4, /* 16 */
2802 5, /* 24 */
2803 5, /* 32 */
2804 6, /* 40 */
2805 6, /* 48 */
2806 6, /* 56 */
2807 6, /* 64 */
2808 1, /* 72 */
2809 1, /* 80 */
2810 1, /* 88 */
2811 1, /* 96 */
2812 7, /* 104 */
2813 7, /* 112 */
2814 7, /* 120 */
2815 7, /* 128 */
2816 2, /* 136 */
2817 2, /* 144 */
2818 2, /* 152 */
2819 2, /* 160 */
2820 2, /* 168 */
2821 2, /* 176 */
2822 2, /* 184 */
2823 2 /* 192 */
2824};
2825
acdfcd04
AK
2826static inline int size_index_elem(size_t bytes)
2827{
2828 return (bytes - 1) / 8;
2829}
2830
81819f0f
CL
2831static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2832{
f1b26339 2833 int index;
81819f0f 2834
f1b26339
CL
2835 if (size <= 192) {
2836 if (!size)
2837 return ZERO_SIZE_PTR;
81819f0f 2838
acdfcd04 2839 index = size_index[size_index_elem(size)];
aadb4bc4 2840 } else
f1b26339 2841 index = fls(size - 1);
81819f0f
CL
2842
2843#ifdef CONFIG_ZONE_DMA
f1b26339 2844 if (unlikely((flags & SLUB_DMA)))
51df1142 2845 return kmalloc_dma_caches[index];
f1b26339 2846
81819f0f 2847#endif
51df1142 2848 return kmalloc_caches[index];
81819f0f
CL
2849}
2850
2851void *__kmalloc(size_t size, gfp_t flags)
2852{
aadb4bc4 2853 struct kmem_cache *s;
5b882be4 2854 void *ret;
81819f0f 2855
ffadd4d0 2856 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2857 return kmalloc_large(size, flags);
aadb4bc4
CL
2858
2859 s = get_slab(size, flags);
2860
2861 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2862 return s;
2863
2154a336 2864 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2865
ca2b84cb 2866 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2867
2868 return ret;
81819f0f
CL
2869}
2870EXPORT_SYMBOL(__kmalloc);
2871
5d1f57e4 2872#ifdef CONFIG_NUMA
f619cfe1
CL
2873static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2874{
b1eeab67 2875 struct page *page;
e4f7c0b4 2876 void *ptr = NULL;
f619cfe1 2877
b1eeab67
VN
2878 flags |= __GFP_COMP | __GFP_NOTRACK;
2879 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2880 if (page)
e4f7c0b4
CM
2881 ptr = page_address(page);
2882
2883 kmemleak_alloc(ptr, size, 1, flags);
2884 return ptr;
f619cfe1
CL
2885}
2886
81819f0f
CL
2887void *__kmalloc_node(size_t size, gfp_t flags, int node)
2888{
aadb4bc4 2889 struct kmem_cache *s;
5b882be4 2890 void *ret;
81819f0f 2891
057685cf 2892 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2893 ret = kmalloc_large_node(size, flags, node);
2894
ca2b84cb
EGM
2895 trace_kmalloc_node(_RET_IP_, ret,
2896 size, PAGE_SIZE << get_order(size),
2897 flags, node);
5b882be4
EGM
2898
2899 return ret;
2900 }
aadb4bc4
CL
2901
2902 s = get_slab(size, flags);
2903
2904 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2905 return s;
2906
5b882be4
EGM
2907 ret = slab_alloc(s, flags, node, _RET_IP_);
2908
ca2b84cb 2909 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2910
2911 return ret;
81819f0f
CL
2912}
2913EXPORT_SYMBOL(__kmalloc_node);
2914#endif
2915
2916size_t ksize(const void *object)
2917{
272c1d21 2918 struct page *page;
81819f0f 2919
ef8b4520 2920 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2921 return 0;
2922
294a80a8 2923 page = virt_to_head_page(object);
294a80a8 2924
76994412
PE
2925 if (unlikely(!PageSlab(page))) {
2926 WARN_ON(!PageCompound(page));
294a80a8 2927 return PAGE_SIZE << compound_order(page);
76994412 2928 }
81819f0f 2929
b3d41885 2930 return slab_ksize(page->slab);
81819f0f 2931}
b1aabecd 2932EXPORT_SYMBOL(ksize);
81819f0f
CL
2933
2934void kfree(const void *x)
2935{
81819f0f 2936 struct page *page;
5bb983b0 2937 void *object = (void *)x;
81819f0f 2938
2121db74
PE
2939 trace_kfree(_RET_IP_, x);
2940
2408c550 2941 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2942 return;
2943
b49af68f 2944 page = virt_to_head_page(x);
aadb4bc4 2945 if (unlikely(!PageSlab(page))) {
0937502a 2946 BUG_ON(!PageCompound(page));
e4f7c0b4 2947 kmemleak_free(x);
aadb4bc4
CL
2948 put_page(page);
2949 return;
2950 }
ce71e27c 2951 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2952}
2953EXPORT_SYMBOL(kfree);
2954
2086d26a 2955/*
672bba3a
CL
2956 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2957 * the remaining slabs by the number of items in use. The slabs with the
2958 * most items in use come first. New allocations will then fill those up
2959 * and thus they can be removed from the partial lists.
2960 *
2961 * The slabs with the least items are placed last. This results in them
2962 * being allocated from last increasing the chance that the last objects
2963 * are freed in them.
2086d26a
CL
2964 */
2965int kmem_cache_shrink(struct kmem_cache *s)
2966{
2967 int node;
2968 int i;
2969 struct kmem_cache_node *n;
2970 struct page *page;
2971 struct page *t;
205ab99d 2972 int objects = oo_objects(s->max);
2086d26a 2973 struct list_head *slabs_by_inuse =
834f3d11 2974 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2975 unsigned long flags;
2976
2977 if (!slabs_by_inuse)
2978 return -ENOMEM;
2979
2980 flush_all(s);
f64dc58c 2981 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2982 n = get_node(s, node);
2983
2984 if (!n->nr_partial)
2985 continue;
2986
834f3d11 2987 for (i = 0; i < objects; i++)
2086d26a
CL
2988 INIT_LIST_HEAD(slabs_by_inuse + i);
2989
2990 spin_lock_irqsave(&n->list_lock, flags);
2991
2992 /*
672bba3a 2993 * Build lists indexed by the items in use in each slab.
2086d26a 2994 *
672bba3a
CL
2995 * Note that concurrent frees may occur while we hold the
2996 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2997 */
2998 list_for_each_entry_safe(page, t, &n->partial, lru) {
2999 if (!page->inuse && slab_trylock(page)) {
3000 /*
3001 * Must hold slab lock here because slab_free
3002 * may have freed the last object and be
3003 * waiting to release the slab.
3004 */
62e346a8 3005 __remove_partial(n, page);
2086d26a
CL
3006 slab_unlock(page);
3007 discard_slab(s, page);
3008 } else {
fcda3d89
CL
3009 list_move(&page->lru,
3010 slabs_by_inuse + page->inuse);
2086d26a
CL
3011 }
3012 }
3013
2086d26a 3014 /*
672bba3a
CL
3015 * Rebuild the partial list with the slabs filled up most
3016 * first and the least used slabs at the end.
2086d26a 3017 */
834f3d11 3018 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3019 list_splice(slabs_by_inuse + i, n->partial.prev);
3020
2086d26a
CL
3021 spin_unlock_irqrestore(&n->list_lock, flags);
3022 }
3023
3024 kfree(slabs_by_inuse);
3025 return 0;
3026}
3027EXPORT_SYMBOL(kmem_cache_shrink);
3028
92a5bbc1 3029#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3030static int slab_mem_going_offline_callback(void *arg)
3031{
3032 struct kmem_cache *s;
3033
3034 down_read(&slub_lock);
3035 list_for_each_entry(s, &slab_caches, list)
3036 kmem_cache_shrink(s);
3037 up_read(&slub_lock);
3038
3039 return 0;
3040}
3041
3042static void slab_mem_offline_callback(void *arg)
3043{
3044 struct kmem_cache_node *n;
3045 struct kmem_cache *s;
3046 struct memory_notify *marg = arg;
3047 int offline_node;
3048
3049 offline_node = marg->status_change_nid;
3050
3051 /*
3052 * If the node still has available memory. we need kmem_cache_node
3053 * for it yet.
