slub: include include for prefetch
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
4de900b4 32#include <linux/prefetch.h>
81819f0f 33
4a92379b
RK
34#include <trace/events/kmem.h>
35
81819f0f
CL
36/*
37 * Lock order:
881db7fb
CL
38 * 1. slub_lock (Global Semaphore)
39 * 2. node->list_lock
40 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 41 *
881db7fb
CL
42 * slub_lock
43 *
44 * The role of the slub_lock is to protect the list of all the slabs
45 * and to synchronize major metadata changes to slab cache structures.
46 *
47 * The slab_lock is only used for debugging and on arches that do not
48 * have the ability to do a cmpxchg_double. It only protects the second
49 * double word in the page struct. Meaning
50 * A. page->freelist -> List of object free in a page
51 * B. page->counters -> Counters of objects
52 * C. page->frozen -> frozen state
53 *
54 * If a slab is frozen then it is exempt from list management. It is not
55 * on any list. The processor that froze the slab is the one who can
56 * perform list operations on the page. Other processors may put objects
57 * onto the freelist but the processor that froze the slab is the only
58 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
59 *
60 * The list_lock protects the partial and full list on each node and
61 * the partial slab counter. If taken then no new slabs may be added or
62 * removed from the lists nor make the number of partial slabs be modified.
63 * (Note that the total number of slabs is an atomic value that may be
64 * modified without taking the list lock).
65 *
66 * The list_lock is a centralized lock and thus we avoid taking it as
67 * much as possible. As long as SLUB does not have to handle partial
68 * slabs, operations can continue without any centralized lock. F.e.
69 * allocating a long series of objects that fill up slabs does not require
70 * the list lock.
81819f0f
CL
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
75 *
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
78 *
672bba3a
CL
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 81 * freed then the slab will show up again on the partial lists.
672bba3a
CL
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
81819f0f
CL
84 *
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
88 *
89 * Overloading of page flags that are otherwise used for LRU management.
90 *
4b6f0750
CL
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
99 *
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
dfb4f096 103 * freelist that allows lockless access to
894b8788
CL
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
81819f0f
CL
106 *
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
894b8788 109 * the fast path and disables lockless freelists.
81819f0f
CL
110 */
111
af537b0a
CL
112#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 SLAB_TRACE | SLAB_DEBUG_FREE)
114
115static inline int kmem_cache_debug(struct kmem_cache *s)
116{
5577bd8a 117#ifdef CONFIG_SLUB_DEBUG
af537b0a 118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 119#else
af537b0a 120 return 0;
5577bd8a 121#endif
af537b0a 122}
5577bd8a 123
81819f0f
CL
124/*
125 * Issues still to be resolved:
126 *
81819f0f
CL
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
81819f0f
CL
129 * - Variable sizing of the per node arrays
130 */
131
132/* Enable to test recovery from slab corruption on boot */
133#undef SLUB_RESILIENCY_TEST
134
b789ef51
CL
135/* Enable to log cmpxchg failures */
136#undef SLUB_DEBUG_CMPXCHG
137
2086d26a
CL
138/*
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 */
76be8950 142#define MIN_PARTIAL 5
e95eed57 143
2086d26a
CL
144/*
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
148 */
149#define MAX_PARTIAL 10
150
81819f0f
CL
151#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 SLAB_POISON | SLAB_STORE_USER)
672bba3a 153
fa5ec8a1 154/*
3de47213
DR
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
fa5ec8a1 158 */
3de47213 159#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 160
81819f0f
CL
161/*
162 * Set of flags that will prevent slab merging
163 */
164#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 SLAB_FAILSLAB)
81819f0f
CL
167
168#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 169 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 170
210b5c06
CG
171#define OO_SHIFT 16
172#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 173#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 174
81819f0f 175/* Internal SLUB flags */
f90ec390 176#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 177#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
178
179static int kmem_size = sizeof(struct kmem_cache);
180
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
185static enum {
186 DOWN, /* No slab functionality available */
51df1142 187 PARTIAL, /* Kmem_cache_node works */
672bba3a 188 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
189 SYSFS /* Sysfs up */
190} slab_state = DOWN;
191
192/* A list of all slab caches on the system */
193static DECLARE_RWSEM(slub_lock);
5af328a5 194static LIST_HEAD(slab_caches);
81819f0f 195
02cbc874
CL
196/*
197 * Tracking user of a slab.
198 */
d6543e39 199#define TRACK_ADDRS_COUNT 16
02cbc874 200struct track {
ce71e27c 201 unsigned long addr; /* Called from address */
d6543e39
BG
202#ifdef CONFIG_STACKTRACE
203 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
204#endif
02cbc874
CL
205 int cpu; /* Was running on cpu */
206 int pid; /* Pid context */
207 unsigned long when; /* When did the operation occur */
208};
209
210enum track_item { TRACK_ALLOC, TRACK_FREE };
211
ab4d5ed5 212#ifdef CONFIG_SYSFS
81819f0f
CL
213static int sysfs_slab_add(struct kmem_cache *);
214static int sysfs_slab_alias(struct kmem_cache *, const char *);
215static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 216
81819f0f 217#else
0c710013
CL
218static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
151c602f
CL
221static inline void sysfs_slab_remove(struct kmem_cache *s)
222{
84c1cf62 223 kfree(s->name);
151c602f
CL
224 kfree(s);
225}
8ff12cfc 226
81819f0f
CL
227#endif
228
4fdccdfb 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
230{
231#ifdef CONFIG_SLUB_STATS
84e554e6 232 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
233#endif
234}
235
81819f0f
CL
236/********************************************************************
237 * Core slab cache functions
238 *******************************************************************/
239
240int slab_is_available(void)
241{
242 return slab_state >= UP;
243}
244
245static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246{
81819f0f 247 return s->node[node];
81819f0f
CL
248}
249
6446faa2 250/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
251static inline int check_valid_pointer(struct kmem_cache *s,
252 struct page *page, const void *object)
253{
254 void *base;
255
a973e9dd 256 if (!object)
02cbc874
CL
257 return 1;
258
a973e9dd 259 base = page_address(page);
39b26464 260 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
261 (object - base) % s->size) {
262 return 0;
263 }
264
265 return 1;
266}
267
7656c72b
CL
268static inline void *get_freepointer(struct kmem_cache *s, void *object)
269{
270 return *(void **)(object + s->offset);
271}
272
0ad9500e
ED
273static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274{
275 prefetch(object + s->offset);
276}
277
1393d9a1
CL
278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279{
280 void *p;
281
282#ifdef CONFIG_DEBUG_PAGEALLOC
283 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
284#else
285 p = get_freepointer(s, object);
286#endif
287 return p;
288}
289
7656c72b
CL
290static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291{
292 *(void **)(object + s->offset) = fp;
293}
294
295/* Loop over all objects in a slab */
224a88be
CL
296#define for_each_object(__p, __s, __addr, __objects) \
297 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
298 __p += (__s)->size)
299
7656c72b
CL
300/* Determine object index from a given position */
301static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302{
303 return (p - addr) / s->size;
304}
305
d71f606f
MK
306static inline size_t slab_ksize(const struct kmem_cache *s)
307{
308#ifdef CONFIG_SLUB_DEBUG
309 /*
310 * Debugging requires use of the padding between object
311 * and whatever may come after it.
312 */
313 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
314 return s->objsize;
315
316#endif
317 /*
318 * If we have the need to store the freelist pointer
319 * back there or track user information then we can
320 * only use the space before that information.
321 */
322 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
323 return s->inuse;
324 /*
325 * Else we can use all the padding etc for the allocation
326 */
327 return s->size;
328}
329
ab9a0f19
LJ
330static inline int order_objects(int order, unsigned long size, int reserved)
331{
332 return ((PAGE_SIZE << order) - reserved) / size;
333}
334
834f3d11 335static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 336 unsigned long size, int reserved)
834f3d11
CL
337{
338 struct kmem_cache_order_objects x = {
ab9a0f19 339 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
340 };
341
342 return x;
343}
344
345static inline int oo_order(struct kmem_cache_order_objects x)
346{
210b5c06 347 return x.x >> OO_SHIFT;
834f3d11
CL
348}
349
350static inline int oo_objects(struct kmem_cache_order_objects x)
351{
210b5c06 352 return x.x & OO_MASK;
834f3d11
CL
353}
354
881db7fb
CL
355/*
356 * Per slab locking using the pagelock
357 */
358static __always_inline void slab_lock(struct page *page)
359{
360 bit_spin_lock(PG_locked, &page->flags);
361}
362
363static __always_inline void slab_unlock(struct page *page)
364{
365 __bit_spin_unlock(PG_locked, &page->flags);
366}
367
1d07171c
CL
368/* Interrupts must be disabled (for the fallback code to work right) */
369static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
373{
374 VM_BUG_ON(!irqs_disabled());
2565409f
HC
375#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 377 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 378 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
379 freelist_old, counters_old,
380 freelist_new, counters_new))
381 return 1;
382 } else
383#endif
384 {
385 slab_lock(page);
386 if (page->freelist == freelist_old && page->counters == counters_old) {
387 page->freelist = freelist_new;
388 page->counters = counters_new;
389 slab_unlock(page);
390 return 1;
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398#ifdef SLUB_DEBUG_CMPXCHG
399 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
400#endif
401
402 return 0;
403}
404
b789ef51
CL
405static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409{
2565409f
HC
410#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 412 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 413 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
414 freelist_old, counters_old,
415 freelist_new, counters_new))
416 return 1;
417 } else
418#endif
419 {
1d07171c
CL
420 unsigned long flags;
421
422 local_irq_save(flags);
881db7fb 423 slab_lock(page);
b789ef51
CL
424 if (page->freelist == freelist_old && page->counters == counters_old) {
425 page->freelist = freelist_new;
426 page->counters = counters_new;
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
b789ef51
CL
429 return 1;
430 }
881db7fb 431 slab_unlock(page);
1d07171c 432 local_irq_restore(flags);
b789ef51
CL
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438#ifdef SLUB_DEBUG_CMPXCHG
439 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
440#endif
441
442 return 0;
443}
444
41ecc55b 445#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
446/*
447 * Determine a map of object in use on a page.
448 *
881db7fb 449 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
450 * not vanish from under us.
451 */
452static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453{
454 void *p;
455 void *addr = page_address(page);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
459}
460
41ecc55b
CL
461/*
462 * Debug settings:
463 */
f0630fff
CL
464#ifdef CONFIG_SLUB_DEBUG_ON
465static int slub_debug = DEBUG_DEFAULT_FLAGS;
466#else
41ecc55b 467static int slub_debug;
f0630fff 468#endif
41ecc55b
CL
469
470static char *slub_debug_slabs;
fa5ec8a1 471static int disable_higher_order_debug;
41ecc55b 472
81819f0f
CL
473/*
474 * Object debugging
475 */
476static void print_section(char *text, u8 *addr, unsigned int length)
477{
ffc79d28
SAS
478 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
479 length, 1);
81819f0f
CL
480}
481
81819f0f
CL
482static struct track *get_track(struct kmem_cache *s, void *object,
483 enum track_item alloc)
484{
485 struct track *p;
486
487 if (s->offset)
488 p = object + s->offset + sizeof(void *);
489 else
490 p = object + s->inuse;
491
492 return p + alloc;
493}
494
495static void set_track(struct kmem_cache *s, void *object,
ce71e27c 496 enum track_item alloc, unsigned long addr)
81819f0f 497{
1a00df4a 498 struct track *p = get_track(s, object, alloc);
81819f0f 499
81819f0f 500 if (addr) {
d6543e39
BG
501#ifdef CONFIG_STACKTRACE
502 struct stack_trace trace;
503 int i;
504
505 trace.nr_entries = 0;
506 trace.max_entries = TRACK_ADDRS_COUNT;
507 trace.entries = p->addrs;
508 trace.skip = 3;
509 save_stack_trace(&trace);
510
511 /* See rant in lockdep.c */
512 if (trace.nr_entries != 0 &&
513 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
514 trace.nr_entries--;
515
516 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
517 p->addrs[i] = 0;
518#endif
81819f0f
CL
519 p->addr = addr;
520 p->cpu = smp_processor_id();
88e4ccf2 521 p->pid = current->pid;
81819f0f
CL
522 p->when = jiffies;
523 } else
524 memset(p, 0, sizeof(struct track));
525}
526
81819f0f
CL
527static void init_tracking(struct kmem_cache *s, void *object)
528{
24922684
CL
529 if (!(s->flags & SLAB_STORE_USER))
530 return;
531
ce71e27c
EGM
532 set_track(s, object, TRACK_FREE, 0UL);
533 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
534}
535
536static void print_track(const char *s, struct track *t)
537{
538 if (!t->addr)
539 return;
540
7daf705f 541 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 542 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
543#ifdef CONFIG_STACKTRACE
544 {
545 int i;
546 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
547 if (t->addrs[i])
548 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
549 else
550 break;
551 }
552#endif
24922684
CL
553}
554
555static void print_tracking(struct kmem_cache *s, void *object)
556{
557 if (!(s->flags & SLAB_STORE_USER))
558 return;
559
560 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
561 print_track("Freed", get_track(s, object, TRACK_FREE));
562}
563
564static void print_page_info(struct page *page)
565{
39b26464
CL
566 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
567 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
568
569}
570
571static void slab_bug(struct kmem_cache *s, char *fmt, ...)
572{
573 va_list args;
574 char buf[100];
575
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "========================================"
580 "=====================================\n");
265d47e7 581 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
582 printk(KERN_ERR "----------------------------------------"
583 "-------------------------------------\n\n");
81819f0f
CL
584}
585
24922684
CL
586static void slab_fix(struct kmem_cache *s, char *fmt, ...)
587{
588 va_list args;
589 char buf[100];
590
591 va_start(args, fmt);
592 vsnprintf(buf, sizeof(buf), fmt, args);
593 va_end(args);
594 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
595}
596
597static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
598{
599 unsigned int off; /* Offset of last byte */
a973e9dd 600 u8 *addr = page_address(page);
24922684
CL
601
602 print_tracking(s, p);
603
604 print_page_info(page);
605
606 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
608
609 if (p > addr + 16)
ffc79d28 610 print_section("Bytes b4 ", p - 16, 16);
81819f0f 611
ffc79d28
SAS
612 print_section("Object ", p, min_t(unsigned long, s->objsize,
613 PAGE_SIZE));
81819f0f 614 if (s->flags & SLAB_RED_ZONE)
ffc79d28 615 print_section("Redzone ", p + s->objsize,
81819f0f
CL
616 s->inuse - s->objsize);
617
81819f0f
CL
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
622
24922684 623 if (s->flags & SLAB_STORE_USER)
81819f0f 624 off += 2 * sizeof(struct track);
81819f0f
CL
625
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
ffc79d28 628 print_section("Padding ", p + off, s->size - off);
24922684
CL
629
630 dump_stack();
81819f0f
CL
631}
632
633static void object_err(struct kmem_cache *s, struct page *page,
634 u8 *object, char *reason)
635{
3dc50637 636 slab_bug(s, "%s", reason);
24922684 637 print_trailer(s, page, object);
81819f0f
CL
638}
639
24922684 640static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
641{
642 va_list args;
643 char buf[100];
644
24922684
CL
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 647 va_end(args);
3dc50637 648 slab_bug(s, "%s", buf);
24922684 649 print_page_info(page);
81819f0f
CL
650 dump_stack();
651}
652
f7cb1933 653static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
654{
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->objsize - 1);
06428780 659 p[s->objsize - 1] = POISON_END;
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
f7cb1933 663 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
664}
665
24922684
CL
666static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668{
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671}
672
673static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
06428780 675 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
676{
677 u8 *fault;
678 u8 *end;
679
79824820 680 fault = memchr_inv(start, value, bytes);
24922684
CL
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
81819f0f
CL
695}
696
81819f0f
CL
697/*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
672bba3a 704 *
81819f0f
CL
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->objsize
709 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
710 * Padding is extended by another word if Redzoning is enabled and
711 * objsize == inuse.
712 *
81819f0f
CL
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
672bba3a
CL
717 * Meta data starts here.
718 *
81819f0f
CL
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
672bba3a 721 * C. Padding to reach required alignment boundary or at mininum
6446faa2 722 * one word if debugging is on to be able to detect writes
672bba3a
CL
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
726 *
727 * object + s->size
672bba3a 728 * Nothing is used beyond s->size.
81819f0f 729 *
672bba3a
CL
730 * If slabcaches are merged then the objsize and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
732 * may be used with merged slabcaches.
733 */
734
81819f0f
CL
735static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736{
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
24922684
CL
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
752}
753
39b26464 754/* Check the pad bytes at the end of a slab page */
81819f0f
CL
755static int slab_pad_check(struct kmem_cache *s, struct page *page)
756{
24922684
CL
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
81819f0f
CL
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
a973e9dd 766 start = page_address(page);
ab9a0f19 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
768 end = start + length;
769 remainder = length % s->size;
81819f0f
CL
770 if (!remainder)
771 return 1;
772
79824820 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 780 print_section("Padding ", end - remainder, remainder);
24922684 781
8a3d271d 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 783 return 0;
81819f0f
CL
784}
785
786static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 787 void *object, u8 val)
81819f0f
CL
788{
789 u8 *p = object;
790 u8 *endobject = object + s->objsize;
791
792 if (s->flags & SLAB_RED_ZONE) {
24922684 793 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 794 endobject, val, s->inuse - s->objsize))
81819f0f 795 return 0;
81819f0f 796 } else {
3adbefee
IM
797 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE, s->inuse - s->objsize);
800 }
81819f0f
CL
801 }
802
803 if (s->flags & SLAB_POISON) {
f7cb1933 804 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
805 (!check_bytes_and_report(s, page, p, "Poison", p,
806 POISON_FREE, s->objsize - 1) ||
807 !check_bytes_and_report(s, page, p, "Poison",
06428780 808 p + s->objsize - 1, POISON_END, 1)))
81819f0f 809 return 0;
81819f0f
CL
810 /*
811 * check_pad_bytes cleans up on its own.
812 */
813 check_pad_bytes(s, page, p);
814 }
815
f7cb1933 816 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
817 /*
818 * Object and freepointer overlap. Cannot check
819 * freepointer while object is allocated.
820 */
821 return 1;
822
823 /* Check free pointer validity */
824 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
825 object_err(s, page, p, "Freepointer corrupt");
826 /*
9f6c708e 827 * No choice but to zap it and thus lose the remainder
81819f0f 828 * of the free objects in this slab. May cause
672bba3a 829 * another error because the object count is now wrong.
81819f0f 830 */
a973e9dd 831 set_freepointer(s, p, NULL);
81819f0f
CL
832 return 0;
833 }
834 return 1;
835}
836
837static int check_slab(struct kmem_cache *s, struct page *page)
838{
39b26464
CL
839 int maxobj;
840
81819f0f
CL
841 VM_BUG_ON(!irqs_disabled());
842
843 if (!PageSlab(page)) {
24922684 844 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
845 return 0;
846 }
39b26464 847
ab9a0f19 848 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
849 if (page->objects > maxobj) {
850 slab_err(s, page, "objects %u > max %u",
851 s->name, page->objects, maxobj);
852 return 0;
853 }
854 if (page->inuse > page->objects) {
24922684 855 slab_err(s, page, "inuse %u > max %u",
39b26464 856 s->name, page->inuse, page->objects);
81819f0f
CL
857 return 0;
858 }
859 /* Slab_pad_check fixes things up after itself */
860 slab_pad_check(s, page);
861 return 1;
862}
863
864/*
672bba3a
CL
865 * Determine if a certain object on a page is on the freelist. Must hold the
866 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
867 */
868static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
869{
870 int nr = 0;
881db7fb 871 void *fp;
81819f0f 872 void *object = NULL;
224a88be 873 unsigned long max_objects;
81819f0f 874
881db7fb 875 fp = page->freelist;
39b26464 876 while (fp && nr <= page->objects) {
81819f0f
CL
877 if (fp == search)
878 return 1;
879 if (!check_valid_pointer(s, page, fp)) {
880 if (object) {
881 object_err(s, page, object,
882 "Freechain corrupt");
a973e9dd 883 set_freepointer(s, object, NULL);
81819f0f
CL
884 break;
885 } else {
24922684 886 slab_err(s, page, "Freepointer corrupt");
a973e9dd 887 page->freelist = NULL;
39b26464 888 page->inuse = page->objects;
24922684 889 slab_fix(s, "Freelist cleared");
81819f0f
CL
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
ab9a0f19 899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
39b26464 909 if (page->inuse != page->objects - nr) {
70d71228 910 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
24922684 913 slab_fix(s, "Object count adjusted.");
81819f0f
CL
914 }
915 return search == NULL;
916}
917
0121c619
CL
918static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
3ec09742
CL
920{
921 if (s->flags & SLAB_TRACE) {
922 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
ffc79d28 929 print_section("Object ", (void *)object, s->objsize);
3ec09742
CL
930
931 dump_stack();
932 }
933}
934
c016b0bd
CL
935/*
936 * Hooks for other subsystems that check memory allocations. In a typical
937 * production configuration these hooks all should produce no code at all.
