slub: return object pointer from get_partial() / new_slab().
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
81819f0f 32
4a92379b
RK
33#include <trace/events/kmem.h>
34
81819f0f
CL
35/*
36 * Lock order:
881db7fb
CL
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 40 *
881db7fb
CL
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
81819f0f
CL
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
b789ef51
CL
134/* Enable to log cmpxchg failures */
135#undef SLUB_DEBUG_CMPXCHG
136
2086d26a
CL
137/*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
76be8950 141#define MIN_PARTIAL 5
e95eed57 142
2086d26a
CL
143/*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148#define MAX_PARTIAL 10
149
81819f0f
CL
150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
672bba3a 152
fa5ec8a1 153/*
3de47213
DR
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
fa5ec8a1 157 */
3de47213 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 159
81819f0f
CL
160/*
161 * Set of flags that will prevent slab merging
162 */
163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
81819f0f
CL
166
167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 168 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 169
210b5c06
CG
170#define OO_SHIFT 16
171#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 172#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 173
81819f0f 174/* Internal SLUB flags */
f90ec390 175#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 176#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
177
178static int kmem_size = sizeof(struct kmem_cache);
179
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
184static enum {
185 DOWN, /* No slab functionality available */
51df1142 186 PARTIAL, /* Kmem_cache_node works */
672bba3a 187 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
188 SYSFS /* Sysfs up */
189} slab_state = DOWN;
190
191/* A list of all slab caches on the system */
192static DECLARE_RWSEM(slub_lock);
5af328a5 193static LIST_HEAD(slab_caches);
81819f0f 194
02cbc874
CL
195/*
196 * Tracking user of a slab.
197 */
d6543e39 198#define TRACK_ADDRS_COUNT 16
02cbc874 199struct track {
ce71e27c 200 unsigned long addr; /* Called from address */
d6543e39
BG
201#ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203#endif
02cbc874
CL
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207};
208
209enum track_item { TRACK_ALLOC, TRACK_FREE };
210
ab4d5ed5 211#ifdef CONFIG_SYSFS
81819f0f
CL
212static int sysfs_slab_add(struct kmem_cache *);
213static int sysfs_slab_alias(struct kmem_cache *, const char *);
214static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 215
81819f0f 216#else
0c710013
CL
217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
151c602f
CL
220static inline void sysfs_slab_remove(struct kmem_cache *s)
221{
84c1cf62 222 kfree(s->name);
151c602f
CL
223 kfree(s);
224}
8ff12cfc 225
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
84e554e6 231 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
232#endif
233}
234
81819f0f
CL
235/********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239int slab_is_available(void)
240{
241 return slab_state >= UP;
242}
243
244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245{
81819f0f 246 return s->node[node];
81819f0f
CL
247}
248
6446faa2 249/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
250static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252{
253 void *base;
254
a973e9dd 255 if (!object)
02cbc874
CL
256 return 1;
257
a973e9dd 258 base = page_address(page);
39b26464 259 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265}
266
7656c72b
CL
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
269 return *(void **)(object + s->offset);
270}
271
1393d9a1
CL
272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273{
274 void *p;
275
276#ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278#else
279 p = get_freepointer(s, object);
280#endif
281 return p;
282}
283
7656c72b
CL
284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285{
286 *(void **)(object + s->offset) = fp;
287}
288
289/* Loop over all objects in a slab */
224a88be
CL
290#define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
292 __p += (__s)->size)
293
7656c72b
CL
294/* Determine object index from a given position */
295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296{
297 return (p - addr) / s->size;
298}
299
d71f606f
MK
300static inline size_t slab_ksize(const struct kmem_cache *s)
301{
302#ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310#endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322}
323
ab9a0f19
LJ
324static inline int order_objects(int order, unsigned long size, int reserved)
325{
326 return ((PAGE_SIZE << order) - reserved) / size;
327}
328
834f3d11 329static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 330 unsigned long size, int reserved)
834f3d11
CL
331{
332 struct kmem_cache_order_objects x = {
ab9a0f19 333 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
334 };
335
336 return x;
337}
338
339static inline int oo_order(struct kmem_cache_order_objects x)
340{
210b5c06 341 return x.x >> OO_SHIFT;
834f3d11
CL
342}
343
344static inline int oo_objects(struct kmem_cache_order_objects x)
345{
210b5c06 346 return x.x & OO_MASK;
834f3d11
CL
347}
348
881db7fb
CL
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
354 bit_spin_lock(PG_locked, &page->flags);
355}
356
357static __always_inline void slab_unlock(struct page *page)
358{
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
369#ifdef CONFIG_CMPXCHG_DOUBLE
370 if (s->flags & __CMPXCHG_DOUBLE) {
371 if (cmpxchg_double(&page->freelist,
372 freelist_old, counters_old,
373 freelist_new, counters_new))
374 return 1;
375 } else
376#endif
377 {
378 slab_lock(page);
379 if (page->freelist == freelist_old && page->counters == counters_old) {
380 page->freelist = freelist_new;
381 page->counters = counters_new;
382 slab_unlock(page);
383 return 1;
384 }
385 slab_unlock(page);
386 }
387
388 cpu_relax();
389 stat(s, CMPXCHG_DOUBLE_FAIL);
390
391#ifdef SLUB_DEBUG_CMPXCHG
392 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
393#endif
394
395 return 0;
396}
397
b789ef51
CL
398static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
399 void *freelist_old, unsigned long counters_old,
400 void *freelist_new, unsigned long counters_new,
401 const char *n)
402{
403#ifdef CONFIG_CMPXCHG_DOUBLE
404 if (s->flags & __CMPXCHG_DOUBLE) {
405 if (cmpxchg_double(&page->freelist,
406 freelist_old, counters_old,
407 freelist_new, counters_new))
408 return 1;
409 } else
410#endif
411 {
1d07171c
CL
412 unsigned long flags;
413
414 local_irq_save(flags);
881db7fb 415 slab_lock(page);
b789ef51
CL
416 if (page->freelist == freelist_old && page->counters == counters_old) {
417 page->freelist = freelist_new;
418 page->counters = counters_new;
881db7fb 419 slab_unlock(page);
1d07171c 420 local_irq_restore(flags);
b789ef51
CL
421 return 1;
422 }
881db7fb 423 slab_unlock(page);
1d07171c 424 local_irq_restore(flags);
b789ef51
CL
425 }
426
427 cpu_relax();
428 stat(s, CMPXCHG_DOUBLE_FAIL);
429
430#ifdef SLUB_DEBUG_CMPXCHG
431 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
432#endif
433
434 return 0;
435}
436
41ecc55b 437#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
438/*
439 * Determine a map of object in use on a page.
440 *
881db7fb 441 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
442 * not vanish from under us.
443 */
444static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
445{
446 void *p;
447 void *addr = page_address(page);
448
449 for (p = page->freelist; p; p = get_freepointer(s, p))
450 set_bit(slab_index(p, s, addr), map);
451}
452
41ecc55b
CL
453/*
454 * Debug settings:
455 */
f0630fff
CL
456#ifdef CONFIG_SLUB_DEBUG_ON
457static int slub_debug = DEBUG_DEFAULT_FLAGS;
458#else
41ecc55b 459static int slub_debug;
f0630fff 460#endif
41ecc55b
CL
461
462static char *slub_debug_slabs;
fa5ec8a1 463static int disable_higher_order_debug;
41ecc55b 464
81819f0f
CL
465/*
466 * Object debugging
467 */
468static void print_section(char *text, u8 *addr, unsigned int length)
469{
470 int i, offset;
471 int newline = 1;
472 char ascii[17];
473
474 ascii[16] = 0;
475
476 for (i = 0; i < length; i++) {
477 if (newline) {
24922684 478 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
479 newline = 0;
480 }
06428780 481 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
482 offset = i % 16;
483 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
484 if (offset == 15) {
06428780 485 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
486 newline = 1;
487 }
488 }
489 if (!newline) {
490 i %= 16;
491 while (i < 16) {
06428780 492 printk(KERN_CONT " ");
81819f0f
CL
493 ascii[i] = ' ';
494 i++;
495 }
06428780 496 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
497 }
498}
499
81819f0f
CL
500static struct track *get_track(struct kmem_cache *s, void *object,
501 enum track_item alloc)
502{
503 struct track *p;
504
505 if (s->offset)
506 p = object + s->offset + sizeof(void *);
507 else
508 p = object + s->inuse;
509
510 return p + alloc;
511}
512
513static void set_track(struct kmem_cache *s, void *object,
ce71e27c 514 enum track_item alloc, unsigned long addr)
81819f0f 515{
1a00df4a 516 struct track *p = get_track(s, object, alloc);
81819f0f 517
81819f0f 518 if (addr) {
d6543e39
BG
519#ifdef CONFIG_STACKTRACE
520 struct stack_trace trace;
521 int i;
522
523 trace.nr_entries = 0;
524 trace.max_entries = TRACK_ADDRS_COUNT;
525 trace.entries = p->addrs;
526 trace.skip = 3;
527 save_stack_trace(&trace);
528
529 /* See rant in lockdep.c */
530 if (trace.nr_entries != 0 &&
531 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 trace.nr_entries--;
533
534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 p->addrs[i] = 0;
536#endif
81819f0f
CL
537 p->addr = addr;
538 p->cpu = smp_processor_id();
88e4ccf2 539 p->pid = current->pid;
81819f0f
CL
540 p->when = jiffies;
541 } else
542 memset(p, 0, sizeof(struct track));
543}
544
81819f0f
CL
545static void init_tracking(struct kmem_cache *s, void *object)
546{
24922684
CL
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
ce71e27c
EGM
550 set_track(s, object, TRACK_FREE, 0UL);
551 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
552}
553
554static void print_track(const char *s, struct track *t)
555{
556 if (!t->addr)
557 return;
558
7daf705f 559 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
561#ifdef CONFIG_STACKTRACE
562 {
563 int i;
564 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 if (t->addrs[i])
566 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
567 else
568 break;
569 }
570#endif
24922684
CL
571}
572
573static void print_tracking(struct kmem_cache *s, void *object)
574{
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
577
578 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 print_track("Freed", get_track(s, object, TRACK_FREE));
580}
581
582static void print_page_info(struct page *page)
583{
39b26464
CL
584 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
586
587}
588
589static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590{
591 va_list args;
592 char buf[100];
593
594 va_start(args, fmt);
595 vsnprintf(buf, sizeof(buf), fmt, args);
596 va_end(args);
597 printk(KERN_ERR "========================================"
598 "=====================================\n");
599 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
600 printk(KERN_ERR "----------------------------------------"
601 "-------------------------------------\n\n");
81819f0f
CL
602}
603
24922684
CL
604static void slab_fix(struct kmem_cache *s, char *fmt, ...)
605{
606 va_list args;
607 char buf[100];
608
609 va_start(args, fmt);
610 vsnprintf(buf, sizeof(buf), fmt, args);
611 va_end(args);
612 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
613}
614
615static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
616{
617 unsigned int off; /* Offset of last byte */
a973e9dd 618 u8 *addr = page_address(page);
24922684
CL
619
620 print_tracking(s, p);
621
622 print_page_info(page);
623
624 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
625 p, p - addr, get_freepointer(s, p));
626
627 if (p > addr + 16)
628 print_section("Bytes b4", p - 16, 16);
629
0ebd652b 630 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
631
632 if (s->flags & SLAB_RED_ZONE)
633 print_section("Redzone", p + s->objsize,
634 s->inuse - s->objsize);
635
81819f0f
CL
636 if (s->offset)
637 off = s->offset + sizeof(void *);
638 else
639 off = s->inuse;
640
24922684 641 if (s->flags & SLAB_STORE_USER)
81819f0f 642 off += 2 * sizeof(struct track);
81819f0f
CL
643
644 if (off != s->size)
645 /* Beginning of the filler is the free pointer */
24922684
CL
646 print_section("Padding", p + off, s->size - off);
647
648 dump_stack();
81819f0f
CL
649}
650
651static void object_err(struct kmem_cache *s, struct page *page,
652 u8 *object, char *reason)
653{
3dc50637 654 slab_bug(s, "%s", reason);
24922684 655 print_trailer(s, page, object);
81819f0f
CL
656}
657
24922684 658static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
659{
660 va_list args;
661 char buf[100];
662
24922684
CL
663 va_start(args, fmt);
664 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 665 va_end(args);
3dc50637 666 slab_bug(s, "%s", buf);
24922684 667 print_page_info(page);
81819f0f
CL
668 dump_stack();
669}
670
f7cb1933 671static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
672{
673 u8 *p = object;
674
675 if (s->flags & __OBJECT_POISON) {
676 memset(p, POISON_FREE, s->objsize - 1);
06428780 677 p[s->objsize - 1] = POISON_END;
81819f0f
CL
678 }
679
680 if (s->flags & SLAB_RED_ZONE)
f7cb1933 681 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
682}
683
c4089f98 684static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
81819f0f
CL
685{
686 while (bytes) {
c4089f98 687 if (*start != value)
24922684 688 return start;
81819f0f
CL
689 start++;
690 bytes--;
691 }
24922684
CL
692 return NULL;
693}
694
c4089f98
MS
695static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
696{
697 u64 value64;
698 unsigned int words, prefix;
699
700 if (bytes <= 16)
701 return check_bytes8(start, value, bytes);
702
703 value64 = value | value << 8 | value << 16 | value << 24;
ef62fb32 704 value64 = (value64 & 0xffffffff) | value64 << 32;
c4089f98
MS
705 prefix = 8 - ((unsigned long)start) % 8;
706
707 if (prefix) {
708 u8 *r = check_bytes8(start, value, prefix);
709 if (r)
710 return r;
711 start += prefix;
712 bytes -= prefix;
713 }
714
715 words = bytes / 8;
716
717 while (words) {
718 if (*(u64 *)start != value64)
719 return check_bytes8(start, value, 8);
720 start += 8;
721 words--;
722 }
723
724 return check_bytes8(start, value, bytes % 8);
725}
726
24922684
CL
727static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
728 void *from, void *to)
729{
730 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
731 memset(from, data, to - from);
732}
733
734static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
735 u8 *object, char *what,
06428780 736 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
737{
738 u8 *fault;
739 u8 *end;
740
741 fault = check_bytes(start, value, bytes);
742 if (!fault)
743 return 1;
744
745 end = start + bytes;
746 while (end > fault && end[-1] == value)
747 end--;
748
749 slab_bug(s, "%s overwritten", what);
750 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
751 fault, end - 1, fault[0], value);
752 print_trailer(s, page, object);
753
754 restore_bytes(s, what, value, fault, end);
755 return 0;
81819f0f
CL
756}
757
81819f0f
CL
758/*
759 * Object layout:
760 *
761 * object address
762 * Bytes of the object to be managed.
763 * If the freepointer may overlay the object then the free
764 * pointer is the first word of the object.
672bba3a 765 *
81819f0f
CL
766 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
767 * 0xa5 (POISON_END)
768 *
769 * object + s->objsize
770 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
771 * Padding is extended by another word if Redzoning is enabled and
772 * objsize == inuse.
773 *
81819f0f
CL
774 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
775 * 0xcc (RED_ACTIVE) for objects in use.
776 *
777 * object + s->inuse
672bba3a
CL
778 * Meta data starts here.
779 *
81819f0f
CL
780 * A. Free pointer (if we cannot overwrite object on free)
781 * B. Tracking data for SLAB_STORE_USER
672bba3a 782 * C. Padding to reach required alignment boundary or at mininum
6446faa2 783 * one word if debugging is on to be able to detect writes
672bba3a
CL
784 * before the word boundary.
785 *
786 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
787 *
788 * object + s->size
672bba3a 789 * Nothing is used beyond s->size.
81819f0f 790 *
672bba3a
CL
791 * If slabcaches are merged then the objsize and inuse boundaries are mostly
792 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
793 * may be used with merged slabcaches.
794 */
795
81819f0f
CL
796static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
797{
798 unsigned long off = s->inuse; /* The end of info */
799
800 if (s->offset)
801 /* Freepointer is placed after the object. */
802 off += sizeof(void *);
803
804 if (s->flags & SLAB_STORE_USER)
805 /* We also have user information there */
806 off += 2 * sizeof(struct track);
807
808 if (s->size == off)
809 return 1;
810
24922684
CL
811 return check_bytes_and_report(s, page, p, "Object padding",
812 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
813}
814
39b26464 815/* Check the pad bytes at the end of a slab page */
81819f0f
CL
816static int slab_pad_check(struct kmem_cache *s, struct page *page)
817{
24922684
CL
818 u8 *start;
819 u8 *fault;
820 u8 *end;
821 int length;
822 int remainder;
81819f0f
CL
823
824 if (!(s->flags & SLAB_POISON))
825 return 1;
826
a973e9dd 827 start = page_address(page);
ab9a0f19 828 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
829 end = start + length;
830 remainder = length % s->size;
81819f0f
CL
831 if (!remainder)
832 return 1;
833
39b26464 834 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
835 if (!fault)
836 return 1;
837 while (end > fault && end[-1] == POISON_INUSE)
838 end--;
839
840 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 841 print_section("Padding", end - remainder, remainder);
24922684 842
8a3d271d 843 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 844 return 0;
81819f0f
CL
845}
846
847static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 848 void *object, u8 val)
81819f0f
CL
849{
850 u8 *p = object;
851 u8 *endobject = object + s->objsize;
852
853 if (s->flags & SLAB_RED_ZONE) {
24922684 854 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 855 endobject, val, s->inuse - s->objsize))
81819f0f 856 return 0;
81819f0f 857 } else {
3adbefee
IM
858 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
859 check_bytes_and_report(s, page, p, "Alignment padding",
860 endobject, POISON_INUSE, s->inuse - s->objsize);
861 }
81819f0f
CL
862 }
863
864 if (s->flags & SLAB_POISON) {
f7cb1933 865 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
866 (!check_bytes_and_report(s, page, p, "Poison", p,
867 POISON_FREE, s->objsize - 1) ||
868 !check_bytes_and_report(s, page, p, "Poison",
06428780 869 p + s->objsize - 1, POISON_END, 1)))
81819f0f 870 return 0;
81819f0f
CL
871 /*
872 * check_pad_bytes cleans up on its own.
873 */
874 check_pad_bytes(s, page, p);
875 }
876
f7cb1933 877 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
878 /*
879 * Object and freepointer overlap. Cannot check
880 * freepointer while object is allocated.
881 */
882 return 1;
883
884 /* Check free pointer validity */
885 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
886 object_err(s, page, p, "Freepointer corrupt");
887 /*
9f6c708e 888 * No choice but to zap it and thus lose the remainder
81819f0f 889 * of the free objects in this slab. May cause
672bba3a 890 * another error because the object count is now wrong.