3054 */
3055 if (offline_node < 0)
3056 return;
3057
3058 down_read(&slub_lock);
3059 list_for_each_entry(s, &slab_caches, list) {
3060 n = get_node(s, offline_node);
3061 if (n) {
3062 /*
3063 * if n->nr_slabs > 0, slabs still exist on the node
3064 * that is going down. We were unable to free them,
c9404c9c 3065 * and offline_pages() function shouldn't call this
b9049e23
YG
3066 * callback. So, we must fail.
3067 */
0f389ec6 3068 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3069
3070 s->node[offline_node] = NULL;
8de66a0c 3071 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3072 }
3073 }
3074 up_read(&slub_lock);
3075}
3076
3077static int slab_mem_going_online_callback(void *arg)
3078{
3079 struct kmem_cache_node *n;
3080 struct kmem_cache *s;
3081 struct memory_notify *marg = arg;
3082 int nid = marg->status_change_nid;
3083 int ret = 0;
3084
3085 /*
3086 * If the node's memory is already available, then kmem_cache_node is
3087 * already created. Nothing to do.
3088 */
3089 if (nid < 0)
3090 return 0;
3091
3092 /*
0121c619 3093 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3094 * allocate a kmem_cache_node structure in order to bring the node
3095 * online.
3096 */
3097 down_read(&slub_lock);
3098 list_for_each_entry(s, &slab_caches, list) {
3099 /*
3100 * XXX: kmem_cache_alloc_node will fallback to other nodes
3101 * since memory is not yet available from the node that
3102 * is brought up.
3103 */
8de66a0c 3104 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3105 if (!n) {
3106 ret = -ENOMEM;
3107 goto out;
3108 }
5595cffc 3109 init_kmem_cache_node(n, s);
b9049e23
YG
3110 s->node[nid] = n;
3111 }
3112out:
3113 up_read(&slub_lock);
3114 return ret;
3115}
3116
3117static int slab_memory_callback(struct notifier_block *self,
3118 unsigned long action, void *arg)
3119{
3120 int ret = 0;
3121
3122 switch (action) {
3123 case MEM_GOING_ONLINE:
3124 ret = slab_mem_going_online_callback(arg);
3125 break;
3126 case MEM_GOING_OFFLINE:
3127 ret = slab_mem_going_offline_callback(arg);
3128 break;
3129 case MEM_OFFLINE:
3130 case MEM_CANCEL_ONLINE:
3131 slab_mem_offline_callback(arg);
3132 break;
3133 case MEM_ONLINE:
3134 case MEM_CANCEL_OFFLINE:
3135 break;
3136 }
dc19f9db
KH
3137 if (ret)
3138 ret = notifier_from_errno(ret);
3139 else
3140 ret = NOTIFY_OK;
b9049e23
YG
3141 return ret;
3142}
3143
3144#endif /* CONFIG_MEMORY_HOTPLUG */
3145
81819f0f
CL
3146/********************************************************************
3147 * Basic setup of slabs
3148 *******************************************************************/
3149
51df1142
CL
3150/*
3151 * Used for early kmem_cache structures that were allocated using
3152 * the page allocator
3153 */
3154
3155static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3156{
3157 int node;
3158
3159 list_add(&s->list, &slab_caches);
3160 s->refcount = -1;
3161
3162 for_each_node_state(node, N_NORMAL_MEMORY) {
3163 struct kmem_cache_node *n = get_node(s, node);
3164 struct page *p;
3165
3166 if (n) {
3167 list_for_each_entry(p, &n->partial, lru)
3168 p->slab = s;
3169
607bf324 3170#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3171 list_for_each_entry(p, &n->full, lru)
3172 p->slab = s;
3173#endif
3174 }
3175 }
3176}
3177
81819f0f
CL
3178void __init kmem_cache_init(void)
3179{
3180 int i;
4b356be0 3181 int caches = 0;
51df1142
CL
3182 struct kmem_cache *temp_kmem_cache;
3183 int order;
51df1142
CL
3184 struct kmem_cache *temp_kmem_cache_node;
3185 unsigned long kmalloc_size;
3186
3187 kmem_size = offsetof(struct kmem_cache, node) +
3188 nr_node_ids * sizeof(struct kmem_cache_node *);
3189
3190 /* Allocate two kmem_caches from the page allocator */
3191 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3192 order = get_order(2 * kmalloc_size);
3193 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3194
81819f0f
CL
3195 /*
3196 * Must first have the slab cache available for the allocations of the
672bba3a 3197 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3198 * kmem_cache_open for slab_state == DOWN.
3199 */
51df1142
CL
3200 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3201
3202 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3203 sizeof(struct kmem_cache_node),
3204 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3205
0c40ba4f 3206 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3207
3208 /* Able to allocate the per node structures */
3209 slab_state = PARTIAL;
3210
51df1142
CL
3211 temp_kmem_cache = kmem_cache;
3212 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3213 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3214 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3215 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3216
51df1142
CL
3217 /*
3218 * Allocate kmem_cache_node properly from the kmem_cache slab.
3219 * kmem_cache_node is separately allocated so no need to
3220 * update any list pointers.
3221 */
3222 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3223
51df1142
CL
3224 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3225 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3226
3227 kmem_cache_bootstrap_fixup(kmem_cache_node);
3228
3229 caches++;
51df1142
CL
3230 kmem_cache_bootstrap_fixup(kmem_cache);
3231 caches++;
3232 /* Free temporary boot structure */
3233 free_pages((unsigned long)temp_kmem_cache, order);
3234
3235 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3236
3237 /*
3238 * Patch up the size_index table if we have strange large alignment
3239 * requirements for the kmalloc array. This is only the case for
6446faa2 3240 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3241 *
3242 * Largest permitted alignment is 256 bytes due to the way we
3243 * handle the index determination for the smaller caches.
3244 *
3245 * Make sure that nothing crazy happens if someone starts tinkering
3246 * around with ARCH_KMALLOC_MINALIGN
3247 */
3248 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3249 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3250
acdfcd04
AK
3251 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3252 int elem = size_index_elem(i);
3253 if (elem >= ARRAY_SIZE(size_index))
3254 break;
3255 size_index[elem] = KMALLOC_SHIFT_LOW;
3256 }
f1b26339 3257
acdfcd04
AK
3258 if (KMALLOC_MIN_SIZE == 64) {
3259 /*
3260 * The 96 byte size cache is not used if the alignment
3261 * is 64 byte.
3262 */
3263 for (i = 64 + 8; i <= 96; i += 8)
3264 size_index[size_index_elem(i)] = 7;
3265 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3266 /*
3267 * The 192 byte sized cache is not used if the alignment
3268 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3269 * instead.