938 */
939static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
940{
c1d50836 941 flags &= gfp_allowed_mask;
c016b0bd
CL
942 lockdep_trace_alloc(flags);
943 might_sleep_if(flags & __GFP_WAIT);
944
945 return should_failslab(s->objsize, flags, s->flags);
946}
947
948static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
949{
c1d50836 950 flags &= gfp_allowed_mask;
b3d41885 951 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
952 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
953}
954
955static inline void slab_free_hook(struct kmem_cache *s, void *x)
956{
957 kmemleak_free_recursive(x, s->flags);
c016b0bd 958
d3f661d6
CL
959 /*
960 * Trouble is that we may no longer disable interupts in the fast path
961 * So in order to make the debug calls that expect irqs to be
962 * disabled we need to disable interrupts temporarily.
963 */
964#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
965 {
966 unsigned long flags;
967
968 local_irq_save(flags);
969 kmemcheck_slab_free(s, x, s->objsize);
970 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
971 local_irq_restore(flags);
972 }
973#endif
f9b615de
TG
974 if (!(s->flags & SLAB_DEBUG_OBJECTS))
975 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
976}
977
643b1138 978/*
672bba3a 979 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
980 *
981 * list_lock must be held.
643b1138 982 */
5cc6eee8
CL
983static void add_full(struct kmem_cache *s,
984 struct kmem_cache_node *n, struct page *page)
643b1138 985{
5cc6eee8
CL
986 if (!(s->flags & SLAB_STORE_USER))
987 return;
988
643b1138 989 list_add(&page->lru, &n->full);
643b1138
CL
990}
991
5cc6eee8
CL
992/*
993 * list_lock must be held.
994 */
643b1138
CL
995static void remove_full(struct kmem_cache *s, struct page *page)
996{
643b1138
CL
997 if (!(s->flags & SLAB_STORE_USER))
998 return;
999
643b1138 1000 list_del(&page->lru);
643b1138
CL
1001}
1002
0f389ec6
CL
1003/* Tracking of the number of slabs for debugging purposes */
1004static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1005{
1006 struct kmem_cache_node *n = get_node(s, node);
1007
1008 return atomic_long_read(&n->nr_slabs);
1009}
1010
26c02cf0
AB
1011static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1012{
1013 return atomic_long_read(&n->nr_slabs);
1014}
1015
205ab99d 1016static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1017{
1018 struct kmem_cache_node *n = get_node(s, node);
1019
1020 /*
1021 * May be called early in order to allocate a slab for the
1022 * kmem_cache_node structure. Solve the chicken-egg
1023 * dilemma by deferring the increment of the count during
1024 * bootstrap (see early_kmem_cache_node_alloc).
1025 */
7340cc84 1026 if (n) {
0f389ec6 1027 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1028 atomic_long_add(objects, &n->total_objects);
1029 }
0f389ec6 1030}
205ab99d 1031static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1032{
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 atomic_long_dec(&n->nr_slabs);
205ab99d 1036 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1037}
1038
1039/* Object debug checks for alloc/free paths */
3ec09742
CL
1040static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041 void *object)
1042{
1043 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044 return;
1045
f7cb1933 1046 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1047 init_tracking(s, object);
1048}
1049
1537066c 1050static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1051 void *object, unsigned long addr)
81819f0f
CL
1052{
1053 if (!check_slab(s, page))
1054 goto bad;
1055
81819f0f
CL
1056 if (!check_valid_pointer(s, page, object)) {
1057 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1058 goto bad;
81819f0f
CL
1059 }
1060
f7cb1933 1061 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1062 goto bad;
81819f0f 1063
3ec09742
CL
1064 /* Success perform special debug activities for allocs */
1065 if (s->flags & SLAB_STORE_USER)
1066 set_track(s, object, TRACK_ALLOC, addr);
1067 trace(s, page, object, 1);
f7cb1933 1068 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1069 return 1;
3ec09742 1070
81819f0f
CL
1071bad:
1072 if (PageSlab(page)) {
1073 /*
1074 * If this is a slab page then lets do the best we can
1075 * to avoid issues in the future. Marking all objects
672bba3a 1076 * as used avoids touching the remaining objects.
81819f0f 1077 */
24922684 1078 slab_fix(s, "Marking all objects used");
39b26464 1079 page->inuse = page->objects;
a973e9dd 1080 page->freelist = NULL;
81819f0f
CL
1081 }
1082 return 0;
1083}
1084
1537066c
CL
1085static noinline int free_debug_processing(struct kmem_cache *s,
1086 struct page *page, void *object, unsigned long addr)
81819f0f 1087{
5c2e4bbb
CL
1088 unsigned long flags;
1089 int rc = 0;
1090
1091 local_irq_save(flags);
881db7fb
CL
1092 slab_lock(page);
1093
81819f0f
CL
1094 if (!check_slab(s, page))
1095 goto fail;
1096
1097 if (!check_valid_pointer(s, page, object)) {
70d71228 1098 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1099 goto fail;
1100 }
1101
1102 if (on_freelist(s, page, object)) {
24922684 1103 object_err(s, page, object, "Object already free");
81819f0f
CL
1104 goto fail;
1105 }
1106
f7cb1933 1107 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1108 goto out;
81819f0f
CL
1109
1110 if (unlikely(s != page->slab)) {
3adbefee 1111 if (!PageSlab(page)) {
70d71228
CL
1112 slab_err(s, page, "Attempt to free object(0x%p) "
1113 "outside of slab", object);
3adbefee 1114 } else if (!page->slab) {
81819f0f 1115 printk(KERN_ERR
70d71228 1116 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1117 object);
70d71228 1118 dump_stack();
06428780 1119 } else
24922684
CL
1120 object_err(s, page, object,
1121 "page slab pointer corrupt.");
81819f0f
CL
1122 goto fail;
1123 }
3ec09742 1124
3ec09742
CL
1125 if (s->flags & SLAB_STORE_USER)
1126 set_track(s, object, TRACK_FREE, addr);
1127 trace(s, page, object, 0);
f7cb1933 1128 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1129 rc = 1;
1130out:
881db7fb 1131 slab_unlock(page);
5c2e4bbb
CL
1132 local_irq_restore(flags);
1133 return rc;
3ec09742 1134
81819f0f 1135fail:
24922684 1136 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1137 goto out;
81819f0f
CL
1138}
1139
41ecc55b
CL
1140static int __init setup_slub_debug(char *str)
1141{
f0630fff
CL
1142 slub_debug = DEBUG_DEFAULT_FLAGS;
1143 if (*str++ != '=' || !*str)
1144 /*
1145 * No options specified. Switch on full debugging.
1146 */
1147 goto out;
1148
1149 if (*str == ',')
1150 /*
1151 * No options but restriction on slabs. This means full
1152 * debugging for slabs matching a pattern.
1153 */
1154 goto check_slabs;
1155
fa5ec8a1
DR
1156 if (tolower(*str) == 'o') {
1157 /*
1158 * Avoid enabling debugging on caches if its minimum order
1159 * would increase as a result.
1160 */
1161 disable_higher_order_debug = 1;
1162 goto out;
1163 }
1164
f0630fff
CL
1165 slub_debug = 0;
1166 if (*str == '-')
1167 /*
1168 * Switch off all debugging measures.
1169 */
1170 goto out;
1171
1172 /*
1173 * Determine which debug features should be switched on
1174 */
06428780 1175 for (; *str && *str != ','; str++) {
f0630fff
CL
1176 switch (tolower(*str)) {
1177 case 'f':
1178 slub_debug |= SLAB_DEBUG_FREE;
1179 break;
1180 case 'z':
1181 slub_debug |= SLAB_RED_ZONE;
1182 break;
1183 case 'p':
1184 slub_debug |= SLAB_POISON;
1185 break;
1186 case 'u':
1187 slub_debug |= SLAB_STORE_USER;
1188 break;
1189 case 't':
1190 slub_debug |= SLAB_TRACE;
1191 break;
4c13dd3b
DM
1192 case 'a':
1193 slub_debug |= SLAB_FAILSLAB;
1194 break;
f0630fff
CL
1195 default:
1196 printk(KERN_ERR "slub_debug option '%c' "
06428780 1197 "unknown. skipped\n", *str);
f0630fff 1198 }
41ecc55b
CL
1199 }
1200
f0630fff 1201check_slabs:
41ecc55b
CL
1202 if (*str == ',')
1203 slub_debug_slabs = str + 1;
f0630fff 1204out:
41ecc55b
CL
1205 return 1;
1206}
1207
1208__setup("slub_debug", setup_slub_debug);
1209
ba0268a8
CL
1210static unsigned long kmem_cache_flags(unsigned long objsize,
1211 unsigned long flags, const char *name,
51cc5068 1212 void (*ctor)(void *))
41ecc55b
CL
1213{
1214 /*
e153362a 1215 * Enable debugging if selected on the kernel commandline.
41ecc55b 1216 */
e153362a 1217 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1218 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219 flags |= slub_debug;
ba0268a8
CL
1220
1221 return flags;
41ecc55b
CL
1222}
1223#else
3ec09742
CL
1224static inline void setup_object_debug(struct kmem_cache *s,
1225 struct page *page, void *object) {}
41ecc55b 1226
3ec09742 1227static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1228 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1229
3ec09742 1230static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1231 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1232
41ecc55b
CL
1233static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234 { return 1; }
1235static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1236 void *object, u8 val) { return 1; }
5cc6eee8
CL
1237static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238 struct page *page) {}
2cfb7455 1239static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1240static inline unsigned long kmem_cache_flags(unsigned long objsize,
1241 unsigned long flags, const char *name,
51cc5068 1242 void (*ctor)(void *))
ba0268a8
CL
1243{
1244 return flags;
1245}
41ecc55b 1246#define slub_debug 0
0f389ec6 1247
fdaa45e9
IM
1248#define disable_higher_order_debug 0
1249
0f389ec6
CL
1250static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251 { return 0; }
26c02cf0
AB
1252static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253 { return 0; }
205ab99d
CL
1254static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255 int objects) {}
1256static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257 int objects) {}
7d550c56
CL
1258
1259static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260 { return 0; }
1261
1262static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263 void *object) {}
1264
1265static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1266
ab4d5ed5 1267#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1268
81819f0f
CL
1269/*
1270 * Slab allocation and freeing
1271 */
65c3376a
CL
1272static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273 struct kmem_cache_order_objects oo)
1274{
1275 int order = oo_order(oo);
1276
b1eeab67
VN
1277 flags |= __GFP_NOTRACK;
1278
2154a336 1279 if (node == NUMA_NO_NODE)
65c3376a
CL
1280 return alloc_pages(flags, order);
1281 else
6b65aaf3 1282 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1283}
1284
81819f0f
CL
1285static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1286{
06428780 1287 struct page *page;
834f3d11 1288 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1289 gfp_t alloc_gfp;
81819f0f 1290
7e0528da
CL
1291 flags &= gfp_allowed_mask;
1292
1293 if (flags & __GFP_WAIT)
1294 local_irq_enable();
1295
b7a49f0d 1296 flags |= s->allocflags;
e12ba74d 1297
ba52270d
PE
1298 /*
1299 * Let the initial higher-order allocation fail under memory pressure
1300 * so we fall-back to the minimum order allocation.
1301 */
1302 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1303
1304 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1305 if (unlikely(!page)) {
1306 oo = s->min;
1307 /*
1308 * Allocation may have failed due to fragmentation.
1309 * Try a lower order alloc if possible
1310 */
1311 page = alloc_slab_page(flags, node, oo);
81819f0f 1312
7e0528da
CL
1313 if (page)
1314 stat(s, ORDER_FALLBACK);
65c3376a 1315 }
5a896d9e 1316
7e0528da
CL
1317 if (flags & __GFP_WAIT)
1318 local_irq_disable();
1319
1320 if (!page)
1321 return NULL;
1322
5a896d9e 1323 if (kmemcheck_enabled
5086c389 1324 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1325 int pages = 1 << oo_order(oo);
1326
1327 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1328
1329 /*
1330 * Objects from caches that have a constructor don't get
1331 * cleared when they're allocated, so we need to do it here.
1332 */
1333 if (s->ctor)
1334 kmemcheck_mark_uninitialized_pages(page, pages);
1335 else
1336 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1337 }
1338
834f3d11 1339 page->objects = oo_objects(oo);
81819f0f
CL
1340 mod_zone_page_state(page_zone(page),
1341 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1343 1 << oo_order(oo));
81819f0f
CL
1344
1345 return page;
1346}
1347
1348static void setup_object(struct kmem_cache *s, struct page *page,
1349 void *object)
1350{
3ec09742 1351 setup_object_debug(s, page, object);
4f104934 1352 if (unlikely(s->ctor))
51cc5068 1353 s->ctor(object);
81819f0f
CL
1354}
1355
1356static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1357{
1358 struct page *page;
81819f0f 1359 void *start;
81819f0f
CL
1360 void *last;
1361 void *p;
1362
6cb06229 1363 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1364
6cb06229
CL
1365 page = allocate_slab(s,
1366 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1367 if (!page)
1368 goto out;
1369
205ab99d 1370 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1371 page->slab = s;
1372 page->flags |= 1 << PG_slab;
81819f0f
CL
1373
1374 start = page_address(page);
81819f0f
CL
1375
1376 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1377 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1378
1379 last = start;
224a88be 1380 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1381 setup_object(s, page, last);
1382 set_freepointer(s, last, p);
1383 last = p;
1384 }
1385 setup_object(s, page, last);
a973e9dd 1386 set_freepointer(s, last, NULL);
81819f0f
CL
1387
1388 page->freelist = start;
e6e82ea1 1389 page->inuse = page->objects;
8cb0a506 1390 page->frozen = 1;
81819f0f 1391out:
81819f0f
CL
1392 return page;
1393}
1394
1395static void __free_slab(struct kmem_cache *s, struct page *page)
1396{
834f3d11
CL
1397 int order = compound_order(page);
1398 int pages = 1 << order;
81819f0f 1399
af537b0a 1400 if (kmem_cache_debug(s)) {
81819f0f
CL
1401 void *p;
1402
1403 slab_pad_check(s, page);
224a88be
CL
1404 for_each_object(p, s, page_address(page),
1405 page->objects)
f7cb1933 1406 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1407 }
1408
b1eeab67 1409 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1410
81819f0f
CL
1411 mod_zone_page_state(page_zone(page),
1412 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1414 -pages);
81819f0f 1415
49bd5221
CL
1416 __ClearPageSlab(page);
1417 reset_page_mapcount(page);
1eb5ac64
NP
1418 if (current->reclaim_state)
1419 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1420 __free_pages(page, order);
81819f0f
CL
1421}
1422
da9a638c
LJ
1423#define need_reserve_slab_rcu \
1424 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1425
81819f0f
CL
1426static void rcu_free_slab(struct rcu_head *h)
1427{
1428 struct page *page;
1429
da9a638c
LJ
1430 if (need_reserve_slab_rcu)
1431 page = virt_to_head_page(h);
1432 else
1433 page = container_of((struct list_head *)h, struct page, lru);
1434
81819f0f
CL
1435 __free_slab(page->slab, page);
1436}
1437
1438static void free_slab(struct kmem_cache *s, struct page *page)
1439{
1440 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1441 struct rcu_head *head;
1442
1443 if (need_reserve_slab_rcu) {
1444 int order = compound_order(page);
1445 int offset = (PAGE_SIZE << order) - s->reserved;
1446
1447 VM_BUG_ON(s->reserved != sizeof(*head));
1448 head = page_address(page) + offset;
1449 } else {
1450 /*
1451 * RCU free overloads the RCU head over the LRU
1452 */
1453 head = (void *)&page->lru;
1454 }
81819f0f
CL
1455
1456 call_rcu(head, rcu_free_slab);
1457 } else
1458 __free_slab(s, page);
1459}
1460
1461static void discard_slab(struct kmem_cache *s, struct page *page)
1462{
205ab99d 1463 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1464 free_slab(s, page);
1465}
1466
1467/*
5cc6eee8
CL
1468 * Management of partially allocated slabs.
1469 *
1470 * list_lock must be held.
81819f0f 1471 */
5cc6eee8 1472static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1473 struct page *page, int tail)
81819f0f 1474{
e95eed57 1475 n->nr_partial++;
136333d1 1476 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1477 list_add_tail(&page->lru, &n->partial);
1478 else
1479 list_add(&page->lru, &n->partial);
81819f0f
CL
1480}
1481
5cc6eee8
CL
1482/*
1483 * list_lock must be held.
1484 */
1485static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1486 struct page *page)
1487{
1488 list_del(&page->lru);
1489 n->nr_partial--;
1490}
1491
81819f0f 1492/*
5cc6eee8
CL
1493 * Lock slab, remove from the partial list and put the object into the
1494 * per cpu freelist.
81819f0f 1495 *
497b66f2
CL
1496 * Returns a list of objects or NULL if it fails.
1497 *
672bba3a 1498 * Must hold list_lock.
81819f0f 1499 */
497b66f2 1500static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1501 struct kmem_cache_node *n, struct page *page,
49e22585 1502 int mode)
81819f0f 1503{
2cfb7455
CL
1504 void *freelist;
1505 unsigned long counters;
1506 struct page new;
1507
2cfb7455
CL
1508 /*
1509 * Zap the freelist and set the frozen bit.
1510 * The old freelist is the list of objects for the
1511 * per cpu allocation list.
1512 */
1513 do {
1514 freelist = page->freelist;
1515 counters = page->counters;
1516 new.counters = counters;
49e22585
CL
1517 if (mode)
1518 new.inuse = page->objects;
2cfb7455
CL
1519
1520 VM_BUG_ON(new.frozen);
1521 new.frozen = 1;
1522
1d07171c 1523 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1524 freelist, counters,
1525 NULL, new.counters,
1526 "lock and freeze"));
1527
1528 remove_partial(n, page);
49e22585 1529 return freelist;
81819f0f
CL
1530}
1531
49e22585
CL
1532static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1533
81819f0f 1534/*
672bba3a 1535 * Try to allocate a partial slab from a specific node.
81819f0f 1536 */
497b66f2 1537static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1538 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1539{
49e22585
CL
1540 struct page *page, *page2;
1541 void *object = NULL;
81819f0f
CL
1542
1543 /*
1544 * Racy check. If we mistakenly see no partial slabs then we
1545 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1546 * partial slab and there is none available then get_partials()
1547 * will return NULL.