81819f0f 891 */
a973e9dd 892 set_freepointer(s, p, NULL);
81819f0f
CL
893 return 0;
894 }
895 return 1;
896}
897
898static int check_slab(struct kmem_cache *s, struct page *page)
899{
39b26464
CL
900 int maxobj;
901
81819f0f
CL
902 VM_BUG_ON(!irqs_disabled());
903
904 if (!PageSlab(page)) {
24922684 905 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
906 return 0;
907 }
39b26464 908
ab9a0f19 909 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
910 if (page->objects > maxobj) {
911 slab_err(s, page, "objects %u > max %u",
912 s->name, page->objects, maxobj);
913 return 0;
914 }
915 if (page->inuse > page->objects) {
24922684 916 slab_err(s, page, "inuse %u > max %u",
39b26464 917 s->name, page->inuse, page->objects);
81819f0f
CL
918 return 0;
919 }
920 /* Slab_pad_check fixes things up after itself */
921 slab_pad_check(s, page);
922 return 1;
923}
924
925/*
672bba3a
CL
926 * Determine if a certain object on a page is on the freelist. Must hold the
927 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
928 */
929static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
930{
931 int nr = 0;
881db7fb 932 void *fp;
81819f0f 933 void *object = NULL;
224a88be 934 unsigned long max_objects;
81819f0f 935
881db7fb 936 fp = page->freelist;
39b26464 937 while (fp && nr <= page->objects) {
81819f0f
CL
938 if (fp == search)
939 return 1;
940 if (!check_valid_pointer(s, page, fp)) {
941 if (object) {
942 object_err(s, page, object,
943 "Freechain corrupt");
a973e9dd 944 set_freepointer(s, object, NULL);
81819f0f
CL
945 break;
946 } else {
24922684 947 slab_err(s, page, "Freepointer corrupt");
a973e9dd 948 page->freelist = NULL;
39b26464 949 page->inuse = page->objects;
24922684 950 slab_fix(s, "Freelist cleared");
81819f0f
CL
951 return 0;
952 }
953 break;
954 }
955 object = fp;
956 fp = get_freepointer(s, object);
957 nr++;
958 }
959
ab9a0f19 960 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
961 if (max_objects > MAX_OBJS_PER_PAGE)
962 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
963
964 if (page->objects != max_objects) {
965 slab_err(s, page, "Wrong number of objects. Found %d but "
966 "should be %d", page->objects, max_objects);
967 page->objects = max_objects;
968 slab_fix(s, "Number of objects adjusted.");
969 }
39b26464 970 if (page->inuse != page->objects - nr) {
70d71228 971 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
972 "counted were %d", page->inuse, page->objects - nr);
973 page->inuse = page->objects - nr;
24922684 974 slab_fix(s, "Object count adjusted.");
81819f0f
CL
975 }
976 return search == NULL;
977}
978
0121c619
CL
979static void trace(struct kmem_cache *s, struct page *page, void *object,
980 int alloc)
3ec09742
CL
981{
982 if (s->flags & SLAB_TRACE) {
983 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
984 s->name,
985 alloc ? "alloc" : "free",
986 object, page->inuse,
987 page->freelist);
988
989 if (!alloc)
990 print_section("Object", (void *)object, s->objsize);
991
992 dump_stack();
993 }
994}
995
c016b0bd
CL
996/*
997 * Hooks for other subsystems that check memory allocations. In a typical
998 * production configuration these hooks all should produce no code at all.
999 */
1000static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1001{
c1d50836 1002 flags &= gfp_allowed_mask;
c016b0bd
CL
1003 lockdep_trace_alloc(flags);
1004 might_sleep_if(flags & __GFP_WAIT);
1005
1006 return should_failslab(s->objsize, flags, s->flags);
1007}
1008
1009static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
1010{
c1d50836 1011 flags &= gfp_allowed_mask;
b3d41885 1012 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
1013 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
1014}
1015
1016static inline void slab_free_hook(struct kmem_cache *s, void *x)
1017{
1018 kmemleak_free_recursive(x, s->flags);
c016b0bd 1019
d3f661d6
CL
1020 /*
1021 * Trouble is that we may no longer disable interupts in the fast path
1022 * So in order to make the debug calls that expect irqs to be
1023 * disabled we need to disable interrupts temporarily.
1024 */
1025#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1026 {
1027 unsigned long flags;
1028
1029 local_irq_save(flags);
1030 kmemcheck_slab_free(s, x, s->objsize);
1031 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
1032 local_irq_restore(flags);
1033 }
1034#endif
f9b615de
TG
1035 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1036 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
1037}
1038
643b1138 1039/*
672bba3a 1040 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
1041 *
1042 * list_lock must be held.
643b1138 1043 */
5cc6eee8
CL
1044static void add_full(struct kmem_cache *s,
1045 struct kmem_cache_node *n, struct page *page)
643b1138 1046{
5cc6eee8
CL
1047 if (!(s->flags & SLAB_STORE_USER))
1048 return;
1049
643b1138 1050 list_add(&page->lru, &n->full);
643b1138
CL
1051}
1052
5cc6eee8
CL
1053/*
1054 * list_lock must be held.
1055 */
643b1138
CL
1056static void remove_full(struct kmem_cache *s, struct page *page)
1057{
643b1138
CL
1058 if (!(s->flags & SLAB_STORE_USER))
1059 return;
1060
643b1138 1061 list_del(&page->lru);
643b1138
CL
1062}
1063
0f389ec6
CL
1064/* Tracking of the number of slabs for debugging purposes */
1065static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1066{
1067 struct kmem_cache_node *n = get_node(s, node);
1068
1069 return atomic_long_read(&n->nr_slabs);
1070}
1071
26c02cf0
AB
1072static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1073{
1074 return atomic_long_read(&n->nr_slabs);
1075}
1076
205ab99d 1077static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1078{
1079 struct kmem_cache_node *n = get_node(s, node);
1080
1081 /*
1082 * May be called early in order to allocate a slab for the
1083 * kmem_cache_node structure. Solve the chicken-egg
1084 * dilemma by deferring the increment of the count during
1085 * bootstrap (see early_kmem_cache_node_alloc).
1086 */
7340cc84 1087 if (n) {
0f389ec6 1088 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1089 atomic_long_add(objects, &n->total_objects);
1090 }
0f389ec6 1091}
205ab99d 1092static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1093{
1094 struct kmem_cache_node *n = get_node(s, node);
1095
1096 atomic_long_dec(&n->nr_slabs);
205ab99d 1097 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1098}
1099
1100/* Object debug checks for alloc/free paths */
3ec09742
CL
1101static void setup_object_debug(struct kmem_cache *s, struct page *page,
1102 void *object)
1103{
1104 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1105 return;
1106
f7cb1933 1107 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1108 init_tracking(s, object);
1109}
1110
1537066c 1111static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1112 void *object, unsigned long addr)
81819f0f
CL
1113{
1114 if (!check_slab(s, page))
1115 goto bad;
1116
81819f0f
CL
1117 if (!check_valid_pointer(s, page, object)) {
1118 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1119 goto bad;
81819f0f
CL
1120 }
1121
f7cb1933 1122 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1123 goto bad;
81819f0f 1124
3ec09742
CL
1125 /* Success perform special debug activities for allocs */
1126 if (s->flags & SLAB_STORE_USER)
1127 set_track(s, object, TRACK_ALLOC, addr);
1128 trace(s, page, object, 1);
f7cb1933 1129 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1130 return 1;
3ec09742 1131
81819f0f
CL
1132bad:
1133 if (PageSlab(page)) {
1134 /*
1135 * If this is a slab page then lets do the best we can
1136 * to avoid issues in the future. Marking all objects
672bba3a 1137 * as used avoids touching the remaining objects.
81819f0f 1138 */
24922684 1139 slab_fix(s, "Marking all objects used");
39b26464 1140 page->inuse = page->objects;
a973e9dd 1141 page->freelist = NULL;
81819f0f
CL
1142 }
1143 return 0;
1144}
1145
1537066c
CL
1146static noinline int free_debug_processing(struct kmem_cache *s,
1147 struct page *page, void *object, unsigned long addr)
81819f0f 1148{
5c2e4bbb
CL
1149 unsigned long flags;
1150 int rc = 0;
1151
1152 local_irq_save(flags);
881db7fb
CL
1153 slab_lock(page);
1154
81819f0f
CL
1155 if (!check_slab(s, page))
1156 goto fail;
1157
1158 if (!check_valid_pointer(s, page, object)) {
70d71228 1159 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1160 goto fail;
1161 }
1162
1163 if (on_freelist(s, page, object)) {
24922684 1164 object_err(s, page, object, "Object already free");
81819f0f
CL
1165 goto fail;
1166 }
1167
f7cb1933 1168 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1169 goto out;
81819f0f
CL
1170
1171 if (unlikely(s != page->slab)) {
3adbefee 1172 if (!PageSlab(page)) {
70d71228
CL
1173 slab_err(s, page, "Attempt to free object(0x%p) "
1174 "outside of slab", object);
3adbefee 1175 } else if (!page->slab) {
81819f0f 1176 printk(KERN_ERR
70d71228 1177 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1178 object);
70d71228 1179 dump_stack();
06428780 1180 } else
24922684
CL
1181 object_err(s, page, object,
1182 "page slab pointer corrupt.");
81819f0f
CL
1183 goto fail;
1184 }
3ec09742 1185
3ec09742
CL
1186 if (s->flags & SLAB_STORE_USER)
1187 set_track(s, object, TRACK_FREE, addr);
1188 trace(s, page, object, 0);
f7cb1933 1189 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1190 rc = 1;
1191out:
881db7fb 1192 slab_unlock(page);
5c2e4bbb
CL
1193 local_irq_restore(flags);
1194 return rc;
3ec09742 1195
81819f0f 1196fail:
24922684 1197 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1198 goto out;
81819f0f
CL
1199}
1200
41ecc55b
CL
1201static int __init setup_slub_debug(char *str)
1202{
f0630fff
CL
1203 slub_debug = DEBUG_DEFAULT_FLAGS;
1204 if (*str++ != '=' || !*str)
1205 /*
1206 * No options specified. Switch on full debugging.
1207 */
1208 goto out;
1209
1210 if (*str == ',')
1211 /*
1212 * No options but restriction on slabs. This means full
1213 * debugging for slabs matching a pattern.
1214 */
1215 goto check_slabs;
1216
fa5ec8a1
DR
1217 if (tolower(*str) == 'o') {
1218 /*
1219 * Avoid enabling debugging on caches if its minimum order
1220 * would increase as a result.
1221 */
1222 disable_higher_order_debug = 1;
1223 goto out;
1224 }
1225
f0630fff
CL
1226 slub_debug = 0;
1227 if (*str == '-')
1228 /*
1229 * Switch off all debugging measures.
1230 */
1231 goto out;
1232
1233 /*
1234 * Determine which debug features should be switched on
1235 */
06428780 1236 for (; *str && *str != ','; str++) {
f0630fff
CL
1237 switch (tolower(*str)) {
1238 case 'f':
1239 slub_debug |= SLAB_DEBUG_FREE;
1240 break;
1241 case 'z':
1242 slub_debug |= SLAB_RED_ZONE;
1243 break;
1244 case 'p':
1245 slub_debug |= SLAB_POISON;
1246 break;
1247 case 'u':
1248 slub_debug |= SLAB_STORE_USER;
1249 break;
1250 case 't':
1251 slub_debug |= SLAB_TRACE;
1252 break;
4c13dd3b
DM
1253 case 'a':
1254 slub_debug |= SLAB_FAILSLAB;
1255 break;
f0630fff
CL
1256 default:
1257 printk(KERN_ERR "slub_debug option '%c' "
06428780 1258 "unknown. skipped\n", *str);
f0630fff 1259 }
41ecc55b
CL
1260 }
1261
f0630fff 1262check_slabs:
41ecc55b
CL
1263 if (*str == ',')
1264 slub_debug_slabs = str + 1;
f0630fff 1265out:
41ecc55b
CL
1266 return 1;
1267}
1268
1269__setup("slub_debug", setup_slub_debug);
1270
ba0268a8
CL
1271static unsigned long kmem_cache_flags(unsigned long objsize,
1272 unsigned long flags, const char *name,
51cc5068 1273 void (*ctor)(void *))
41ecc55b
CL
1274{
1275 /*
e153362a 1276 * Enable debugging if selected on the kernel commandline.
41ecc55b 1277 */
e153362a 1278 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1279 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1280 flags |= slub_debug;
ba0268a8
CL
1281
1282 return flags;
41ecc55b
CL
1283}
1284#else
3ec09742
CL
1285static inline void setup_object_debug(struct kmem_cache *s,
1286 struct page *page, void *object) {}
41ecc55b 1287
3ec09742 1288static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1289 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1290
3ec09742 1291static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1292 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1293
41ecc55b
CL
1294static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1295 { return 1; }
1296static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1297 void *object, u8 val) { return 1; }
5cc6eee8
CL
1298static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1299 struct page *page) {}
2cfb7455 1300static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1301static inline unsigned long kmem_cache_flags(unsigned long objsize,
1302 unsigned long flags, const char *name,
51cc5068 1303 void (*ctor)(void *))
ba0268a8
CL
1304{
1305 return flags;
1306}
41ecc55b 1307#define slub_debug 0
0f389ec6 1308
fdaa45e9
IM
1309#define disable_higher_order_debug 0
1310
0f389ec6
CL
1311static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1312 { return 0; }
26c02cf0
AB
1313static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1314 { return 0; }
205ab99d
CL
1315static inline void inc_slabs_node(struct kmem_cache *s, int node,
1316 int objects) {}
1317static inline void dec_slabs_node(struct kmem_cache *s, int node,
1318 int objects) {}
7d550c56
CL
1319
1320static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1321 { return 0; }
1322
1323static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1324 void *object) {}
1325
1326static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1327
ab4d5ed5 1328#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1329
81819f0f
CL
1330/*
1331 * Slab allocation and freeing
1332 */
65c3376a
CL
1333static inline struct page *alloc_slab_page(gfp_t flags, int node,
1334 struct kmem_cache_order_objects oo)
1335{
1336 int order = oo_order(oo);
1337
b1eeab67
VN
1338 flags |= __GFP_NOTRACK;
1339
2154a336 1340 if (node == NUMA_NO_NODE)
65c3376a
CL
1341 return alloc_pages(flags, order);
1342 else
6b65aaf3 1343 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1344}
1345
81819f0f
CL
1346static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1347{
06428780 1348 struct page *page;
834f3d11 1349 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1350 gfp_t alloc_gfp;
81819f0f 1351
7e0528da
CL
1352 flags &= gfp_allowed_mask;
1353
1354 if (flags & __GFP_WAIT)
1355 local_irq_enable();
1356
b7a49f0d 1357 flags |= s->allocflags;
e12ba74d 1358
ba52270d
PE
1359 /*
1360 * Let the initial higher-order allocation fail under memory pressure
1361 * so we fall-back to the minimum order allocation.
1362 */
1363 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1364
1365 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1366 if (unlikely(!page)) {
1367 oo = s->min;
1368 /*
1369 * Allocation may have failed due to fragmentation.
1370 * Try a lower order alloc if possible
1371 */
1372 page = alloc_slab_page(flags, node, oo);
81819f0f 1373
7e0528da
CL
1374 if (page)
1375 stat(s, ORDER_FALLBACK);
65c3376a 1376 }
5a896d9e 1377
7e0528da
CL
1378 if (flags & __GFP_WAIT)
1379 local_irq_disable();
1380
1381 if (!page)
1382 return NULL;
1383
5a896d9e 1384 if (kmemcheck_enabled
5086c389 1385 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1386 int pages = 1 << oo_order(oo);
1387
1388 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1389
1390 /*
1391 * Objects from caches that have a constructor don't get
1392 * cleared when they're allocated, so we need to do it here.
1393 */
1394 if (s->ctor)
1395 kmemcheck_mark_uninitialized_pages(page, pages);
1396 else
1397 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1398 }
1399
834f3d11 1400 page->objects = oo_objects(oo);
81819f0f
CL
1401 mod_zone_page_state(page_zone(page),
1402 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1403 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1404 1 << oo_order(oo));
81819f0f
CL
1405
1406 return page;
1407}
1408
1409static void setup_object(struct kmem_cache *s, struct page *page,
1410 void *object)
1411{
3ec09742 1412 setup_object_debug(s, page, object);
4f104934 1413 if (unlikely(s->ctor))
51cc5068 1414 s->ctor(object);
81819f0f
CL
1415}
1416
1417static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1418{
1419 struct page *page;
81819f0f 1420 void *start;
81819f0f
CL
1421 void *last;
1422 void *p;
1423
6cb06229 1424 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1425
6cb06229
CL
1426 page = allocate_slab(s,
1427 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1428 if (!page)
1429 goto out;
1430
205ab99d 1431 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1432 page->slab = s;
1433 page->flags |= 1 << PG_slab;
81819f0f
CL
1434
1435 start = page_address(page);
81819f0f
CL
1436
1437 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1438 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1439
1440 last = start;
224a88be 1441 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1442 setup_object(s, page, last);
1443 set_freepointer(s, last, p);
1444 last = p;
1445 }
1446 setup_object(s, page, last);
a973e9dd 1447 set_freepointer(s, last, NULL);
81819f0f
CL
1448
1449 page->freelist = start;
e6e82ea1 1450 page->inuse = page->objects;
8cb0a506 1451 page->frozen = 1;
81819f0f 1452out:
81819f0f
CL
1453 return page;
1454}
1455
1456static void __free_slab(struct kmem_cache *s, struct page *page)
1457{
834f3d11
CL
1458 int order = compound_order(page);
1459 int pages = 1 << order;
81819f0f 1460
af537b0a 1461 if (kmem_cache_debug(s)) {
81819f0f
CL
1462 void *p;
1463
1464 slab_pad_check(s, page);
224a88be
CL
1465 for_each_object(p, s, page_address(page),
1466 page->objects)
f7cb1933 1467 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1468 }
1469
b1eeab67 1470 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1471
81819f0f
CL
1472 mod_zone_page_state(page_zone(page),
1473 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1474 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1475 -pages);
81819f0f 1476
49bd5221
CL
1477 __ClearPageSlab(page);
1478 reset_page_mapcount(page);
1eb5ac64
NP
1479 if (current->reclaim_state)
1480 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1481 __free_pages(page, order);
81819f0f
CL
1482}
1483
da9a638c
LJ
1484#define need_reserve_slab_rcu \
1485 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1486
81819f0f
CL
1487static void rcu_free_slab(struct rcu_head *h)
1488{
1489 struct page *page;
1490
da9a638c
LJ
1491 if (need_reserve_slab_rcu)
1492 page = virt_to_head_page(h);
1493 else
1494 page = container_of((struct list_head *)h, struct page, lru);
1495
81819f0f
CL
1496 __free_slab(page->slab, page);
1497}
1498
1499static void free_slab(struct kmem_cache *s, struct page *page)
1500{
1501 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1502 struct rcu_head *head;
1503
1504 if (need_reserve_slab_rcu) {
1505 int order = compound_order(page);
1506 int offset = (PAGE_SIZE << order) - s->reserved;
1507
1508 VM_BUG_ON(s->reserved != sizeof(*head));
1509 head = page_address(page) + offset;
1510 } else {
1511 /*
1512 * RCU free overloads the RCU head over the LRU
1513 */
1514 head = (void *)&page->lru;
1515 }
81819f0f
CL
1516
1517 call_rcu(head, rcu_free_slab);
1518 } else
1519 __free_slab(s, page);
1520}
1521
1522static void discard_slab(struct kmem_cache *s, struct page *page)
1523{
205ab99d 1524 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1525 free_slab(s, page);
1526}
1527
1528/*
5cc6eee8
CL
1529 * Management of partially allocated slabs.
1530 *
1531 * list_lock must be held.