3270 */
3271 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3272 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3273 }
3274
51df1142
CL
3275 /* Caches that are not of the two-to-the-power-of size */
3276 if (KMALLOC_MIN_SIZE <= 32) {
3277 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3278 caches++;
3279 }
3280
3281 if (KMALLOC_MIN_SIZE <= 64) {
3282 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3283 caches++;
3284 }
3285
3286 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3287 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3288 caches++;
3289 }
3290
81819f0f
CL
3291 slab_state = UP;
3292
3293 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3294 if (KMALLOC_MIN_SIZE <= 32) {
3295 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3296 BUG_ON(!kmalloc_caches[1]->name);
3297 }
3298
3299 if (KMALLOC_MIN_SIZE <= 64) {
3300 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3301 BUG_ON(!kmalloc_caches[2]->name);
3302 }
3303
d7278bd7
CL
3304 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3305 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3306
3307 BUG_ON(!s);
51df1142 3308 kmalloc_caches[i]->name = s;
d7278bd7 3309 }
81819f0f
CL
3310
3311#ifdef CONFIG_SMP
3312 register_cpu_notifier(&slab_notifier);
9dfc6e68 3313#endif
81819f0f 3314
55136592 3315#ifdef CONFIG_ZONE_DMA
51df1142
CL
3316 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3317 struct kmem_cache *s = kmalloc_caches[i];
55136592 3318
51df1142 3319 if (s && s->size) {
55136592
CL
3320 char *name = kasprintf(GFP_NOWAIT,
3321 "dma-kmalloc-%d", s->objsize);
3322
3323 BUG_ON(!name);
51df1142
CL
3324 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3325 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3326 }
3327 }
3328#endif
3adbefee
IM
3329 printk(KERN_INFO
3330 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3331 " CPUs=%d, Nodes=%d\n",
3332 caches, cache_line_size(),
81819f0f
CL
3333 slub_min_order, slub_max_order, slub_min_objects,
3334 nr_cpu_ids, nr_node_ids);
3335}
3336
7e85ee0c
PE
3337void __init kmem_cache_init_late(void)
3338{
7e85ee0c
PE
3339}
3340
81819f0f
CL
3341/*
3342 * Find a mergeable slab cache
3343 */
3344static int slab_unmergeable(struct kmem_cache *s)
3345{
3346 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3347 return 1;
3348
c59def9f 3349 if (s->ctor)
81819f0f
CL
3350 return 1;
3351
8ffa6875
CL
3352 /*
3353 * We may have set a slab to be unmergeable during bootstrap.
3354 */
3355 if (s->refcount < 0)
3356 return 1;
3357
81819f0f
CL
3358 return 0;
3359}
3360
3361static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3362 size_t align, unsigned long flags, const char *name,
51cc5068 3363 void (*ctor)(void *))
81819f0f 3364{
5b95a4ac 3365 struct kmem_cache *s;
81819f0f
CL
3366
3367 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3368 return NULL;
3369
c59def9f 3370 if (ctor)
81819f0f
CL
3371 return NULL;
3372
3373 size = ALIGN(size, sizeof(void *));
3374 align = calculate_alignment(flags, align, size);
3375 size = ALIGN(size, align);
ba0268a8 3376 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3377
5b95a4ac 3378 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3379 if (slab_unmergeable(s))
3380 continue;
3381
3382 if (size > s->size)
3383 continue;
3384
ba0268a8 3385 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3386 continue;
3387 /*
3388 * Check if alignment is compatible.
3389 * Courtesy of Adrian Drzewiecki
3390 */
06428780 3391 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3392 continue;
3393
3394 if (s->size - size >= sizeof(void *))
3395 continue;
3396
3397 return s;
3398 }
3399 return NULL;
3400}
3401
3402struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3403 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3404{
3405 struct kmem_cache *s;
84c1cf62 3406 char *n;
81819f0f 3407
fe1ff49d
BH
3408 if (WARN_ON(!name))
3409 return NULL;
3410
81819f0f 3411 down_write(&slub_lock);
ba0268a8 3412 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3413 if (s) {
3414 s->refcount++;
3415 /*
3416 * Adjust the object sizes so that we clear
3417 * the complete object on kzalloc.
3418 */
3419 s->objsize = max(s->objsize, (int)size);
3420 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3421
7b8f3b66 3422 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3423 s->refcount--;
81819f0f 3424 goto err;
7b8f3b66 3425 }
2bce6485 3426 up_write(&slub_lock);
a0e1d1be
CL
3427 return s;
3428 }
6446faa2 3429
84c1cf62
PE
3430 n = kstrdup(name, GFP_KERNEL);
3431 if (!n)
3432 goto err;
3433
a0e1d1be
CL
3434 s = kmalloc(kmem_size, GFP_KERNEL);
3435 if (s) {
84c1cf62 3436 if (kmem_cache_open(s, n,
c59def9f 3437 size, align, flags, ctor)) {
81819f0f 3438 list_add(&s->list, &slab_caches);
7b8f3b66 3439 if (sysfs_slab_add(s)) {
7b8f3b66 3440 list_del(&s->list);
84c1cf62 3441 kfree(n);
7b8f3b66 3442 kfree(s);
a0e1d1be 3443 goto err;
7b8f3b66 3444 }
2bce6485 3445 up_write(&slub_lock);
a0e1d1be
CL
3446 return s;
3447 }
84c1cf62 3448 kfree(n);
a0e1d1be 3449 kfree(s);
81819f0f 3450 }
68cee4f1 3451err:
81819f0f 3452 up_write(&slub_lock);
81819f0f 3453
81819f0f
CL
3454 if (flags & SLAB_PANIC)
3455 panic("Cannot create slabcache %s\n", name);
3456 else
3457 s = NULL;
3458 return s;
3459}
3460EXPORT_SYMBOL(kmem_cache_create);
3461
81819f0f 3462#ifdef CONFIG_SMP
81819f0f 3463/*
672bba3a
CL
3464 * Use the cpu notifier to insure that the cpu slabs are flushed when
3465 * necessary.
81819f0f
CL
3466 */
3467static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3468 unsigned long action, void *hcpu)
3469{
3470 long cpu = (long)hcpu;
5b95a4ac
CL
3471 struct kmem_cache *s;
3472 unsigned long flags;
81819f0f
CL
3473
3474 switch (action) {
3475 case CPU_UP_CANCELED:
8bb78442 3476 case CPU_UP_CANCELED_FROZEN:
81819f0f 3477 case CPU_DEAD:
8bb78442 3478 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3479 down_read(&slub_lock);
3480 list_for_each_entry(s, &slab_caches, list) {
3481 local_irq_save(flags);
3482 __flush_cpu_slab(s, cpu);
3483 local_irq_restore(flags);
3484 }
3485 up_read(&slub_lock);
81819f0f
CL
3486 break;
3487 default:
3488 break;
3489 }
3490 return NOTIFY_OK;
3491}
3492
06428780 3493static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3494 .notifier_call = slab_cpuup_callback
06428780 3495};
81819f0f
CL
3496
3497#endif
3498
ce71e27c 3499void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3500{
aadb4bc4 3501 struct kmem_cache *s;
94b528d0 3502 void *ret;
aadb4bc4 3503
ffadd4d0 3504 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3505 return kmalloc_large(size, gfpflags);
3506
aadb4bc4 3507 s = get_slab(size, gfpflags);
81819f0f 3508
2408c550 3509 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3510 return s;
81819f0f 3511
2154a336 3512 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 3513
25985edc 3514 /* Honor the call site pointer we received. */
ca2b84cb 3515 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3516
3517 return ret;
81819f0f
CL
3518}
3519
5d1f57e4 3520#ifdef CONFIG_NUMA
81819f0f 3521void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3522 int node, unsigned long caller)
81819f0f 3523{
aadb4bc4 3524 struct kmem_cache *s;
94b528d0 3525 void *ret;
aadb4bc4 3526
d3e14aa3
XF
3527 if (unlikely(size > SLUB_MAX_SIZE)) {
3528 ret = kmalloc_large_node(size, gfpflags, node);
3529
3530 trace_kmalloc_node(caller, ret,
3531 size, PAGE_SIZE << get_order(size),
3532 gfpflags, node);
3533
3534 return ret;
3535 }
eada35ef 3536
aadb4bc4 3537 s = get_slab(size, gfpflags);
81819f0f 3538
2408c550 3539 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3540 return s;
81819f0f 3541
94b528d0
EGM
3542 ret = slab_alloc(s, gfpflags, node, caller);
3543
25985edc 3544 /* Honor the call site pointer we received. */
ca2b84cb 3545 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3546