81819f0f
CL
1548 */
1549 if (!n || !n->nr_partial)
1550 return NULL;
1551
1552 spin_lock(&n->list_lock);
49e22585 1553 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1554 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1555 int available;
1556
1557 if (!t)
1558 break;
1559
12d79634 1560 if (!object) {
49e22585
CL
1561 c->page = page;
1562 c->node = page_to_nid(page);
1563 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1564 object = t;
1565 available = page->objects - page->inuse;
1566 } else {
1567 page->freelist = t;
1568 available = put_cpu_partial(s, page, 0);
1569 }
1570 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1571 break;
1572
497b66f2 1573 }
81819f0f 1574 spin_unlock(&n->list_lock);
497b66f2 1575 return object;
81819f0f
CL
1576}
1577
1578/*
672bba3a 1579 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1580 */
acd19fd1
CL
1581static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1582 struct kmem_cache_cpu *c)
81819f0f
CL
1583{
1584#ifdef CONFIG_NUMA
1585 struct zonelist *zonelist;
dd1a239f 1586 struct zoneref *z;
54a6eb5c
MG
1587 struct zone *zone;
1588 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1589 void *object;
81819f0f
CL
1590
1591 /*
672bba3a
CL
1592 * The defrag ratio allows a configuration of the tradeoffs between
1593 * inter node defragmentation and node local allocations. A lower
1594 * defrag_ratio increases the tendency to do local allocations
1595 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1596 *
672bba3a
CL
1597 * If the defrag_ratio is set to 0 then kmalloc() always
1598 * returns node local objects. If the ratio is higher then kmalloc()
1599 * may return off node objects because partial slabs are obtained
1600 * from other nodes and filled up.
81819f0f 1601 *
6446faa2 1602 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1603 * defrag_ratio = 1000) then every (well almost) allocation will
1604 * first attempt to defrag slab caches on other nodes. This means
1605 * scanning over all nodes to look for partial slabs which may be
1606 * expensive if we do it every time we are trying to find a slab
1607 * with available objects.
81819f0f 1608 */
9824601e
CL
1609 if (!s->remote_node_defrag_ratio ||
1610 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1611 return NULL;
1612
c0ff7453 1613 get_mems_allowed();
0e88460d 1614 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1615 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1616 struct kmem_cache_node *n;
1617
54a6eb5c 1618 n = get_node(s, zone_to_nid(zone));
81819f0f 1619
54a6eb5c 1620 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1621 n->nr_partial > s->min_partial) {
497b66f2
CL
1622 object = get_partial_node(s, n, c);
1623 if (object) {
c0ff7453 1624 put_mems_allowed();
497b66f2 1625 return object;
c0ff7453 1626 }
81819f0f
CL
1627 }
1628 }
c0ff7453 1629 put_mems_allowed();
81819f0f
CL
1630#endif
1631 return NULL;
1632}
1633
1634/*
1635 * Get a partial page, lock it and return it.
1636 */
497b66f2 1637static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1638 struct kmem_cache_cpu *c)
81819f0f 1639{
497b66f2 1640 void *object;
2154a336 1641 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1642
497b66f2
CL
1643 object = get_partial_node(s, get_node(s, searchnode), c);
1644 if (object || node != NUMA_NO_NODE)
1645 return object;
81819f0f 1646
acd19fd1 1647 return get_any_partial(s, flags, c);
81819f0f
CL
1648}
1649
8a5ec0ba
CL
1650#ifdef CONFIG_PREEMPT
1651/*
1652 * Calculate the next globally unique transaction for disambiguiation
1653 * during cmpxchg. The transactions start with the cpu number and are then
1654 * incremented by CONFIG_NR_CPUS.
1655 */
1656#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1657#else
1658/*
1659 * No preemption supported therefore also no need to check for
1660 * different cpus.
1661 */
1662#define TID_STEP 1
1663#endif
1664
1665static inline unsigned long next_tid(unsigned long tid)
1666{
1667 return tid + TID_STEP;
1668}
1669
1670static inline unsigned int tid_to_cpu(unsigned long tid)
1671{
1672 return tid % TID_STEP;
1673}
1674
1675static inline unsigned long tid_to_event(unsigned long tid)
1676{
1677 return tid / TID_STEP;
1678}
1679
1680static inline unsigned int init_tid(int cpu)
1681{
1682 return cpu;
1683}
1684
1685static inline void note_cmpxchg_failure(const char *n,
1686 const struct kmem_cache *s, unsigned long tid)
1687{
1688#ifdef SLUB_DEBUG_CMPXCHG
1689 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1690
1691 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1692
1693#ifdef CONFIG_PREEMPT
1694 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1695 printk("due to cpu change %d -> %d\n",
1696 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1697 else
1698#endif
1699 if (tid_to_event(tid) != tid_to_event(actual_tid))
1700 printk("due to cpu running other code. Event %ld->%ld\n",
1701 tid_to_event(tid), tid_to_event(actual_tid));
1702 else
1703 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1704 actual_tid, tid, next_tid(tid));
1705#endif
4fdccdfb 1706 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1707}
1708
8a5ec0ba
CL
1709void init_kmem_cache_cpus(struct kmem_cache *s)
1710{
8a5ec0ba
CL
1711 int cpu;
1712
1713 for_each_possible_cpu(cpu)
1714 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1715}
2cfb7455 1716
81819f0f
CL
1717/*
1718 * Remove the cpu slab
1719 */
dfb4f096 1720static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1721{
2cfb7455 1722 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1723 struct page *page = c->page;
2cfb7455
CL
1724 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1725 int lock = 0;
1726 enum slab_modes l = M_NONE, m = M_NONE;
1727 void *freelist;
1728 void *nextfree;
136333d1 1729 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1730 struct page new;
1731 struct page old;
1732
1733 if (page->freelist) {
84e554e6 1734 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1735 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1736 }
1737
1738 c->tid = next_tid(c->tid);
1739 c->page = NULL;
1740 freelist = c->freelist;
1741 c->freelist = NULL;
1742
894b8788 1743 /*
2cfb7455
CL
1744 * Stage one: Free all available per cpu objects back
1745 * to the page freelist while it is still frozen. Leave the
1746 * last one.
1747 *
1748 * There is no need to take the list->lock because the page
1749 * is still frozen.
1750 */
1751 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1752 void *prior;
1753 unsigned long counters;
1754
1755 do {
1756 prior = page->freelist;
1757 counters = page->counters;
1758 set_freepointer(s, freelist, prior);
1759 new.counters = counters;
1760 new.inuse--;
1761 VM_BUG_ON(!new.frozen);
1762
1d07171c 1763 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1764 prior, counters,
1765 freelist, new.counters,
1766 "drain percpu freelist"));
1767
1768 freelist = nextfree;
1769 }
1770
894b8788 1771 /*
2cfb7455
CL
1772 * Stage two: Ensure that the page is unfrozen while the
1773 * list presence reflects the actual number of objects
1774 * during unfreeze.
1775 *
1776 * We setup the list membership and then perform a cmpxchg
1777 * with the count. If there is a mismatch then the page
1778 * is not unfrozen but the page is on the wrong list.
1779 *
1780 * Then we restart the process which may have to remove
1781 * the page from the list that we just put it on again
1782 * because the number of objects in the slab may have
1783 * changed.
894b8788 1784 */
2cfb7455 1785redo:
894b8788 1786
2cfb7455
CL
1787 old.freelist = page->freelist;
1788 old.counters = page->counters;
1789 VM_BUG_ON(!old.frozen);
7c2e132c 1790
2cfb7455
CL
1791 /* Determine target state of the slab */
1792 new.counters = old.counters;
1793 if (freelist) {
1794 new.inuse--;
1795 set_freepointer(s, freelist, old.freelist);
1796 new.freelist = freelist;
1797 } else
1798 new.freelist = old.freelist;
1799
1800 new.frozen = 0;
1801
81107188 1802 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1803 m = M_FREE;
1804 else if (new.freelist) {
1805 m = M_PARTIAL;
1806 if (!lock) {
1807 lock = 1;
1808 /*
1809 * Taking the spinlock removes the possiblity
1810 * that acquire_slab() will see a slab page that
1811 * is frozen
1812 */
1813 spin_lock(&n->list_lock);
1814 }
1815 } else {
1816 m = M_FULL;
1817 if (kmem_cache_debug(s) && !lock) {
1818 lock = 1;
1819 /*
1820 * This also ensures that the scanning of full
1821 * slabs from diagnostic functions will not see
1822 * any frozen slabs.
1823 */
1824 spin_lock(&n->list_lock);
1825 }
1826 }
1827
1828 if (l != m) {
1829
1830 if (l == M_PARTIAL)
1831
1832 remove_partial(n, page);
1833
1834 else if (l == M_FULL)
894b8788 1835
2cfb7455
CL
1836 remove_full(s, page);
1837
1838 if (m == M_PARTIAL) {
1839
1840 add_partial(n, page, tail);
136333d1 1841 stat(s, tail);
2cfb7455
CL
1842
1843 } else if (m == M_FULL) {
894b8788 1844
2cfb7455
CL
1845 stat(s, DEACTIVATE_FULL);
1846 add_full(s, n, page);
1847
1848 }
1849 }
1850
1851 l = m;
1d07171c 1852 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1853 old.freelist, old.counters,
1854 new.freelist, new.counters,
1855 "unfreezing slab"))
1856 goto redo;
1857
2cfb7455
CL
1858 if (lock)
1859 spin_unlock(&n->list_lock);
1860
1861 if (m == M_FREE) {
1862 stat(s, DEACTIVATE_EMPTY);
1863 discard_slab(s, page);
1864 stat(s, FREE_SLAB);
894b8788 1865 }
81819f0f
CL
1866}
1867
49e22585
CL
1868/* Unfreeze all the cpu partial slabs */
1869static void unfreeze_partials(struct kmem_cache *s)
1870{
1871 struct kmem_cache_node *n = NULL;
1872 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1873 struct page *page, *discard_page = NULL;
49e22585
CL
1874
1875 while ((page = c->partial)) {
1876 enum slab_modes { M_PARTIAL, M_FREE };
1877 enum slab_modes l, m;
1878 struct page new;
1879 struct page old;
1880
1881 c->partial = page->next;
1882 l = M_FREE;
1883
1884 do {
1885
1886 old.freelist = page->freelist;
1887 old.counters = page->counters;
1888 VM_BUG_ON(!old.frozen);
1889
1890 new.counters = old.counters;
1891 new.freelist = old.freelist;
1892
1893 new.frozen = 0;
1894
dcc3be6a 1895 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
49e22585
CL
1896 m = M_FREE;
1897 else {
1898 struct kmem_cache_node *n2 = get_node(s,
1899 page_to_nid(page));
1900
1901 m = M_PARTIAL;
1902 if (n != n2) {
1903 if (n)
1904 spin_unlock(&n->list_lock);
1905
1906 n = n2;
1907 spin_lock(&n->list_lock);
1908 }
1909 }
1910
1911 if (l != m) {
4c493a5a 1912 if (l == M_PARTIAL) {
49e22585 1913 remove_partial(n, page);
4c493a5a
SL
1914 stat(s, FREE_REMOVE_PARTIAL);
1915 } else {
f64ae042
SL
1916 add_partial(n, page,
1917 DEACTIVATE_TO_TAIL);
4c493a5a
SL
1918 stat(s, FREE_ADD_PARTIAL);
1919 }
49e22585
CL
1920
1921 l = m;
1922 }
1923
1924 } while (!cmpxchg_double_slab(s, page,
1925 old.freelist, old.counters,
1926 new.freelist, new.counters,
1927 "unfreezing slab"));
1928
1929 if (m == M_FREE) {
9ada1934
SL
1930 page->next = discard_page;
1931 discard_page = page;
49e22585
CL
1932 }
1933 }
1934
1935 if (n)
1936 spin_unlock(&n->list_lock);
9ada1934
SL
1937
1938 while (discard_page) {
1939 page = discard_page;
1940 discard_page = discard_page->next;
1941
1942 stat(s, DEACTIVATE_EMPTY);
1943 discard_slab(s, page);
1944 stat(s, FREE_SLAB);
1945 }
49e22585
CL
1946}
1947
1948/*
1949 * Put a page that was just frozen (in __slab_free) into a partial page
1950 * slot if available. This is done without interrupts disabled and without
1951 * preemption disabled. The cmpxchg is racy and may put the partial page
1952 * onto a random cpus partial slot.
1953 *
1954 * If we did not find a slot then simply move all the partials to the
1955 * per node partial list.
1956 */
1957int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1958{
1959 struct page *oldpage;
1960 int pages;
1961 int pobjects;
1962
1963 do {
1964 pages = 0;
1965 pobjects = 0;
1966 oldpage = this_cpu_read(s->cpu_slab->partial);
1967
1968 if (oldpage) {
1969 pobjects = oldpage->pobjects;
1970 pages = oldpage->pages;
1971 if (drain && pobjects > s->cpu_partial) {
1972 unsigned long flags;
1973 /*
1974 * partial array is full. Move the existing
1975 * set to the per node partial list.
1976 */
1977 local_irq_save(flags);
1978 unfreeze_partials(s);
1979 local_irq_restore(flags);
1980 pobjects = 0;
1981 pages = 0;
1982 }
1983 }
1984
1985 pages++;
1986 pobjects += page->objects - page->inuse;
1987
1988 page->pages = pages;
1989 page->pobjects = pobjects;
1990 page->next = oldpage;
1991
933393f5 1992 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1993 stat(s, CPU_PARTIAL_FREE);
1994 return pobjects;
1995}
1996
dfb4f096 1997static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1998{
84e554e6 1999 stat(s, CPUSLAB_FLUSH);
dfb4f096 2000 deactivate_slab(s, c);
81819f0f
CL
2001}
2002
2003/*
2004 * Flush cpu slab.
6446faa2 2005 *
81819f0f
CL
2006 * Called from IPI handler with interrupts disabled.
2007 */
0c710013 2008static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2009{
9dfc6e68 2010 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2011
49e22585
CL
2012 if (likely(c)) {
2013 if (c->page)
2014 flush_slab(s, c);
2015
2016 unfreeze_partials(s);
2017 }
81819f0f
CL
2018}
2019
2020static void flush_cpu_slab(void *d)
2021{
2022 struct kmem_cache *s = d;
81819f0f 2023
dfb4f096 2024 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2025}
2026
2027static void flush_all(struct kmem_cache *s)
2028{
15c8b6c1 2029 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
2030}
2031
dfb4f096
CL
2032/*
2033 * Check if the objects in a per cpu structure fit numa
2034 * locality expectations.
2035 */
2036static inline int node_match(struct kmem_cache_cpu *c, int node)
2037{
2038#ifdef CONFIG_NUMA
2154a336 2039 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
2040 return 0;
2041#endif
2042 return 1;
2043}
2044
781b2ba6
PE
2045static int count_free(struct page *page)
2046{
2047 return page->objects - page->inuse;
2048}
2049
2050static unsigned long count_partial(struct kmem_cache_node *n,
2051 int (*get_count)(struct page *))
2052{
2053 unsigned long flags;
2054 unsigned long x = 0;
2055 struct page *page;
2056
2057 spin_lock_irqsave(&n->list_lock, flags);
2058 list_for_each_entry(page, &n->partial, lru)
2059 x += get_count(page);
2060 spin_unlock_irqrestore(&n->list_lock, flags);
2061 return x;
2062}
2063
26c02cf0
AB
2064static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2065{
2066#ifdef CONFIG_SLUB_DEBUG
2067 return atomic_long_read(&n->total_objects);
2068#else
2069 return 0;
2070#endif
2071}
2072
781b2ba6
PE
2073static noinline void
2074slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2075{
2076 int node;
2077
2078 printk(KERN_WARNING
2079 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2080 nid, gfpflags);
2081 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2082 "default order: %d, min order: %d\n", s->name, s->objsize,
2083 s->size, oo_order(s->oo), oo_order(s->min));
2084
fa5ec8a1
DR
2085 if (oo_order(s->min) > get_order(s->objsize))
2086 printk(KERN_WARNING " %s debugging increased min order, use "
2087 "slub_debug=O to disable.\n", s->name);
2088
781b2ba6
PE
2089 for_each_online_node(node) {
2090 struct kmem_cache_node *n = get_node(s, node);
2091 unsigned long nr_slabs;
2092 unsigned long nr_objs;
2093 unsigned long nr_free;
2094
2095 if (!n)
2096 continue;
2097
26c02cf0
AB
2098 nr_free = count_partial(n, count_free);
2099 nr_slabs = node_nr_slabs(n);
2100 nr_objs = node_nr_objs(n);
781b2ba6
PE
2101
2102 printk(KERN_WARNING
2103 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2104 node, nr_slabs, nr_objs, nr_free);
2105 }
2106}
2107
497b66f2
CL
2108static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2109 int node, struct kmem_cache_cpu **pc)
2110{
2111 void *object;
2112 struct kmem_cache_cpu *c;
2113 struct page *page = new_slab(s, flags, node);
2114
2115 if (page) {
2116 c = __this_cpu_ptr(s->cpu_slab);
2117 if (c->page)
2118 flush_slab(s, c);
2119
2120 /*
2121 * No other reference to the page yet so we can
2122 * muck around with it freely without cmpxchg
2123 */
2124 object = page->freelist;
2125 page->freelist = NULL;
2126
2127 stat(s, ALLOC_SLAB);
2128 c->node = page_to_nid(page);
2129 c->page = page;
2130 *pc = c;
2131 } else
2132 object = NULL;
2133
2134 return object;
2135}
2136
213eeb9f
CL
2137/*
2138 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2139 * or deactivate the page.
2140 *
2141 * The page is still frozen if the return value is not NULL.
2142 *
2143 * If this function returns NULL then the page has been unfrozen.
2144 */
2145static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2146{
2147 struct page new;
2148 unsigned long counters;
2149 void *freelist;
2150
2151 do {
2152 freelist = page->freelist;
2153 counters = page->counters;
2154 new.counters = counters;
2155 VM_BUG_ON(!new.frozen);
2156
2157 new.inuse = page->objects;
2158 new.frozen = freelist != NULL;
2159
2160 } while (!cmpxchg_double_slab(s, page,
2161 freelist, counters,
2162 NULL, new.counters,
2163 "get_freelist"));
2164
2165 return freelist;
2166}
2167
81819f0f 2168/*
894b8788
CL
2169 * Slow path. The lockless freelist is empty or we need to perform
2170 * debugging duties.
2171 *
894b8788
CL
2172 * Processing is still very fast if new objects have been freed to the
2173 * regular freelist. In that case we simply take over the regular freelist
2174 * as the lockless freelist and zap the regular freelist.
81819f0f 2175 *
894b8788
CL
2176 * If that is not working then we fall back to the partial lists. We take the
2177 * first element of the freelist as the object to allocate now and move the
2178 * rest of the freelist to the lockless freelist.
81819f0f 2179 *
894b8788 2180 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2181 * we need to allocate a new slab. This is the slowest path since it involves
2182 * a call to the page allocator and the setup of a new slab.
81819f0f 2183 */
ce71e27c
EGM
2184static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2185 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2186{
81819f0f 2187 void **object;
8a5ec0ba
CL
2188 unsigned long flags;
2189
2190 local_irq_save(flags);
2191#ifdef CONFIG_PREEMPT
2192 /*
2193 * We may have been preempted and rescheduled on a different
2194 * cpu before disabling interrupts. Need to reload cpu area
2195 * pointer.