81819f0f 1532 */
5cc6eee8 1533static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1534 struct page *page, int tail)
81819f0f 1535{
e95eed57 1536 n->nr_partial++;
7c2e132c
CL
1537 if (tail)
1538 list_add_tail(&page->lru, &n->partial);
1539 else
1540 list_add(&page->lru, &n->partial);
81819f0f
CL
1541}
1542
5cc6eee8
CL
1543/*
1544 * list_lock must be held.
1545 */
1546static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1547 struct page *page)
1548{
1549 list_del(&page->lru);
1550 n->nr_partial--;
1551}
1552
81819f0f 1553/*
5cc6eee8
CL
1554 * Lock slab, remove from the partial list and put the object into the
1555 * per cpu freelist.
81819f0f 1556 *
497b66f2
CL
1557 * Returns a list of objects or NULL if it fails.
1558 *
672bba3a 1559 * Must hold list_lock.
81819f0f 1560 */
497b66f2 1561static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1
CL
1562 struct kmem_cache_node *n, struct page *page,
1563 struct kmem_cache_cpu *c)
81819f0f 1564{
2cfb7455
CL
1565 void *freelist;
1566 unsigned long counters;
1567 struct page new;
1568
2cfb7455
CL
1569 /*
1570 * Zap the freelist and set the frozen bit.
1571 * The old freelist is the list of objects for the
1572 * per cpu allocation list.
1573 */
1574 do {
1575 freelist = page->freelist;
1576 counters = page->counters;
1577 new.counters = counters;
1578 new.inuse = page->objects;
1579
1580 VM_BUG_ON(new.frozen);
1581 new.frozen = 1;
1582
1d07171c 1583 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1584 freelist, counters,
1585 NULL, new.counters,
1586 "lock and freeze"));
1587
1588 remove_partial(n, page);
1589
1590 if (freelist) {
1591 /* Populate the per cpu freelist */
acd19fd1
CL
1592 c->page = page;
1593 c->node = page_to_nid(page);
497b66f2
CL
1594 stat(s, ALLOC_FROM_PARTIAL);
1595
1596 return freelist;
2cfb7455
CL
1597 } else {
1598 /*
1599 * Slab page came from the wrong list. No object to allocate
1600 * from. Put it onto the correct list and continue partial
1601 * scan.
1602 */
1603 printk(KERN_ERR "SLUB: %s : Page without available objects on"
1604 " partial list\n", s->name);
497b66f2 1605 return NULL;
81819f0f 1606 }
81819f0f
CL
1607}
1608
1609/*
672bba3a 1610 * Try to allocate a partial slab from a specific node.
81819f0f 1611 */
497b66f2 1612static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1613 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f
CL
1614{
1615 struct page *page;
497b66f2 1616 void *object;
81819f0f
CL
1617
1618 /*
1619 * Racy check. If we mistakenly see no partial slabs then we
1620 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1621 * partial slab and there is none available then get_partials()
1622 * will return NULL.
81819f0f
CL
1623 */
1624 if (!n || !n->nr_partial)
1625 return NULL;
1626
1627 spin_lock(&n->list_lock);
497b66f2
CL
1628 list_for_each_entry(page, &n->partial, lru) {
1629 object = acquire_slab(s, n, page, c);
1630 if (object)
81819f0f 1631 goto out;
497b66f2
CL
1632 }
1633 object = NULL;
81819f0f
CL
1634out:
1635 spin_unlock(&n->list_lock);
497b66f2 1636 return object;
81819f0f
CL
1637}
1638
1639/*
672bba3a 1640 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1641 */
acd19fd1
CL
1642static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1643 struct kmem_cache_cpu *c)
81819f0f
CL
1644{
1645#ifdef CONFIG_NUMA
1646 struct zonelist *zonelist;
dd1a239f 1647 struct zoneref *z;
54a6eb5c
MG
1648 struct zone *zone;
1649 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1650 void *object;
81819f0f
CL
1651
1652 /*
672bba3a
CL
1653 * The defrag ratio allows a configuration of the tradeoffs between
1654 * inter node defragmentation and node local allocations. A lower
1655 * defrag_ratio increases the tendency to do local allocations
1656 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1657 *
672bba3a
CL
1658 * If the defrag_ratio is set to 0 then kmalloc() always
1659 * returns node local objects. If the ratio is higher then kmalloc()
1660 * may return off node objects because partial slabs are obtained
1661 * from other nodes and filled up.
81819f0f 1662 *
6446faa2 1663 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1664 * defrag_ratio = 1000) then every (well almost) allocation will
1665 * first attempt to defrag slab caches on other nodes. This means
1666 * scanning over all nodes to look for partial slabs which may be
1667 * expensive if we do it every time we are trying to find a slab
1668 * with available objects.
81819f0f 1669 */
9824601e
CL
1670 if (!s->remote_node_defrag_ratio ||
1671 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1672 return NULL;
1673
c0ff7453 1674 get_mems_allowed();
0e88460d 1675 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1676 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1677 struct kmem_cache_node *n;
1678
54a6eb5c 1679 n = get_node(s, zone_to_nid(zone));
81819f0f 1680
54a6eb5c 1681 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1682 n->nr_partial > s->min_partial) {
497b66f2
CL
1683 object = get_partial_node(s, n, c);
1684 if (object) {
c0ff7453 1685 put_mems_allowed();
497b66f2 1686 return object;
c0ff7453 1687 }
81819f0f
CL
1688 }
1689 }
c0ff7453 1690 put_mems_allowed();
81819f0f
CL
1691#endif
1692 return NULL;
1693}
1694
1695/*
1696 * Get a partial page, lock it and return it.
1697 */
497b66f2 1698static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1699 struct kmem_cache_cpu *c)
81819f0f 1700{
497b66f2 1701 void *object;
2154a336 1702 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1703
497b66f2
CL
1704 object = get_partial_node(s, get_node(s, searchnode), c);
1705 if (object || node != NUMA_NO_NODE)
1706 return object;
81819f0f 1707
acd19fd1 1708 return get_any_partial(s, flags, c);
81819f0f
CL
1709}
1710
8a5ec0ba
CL
1711#ifdef CONFIG_PREEMPT
1712/*
1713 * Calculate the next globally unique transaction for disambiguiation
1714 * during cmpxchg. The transactions start with the cpu number and are then
1715 * incremented by CONFIG_NR_CPUS.
1716 */
1717#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1718#else
1719/*
1720 * No preemption supported therefore also no need to check for
1721 * different cpus.
1722 */
1723#define TID_STEP 1
1724#endif
1725
1726static inline unsigned long next_tid(unsigned long tid)
1727{
1728 return tid + TID_STEP;
1729}
1730
1731static inline unsigned int tid_to_cpu(unsigned long tid)
1732{
1733 return tid % TID_STEP;
1734}
1735
1736static inline unsigned long tid_to_event(unsigned long tid)
1737{
1738 return tid / TID_STEP;
1739}
1740
1741static inline unsigned int init_tid(int cpu)
1742{
1743 return cpu;
1744}
1745
1746static inline void note_cmpxchg_failure(const char *n,
1747 const struct kmem_cache *s, unsigned long tid)
1748{
1749#ifdef SLUB_DEBUG_CMPXCHG
1750 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1751
1752 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1753
1754#ifdef CONFIG_PREEMPT
1755 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1756 printk("due to cpu change %d -> %d\n",
1757 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1758 else
1759#endif
1760 if (tid_to_event(tid) != tid_to_event(actual_tid))
1761 printk("due to cpu running other code. Event %ld->%ld\n",
1762 tid_to_event(tid), tid_to_event(actual_tid));
1763 else
1764 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1765 actual_tid, tid, next_tid(tid));
1766#endif
4fdccdfb 1767 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1768}
1769
8a5ec0ba
CL
1770void init_kmem_cache_cpus(struct kmem_cache *s)
1771{
8a5ec0ba
CL
1772 int cpu;
1773
1774 for_each_possible_cpu(cpu)
1775 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1776}
2cfb7455 1777
81819f0f
CL
1778/*
1779 * Remove the cpu slab
1780 */
dfb4f096 1781static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1782{
2cfb7455 1783 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1784 struct page *page = c->page;
2cfb7455
CL
1785 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1786 int lock = 0;
1787 enum slab_modes l = M_NONE, m = M_NONE;
1788 void *freelist;
1789 void *nextfree;
1790 int tail = 0;
1791 struct page new;
1792 struct page old;
1793
1794 if (page->freelist) {
84e554e6 1795 stat(s, DEACTIVATE_REMOTE_FREES);
2cfb7455
CL
1796 tail = 1;
1797 }
1798
1799 c->tid = next_tid(c->tid);
1800 c->page = NULL;
1801 freelist = c->freelist;
1802 c->freelist = NULL;
1803
894b8788 1804 /*
2cfb7455
CL
1805 * Stage one: Free all available per cpu objects back
1806 * to the page freelist while it is still frozen. Leave the
1807 * last one.
1808 *
1809 * There is no need to take the list->lock because the page
1810 * is still frozen.
1811 */
1812 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1813 void *prior;
1814 unsigned long counters;
1815
1816 do {
1817 prior = page->freelist;
1818 counters = page->counters;
1819 set_freepointer(s, freelist, prior);
1820 new.counters = counters;
1821 new.inuse--;
1822 VM_BUG_ON(!new.frozen);
1823
1d07171c 1824 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1825 prior, counters,
1826 freelist, new.counters,
1827 "drain percpu freelist"));
1828
1829 freelist = nextfree;
1830 }
1831
894b8788 1832 /*
2cfb7455
CL
1833 * Stage two: Ensure that the page is unfrozen while the
1834 * list presence reflects the actual number of objects
1835 * during unfreeze.
1836 *
1837 * We setup the list membership and then perform a cmpxchg
1838 * with the count. If there is a mismatch then the page
1839 * is not unfrozen but the page is on the wrong list.
1840 *
1841 * Then we restart the process which may have to remove
1842 * the page from the list that we just put it on again
1843 * because the number of objects in the slab may have
1844 * changed.
894b8788 1845 */
2cfb7455 1846redo:
894b8788 1847
2cfb7455
CL
1848 old.freelist = page->freelist;
1849 old.counters = page->counters;
1850 VM_BUG_ON(!old.frozen);
7c2e132c 1851
2cfb7455
CL
1852 /* Determine target state of the slab */
1853 new.counters = old.counters;
1854 if (freelist) {
1855 new.inuse--;
1856 set_freepointer(s, freelist, old.freelist);
1857 new.freelist = freelist;
1858 } else
1859 new.freelist = old.freelist;
1860
1861 new.frozen = 0;
1862
81107188 1863 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1864 m = M_FREE;
1865 else if (new.freelist) {
1866 m = M_PARTIAL;
1867 if (!lock) {
1868 lock = 1;
1869 /*
1870 * Taking the spinlock removes the possiblity
1871 * that acquire_slab() will see a slab page that
1872 * is frozen
1873 */
1874 spin_lock(&n->list_lock);
1875 }
1876 } else {
1877 m = M_FULL;
1878 if (kmem_cache_debug(s) && !lock) {
1879 lock = 1;
1880 /*
1881 * This also ensures that the scanning of full
1882 * slabs from diagnostic functions will not see
1883 * any frozen slabs.
1884 */
1885 spin_lock(&n->list_lock);
1886 }
1887 }
1888
1889 if (l != m) {
1890
1891 if (l == M_PARTIAL)
1892
1893 remove_partial(n, page);
1894
1895 else if (l == M_FULL)
894b8788 1896
2cfb7455
CL
1897 remove_full(s, page);
1898
1899 if (m == M_PARTIAL) {
1900
1901 add_partial(n, page, tail);
1902 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1903
1904 } else if (m == M_FULL) {
894b8788 1905
2cfb7455
CL
1906 stat(s, DEACTIVATE_FULL);
1907 add_full(s, n, page);
1908
1909 }
1910 }
1911
1912 l = m;
1d07171c 1913 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1914 old.freelist, old.counters,
1915 new.freelist, new.counters,
1916 "unfreezing slab"))
1917 goto redo;
1918
2cfb7455
CL
1919 if (lock)
1920 spin_unlock(&n->list_lock);
1921
1922 if (m == M_FREE) {
1923 stat(s, DEACTIVATE_EMPTY);
1924 discard_slab(s, page);
1925 stat(s, FREE_SLAB);
894b8788 1926 }
81819f0f
CL
1927}
1928
dfb4f096 1929static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1930{
84e554e6 1931 stat(s, CPUSLAB_FLUSH);
dfb4f096 1932 deactivate_slab(s, c);
81819f0f
CL
1933}
1934
1935/*
1936 * Flush cpu slab.
6446faa2 1937 *
81819f0f
CL
1938 * Called from IPI handler with interrupts disabled.
1939 */
0c710013 1940static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1941{
9dfc6e68 1942 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1943
dfb4f096
CL
1944 if (likely(c && c->page))
1945 flush_slab(s, c);
81819f0f
CL
1946}
1947
1948static void flush_cpu_slab(void *d)
1949{
1950 struct kmem_cache *s = d;
81819f0f 1951
dfb4f096 1952 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1953}
1954
1955static void flush_all(struct kmem_cache *s)
1956{
15c8b6c1 1957 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1958}
1959
dfb4f096
CL
1960/*
1961 * Check if the objects in a per cpu structure fit numa
1962 * locality expectations.
1963 */
1964static inline int node_match(struct kmem_cache_cpu *c, int node)
1965{
1966#ifdef CONFIG_NUMA
2154a336 1967 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1968 return 0;
1969#endif
1970 return 1;
1971}
1972
781b2ba6
PE
1973static int count_free(struct page *page)
1974{
1975 return page->objects - page->inuse;
1976}
1977
1978static unsigned long count_partial(struct kmem_cache_node *n,
1979 int (*get_count)(struct page *))
1980{
1981 unsigned long flags;
1982 unsigned long x = 0;
1983 struct page *page;
1984
1985 spin_lock_irqsave(&n->list_lock, flags);
1986 list_for_each_entry(page, &n->partial, lru)
1987 x += get_count(page);
1988 spin_unlock_irqrestore(&n->list_lock, flags);
1989 return x;
1990}
1991
26c02cf0
AB
1992static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1993{
1994#ifdef CONFIG_SLUB_DEBUG
1995 return atomic_long_read(&n->total_objects);
1996#else
1997 return 0;
1998#endif
1999}
2000
781b2ba6
PE
2001static noinline void
2002slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2003{
2004 int node;
2005
2006 printk(KERN_WARNING
2007 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2008 nid, gfpflags);
2009 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2010 "default order: %d, min order: %d\n", s->name, s->objsize,
2011 s->size, oo_order(s->oo), oo_order(s->min));
2012
fa5ec8a1
DR
2013 if (oo_order(s->min) > get_order(s->objsize))
2014 printk(KERN_WARNING " %s debugging increased min order, use "
2015 "slub_debug=O to disable.\n", s->name);
2016
781b2ba6
PE
2017 for_each_online_node(node) {
2018 struct kmem_cache_node *n = get_node(s, node);
2019 unsigned long nr_slabs;
2020 unsigned long nr_objs;
2021 unsigned long nr_free;
2022
2023 if (!n)
2024 continue;
2025
26c02cf0
AB
2026 nr_free = count_partial(n, count_free);
2027 nr_slabs = node_nr_slabs(n);
2028 nr_objs = node_nr_objs(n);
781b2ba6
PE
2029
2030 printk(KERN_WARNING
2031 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2032 node, nr_slabs, nr_objs, nr_free);
2033 }
2034}
2035
497b66f2
CL
2036static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2037 int node, struct kmem_cache_cpu **pc)
2038{
2039 void *object;
2040 struct kmem_cache_cpu *c;
2041 struct page *page = new_slab(s, flags, node);
2042
2043 if (page) {
2044 c = __this_cpu_ptr(s->cpu_slab);
2045 if (c->page)
2046 flush_slab(s, c);
2047
2048 /*
2049 * No other reference to the page yet so we can
2050 * muck around with it freely without cmpxchg
2051 */
2052 object = page->freelist;
2053 page->freelist = NULL;
2054
2055 stat(s, ALLOC_SLAB);
2056 c->node = page_to_nid(page);
2057 c->page = page;
2058 *pc = c;
2059 } else
2060 object = NULL;
2061
2062 return object;
2063}
2064
81819f0f 2065/*
894b8788
CL
2066 * Slow path. The lockless freelist is empty or we need to perform
2067 * debugging duties.
2068 *
2069 * Interrupts are disabled.
81819f0f 2070 *
894b8788
CL
2071 * Processing is still very fast if new objects have been freed to the
2072 * regular freelist. In that case we simply take over the regular freelist
2073 * as the lockless freelist and zap the regular freelist.
81819f0f 2074 *
894b8788
CL
2075 * If that is not working then we fall back to the partial lists. We take the
2076 * first element of the freelist as the object to allocate now and move the
2077 * rest of the freelist to the lockless freelist.
81819f0f 2078 *
894b8788 2079 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2080 * we need to allocate a new slab. This is the slowest path since it involves
2081 * a call to the page allocator and the setup of a new slab.
81819f0f 2082 */
ce71e27c
EGM
2083static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2084 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2085{
81819f0f 2086 void **object;
8a5ec0ba 2087 unsigned long flags;
2cfb7455
CL
2088 struct page new;
2089 unsigned long counters;
8a5ec0ba
CL
2090
2091 local_irq_save(flags);
2092#ifdef CONFIG_PREEMPT
2093 /*
2094 * We may have been preempted and rescheduled on a different
2095 * cpu before disabling interrupts. Need to reload cpu area
2096 * pointer.
2097 */
2098 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2099#endif
81819f0f 2100
497b66f2 2101 if (!c->page)
81819f0f
CL
2102 goto new_slab;
2103
fc59c053 2104 if (unlikely(!node_match(c, node))) {
e36a2652 2105 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2106 deactivate_slab(s, c);
2107 goto new_slab;
2108 }
6446faa2 2109
2cfb7455
CL
2110 stat(s, ALLOC_SLOWPATH);
2111
2112 do {
497b66f2
CL
2113 object = c->page->freelist;
2114 counters = c->page->counters;
2cfb7455 2115 new.counters = counters;
2cfb7455
CL
2116 VM_BUG_ON(!new.frozen);
2117
03e404af
CL
2118 /*
2119 * If there is no object left then we use this loop to
2120 * deactivate the slab which is simple since no objects
2121 * are left in the slab and therefore we do not need to
2122 * put the page back onto the partial list.
2123 *
2124 * If there are objects left then we retrieve them
2125 * and use them to refill the per cpu queue.