3547 return ret;
81819f0f 3548}
5d1f57e4 3549#endif
81819f0f 3550
ab4d5ed5 3551#ifdef CONFIG_SYSFS
205ab99d
CL
3552static int count_inuse(struct page *page)
3553{
3554 return page->inuse;
3555}
3556
3557static int count_total(struct page *page)
3558{
3559 return page->objects;
3560}
ab4d5ed5 3561#endif
205ab99d 3562
ab4d5ed5 3563#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3564static int validate_slab(struct kmem_cache *s, struct page *page,
3565 unsigned long *map)
53e15af0
CL
3566{
3567 void *p;
a973e9dd 3568 void *addr = page_address(page);
53e15af0
CL
3569
3570 if (!check_slab(s, page) ||
3571 !on_freelist(s, page, NULL))
3572 return 0;
3573
3574 /* Now we know that a valid freelist exists */
39b26464 3575 bitmap_zero(map, page->objects);
53e15af0 3576
5f80b13a
CL
3577 get_map(s, page, map);
3578 for_each_object(p, s, addr, page->objects) {
3579 if (test_bit(slab_index(p, s, addr), map))
3580 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3581 return 0;
53e15af0
CL
3582 }
3583
224a88be 3584 for_each_object(p, s, addr, page->objects)
7656c72b 3585 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3586 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3587 return 0;
3588 return 1;
3589}
3590
434e245d
CL
3591static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3592 unsigned long *map)
53e15af0
CL
3593{
3594 if (slab_trylock(page)) {
434e245d 3595 validate_slab(s, page, map);
53e15af0
CL
3596 slab_unlock(page);
3597 } else
3598 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3599 s->name, page);
53e15af0
CL
3600}
3601
434e245d
CL
3602static int validate_slab_node(struct kmem_cache *s,
3603 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3604{
3605 unsigned long count = 0;
3606 struct page *page;
3607 unsigned long flags;
3608
3609 spin_lock_irqsave(&n->list_lock, flags);
3610
3611 list_for_each_entry(page, &n->partial, lru) {
434e245d 3612 validate_slab_slab(s, page, map);
53e15af0
CL
3613 count++;
3614 }
3615 if (count != n->nr_partial)
3616 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3617 "counter=%ld\n", s->name, count, n->nr_partial);
3618
3619 if (!(s->flags & SLAB_STORE_USER))
3620 goto out;
3621
3622 list_for_each_entry(page, &n->full, lru) {
434e245d 3623 validate_slab_slab(s, page, map);
53e15af0
CL
3624 count++;
3625 }
3626 if (count != atomic_long_read(&n->nr_slabs))
3627 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3628 "counter=%ld\n", s->name, count,
3629 atomic_long_read(&n->nr_slabs));
3630
3631out:
3632 spin_unlock_irqrestore(&n->list_lock, flags);
3633 return count;
3634}
3635
434e245d 3636static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3637{
3638 int node;
3639 unsigned long count = 0;
205ab99d 3640 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3641 sizeof(unsigned long), GFP_KERNEL);
3642
3643 if (!map)
3644 return -ENOMEM;
53e15af0
CL
3645
3646 flush_all(s);
f64dc58c 3647 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3648 struct kmem_cache_node *n = get_node(s, node);
3649
434e245d 3650 count += validate_slab_node(s, n, map);
53e15af0 3651 }
434e245d 3652 kfree(map);
53e15af0
CL
3653 return count;
3654}
88a420e4 3655/*
672bba3a 3656 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3657 * and freed.
3658 */
3659
3660struct location {
3661 unsigned long count;
ce71e27c 3662 unsigned long addr;
45edfa58
CL
3663 long long sum_time;
3664 long min_time;
3665 long max_time;
3666 long min_pid;
3667 long max_pid;
174596a0 3668 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3669 nodemask_t nodes;
88a420e4
CL
3670};
3671
3672struct loc_track {
3673 unsigned long max;
3674 unsigned long count;
3675 struct location *loc;
3676};
3677
3678static void free_loc_track(struct loc_track *t)
3679{
3680 if (t->max)
3681 free_pages((unsigned long)t->loc,
3682 get_order(sizeof(struct location) * t->max));
3683}
3684
68dff6a9 3685static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3686{
3687 struct location *l;
3688 int order;
3689
88a420e4
CL
3690 order = get_order(sizeof(struct location) * max);
3691
68dff6a9 3692 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3693 if (!l)
3694 return 0;
3695
3696 if (t->count) {
3697 memcpy(l, t->loc, sizeof(struct location) * t->count);
3698 free_loc_track(t);
3699 }
3700 t->max = max;
3701 t->loc = l;
3702 return 1;
3703}
3704
3705static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3706 const struct track *track)
88a420e4
CL
3707{
3708 long start, end, pos;
3709 struct location *l;
ce71e27c 3710 unsigned long caddr;
45edfa58 3711 unsigned long age = jiffies - track->when;
88a420e4
CL
3712
3713 start = -1;
3714 end = t->count;
3715
3716 for ( ; ; ) {
3717 pos = start + (end - start + 1) / 2;
3718
3719 /*
3720 * There is nothing at "end". If we end up there
3721 * we need to add something to before end.
3722 */
3723 if (pos == end)
3724 break;
3725
3726 caddr = t->loc[pos].addr;
45edfa58
CL
3727 if (track->addr == caddr) {
3728
3729 l = &t->loc[pos];
3730 l->count++;
3731 if (track->when) {
3732 l->sum_time += age;
3733 if (age < l->min_time)
3734 l->min_time = age;
3735 if (age > l->max_time)
3736 l->max_time = age;
3737
3738 if (track->pid < l->min_pid)
3739 l->min_pid = track->pid;
3740 if (track->pid > l->max_pid)
3741 l->max_pid = track->pid;
3742
174596a0
RR
3743 cpumask_set_cpu(track->cpu,
3744 to_cpumask(l->cpus));
45edfa58
CL
3745 }
3746 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3747 return 1;
3748 }
3749
45edfa58 3750 if (track->addr < caddr)
88a420e4
CL
3751 end = pos;
3752 else
3753 start = pos;
3754 }
3755
3756 /*
672bba3a 3757 * Not found. Insert new tracking element.
88a420e4 3758 */
68dff6a9 3759 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3760 return 0;
3761
3762 l = t->loc + pos;
3763 if (pos < t->count)
3764 memmove(l + 1, l,
3765 (t->count - pos) * sizeof(struct location));
3766 t->count++;
3767 l->count = 1;
45edfa58
CL
3768 l->addr = track->addr;
3769 l->sum_time = age;
3770 l->min_time = age;
3771 l->max_time = age;
3772 l->min_pid = track->pid;
3773 l->max_pid = track->pid;
174596a0
RR
3774 cpumask_clear(to_cpumask(l->cpus));
3775 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3776 nodes_clear(l->nodes);
3777 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3778 return 1;
3779}
3780
3781static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3782 struct page *page, enum track_item alloc,
a5dd5c11 3783 unsigned long *map)
88a420e4 3784{
a973e9dd 3785 void *addr = page_address(page);
88a420e4
CL
3786 void *p;
3787
39b26464 3788 bitmap_zero(map, page->objects);
5f80b13a 3789 get_map(s, page, map);
88a420e4 3790
224a88be 3791 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3792 if (!test_bit(slab_index(p, s, addr), map))
3793 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3794}
3795
3796static int list_locations(struct kmem_cache *s, char *buf,
3797 enum track_item alloc)
3798{
e374d483 3799 int len = 0;
88a420e4 3800 unsigned long i;
68dff6a9 3801 struct loc_track t = { 0, 0, NULL };
88a420e4 3802 int node;
bbd7d57b
ED
3803 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3804 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3805
bbd7d57b
ED
3806 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3807 GFP_TEMPORARY)) {
3808 kfree(map);
68dff6a9 3809 return sprintf(buf, "Out of memory\n");
bbd7d57b 3810 }
88a420e4
CL
3811 /* Push back cpu slabs */
3812 flush_all(s);
3813
f64dc58c 3814 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3815 struct kmem_cache_node *n = get_node(s, node);
3816 unsigned long flags;
3817 struct page *page;
3818
9e86943b 3819 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3820 continue;
3821
3822 spin_lock_irqsave(&n->list_lock, flags);
3823 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3824 process_slab(&t, s, page, alloc, map);