2196 */
2197 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2198#endif
81819f0f 2199
497b66f2 2200 if (!c->page)
81819f0f 2201 goto new_slab;
49e22585 2202redo:
fc59c053 2203 if (unlikely(!node_match(c, node))) {
e36a2652 2204 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2205 deactivate_slab(s, c);
2206 goto new_slab;
2207 }
6446faa2 2208
73736e03
ED
2209 /* must check again c->freelist in case of cpu migration or IRQ */
2210 object = c->freelist;
2211 if (object)
2212 goto load_freelist;
03e404af 2213
2cfb7455 2214 stat(s, ALLOC_SLOWPATH);
03e404af 2215
213eeb9f 2216 object = get_freelist(s, c->page);
6446faa2 2217
49e22585 2218 if (!object) {
03e404af
CL
2219 c->page = NULL;
2220 stat(s, DEACTIVATE_BYPASS);
fc59c053 2221 goto new_slab;
03e404af 2222 }
6446faa2 2223
84e554e6 2224 stat(s, ALLOC_REFILL);
6446faa2 2225
894b8788 2226load_freelist:
ff12059e 2227 c->freelist = get_freepointer(s, object);
8a5ec0ba
CL
2228 c->tid = next_tid(c->tid);
2229 local_irq_restore(flags);
81819f0f
CL
2230 return object;
2231
81819f0f 2232new_slab:
2cfb7455 2233
49e22585
CL
2234 if (c->partial) {
2235 c->page = c->partial;
2236 c->partial = c->page->next;
2237 c->node = page_to_nid(c->page);
2238 stat(s, CPU_PARTIAL_ALLOC);
2239 c->freelist = NULL;
2240 goto redo;
81819f0f
CL
2241 }
2242
49e22585 2243 /* Then do expensive stuff like retrieving pages from the partial lists */
497b66f2 2244 object = get_partial(s, gfpflags, node, c);
b811c202 2245
497b66f2 2246 if (unlikely(!object)) {
01ad8a7b 2247
497b66f2 2248 object = new_slab_objects(s, gfpflags, node, &c);
2cfb7455 2249
497b66f2
CL
2250 if (unlikely(!object)) {
2251 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2252 slab_out_of_memory(s, gfpflags, node);
9e577e8b 2253
497b66f2
CL
2254 local_irq_restore(flags);
2255 return NULL;
2256 }
81819f0f 2257 }
2cfb7455 2258
497b66f2 2259 if (likely(!kmem_cache_debug(s)))
4b6f0750 2260 goto load_freelist;
2cfb7455 2261
497b66f2
CL
2262 /* Only entered in the debug case */
2263 if (!alloc_debug_processing(s, c->page, object, addr))
2264 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2265
2cfb7455 2266 c->freelist = get_freepointer(s, object);
442b06bc 2267 deactivate_slab(s, c);
15b7c514 2268 c->node = NUMA_NO_NODE;
a71ae47a
CL
2269 local_irq_restore(flags);
2270 return object;
894b8788
CL
2271}
2272
2273/*
2274 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2275 * have the fastpath folded into their functions. So no function call
2276 * overhead for requests that can be satisfied on the fastpath.
2277 *
2278 * The fastpath works by first checking if the lockless freelist can be used.
2279 * If not then __slab_alloc is called for slow processing.
2280 *
2281 * Otherwise we can simply pick the next object from the lockless free list.
2282 */
06428780 2283static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2284 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2285{
894b8788 2286 void **object;
dfb4f096 2287 struct kmem_cache_cpu *c;
8a5ec0ba 2288 unsigned long tid;
1f84260c 2289
c016b0bd 2290 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2291 return NULL;
1f84260c 2292
8a5ec0ba 2293redo:
8a5ec0ba
CL
2294
2295 /*
2296 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2297 * enabled. We may switch back and forth between cpus while
2298 * reading from one cpu area. That does not matter as long
2299 * as we end up on the original cpu again when doing the cmpxchg.
2300 */
9dfc6e68 2301 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2302
8a5ec0ba
CL
2303 /*
2304 * The transaction ids are globally unique per cpu and per operation on
2305 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2306 * occurs on the right processor and that there was no operation on the
2307 * linked list in between.
2308 */
2309 tid = c->tid;
2310 barrier();
8a5ec0ba 2311
9dfc6e68 2312 object = c->freelist;
9dfc6e68 2313 if (unlikely(!object || !node_match(c, node)))
894b8788 2314
dfb4f096 2315 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2316
2317 else {
0ad9500e
ED
2318 void *next_object = get_freepointer_safe(s, object);
2319
8a5ec0ba 2320 /*
25985edc 2321 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2322 * operation and if we are on the right processor.
2323 *
2324 * The cmpxchg does the following atomically (without lock semantics!)
2325 * 1. Relocate first pointer to the current per cpu area.
2326 * 2. Verify that tid and freelist have not been changed
2327 * 3. If they were not changed replace tid and freelist
2328 *
2329 * Since this is without lock semantics the protection is only against
2330 * code executing on this cpu *not* from access by other cpus.
2331 */
933393f5 2332 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2333 s->cpu_slab->freelist, s->cpu_slab->tid,
2334 object, tid,
0ad9500e 2335 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2336
2337 note_cmpxchg_failure("slab_alloc", s, tid);
2338 goto redo;
2339 }
0ad9500e 2340 prefetch_freepointer(s, next_object);
84e554e6 2341 stat(s, ALLOC_FASTPATH);
894b8788 2342 }
8a5ec0ba 2343
74e2134f 2344 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2345 memset(object, 0, s->objsize);
d07dbea4 2346
c016b0bd 2347 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2348
894b8788 2349 return object;
81819f0f
CL
2350}
2351
2352void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2353{
2154a336 2354 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2355
ca2b84cb 2356 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2357
2358 return ret;
81819f0f
CL
2359}
2360EXPORT_SYMBOL(kmem_cache_alloc);
2361
0f24f128 2362#ifdef CONFIG_TRACING
4a92379b
RK
2363void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2364{
2365 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2366 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2367 return ret;
2368}
2369EXPORT_SYMBOL(kmem_cache_alloc_trace);
2370
2371void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2372{
4a92379b
RK
2373 void *ret = kmalloc_order(size, flags, order);
2374 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2375 return ret;
5b882be4 2376}
4a92379b 2377EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2378#endif
2379
81819f0f
CL
2380#ifdef CONFIG_NUMA
2381void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2382{
5b882be4
EGM
2383 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2384
ca2b84cb
EGM
2385 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2386 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2387
2388 return ret;
81819f0f
CL
2389}
2390EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2391
0f24f128 2392#ifdef CONFIG_TRACING
4a92379b 2393void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2394 gfp_t gfpflags,
4a92379b 2395 int node, size_t size)
5b882be4 2396{
4a92379b
RK
2397 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2398
2399 trace_kmalloc_node(_RET_IP_, ret,
2400 size, s->size, gfpflags, node);
2401 return ret;
5b882be4 2402}
4a92379b 2403EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2404#endif
5d1f57e4 2405#endif
5b882be4 2406
81819f0f 2407/*
894b8788
CL
2408 * Slow patch handling. This may still be called frequently since objects
2409 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2410 *
894b8788
CL
2411 * So we still attempt to reduce cache line usage. Just take the slab
2412 * lock and free the item. If there is no additional partial page
2413 * handling required then we can return immediately.
81819f0f 2414 */
894b8788 2415static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2416 void *x, unsigned long addr)
81819f0f
CL
2417{
2418 void *prior;
2419 void **object = (void *)x;
2cfb7455
CL
2420 int was_frozen;
2421 int inuse;
2422 struct page new;
2423 unsigned long counters;
2424 struct kmem_cache_node *n = NULL;
61728d1e 2425 unsigned long uninitialized_var(flags);
81819f0f 2426
8a5ec0ba 2427 stat(s, FREE_SLOWPATH);
81819f0f 2428
8dc16c6c 2429 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2430 return;
6446faa2 2431
2cfb7455
CL
2432 do {
2433 prior = page->freelist;
2434 counters = page->counters;
2435 set_freepointer(s, object, prior);
2436 new.counters = counters;
2437 was_frozen = new.frozen;
2438 new.inuse--;
2439 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2440
2441 if (!kmem_cache_debug(s) && !prior)
2442
2443 /*
2444 * Slab was on no list before and will be partially empty
2445 * We can defer the list move and instead freeze it.
2446 */
2447 new.frozen = 1;
2448
2449 else { /* Needs to be taken off a list */
2450
2451 n = get_node(s, page_to_nid(page));
2452 /*
2453 * Speculatively acquire the list_lock.
2454 * If the cmpxchg does not succeed then we may
2455 * drop the list_lock without any processing.
2456 *
2457 * Otherwise the list_lock will synchronize with
2458 * other processors updating the list of slabs.
2459 */
2460 spin_lock_irqsave(&n->list_lock, flags);
2461
2462 }
2cfb7455
CL
2463 }
2464 inuse = new.inuse;
81819f0f 2465
2cfb7455
CL
2466 } while (!cmpxchg_double_slab(s, page,
2467 prior, counters,
2468 object, new.counters,
2469 "__slab_free"));
81819f0f 2470
2cfb7455 2471 if (likely(!n)) {
49e22585
CL
2472
2473 /*
2474 * If we just froze the page then put it onto the
2475 * per cpu partial list.
2476 */
2477 if (new.frozen && !was_frozen)
2478 put_cpu_partial(s, page, 1);
2479
2480 /*
2cfb7455
CL
2481 * The list lock was not taken therefore no list
2482 * activity can be necessary.
2483 */
2484 if (was_frozen)
2485 stat(s, FREE_FROZEN);
80f08c19 2486 return;
2cfb7455 2487 }
81819f0f
CL
2488
2489 /*
2cfb7455
CL
2490 * was_frozen may have been set after we acquired the list_lock in
2491 * an earlier loop. So we need to check it here again.
81819f0f 2492 */
2cfb7455
CL
2493 if (was_frozen)
2494 stat(s, FREE_FROZEN);
2495 else {
2496 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2497 goto slab_empty;
81819f0f 2498
2cfb7455
CL
2499 /*
2500 * Objects left in the slab. If it was not on the partial list before
2501 * then add it.
2502 */
2503 if (unlikely(!prior)) {
2504 remove_full(s, page);
136333d1 2505 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2506 stat(s, FREE_ADD_PARTIAL);
2507 }
8ff12cfc 2508 }
80f08c19 2509 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2510 return;
2511
2512slab_empty:
a973e9dd 2513 if (prior) {
81819f0f 2514 /*
6fbabb20 2515 * Slab on the partial list.
81819f0f 2516 */
5cc6eee8 2517 remove_partial(n, page);
84e554e6 2518 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2519 } else
2520 /* Slab must be on the full list */
2521 remove_full(s, page);
2cfb7455 2522
80f08c19 2523 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2524 stat(s, FREE_SLAB);
81819f0f 2525 discard_slab(s, page);
81819f0f
CL
2526}
2527
894b8788
CL
2528/*
2529 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2530 * can perform fastpath freeing without additional function calls.
2531 *
2532 * The fastpath is only possible if we are freeing to the current cpu slab
2533 * of this processor. This typically the case if we have just allocated
2534 * the item before.
2535 *
2536 * If fastpath is not possible then fall back to __slab_free where we deal
2537 * with all sorts of special processing.
2538 */
06428780 2539static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2540 struct page *page, void *x, unsigned long addr)
894b8788
CL
2541{
2542 void **object = (void *)x;
dfb4f096 2543 struct kmem_cache_cpu *c;
8a5ec0ba 2544 unsigned long tid;
1f84260c 2545
c016b0bd
CL
2546 slab_free_hook(s, x);
2547
8a5ec0ba
CL
2548redo:
2549 /*
2550 * Determine the currently cpus per cpu slab.
2551 * The cpu may change afterward. However that does not matter since
2552 * data is retrieved via this pointer. If we are on the same cpu
2553 * during the cmpxchg then the free will succedd.
2554 */
9dfc6e68 2555 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2556
8a5ec0ba
CL
2557 tid = c->tid;
2558 barrier();
c016b0bd 2559
442b06bc 2560 if (likely(page == c->page)) {
ff12059e 2561 set_freepointer(s, object, c->freelist);
8a5ec0ba 2562
933393f5 2563 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2564 s->cpu_slab->freelist, s->cpu_slab->tid,
2565 c->freelist, tid,
2566 object, next_tid(tid)))) {
2567
2568 note_cmpxchg_failure("slab_free", s, tid);
2569 goto redo;
2570 }
84e554e6 2571 stat(s, FREE_FASTPATH);
894b8788 2572 } else
ff12059e 2573 __slab_free(s, page, x, addr);
894b8788 2574
894b8788
CL
2575}
2576
81819f0f
CL
2577void kmem_cache_free(struct kmem_cache *s, void *x)
2578{
77c5e2d0 2579 struct page *page;
81819f0f 2580
b49af68f 2581 page = virt_to_head_page(x);
81819f0f 2582
ce71e27c 2583 slab_free(s, page, x, _RET_IP_);
5b882be4 2584
ca2b84cb 2585 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2586}
2587EXPORT_SYMBOL(kmem_cache_free);
2588
81819f0f 2589/*
672bba3a
CL
2590 * Object placement in a slab is made very easy because we always start at
2591 * offset 0. If we tune the size of the object to the alignment then we can
2592 * get the required alignment by putting one properly sized object after
2593 * another.
81819f0f
CL
2594 *
2595 * Notice that the allocation order determines the sizes of the per cpu
2596 * caches. Each processor has always one slab available for allocations.
2597 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2598 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2599 * locking overhead.
81819f0f
CL
2600 */
2601
2602/*
2603 * Mininum / Maximum order of slab pages. This influences locking overhead
2604 * and slab fragmentation. A higher order reduces the number of partial slabs
2605 * and increases the number of allocations possible without having to
2606 * take the list_lock.
2607 */
2608static int slub_min_order;
114e9e89 2609static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2610static int slub_min_objects;
81819f0f
CL
2611
2612/*
2613 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2614 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2615 */
2616static int slub_nomerge;
2617
81819f0f
CL
2618/*
2619 * Calculate the order of allocation given an slab object size.
2620 *
672bba3a
CL
2621 * The order of allocation has significant impact on performance and other
2622 * system components. Generally order 0 allocations should be preferred since
2623 * order 0 does not cause fragmentation in the page allocator. Larger objects
2624 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2625 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2626 * would be wasted.
2627 *
2628 * In order to reach satisfactory performance we must ensure that a minimum
2629 * number of objects is in one slab. Otherwise we may generate too much
2630 * activity on the partial lists which requires taking the list_lock. This is
2631 * less a concern for large slabs though which are rarely used.
81819f0f 2632 *
672bba3a
CL
2633 * slub_max_order specifies the order where we begin to stop considering the
2634 * number of objects in a slab as critical. If we reach slub_max_order then
2635 * we try to keep the page order as low as possible. So we accept more waste
2636 * of space in favor of a small page order.
81819f0f 2637 *
672bba3a
CL
2638 * Higher order allocations also allow the placement of more objects in a
2639 * slab and thereby reduce object handling overhead. If the user has
2640 * requested a higher mininum order then we start with that one instead of
2641 * the smallest order which will fit the object.
81819f0f 2642 */
5e6d444e 2643static inline int slab_order(int size, int min_objects,
ab9a0f19 2644 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2645{
2646 int order;
2647 int rem;
6300ea75 2648 int min_order = slub_min_order;
81819f0f 2649
ab9a0f19 2650 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2651 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2652
6300ea75 2653 for (order = max(min_order,
5e6d444e
CL
2654 fls(min_objects * size - 1) - PAGE_SHIFT);
2655 order <= max_order; order++) {
81819f0f 2656
5e6d444e 2657 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2658
ab9a0f19 2659 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2660 continue;
2661
ab9a0f19 2662 rem = (slab_size - reserved) % size;
81819f0f 2663
5e6d444e 2664 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2665 break;
2666
2667 }
672bba3a 2668
81819f0f
CL
2669 return order;
2670}
2671
ab9a0f19 2672static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2673{
2674 int order;
2675 int min_objects;
2676 int fraction;
e8120ff1 2677 int max_objects;
5e6d444e
CL
2678
2679 /*
2680 * Attempt to find best configuration for a slab. This
2681 * works by first attempting to generate a layout with
2682 * the best configuration and backing off gradually.
2683 *
2684 * First we reduce the acceptable waste in a slab. Then
2685 * we reduce the minimum objects required in a slab.
2686 */
2687 min_objects = slub_min_objects;
9b2cd506
CL
2688 if (!min_objects)
2689 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2690 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2691 min_objects = min(min_objects, max_objects);
2692
5e6d444e 2693 while (min_objects > 1) {
c124f5b5 2694 fraction = 16;
5e6d444e
CL
2695 while (fraction >= 4) {
2696 order = slab_order(size, min_objects,
ab9a0f19 2697 slub_max_order, fraction, reserved);
5e6d444e
CL
2698 if (order <= slub_max_order)
2699 return order;
2700 fraction /= 2;
2701 }
5086c389 2702 min_objects--;
5e6d444e
CL
2703 }
2704
2705 /*
2706 * We were unable to place multiple objects in a slab. Now
2707 * lets see if we can place a single object there.
2708 */
ab9a0f19 2709 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2710 if (order <= slub_max_order)
2711 return order;
2712
2713 /*
2714 * Doh this slab cannot be placed using slub_max_order.
2715 */
ab9a0f19 2716 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2717 if (order < MAX_ORDER)
5e6d444e
CL
2718 return order;
2719 return -ENOSYS;
2720}
2721
81819f0f 2722/*
672bba3a 2723 * Figure out what the alignment of the objects will be.
81819f0f
CL
2724 */
2725static unsigned long calculate_alignment(unsigned long flags,
2726 unsigned long align, unsigned long size)
2727{
2728 /*
6446faa2
CL
2729 * If the user wants hardware cache aligned objects then follow that
2730 * suggestion if the object is sufficiently large.
81819f0f 2731 *
6446faa2
CL
2732 * The hardware cache alignment cannot override the specified
2733 * alignment though. If that is greater then use it.
81819f0f 2734 */
b6210386
NP
2735 if (flags & SLAB_HWCACHE_ALIGN) {
2736 unsigned long ralign = cache_line_size();
2737 while (size <= ralign / 2)
2738 ralign /= 2;
2739 align = max(align, ralign);
2740 }
81819f0f
CL
2741
2742 if (align < ARCH_SLAB_MINALIGN)
b6210386 2743 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2744
2745 return ALIGN(align, sizeof(void *));
2746}
2747
5595cffc
PE
2748static void
2749init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2750{
2751 n->nr_partial = 0;
81819f0f
CL
2752 spin_lock_init(&n->list_lock);
2753 INIT_LIST_HEAD(&n->partial);
8ab1372f 2754#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2755 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2756 atomic_long_set(&n->total_objects, 0);
643b1138 2757 INIT_LIST_HEAD(&n->full);
8ab1372f 2758#endif
81819f0f
CL
2759}
2760
55136592 2761static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2762{
6c182dc0
CL
2763 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2764 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2765
8a5ec0ba 2766 /*
d4d84fef
CM
2767 * Must align to double word boundary for the double cmpxchg
2768 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2769 */
d4d84fef
CM
2770 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2771 2 * sizeof(void *));
8a5ec0ba
CL
2772
2773 if (!s->cpu_slab)
2774 return 0;
2775
2776 init_kmem_cache_cpus(s);
4c93c355 2777
8a5ec0ba 2778 return 1;
4c93c355 2779}
4c93c355 2780
51df1142
CL
2781static struct kmem_cache *kmem_cache_node;
2782
81819f0f
CL
2783/*
2784 * No kmalloc_node yet so do it by hand. We know that this is the first
2785 * slab on the node for this slabcache. There are no concurrent accesses
2786 * possible.
2787 *
2788 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2789 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2790 * memory on a fresh node that has no slab structures yet.
81819f0f 2791 */
55136592 2792static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2793{
2794 struct page *page;
2795 struct kmem_cache_node *n;
2796
51df1142 2797 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2798
51df1142 2799 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2800
2801 BUG_ON(!page);
a2f92ee7
CL
2802 if (page_to_nid(page) != node) {
2803 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2804 "node %d\n", node);
2805 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2806 "in order to be able to continue\n");
2807 }
2808
81819f0f
CL
2809 n = page->freelist;
2810 BUG_ON(!n);
51df1142 2811 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2812 page->inuse = 1;
8cb0a506 2813 page->frozen = 0;
51df1142 2814 kmem_cache_node->node[node] = n;
8ab1372f 2815#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2816 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2817 init_tracking(kmem_cache_node, n);
8ab1372f 2818#endif
51df1142
CL
2819 init_kmem_cache_node(n, kmem_cache_node);
2820 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2821
136333d1 2822 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2823}
2824
2825static void free_kmem_cache_nodes(struct kmem_cache *s)
2826{
2827 int node;
2828
f64dc58c 2829 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2830 struct kmem_cache_node *n = s->node[node];
51df1142 2831
73367bd8 2832 if (n)
51df1142
CL
2833 kmem_cache_free(kmem_cache_node, n);
2834
81819f0f
CL
2835 s->node[node] = NULL;
2836 }
2837}
2838
55136592 2839static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2840{
2841 int node;
81819f0f 2842
f64dc58c 2843 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2844 struct kmem_cache_node *n;
2845
73367bd8 2846 if (slab_state == DOWN) {
55136592 2847 early_kmem_cache_node_alloc(node);
73367bd8
AD
2848 continue;
2849 }
51df1142 2850 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2851 GFP_KERNEL, node);
81819f0f 2852
73367bd8
AD
2853 if (!n) {
2854 free_kmem_cache_nodes(s);
2855 return 0;
81819f0f 2856 }
73367bd8 2857
81819f0f 2858 s->node[node] = n;
5595cffc 2859 init_kmem_cache_node(n, s);
81819f0f
CL
2860 }
2861 return 1;
2862}
81819f0f 2863
c0bdb232 2864static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2865{
2866 if (min < MIN_PARTIAL)
2867 min = MIN_PARTIAL;
2868 else if (min > MAX_PARTIAL)
2869 min = MAX_PARTIAL;
2870 s->min_partial = min;
2871}
2872
81819f0f
CL
2873/*
2874 * calculate_sizes() determines the order and the distribution of data within
2875 * a slab object.
