slab: infrastructure for bulk object allocation and freeing
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
345c905d
JK
127static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128{
129#ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131#else
132 return false;
133#endif
134}
135
81819f0f
CL
136/*
137 * Issues still to be resolved:
138 *
81819f0f
CL
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
81819f0f
CL
141 * - Variable sizing of the per node arrays
142 */
143
144/* Enable to test recovery from slab corruption on boot */
145#undef SLUB_RESILIENCY_TEST
146
b789ef51
CL
147/* Enable to log cmpxchg failures */
148#undef SLUB_DEBUG_CMPXCHG
149
2086d26a
CL
150/*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
76be8950 154#define MIN_PARTIAL 5
e95eed57 155
2086d26a
CL
156/*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 159 * sort the partial list by the number of objects in use.
2086d26a
CL
160 */
161#define MAX_PARTIAL 10
162
81819f0f
CL
163#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
672bba3a 165
fa5ec8a1 166/*
3de47213
DR
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
fa5ec8a1 170 */
3de47213 171#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 172
210b5c06
CG
173#define OO_SHIFT 16
174#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 175#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 176
81819f0f 177/* Internal SLUB flags */
f90ec390 178#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 179#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 180
81819f0f
CL
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
d6543e39 188#define TRACK_ADDRS_COUNT 16
02cbc874 189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
d6543e39
BG
191#ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193#endif
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 204static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
107dab5c 209static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
210#endif
211
4fdccdfb 212static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
213{
214#ifdef CONFIG_SLUB_STATS
88da03a6
CL
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
220#endif
221}
222
81819f0f
CL
223/********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
6446faa2 227/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
228static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230{
231 void *base;
232
a973e9dd 233 if (!object)
02cbc874
CL
234 return 1;
235
a973e9dd 236 base = page_address(page);
39b26464 237 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243}
244
7656c72b
CL
245static inline void *get_freepointer(struct kmem_cache *s, void *object)
246{
247 return *(void **)(object + s->offset);
248}
249
0ad9500e
ED
250static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251{
252 prefetch(object + s->offset);
253}
254
1393d9a1
CL
255static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256{
257 void *p;
258
259#ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261#else
262 p = get_freepointer(s, object);
263#endif
264 return p;
265}
266
7656c72b
CL
267static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268{
269 *(void **)(object + s->offset) = fp;
270}
271
272/* Loop over all objects in a slab */
224a88be
CL
273#define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
275 __p += (__s)->size)
276
54266640
WY
277#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
d71f606f
MK
287static inline size_t slab_ksize(const struct kmem_cache *s)
288{
289#ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 295 return s->object_size;
d71f606f
MK
296
297#endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309}
310
ab9a0f19
LJ
311static inline int order_objects(int order, unsigned long size, int reserved)
312{
313 return ((PAGE_SIZE << order) - reserved) / size;
314}
315
834f3d11 316static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 317 unsigned long size, int reserved)
834f3d11
CL
318{
319 struct kmem_cache_order_objects x = {
ab9a0f19 320 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
321 };
322
323 return x;
324}
325
326static inline int oo_order(struct kmem_cache_order_objects x)
327{
210b5c06 328 return x.x >> OO_SHIFT;
834f3d11
CL
329}
330
331static inline int oo_objects(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x & OO_MASK;
834f3d11
CL
334}
335
881db7fb
CL
336/*
337 * Per slab locking using the pagelock
338 */
339static __always_inline void slab_lock(struct page *page)
340{
341 bit_spin_lock(PG_locked, &page->flags);
342}
343
344static __always_inline void slab_unlock(struct page *page)
345{
346 __bit_spin_unlock(PG_locked, &page->flags);
347}
348
a0320865
DH