88a420e4 3825 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3826 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3827 spin_unlock_irqrestore(&n->list_lock, flags);
3828 }
3829
3830 for (i = 0; i < t.count; i++) {
45edfa58 3831 struct location *l = &t.loc[i];
88a420e4 3832
9c246247 3833 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3834 break;
e374d483 3835 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3836
3837 if (l->addr)
62c70bce 3838 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 3839 else
e374d483 3840 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3841
3842 if (l->sum_time != l->min_time) {
e374d483 3843 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3844 l->min_time,
3845 (long)div_u64(l->sum_time, l->count),
3846 l->max_time);
45edfa58 3847 } else
e374d483 3848 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3849 l->min_time);
3850
3851 if (l->min_pid != l->max_pid)
e374d483 3852 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3853 l->min_pid, l->max_pid);
3854 else
e374d483 3855 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3856 l->min_pid);
3857
174596a0
RR
3858 if (num_online_cpus() > 1 &&
3859 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3860 len < PAGE_SIZE - 60) {
3861 len += sprintf(buf + len, " cpus=");
3862 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3863 to_cpumask(l->cpus));
45edfa58
CL
3864 }
3865
62bc62a8 3866 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3867 len < PAGE_SIZE - 60) {
3868 len += sprintf(buf + len, " nodes=");
3869 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3870 l->nodes);
3871 }
3872
e374d483 3873 len += sprintf(buf + len, "\n");
88a420e4
CL
3874 }
3875
3876 free_loc_track(&t);
bbd7d57b 3877 kfree(map);
88a420e4 3878 if (!t.count)
e374d483
HH
3879 len += sprintf(buf, "No data\n");
3880 return len;
88a420e4 3881}
ab4d5ed5 3882#endif
88a420e4 3883
a5a84755
CL
3884#ifdef SLUB_RESILIENCY_TEST
3885static void resiliency_test(void)
3886{
3887 u8 *p;
3888
3889 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3890
3891 printk(KERN_ERR "SLUB resiliency testing\n");
3892 printk(KERN_ERR "-----------------------\n");
3893 printk(KERN_ERR "A. Corruption after allocation\n");
3894
3895 p = kzalloc(16, GFP_KERNEL);
3896 p[16] = 0x12;
3897 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3898 " 0x12->0x%p\n\n", p + 16);
3899
3900 validate_slab_cache(kmalloc_caches[4]);
3901
3902 /* Hmmm... The next two are dangerous */
3903 p = kzalloc(32, GFP_KERNEL);
3904 p[32 + sizeof(void *)] = 0x34;
3905 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3906 " 0x34 -> -0x%p\n", p);
3907 printk(KERN_ERR
3908 "If allocated object is overwritten then not detectable\n\n");
3909
3910 validate_slab_cache(kmalloc_caches[5]);
3911 p = kzalloc(64, GFP_KERNEL);
3912 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3913 *p = 0x56;
3914 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3915 p);
3916 printk(KERN_ERR
3917 "If allocated object is overwritten then not detectable\n\n");
3918 validate_slab_cache(kmalloc_caches[6]);
3919
3920 printk(KERN_ERR "\nB. Corruption after free\n");
3921 p = kzalloc(128, GFP_KERNEL);
3922 kfree(p);
3923 *p = 0x78;
3924 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3925 validate_slab_cache(kmalloc_caches[7]);
3926
3927 p = kzalloc(256, GFP_KERNEL);
3928 kfree(p);
3929 p[50] = 0x9a;
3930 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3931 p);
3932 validate_slab_cache(kmalloc_caches[8]);
3933
3934 p = kzalloc(512, GFP_KERNEL);
3935 kfree(p);
3936 p[512] = 0xab;
3937 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3938 validate_slab_cache(kmalloc_caches[9]);
3939}
3940#else
3941#ifdef CONFIG_SYSFS
3942static void resiliency_test(void) {};
3943#endif
3944#endif
3945
ab4d5ed5 3946#ifdef CONFIG_SYSFS
81819f0f 3947enum slab_stat_type {
205ab99d
CL
3948 SL_ALL, /* All slabs */
3949 SL_PARTIAL, /* Only partially allocated slabs */
3950 SL_CPU, /* Only slabs used for cpu caches */
3951 SL_OBJECTS, /* Determine allocated objects not slabs */
3952 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3953};
3954
205ab99d 3955#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3956#define SO_PARTIAL (1 << SL_PARTIAL)
3957#define SO_CPU (1 << SL_CPU)
3958#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3959#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3960
62e5c4b4
CG
3961static ssize_t show_slab_objects(struct kmem_cache *s,
3962 char *buf, unsigned long flags)
81819f0f
CL
3963{
3964 unsigned long total = 0;
81819f0f
CL
3965 int node;
3966 int x;
3967 unsigned long *nodes;
3968 unsigned long *per_cpu;
3969
3970 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3971 if (!nodes)
3972 return -ENOMEM;
81819f0f
CL
3973 per_cpu = nodes + nr_node_ids;
3974
205ab99d
CL
3975 if (flags & SO_CPU) {
3976 int cpu;
81819f0f 3977
205ab99d 3978 for_each_possible_cpu(cpu) {
9dfc6e68 3979 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 3980
205ab99d
CL
3981 if (!c || c->node < 0)
3982 continue;
3983
3984 if (c->page) {
3985 if (flags & SO_TOTAL)
3986 x = c->page->objects;
3987 else if (flags & SO_OBJECTS)
3988 x = c->page->inuse;
81819f0f
CL
3989 else
3990 x = 1;
205ab99d 3991
81819f0f 3992 total += x;
205ab99d 3993 nodes[c->node] += x;
81819f0f 3994 }
205ab99d 3995 per_cpu[c->node]++;
81819f0f
CL
3996 }
3997 }
3998
04d94879 3999 lock_memory_hotplug();
ab4d5ed5 4000#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4001 if (flags & SO_ALL) {
4002 for_each_node_state(node, N_NORMAL_MEMORY) {
4003 struct kmem_cache_node *n = get_node(s, node);
4004
4005 if (flags & SO_TOTAL)
4006 x = atomic_long_read(&n->total_objects);
4007 else if (flags & SO_OBJECTS)
4008 x = atomic_long_read(&n->total_objects) -
4009 count_partial(n, count_free);
81819f0f 4010
81819f0f 4011 else
205ab99d 4012 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4013 total += x;
4014 nodes[node] += x;
4015 }
4016
ab4d5ed5
CL
4017 } else
4018#endif
4019 if (flags & SO_PARTIAL) {
205ab99d
CL
4020 for_each_node_state(node, N_NORMAL_MEMORY) {
4021 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4022
205ab99d
CL
4023 if (flags & SO_TOTAL)
4024 x = count_partial(n, count_total);
4025 else if (flags & SO_OBJECTS)
4026 x = count_partial(n, count_inuse);
81819f0f 4027 else
205ab99d 4028 x = n->nr_partial;
81819f0f
CL
4029 total += x;
4030 nodes[node] += x;
4031 }
4032 }
81819f0f
CL
4033 x = sprintf(buf, "%lu", total);
4034#ifdef CONFIG_NUMA
f64dc58c 4035 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4036 if (nodes[node])
4037 x += sprintf(buf + x, " N%d=%lu",
4038 node, nodes[node]);
4039#endif
04d94879 4040 unlock_memory_hotplug();
81819f0f
CL
4041 kfree(nodes);
4042 return x + sprintf(buf + x, "\n");
4043}
4044
ab4d5ed5 4045#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4046static int any_slab_objects(struct kmem_cache *s)
4047{
4048 int node;
81819f0f 4049
dfb4f096 4050 for_each_online_node(node) {
81819f0f
CL
4051 struct kmem_cache_node *n = get_node(s, node);
4052
dfb4f096
CL
4053 if (!n)
4054 continue;
4055
4ea33e2d 4056 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4057 return 1;
4058 }
4059 return 0;
4060}
ab4d5ed5 4061#endif
81819f0f
CL
4062
4063#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4064#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4065
4066struct slab_attribute {
4067 struct attribute attr;
4068 ssize_t (*show)(struct kmem_cache *s, char *buf);
4069 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4070};
4071
4072#define SLAB_ATTR_RO(_name) \
4073 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4074
4075#define SLAB_ATTR(_name) \
4076 static struct slab_attribute _name##_attr = \
4077 __ATTR(_name, 0644, _name##_show, _name##_store)
4078
81819f0f
CL
4079static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4080{