497b66f2 2126 */
03e404af 2127
497b66f2 2128 new.inuse = c->page->objects;
03e404af
CL
2129 new.frozen = object != NULL;
2130
497b66f2 2131 } while (!__cmpxchg_double_slab(s, c->page,
2cfb7455
CL
2132 object, counters,
2133 NULL, new.counters,
2134 "__slab_alloc"));
6446faa2 2135
03e404af
CL
2136 if (unlikely(!object)) {
2137 c->page = NULL;
2138 stat(s, DEACTIVATE_BYPASS);
fc59c053 2139 goto new_slab;
03e404af 2140 }
6446faa2 2141
84e554e6 2142 stat(s, ALLOC_REFILL);
6446faa2 2143
894b8788 2144load_freelist:
ff12059e 2145 c->freelist = get_freepointer(s, object);
8a5ec0ba
CL
2146 c->tid = next_tid(c->tid);
2147 local_irq_restore(flags);
81819f0f
CL
2148 return object;
2149
81819f0f 2150new_slab:
497b66f2 2151 object = get_partial(s, gfpflags, node, c);
81819f0f 2152
497b66f2 2153 if (unlikely(!object)) {
b811c202 2154
497b66f2 2155 object = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2156
497b66f2
CL
2157 if (unlikely(!object)) {
2158 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2159 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2160
497b66f2
CL
2161 local_irq_restore(flags);
2162 return NULL;
2163 }
2164 }
9e577e8b 2165
497b66f2 2166 if (likely(!kmem_cache_debug(s)))
4b6f0750 2167 goto load_freelist;
2cfb7455 2168
497b66f2
CL
2169 /* Only entered in the debug case */
2170 if (!alloc_debug_processing(s, c->page, object, addr))
2171 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2172
2cfb7455 2173 c->freelist = get_freepointer(s, object);
442b06bc 2174 deactivate_slab(s, c);
15b7c514 2175 c->node = NUMA_NO_NODE;
a71ae47a
CL
2176 local_irq_restore(flags);
2177 return object;
894b8788
CL
2178}
2179
2180/*
2181 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2182 * have the fastpath folded into their functions. So no function call
2183 * overhead for requests that can be satisfied on the fastpath.
2184 *
2185 * The fastpath works by first checking if the lockless freelist can be used.
2186 * If not then __slab_alloc is called for slow processing.
2187 *
2188 * Otherwise we can simply pick the next object from the lockless free list.
2189 */
06428780 2190static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2191 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2192{
894b8788 2193 void **object;
dfb4f096 2194 struct kmem_cache_cpu *c;
8a5ec0ba 2195 unsigned long tid;
1f84260c 2196
c016b0bd 2197 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2198 return NULL;
1f84260c 2199
8a5ec0ba 2200redo:
8a5ec0ba
CL
2201
2202 /*
2203 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2204 * enabled. We may switch back and forth between cpus while
2205 * reading from one cpu area. That does not matter as long
2206 * as we end up on the original cpu again when doing the cmpxchg.
2207 */
9dfc6e68 2208 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2209
8a5ec0ba
CL
2210 /*
2211 * The transaction ids are globally unique per cpu and per operation on
2212 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2213 * occurs on the right processor and that there was no operation on the
2214 * linked list in between.
2215 */
2216 tid = c->tid;
2217 barrier();
8a5ec0ba 2218
9dfc6e68 2219 object = c->freelist;
9dfc6e68 2220 if (unlikely(!object || !node_match(c, node)))
894b8788 2221
dfb4f096 2222 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2223
2224 else {
8a5ec0ba 2225 /*
25985edc 2226 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2227 * operation and if we are on the right processor.
2228 *
2229 * The cmpxchg does the following atomically (without lock semantics!)
2230 * 1. Relocate first pointer to the current per cpu area.
2231 * 2. Verify that tid and freelist have not been changed
2232 * 3. If they were not changed replace tid and freelist
2233 *
2234 * Since this is without lock semantics the protection is only against
2235 * code executing on this cpu *not* from access by other cpus.
2236 */
30106b8c 2237 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2238 s->cpu_slab->freelist, s->cpu_slab->tid,
2239 object, tid,
1393d9a1 2240 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
2241
2242 note_cmpxchg_failure("slab_alloc", s, tid);
2243 goto redo;
2244 }
84e554e6 2245 stat(s, ALLOC_FASTPATH);
894b8788 2246 }
8a5ec0ba 2247
74e2134f 2248 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2249 memset(object, 0, s->objsize);
d07dbea4 2250
c016b0bd 2251 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2252
894b8788 2253 return object;
81819f0f
CL
2254}
2255
2256void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2257{
2154a336 2258 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2259
ca2b84cb 2260 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2261
2262 return ret;
81819f0f
CL
2263}
2264EXPORT_SYMBOL(kmem_cache_alloc);
2265
0f24f128 2266#ifdef CONFIG_TRACING
4a92379b
RK
2267void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2268{
2269 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2270 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2271 return ret;
2272}
2273EXPORT_SYMBOL(kmem_cache_alloc_trace);
2274
2275void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2276{
4a92379b
RK
2277 void *ret = kmalloc_order(size, flags, order);
2278 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2279 return ret;
5b882be4 2280}
4a92379b 2281EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2282#endif
2283
81819f0f
CL
2284#ifdef CONFIG_NUMA
2285void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2286{
5b882be4
EGM
2287 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2288
ca2b84cb
EGM
2289 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2290 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2291
2292 return ret;
81819f0f
CL
2293}
2294EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2295
0f24f128 2296#ifdef CONFIG_TRACING
4a92379b 2297void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2298 gfp_t gfpflags,
4a92379b 2299 int node, size_t size)
5b882be4 2300{
4a92379b
RK
2301 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2302
2303 trace_kmalloc_node(_RET_IP_, ret,
2304 size, s->size, gfpflags, node);
2305 return ret;
5b882be4 2306}
4a92379b 2307EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2308#endif
5d1f57e4 2309#endif
5b882be4 2310
81819f0f 2311/*
894b8788
CL
2312 * Slow patch handling. This may still be called frequently since objects
2313 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2314 *
894b8788
CL
2315 * So we still attempt to reduce cache line usage. Just take the slab
2316 * lock and free the item. If there is no additional partial page
2317 * handling required then we can return immediately.
81819f0f 2318 */
894b8788 2319static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2320 void *x, unsigned long addr)
81819f0f
CL
2321{
2322 void *prior;
2323 void **object = (void *)x;
2cfb7455
CL
2324 int was_frozen;
2325 int inuse;
2326 struct page new;
2327 unsigned long counters;
2328 struct kmem_cache_node *n = NULL;
61728d1e 2329 unsigned long uninitialized_var(flags);
81819f0f 2330
8a5ec0ba 2331 stat(s, FREE_SLOWPATH);
81819f0f 2332
8dc16c6c 2333 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2334 return;
6446faa2 2335
2cfb7455
CL
2336 do {
2337 prior = page->freelist;
2338 counters = page->counters;
2339 set_freepointer(s, object, prior);
2340 new.counters = counters;
2341 was_frozen = new.frozen;
2342 new.inuse--;
2343 if ((!new.inuse || !prior) && !was_frozen && !n) {
2344 n = get_node(s, page_to_nid(page));
2345 /*
2346 * Speculatively acquire the list_lock.
2347 * If the cmpxchg does not succeed then we may
2348 * drop the list_lock without any processing.
2349 *
2350 * Otherwise the list_lock will synchronize with
2351 * other processors updating the list of slabs.
2352 */
80f08c19 2353 spin_lock_irqsave(&n->list_lock, flags);
2cfb7455
CL
2354 }
2355 inuse = new.inuse;
81819f0f 2356
2cfb7455
CL
2357 } while (!cmpxchg_double_slab(s, page,
2358 prior, counters,
2359 object, new.counters,
2360 "__slab_free"));
81819f0f 2361
2cfb7455
CL
2362 if (likely(!n)) {
2363 /*
2364 * The list lock was not taken therefore no list
2365 * activity can be necessary.
2366 */
2367 if (was_frozen)
2368 stat(s, FREE_FROZEN);
80f08c19 2369 return;
2cfb7455 2370 }
81819f0f
CL
2371
2372 /*
2cfb7455
CL
2373 * was_frozen may have been set after we acquired the list_lock in
2374 * an earlier loop. So we need to check it here again.
81819f0f 2375 */
2cfb7455
CL
2376 if (was_frozen)
2377 stat(s, FREE_FROZEN);
2378 else {
2379 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2380 goto slab_empty;
81819f0f 2381
2cfb7455
CL
2382 /*
2383 * Objects left in the slab. If it was not on the partial list before
2384 * then add it.
2385 */
2386 if (unlikely(!prior)) {
2387 remove_full(s, page);
2388 add_partial(n, page, 0);
2389 stat(s, FREE_ADD_PARTIAL);
2390 }
8ff12cfc 2391 }
80f08c19 2392 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2393 return;
2394
2395slab_empty:
a973e9dd 2396 if (prior) {
81819f0f 2397 /*
6fbabb20 2398 * Slab on the partial list.
81819f0f 2399 */
5cc6eee8 2400 remove_partial(n, page);
84e554e6 2401 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2402 } else
2403 /* Slab must be on the full list */
2404 remove_full(s, page);
2cfb7455 2405
80f08c19 2406 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2407 stat(s, FREE_SLAB);
81819f0f 2408 discard_slab(s, page);
81819f0f
CL
2409}
2410
894b8788
CL
2411/*
2412 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2413 * can perform fastpath freeing without additional function calls.
2414 *
2415 * The fastpath is only possible if we are freeing to the current cpu slab
2416 * of this processor. This typically the case if we have just allocated
2417 * the item before.
2418 *
2419 * If fastpath is not possible then fall back to __slab_free where we deal
2420 * with all sorts of special processing.
2421 */
06428780 2422static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2423 struct page *page, void *x, unsigned long addr)
894b8788
CL
2424{
2425 void **object = (void *)x;
dfb4f096 2426 struct kmem_cache_cpu *c;
8a5ec0ba 2427 unsigned long tid;
1f84260c 2428
c016b0bd
CL
2429 slab_free_hook(s, x);
2430
8a5ec0ba 2431redo:
a24c5a0e 2432
8a5ec0ba
CL
2433 /*
2434 * Determine the currently cpus per cpu slab.
2435 * The cpu may change afterward. However that does not matter since
2436 * data is retrieved via this pointer. If we are on the same cpu
2437 * during the cmpxchg then the free will succedd.
2438 */
9dfc6e68 2439 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2440
8a5ec0ba
CL
2441 tid = c->tid;
2442 barrier();
c016b0bd 2443
442b06bc 2444 if (likely(page == c->page)) {
ff12059e 2445 set_freepointer(s, object, c->freelist);
8a5ec0ba 2446
30106b8c 2447 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2448 s->cpu_slab->freelist, s->cpu_slab->tid,
2449 c->freelist, tid,
2450 object, next_tid(tid)))) {
2451
2452 note_cmpxchg_failure("slab_free", s, tid);
2453 goto redo;
2454 }
84e554e6 2455 stat(s, FREE_FASTPATH);
894b8788 2456 } else
ff12059e 2457 __slab_free(s, page, x, addr);
894b8788 2458
894b8788
CL
2459}
2460
81819f0f
CL
2461void kmem_cache_free(struct kmem_cache *s, void *x)
2462{
77c5e2d0 2463 struct page *page;
81819f0f 2464
b49af68f 2465 page = virt_to_head_page(x);
81819f0f 2466
ce71e27c 2467 slab_free(s, page, x, _RET_IP_);
5b882be4 2468
ca2b84cb 2469 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2470}
2471EXPORT_SYMBOL(kmem_cache_free);
2472
81819f0f 2473/*
672bba3a
CL
2474 * Object placement in a slab is made very easy because we always start at
2475 * offset 0. If we tune the size of the object to the alignment then we can
2476 * get the required alignment by putting one properly sized object after
2477 * another.
81819f0f
CL
2478 *
2479 * Notice that the allocation order determines the sizes of the per cpu
2480 * caches. Each processor has always one slab available for allocations.
2481 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2482 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2483 * locking overhead.
81819f0f
CL
2484 */
2485
2486/*
2487 * Mininum / Maximum order of slab pages. This influences locking overhead
2488 * and slab fragmentation. A higher order reduces the number of partial slabs
2489 * and increases the number of allocations possible without having to
2490 * take the list_lock.
2491 */
2492static int slub_min_order;
114e9e89 2493static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2494static int slub_min_objects;
81819f0f
CL
2495
2496/*
2497 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2498 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2499 */
2500static int slub_nomerge;
2501
81819f0f
CL
2502/*
2503 * Calculate the order of allocation given an slab object size.
2504 *
672bba3a
CL
2505 * The order of allocation has significant impact on performance and other
2506 * system components. Generally order 0 allocations should be preferred since
2507 * order 0 does not cause fragmentation in the page allocator. Larger objects
2508 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2509 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2510 * would be wasted.
2511 *
2512 * In order to reach satisfactory performance we must ensure that a minimum
2513 * number of objects is in one slab. Otherwise we may generate too much
2514 * activity on the partial lists which requires taking the list_lock. This is
2515 * less a concern for large slabs though which are rarely used.
81819f0f 2516 *
672bba3a
CL
2517 * slub_max_order specifies the order where we begin to stop considering the
2518 * number of objects in a slab as critical. If we reach slub_max_order then
2519 * we try to keep the page order as low as possible. So we accept more waste
2520 * of space in favor of a small page order.
81819f0f 2521 *
672bba3a
CL
2522 * Higher order allocations also allow the placement of more objects in a
2523 * slab and thereby reduce object handling overhead. If the user has
2524 * requested a higher mininum order then we start with that one instead of
2525 * the smallest order which will fit the object.
81819f0f 2526 */
5e6d444e 2527static inline int slab_order(int size, int min_objects,
ab9a0f19 2528 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2529{
2530 int order;
2531 int rem;
6300ea75 2532 int min_order = slub_min_order;
81819f0f 2533
ab9a0f19 2534 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2535 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2536
6300ea75 2537 for (order = max(min_order,
5e6d444e
CL
2538 fls(min_objects * size - 1) - PAGE_SHIFT);
2539 order <= max_order; order++) {
81819f0f 2540
5e6d444e 2541 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2542
ab9a0f19 2543 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2544 continue;
2545
ab9a0f19 2546 rem = (slab_size - reserved) % size;
81819f0f 2547
5e6d444e 2548 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2549 break;
2550
2551 }
672bba3a 2552
81819f0f
CL
2553 return order;
2554}
2555
ab9a0f19 2556static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2557{
2558 int order;
2559 int min_objects;
2560 int fraction;
e8120ff1 2561 int max_objects;
5e6d444e
CL
2562
2563 /*
2564 * Attempt to find best configuration for a slab. This
2565 * works by first attempting to generate a layout with
2566 * the best configuration and backing off gradually.
2567 *
2568 * First we reduce the acceptable waste in a slab. Then
2569 * we reduce the minimum objects required in a slab.
2570 */
2571 min_objects = slub_min_objects;
9b2cd506
CL
2572 if (!min_objects)
2573 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2574 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2575 min_objects = min(min_objects, max_objects);
2576
5e6d444e 2577 while (min_objects > 1) {
c124f5b5 2578 fraction = 16;
5e6d444e
CL
2579 while (fraction >= 4) {
2580 order = slab_order(size, min_objects,
ab9a0f19 2581 slub_max_order, fraction, reserved);
5e6d444e
CL
2582 if (order <= slub_max_order)
2583 return order;
2584 fraction /= 2;
2585 }
5086c389 2586 min_objects--;
5e6d444e
CL
2587 }
2588
2589 /*
2590 * We were unable to place multiple objects in a slab. Now
2591 * lets see if we can place a single object there.
2592 */
ab9a0f19 2593 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2594 if (order <= slub_max_order)
2595 return order;
2596
2597 /*
2598 * Doh this slab cannot be placed using slub_max_order.
2599 */
ab9a0f19 2600 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2601 if (order < MAX_ORDER)
5e6d444e
CL
2602 return order;
2603 return -ENOSYS;
2604}
2605
81819f0f 2606/*
672bba3a 2607 * Figure out what the alignment of the objects will be.
81819f0f
CL
2608 */
2609static unsigned long calculate_alignment(unsigned long flags,
2610 unsigned long align, unsigned long size)
2611{
2612 /*
6446faa2
CL
2613 * If the user wants hardware cache aligned objects then follow that
2614 * suggestion if the object is sufficiently large.
81819f0f 2615 *
6446faa2
CL
2616 * The hardware cache alignment cannot override the specified
2617 * alignment though. If that is greater then use it.
81819f0f 2618 */
b6210386
NP
2619 if (flags & SLAB_HWCACHE_ALIGN) {
2620 unsigned long ralign = cache_line_size();
2621 while (size <= ralign / 2)
2622 ralign /= 2;
2623 align = max(align, ralign);
2624 }
81819f0f
CL
2625
2626 if (align < ARCH_SLAB_MINALIGN)
b6210386 2627 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2628
2629 return ALIGN(align, sizeof(void *));
2630}
2631
5595cffc
PE
2632static void
2633init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2634{
2635 n->nr_partial = 0;
81819f0f
CL
2636 spin_lock_init(&n->list_lock);
2637 INIT_LIST_HEAD(&n->partial);
8ab1372f 2638#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2639 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2640 atomic_long_set(&n->total_objects, 0);
643b1138 2641 INIT_LIST_HEAD(&n->full);
8ab1372f 2642#endif
81819f0f
CL
2643}
2644
55136592 2645static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2646{
6c182dc0
CL
2647 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2648 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2649
8a5ec0ba 2650 /*
d4d84fef
CM
2651 * Must align to double word boundary for the double cmpxchg
2652 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2653 */
d4d84fef
CM
2654 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2655 2 * sizeof(void *));
8a5ec0ba
CL
2656
2657 if (!s->cpu_slab)
2658 return 0;
2659
2660 init_kmem_cache_cpus(s);
4c93c355 2661
8a5ec0ba 2662 return 1;
4c93c355 2663}
4c93c355 2664
51df1142
CL
2665static struct kmem_cache *kmem_cache_node;
2666
81819f0f
CL
2667/*
2668 * No kmalloc_node yet so do it by hand. We know that this is the first
2669 * slab on the node for this slabcache. There are no concurrent accesses
2670 * possible.
2671 *
2672 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2673 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2674 * memory on a fresh node that has no slab structures yet.
81819f0f 2675 */
55136592 2676static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2677{
2678 struct page *page;
2679 struct kmem_cache_node *n;
2680
51df1142 2681 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2682
51df1142 2683 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2684
2685 BUG_ON(!page);
a2f92ee7
CL
2686 if (page_to_nid(page) != node) {
2687 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2688 "node %d\n", node);
2689 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2690 "in order to be able to continue\n");
2691 }
2692
81819f0f
CL
2693 n = page->freelist;
2694 BUG_ON(!n);
51df1142 2695 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2696 page->inuse = 1;
8cb0a506 2697 page->frozen = 0;
51df1142 2698 kmem_cache_node->node[node] = n;
8ab1372f 2699#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2700 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2701 init_tracking(kmem_cache_node, n);
8ab1372f 2702#endif
51df1142
CL
2703 init_kmem_cache_node(n, kmem_cache_node);
2704 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2705
7c2e132c 2706 add_partial(n, page, 0);
81819f0f
CL
2707}
2708
2709static void free_kmem_cache_nodes(struct kmem_cache *s)
2710{
2711 int node;
2712
f64dc58c 2713 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2714 struct kmem_cache_node *n = s->node[node];
51df1142 2715
73367bd8 2716 if (n)
51df1142
CL
2717 kmem_cache_free(kmem_cache_node, n);
2718
81819f0f
CL
2719 s->node[node] = NULL;
2720 }
2721}
2722
55136592 2723static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2724{
2725 int node;
81819f0f 2726
f64dc58c 2727 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2728 struct kmem_cache_node *n;
2729
73367bd8 2730 if (slab_state == DOWN) {
55136592 2731 early_kmem_cache_node_alloc(node);
73367bd8
AD
2732 continue;
2733 }
51df1142 2734 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2735 GFP_KERNEL, node);
81819f0f 2736
73367bd8
AD
2737 if (!n) {
2738 free_kmem_cache_nodes(s);
2739 return 0;
81819f0f 2740 }
73367bd8 2741
81819f0f 2742 s->node[node] = n;
5595cffc 2743 init_kmem_cache_node(n, s);
81819f0f
CL
2744 }
2745 return 1;
2746}
81819f0f 2747
c0bdb232 2748static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2749{
2750 if (min < MIN_PARTIAL)
2751 min = MIN_PARTIAL;
2752 else if (min > MAX_PARTIAL)
2753 min = MAX_PARTIAL;
2754 s->min_partial = min;
2755}
2756
81819f0f
CL
2757/*
2758 * calculate_sizes() determines the order and the distribution of data within
2759 * a slab object.