349static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350{
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362}
363
1d07171c
CL
364/* Interrupts must be disabled (for the fallback code to work right) */
365static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369{
370 VM_BUG_ON(!irqs_disabled());
2565409f
HC
371#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 373 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 374 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
375 freelist_old, counters_old,
376 freelist_new, counters_new))
6f6528a1 377 return true;
1d07171c
CL
378 } else
379#endif
380 {
381 slab_lock(page);
d0e0ac97
CG
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
1d07171c 384 page->freelist = freelist_new;
a0320865 385 set_page_slub_counters(page, counters_new);
1d07171c 386 slab_unlock(page);
6f6528a1 387 return true;
1d07171c
CL
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
397#endif
398
6f6528a1 399 return false;
1d07171c
CL
400}
401
b789ef51
CL
402static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406{
2565409f
HC
407#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 409 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 410 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
411 freelist_old, counters_old,
412 freelist_new, counters_new))
6f6528a1 413 return true;
b789ef51
CL
414 } else
415#endif
416 {
1d07171c
CL
417 unsigned long flags;
418
419 local_irq_save(flags);
881db7fb 420 slab_lock(page);
d0e0ac97
CG
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
b789ef51 423 page->freelist = freelist_new;
a0320865 424 set_page_slub_counters(page, counters_new);
881db7fb 425 slab_unlock(page);
1d07171c 426 local_irq_restore(flags);
6f6528a1 427 return true;
b789ef51 428 }
881db7fb 429 slab_unlock(page);
1d07171c 430 local_irq_restore(flags);
b789ef51
CL
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
438#endif
439
6f6528a1 440 return false;
b789ef51
CL
441}
442
41ecc55b 443#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
444/*
445 * Determine a map of object in use on a page.
446 *
881db7fb 447 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
448 * not vanish from under us.
449 */
450static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451{
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457}
458
41ecc55b
CL
459/*
460 * Debug settings:
461 */
f0630fff
CL
462#ifdef CONFIG_SLUB_DEBUG_ON
463static int slub_debug = DEBUG_DEFAULT_FLAGS;
464#else
41ecc55b 465static int slub_debug;
f0630fff 466#endif
41ecc55b
CL
467
468static char *slub_debug_slabs;
fa5ec8a1 469static int disable_higher_order_debug;
41ecc55b 470
a79316c6
AR
471/*
472 * slub is about to manipulate internal object metadata. This memory lies
473 * outside the range of the allocated object, so accessing it would normally
474 * be reported by kasan as a bounds error. metadata_access_enable() is used
475 * to tell kasan that these accesses are OK.
476 */
477static inline void metadata_access_enable(void)
478{
479 kasan_disable_current();
480}
481
482static inline void metadata_access_disable(void)
483{
484 kasan_enable_current();
485}
486
81819f0f
CL
487/*
488 * Object debugging
489 */
490static void print_section(char *text, u8 *addr, unsigned int length)
491{
a79316c6 492 metadata_access_enable();
ffc79d28
SAS
493 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
494 length, 1);
a79316c6 495 metadata_access_disable();
81819f0f
CL
496}
497
81819f0f
CL
498static struct track *get_track(struct kmem_cache *s, void *object,
499 enum track_item alloc)
500{
501 struct track *p;
502
503 if (s->offset)
504 p = object + s->offset + sizeof(void *);
505 else
506 p = object + s->inuse;
507
508 return p + alloc;
509}
510
511static void set_track(struct kmem_cache *s, void *object,
ce71e27c 512 enum track_item alloc, unsigned long addr)
81819f0f 513{
1a00df4a 514 struct track *p = get_track(s, object, alloc);
81819f0f 515
81819f0f 516 if (addr) {
d6543e39
BG
517#ifdef CONFIG_STACKTRACE
518 struct stack_trace trace;
519 int i;
520
521 trace.nr_entries = 0;
522 trace.max_entries = TRACK_ADDRS_COUNT;
523 trace.entries = p->addrs;
524 trace.skip = 3;
a79316c6 525 metadata_access_enable();
d6543e39 526 save_stack_trace(&trace);
a79316c6 527 metadata_access_disable();
d6543e39
BG
528
529 /* See rant in lockdep.c */
530 if (trace.nr_entries != 0 &&
531 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 trace.nr_entries--;
533
534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 p->addrs[i] = 0;
536#endif
81819f0f
CL
537 p->addr = addr;
538 p->cpu = smp_processor_id();
88e4ccf2 539 p->pid = current->pid;
81819f0f
CL
540 p->when = jiffies;
541 } else