4081 return sprintf(buf, "%d\n", s->size);
4082}
4083SLAB_ATTR_RO(slab_size);
4084
4085static ssize_t align_show(struct kmem_cache *s, char *buf)
4086{
4087 return sprintf(buf, "%d\n", s->align);
4088}
4089SLAB_ATTR_RO(align);
4090
4091static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4092{
4093 return sprintf(buf, "%d\n", s->objsize);
4094}
4095SLAB_ATTR_RO(object_size);
4096
4097static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4098{
834f3d11 4099 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4100}
4101SLAB_ATTR_RO(objs_per_slab);
4102
06b285dc
CL
4103static ssize_t order_store(struct kmem_cache *s,
4104 const char *buf, size_t length)
4105{
0121c619
CL
4106 unsigned long order;
4107 int err;
4108
4109 err = strict_strtoul(buf, 10, &order);
4110 if (err)
4111 return err;
06b285dc
CL
4112
4113 if (order > slub_max_order || order < slub_min_order)
4114 return -EINVAL;
4115
4116 calculate_sizes(s, order);
4117 return length;
4118}
4119
81819f0f
CL
4120static ssize_t order_show(struct kmem_cache *s, char *buf)
4121{
834f3d11 4122 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4123}
06b285dc 4124SLAB_ATTR(order);
81819f0f 4125
73d342b1
DR
4126static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4127{
4128 return sprintf(buf, "%lu\n", s->min_partial);
4129}
4130
4131static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4132 size_t length)
4133{
4134 unsigned long min;
4135 int err;
4136
4137 err = strict_strtoul(buf, 10, &min);
4138 if (err)
4139 return err;
4140
c0bdb232 4141 set_min_partial(s, min);
73d342b1
DR
4142 return length;
4143}
4144SLAB_ATTR(min_partial);
4145
81819f0f
CL
4146static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4147{
62c70bce
JP
4148 if (!s->ctor)
4149 return 0;
4150 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4151}
4152SLAB_ATTR_RO(ctor);
4153
81819f0f
CL
4154static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4155{
4156 return sprintf(buf, "%d\n", s->refcount - 1);
4157}
4158SLAB_ATTR_RO(aliases);
4159
81819f0f
CL
4160static ssize_t partial_show(struct kmem_cache *s, char *buf)
4161{
d9acf4b7 4162 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4163}
4164SLAB_ATTR_RO(partial);
4165
4166static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4167{
d9acf4b7 4168 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4169}
4170SLAB_ATTR_RO(cpu_slabs);
4171
4172static ssize_t objects_show(struct kmem_cache *s, char *buf)
4173{
205ab99d 4174 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4175}
4176SLAB_ATTR_RO(objects);
4177
205ab99d
CL
4178static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4179{
4180 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4181}
4182SLAB_ATTR_RO(objects_partial);
4183
a5a84755
CL
4184static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4185{
4186 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4187}
4188
4189static ssize_t reclaim_account_store(struct kmem_cache *s,
4190 const char *buf, size_t length)
4191{
4192 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4193 if (buf[0] == '1')
4194 s->flags |= SLAB_RECLAIM_ACCOUNT;
4195 return length;
4196}
4197SLAB_ATTR(reclaim_account);
4198
4199static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4200{
4201 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4202}
4203SLAB_ATTR_RO(hwcache_align);
4204
4205#ifdef CONFIG_ZONE_DMA
4206static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4207{
4208 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4209}
4210SLAB_ATTR_RO(cache_dma);
4211#endif
4212
4213static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4214{
4215 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4216}
4217SLAB_ATTR_RO(destroy_by_rcu);
4218
ab9a0f19
LJ
4219static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4220{
4221 return sprintf(buf, "%d\n", s->reserved);
4222}
4223SLAB_ATTR_RO(reserved);
4224
ab4d5ed5 4225#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4226static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4227{
4228 return show_slab_objects(s, buf, SO_ALL);
4229}
4230SLAB_ATTR_RO(slabs);
4231
205ab99d
CL
4232static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4233{
4234 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4235}
4236SLAB_ATTR_RO(total_objects);
4237
81819f0f
CL
4238static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4239{
4240 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4241}
4242
4243static ssize_t sanity_checks_store(struct kmem_cache *s,
4244 const char *buf, size_t length)
4245{
4246 s->flags &= ~SLAB_DEBUG_FREE;
4247 if (buf[0] == '1')
4248 s->flags |= SLAB_DEBUG_FREE;
4249 return length;
4250}
4251SLAB_ATTR(sanity_checks);
4252
4253static ssize_t trace_show(struct kmem_cache *s, char *buf)
4254{
4255 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4256}
4257
4258static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4259 size_t length)
4260{
4261 s->flags &= ~SLAB_TRACE;
4262 if (buf[0] == '1')
4263 s->flags |= SLAB_TRACE;
4264 return length;
4265}
4266SLAB_ATTR(trace);
4267
81819f0f
CL
4268static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4269{
4270 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4271}
4272
4273static ssize_t red_zone_store(struct kmem_cache *s,
4274 const char *buf, size_t length)
4275{
4276 if (any_slab_objects(s))
4277 return -EBUSY;
4278
4279 s->flags &= ~SLAB_RED_ZONE;
4280 if (buf[0] == '1')
4281 s->flags |= SLAB_RED_ZONE;
06b285dc 4282 calculate_sizes(s, -1);
81819f0f
CL
4283 return length;
4284}
4285SLAB_ATTR(red_zone);
4286
4287static ssize_t poison_show(struct kmem_cache *s, char *buf)
4288{
4289 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4290}
4291
4292static ssize_t poison_store(struct kmem_cache *s,
4293 const char *buf, size_t length)
4294{
4295 if (any_slab_objects(s))
4296 return -EBUSY;
4297
4298 s->flags &= ~SLAB_POISON;
4299 if (buf[0] == '1')
4300 s->flags |= SLAB_POISON;
06b285dc 4301 calculate_sizes(s, -1);
81819f0f
CL
4302 return length;
4303}
4304SLAB_ATTR(poison);
4305
4306static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4307{
4308 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4309}
4310
4311static ssize_t store_user_store(struct kmem_cache *s,
4312 const char *buf, size_t length)
4313{
4314 if (any_slab_objects(s))
4315 return -EBUSY;
4316
4317 s->flags &= ~SLAB_STORE_USER;
4318 if (buf[0] == '1')
4319 s->flags |= SLAB_STORE_USER;
06b285dc 4320 calculate_sizes(s, -1);
81819f0f
CL
4321 return length;
4322}
4323SLAB_ATTR(store_user);
4324
53e15af0
CL
4325static ssize_t validate_show(struct kmem_cache *s, char *buf)
4326{
4327 return 0;
4328}
4329
4330static ssize_t validate_store(struct kmem_cache *s,
4331 const char *buf, size_t length)
4332{
434e245d
CL
4333 int ret = -EINVAL;
4334
4335 if (buf[0] == '1') {
4336 ret = validate_slab_cache(s);
4337 if (ret >= 0)
4338 ret = length;
4339 }
4340 return ret;
53e15af0
CL
4341}
4342SLAB_ATTR(validate);
a5a84755
CL
4343
4344static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4345{
4346 if (!(s->flags & SLAB_STORE_USER))
4347 return -ENOSYS;
4348 return list_locations(s, buf, TRACK_ALLOC);
4349}
4350SLAB_ATTR_RO(alloc_calls);
4351
4352static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4353{
4354 if (!(s->flags & SLAB_STORE_USER))
4355 return -ENOSYS;
4356 return list_locations(s, buf, TRACK_FREE);
4357}
4358SLAB_ATTR_RO(free_calls);
4359#endif /* CONFIG_SLUB_DEBUG */
4360
4361#ifdef CONFIG_FAILSLAB
4362static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4363{
4364 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4365}
4366
4367static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4368 size_t length)
4369{
4370 s->flags &= ~SLAB_FAILSLAB;
4371 if (buf[0] == '1')
4372 s->flags |= SLAB_FAILSLAB;
4373 return length;