2760 */
06b285dc 2761static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2762{
2763 unsigned long flags = s->flags;
2764 unsigned long size = s->objsize;
2765 unsigned long align = s->align;
834f3d11 2766 int order;
81819f0f 2767
d8b42bf5
CL
2768 /*
2769 * Round up object size to the next word boundary. We can only
2770 * place the free pointer at word boundaries and this determines
2771 * the possible location of the free pointer.
2772 */
2773 size = ALIGN(size, sizeof(void *));
2774
2775#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2776 /*
2777 * Determine if we can poison the object itself. If the user of
2778 * the slab may touch the object after free or before allocation
2779 * then we should never poison the object itself.
2780 */
2781 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2782 !s->ctor)
81819f0f
CL
2783 s->flags |= __OBJECT_POISON;
2784 else
2785 s->flags &= ~__OBJECT_POISON;
2786
81819f0f
CL
2787
2788 /*
672bba3a 2789 * If we are Redzoning then check if there is some space between the
81819f0f 2790 * end of the object and the free pointer. If not then add an
672bba3a 2791 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2792 */
2793 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2794 size += sizeof(void *);
41ecc55b 2795#endif
81819f0f
CL
2796
2797 /*
672bba3a
CL
2798 * With that we have determined the number of bytes in actual use
2799 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2800 */
2801 s->inuse = size;
2802
2803 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2804 s->ctor)) {
81819f0f
CL
2805 /*
2806 * Relocate free pointer after the object if it is not
2807 * permitted to overwrite the first word of the object on
2808 * kmem_cache_free.
2809 *
2810 * This is the case if we do RCU, have a constructor or
2811 * destructor or are poisoning the objects.
2812 */
2813 s->offset = size;
2814 size += sizeof(void *);
2815 }
2816
c12b3c62 2817#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2818 if (flags & SLAB_STORE_USER)
2819 /*
2820 * Need to store information about allocs and frees after
2821 * the object.
2822 */
2823 size += 2 * sizeof(struct track);
2824
be7b3fbc 2825 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2826 /*
2827 * Add some empty padding so that we can catch
2828 * overwrites from earlier objects rather than let
2829 * tracking information or the free pointer be
0211a9c8 2830 * corrupted if a user writes before the start
81819f0f
CL
2831 * of the object.
2832 */
2833 size += sizeof(void *);
41ecc55b 2834#endif
672bba3a 2835
81819f0f
CL
2836 /*
2837 * Determine the alignment based on various parameters that the
65c02d4c
CL
2838 * user specified and the dynamic determination of cache line size
2839 * on bootup.
81819f0f
CL
2840 */
2841 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2842 s->align = align;
81819f0f
CL
2843
2844 /*
2845 * SLUB stores one object immediately after another beginning from
2846 * offset 0. In order to align the objects we have to simply size
2847 * each object to conform to the alignment.
2848 */
2849 size = ALIGN(size, align);
2850 s->size = size;
06b285dc
CL
2851 if (forced_order >= 0)
2852 order = forced_order;
2853 else
ab9a0f19 2854 order = calculate_order(size, s->reserved);
81819f0f 2855
834f3d11 2856 if (order < 0)
81819f0f
CL
2857 return 0;
2858
b7a49f0d 2859 s->allocflags = 0;
834f3d11 2860 if (order)
b7a49f0d
CL
2861 s->allocflags |= __GFP_COMP;
2862
2863 if (s->flags & SLAB_CACHE_DMA)
2864 s->allocflags |= SLUB_DMA;
2865
2866 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2867 s->allocflags |= __GFP_RECLAIMABLE;
2868
81819f0f
CL
2869 /*
2870 * Determine the number of objects per slab
2871 */
ab9a0f19
LJ
2872 s->oo = oo_make(order, size, s->reserved);
2873 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2874 if (oo_objects(s->oo) > oo_objects(s->max))
2875 s->max = s->oo;
81819f0f 2876
834f3d11 2877 return !!oo_objects(s->oo);
81819f0f
CL
2878
2879}
2880
55136592 2881static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2882 const char *name, size_t size,
2883 size_t align, unsigned long flags,
51cc5068 2884 void (*ctor)(void *))
81819f0f
CL
2885{
2886 memset(s, 0, kmem_size);
2887 s->name = name;
2888 s->ctor = ctor;
81819f0f 2889 s->objsize = size;
81819f0f 2890 s->align = align;
ba0268a8 2891 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2892 s->reserved = 0;
81819f0f 2893
da9a638c
LJ
2894 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2895 s->reserved = sizeof(struct rcu_head);
81819f0f 2896
06b285dc 2897 if (!calculate_sizes(s, -1))
81819f0f 2898 goto error;
3de47213
DR
2899 if (disable_higher_order_debug) {
2900 /*
2901 * Disable debugging flags that store metadata if the min slab
2902 * order increased.
2903 */
2904 if (get_order(s->size) > get_order(s->objsize)) {
2905 s->flags &= ~DEBUG_METADATA_FLAGS;
2906 s->offset = 0;
2907 if (!calculate_sizes(s, -1))
2908 goto error;
2909 }
2910 }
81819f0f 2911
b789ef51
CL
2912#ifdef CONFIG_CMPXCHG_DOUBLE
2913 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
2914 /* Enable fast mode */
2915 s->flags |= __CMPXCHG_DOUBLE;
2916#endif
2917
3b89d7d8
DR
2918 /*
2919 * The larger the object size is, the more pages we want on the partial
2920 * list to avoid pounding the page allocator excessively.
2921 */
c0bdb232 2922 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2923 s->refcount = 1;
2924#ifdef CONFIG_NUMA
e2cb96b7 2925 s->remote_node_defrag_ratio = 1000;
81819f0f 2926#endif
55136592 2927 if (!init_kmem_cache_nodes(s))
dfb4f096 2928 goto error;
81819f0f 2929
55136592 2930 if (alloc_kmem_cache_cpus(s))
81819f0f 2931 return 1;
ff12059e 2932
4c93c355 2933 free_kmem_cache_nodes(s);
81819f0f
CL
2934error:
2935 if (flags & SLAB_PANIC)
2936 panic("Cannot create slab %s size=%lu realsize=%u "
2937 "order=%u offset=%u flags=%lx\n",
834f3d11 2938 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2939 s->offset, flags);
2940 return 0;
2941}
81819f0f 2942
81819f0f
CL
2943/*
2944 * Determine the size of a slab object
2945 */
2946unsigned int kmem_cache_size(struct kmem_cache *s)
2947{
2948 return s->objsize;
2949}
2950EXPORT_SYMBOL(kmem_cache_size);
2951
33b12c38
CL
2952static void list_slab_objects(struct kmem_cache *s, struct page *page,
2953 const char *text)
2954{
2955#ifdef CONFIG_SLUB_DEBUG
2956 void *addr = page_address(page);
2957 void *p;
a5dd5c11
NK
2958 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2959 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2960 if (!map)
2961 return;
33b12c38
CL
2962 slab_err(s, page, "%s", text);
2963 slab_lock(page);
33b12c38 2964
5f80b13a 2965 get_map(s, page, map);
33b12c38
CL
2966 for_each_object(p, s, addr, page->objects) {
2967
2968 if (!test_bit(slab_index(p, s, addr), map)) {
2969 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2970 p, p - addr);
2971 print_tracking(s, p);
2972 }
2973 }
2974 slab_unlock(page);
bbd7d57b 2975 kfree(map);
33b12c38
CL
2976#endif
2977}
2978
81819f0f 2979/*
599870b1 2980 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
2981 * This is called from kmem_cache_close(). We must be the last thread
2982 * using the cache and therefore we do not need to lock anymore.
81819f0f 2983 */
599870b1 2984static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2985{
81819f0f
CL
2986 struct page *page, *h;
2987
33b12c38 2988 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2989 if (!page->inuse) {
5cc6eee8 2990 remove_partial(n, page);
81819f0f 2991 discard_slab(s, page);
33b12c38
CL
2992 } else {
2993 list_slab_objects(s, page,
2994 "Objects remaining on kmem_cache_close()");
599870b1 2995 }
33b12c38 2996 }
81819f0f
CL
2997}
2998
2999/*
672bba3a 3000 * Release all resources used by a slab cache.
81819f0f 3001 */
0c710013 3002static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3003{
3004 int node;
3005
3006 flush_all(s);
9dfc6e68 3007 free_percpu(s->cpu_slab);
81819f0f 3008 /* Attempt to free all objects */
f64dc58c 3009 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3010 struct kmem_cache_node *n = get_node(s, node);
3011
599870b1
CL
3012 free_partial(s, n);
3013 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3014 return 1;
3015 }
3016 free_kmem_cache_nodes(s);
3017 return 0;
3018}
3019
3020/*
3021 * Close a cache and release the kmem_cache structure
3022 * (must be used for caches created using kmem_cache_create)
3023 */
3024void kmem_cache_destroy(struct kmem_cache *s)
3025{
3026 down_write(&slub_lock);
3027 s->refcount--;
3028 if (!s->refcount) {
3029 list_del(&s->list);
69cb8e6b 3030 up_write(&slub_lock);
d629d819
PE
3031 if (kmem_cache_close(s)) {
3032 printk(KERN_ERR "SLUB %s: %s called for cache that "
3033 "still has objects.\n", s->name, __func__);
3034 dump_stack();
3035 }
d76b1590
ED
3036 if (s->flags & SLAB_DESTROY_BY_RCU)
3037 rcu_barrier();
81819f0f 3038 sysfs_slab_remove(s);
69cb8e6b
CL
3039 } else
3040 up_write(&slub_lock);
81819f0f
CL
3041}
3042EXPORT_SYMBOL(kmem_cache_destroy);
3043
3044/********************************************************************
3045 * Kmalloc subsystem
3046 *******************************************************************/
3047
51df1142 3048struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3049EXPORT_SYMBOL(kmalloc_caches);
3050
51df1142
CL
3051static struct kmem_cache *kmem_cache;
3052
55136592 3053#ifdef CONFIG_ZONE_DMA
51df1142 3054static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3055#endif
3056
81819f0f
CL
3057static int __init setup_slub_min_order(char *str)
3058{
06428780 3059 get_option(&str, &slub_min_order);
81819f0f
CL
3060
3061 return 1;
3062}
3063
3064__setup("slub_min_order=", setup_slub_min_order);
3065
3066static int __init setup_slub_max_order(char *str)
3067{
06428780 3068 get_option(&str, &slub_max_order);
818cf590 3069 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3070
3071 return 1;
3072}
3073
3074__setup("slub_max_order=", setup_slub_max_order);
3075
3076static int __init setup_slub_min_objects(char *str)
3077{
06428780 3078 get_option(&str, &slub_min_objects);
81819f0f
CL
3079
3080 return 1;
3081}
3082
3083__setup("slub_min_objects=", setup_slub_min_objects);
3084
3085static int __init setup_slub_nomerge(char *str)
3086{
3087 slub_nomerge = 1;
3088 return 1;
3089}
3090
3091__setup("slub_nomerge", setup_slub_nomerge);
3092
51df1142
CL
3093static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3094 int size, unsigned int flags)
81819f0f 3095{
51df1142
CL
3096 struct kmem_cache *s;
3097
3098 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3099
83b519e8
PE
3100 /*
3101 * This function is called with IRQs disabled during early-boot on
3102 * single CPU so there's no need to take slub_lock here.
3103 */
55136592 3104 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3105 flags, NULL))
81819f0f
CL
3106 goto panic;
3107
3108 list_add(&s->list, &slab_caches);
51df1142 3109 return s;
81819f0f
CL
3110
3111panic:
3112 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3113 return NULL;
81819f0f
CL
3114}
3115
f1b26339
CL
3116/*
3117 * Conversion table for small slabs sizes / 8 to the index in the
3118 * kmalloc array. This is necessary for slabs < 192 since we have non power
3119 * of two cache sizes there. The size of larger slabs can be determined using
3120 * fls.
3121 */
3122static s8 size_index[24] = {
3123 3, /* 8 */
3124 4, /* 16 */
3125 5, /* 24 */
3126 5, /* 32 */
3127 6, /* 40 */
3128 6, /* 48 */
3129 6, /* 56 */
3130 6, /* 64 */
3131 1, /* 72 */
3132 1, /* 80 */
3133 1, /* 88 */
3134 1, /* 96 */
3135 7, /* 104 */
3136 7, /* 112 */
3137 7, /* 120 */
3138 7, /* 128 */
3139 2, /* 136 */
3140 2, /* 144 */
3141 2, /* 152 */
3142 2, /* 160 */
3143 2, /* 168 */
3144 2, /* 176 */
3145 2, /* 184 */
3146 2 /* 192 */
3147};
3148
acdfcd04
AK
3149static inline int size_index_elem(size_t bytes)
3150{
3151 return (bytes - 1) / 8;
3152}
3153
81819f0f
CL
3154static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3155{
f1b26339 3156 int index;
81819f0f 3157
f1b26339
CL
3158 if (size <= 192) {
3159 if (!size)
3160 return ZERO_SIZE_PTR;
81819f0f 3161
acdfcd04 3162 index = size_index[size_index_elem(size)];
aadb4bc4 3163 } else
f1b26339 3164 index = fls(size - 1);
81819f0f
CL
3165
3166#ifdef CONFIG_ZONE_DMA
f1b26339 3167 if (unlikely((flags & SLUB_DMA)))
51df1142 3168 return kmalloc_dma_caches[index];
f1b26339 3169
81819f0f 3170#endif
51df1142 3171 return kmalloc_caches[index];
81819f0f
CL
3172}
3173
3174void *__kmalloc(size_t size, gfp_t flags)
3175{
aadb4bc4 3176 struct kmem_cache *s;
5b882be4 3177 void *ret;
81819f0f 3178
ffadd4d0 3179 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3180 return kmalloc_large(size, flags);
aadb4bc4
CL
3181
3182 s = get_slab(size, flags);
3183
3184 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3185 return s;
3186
2154a336 3187 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3188
ca2b84cb 3189 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3190
3191 return ret;
81819f0f
CL
3192}
3193EXPORT_SYMBOL(__kmalloc);
3194
5d1f57e4 3195#ifdef CONFIG_NUMA
f619cfe1
CL
3196static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3197{
b1eeab67 3198 struct page *page;
e4f7c0b4 3199 void *ptr = NULL;
f619cfe1 3200
b1eeab67
VN
3201 flags |= __GFP_COMP | __GFP_NOTRACK;
3202 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3203 if (page)
e4f7c0b4
CM
3204 ptr = page_address(page);
3205
3206 kmemleak_alloc(ptr, size, 1, flags);
3207 return ptr;
f619cfe1
CL
3208}
3209
81819f0f
CL
3210void *__kmalloc_node(size_t size, gfp_t flags, int node)
3211{
aadb4bc4 3212 struct kmem_cache *s;
5b882be4 3213 void *ret;
81819f0f 3214
057685cf 3215 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3216 ret = kmalloc_large_node(size, flags, node);
3217
ca2b84cb
EGM
3218 trace_kmalloc_node(_RET_IP_, ret,
3219 size, PAGE_SIZE << get_order(size),
3220 flags, node);
5b882be4
EGM
3221
3222 return ret;
3223 }
aadb4bc4
CL
3224
3225 s = get_slab(size, flags);
3226
3227 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3228 return s;
3229
5b882be4
EGM
3230 ret = slab_alloc(s, flags, node, _RET_IP_);
3231
ca2b84cb 3232 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3233
3234 return ret;
81819f0f
CL
3235}
3236EXPORT_SYMBOL(__kmalloc_node);
3237#endif
3238
3239size_t ksize(const void *object)
3240{
272c1d21 3241 struct page *page;
81819f0f 3242
ef8b4520 3243 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3244 return 0;
3245
294a80a8 3246 page = virt_to_head_page(object);
294a80a8 3247
76994412
PE
3248 if (unlikely(!PageSlab(page))) {
3249 WARN_ON(!PageCompound(page));
294a80a8 3250 return PAGE_SIZE << compound_order(page);
76994412 3251 }
81819f0f 3252
b3d41885 3253 return slab_ksize(page->slab);
81819f0f 3254}
b1aabecd 3255EXPORT_SYMBOL(ksize);
81819f0f 3256
d18a90dd
BG
3257#ifdef CONFIG_SLUB_DEBUG
3258bool verify_mem_not_deleted(const void *x)
3259{
3260 struct page *page;
3261 void *object = (void *)x;
3262 unsigned long flags;
3263 bool rv;
3264
3265 if (unlikely(ZERO_OR_NULL_PTR(x)))
3266 return false;
3267
3268 local_irq_save(flags);
3269
3270 page = virt_to_head_page(x);
3271 if (unlikely(!PageSlab(page))) {
3272 /* maybe it was from stack? */
3273 rv = true;
3274 goto out_unlock;
3275 }
3276
3277 slab_lock(page);
3278 if (on_freelist(page->slab, page, object)) {
3279 object_err(page->slab, page, object, "Object is on free-list");
3280 rv = false;
3281 } else {
3282 rv = true;
3283 }
3284 slab_unlock(page);
3285
3286out_unlock:
3287 local_irq_restore(flags);
3288 return rv;
3289}
3290EXPORT_SYMBOL(verify_mem_not_deleted);
3291#endif
3292
81819f0f
CL
3293void kfree(const void *x)
3294{
81819f0f 3295 struct page *page;
5bb983b0 3296 void *object = (void *)x;
81819f0f 3297
2121db74
PE
3298 trace_kfree(_RET_IP_, x);
3299
2408c550 3300 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3301 return;
3302
b49af68f 3303 page = virt_to_head_page(x);
aadb4bc4 3304 if (unlikely(!PageSlab(page))) {
0937502a 3305 BUG_ON(!PageCompound(page));
e4f7c0b4 3306 kmemleak_free(x);
aadb4bc4
CL
3307 put_page(page);
3308 return;
3309 }
ce71e27c 3310 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3311}
3312EXPORT_SYMBOL(kfree);
3313
2086d26a 3314/*
672bba3a
CL
3315 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3316 * the remaining slabs by the number of items in use. The slabs with the
3317 * most items in use come first. New allocations will then fill those up
3318 * and thus they can be removed from the partial lists.
3319 *
3320 * The slabs with the least items are placed last. This results in them
3321 * being allocated from last increasing the chance that the last objects
3322 * are freed in them.