2876 */
06b285dc 2877static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2878{
2879 unsigned long flags = s->flags;
2880 unsigned long size = s->objsize;
2881 unsigned long align = s->align;
834f3d11 2882 int order;
81819f0f 2883
d8b42bf5
CL
2884 /*
2885 * Round up object size to the next word boundary. We can only
2886 * place the free pointer at word boundaries and this determines
2887 * the possible location of the free pointer.
2888 */
2889 size = ALIGN(size, sizeof(void *));
2890
2891#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2892 /*
2893 * Determine if we can poison the object itself. If the user of
2894 * the slab may touch the object after free or before allocation
2895 * then we should never poison the object itself.
2896 */
2897 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2898 !s->ctor)
81819f0f
CL
2899 s->flags |= __OBJECT_POISON;
2900 else
2901 s->flags &= ~__OBJECT_POISON;
2902
81819f0f
CL
2903
2904 /*
672bba3a 2905 * If we are Redzoning then check if there is some space between the
81819f0f 2906 * end of the object and the free pointer. If not then add an
672bba3a 2907 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2908 */
2909 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2910 size += sizeof(void *);
41ecc55b 2911#endif
81819f0f
CL
2912
2913 /*
672bba3a
CL
2914 * With that we have determined the number of bytes in actual use
2915 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2916 */
2917 s->inuse = size;
2918
2919 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2920 s->ctor)) {
81819f0f
CL
2921 /*
2922 * Relocate free pointer after the object if it is not
2923 * permitted to overwrite the first word of the object on
2924 * kmem_cache_free.
2925 *
2926 * This is the case if we do RCU, have a constructor or
2927 * destructor or are poisoning the objects.
2928 */
2929 s->offset = size;
2930 size += sizeof(void *);
2931 }
2932
c12b3c62 2933#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2934 if (flags & SLAB_STORE_USER)
2935 /*
2936 * Need to store information about allocs and frees after
2937 * the object.
2938 */
2939 size += 2 * sizeof(struct track);
2940
be7b3fbc 2941 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2942 /*
2943 * Add some empty padding so that we can catch
2944 * overwrites from earlier objects rather than let
2945 * tracking information or the free pointer be
0211a9c8 2946 * corrupted if a user writes before the start
81819f0f
CL
2947 * of the object.
2948 */
2949 size += sizeof(void *);
41ecc55b 2950#endif
672bba3a 2951
81819f0f
CL
2952 /*
2953 * Determine the alignment based on various parameters that the
65c02d4c
CL
2954 * user specified and the dynamic determination of cache line size
2955 * on bootup.
81819f0f
CL
2956 */
2957 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2958 s->align = align;
81819f0f
CL
2959
2960 /*
2961 * SLUB stores one object immediately after another beginning from
2962 * offset 0. In order to align the objects we have to simply size
2963 * each object to conform to the alignment.
2964 */
2965 size = ALIGN(size, align);
2966 s->size = size;
06b285dc
CL
2967 if (forced_order >= 0)
2968 order = forced_order;
2969 else
ab9a0f19 2970 order = calculate_order(size, s->reserved);
81819f0f 2971
834f3d11 2972 if (order < 0)
81819f0f
CL
2973 return 0;
2974
b7a49f0d 2975 s->allocflags = 0;
834f3d11 2976 if (order)
b7a49f0d
CL
2977 s->allocflags |= __GFP_COMP;
2978
2979 if (s->flags & SLAB_CACHE_DMA)
2980 s->allocflags |= SLUB_DMA;
2981
2982 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2983 s->allocflags |= __GFP_RECLAIMABLE;
2984
81819f0f
CL
2985 /*
2986 * Determine the number of objects per slab
2987 */
ab9a0f19
LJ
2988 s->oo = oo_make(order, size, s->reserved);
2989 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2990 if (oo_objects(s->oo) > oo_objects(s->max))
2991 s->max = s->oo;
81819f0f 2992
834f3d11 2993 return !!oo_objects(s->oo);
81819f0f
CL
2994
2995}
2996
55136592 2997static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2998 const char *name, size_t size,
2999 size_t align, unsigned long flags,
51cc5068 3000 void (*ctor)(void *))
81819f0f
CL
3001{
3002 memset(s, 0, kmem_size);
3003 s->name = name;
3004 s->ctor = ctor;
81819f0f 3005 s->objsize = size;
81819f0f 3006 s->align = align;
ba0268a8 3007 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3008 s->reserved = 0;
81819f0f 3009
da9a638c
LJ
3010 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3011 s->reserved = sizeof(struct rcu_head);
81819f0f 3012
06b285dc 3013 if (!calculate_sizes(s, -1))
81819f0f 3014 goto error;
3de47213
DR
3015 if (disable_higher_order_debug) {
3016 /*
3017 * Disable debugging flags that store metadata if the min slab
3018 * order increased.
3019 */
3020 if (get_order(s->size) > get_order(s->objsize)) {
3021 s->flags &= ~DEBUG_METADATA_FLAGS;
3022 s->offset = 0;
3023 if (!calculate_sizes(s, -1))
3024 goto error;
3025 }
3026 }
81819f0f 3027
2565409f
HC
3028#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3029 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3030 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3031 /* Enable fast mode */
3032 s->flags |= __CMPXCHG_DOUBLE;
3033#endif
3034
3b89d7d8
DR
3035 /*
3036 * The larger the object size is, the more pages we want on the partial
3037 * list to avoid pounding the page allocator excessively.
3038 */
49e22585
CL
3039 set_min_partial(s, ilog2(s->size) / 2);
3040
3041 /*
3042 * cpu_partial determined the maximum number of objects kept in the
3043 * per cpu partial lists of a processor.
3044 *
3045 * Per cpu partial lists mainly contain slabs that just have one
3046 * object freed. If they are used for allocation then they can be
3047 * filled up again with minimal effort. The slab will never hit the
3048 * per node partial lists and therefore no locking will be required.
3049 *
3050 * This setting also determines
3051 *
3052 * A) The number of objects from per cpu partial slabs dumped to the
3053 * per node list when we reach the limit.
9f264904 3054 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3055 * per node list when we run out of per cpu objects. We only fetch 50%
3056 * to keep some capacity around for frees.
3057 */
8f1e33da
CL
3058 if (kmem_cache_debug(s))
3059 s->cpu_partial = 0;
3060 else if (s->size >= PAGE_SIZE)
49e22585
CL
3061 s->cpu_partial = 2;
3062 else if (s->size >= 1024)
3063 s->cpu_partial = 6;
3064 else if (s->size >= 256)
3065 s->cpu_partial = 13;
3066 else
3067 s->cpu_partial = 30;
3068
81819f0f
CL
3069 s->refcount = 1;
3070#ifdef CONFIG_NUMA
e2cb96b7 3071 s->remote_node_defrag_ratio = 1000;
81819f0f 3072#endif
55136592 3073 if (!init_kmem_cache_nodes(s))
dfb4f096 3074 goto error;
81819f0f 3075
55136592 3076 if (alloc_kmem_cache_cpus(s))
81819f0f 3077 return 1;
ff12059e 3078
4c93c355 3079 free_kmem_cache_nodes(s);
81819f0f
CL
3080error:
3081 if (flags & SLAB_PANIC)
3082 panic("Cannot create slab %s size=%lu realsize=%u "
3083 "order=%u offset=%u flags=%lx\n",
834f3d11 3084 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3085 s->offset, flags);
3086 return 0;
3087}
81819f0f 3088
81819f0f
CL
3089/*
3090 * Determine the size of a slab object
3091 */
3092unsigned int kmem_cache_size(struct kmem_cache *s)
3093{
3094 return s->objsize;
3095}
3096EXPORT_SYMBOL(kmem_cache_size);
3097
33b12c38
CL
3098static void list_slab_objects(struct kmem_cache *s, struct page *page,
3099 const char *text)
3100{
3101#ifdef CONFIG_SLUB_DEBUG
3102 void *addr = page_address(page);
3103 void *p;
a5dd5c11
NK
3104 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3105 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3106 if (!map)
3107 return;
33b12c38
CL
3108 slab_err(s, page, "%s", text);
3109 slab_lock(page);
33b12c38 3110
5f80b13a 3111 get_map(s, page, map);
33b12c38
CL
3112 for_each_object(p, s, addr, page->objects) {
3113
3114 if (!test_bit(slab_index(p, s, addr), map)) {
3115 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3116 p, p - addr);
3117 print_tracking(s, p);
3118 }
3119 }
3120 slab_unlock(page);
bbd7d57b 3121 kfree(map);
33b12c38
CL
3122#endif
3123}
3124
81819f0f 3125/*
599870b1 3126 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3127 * This is called from kmem_cache_close(). We must be the last thread
3128 * using the cache and therefore we do not need to lock anymore.
81819f0f 3129 */
599870b1 3130static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3131{
81819f0f
CL
3132 struct page *page, *h;
3133
33b12c38 3134 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3135 if (!page->inuse) {
5cc6eee8 3136 remove_partial(n, page);
81819f0f 3137 discard_slab(s, page);
33b12c38
CL
3138 } else {
3139 list_slab_objects(s, page,
3140 "Objects remaining on kmem_cache_close()");
599870b1 3141 }
33b12c38 3142 }
81819f0f
CL
3143}
3144
3145/*
672bba3a 3146 * Release all resources used by a slab cache.
81819f0f 3147 */
0c710013 3148static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3149{
3150 int node;
3151
3152 flush_all(s);
9dfc6e68 3153 free_percpu(s->cpu_slab);
81819f0f 3154 /* Attempt to free all objects */
f64dc58c 3155 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3156 struct kmem_cache_node *n = get_node(s, node);
3157
599870b1
CL
3158 free_partial(s, n);
3159 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3160 return 1;
3161 }
3162 free_kmem_cache_nodes(s);
3163 return 0;
3164}
3165
3166/*
3167 * Close a cache and release the kmem_cache structure
3168 * (must be used for caches created using kmem_cache_create)
3169 */
3170void kmem_cache_destroy(struct kmem_cache *s)
3171{
3172 down_write(&slub_lock);
3173 s->refcount--;
3174 if (!s->refcount) {
3175 list_del(&s->list);
69cb8e6b 3176 up_write(&slub_lock);
d629d819
PE
3177 if (kmem_cache_close(s)) {
3178 printk(KERN_ERR "SLUB %s: %s called for cache that "
3179 "still has objects.\n", s->name, __func__);
3180 dump_stack();
3181 }
d76b1590
ED
3182 if (s->flags & SLAB_DESTROY_BY_RCU)
3183 rcu_barrier();
81819f0f 3184 sysfs_slab_remove(s);
69cb8e6b
CL
3185 } else
3186 up_write(&slub_lock);
81819f0f
CL
3187}
3188EXPORT_SYMBOL(kmem_cache_destroy);
3189
3190/********************************************************************
3191 * Kmalloc subsystem
3192 *******************************************************************/
3193
51df1142 3194struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3195EXPORT_SYMBOL(kmalloc_caches);
3196
51df1142
CL
3197static struct kmem_cache *kmem_cache;
3198
55136592 3199#ifdef CONFIG_ZONE_DMA
51df1142 3200static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3201#endif
3202
81819f0f
CL
3203static int __init setup_slub_min_order(char *str)
3204{
06428780 3205 get_option(&str, &slub_min_order);
81819f0f
CL
3206
3207 return 1;
3208}
3209
3210__setup("slub_min_order=", setup_slub_min_order);
3211
3212static int __init setup_slub_max_order(char *str)
3213{
06428780 3214 get_option(&str, &slub_max_order);
818cf590 3215 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3216
3217 return 1;
3218}
3219
3220__setup("slub_max_order=", setup_slub_max_order);
3221
3222static int __init setup_slub_min_objects(char *str)
3223{
06428780 3224 get_option(&str, &slub_min_objects);
81819f0f
CL
3225
3226 return 1;
3227}
3228
3229__setup("slub_min_objects=", setup_slub_min_objects);
3230
3231static int __init setup_slub_nomerge(char *str)
3232{
3233 slub_nomerge = 1;
3234 return 1;
3235}
3236
3237__setup("slub_nomerge", setup_slub_nomerge);
3238
51df1142
CL
3239static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3240 int size, unsigned int flags)
81819f0f 3241{
51df1142
CL
3242 struct kmem_cache *s;
3243
3244 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3245
83b519e8
PE
3246 /*
3247 * This function is called with IRQs disabled during early-boot on
3248 * single CPU so there's no need to take slub_lock here.
3249 */
55136592 3250 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3251 flags, NULL))
81819f0f
CL
3252 goto panic;
3253
3254 list_add(&s->list, &slab_caches);
51df1142 3255 return s;
81819f0f
CL
3256
3257panic:
3258 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3259 return NULL;
81819f0f
CL
3260}
3261
f1b26339
CL
3262/*
3263 * Conversion table for small slabs sizes / 8 to the index in the
3264 * kmalloc array. This is necessary for slabs < 192 since we have non power
3265 * of two cache sizes there. The size of larger slabs can be determined using
3266 * fls.
3267 */
3268static s8 size_index[24] = {
3269 3, /* 8 */
3270 4, /* 16 */
3271 5, /* 24 */
3272 5, /* 32 */
3273 6, /* 40 */
3274 6, /* 48 */
3275 6, /* 56 */
3276 6, /* 64 */
3277 1, /* 72 */
3278 1, /* 80 */
3279 1, /* 88 */
3280 1, /* 96 */
3281 7, /* 104 */
3282 7, /* 112 */
3283 7, /* 120 */
3284 7, /* 128 */
3285 2, /* 136 */
3286 2, /* 144 */
3287 2, /* 152 */
3288 2, /* 160 */
3289 2, /* 168 */
3290 2, /* 176 */
3291 2, /* 184 */
3292 2 /* 192 */
3293};
3294
acdfcd04
AK
3295static inline int size_index_elem(size_t bytes)
3296{
3297 return (bytes - 1) / 8;
3298}
3299
81819f0f
CL
3300static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3301{
f1b26339 3302 int index;
81819f0f 3303
f1b26339
CL
3304 if (size <= 192) {
3305 if (!size)
3306 return ZERO_SIZE_PTR;
81819f0f 3307
acdfcd04 3308 index = size_index[size_index_elem(size)];
aadb4bc4 3309 } else
f1b26339 3310 index = fls(size - 1);
81819f0f
CL
3311
3312#ifdef CONFIG_ZONE_DMA
f1b26339 3313 if (unlikely((flags & SLUB_DMA)))
51df1142 3314 return kmalloc_dma_caches[index];
f1b26339 3315
81819f0f 3316#endif
51df1142 3317 return kmalloc_caches[index];
81819f0f
CL
3318}
3319
3320void *__kmalloc(size_t size, gfp_t flags)
3321{
aadb4bc4 3322 struct kmem_cache *s;
5b882be4 3323 void *ret;
81819f0f 3324
ffadd4d0 3325 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3326 return kmalloc_large(size, flags);
aadb4bc4
CL
3327
3328 s = get_slab(size, flags);
3329
3330 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3331 return s;
3332
2154a336 3333 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3334
ca2b84cb 3335 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3336
3337 return ret;
81819f0f
CL
3338}
3339EXPORT_SYMBOL(__kmalloc);
3340
5d1f57e4 3341#ifdef CONFIG_NUMA
f619cfe1
CL
3342static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3343{
b1eeab67 3344 struct page *page;
e4f7c0b4 3345 void *ptr = NULL;
f619cfe1 3346
b1eeab67
VN
3347 flags |= __GFP_COMP | __GFP_NOTRACK;
3348 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3349 if (page)
e4f7c0b4
CM
3350 ptr = page_address(page);
3351
3352 kmemleak_alloc(ptr, size, 1, flags);
3353 return ptr;
f619cfe1
CL
3354}
3355
81819f0f
CL
3356void *__kmalloc_node(size_t size, gfp_t flags, int node)
3357{
aadb4bc4 3358 struct kmem_cache *s;
5b882be4 3359 void *ret;
81819f0f 3360
057685cf 3361 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3362 ret = kmalloc_large_node(size, flags, node);
3363
ca2b84cb
EGM
3364 trace_kmalloc_node(_RET_IP_, ret,
3365 size, PAGE_SIZE << get_order(size),
3366 flags, node);
5b882be4
EGM
3367
3368 return ret;
3369 }
aadb4bc4
CL
3370
3371 s = get_slab(size, flags);
3372
3373 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3374 return s;
3375
5b882be4
EGM
3376 ret = slab_alloc(s, flags, node, _RET_IP_);
3377
ca2b84cb 3378 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3379
3380 return ret;
81819f0f
CL
3381}
3382EXPORT_SYMBOL(__kmalloc_node);
3383#endif
3384
3385size_t ksize(const void *object)
3386{
272c1d21 3387 struct page *page;
81819f0f 3388
ef8b4520 3389 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3390 return 0;
3391
294a80a8 3392 page = virt_to_head_page(object);
294a80a8 3393
76994412
PE
3394 if (unlikely(!PageSlab(page))) {
3395 WARN_ON(!PageCompound(page));
294a80a8 3396 return PAGE_SIZE << compound_order(page);
76994412 3397 }
81819f0f 3398
b3d41885 3399 return slab_ksize(page->slab);
81819f0f 3400}
b1aabecd 3401EXPORT_SYMBOL(ksize);
81819f0f 3402
d18a90dd
BG
3403#ifdef CONFIG_SLUB_DEBUG
3404bool verify_mem_not_deleted(const void *x)
3405{
3406 struct page *page;
3407 void *object = (void *)x;
3408 unsigned long flags;
3409 bool rv;
3410
3411 if (unlikely(ZERO_OR_NULL_PTR(x)))
3412 return false;
3413
3414 local_irq_save(flags);
3415
3416 page = virt_to_head_page(x);
3417 if (unlikely(!PageSlab(page))) {
3418 /* maybe it was from stack? */
3419 rv = true;
3420 goto out_unlock;
3421 }
3422
3423 slab_lock(page);
3424 if (on_freelist(page->slab, page, object)) {
3425 object_err(page->slab, page, object, "Object is on free-list");
3426 rv = false;
3427 } else {
3428 rv = true;
3429 }
3430 slab_unlock(page);
3431
3432out_unlock:
3433 local_irq_restore(flags);
3434 return rv;
3435}
3436EXPORT_SYMBOL(verify_mem_not_deleted);
3437#endif
3438
81819f0f
CL
3439void kfree(const void *x)
3440{
81819f0f 3441 struct page *page;
5bb983b0 3442 void *object = (void *)x;
81819f0f 3443
2121db74
PE
3444 trace_kfree(_RET_IP_, x);
3445
2408c550 3446 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3447 return;
3448
b49af68f 3449 page = virt_to_head_page(x);
aadb4bc4 3450 if (unlikely(!PageSlab(page))) {
0937502a 3451 BUG_ON(!PageCompound(page));
e4f7c0b4 3452 kmemleak_free(x);
aadb4bc4
CL
3453 put_page(page);
3454 return;
3455 }
ce71e27c 3456 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3457}
3458EXPORT_SYMBOL(kfree);
3459
2086d26a 3460/*
672bba3a
CL
3461 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3462 * the remaining slabs by the number of items in use. The slabs with the
3463 * most items in use come first. New allocations will then fill those up
3464 * and thus they can be removed from the partial lists.