4374}
4375SLAB_ATTR(failslab);
ab4d5ed5 4376#endif
53e15af0 4377
2086d26a
CL
4378static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4379{
4380 return 0;
4381}
4382
4383static ssize_t shrink_store(struct kmem_cache *s,
4384 const char *buf, size_t length)
4385{
4386 if (buf[0] == '1') {
4387 int rc = kmem_cache_shrink(s);
4388
4389 if (rc)
4390 return rc;
4391 } else
4392 return -EINVAL;
4393 return length;
4394}
4395SLAB_ATTR(shrink);
4396
81819f0f 4397#ifdef CONFIG_NUMA
9824601e 4398static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4399{
9824601e 4400 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4401}
4402
9824601e 4403static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4404 const char *buf, size_t length)
4405{
0121c619
CL
4406 unsigned long ratio;
4407 int err;
4408
4409 err = strict_strtoul(buf, 10, &ratio);
4410 if (err)
4411 return err;
4412
e2cb96b7 4413 if (ratio <= 100)
0121c619 4414 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4415
81819f0f
CL
4416 return length;
4417}
9824601e 4418SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4419#endif
4420
8ff12cfc 4421#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4422static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4423{
4424 unsigned long sum = 0;
4425 int cpu;
4426 int len;
4427 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4428
4429 if (!data)
4430 return -ENOMEM;
4431
4432 for_each_online_cpu(cpu) {
9dfc6e68 4433 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4434
4435 data[cpu] = x;
4436 sum += x;
4437 }
4438
4439 len = sprintf(buf, "%lu", sum);
4440
50ef37b9 4441#ifdef CONFIG_SMP
8ff12cfc
CL
4442 for_each_online_cpu(cpu) {
4443 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4444 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4445 }
50ef37b9 4446#endif
8ff12cfc
CL
4447 kfree(data);
4448 return len + sprintf(buf + len, "\n");
4449}
4450
78eb00cc
DR
4451static void clear_stat(struct kmem_cache *s, enum stat_item si)
4452{
4453 int cpu;
4454
4455 for_each_online_cpu(cpu)
9dfc6e68 4456 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4457}
4458
8ff12cfc
CL
4459#define STAT_ATTR(si, text) \
4460static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4461{ \
4462 return show_stat(s, buf, si); \
4463} \
78eb00cc
DR
4464static ssize_t text##_store(struct kmem_cache *s, \
4465 const char *buf, size_t length) \
4466{ \
4467 if (buf[0] != '0') \
4468 return -EINVAL; \
4469 clear_stat(s, si); \
4470 return length; \
4471} \
4472SLAB_ATTR(text); \
8ff12cfc
CL
4473
4474STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4475STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4476STAT_ATTR(FREE_FASTPATH, free_fastpath);
4477STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4478STAT_ATTR(FREE_FROZEN, free_frozen);
4479STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4480STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4481STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4482STAT_ATTR(ALLOC_SLAB, alloc_slab);
4483STAT_ATTR(ALLOC_REFILL, alloc_refill);
4484STAT_ATTR(FREE_SLAB, free_slab);
4485STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4486STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4487STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4488STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4489STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4490STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4491STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4492#endif
4493
06428780 4494static struct attribute *slab_attrs[] = {
81819f0f
CL
4495 &slab_size_attr.attr,
4496 &object_size_attr.attr,
4497 &objs_per_slab_attr.attr,
4498 &order_attr.attr,
73d342b1 4499 &min_partial_attr.attr,
81819f0f 4500 &objects_attr.attr,
205ab99d 4501 &objects_partial_attr.attr,
81819f0f
CL
4502 &partial_attr.attr,
4503 &cpu_slabs_attr.attr,
4504 &ctor_attr.attr,
81819f0f
CL
4505 &aliases_attr.attr,
4506 &align_attr.attr,
81819f0f
CL
4507 &hwcache_align_attr.attr,
4508 &reclaim_account_attr.attr,
4509 &destroy_by_rcu_attr.attr,
a5a84755 4510 &shrink_attr.attr,
ab9a0f19 4511 &reserved_attr.attr,
ab4d5ed5 4512#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4513 &total_objects_attr.attr,
4514 &slabs_attr.attr,
4515 &sanity_checks_attr.attr,
4516 &trace_attr.attr,
81819f0f
CL
4517 &red_zone_attr.attr,
4518 &poison_attr.attr,
4519 &store_user_attr.attr,
53e15af0 4520 &validate_attr.attr,
88a420e4
CL
4521 &alloc_calls_attr.attr,
4522 &free_calls_attr.attr,
ab4d5ed5 4523#endif
81819f0f
CL
4524#ifdef CONFIG_ZONE_DMA
4525 &cache_dma_attr.attr,
4526#endif
4527#ifdef CONFIG_NUMA
9824601e 4528 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4529#endif
4530#ifdef CONFIG_SLUB_STATS
4531 &alloc_fastpath_attr.attr,
4532 &alloc_slowpath_attr.attr,
4533 &free_fastpath_attr.attr,
4534 &free_slowpath_attr.attr,
4535 &free_frozen_attr.attr,
4536 &free_add_partial_attr.attr,
4537 &free_remove_partial_attr.attr,
4538 &alloc_from_partial_attr.attr,
4539 &alloc_slab_attr.attr,
4540 &alloc_refill_attr.attr,
4541 &free_slab_attr.attr,
4542 &cpuslab_flush_attr.attr,
4543 &deactivate_full_attr.attr,
4544 &deactivate_empty_attr.attr,
4545 &deactivate_to_head_attr.attr,
4546 &deactivate_to_tail_attr.attr,
4547 &deactivate_remote_frees_attr.attr,
65c3376a 4548 &order_fallback_attr.attr,
81819f0f 4549#endif
4c13dd3b
DM
4550#ifdef CONFIG_FAILSLAB
4551 &failslab_attr.attr,
4552#endif
4553
81819f0f
CL
4554 NULL
4555};
4556
4557static struct attribute_group slab_attr_group = {
4558 .attrs = slab_attrs,
4559};
4560
4561static ssize_t slab_attr_show(struct kobject *kobj,
4562 struct attribute *attr,
4563 char *buf)
4564{
4565 struct slab_attribute *attribute;
4566 struct kmem_cache *s;
4567 int err;
4568
4569 attribute = to_slab_attr(attr);
4570 s = to_slab(kobj);
4571
4572 if (!attribute->show)
4573 return -EIO;
4574
4575 err = attribute->show(s, buf);
4576
4577 return err;
4578}
4579
4580static ssize_t slab_attr_store(struct kobject *kobj,
4581 struct attribute *attr,
4582 const char *buf, size_t len)
4583{
4584 struct slab_attribute *attribute;
4585 struct kmem_cache *s;
4586 int err;
4587
4588 attribute = to_slab_attr(attr);
4589 s = to_slab(kobj);
4590
4591 if (!attribute->store)
4592 return -EIO;
4593
4594 err = attribute->store(s, buf, len);
4595
4596 return err;
4597}
4598
151c602f
CL
4599static void kmem_cache_release(struct kobject *kobj)
4600{
4601 struct kmem_cache *s = to_slab(kobj);
4602
84c1cf62 4603 kfree(s->name);
151c602f
CL
4604 kfree(s);
4605}
4606
52cf25d0 4607static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4608 .show = slab_attr_show,
4609 .store = slab_attr_store,
4610};
4611
4612static struct kobj_type slab_ktype = {
4613 .sysfs_ops = &slab_sysfs_ops,
151c602f 4614 .release = kmem_cache_release
81819f0f
CL
4615};
4616
4617static int uevent_filter(struct kset *kset, struct kobject *kobj)
4618{
4619 struct kobj_type *ktype = get_ktype(kobj);
4620
4621 if (ktype == &slab_ktype)
4622 return 1;
4623 return 0;
4624}
4625
9cd43611 4626static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4627 .filter = uevent_filter,
4628};
4629
27c3a314 4630static struct kset *slab_kset;
81819f0f
CL
4631
4632#define ID_STR_LENGTH 64
4633
4634/* Create a unique string id for a slab cache:
6446faa2
CL
4635 *
4636 * Format :[flags-]size
81819f0f
CL
4637 */
4638static char *create_unique_id(struct kmem_cache *s)
4639{
4640 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4641 char *p = name;
4642
4643 BUG_ON(!name);
4644
4645 *p++ = ':';
4646 /*
4647 * First flags affecting slabcache operations. We will only
4648 * get here for aliasable slabs so we do not need to support
4649 * too many flags. The flags here must cover all flags that
4650 * are matched during merging to guarantee that the id is
4651 * unique.