2086d26a
CL
3323 */
3324int kmem_cache_shrink(struct kmem_cache *s)
3325{
3326 int node;
3327 int i;
3328 struct kmem_cache_node *n;
3329 struct page *page;
3330 struct page *t;
205ab99d 3331 int objects = oo_objects(s->max);
2086d26a 3332 struct list_head *slabs_by_inuse =
834f3d11 3333 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3334 unsigned long flags;
3335
3336 if (!slabs_by_inuse)
3337 return -ENOMEM;
3338
3339 flush_all(s);
f64dc58c 3340 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3341 n = get_node(s, node);
3342
3343 if (!n->nr_partial)
3344 continue;
3345
834f3d11 3346 for (i = 0; i < objects; i++)
2086d26a
CL
3347 INIT_LIST_HEAD(slabs_by_inuse + i);
3348
3349 spin_lock_irqsave(&n->list_lock, flags);
3350
3351 /*
672bba3a 3352 * Build lists indexed by the items in use in each slab.
2086d26a 3353 *
672bba3a
CL
3354 * Note that concurrent frees may occur while we hold the
3355 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3356 */
3357 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3358 list_move(&page->lru, slabs_by_inuse + page->inuse);
3359 if (!page->inuse)
3360 n->nr_partial--;
2086d26a
CL
3361 }
3362
2086d26a 3363 /*
672bba3a
CL
3364 * Rebuild the partial list with the slabs filled up most
3365 * first and the least used slabs at the end.
2086d26a 3366 */
69cb8e6b 3367 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3368 list_splice(slabs_by_inuse + i, n->partial.prev);
3369
2086d26a 3370 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3371
3372 /* Release empty slabs */
3373 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3374 discard_slab(s, page);
2086d26a
CL
3375 }
3376
3377 kfree(slabs_by_inuse);
3378 return 0;
3379}
3380EXPORT_SYMBOL(kmem_cache_shrink);
3381
92a5bbc1 3382#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3383static int slab_mem_going_offline_callback(void *arg)
3384{
3385 struct kmem_cache *s;
3386
3387 down_read(&slub_lock);
3388 list_for_each_entry(s, &slab_caches, list)
3389 kmem_cache_shrink(s);
3390 up_read(&slub_lock);
3391
3392 return 0;
3393}
3394
3395static void slab_mem_offline_callback(void *arg)
3396{
3397 struct kmem_cache_node *n;
3398 struct kmem_cache *s;
3399 struct memory_notify *marg = arg;
3400 int offline_node;
3401
3402 offline_node = marg->status_change_nid;
3403
3404 /*
3405 * If the node still has available memory. we need kmem_cache_node
3406 * for it yet.
3407 */
3408 if (offline_node < 0)
3409 return;
3410
3411 down_read(&slub_lock);
3412 list_for_each_entry(s, &slab_caches, list) {
3413 n = get_node(s, offline_node);
3414 if (n) {
3415 /*
3416 * if n->nr_slabs > 0, slabs still exist on the node
3417 * that is going down. We were unable to free them,
c9404c9c 3418 * and offline_pages() function shouldn't call this
b9049e23
YG
3419 * callback. So, we must fail.
3420 */
0f389ec6 3421 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3422
3423 s->node[offline_node] = NULL;
8de66a0c 3424 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3425 }
3426 }
3427 up_read(&slub_lock);
3428}
3429
3430static int slab_mem_going_online_callback(void *arg)
3431{
3432 struct kmem_cache_node *n;
3433 struct kmem_cache *s;
3434 struct memory_notify *marg = arg;
3435 int nid = marg->status_change_nid;
3436 int ret = 0;
3437
3438 /*
3439 * If the node's memory is already available, then kmem_cache_node is
3440 * already created. Nothing to do.
3441 */
3442 if (nid < 0)
3443 return 0;
3444
3445 /*
0121c619 3446 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3447 * allocate a kmem_cache_node structure in order to bring the node
3448 * online.
3449 */
3450 down_read(&slub_lock);
3451 list_for_each_entry(s, &slab_caches, list) {
3452 /*
3453 * XXX: kmem_cache_alloc_node will fallback to other nodes
3454 * since memory is not yet available from the node that
3455 * is brought up.
3456 */
8de66a0c 3457 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3458 if (!n) {
3459 ret = -ENOMEM;
3460 goto out;
3461 }
5595cffc 3462 init_kmem_cache_node(n, s);
b9049e23
YG
3463 s->node[nid] = n;
3464 }
3465out:
3466 up_read(&slub_lock);
3467 return ret;
3468}
3469
3470static int slab_memory_callback(struct notifier_block *self,
3471 unsigned long action, void *arg)
3472{
3473 int ret = 0;
3474
3475 switch (action) {
3476 case MEM_GOING_ONLINE:
3477 ret = slab_mem_going_online_callback(arg);
3478 break;
3479 case MEM_GOING_OFFLINE:
3480 ret = slab_mem_going_offline_callback(arg);
3481 break;
3482 case MEM_OFFLINE:
3483 case MEM_CANCEL_ONLINE:
3484 slab_mem_offline_callback(arg);
3485 break;
3486 case MEM_ONLINE:
3487 case MEM_CANCEL_OFFLINE:
3488 break;
3489 }
dc19f9db
KH
3490 if (ret)
3491 ret = notifier_from_errno(ret);
3492 else
3493 ret = NOTIFY_OK;
b9049e23
YG
3494 return ret;
3495}
3496
3497#endif /* CONFIG_MEMORY_HOTPLUG */
3498
81819f0f
CL
3499/********************************************************************
3500 * Basic setup of slabs
3501 *******************************************************************/
3502
51df1142
CL
3503/*
3504 * Used for early kmem_cache structures that were allocated using
3505 * the page allocator
3506 */
3507
3508static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3509{
3510 int node;
3511
3512 list_add(&s->list, &slab_caches);
3513 s->refcount = -1;
3514
3515 for_each_node_state(node, N_NORMAL_MEMORY) {
3516 struct kmem_cache_node *n = get_node(s, node);
3517 struct page *p;
3518
3519 if (n) {
3520 list_for_each_entry(p, &n->partial, lru)
3521 p->slab = s;
3522
607bf324 3523#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3524 list_for_each_entry(p, &n->full, lru)
3525 p->slab = s;
3526#endif
3527 }
3528 }
3529}
3530
81819f0f
CL
3531void __init kmem_cache_init(void)
3532{
3533 int i;
4b356be0 3534 int caches = 0;
51df1142
CL
3535 struct kmem_cache *temp_kmem_cache;
3536 int order;
51df1142
CL
3537 struct kmem_cache *temp_kmem_cache_node;
3538 unsigned long kmalloc_size;
3539
3540 kmem_size = offsetof(struct kmem_cache, node) +
3541 nr_node_ids * sizeof(struct kmem_cache_node *);
3542
3543 /* Allocate two kmem_caches from the page allocator */
3544 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3545 order = get_order(2 * kmalloc_size);
3546 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3547
81819f0f
CL
3548 /*
3549 * Must first have the slab cache available for the allocations of the
672bba3a 3550 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3551 * kmem_cache_open for slab_state == DOWN.
3552 */
51df1142
CL
3553 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3554
3555 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3556 sizeof(struct kmem_cache_node),
3557 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3558
0c40ba4f 3559 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3560
3561 /* Able to allocate the per node structures */
3562 slab_state = PARTIAL;
3563
51df1142
CL
3564 temp_kmem_cache = kmem_cache;
3565 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3566 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3567 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3568 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3569
51df1142
CL
3570 /*
3571 * Allocate kmem_cache_node properly from the kmem_cache slab.
3572 * kmem_cache_node is separately allocated so no need to
3573 * update any list pointers.
3574 */
3575 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3576
51df1142
CL
3577 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3578 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3579
3580 kmem_cache_bootstrap_fixup(kmem_cache_node);
3581
3582 caches++;
51df1142
CL
3583 kmem_cache_bootstrap_fixup(kmem_cache);
3584 caches++;
3585 /* Free temporary boot structure */
3586 free_pages((unsigned long)temp_kmem_cache, order);
3587
3588 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3589
3590 /*
3591 * Patch up the size_index table if we have strange large alignment
3592 * requirements for the kmalloc array. This is only the case for
6446faa2 3593 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3594 *
3595 * Largest permitted alignment is 256 bytes due to the way we
3596 * handle the index determination for the smaller caches.
3597 *
3598 * Make sure that nothing crazy happens if someone starts tinkering
3599 * around with ARCH_KMALLOC_MINALIGN
3600 */
3601 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3602 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3603
acdfcd04
AK
3604 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3605 int elem = size_index_elem(i);
3606 if (elem >= ARRAY_SIZE(size_index))
3607 break;
3608 size_index[elem] = KMALLOC_SHIFT_LOW;
3609 }
f1b26339 3610
acdfcd04
AK
3611 if (KMALLOC_MIN_SIZE == 64) {
3612 /*
3613 * The 96 byte size cache is not used if the alignment
3614 * is 64 byte.
3615 */
3616 for (i = 64 + 8; i <= 96; i += 8)
3617 size_index[size_index_elem(i)] = 7;
3618 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3619 /*
3620 * The 192 byte sized cache is not used if the alignment
3621 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3622 * instead.
3623 */
3624 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3625 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3626 }
3627
51df1142
CL
3628 /* Caches that are not of the two-to-the-power-of size */
3629 if (KMALLOC_MIN_SIZE <= 32) {
3630 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3631 caches++;
3632 }
3633
3634 if (KMALLOC_MIN_SIZE <= 64) {
3635 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3636 caches++;
3637 }
3638
3639 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3640 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3641 caches++;
3642 }
3643
81819f0f
CL
3644 slab_state = UP;
3645
3646 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3647 if (KMALLOC_MIN_SIZE <= 32) {
3648 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3649 BUG_ON(!kmalloc_caches[1]->name);
3650 }
3651
3652 if (KMALLOC_MIN_SIZE <= 64) {
3653 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3654 BUG_ON(!kmalloc_caches[2]->name);
3655 }
3656
d7278bd7
CL
3657 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3658 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3659
3660 BUG_ON(!s);
51df1142 3661 kmalloc_caches[i]->name = s;
d7278bd7 3662 }
81819f0f
CL
3663
3664#ifdef CONFIG_SMP
3665 register_cpu_notifier(&slab_notifier);
9dfc6e68 3666#endif
81819f0f 3667
55136592 3668#ifdef CONFIG_ZONE_DMA
51df1142
CL
3669 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3670 struct kmem_cache *s = kmalloc_caches[i];
55136592 3671
51df1142 3672 if (s && s->size) {
55136592
CL
3673 char *name = kasprintf(GFP_NOWAIT,
3674 "dma-kmalloc-%d", s->objsize);
3675
3676 BUG_ON(!name);
51df1142
CL
3677 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3678 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3679 }
3680 }
3681#endif
3adbefee
IM
3682 printk(KERN_INFO
3683 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3684 " CPUs=%d, Nodes=%d\n",
3685 caches, cache_line_size(),
81819f0f
CL
3686 slub_min_order, slub_max_order, slub_min_objects,
3687 nr_cpu_ids, nr_node_ids);
3688}
3689
7e85ee0c
PE
3690void __init kmem_cache_init_late(void)
3691{
7e85ee0c
PE
3692}
3693
81819f0f
CL
3694/*
3695 * Find a mergeable slab cache
3696 */
3697static int slab_unmergeable(struct kmem_cache *s)
3698{
3699 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3700 return 1;
3701
c59def9f 3702 if (s->ctor)
81819f0f
CL
3703 return 1;
3704
8ffa6875
CL
3705 /*
3706 * We may have set a slab to be unmergeable during bootstrap.
3707 */
3708 if (s->refcount < 0)
3709 return 1;
3710
81819f0f
CL
3711 return 0;
3712}
3713
3714static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3715 size_t align, unsigned long flags, const char *name,
51cc5068 3716 void (*ctor)(void *))
81819f0f 3717{
5b95a4ac 3718 struct kmem_cache *s;
81819f0f
CL
3719
3720 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3721 return NULL;
3722
c59def9f 3723 if (ctor)
81819f0f
CL
3724 return NULL;
3725
3726 size = ALIGN(size, sizeof(void *));
3727 align = calculate_alignment(flags, align, size);
3728 size = ALIGN(size, align);
ba0268a8 3729 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3730
5b95a4ac 3731 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3732 if (slab_unmergeable(s))
3733 continue;
3734
3735 if (size > s->size)
3736 continue;
3737
ba0268a8 3738 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3739 continue;
3740 /*
3741 * Check if alignment is compatible.
3742 * Courtesy of Adrian Drzewiecki
3743 */
06428780 3744 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3745 continue;
3746
3747 if (s->size - size >= sizeof(void *))
3748 continue;
3749
3750 return s;
3751 }
3752 return NULL;
3753}
3754
3755struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3756 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3757{
3758 struct kmem_cache *s;
84c1cf62 3759 char *n;
81819f0f 3760
fe1ff49d
BH
3761 if (WARN_ON(!name))
3762 return NULL;
3763
81819f0f 3764 down_write(&slub_lock);
ba0268a8 3765 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3766 if (s) {
3767 s->refcount++;
3768 /*
3769 * Adjust the object sizes so that we clear
3770 * the complete object on kzalloc.
3771 */
3772 s->objsize = max(s->objsize, (int)size);
3773 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3774
7b8f3b66 3775 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3776 s->refcount--;
81819f0f 3777 goto err;
7b8f3b66 3778 }
2bce6485 3779 up_write(&slub_lock);
a0e1d1be
CL
3780 return s;
3781 }
6446faa2 3782
84c1cf62
PE
3783 n = kstrdup(name, GFP_KERNEL);
3784 if (!n)
3785 goto err;
3786
a0e1d1be
CL
3787 s = kmalloc(kmem_size, GFP_KERNEL);
3788 if (s) {
84c1cf62 3789 if (kmem_cache_open(s, n,
c59def9f 3790 size, align, flags, ctor)) {
81819f0f 3791 list_add(&s->list, &slab_caches);
7b8f3b66 3792 if (sysfs_slab_add(s)) {
7b8f3b66 3793 list_del(&s->list);
84c1cf62 3794 kfree(n);
7b8f3b66 3795 kfree(s);
a0e1d1be 3796 goto err;
7b8f3b66 3797 }
2bce6485 3798 up_write(&slub_lock);
a0e1d1be
CL
3799 return s;
3800 }
84c1cf62 3801 kfree(n);
a0e1d1be 3802 kfree(s);
81819f0f 3803 }
68cee4f1 3804err:
81819f0f 3805 up_write(&slub_lock);
81819f0f 3806
81819f0f
CL
3807 if (flags & SLAB_PANIC)
3808 panic("Cannot create slabcache %s\n", name);
3809 else
3810 s = NULL;
3811 return s;
3812}
3813EXPORT_SYMBOL(kmem_cache_create);
3814
81819f0f 3815#ifdef CONFIG_SMP
81819f0f 3816/*
672bba3a
CL
3817 * Use the cpu notifier to insure that the cpu slabs are flushed when
3818 * necessary.
81819f0f
CL
3819 */
3820static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3821 unsigned long action, void *hcpu)
3822{
3823 long cpu = (long)hcpu;
5b95a4ac
CL
3824 struct kmem_cache *s;
3825 unsigned long flags;
81819f0f
CL
3826
3827 switch (action) {
3828 case CPU_UP_CANCELED:
8bb78442 3829 case CPU_UP_CANCELED_FROZEN:
81819f0f 3830 case CPU_DEAD:
8bb78442 3831 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3832 down_read(&slub_lock);
3833 list_for_each_entry(s, &slab_caches, list) {
3834 local_irq_save(flags);
3835 __flush_cpu_slab(s, cpu);
3836 local_irq_restore(flags);
3837 }
3838 up_read(&slub_lock);
81819f0f
CL
3839 break;
3840 default:
3841 break;
3842 }
3843 return NOTIFY_OK;
3844}
3845
06428780 3846static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3847 .notifier_call = slab_cpuup_callback
06428780 3848};
81819f0f
CL
3849
3850#endif
3851
ce71e27c 3852void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3853{
aadb4bc4 3854 struct kmem_cache *s;
94b528d0 3855 void *ret;
aadb4bc4 3856
ffadd4d0 3857 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3858 return kmalloc_large(size, gfpflags);
3859
aadb4bc4 3860 s = get_slab(size, gfpflags);
81819f0f 3861
2408c550 3862 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3863 return s;
81819f0f 3864
2154a336 3865 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 3866
25985edc 3867 /* Honor the call site pointer we received. */
ca2b84cb 3868 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3869
3870 return ret;
81819f0f
CL
3871}
3872
5d1f57e4 3873#ifdef CONFIG_NUMA
81819f0f 3874void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3875 int node, unsigned long caller)
81819f0f 3876{
aadb4bc4 3877 struct kmem_cache *s;
94b528d0 3878 void *ret;
aadb4bc4 3879
d3e14aa3
XF
3880 if (unlikely(size > SLUB_MAX_SIZE)) {
3881 ret = kmalloc_large_node(size, gfpflags, node);
3882
3883 trace_kmalloc_node(caller, ret,
3884 size, PAGE_SIZE << get_order(size),
3885 gfpflags, node);
3886
3887 return ret;
3888 }
eada35ef 3889
aadb4bc4 3890 s = get_slab(size, gfpflags);
81819f0f 3891
2408c550 3892 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3893 return s;
81819f0f 3894
94b528d0
EGM
3895 ret = slab_alloc(s, gfpflags, node, caller);
3896
25985edc 3897 /* Honor the call site pointer we received. */
ca2b84cb 3898 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3899
3900 return ret;
81819f0f 3901}
5d1f57e4 3902#endif
81819f0f 3903
ab4d5ed5 3904#ifdef CONFIG_SYSFS
205ab99d
CL
3905static int count_inuse(struct page *page)
3906{
3907 return page->inuse;
3908}
3909
3910static int count_total(struct page *page)
3911{
3912 return page->objects;
3913}
ab4d5ed5 3914#endif
205ab99d 3915
ab4d5ed5 3916#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3917static int validate_slab(struct kmem_cache *s, struct page *page,
3918 unsigned long *map)
53e15af0
CL
3919{
3920 void *p;
a973e9dd 3921 void *addr = page_address(page);
53e15af0
CL
3922
3923 if (!check_slab(s, page) ||
3924 !on_freelist(s, page, NULL))
3925 return 0;
3926
3927 /* Now we know that a valid freelist exists */
39b26464 3928 bitmap_zero(map, page->objects);
53e15af0 3929
5f80b13a
CL
3930 get_map(s, page, map);
3931 for_each_object(p, s, addr, page->objects) {
3932 if (test_bit(slab_index(p, s, addr), map))
3933 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3934 return 0;
53e15af0
CL
3935 }
3936
224a88be 3937 for_each_object(p, s, addr, page->objects)
7656c72b 3938 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3939 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3940 return 0;
3941 return 1;
3942}
3943
434e245d
CL
3944static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3945 unsigned long *map)
53e15af0 3946{
881db7fb
CL
3947 slab_lock(page);
3948 validate_slab(s, page, map);
3949 slab_unlock(page);
53e15af0
CL
3950}
3951
434e245d
CL
3952static int validate_slab_node(struct kmem_cache *s,
3953 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3954{
3955 unsigned long count = 0;
3956 struct page *page;
3957 unsigned long flags;
3958
3959 spin_lock_irqsave(&n->list_lock, flags);
3960
3961 list_for_each_entry(page, &n->partial, lru) {
434e245d 3962 validate_slab_slab(s, page, map);
53e15af0
CL
3963 count++;
3964 }
3965 if (count != n->nr_partial)
3966 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3967 "counter=%ld\n", s->name, count, n->nr_partial);
3968
3969 if (!(s->flags & SLAB_STORE_USER))
3970 goto out;
3971
3972 list_for_each_entry(page, &n->full, lru) {
434e245d 3973 validate_slab_slab(s, page, map);
53e15af0
CL
3974 count++;
3975 }
3976 if (count != atomic_long_read(&n->nr_slabs))
3977 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3978 "counter=%ld\n", s->name, count,
3979 atomic_long_read(&n->nr_slabs));
3980
3981out:
3982 spin_unlock_irqrestore(&n->list_lock, flags);
3983 return count;
3984}
3985
434e245d 3986static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3987{
3988 int node;
3989 unsigned long count = 0;
205ab99d 3990 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3991 sizeof(unsigned long), GFP_KERNEL);
3992
3993 if (!map)
3994 return -ENOMEM;
53e15af0
CL
3995
3996 flush_all(s);
f64dc58c 3997 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3998 struct kmem_cache_node *n = get_node(s, node);
3999
434e245d 4000 count += validate_slab_node(s, n, map);
53e15af0 4001 }
434e245d 4002 kfree(map);
53e15af0
CL
4003 return count;
4004}
88a420e4 4005/*
672bba3a 4006 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4007 * and freed.