3465 *
3466 * The slabs with the least items are placed last. This results in them
3467 * being allocated from last increasing the chance that the last objects
3468 * are freed in them.
2086d26a
CL
3469 */
3470int kmem_cache_shrink(struct kmem_cache *s)
3471{
3472 int node;
3473 int i;
3474 struct kmem_cache_node *n;
3475 struct page *page;
3476 struct page *t;
205ab99d 3477 int objects = oo_objects(s->max);
2086d26a 3478 struct list_head *slabs_by_inuse =
834f3d11 3479 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3480 unsigned long flags;
3481
3482 if (!slabs_by_inuse)
3483 return -ENOMEM;
3484
3485 flush_all(s);
f64dc58c 3486 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3487 n = get_node(s, node);
3488
3489 if (!n->nr_partial)
3490 continue;
3491
834f3d11 3492 for (i = 0; i < objects; i++)
2086d26a
CL
3493 INIT_LIST_HEAD(slabs_by_inuse + i);
3494
3495 spin_lock_irqsave(&n->list_lock, flags);
3496
3497 /*
672bba3a 3498 * Build lists indexed by the items in use in each slab.
2086d26a 3499 *
672bba3a
CL
3500 * Note that concurrent frees may occur while we hold the
3501 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3502 */
3503 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3504 list_move(&page->lru, slabs_by_inuse + page->inuse);
3505 if (!page->inuse)
3506 n->nr_partial--;
2086d26a
CL
3507 }
3508
2086d26a 3509 /*
672bba3a
CL
3510 * Rebuild the partial list with the slabs filled up most
3511 * first and the least used slabs at the end.
2086d26a 3512 */
69cb8e6b 3513 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3514 list_splice(slabs_by_inuse + i, n->partial.prev);
3515
2086d26a 3516 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3517
3518 /* Release empty slabs */
3519 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3520 discard_slab(s, page);
2086d26a
CL
3521 }
3522
3523 kfree(slabs_by_inuse);
3524 return 0;
3525}
3526EXPORT_SYMBOL(kmem_cache_shrink);
3527
92a5bbc1 3528#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3529static int slab_mem_going_offline_callback(void *arg)
3530{
3531 struct kmem_cache *s;
3532
3533 down_read(&slub_lock);
3534 list_for_each_entry(s, &slab_caches, list)
3535 kmem_cache_shrink(s);
3536 up_read(&slub_lock);
3537
3538 return 0;
3539}
3540
3541static void slab_mem_offline_callback(void *arg)
3542{
3543 struct kmem_cache_node *n;
3544 struct kmem_cache *s;
3545 struct memory_notify *marg = arg;
3546 int offline_node;
3547
3548 offline_node = marg->status_change_nid;
3549
3550 /*
3551 * If the node still has available memory. we need kmem_cache_node
3552 * for it yet.
3553 */
3554 if (offline_node < 0)
3555 return;
3556
3557 down_read(&slub_lock);
3558 list_for_each_entry(s, &slab_caches, list) {
3559 n = get_node(s, offline_node);
3560 if (n) {
3561 /*
3562 * if n->nr_slabs > 0, slabs still exist on the node
3563 * that is going down. We were unable to free them,
c9404c9c 3564 * and offline_pages() function shouldn't call this
b9049e23
YG
3565 * callback. So, we must fail.
3566 */
0f389ec6 3567 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3568
3569 s->node[offline_node] = NULL;
8de66a0c 3570 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3571 }
3572 }
3573 up_read(&slub_lock);
3574}
3575
3576static int slab_mem_going_online_callback(void *arg)
3577{
3578 struct kmem_cache_node *n;
3579 struct kmem_cache *s;
3580 struct memory_notify *marg = arg;
3581 int nid = marg->status_change_nid;
3582 int ret = 0;
3583
3584 /*
3585 * If the node's memory is already available, then kmem_cache_node is
3586 * already created. Nothing to do.
3587 */
3588 if (nid < 0)
3589 return 0;
3590
3591 /*
0121c619 3592 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3593 * allocate a kmem_cache_node structure in order to bring the node
3594 * online.
3595 */
3596 down_read(&slub_lock);
3597 list_for_each_entry(s, &slab_caches, list) {
3598 /*
3599 * XXX: kmem_cache_alloc_node will fallback to other nodes
3600 * since memory is not yet available from the node that
3601 * is brought up.
3602 */
8de66a0c 3603 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3604 if (!n) {
3605 ret = -ENOMEM;
3606 goto out;
3607 }
5595cffc 3608 init_kmem_cache_node(n, s);
b9049e23
YG
3609 s->node[nid] = n;
3610 }
3611out:
3612 up_read(&slub_lock);
3613 return ret;
3614}
3615
3616static int slab_memory_callback(struct notifier_block *self,
3617 unsigned long action, void *arg)
3618{
3619 int ret = 0;
3620
3621 switch (action) {
3622 case MEM_GOING_ONLINE:
3623 ret = slab_mem_going_online_callback(arg);
3624 break;
3625 case MEM_GOING_OFFLINE:
3626 ret = slab_mem_going_offline_callback(arg);
3627 break;
3628 case MEM_OFFLINE:
3629 case MEM_CANCEL_ONLINE:
3630 slab_mem_offline_callback(arg);
3631 break;
3632 case MEM_ONLINE:
3633 case MEM_CANCEL_OFFLINE:
3634 break;
3635 }
dc19f9db
KH
3636 if (ret)
3637 ret = notifier_from_errno(ret);
3638 else
3639 ret = NOTIFY_OK;
b9049e23
YG
3640 return ret;
3641}
3642
3643#endif /* CONFIG_MEMORY_HOTPLUG */
3644
81819f0f
CL
3645/********************************************************************
3646 * Basic setup of slabs
3647 *******************************************************************/
3648
51df1142
CL
3649/*
3650 * Used for early kmem_cache structures that were allocated using
3651 * the page allocator
3652 */
3653
3654static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3655{
3656 int node;
3657
3658 list_add(&s->list, &slab_caches);
3659 s->refcount = -1;
3660
3661 for_each_node_state(node, N_NORMAL_MEMORY) {
3662 struct kmem_cache_node *n = get_node(s, node);
3663 struct page *p;
3664
3665 if (n) {
3666 list_for_each_entry(p, &n->partial, lru)
3667 p->slab = s;
3668
607bf324 3669#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3670 list_for_each_entry(p, &n->full, lru)
3671 p->slab = s;
3672#endif
3673 }
3674 }
3675}
3676
81819f0f
CL
3677void __init kmem_cache_init(void)
3678{
3679 int i;
4b356be0 3680 int caches = 0;
51df1142
CL
3681 struct kmem_cache *temp_kmem_cache;
3682 int order;
51df1142
CL
3683 struct kmem_cache *temp_kmem_cache_node;
3684 unsigned long kmalloc_size;
3685
fc8d8620
SG
3686 if (debug_guardpage_minorder())
3687 slub_max_order = 0;
3688
51df1142
CL
3689 kmem_size = offsetof(struct kmem_cache, node) +
3690 nr_node_ids * sizeof(struct kmem_cache_node *);
3691
3692 /* Allocate two kmem_caches from the page allocator */
3693 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3694 order = get_order(2 * kmalloc_size);
3695 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3696
81819f0f
CL
3697 /*
3698 * Must first have the slab cache available for the allocations of the
672bba3a 3699 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3700 * kmem_cache_open for slab_state == DOWN.
3701 */
51df1142
CL
3702 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3703
3704 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3705 sizeof(struct kmem_cache_node),
3706 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3707
0c40ba4f 3708 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3709
3710 /* Able to allocate the per node structures */
3711 slab_state = PARTIAL;
3712
51df1142
CL
3713 temp_kmem_cache = kmem_cache;
3714 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3715 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3716 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3717 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3718
51df1142
CL
3719 /*
3720 * Allocate kmem_cache_node properly from the kmem_cache slab.
3721 * kmem_cache_node is separately allocated so no need to
3722 * update any list pointers.
3723 */
3724 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3725
51df1142
CL
3726 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3727 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3728
3729 kmem_cache_bootstrap_fixup(kmem_cache_node);
3730
3731 caches++;
51df1142
CL
3732 kmem_cache_bootstrap_fixup(kmem_cache);
3733 caches++;
3734 /* Free temporary boot structure */
3735 free_pages((unsigned long)temp_kmem_cache, order);
3736
3737 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3738
3739 /*
3740 * Patch up the size_index table if we have strange large alignment
3741 * requirements for the kmalloc array. This is only the case for
6446faa2 3742 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3743 *
3744 * Largest permitted alignment is 256 bytes due to the way we
3745 * handle the index determination for the smaller caches.
3746 *
3747 * Make sure that nothing crazy happens if someone starts tinkering
3748 * around with ARCH_KMALLOC_MINALIGN
3749 */
3750 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3751 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3752
acdfcd04
AK
3753 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3754 int elem = size_index_elem(i);
3755 if (elem >= ARRAY_SIZE(size_index))
3756 break;
3757 size_index[elem] = KMALLOC_SHIFT_LOW;
3758 }
f1b26339 3759
acdfcd04
AK
3760 if (KMALLOC_MIN_SIZE == 64) {
3761 /*
3762 * The 96 byte size cache is not used if the alignment
3763 * is 64 byte.
3764 */
3765 for (i = 64 + 8; i <= 96; i += 8)
3766 size_index[size_index_elem(i)] = 7;
3767 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3768 /*
3769 * The 192 byte sized cache is not used if the alignment
3770 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3771 * instead.
3772 */
3773 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3774 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3775 }
3776
51df1142
CL
3777 /* Caches that are not of the two-to-the-power-of size */
3778 if (KMALLOC_MIN_SIZE <= 32) {
3779 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3780 caches++;
3781 }
3782
3783 if (KMALLOC_MIN_SIZE <= 64) {
3784 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3785 caches++;
3786 }
3787
3788 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3789 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3790 caches++;
3791 }
3792
81819f0f
CL
3793 slab_state = UP;
3794
3795 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3796 if (KMALLOC_MIN_SIZE <= 32) {
3797 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3798 BUG_ON(!kmalloc_caches[1]->name);
3799 }
3800
3801 if (KMALLOC_MIN_SIZE <= 64) {
3802 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3803 BUG_ON(!kmalloc_caches[2]->name);
3804 }
3805
d7278bd7
CL
3806 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3807 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3808
3809 BUG_ON(!s);
51df1142 3810 kmalloc_caches[i]->name = s;
d7278bd7 3811 }
81819f0f
CL
3812
3813#ifdef CONFIG_SMP
3814 register_cpu_notifier(&slab_notifier);
9dfc6e68 3815#endif
81819f0f 3816
55136592 3817#ifdef CONFIG_ZONE_DMA
51df1142
CL
3818 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3819 struct kmem_cache *s = kmalloc_caches[i];
55136592 3820
51df1142 3821 if (s && s->size) {
55136592
CL
3822 char *name = kasprintf(GFP_NOWAIT,
3823 "dma-kmalloc-%d", s->objsize);
3824
3825 BUG_ON(!name);
51df1142
CL
3826 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3827 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3828 }
3829 }
3830#endif
3adbefee
IM
3831 printk(KERN_INFO
3832 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3833 " CPUs=%d, Nodes=%d\n",
3834 caches, cache_line_size(),
81819f0f
CL
3835 slub_min_order, slub_max_order, slub_min_objects,
3836 nr_cpu_ids, nr_node_ids);
3837}
3838
7e85ee0c
PE
3839void __init kmem_cache_init_late(void)
3840{
7e85ee0c
PE
3841}
3842
81819f0f
CL
3843/*
3844 * Find a mergeable slab cache
3845 */
3846static int slab_unmergeable(struct kmem_cache *s)
3847{
3848 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3849 return 1;
3850
c59def9f 3851 if (s->ctor)
81819f0f
CL
3852 return 1;
3853
8ffa6875
CL
3854 /*
3855 * We may have set a slab to be unmergeable during bootstrap.
3856 */
3857 if (s->refcount < 0)
3858 return 1;
3859
81819f0f
CL
3860 return 0;
3861}
3862
3863static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3864 size_t align, unsigned long flags, const char *name,
51cc5068 3865 void (*ctor)(void *))
81819f0f 3866{
5b95a4ac 3867 struct kmem_cache *s;
81819f0f
CL
3868
3869 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3870 return NULL;
3871
c59def9f 3872 if (ctor)
81819f0f
CL
3873 return NULL;
3874
3875 size = ALIGN(size, sizeof(void *));
3876 align = calculate_alignment(flags, align, size);
3877 size = ALIGN(size, align);
ba0268a8 3878 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3879
5b95a4ac 3880 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3881 if (slab_unmergeable(s))
3882 continue;
3883
3884 if (size > s->size)
3885 continue;
3886
ba0268a8 3887 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3888 continue;
3889 /*
3890 * Check if alignment is compatible.
3891 * Courtesy of Adrian Drzewiecki
3892 */
06428780 3893 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3894 continue;
3895
3896 if (s->size - size >= sizeof(void *))
3897 continue;
3898
3899 return s;
3900 }
3901 return NULL;
3902}
3903
3904struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3905 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3906{
3907 struct kmem_cache *s;
84c1cf62 3908 char *n;
81819f0f 3909
fe1ff49d
BH
3910 if (WARN_ON(!name))
3911 return NULL;
3912
81819f0f 3913 down_write(&slub_lock);
ba0268a8 3914 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3915 if (s) {
3916 s->refcount++;
3917 /*
3918 * Adjust the object sizes so that we clear
3919 * the complete object on kzalloc.
3920 */
3921 s->objsize = max(s->objsize, (int)size);
3922 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3923
7b8f3b66 3924 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3925 s->refcount--;
81819f0f 3926 goto err;
7b8f3b66 3927 }
2bce6485 3928 up_write(&slub_lock);
a0e1d1be
CL
3929 return s;
3930 }
6446faa2 3931
84c1cf62
PE
3932 n = kstrdup(name, GFP_KERNEL);
3933 if (!n)
3934 goto err;
3935
a0e1d1be
CL
3936 s = kmalloc(kmem_size, GFP_KERNEL);
3937 if (s) {
84c1cf62 3938 if (kmem_cache_open(s, n,
c59def9f 3939 size, align, flags, ctor)) {
81819f0f 3940 list_add(&s->list, &slab_caches);
66c4c35c 3941 up_write(&slub_lock);
7b8f3b66 3942 if (sysfs_slab_add(s)) {
66c4c35c 3943 down_write(&slub_lock);
7b8f3b66 3944 list_del(&s->list);
84c1cf62 3945 kfree(n);
7b8f3b66 3946 kfree(s);
a0e1d1be 3947 goto err;
7b8f3b66 3948 }
a0e1d1be
CL
3949 return s;
3950 }
84c1cf62 3951 kfree(n);
a0e1d1be 3952 kfree(s);
81819f0f 3953 }
68cee4f1 3954err:
81819f0f 3955 up_write(&slub_lock);
81819f0f 3956
81819f0f
CL
3957 if (flags & SLAB_PANIC)
3958 panic("Cannot create slabcache %s\n", name);
3959 else
3960 s = NULL;
3961 return s;
3962}
3963EXPORT_SYMBOL(kmem_cache_create);
3964
81819f0f 3965#ifdef CONFIG_SMP
81819f0f 3966/*
672bba3a
CL
3967 * Use the cpu notifier to insure that the cpu slabs are flushed when
3968 * necessary.
81819f0f
CL
3969 */
3970static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3971 unsigned long action, void *hcpu)
3972{
3973 long cpu = (long)hcpu;
5b95a4ac
CL
3974 struct kmem_cache *s;
3975 unsigned long flags;
81819f0f
CL
3976
3977 switch (action) {
3978 case CPU_UP_CANCELED:
8bb78442 3979 case CPU_UP_CANCELED_FROZEN:
81819f0f 3980 case CPU_DEAD:
8bb78442 3981 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3982 down_read(&slub_lock);
3983 list_for_each_entry(s, &slab_caches, list) {
3984 local_irq_save(flags);
3985 __flush_cpu_slab(s, cpu);
3986 local_irq_restore(flags);
3987 }
3988 up_read(&slub_lock);
81819f0f
CL
3989 break;
3990 default:
3991 break;
3992 }
3993 return NOTIFY_OK;
3994}
3995
06428780 3996static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3997 .notifier_call = slab_cpuup_callback
06428780 3998};
81819f0f
CL
3999
4000#endif
4001
ce71e27c 4002void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4003{
aadb4bc4 4004 struct kmem_cache *s;
94b528d0 4005 void *ret;
aadb4bc4 4006
ffadd4d0 4007 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4008 return kmalloc_large(size, gfpflags);
4009
aadb4bc4 4010 s = get_slab(size, gfpflags);
81819f0f 4011
2408c550 4012 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4013 return s;
81819f0f 4014
2154a336 4015 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4016
25985edc 4017 /* Honor the call site pointer we received. */
ca2b84cb 4018 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4019
4020 return ret;
81819f0f
CL
4021}
4022
5d1f57e4 4023#ifdef CONFIG_NUMA
81819f0f 4024void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4025 int node, unsigned long caller)
81819f0f 4026{
aadb4bc4 4027 struct kmem_cache *s;
94b528d0 4028 void *ret;
aadb4bc4 4029
d3e14aa3
XF
4030 if (unlikely(size > SLUB_MAX_SIZE)) {
4031 ret = kmalloc_large_node(size, gfpflags, node);
4032
4033 trace_kmalloc_node(caller, ret,
4034 size, PAGE_SIZE << get_order(size),
4035 gfpflags, node);
4036
4037 return ret;
4038 }
eada35ef 4039
aadb4bc4 4040 s = get_slab(size, gfpflags);
81819f0f 4041
2408c550 4042 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4043 return s;
81819f0f 4044
94b528d0
EGM
4045 ret = slab_alloc(s, gfpflags, node, caller);
4046
25985edc 4047 /* Honor the call site pointer we received. */
ca2b84cb 4048 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4049
4050 return ret;
81819f0f 4051}
5d1f57e4 4052#endif
81819f0f 4053
ab4d5ed5 4054#ifdef CONFIG_SYSFS
205ab99d
CL
4055static int count_inuse(struct page *page)
4056{
4057 return page->inuse;
4058}
4059
4060static int count_total(struct page *page)
4061{
4062 return page->objects;
4063}
ab4d5ed5 4064#endif
205ab99d 4065
ab4d5ed5 4066#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4067static int validate_slab(struct kmem_cache *s, struct page *page,
4068 unsigned long *map)
53e15af0
CL
4069{
4070 void *p;
a973e9dd 4071 void *addr = page_address(page);
53e15af0
CL
4072
4073 if (!check_slab(s, page) ||
4074 !on_freelist(s, page, NULL))
4075 return 0;
4076
4077 /* Now we know that a valid freelist exists */
39b26464 4078 bitmap_zero(map, page->objects);
53e15af0 4079
5f80b13a
CL
4080 get_map(s, page, map);
4081 for_each_object(p, s, addr, page->objects) {
4082 if (test_bit(slab_index(p, s, addr), map))
4083 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4084 return 0;
53e15af0
CL
4085 }
4086
224a88be 4087 for_each_object(p, s, addr, page->objects)
7656c72b 4088 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4089 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4090 return 0;
4091 return 1;
4092}
4093
434e245d
CL
4094static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4095 unsigned long *map)
53e15af0 4096{
881db7fb
CL
4097 slab_lock(page);
4098 validate_slab(s, page, map);
4099 slab_unlock(page);
53e15af0
CL
4100}
4101
434e245d
CL
4102static int validate_slab_node(struct kmem_cache *s,
4103 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4104{
4105 unsigned long count = 0;
4106 struct page *page;
4107 unsigned long flags;
4108
4109 spin_lock_irqsave(&n->list_lock, flags);
4110
4111 list_for_each_entry(page, &n->partial, lru) {
434e245d 4112 validate_slab_slab(s, page, map);
53e15af0
CL
4113 count++;
4114 }
4115 if (count != n->nr_partial)
4116 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4117 "counter=%ld\n", s->name, count, n->nr_partial);
4118
4119 if (!(s->flags & SLAB_STORE_USER))
4120 goto out;
4121
4122 list_for_each_entry(page, &n->full, lru) {
434e245d 4123 validate_slab_slab(s, page, map);
53e15af0
CL
4124 count++;
4125 }
4126 if (count != atomic_long_read(&n->nr_slabs))
4127 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4128 "counter=%ld\n", s->name, count,
4129 atomic_long_read(&n->nr_slabs));
4130
4131out:
4132 spin_unlock_irqrestore(&n->list_lock, flags);
4133 return count;
4134}
4135
434e245d 4136static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4137{
4138 int node;
4139 unsigned long count = 0;
205ab99d 4140 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4141 sizeof(unsigned long), GFP_KERNEL);
4142
4143 if (!map)
4144 return -ENOMEM;
53e15af0
CL
4145
4146 flush_all(s);
f64dc58c 4147 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4148 struct kmem_cache_node *n = get_node(s, node);
4149
434e245d 4150 count += validate_slab_node(s, n, map);
53e15af0 4151 }
434e245d 4152 kfree(map);
53e15af0
CL
4153 return count;
4154}
88a420e4 4155/*
672bba3a 4156 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4157 * and freed.