4652 */
4653 if (s->flags & SLAB_CACHE_DMA)
4654 *p++ = 'd';
4655 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4656 *p++ = 'a';
4657 if (s->flags & SLAB_DEBUG_FREE)
4658 *p++ = 'F';
5a896d9e
VN
4659 if (!(s->flags & SLAB_NOTRACK))
4660 *p++ = 't';
81819f0f
CL
4661 if (p != name + 1)
4662 *p++ = '-';
4663 p += sprintf(p, "%07d", s->size);
4664 BUG_ON(p > name + ID_STR_LENGTH - 1);
4665 return name;
4666}
4667
4668static int sysfs_slab_add(struct kmem_cache *s)
4669{
4670 int err;
4671 const char *name;
4672 int unmergeable;
4673
4674 if (slab_state < SYSFS)
4675 /* Defer until later */
4676 return 0;
4677
4678 unmergeable = slab_unmergeable(s);
4679 if (unmergeable) {
4680 /*
4681 * Slabcache can never be merged so we can use the name proper.
4682 * This is typically the case for debug situations. In that
4683 * case we can catch duplicate names easily.
4684 */
27c3a314 4685 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4686 name = s->name;
4687 } else {
4688 /*
4689 * Create a unique name for the slab as a target
4690 * for the symlinks.
4691 */
4692 name = create_unique_id(s);
4693 }
4694
27c3a314 4695 s->kobj.kset = slab_kset;
1eada11c
GKH
4696 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4697 if (err) {
4698 kobject_put(&s->kobj);
81819f0f 4699 return err;
1eada11c 4700 }
81819f0f
CL
4701
4702 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4703 if (err) {
4704 kobject_del(&s->kobj);
4705 kobject_put(&s->kobj);
81819f0f 4706 return err;
5788d8ad 4707 }
81819f0f
CL
4708 kobject_uevent(&s->kobj, KOBJ_ADD);
4709 if (!unmergeable) {
4710 /* Setup first alias */
4711 sysfs_slab_alias(s, s->name);
4712 kfree(name);
4713 }
4714 return 0;
4715}
4716
4717static void sysfs_slab_remove(struct kmem_cache *s)
4718{
2bce6485
CL
4719 if (slab_state < SYSFS)
4720 /*
4721 * Sysfs has not been setup yet so no need to remove the
4722 * cache from sysfs.
4723 */
4724 return;
4725
81819f0f
CL
4726 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4727 kobject_del(&s->kobj);
151c602f 4728 kobject_put(&s->kobj);
81819f0f
CL
4729}
4730
4731/*
4732 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4733 * available lest we lose that information.
81819f0f
CL
4734 */
4735struct saved_alias {
4736 struct kmem_cache *s;
4737 const char *name;
4738 struct saved_alias *next;
4739};
4740
5af328a5 4741static struct saved_alias *alias_list;
81819f0f
CL
4742
4743static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4744{
4745 struct saved_alias *al;
4746
4747 if (slab_state == SYSFS) {
4748 /*
4749 * If we have a leftover link then remove it.
4750 */
27c3a314
GKH
4751 sysfs_remove_link(&slab_kset->kobj, name);
4752 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4753 }
4754
4755 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4756 if (!al)
4757 return -ENOMEM;
4758
4759 al->s = s;
4760 al->name = name;
4761 al->next = alias_list;
4762 alias_list = al;
4763 return 0;
4764}
4765
4766static int __init slab_sysfs_init(void)
4767{
5b95a4ac 4768 struct kmem_cache *s;
81819f0f
CL
4769 int err;
4770
2bce6485
CL
4771 down_write(&slub_lock);
4772
0ff21e46 4773 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4774 if (!slab_kset) {
2bce6485 4775 up_write(&slub_lock);
81819f0f
CL
4776 printk(KERN_ERR "Cannot register slab subsystem.\n");
4777 return -ENOSYS;
4778 }
4779
26a7bd03
CL
4780 slab_state = SYSFS;
4781
5b95a4ac 4782 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4783 err = sysfs_slab_add(s);
5d540fb7
CL
4784 if (err)
4785 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4786 " to sysfs\n", s->name);
26a7bd03 4787 }
81819f0f
CL
4788
4789 while (alias_list) {
4790 struct saved_alias *al = alias_list;
4791
4792 alias_list = alias_list->next;
4793 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4794 if (err)
4795 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4796 " %s to sysfs\n", s->name);
81819f0f
CL
4797 kfree(al);
4798 }
4799
2bce6485 4800 up_write(&slub_lock);
81819f0f
CL
4801 resiliency_test();
4802 return 0;
4803}
4804
4805__initcall(slab_sysfs_init);
ab4d5ed5 4806#endif /* CONFIG_SYSFS */
57ed3eda
PE
4807
4808/*
4809 * The /proc/slabinfo ABI
4810 */
158a9624 4811#ifdef CONFIG_SLABINFO
57ed3eda
PE
4812static void print_slabinfo_header(struct seq_file *m)
4813{
4814 seq_puts(m, "slabinfo - version: 2.1\n");
4815 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4816 "<objperslab> <pagesperslab>");
4817 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4818 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4819 seq_putc(m, '\n');
4820}
4821
4822static void *s_start(struct seq_file *m, loff_t *pos)
4823{
4824 loff_t n = *pos;
4825
4826 down_read(&slub_lock);
4827 if (!n)
4828 print_slabinfo_header(m);
4829
4830 return seq_list_start(&slab_caches, *pos);
4831}
4832
4833static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4834{
4835 return seq_list_next(p, &slab_caches, pos);
4836}
4837
4838static void s_stop(struct seq_file *m, void *p)
4839{
4840 up_read(&slub_lock);
4841}
4842
4843static int s_show(struct seq_file *m, void *p)
4844{
4845 unsigned long nr_partials = 0;
4846 unsigned long nr_slabs = 0;
4847 unsigned long nr_inuse = 0;
205ab99d
CL
4848 unsigned long nr_objs = 0;
4849 unsigned long nr_free = 0;
57ed3eda
PE
4850 struct kmem_cache *s;
4851 int node;
4852
4853 s = list_entry(p, struct kmem_cache, list);
4854
4855 for_each_online_node(node) {
4856 struct kmem_cache_node *n = get_node(s, node);
4857
4858 if (!n)
4859 continue;
4860
4861 nr_partials += n->nr_partial;
4862 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4863 nr_objs += atomic_long_read(&n->total_objects);
4864 nr_free += count_partial(n, count_free);
57ed3eda
PE
4865 }
4866
205ab99d 4867 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4868
4869 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4870 nr_objs, s->size, oo_objects(s->oo),
4871 (1 << oo_order(s->oo)));
57ed3eda
PE
4872 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4873 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4874 0UL);
4875 seq_putc(m, '\n');
4876 return 0;
4877}
4878
7b3c3a50 4879static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4880 .start = s_start,
4881 .next = s_next,
4882 .stop = s_stop,
4883 .show = s_show,
4884};
4885
7b3c3a50
AD
4886static int slabinfo_open(struct inode *inode, struct file *file)
4887{
4888 return seq_open(file, &slabinfo_op);
4889}
4890
4891static const struct file_operations proc_slabinfo_operations = {
4892 .open = slabinfo_open,
4893 .read = seq_read,
4894 .llseek = seq_lseek,
4895 .release = seq_release,
4896};
4897
4898static int __init slab_proc_init(void)
4899{
cf5d1131 4900 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4901 return 0;
4902}
4903module_init(slab_proc_init);
158a9624 4904#endif /* CONFIG_SLABINFO */