4008 */
4009
4010struct location {
4011 unsigned long count;
ce71e27c 4012 unsigned long addr;
45edfa58
CL
4013 long long sum_time;
4014 long min_time;
4015 long max_time;
4016 long min_pid;
4017 long max_pid;
174596a0 4018 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4019 nodemask_t nodes;
88a420e4
CL
4020};
4021
4022struct loc_track {
4023 unsigned long max;
4024 unsigned long count;
4025 struct location *loc;
4026};
4027
4028static void free_loc_track(struct loc_track *t)
4029{
4030 if (t->max)
4031 free_pages((unsigned long)t->loc,
4032 get_order(sizeof(struct location) * t->max));
4033}
4034
68dff6a9 4035static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4036{
4037 struct location *l;
4038 int order;
4039
88a420e4
CL
4040 order = get_order(sizeof(struct location) * max);
4041
68dff6a9 4042 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4043 if (!l)
4044 return 0;
4045
4046 if (t->count) {
4047 memcpy(l, t->loc, sizeof(struct location) * t->count);
4048 free_loc_track(t);
4049 }
4050 t->max = max;
4051 t->loc = l;
4052 return 1;
4053}
4054
4055static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4056 const struct track *track)
88a420e4
CL
4057{
4058 long start, end, pos;
4059 struct location *l;
ce71e27c 4060 unsigned long caddr;
45edfa58 4061 unsigned long age = jiffies - track->when;
88a420e4
CL
4062
4063 start = -1;
4064 end = t->count;
4065
4066 for ( ; ; ) {
4067 pos = start + (end - start + 1) / 2;
4068
4069 /*
4070 * There is nothing at "end". If we end up there
4071 * we need to add something to before end.
4072 */
4073 if (pos == end)
4074 break;
4075
4076 caddr = t->loc[pos].addr;
45edfa58
CL
4077 if (track->addr == caddr) {
4078
4079 l = &t->loc[pos];
4080 l->count++;
4081 if (track->when) {
4082 l->sum_time += age;
4083 if (age < l->min_time)
4084 l->min_time = age;
4085 if (age > l->max_time)
4086 l->max_time = age;
4087
4088 if (track->pid < l->min_pid)
4089 l->min_pid = track->pid;
4090 if (track->pid > l->max_pid)
4091 l->max_pid = track->pid;
4092
174596a0
RR
4093 cpumask_set_cpu(track->cpu,
4094 to_cpumask(l->cpus));
45edfa58
CL
4095 }
4096 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4097 return 1;
4098 }
4099
45edfa58 4100 if (track->addr < caddr)
88a420e4
CL
4101 end = pos;
4102 else
4103 start = pos;
4104 }
4105
4106 /*
672bba3a 4107 * Not found. Insert new tracking element.
88a420e4 4108 */
68dff6a9 4109 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4110 return 0;
4111
4112 l = t->loc + pos;
4113 if (pos < t->count)
4114 memmove(l + 1, l,
4115 (t->count - pos) * sizeof(struct location));
4116 t->count++;
4117 l->count = 1;
45edfa58
CL
4118 l->addr = track->addr;
4119 l->sum_time = age;
4120 l->min_time = age;
4121 l->max_time = age;
4122 l->min_pid = track->pid;
4123 l->max_pid = track->pid;
174596a0
RR
4124 cpumask_clear(to_cpumask(l->cpus));
4125 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4126 nodes_clear(l->nodes);
4127 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4128 return 1;
4129}
4130
4131static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4132 struct page *page, enum track_item alloc,
a5dd5c11 4133 unsigned long *map)
88a420e4 4134{
a973e9dd 4135 void *addr = page_address(page);
88a420e4
CL
4136 void *p;
4137
39b26464 4138 bitmap_zero(map, page->objects);
5f80b13a 4139 get_map(s, page, map);
88a420e4 4140
224a88be 4141 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4142 if (!test_bit(slab_index(p, s, addr), map))
4143 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4144}
4145
4146static int list_locations(struct kmem_cache *s, char *buf,
4147 enum track_item alloc)
4148{
e374d483 4149 int len = 0;
88a420e4 4150 unsigned long i;
68dff6a9 4151 struct loc_track t = { 0, 0, NULL };
88a420e4 4152 int node;
bbd7d57b
ED
4153 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4154 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4155
bbd7d57b
ED
4156 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4157 GFP_TEMPORARY)) {
4158 kfree(map);
68dff6a9 4159 return sprintf(buf, "Out of memory\n");
bbd7d57b 4160 }
88a420e4
CL
4161 /* Push back cpu slabs */
4162 flush_all(s);
4163
f64dc58c 4164 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4165 struct kmem_cache_node *n = get_node(s, node);
4166 unsigned long flags;
4167 struct page *page;
4168
9e86943b 4169 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4170 continue;
4171
4172 spin_lock_irqsave(&n->list_lock, flags);
4173 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4174 process_slab(&t, s, page, alloc, map);
88a420e4 4175 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4176 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4177 spin_unlock_irqrestore(&n->list_lock, flags);
4178 }
4179
4180 for (i = 0; i < t.count; i++) {
45edfa58 4181 struct location *l = &t.loc[i];
88a420e4 4182
9c246247 4183 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4184 break;
e374d483 4185 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4186
4187 if (l->addr)
62c70bce 4188 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4189 else
e374d483 4190 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4191
4192 if (l->sum_time != l->min_time) {
e374d483 4193 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4194 l->min_time,
4195 (long)div_u64(l->sum_time, l->count),
4196 l->max_time);
45edfa58 4197 } else
e374d483 4198 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4199 l->min_time);
4200
4201 if (l->min_pid != l->max_pid)
e374d483 4202 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4203 l->min_pid, l->max_pid);
4204 else
e374d483 4205 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4206 l->min_pid);
4207
174596a0
RR
4208 if (num_online_cpus() > 1 &&
4209 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4210 len < PAGE_SIZE - 60) {
4211 len += sprintf(buf + len, " cpus=");
4212 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4213 to_cpumask(l->cpus));
45edfa58
CL
4214 }
4215
62bc62a8 4216 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4217 len < PAGE_SIZE - 60) {
4218 len += sprintf(buf + len, " nodes=");
4219 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4220 l->nodes);
4221 }
4222
e374d483 4223 len += sprintf(buf + len, "\n");
88a420e4
CL
4224 }
4225
4226 free_loc_track(&t);
bbd7d57b 4227 kfree(map);
88a420e4 4228 if (!t.count)
e374d483
HH
4229 len += sprintf(buf, "No data\n");
4230 return len;
88a420e4 4231}
ab4d5ed5 4232#endif
88a420e4 4233
a5a84755
CL
4234#ifdef SLUB_RESILIENCY_TEST
4235static void resiliency_test(void)
4236{
4237 u8 *p;
4238
4239 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4240
4241 printk(KERN_ERR "SLUB resiliency testing\n");
4242 printk(KERN_ERR "-----------------------\n");
4243 printk(KERN_ERR "A. Corruption after allocation\n");
4244
4245 p = kzalloc(16, GFP_KERNEL);
4246 p[16] = 0x12;
4247 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4248 " 0x12->0x%p\n\n", p + 16);
4249
4250 validate_slab_cache(kmalloc_caches[4]);
4251
4252 /* Hmmm... The next two are dangerous */
4253 p = kzalloc(32, GFP_KERNEL);
4254 p[32 + sizeof(void *)] = 0x34;
4255 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4256 " 0x34 -> -0x%p\n", p);
4257 printk(KERN_ERR
4258 "If allocated object is overwritten then not detectable\n\n");
4259
4260 validate_slab_cache(kmalloc_caches[5]);
4261 p = kzalloc(64, GFP_KERNEL);
4262 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4263 *p = 0x56;
4264 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4265 p);
4266 printk(KERN_ERR
4267 "If allocated object is overwritten then not detectable\n\n");
4268 validate_slab_cache(kmalloc_caches[6]);
4269
4270 printk(KERN_ERR "\nB. Corruption after free\n");
4271 p = kzalloc(128, GFP_KERNEL);
4272 kfree(p);
4273 *p = 0x78;
4274 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4275 validate_slab_cache(kmalloc_caches[7]);
4276
4277 p = kzalloc(256, GFP_KERNEL);
4278 kfree(p);
4279 p[50] = 0x9a;
4280 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4281 p);
4282 validate_slab_cache(kmalloc_caches[8]);
4283
4284 p = kzalloc(512, GFP_KERNEL);
4285 kfree(p);
4286 p[512] = 0xab;
4287 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4288 validate_slab_cache(kmalloc_caches[9]);
4289}
4290#else
4291#ifdef CONFIG_SYSFS
4292static void resiliency_test(void) {};
4293#endif
4294#endif
4295
ab4d5ed5 4296#ifdef CONFIG_SYSFS
81819f0f 4297enum slab_stat_type {
205ab99d
CL
4298 SL_ALL, /* All slabs */
4299 SL_PARTIAL, /* Only partially allocated slabs */
4300 SL_CPU, /* Only slabs used for cpu caches */
4301 SL_OBJECTS, /* Determine allocated objects not slabs */
4302 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4303};
4304
205ab99d 4305#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4306#define SO_PARTIAL (1 << SL_PARTIAL)
4307#define SO_CPU (1 << SL_CPU)
4308#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4309#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4310
62e5c4b4
CG
4311static ssize_t show_slab_objects(struct kmem_cache *s,
4312 char *buf, unsigned long flags)
81819f0f
CL
4313{
4314 unsigned long total = 0;
81819f0f
CL
4315 int node;
4316 int x;
4317 unsigned long *nodes;
4318 unsigned long *per_cpu;
4319
4320 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4321 if (!nodes)
4322 return -ENOMEM;
81819f0f
CL
4323 per_cpu = nodes + nr_node_ids;
4324
205ab99d
CL
4325 if (flags & SO_CPU) {
4326 int cpu;
81819f0f 4327
205ab99d 4328 for_each_possible_cpu(cpu) {
9dfc6e68 4329 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 4330
205ab99d
CL
4331 if (!c || c->node < 0)
4332 continue;
4333
4334 if (c->page) {
4335 if (flags & SO_TOTAL)
4336 x = c->page->objects;
4337 else if (flags & SO_OBJECTS)
4338 x = c->page->inuse;
81819f0f
CL
4339 else
4340 x = 1;
205ab99d 4341
81819f0f 4342 total += x;
205ab99d 4343 nodes[c->node] += x;
81819f0f 4344 }
205ab99d 4345 per_cpu[c->node]++;
81819f0f
CL
4346 }
4347 }
4348
04d94879 4349 lock_memory_hotplug();
ab4d5ed5 4350#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4351 if (flags & SO_ALL) {
4352 for_each_node_state(node, N_NORMAL_MEMORY) {
4353 struct kmem_cache_node *n = get_node(s, node);
4354
4355 if (flags & SO_TOTAL)
4356 x = atomic_long_read(&n->total_objects);
4357 else if (flags & SO_OBJECTS)
4358 x = atomic_long_read(&n->total_objects) -
4359 count_partial(n, count_free);
81819f0f 4360
81819f0f 4361 else
205ab99d 4362 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4363 total += x;
4364 nodes[node] += x;
4365 }
4366
ab4d5ed5
CL
4367 } else
4368#endif
4369 if (flags & SO_PARTIAL) {
205ab99d
CL
4370 for_each_node_state(node, N_NORMAL_MEMORY) {
4371 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4372
205ab99d
CL
4373 if (flags & SO_TOTAL)
4374 x = count_partial(n, count_total);
4375 else if (flags & SO_OBJECTS)
4376 x = count_partial(n, count_inuse);
81819f0f 4377 else
205ab99d 4378 x = n->nr_partial;
81819f0f
CL
4379 total += x;
4380 nodes[node] += x;
4381 }
4382 }
81819f0f
CL
4383 x = sprintf(buf, "%lu", total);
4384#ifdef CONFIG_NUMA
f64dc58c 4385 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4386 if (nodes[node])
4387 x += sprintf(buf + x, " N%d=%lu",
4388 node, nodes[node]);
4389#endif
04d94879 4390 unlock_memory_hotplug();
81819f0f
CL
4391 kfree(nodes);
4392 return x + sprintf(buf + x, "\n");
4393}
4394
ab4d5ed5 4395#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4396static int any_slab_objects(struct kmem_cache *s)
4397{
4398 int node;
81819f0f 4399
dfb4f096 4400 for_each_online_node(node) {
81819f0f
CL
4401 struct kmem_cache_node *n = get_node(s, node);
4402
dfb4f096
CL
4403 if (!n)
4404 continue;
4405
4ea33e2d 4406 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4407 return 1;
4408 }
4409 return 0;
4410}
ab4d5ed5 4411#endif
81819f0f
CL
4412
4413#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4414#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4415
4416struct slab_attribute {
4417 struct attribute attr;
4418 ssize_t (*show)(struct kmem_cache *s, char *buf);
4419 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4420};
4421
4422#define SLAB_ATTR_RO(_name) \
4423 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4424
4425#define SLAB_ATTR(_name) \
4426 static struct slab_attribute _name##_attr = \
4427 __ATTR(_name, 0644, _name##_show, _name##_store)
4428
81819f0f
CL
4429static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4430{
4431 return sprintf(buf, "%d\n", s->size);
4432}
4433SLAB_ATTR_RO(slab_size);
4434
4435static ssize_t align_show(struct kmem_cache *s, char *buf)
4436{
4437 return sprintf(buf, "%d\n", s->align);
4438}
4439SLAB_ATTR_RO(align);
4440
4441static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4442{
4443 return sprintf(buf, "%d\n", s->objsize);
4444}
4445SLAB_ATTR_RO(object_size);
4446
4447static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4448{
834f3d11 4449 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4450}
4451SLAB_ATTR_RO(objs_per_slab);
4452
06b285dc
CL
4453static ssize_t order_store(struct kmem_cache *s,
4454 const char *buf, size_t length)
4455{
0121c619
CL
4456 unsigned long order;
4457 int err;
4458
4459 err = strict_strtoul(buf, 10, &order);
4460 if (err)
4461 return err;
06b285dc
CL
4462
4463 if (order > slub_max_order || order < slub_min_order)
4464 return -EINVAL;
4465
4466 calculate_sizes(s, order);
4467 return length;
4468}
4469
81819f0f
CL
4470static ssize_t order_show(struct kmem_cache *s, char *buf)
4471{
834f3d11 4472 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4473}
06b285dc 4474SLAB_ATTR(order);
81819f0f 4475
73d342b1
DR
4476static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4477{
4478 return sprintf(buf, "%lu\n", s->min_partial);
4479}
4480
4481static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4482 size_t length)
4483{
4484 unsigned long min;
4485 int err;
4486
4487 err = strict_strtoul(buf, 10, &min);
4488 if (err)
4489 return err;
4490
c0bdb232 4491 set_min_partial(s, min);
73d342b1
DR
4492 return length;
4493}
4494SLAB_ATTR(min_partial);
4495
81819f0f
CL
4496static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4497{
62c70bce
JP
4498 if (!s->ctor)
4499 return 0;
4500 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4501}
4502SLAB_ATTR_RO(ctor);
4503
81819f0f
CL
4504static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4505{
4506 return sprintf(buf, "%d\n", s->refcount - 1);
4507}
4508SLAB_ATTR_RO(aliases);
4509
81819f0f
CL
4510static ssize_t partial_show(struct kmem_cache *s, char *buf)
4511{
d9acf4b7 4512 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4513}
4514SLAB_ATTR_RO(partial);
4515
4516static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4517{
d9acf4b7 4518 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4519}
4520SLAB_ATTR_RO(cpu_slabs);
4521
4522static ssize_t objects_show(struct kmem_cache *s, char *buf)
4523{
205ab99d 4524 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4525}
4526SLAB_ATTR_RO(objects);
4527
205ab99d
CL
4528static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4529{
4530 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4531}
4532SLAB_ATTR_RO(objects_partial);
4533
a5a84755
CL
4534static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4535{
4536 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4537}
4538
4539static ssize_t reclaim_account_store(struct kmem_cache *s,
4540 const char *buf, size_t length)
4541{
4542 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4543 if (buf[0] == '1')
4544 s->flags |= SLAB_RECLAIM_ACCOUNT;
4545 return length;
4546}
4547SLAB_ATTR(reclaim_account);
4548
4549static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4550{
4551 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4552}
4553SLAB_ATTR_RO(hwcache_align);
4554
4555#ifdef CONFIG_ZONE_DMA
4556static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4557{
4558 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4559}
4560SLAB_ATTR_RO(cache_dma);
4561#endif
4562
4563static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4564{
4565 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4566}
4567SLAB_ATTR_RO(destroy_by_rcu);
4568
ab9a0f19
LJ
4569static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4570{
4571 return sprintf(buf, "%d\n", s->reserved);
4572}
4573SLAB_ATTR_RO(reserved);
4574
ab4d5ed5 4575#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4576static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4577{
4578 return show_slab_objects(s, buf, SO_ALL);
4579}
4580SLAB_ATTR_RO(slabs);
4581
205ab99d
CL
4582static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4583{
4584 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4585}
4586SLAB_ATTR_RO(total_objects);
4587
81819f0f
CL
4588static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4589{
4590 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4591}
4592
4593static ssize_t sanity_checks_store(struct kmem_cache *s,
4594 const char *buf, size_t length)
4595{
4596 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4597 if (buf[0] == '1') {
4598 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4599 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4600 }
81819f0f
CL
4601 return length;
4602}
4603SLAB_ATTR(sanity_checks);
4604
4605static ssize_t trace_show(struct kmem_cache *s, char *buf)
4606{
4607 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4608}
4609
4610static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4611 size_t length)
4612{
4613 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4614 if (buf[0] == '1') {
4615 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4616 s->flags |= SLAB_TRACE;
b789ef51 4617 }
81819f0f
CL
4618 return length;
4619}
4620SLAB_ATTR(trace);
4621
81819f0f
CL
4622static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4623{
4624 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4625}
4626
4627static ssize_t red_zone_store(struct kmem_cache *s,