4158 */
4159
4160struct location {
4161 unsigned long count;
ce71e27c 4162 unsigned long addr;
45edfa58
CL
4163 long long sum_time;
4164 long min_time;
4165 long max_time;
4166 long min_pid;
4167 long max_pid;
174596a0 4168 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4169 nodemask_t nodes;
88a420e4
CL
4170};
4171
4172struct loc_track {
4173 unsigned long max;
4174 unsigned long count;
4175 struct location *loc;
4176};
4177
4178static void free_loc_track(struct loc_track *t)
4179{
4180 if (t->max)
4181 free_pages((unsigned long)t->loc,
4182 get_order(sizeof(struct location) * t->max));
4183}
4184
68dff6a9 4185static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4186{
4187 struct location *l;
4188 int order;
4189
88a420e4
CL
4190 order = get_order(sizeof(struct location) * max);
4191
68dff6a9 4192 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4193 if (!l)
4194 return 0;
4195
4196 if (t->count) {
4197 memcpy(l, t->loc, sizeof(struct location) * t->count);
4198 free_loc_track(t);
4199 }
4200 t->max = max;
4201 t->loc = l;
4202 return 1;
4203}
4204
4205static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4206 const struct track *track)
88a420e4
CL
4207{
4208 long start, end, pos;
4209 struct location *l;
ce71e27c 4210 unsigned long caddr;
45edfa58 4211 unsigned long age = jiffies - track->when;
88a420e4
CL
4212
4213 start = -1;
4214 end = t->count;
4215
4216 for ( ; ; ) {
4217 pos = start + (end - start + 1) / 2;
4218
4219 /*
4220 * There is nothing at "end". If we end up there
4221 * we need to add something to before end.
4222 */
4223 if (pos == end)
4224 break;
4225
4226 caddr = t->loc[pos].addr;
45edfa58
CL
4227 if (track->addr == caddr) {
4228
4229 l = &t->loc[pos];
4230 l->count++;
4231 if (track->when) {
4232 l->sum_time += age;
4233 if (age < l->min_time)
4234 l->min_time = age;
4235 if (age > l->max_time)
4236 l->max_time = age;
4237
4238 if (track->pid < l->min_pid)
4239 l->min_pid = track->pid;
4240 if (track->pid > l->max_pid)
4241 l->max_pid = track->pid;
4242
174596a0
RR
4243 cpumask_set_cpu(track->cpu,
4244 to_cpumask(l->cpus));
45edfa58
CL
4245 }
4246 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4247 return 1;
4248 }
4249
45edfa58 4250 if (track->addr < caddr)
88a420e4
CL
4251 end = pos;
4252 else
4253 start = pos;
4254 }
4255
4256 /*
672bba3a 4257 * Not found. Insert new tracking element.
88a420e4 4258 */
68dff6a9 4259 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4260 return 0;
4261
4262 l = t->loc + pos;
4263 if (pos < t->count)
4264 memmove(l + 1, l,
4265 (t->count - pos) * sizeof(struct location));
4266 t->count++;
4267 l->count = 1;
45edfa58
CL
4268 l->addr = track->addr;
4269 l->sum_time = age;
4270 l->min_time = age;
4271 l->max_time = age;
4272 l->min_pid = track->pid;
4273 l->max_pid = track->pid;
174596a0
RR
4274 cpumask_clear(to_cpumask(l->cpus));
4275 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4276 nodes_clear(l->nodes);
4277 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4278 return 1;
4279}
4280
4281static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4282 struct page *page, enum track_item alloc,
a5dd5c11 4283 unsigned long *map)
88a420e4 4284{
a973e9dd 4285 void *addr = page_address(page);
88a420e4
CL
4286 void *p;
4287
39b26464 4288 bitmap_zero(map, page->objects);
5f80b13a 4289 get_map(s, page, map);
88a420e4 4290
224a88be 4291 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4292 if (!test_bit(slab_index(p, s, addr), map))
4293 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4294}
4295
4296static int list_locations(struct kmem_cache *s, char *buf,
4297 enum track_item alloc)
4298{
e374d483 4299 int len = 0;
88a420e4 4300 unsigned long i;
68dff6a9 4301 struct loc_track t = { 0, 0, NULL };
88a420e4 4302 int node;
bbd7d57b
ED
4303 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4304 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4305
bbd7d57b
ED
4306 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4307 GFP_TEMPORARY)) {
4308 kfree(map);
68dff6a9 4309 return sprintf(buf, "Out of memory\n");
bbd7d57b 4310 }
88a420e4
CL
4311 /* Push back cpu slabs */
4312 flush_all(s);
4313
f64dc58c 4314 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4315 struct kmem_cache_node *n = get_node(s, node);
4316 unsigned long flags;
4317 struct page *page;
4318
9e86943b 4319 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4320 continue;
4321
4322 spin_lock_irqsave(&n->list_lock, flags);
4323 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4324 process_slab(&t, s, page, alloc, map);
88a420e4 4325 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4326 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4327 spin_unlock_irqrestore(&n->list_lock, flags);
4328 }
4329
4330 for (i = 0; i < t.count; i++) {
45edfa58 4331 struct location *l = &t.loc[i];
88a420e4 4332
9c246247 4333 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4334 break;
e374d483 4335 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4336
4337 if (l->addr)
62c70bce 4338 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4339 else
e374d483 4340 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4341
4342 if (l->sum_time != l->min_time) {
e374d483 4343 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4344 l->min_time,
4345 (long)div_u64(l->sum_time, l->count),
4346 l->max_time);
45edfa58 4347 } else
e374d483 4348 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4349 l->min_time);
4350
4351 if (l->min_pid != l->max_pid)
e374d483 4352 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4353 l->min_pid, l->max_pid);
4354 else
e374d483 4355 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4356 l->min_pid);
4357
174596a0
RR
4358 if (num_online_cpus() > 1 &&
4359 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4360 len < PAGE_SIZE - 60) {
4361 len += sprintf(buf + len, " cpus=");
4362 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4363 to_cpumask(l->cpus));
45edfa58
CL
4364 }
4365
62bc62a8 4366 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4367 len < PAGE_SIZE - 60) {
4368 len += sprintf(buf + len, " nodes=");
4369 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4370 l->nodes);
4371 }
4372
e374d483 4373 len += sprintf(buf + len, "\n");
88a420e4
CL
4374 }
4375
4376 free_loc_track(&t);
bbd7d57b 4377 kfree(map);
88a420e4 4378 if (!t.count)
e374d483
HH
4379 len += sprintf(buf, "No data\n");
4380 return len;
88a420e4 4381}
ab4d5ed5 4382#endif
88a420e4 4383
a5a84755
CL
4384#ifdef SLUB_RESILIENCY_TEST
4385static void resiliency_test(void)
4386{
4387 u8 *p;
4388
4389 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4390
4391 printk(KERN_ERR "SLUB resiliency testing\n");
4392 printk(KERN_ERR "-----------------------\n");
4393 printk(KERN_ERR "A. Corruption after allocation\n");
4394
4395 p = kzalloc(16, GFP_KERNEL);
4396 p[16] = 0x12;
4397 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4398 " 0x12->0x%p\n\n", p + 16);
4399
4400 validate_slab_cache(kmalloc_caches[4]);
4401
4402 /* Hmmm... The next two are dangerous */
4403 p = kzalloc(32, GFP_KERNEL);
4404 p[32 + sizeof(void *)] = 0x34;
4405 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4406 " 0x34 -> -0x%p\n", p);
4407 printk(KERN_ERR
4408 "If allocated object is overwritten then not detectable\n\n");
4409
4410 validate_slab_cache(kmalloc_caches[5]);
4411 p = kzalloc(64, GFP_KERNEL);
4412 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4413 *p = 0x56;
4414 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4415 p);
4416 printk(KERN_ERR
4417 "If allocated object is overwritten then not detectable\n\n");
4418 validate_slab_cache(kmalloc_caches[6]);
4419
4420 printk(KERN_ERR "\nB. Corruption after free\n");
4421 p = kzalloc(128, GFP_KERNEL);
4422 kfree(p);
4423 *p = 0x78;
4424 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4425 validate_slab_cache(kmalloc_caches[7]);
4426
4427 p = kzalloc(256, GFP_KERNEL);
4428 kfree(p);
4429 p[50] = 0x9a;
4430 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4431 p);
4432 validate_slab_cache(kmalloc_caches[8]);
4433
4434 p = kzalloc(512, GFP_KERNEL);
4435 kfree(p);
4436 p[512] = 0xab;
4437 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4438 validate_slab_cache(kmalloc_caches[9]);
4439}
4440#else
4441#ifdef CONFIG_SYSFS
4442static void resiliency_test(void) {};
4443#endif
4444#endif
4445
ab4d5ed5 4446#ifdef CONFIG_SYSFS
81819f0f 4447enum slab_stat_type {
205ab99d
CL
4448 SL_ALL, /* All slabs */
4449 SL_PARTIAL, /* Only partially allocated slabs */
4450 SL_CPU, /* Only slabs used for cpu caches */
4451 SL_OBJECTS, /* Determine allocated objects not slabs */
4452 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4453};
4454
205ab99d 4455#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4456#define SO_PARTIAL (1 << SL_PARTIAL)
4457#define SO_CPU (1 << SL_CPU)
4458#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4459#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4460
62e5c4b4
CG
4461static ssize_t show_slab_objects(struct kmem_cache *s,
4462 char *buf, unsigned long flags)
81819f0f
CL
4463{
4464 unsigned long total = 0;
81819f0f
CL
4465 int node;
4466 int x;
4467 unsigned long *nodes;
4468 unsigned long *per_cpu;
4469
4470 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4471 if (!nodes)
4472 return -ENOMEM;
81819f0f
CL
4473 per_cpu = nodes + nr_node_ids;
4474
205ab99d
CL
4475 if (flags & SO_CPU) {
4476 int cpu;
81819f0f 4477
205ab99d 4478 for_each_possible_cpu(cpu) {
9dfc6e68 4479 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
bc6697d8 4480 int node = ACCESS_ONCE(c->node);
49e22585 4481 struct page *page;
dfb4f096 4482
bc6697d8 4483 if (node < 0)
205ab99d 4484 continue;
bc6697d8
ED
4485 page = ACCESS_ONCE(c->page);
4486 if (page) {
4487 if (flags & SO_TOTAL)
4488 x = page->objects;
205ab99d 4489 else if (flags & SO_OBJECTS)
bc6697d8 4490 x = page->inuse;
81819f0f
CL
4491 else
4492 x = 1;
205ab99d 4493
81819f0f 4494 total += x;
bc6697d8 4495 nodes[node] += x;
81819f0f 4496 }
49e22585
CL
4497 page = c->partial;
4498
4499 if (page) {
4500 x = page->pobjects;
bc6697d8
ED
4501 total += x;
4502 nodes[node] += x;
49e22585 4503 }
bc6697d8 4504 per_cpu[node]++;
81819f0f
CL
4505 }
4506 }
4507
04d94879 4508 lock_memory_hotplug();
ab4d5ed5 4509#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4510 if (flags & SO_ALL) {
4511 for_each_node_state(node, N_NORMAL_MEMORY) {
4512 struct kmem_cache_node *n = get_node(s, node);
4513
4514 if (flags & SO_TOTAL)
4515 x = atomic_long_read(&n->total_objects);
4516 else if (flags & SO_OBJECTS)
4517 x = atomic_long_read(&n->total_objects) -
4518 count_partial(n, count_free);
81819f0f 4519
81819f0f 4520 else
205ab99d 4521 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4522 total += x;
4523 nodes[node] += x;
4524 }
4525
ab4d5ed5
CL
4526 } else
4527#endif
4528 if (flags & SO_PARTIAL) {
205ab99d
CL
4529 for_each_node_state(node, N_NORMAL_MEMORY) {
4530 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4531
205ab99d
CL
4532 if (flags & SO_TOTAL)
4533 x = count_partial(n, count_total);
4534 else if (flags & SO_OBJECTS)
4535 x = count_partial(n, count_inuse);
81819f0f 4536 else
205ab99d 4537 x = n->nr_partial;
81819f0f
CL
4538 total += x;
4539 nodes[node] += x;
4540 }
4541 }
81819f0f
CL
4542 x = sprintf(buf, "%lu", total);
4543#ifdef CONFIG_NUMA
f64dc58c 4544 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4545 if (nodes[node])
4546 x += sprintf(buf + x, " N%d=%lu",
4547 node, nodes[node]);
4548#endif
04d94879 4549 unlock_memory_hotplug();
81819f0f
CL
4550 kfree(nodes);
4551 return x + sprintf(buf + x, "\n");
4552}
4553
ab4d5ed5 4554#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4555static int any_slab_objects(struct kmem_cache *s)
4556{
4557 int node;
81819f0f 4558
dfb4f096 4559 for_each_online_node(node) {
81819f0f
CL
4560 struct kmem_cache_node *n = get_node(s, node);
4561
dfb4f096
CL
4562 if (!n)
4563 continue;
4564
4ea33e2d 4565 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4566 return 1;
4567 }
4568 return 0;
4569}
ab4d5ed5 4570#endif
81819f0f
CL
4571
4572#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4573#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4574
4575struct slab_attribute {
4576 struct attribute attr;
4577 ssize_t (*show)(struct kmem_cache *s, char *buf);
4578 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4579};
4580
4581#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4582 static struct slab_attribute _name##_attr = \
4583 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4584
4585#define SLAB_ATTR(_name) \
4586 static struct slab_attribute _name##_attr = \
ab067e99 4587 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4588
81819f0f
CL
4589static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4590{
4591 return sprintf(buf, "%d\n", s->size);
4592}
4593SLAB_ATTR_RO(slab_size);
4594
4595static ssize_t align_show(struct kmem_cache *s, char *buf)
4596{
4597 return sprintf(buf, "%d\n", s->align);
4598}
4599SLAB_ATTR_RO(align);
4600
4601static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4602{
4603 return sprintf(buf, "%d\n", s->objsize);
4604}
4605SLAB_ATTR_RO(object_size);
4606
4607static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4608{
834f3d11 4609 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4610}
4611SLAB_ATTR_RO(objs_per_slab);
4612
06b285dc
CL
4613static ssize_t order_store(struct kmem_cache *s,
4614 const char *buf, size_t length)
4615{
0121c619
CL
4616 unsigned long order;
4617 int err;
4618
4619 err = strict_strtoul(buf, 10, &order);
4620 if (err)
4621 return err;
06b285dc
CL
4622
4623 if (order > slub_max_order || order < slub_min_order)
4624 return -EINVAL;
4625
4626 calculate_sizes(s, order);
4627 return length;
4628}
4629
81819f0f
CL
4630static ssize_t order_show(struct kmem_cache *s, char *buf)
4631{
834f3d11 4632 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4633}
06b285dc 4634SLAB_ATTR(order);
81819f0f 4635
73d342b1
DR
4636static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4637{
4638 return sprintf(buf, "%lu\n", s->min_partial);
4639}
4640
4641static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4642 size_t length)
4643{
4644 unsigned long min;
4645 int err;
4646
4647 err = strict_strtoul(buf, 10, &min);
4648 if (err)
4649 return err;
4650
c0bdb232 4651 set_min_partial(s, min);
73d342b1
DR
4652 return length;
4653}
4654SLAB_ATTR(min_partial);
4655
49e22585
CL
4656static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4657{
4658 return sprintf(buf, "%u\n", s->cpu_partial);
4659}
4660
4661static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4662 size_t length)
4663{
4664 unsigned long objects;
4665 int err;
4666
4667 err = strict_strtoul(buf, 10, &objects);
4668 if (err)
4669 return err;
74ee4ef1
DR
4670 if (objects && kmem_cache_debug(s))
4671 return -EINVAL;
49e22585
CL
4672
4673 s->cpu_partial = objects;
4674 flush_all(s);
4675 return length;
4676}
4677SLAB_ATTR(cpu_partial);
4678
81819f0f
CL
4679static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4680{
62c70bce
JP
4681 if (!s->ctor)
4682 return 0;
4683 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4684}
4685SLAB_ATTR_RO(ctor);
4686
81819f0f
CL
4687static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4688{
4689 return sprintf(buf, "%d\n", s->refcount - 1);
4690}
4691SLAB_ATTR_RO(aliases);
4692
81819f0f
CL
4693static ssize_t partial_show(struct kmem_cache *s, char *buf)
4694{
d9acf4b7 4695 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4696}
4697SLAB_ATTR_RO(partial);
4698
4699static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4700{
d9acf4b7 4701 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4702}
4703SLAB_ATTR_RO(cpu_slabs);
4704
4705static ssize_t objects_show(struct kmem_cache *s, char *buf)
4706{
205ab99d 4707 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4708}
4709SLAB_ATTR_RO(objects);
4710
205ab99d
CL
4711static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4712{
4713 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4714}
4715SLAB_ATTR_RO(objects_partial);
4716
49e22585
CL
4717static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4718{
4719 int objects = 0;
4720 int pages = 0;
4721 int cpu;
4722 int len;
4723
4724 for_each_online_cpu(cpu) {
4725 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4726
4727 if (page) {
4728 pages += page->pages;
4729 objects += page->pobjects;
4730 }
4731 }
4732
4733 len = sprintf(buf, "%d(%d)", objects, pages);
4734
4735#ifdef CONFIG_SMP
4736 for_each_online_cpu(cpu) {
4737 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4738
4739 if (page && len < PAGE_SIZE - 20)
4740 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4741 page->pobjects, page->pages);
4742 }
4743#endif
4744 return len + sprintf(buf + len, "\n");
4745}
4746SLAB_ATTR_RO(slabs_cpu_partial);
4747
a5a84755
CL
4748static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4749{
4750 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4751}
4752
4753static ssize_t reclaim_account_store(struct kmem_cache *s,
4754 const char *buf, size_t length)
4755{
4756 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4757 if (buf[0] == '1')
4758 s->flags |= SLAB_RECLAIM_ACCOUNT;
4759 return length;
4760}
4761SLAB_ATTR(reclaim_account);
4762
4763static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4764{
4765 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4766}
4767SLAB_ATTR_RO(hwcache_align);
4768
4769#ifdef CONFIG_ZONE_DMA
4770static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4771{
4772 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4773}
4774SLAB_ATTR_RO(cache_dma);
4775#endif
4776
4777static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4778{
4779 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4780}
4781SLAB_ATTR_RO(destroy_by_rcu);
4782
ab9a0f19
LJ
4783static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4784{
4785 return sprintf(buf, "%d\n", s->reserved);
4786}
4787SLAB_ATTR_RO(reserved);
4788
ab4d5ed5 4789#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4790static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4791{
4792 return show_slab_objects(s, buf, SO_ALL);
4793}
4794SLAB_ATTR_RO(slabs);
4795
205ab99d
CL
4796static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4797{
4798 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4799}
4800SLAB_ATTR_RO(total_objects);
4801
81819f0f
CL
4802static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4803{
4804 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4805}
4806
4807static ssize_t sanity_checks_store(struct kmem_cache *s,
4808 const char *buf, size_t length)
4809{
4810 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4811 if (buf[0] == '1') {
4812 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4813 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4814 }
81819f0f
CL
4815 return length;
4816}
4817SLAB_ATTR(sanity_checks);