4628 const char *buf, size_t length)
4629{
4630 if (any_slab_objects(s))
4631 return -EBUSY;
4632
4633 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4634 if (buf[0] == '1') {
4635 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4636 s->flags |= SLAB_RED_ZONE;
b789ef51 4637 }
06b285dc 4638 calculate_sizes(s, -1);
81819f0f
CL
4639 return length;
4640}
4641SLAB_ATTR(red_zone);
4642
4643static ssize_t poison_show(struct kmem_cache *s, char *buf)
4644{
4645 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4646}
4647
4648static ssize_t poison_store(struct kmem_cache *s,
4649 const char *buf, size_t length)
4650{
4651 if (any_slab_objects(s))
4652 return -EBUSY;
4653
4654 s->flags &= ~SLAB_POISON;
b789ef51
CL
4655 if (buf[0] == '1') {
4656 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4657 s->flags |= SLAB_POISON;
b789ef51 4658 }
06b285dc 4659 calculate_sizes(s, -1);
81819f0f
CL
4660 return length;
4661}
4662SLAB_ATTR(poison);
4663
4664static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4665{
4666 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4667}
4668
4669static ssize_t store_user_store(struct kmem_cache *s,
4670 const char *buf, size_t length)
4671{
4672 if (any_slab_objects(s))
4673 return -EBUSY;
4674
4675 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4676 if (buf[0] == '1') {
4677 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4678 s->flags |= SLAB_STORE_USER;
b789ef51 4679 }
06b285dc 4680 calculate_sizes(s, -1);
81819f0f
CL
4681 return length;
4682}
4683SLAB_ATTR(store_user);
4684
53e15af0
CL
4685static ssize_t validate_show(struct kmem_cache *s, char *buf)
4686{
4687 return 0;
4688}
4689
4690static ssize_t validate_store(struct kmem_cache *s,
4691 const char *buf, size_t length)
4692{
434e245d
CL
4693 int ret = -EINVAL;
4694
4695 if (buf[0] == '1') {
4696 ret = validate_slab_cache(s);
4697 if (ret >= 0)
4698 ret = length;
4699 }
4700 return ret;
53e15af0
CL
4701}
4702SLAB_ATTR(validate);
a5a84755
CL
4703
4704static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4705{
4706 if (!(s->flags & SLAB_STORE_USER))
4707 return -ENOSYS;
4708 return list_locations(s, buf, TRACK_ALLOC);
4709}
4710SLAB_ATTR_RO(alloc_calls);
4711
4712static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4713{
4714 if (!(s->flags & SLAB_STORE_USER))
4715 return -ENOSYS;
4716 return list_locations(s, buf, TRACK_FREE);
4717}
4718SLAB_ATTR_RO(free_calls);
4719#endif /* CONFIG_SLUB_DEBUG */
4720
4721#ifdef CONFIG_FAILSLAB
4722static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4723{
4724 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4725}
4726
4727static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4728 size_t length)
4729{
4730 s->flags &= ~SLAB_FAILSLAB;
4731 if (buf[0] == '1')
4732 s->flags |= SLAB_FAILSLAB;
4733 return length;
4734}
4735SLAB_ATTR(failslab);
ab4d5ed5 4736#endif
53e15af0 4737
2086d26a
CL
4738static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4739{
4740 return 0;
4741}
4742
4743static ssize_t shrink_store(struct kmem_cache *s,
4744 const char *buf, size_t length)
4745{
4746 if (buf[0] == '1') {
4747 int rc = kmem_cache_shrink(s);
4748
4749 if (rc)
4750 return rc;
4751 } else
4752 return -EINVAL;
4753 return length;
4754}
4755SLAB_ATTR(shrink);
4756
81819f0f 4757#ifdef CONFIG_NUMA
9824601e 4758static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4759{
9824601e 4760 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4761}
4762
9824601e 4763static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4764 const char *buf, size_t length)
4765{
0121c619
CL
4766 unsigned long ratio;
4767 int err;
4768
4769 err = strict_strtoul(buf, 10, &ratio);
4770 if (err)
4771 return err;
4772
e2cb96b7 4773 if (ratio <= 100)
0121c619 4774 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4775
81819f0f
CL
4776 return length;
4777}
9824601e 4778SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4779#endif
4780
8ff12cfc 4781#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4782static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4783{
4784 unsigned long sum = 0;
4785 int cpu;
4786 int len;
4787 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4788
4789 if (!data)
4790 return -ENOMEM;
4791
4792 for_each_online_cpu(cpu) {
9dfc6e68 4793 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4794
4795 data[cpu] = x;
4796 sum += x;
4797 }
4798
4799 len = sprintf(buf, "%lu", sum);
4800
50ef37b9 4801#ifdef CONFIG_SMP
8ff12cfc
CL
4802 for_each_online_cpu(cpu) {
4803 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4804 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4805 }
50ef37b9 4806#endif
8ff12cfc
CL
4807 kfree(data);
4808 return len + sprintf(buf + len, "\n");
4809}
4810
78eb00cc
DR
4811static void clear_stat(struct kmem_cache *s, enum stat_item si)
4812{
4813 int cpu;
4814
4815 for_each_online_cpu(cpu)
9dfc6e68 4816 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4817}
4818
8ff12cfc
CL
4819#define STAT_ATTR(si, text) \
4820static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4821{ \
4822 return show_stat(s, buf, si); \
4823} \
78eb00cc
DR
4824static ssize_t text##_store(struct kmem_cache *s, \
4825 const char *buf, size_t length) \
4826{ \
4827 if (buf[0] != '0') \
4828 return -EINVAL; \
4829 clear_stat(s, si); \
4830 return length; \
4831} \
4832SLAB_ATTR(text); \
8ff12cfc
CL
4833
4834STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4835STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4836STAT_ATTR(FREE_FASTPATH, free_fastpath);
4837STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4838STAT_ATTR(FREE_FROZEN, free_frozen);
4839STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4840STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4841STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4842STAT_ATTR(ALLOC_SLAB, alloc_slab);
4843STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4844STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4845STAT_ATTR(FREE_SLAB, free_slab);
4846STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4847STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4848STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4849STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4850STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4851STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4852STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4853STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4854STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4855STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
8ff12cfc
CL
4856#endif
4857
06428780 4858static struct attribute *slab_attrs[] = {
81819f0f
CL
4859 &slab_size_attr.attr,
4860 &object_size_attr.attr,
4861 &objs_per_slab_attr.attr,
4862 &order_attr.attr,
73d342b1 4863 &min_partial_attr.attr,
81819f0f 4864 &objects_attr.attr,
205ab99d 4865 &objects_partial_attr.attr,
81819f0f
CL
4866 &partial_attr.attr,
4867 &cpu_slabs_attr.attr,
4868 &ctor_attr.attr,
81819f0f
CL
4869 &aliases_attr.attr,
4870 &align_attr.attr,
81819f0f
CL
4871 &hwcache_align_attr.attr,
4872 &reclaim_account_attr.attr,
4873 &destroy_by_rcu_attr.attr,
a5a84755 4874 &shrink_attr.attr,
ab9a0f19 4875 &reserved_attr.attr,
ab4d5ed5 4876#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4877 &total_objects_attr.attr,
4878 &slabs_attr.attr,
4879 &sanity_checks_attr.attr,
4880 &trace_attr.attr,
81819f0f
CL
4881 &red_zone_attr.attr,
4882 &poison_attr.attr,
4883 &store_user_attr.attr,
53e15af0 4884 &validate_attr.attr,
88a420e4
CL
4885 &alloc_calls_attr.attr,
4886 &free_calls_attr.attr,
ab4d5ed5 4887#endif
81819f0f
CL
4888#ifdef CONFIG_ZONE_DMA
4889 &cache_dma_attr.attr,
4890#endif
4891#ifdef CONFIG_NUMA
9824601e 4892 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4893#endif
4894#ifdef CONFIG_SLUB_STATS
4895 &alloc_fastpath_attr.attr,
4896 &alloc_slowpath_attr.attr,
4897 &free_fastpath_attr.attr,
4898 &free_slowpath_attr.attr,
4899 &free_frozen_attr.attr,
4900 &free_add_partial_attr.attr,
4901 &free_remove_partial_attr.attr,
4902 &alloc_from_partial_attr.attr,
4903 &alloc_slab_attr.attr,
4904 &alloc_refill_attr.attr,
e36a2652 4905 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4906 &free_slab_attr.attr,
4907 &cpuslab_flush_attr.attr,
4908 &deactivate_full_attr.attr,
4909 &deactivate_empty_attr.attr,
4910 &deactivate_to_head_attr.attr,
4911 &deactivate_to_tail_attr.attr,
4912 &deactivate_remote_frees_attr.attr,
03e404af 4913 &deactivate_bypass_attr.attr,
65c3376a 4914 &order_fallback_attr.attr,
b789ef51
CL
4915 &cmpxchg_double_fail_attr.attr,
4916 &cmpxchg_double_cpu_fail_attr.attr,
81819f0f 4917#endif
4c13dd3b
DM
4918#ifdef CONFIG_FAILSLAB
4919 &failslab_attr.attr,
4920#endif
4921
81819f0f
CL
4922 NULL
4923};
4924
4925static struct attribute_group slab_attr_group = {
4926 .attrs = slab_attrs,
4927};
4928
4929static ssize_t slab_attr_show(struct kobject *kobj,
4930 struct attribute *attr,
4931 char *buf)
4932{
4933 struct slab_attribute *attribute;
4934 struct kmem_cache *s;
4935 int err;
4936
4937 attribute = to_slab_attr(attr);
4938 s = to_slab(kobj);
4939
4940 if (!attribute->show)
4941 return -EIO;
4942
4943 err = attribute->show(s, buf);
4944
4945 return err;
4946}
4947
4948static ssize_t slab_attr_store(struct kobject *kobj,
4949 struct attribute *attr,
4950 const char *buf, size_t len)
4951{
4952 struct slab_attribute *attribute;
4953 struct kmem_cache *s;
4954 int err;
4955
4956 attribute = to_slab_attr(attr);
4957 s = to_slab(kobj);
4958
4959 if (!attribute->store)
4960 return -EIO;
4961
4962 err = attribute->store(s, buf, len);
4963
4964 return err;
4965}
4966
151c602f
CL
4967static void kmem_cache_release(struct kobject *kobj)
4968{
4969 struct kmem_cache *s = to_slab(kobj);
4970
84c1cf62 4971 kfree(s->name);
151c602f
CL
4972 kfree(s);
4973}
4974
52cf25d0 4975static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4976 .show = slab_attr_show,
4977 .store = slab_attr_store,
4978};
4979
4980static struct kobj_type slab_ktype = {
4981 .sysfs_ops = &slab_sysfs_ops,
151c602f 4982 .release = kmem_cache_release
81819f0f
CL
4983};
4984
4985static int uevent_filter(struct kset *kset, struct kobject *kobj)
4986{
4987 struct kobj_type *ktype = get_ktype(kobj);
4988
4989 if (ktype == &slab_ktype)
4990 return 1;
4991 return 0;
4992}
4993
9cd43611 4994static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4995 .filter = uevent_filter,
4996};
4997
27c3a314 4998static struct kset *slab_kset;
81819f0f
CL
4999
5000#define ID_STR_LENGTH 64
5001
5002/* Create a unique string id for a slab cache:
6446faa2
CL
5003 *
5004 * Format :[flags-]size
81819f0f
CL
5005 */
5006static char *create_unique_id(struct kmem_cache *s)
5007{
5008 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5009 char *p = name;
5010
5011 BUG_ON(!name);
5012
5013 *p++ = ':';
5014 /*
5015 * First flags affecting slabcache operations. We will only
5016 * get here for aliasable slabs so we do not need to support
5017 * too many flags. The flags here must cover all flags that
5018 * are matched during merging to guarantee that the id is
5019 * unique.
5020 */
5021 if (s->flags & SLAB_CACHE_DMA)
5022 *p++ = 'd';
5023 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5024 *p++ = 'a';
5025 if (s->flags & SLAB_DEBUG_FREE)
5026 *p++ = 'F';
5a896d9e
VN
5027 if (!(s->flags & SLAB_NOTRACK))
5028 *p++ = 't';
81819f0f
CL
5029 if (p != name + 1)
5030 *p++ = '-';
5031 p += sprintf(p, "%07d", s->size);
5032 BUG_ON(p > name + ID_STR_LENGTH - 1);
5033 return name;
5034}
5035
5036static int sysfs_slab_add(struct kmem_cache *s)
5037{
5038 int err;
5039 const char *name;
5040 int unmergeable;
5041
5042 if (slab_state < SYSFS)
5043 /* Defer until later */
5044 return 0;
5045
5046 unmergeable = slab_unmergeable(s);
5047 if (unmergeable) {
5048 /*
5049 * Slabcache can never be merged so we can use the name proper.
5050 * This is typically the case for debug situations. In that
5051 * case we can catch duplicate names easily.
5052 */
27c3a314 5053 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5054 name = s->name;
5055 } else {
5056 /*
5057 * Create a unique name for the slab as a target
5058 * for the symlinks.
5059 */
5060 name = create_unique_id(s);
5061 }
5062
27c3a314 5063 s->kobj.kset = slab_kset;
1eada11c
GKH
5064 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5065 if (err) {
5066 kobject_put(&s->kobj);
81819f0f 5067 return err;
1eada11c 5068 }
81819f0f
CL
5069
5070 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5071 if (err) {
5072 kobject_del(&s->kobj);
5073 kobject_put(&s->kobj);
81819f0f 5074 return err;
5788d8ad 5075 }
81819f0f
CL
5076 kobject_uevent(&s->kobj, KOBJ_ADD);
5077 if (!unmergeable) {
5078 /* Setup first alias */
5079 sysfs_slab_alias(s, s->name);
5080 kfree(name);
5081 }
5082 return 0;
5083}
5084
5085static void sysfs_slab_remove(struct kmem_cache *s)
5086{
2bce6485
CL
5087 if (slab_state < SYSFS)
5088 /*
5089 * Sysfs has not been setup yet so no need to remove the
5090 * cache from sysfs.
5091 */
5092 return;
5093
81819f0f
CL
5094 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5095 kobject_del(&s->kobj);
151c602f 5096 kobject_put(&s->kobj);
81819f0f
CL
5097}
5098
5099/*
5100 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5101 * available lest we lose that information.
81819f0f
CL
5102 */
5103struct saved_alias {
5104 struct kmem_cache *s;
5105 const char *name;
5106 struct saved_alias *next;
5107};
5108
5af328a5 5109static struct saved_alias *alias_list;
81819f0f
CL
5110
5111static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5112{
5113 struct saved_alias *al;
5114
5115 if (slab_state == SYSFS) {
5116 /*
5117 * If we have a leftover link then remove it.
5118 */
27c3a314
GKH
5119 sysfs_remove_link(&slab_kset->kobj, name);
5120 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5121 }
5122
5123 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5124 if (!al)
5125 return -ENOMEM;
5126
5127 al->s = s;
5128 al->name = name;
5129 al->next = alias_list;
5130 alias_list = al;
5131 return 0;
5132}
5133
5134static int __init slab_sysfs_init(void)
5135{
5b95a4ac 5136 struct kmem_cache *s;
81819f0f
CL
5137 int err;
5138
2bce6485
CL
5139 down_write(&slub_lock);
5140
0ff21e46 5141 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5142 if (!slab_kset) {
2bce6485 5143 up_write(&slub_lock);
81819f0f
CL
5144 printk(KERN_ERR "Cannot register slab subsystem.\n");
5145 return -ENOSYS;
5146 }
5147
26a7bd03
CL
5148 slab_state = SYSFS;
5149
5b95a4ac 5150 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5151 err = sysfs_slab_add(s);
5d540fb7
CL
5152 if (err)
5153 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5154 " to sysfs\n", s->name);
26a7bd03 5155 }
81819f0f
CL
5156
5157 while (alias_list) {
5158 struct saved_alias *al = alias_list;
5159
5160 alias_list = alias_list->next;
5161 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5162 if (err)
5163 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5164 " %s to sysfs\n", s->name);
81819f0f
CL
5165 kfree(al);
5166 }
5167
2bce6485 5168 up_write(&slub_lock);
81819f0f
CL
5169 resiliency_test();
5170 return 0;
5171}
5172
5173__initcall(slab_sysfs_init);
ab4d5ed5 5174#endif /* CONFIG_SYSFS */
57ed3eda
PE
5175
5176/*
5177 * The /proc/slabinfo ABI
5178 */
158a9624 5179#ifdef CONFIG_SLABINFO
57ed3eda
PE
5180static void print_slabinfo_header(struct seq_file *m)
5181{
5182 seq_puts(m, "slabinfo - version: 2.1\n");
5183 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5184 "<objperslab> <pagesperslab>");
5185 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5186 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5187 seq_putc(m, '\n');
5188}
5189
5190static void *s_start(struct seq_file *m, loff_t *pos)
5191{
5192 loff_t n = *pos;
5193
5194 down_read(&slub_lock);
5195 if (!n)
5196 print_slabinfo_header(m);
5197
5198 return seq_list_start(&slab_caches, *pos);
5199}
5200
5201static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5202{
5203 return seq_list_next(p, &slab_caches, pos);
5204}
5205
5206static void s_stop(struct seq_file *m, void *p)
5207{
5208 up_read(&slub_lock);
5209}
5210
5211static int s_show(struct seq_file *m, void *p)
5212{
5213 unsigned long nr_partials = 0;
5214 unsigned long nr_slabs = 0;
5215 unsigned long nr_inuse = 0;
205ab99d
CL
5216 unsigned long nr_objs = 0;
5217 unsigned long nr_free = 0;
57ed3eda
PE
5218 struct kmem_cache *s;
5219 int node;
5220
5221 s = list_entry(p, struct kmem_cache, list);
5222
5223 for_each_online_node(node) {
5224 struct kmem_cache_node *n = get_node(s, node);
5225
5226 if (!n)
5227 continue;
5228
5229 nr_partials += n->nr_partial;
5230 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5231 nr_objs += atomic_long_read(&n->total_objects);
5232 nr_free += count_partial(n, count_free);
57ed3eda
PE
5233 }
5234
205ab99d 5235 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5236
5237 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5238 nr_objs, s->size, oo_objects(s->oo),
5239 (1 << oo_order(s->oo)));
57ed3eda
PE
5240 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5241 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5242 0UL);
5243 seq_putc(m, '\n');
5244 return 0;
5245}
5246
7b3c3a50 5247static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5248 .start = s_start,
5249 .next = s_next,
5250 .stop = s_stop,
5251 .show = s_show,
5252};
5253
7b3c3a50
AD
5254static int slabinfo_open(struct inode *inode, struct file *file)
5255{
5256 return seq_open(file, &slabinfo_op);
5257}
5258
5259static const struct file_operations proc_slabinfo_operations = {
5260 .open = slabinfo_open,
5261 .read = seq_read,
5262 .llseek = seq_lseek,
5263 .release = seq_release,
5264};
5265
5266static int __init slab_proc_init(void)
5267{
cf5d1131 5268 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5269 return 0;
5270}
5271module_init(slab_proc_init);
158a9624 5272#endif /* CONFIG_SLABINFO */