4818
4819static ssize_t trace_show(struct kmem_cache *s, char *buf)
4820{
4821 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4822}
4823
4824static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4825 size_t length)
4826{
4827 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4828 if (buf[0] == '1') {
4829 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4830 s->flags |= SLAB_TRACE;
b789ef51 4831 }
81819f0f
CL
4832 return length;
4833}
4834SLAB_ATTR(trace);
4835
81819f0f
CL
4836static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4837{
4838 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4839}
4840
4841static ssize_t red_zone_store(struct kmem_cache *s,
4842 const char *buf, size_t length)
4843{
4844 if (any_slab_objects(s))
4845 return -EBUSY;
4846
4847 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4848 if (buf[0] == '1') {
4849 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4850 s->flags |= SLAB_RED_ZONE;
b789ef51 4851 }
06b285dc 4852 calculate_sizes(s, -1);
81819f0f
CL
4853 return length;
4854}
4855SLAB_ATTR(red_zone);
4856
4857static ssize_t poison_show(struct kmem_cache *s, char *buf)
4858{
4859 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4860}
4861
4862static ssize_t poison_store(struct kmem_cache *s,
4863 const char *buf, size_t length)
4864{
4865 if (any_slab_objects(s))
4866 return -EBUSY;
4867
4868 s->flags &= ~SLAB_POISON;
b789ef51
CL
4869 if (buf[0] == '1') {
4870 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4871 s->flags |= SLAB_POISON;
b789ef51 4872 }
06b285dc 4873 calculate_sizes(s, -1);
81819f0f
CL
4874 return length;
4875}
4876SLAB_ATTR(poison);
4877
4878static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4879{
4880 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4881}
4882
4883static ssize_t store_user_store(struct kmem_cache *s,
4884 const char *buf, size_t length)
4885{
4886 if (any_slab_objects(s))
4887 return -EBUSY;
4888
4889 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4890 if (buf[0] == '1') {
4891 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4892 s->flags |= SLAB_STORE_USER;
b789ef51 4893 }
06b285dc 4894 calculate_sizes(s, -1);
81819f0f
CL
4895 return length;
4896}
4897SLAB_ATTR(store_user);
4898
53e15af0
CL
4899static ssize_t validate_show(struct kmem_cache *s, char *buf)
4900{
4901 return 0;
4902}
4903
4904static ssize_t validate_store(struct kmem_cache *s,
4905 const char *buf, size_t length)
4906{
434e245d
CL
4907 int ret = -EINVAL;
4908
4909 if (buf[0] == '1') {
4910 ret = validate_slab_cache(s);
4911 if (ret >= 0)
4912 ret = length;
4913 }
4914 return ret;
53e15af0
CL
4915}
4916SLAB_ATTR(validate);
a5a84755
CL
4917
4918static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4919{
4920 if (!(s->flags & SLAB_STORE_USER))
4921 return -ENOSYS;
4922 return list_locations(s, buf, TRACK_ALLOC);
4923}
4924SLAB_ATTR_RO(alloc_calls);
4925
4926static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4927{
4928 if (!(s->flags & SLAB_STORE_USER))
4929 return -ENOSYS;
4930 return list_locations(s, buf, TRACK_FREE);
4931}
4932SLAB_ATTR_RO(free_calls);
4933#endif /* CONFIG_SLUB_DEBUG */
4934
4935#ifdef CONFIG_FAILSLAB
4936static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4937{
4938 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4939}
4940
4941static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4942 size_t length)
4943{
4944 s->flags &= ~SLAB_FAILSLAB;
4945 if (buf[0] == '1')
4946 s->flags |= SLAB_FAILSLAB;
4947 return length;
4948}
4949SLAB_ATTR(failslab);
ab4d5ed5 4950#endif
53e15af0 4951
2086d26a
CL
4952static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4953{
4954 return 0;
4955}
4956
4957static ssize_t shrink_store(struct kmem_cache *s,
4958 const char *buf, size_t length)
4959{
4960 if (buf[0] == '1') {
4961 int rc = kmem_cache_shrink(s);
4962
4963 if (rc)
4964 return rc;
4965 } else
4966 return -EINVAL;
4967 return length;
4968}
4969SLAB_ATTR(shrink);
4970
81819f0f 4971#ifdef CONFIG_NUMA
9824601e 4972static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4973{
9824601e 4974 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4975}
4976
9824601e 4977static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4978 const char *buf, size_t length)
4979{
0121c619
CL
4980 unsigned long ratio;
4981 int err;
4982
4983 err = strict_strtoul(buf, 10, &ratio);
4984 if (err)
4985 return err;
4986
e2cb96b7 4987 if (ratio <= 100)
0121c619 4988 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4989
81819f0f
CL
4990 return length;
4991}
9824601e 4992SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4993#endif
4994
8ff12cfc 4995#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4996static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4997{
4998 unsigned long sum = 0;
4999 int cpu;
5000 int len;
5001 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5002
5003 if (!data)
5004 return -ENOMEM;
5005
5006 for_each_online_cpu(cpu) {
9dfc6e68 5007 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5008
5009 data[cpu] = x;
5010 sum += x;
5011 }
5012
5013 len = sprintf(buf, "%lu", sum);
5014
50ef37b9 5015#ifdef CONFIG_SMP
8ff12cfc
CL
5016 for_each_online_cpu(cpu) {
5017 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5018 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5019 }
50ef37b9 5020#endif
8ff12cfc
CL
5021 kfree(data);
5022 return len + sprintf(buf + len, "\n");
5023}
5024
78eb00cc
DR
5025static void clear_stat(struct kmem_cache *s, enum stat_item si)
5026{
5027 int cpu;
5028
5029 for_each_online_cpu(cpu)
9dfc6e68 5030 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5031}
5032
8ff12cfc
CL
5033#define STAT_ATTR(si, text) \
5034static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5035{ \
5036 return show_stat(s, buf, si); \
5037} \
78eb00cc
DR
5038static ssize_t text##_store(struct kmem_cache *s, \
5039 const char *buf, size_t length) \
5040{ \
5041 if (buf[0] != '0') \
5042 return -EINVAL; \
5043 clear_stat(s, si); \
5044 return length; \
5045} \
5046SLAB_ATTR(text); \
8ff12cfc
CL
5047
5048STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5049STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5050STAT_ATTR(FREE_FASTPATH, free_fastpath);
5051STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5052STAT_ATTR(FREE_FROZEN, free_frozen);
5053STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5054STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5055STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5056STAT_ATTR(ALLOC_SLAB, alloc_slab);
5057STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5058STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5059STAT_ATTR(FREE_SLAB, free_slab);
5060STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5061STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5062STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5063STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5064STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5065STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5066STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5067STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5068STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5069STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5070STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5071STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8ff12cfc
CL
5072#endif
5073
06428780 5074static struct attribute *slab_attrs[] = {
81819f0f
CL
5075 &slab_size_attr.attr,
5076 &object_size_attr.attr,
5077 &objs_per_slab_attr.attr,
5078 &order_attr.attr,
73d342b1 5079 &min_partial_attr.attr,
49e22585 5080 &cpu_partial_attr.attr,
81819f0f 5081 &objects_attr.attr,
205ab99d 5082 &objects_partial_attr.attr,
81819f0f
CL
5083 &partial_attr.attr,
5084 &cpu_slabs_attr.attr,
5085 &ctor_attr.attr,
81819f0f
CL
5086 &aliases_attr.attr,
5087 &align_attr.attr,
81819f0f
CL
5088 &hwcache_align_attr.attr,
5089 &reclaim_account_attr.attr,
5090 &destroy_by_rcu_attr.attr,
a5a84755 5091 &shrink_attr.attr,
ab9a0f19 5092 &reserved_attr.attr,
49e22585 5093 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5094#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5095 &total_objects_attr.attr,
5096 &slabs_attr.attr,
5097 &sanity_checks_attr.attr,
5098 &trace_attr.attr,
81819f0f
CL
5099 &red_zone_attr.attr,
5100 &poison_attr.attr,
5101 &store_user_attr.attr,
53e15af0 5102 &validate_attr.attr,
88a420e4
CL
5103 &alloc_calls_attr.attr,
5104 &free_calls_attr.attr,
ab4d5ed5 5105#endif
81819f0f
CL
5106#ifdef CONFIG_ZONE_DMA
5107 &cache_dma_attr.attr,
5108#endif
5109#ifdef CONFIG_NUMA
9824601e 5110 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5111#endif
5112#ifdef CONFIG_SLUB_STATS
5113 &alloc_fastpath_attr.attr,
5114 &alloc_slowpath_attr.attr,
5115 &free_fastpath_attr.attr,
5116 &free_slowpath_attr.attr,
5117 &free_frozen_attr.attr,
5118 &free_add_partial_attr.attr,
5119 &free_remove_partial_attr.attr,
5120 &alloc_from_partial_attr.attr,
5121 &alloc_slab_attr.attr,
5122 &alloc_refill_attr.attr,
e36a2652 5123 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5124 &free_slab_attr.attr,
5125 &cpuslab_flush_attr.attr,
5126 &deactivate_full_attr.attr,
5127 &deactivate_empty_attr.attr,
5128 &deactivate_to_head_attr.attr,
5129 &deactivate_to_tail_attr.attr,
5130 &deactivate_remote_frees_attr.attr,
03e404af 5131 &deactivate_bypass_attr.attr,
65c3376a 5132 &order_fallback_attr.attr,
b789ef51
CL
5133 &cmpxchg_double_fail_attr.attr,
5134 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5135 &cpu_partial_alloc_attr.attr,
5136 &cpu_partial_free_attr.attr,
81819f0f 5137#endif
4c13dd3b
DM
5138#ifdef CONFIG_FAILSLAB
5139 &failslab_attr.attr,
5140#endif
5141
81819f0f
CL
5142 NULL
5143};
5144
5145static struct attribute_group slab_attr_group = {
5146 .attrs = slab_attrs,
5147};
5148
5149static ssize_t slab_attr_show(struct kobject *kobj,
5150 struct attribute *attr,
5151 char *buf)
5152{
5153 struct slab_attribute *attribute;
5154 struct kmem_cache *s;
5155 int err;
5156
5157 attribute = to_slab_attr(attr);
5158 s = to_slab(kobj);
5159
5160 if (!attribute->show)
5161 return -EIO;
5162
5163 err = attribute->show(s, buf);
5164
5165 return err;
5166}
5167
5168static ssize_t slab_attr_store(struct kobject *kobj,
5169 struct attribute *attr,
5170 const char *buf, size_t len)
5171{
5172 struct slab_attribute *attribute;
5173 struct kmem_cache *s;
5174 int err;
5175
5176 attribute = to_slab_attr(attr);
5177 s = to_slab(kobj);
5178
5179 if (!attribute->store)
5180 return -EIO;
5181
5182 err = attribute->store(s, buf, len);
5183
5184 return err;
5185}
5186
151c602f
CL
5187static void kmem_cache_release(struct kobject *kobj)
5188{
5189 struct kmem_cache *s = to_slab(kobj);
5190
84c1cf62 5191 kfree(s->name);
151c602f
CL
5192 kfree(s);
5193}
5194
52cf25d0 5195static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5196 .show = slab_attr_show,
5197 .store = slab_attr_store,
5198};
5199
5200static struct kobj_type slab_ktype = {
5201 .sysfs_ops = &slab_sysfs_ops,
151c602f 5202 .release = kmem_cache_release
81819f0f
CL
5203};
5204
5205static int uevent_filter(struct kset *kset, struct kobject *kobj)
5206{
5207 struct kobj_type *ktype = get_ktype(kobj);
5208
5209 if (ktype == &slab_ktype)
5210 return 1;
5211 return 0;
5212}
5213
9cd43611 5214static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5215 .filter = uevent_filter,
5216};
5217
27c3a314 5218static struct kset *slab_kset;
81819f0f
CL
5219
5220#define ID_STR_LENGTH 64
5221
5222/* Create a unique string id for a slab cache:
6446faa2
CL
5223 *
5224 * Format :[flags-]size
81819f0f
CL
5225 */
5226static char *create_unique_id(struct kmem_cache *s)
5227{
5228 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5229 char *p = name;
5230
5231 BUG_ON(!name);
5232
5233 *p++ = ':';
5234 /*
5235 * First flags affecting slabcache operations. We will only
5236 * get here for aliasable slabs so we do not need to support
5237 * too many flags. The flags here must cover all flags that
5238 * are matched during merging to guarantee that the id is
5239 * unique.
5240 */
5241 if (s->flags & SLAB_CACHE_DMA)
5242 *p++ = 'd';
5243 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5244 *p++ = 'a';
5245 if (s->flags & SLAB_DEBUG_FREE)
5246 *p++ = 'F';
5a896d9e
VN
5247 if (!(s->flags & SLAB_NOTRACK))
5248 *p++ = 't';
81819f0f
CL
5249 if (p != name + 1)
5250 *p++ = '-';
5251 p += sprintf(p, "%07d", s->size);
5252 BUG_ON(p > name + ID_STR_LENGTH - 1);
5253 return name;
5254}
5255
5256static int sysfs_slab_add(struct kmem_cache *s)
5257{
5258 int err;
5259 const char *name;
5260 int unmergeable;
5261
5262 if (slab_state < SYSFS)
5263 /* Defer until later */
5264 return 0;
5265
5266 unmergeable = slab_unmergeable(s);
5267 if (unmergeable) {
5268 /*
5269 * Slabcache can never be merged so we can use the name proper.
5270 * This is typically the case for debug situations. In that
5271 * case we can catch duplicate names easily.
5272 */
27c3a314 5273 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5274 name = s->name;
5275 } else {
5276 /*
5277 * Create a unique name for the slab as a target
5278 * for the symlinks.
5279 */
5280 name = create_unique_id(s);
5281 }
5282
27c3a314 5283 s->kobj.kset = slab_kset;
1eada11c
GKH
5284 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5285 if (err) {
5286 kobject_put(&s->kobj);
81819f0f 5287 return err;
1eada11c 5288 }
81819f0f
CL
5289
5290 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5291 if (err) {
5292 kobject_del(&s->kobj);
5293 kobject_put(&s->kobj);
81819f0f 5294 return err;
5788d8ad 5295 }
81819f0f
CL
5296 kobject_uevent(&s->kobj, KOBJ_ADD);
5297 if (!unmergeable) {
5298 /* Setup first alias */
5299 sysfs_slab_alias(s, s->name);
5300 kfree(name);
5301 }
5302 return 0;
5303}
5304
5305static void sysfs_slab_remove(struct kmem_cache *s)
5306{
2bce6485
CL
5307 if (slab_state < SYSFS)
5308 /*
5309 * Sysfs has not been setup yet so no need to remove the
5310 * cache from sysfs.
5311 */
5312 return;
5313
81819f0f
CL
5314 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5315 kobject_del(&s->kobj);
151c602f 5316 kobject_put(&s->kobj);
81819f0f
CL
5317}
5318
5319/*
5320 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5321 * available lest we lose that information.
81819f0f
CL
5322 */
5323struct saved_alias {
5324 struct kmem_cache *s;
5325 const char *name;
5326 struct saved_alias *next;
5327};
5328
5af328a5 5329static struct saved_alias *alias_list;
81819f0f
CL
5330
5331static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5332{
5333 struct saved_alias *al;
5334
5335 if (slab_state == SYSFS) {
5336 /*
5337 * If we have a leftover link then remove it.
5338 */
27c3a314
GKH
5339 sysfs_remove_link(&slab_kset->kobj, name);
5340 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5341 }
5342
5343 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5344 if (!al)
5345 return -ENOMEM;
5346
5347 al->s = s;
5348 al->name = name;
5349 al->next = alias_list;
5350 alias_list = al;
5351 return 0;
5352}
5353
5354static int __init slab_sysfs_init(void)
5355{
5b95a4ac 5356 struct kmem_cache *s;
81819f0f
CL
5357 int err;
5358
2bce6485
CL
5359 down_write(&slub_lock);
5360
0ff21e46 5361 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5362 if (!slab_kset) {
2bce6485 5363 up_write(&slub_lock);
81819f0f
CL
5364 printk(KERN_ERR "Cannot register slab subsystem.\n");
5365 return -ENOSYS;
5366 }
5367
26a7bd03
CL
5368 slab_state = SYSFS;
5369
5b95a4ac 5370 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5371 err = sysfs_slab_add(s);
5d540fb7
CL
5372 if (err)
5373 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5374 " to sysfs\n", s->name);
26a7bd03 5375 }
81819f0f
CL
5376
5377 while (alias_list) {
5378 struct saved_alias *al = alias_list;
5379
5380 alias_list = alias_list->next;
5381 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5382 if (err)
5383 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5384 " %s to sysfs\n", s->name);
81819f0f
CL
5385 kfree(al);
5386 }
5387
2bce6485 5388 up_write(&slub_lock);
81819f0f
CL
5389 resiliency_test();
5390 return 0;
5391}
5392
5393__initcall(slab_sysfs_init);
ab4d5ed5 5394#endif /* CONFIG_SYSFS */
57ed3eda
PE
5395
5396/*
5397 * The /proc/slabinfo ABI
5398 */
158a9624 5399#ifdef CONFIG_SLABINFO
57ed3eda
PE
5400static void print_slabinfo_header(struct seq_file *m)
5401{
5402 seq_puts(m, "slabinfo - version: 2.1\n");
5403 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5404 "<objperslab> <pagesperslab>");
5405 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5406 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5407 seq_putc(m, '\n');
5408}
5409
5410static void *s_start(struct seq_file *m, loff_t *pos)
5411{
5412 loff_t n = *pos;
5413
5414 down_read(&slub_lock);
5415 if (!n)
5416 print_slabinfo_header(m);
5417
5418 return seq_list_start(&slab_caches, *pos);
5419}
5420
5421static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5422{
5423 return seq_list_next(p, &slab_caches, pos);
5424}
5425
5426static void s_stop(struct seq_file *m, void *p)
5427{
5428 up_read(&slub_lock);
5429}
5430
5431static int s_show(struct seq_file *m, void *p)
5432{
5433 unsigned long nr_partials = 0;
5434 unsigned long nr_slabs = 0;
5435 unsigned long nr_inuse = 0;
205ab99d
CL
5436 unsigned long nr_objs = 0;
5437 unsigned long nr_free = 0;
57ed3eda
PE
5438 struct kmem_cache *s;
5439 int node;
5440
5441 s = list_entry(p, struct kmem_cache, list);
5442
5443 for_each_online_node(node) {
5444 struct kmem_cache_node *n = get_node(s, node);
5445
5446 if (!n)
5447 continue;
5448
5449 nr_partials += n->nr_partial;
5450 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5451 nr_objs += atomic_long_read(&n->total_objects);
5452 nr_free += count_partial(n, count_free);
57ed3eda
PE
5453 }
5454
205ab99d 5455 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5456
5457 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5458 nr_objs, s->size, oo_objects(s->oo),
5459 (1 << oo_order(s->oo)));
57ed3eda
PE
5460 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5461 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5462 0UL);
5463 seq_putc(m, '\n');
5464 return 0;
5465}
5466
7b3c3a50 5467static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5468 .start = s_start,
5469 .next = s_next,
5470 .stop = s_stop,
5471 .show = s_show,
5472};
5473
7b3c3a50
AD
5474static int slabinfo_open(struct inode *inode, struct file *file)
5475{
5476 return seq_open(file, &slabinfo_op);
5477}
5478
5479static const struct file_operations proc_slabinfo_operations = {
5480 .open = slabinfo_open,
5481 .read = seq_read,
5482 .llseek = seq_lseek,
5483 .release = seq_release,
5484};
5485
5486static int __init slab_proc_init(void)
5487{
ab067e99 5488 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5489 return 0;
5490}
5491module_init(slab_proc_init);
158a9624 5492#endif /* CONFIG_SLABINFO */