542 memset(p, 0, sizeof(struct track));
543}
544
81819f0f
CL
545static void init_tracking(struct kmem_cache *s, void *object)
546{
24922684
CL
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
ce71e27c
EGM
550 set_track(s, object, TRACK_FREE, 0UL);
551 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
552}
553
554static void print_track(const char *s, struct track *t)
555{
556 if (!t->addr)
557 return;
558
f9f58285
FF
559 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
561#ifdef CONFIG_STACKTRACE
562 {
563 int i;
564 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 if (t->addrs[i])
f9f58285 566 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
567 else
568 break;
569 }
570#endif
24922684
CL
571}
572
573static void print_tracking(struct kmem_cache *s, void *object)
574{
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
577
578 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 print_track("Freed", get_track(s, object, TRACK_FREE));
580}
581
582static void print_page_info(struct page *page)
583{
f9f58285 584 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 585 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
586
587}
588
589static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590{
ecc42fbe 591 struct va_format vaf;
24922684 592 va_list args;
24922684
CL
593
594 va_start(args, fmt);
ecc42fbe
FF
595 vaf.fmt = fmt;
596 vaf.va = &args;
f9f58285 597 pr_err("=============================================================================\n");
ecc42fbe 598 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 599 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 600
373d4d09 601 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 602 va_end(args);
81819f0f
CL
603}
604
24922684
CL
605static void slab_fix(struct kmem_cache *s, char *fmt, ...)
606{
ecc42fbe 607 struct va_format vaf;
24922684 608 va_list args;
24922684
CL
609
610 va_start(args, fmt);
ecc42fbe
FF
611 vaf.fmt = fmt;
612 vaf.va = &args;
613 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 614 va_end(args);
24922684
CL
615}
616
617static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
618{
619 unsigned int off; /* Offset of last byte */
a973e9dd 620 u8 *addr = page_address(page);
24922684
CL
621
622 print_tracking(s, p);
623
624 print_page_info(page);
625
f9f58285
FF
626 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
627 p, p - addr, get_freepointer(s, p));
24922684
CL
628
629 if (p > addr + 16)
ffc79d28 630 print_section("Bytes b4 ", p - 16, 16);
81819f0f 631
3b0efdfa 632 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 633 PAGE_SIZE));
81819f0f 634 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
635 print_section("Redzone ", p + s->object_size,
636 s->inuse - s->object_size);
81819f0f 637
81819f0f
CL
638 if (s->offset)
639 off = s->offset + sizeof(void *);
640 else
641 off = s->inuse;
642
24922684 643 if (s->flags & SLAB_STORE_USER)
81819f0f 644 off += 2 * sizeof(struct track);
81819f0f
CL
645
646 if (off != s->size)
647 /* Beginning of the filler is the free pointer */
ffc79d28 648 print_section("Padding ", p + off, s->size - off);
24922684
CL
649
650 dump_stack();
81819f0f
CL
651}
652
75c66def 653void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
654 u8 *object, char *reason)
655{
3dc50637 656 slab_bug(s, "%s", reason);
24922684 657 print_trailer(s, page, object);
81819f0f
CL
658}
659
d0e0ac97
CG
660static void slab_err(struct kmem_cache *s, struct page *page,
661 const char *fmt, ...)
81819f0f
CL
662{
663 va_list args;
664 char buf[100];
665
24922684
CL
666 va_start(args, fmt);
667 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 668 va_end(args);
3dc50637 669 slab_bug(s, "%s", buf);
24922684 670 print_page_info(page);
81819f0f
CL
671 dump_stack();
672}
673
f7cb1933 674static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
675{
676 u8 *p = object;
677
678 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
679 memset(p, POISON_FREE, s->object_size - 1);
680 p[s->object_size - 1] = POISON_END;
81819f0f
CL
681 }
682
683 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 684 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
685}
686
24922684
CL
687static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
688 void *from, void *to)
689{
690 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
691 memset(from, data, to - from);
692}
693
694static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
695 u8 *object, char *what,
06428780 696 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
697{
698 u8 *fault;
699 u8 *end;
700
a79316c6 701 metadata_access_enable();
79824820 702 fault = memchr_inv(start, value, bytes);
a79316c6 703 metadata_access_disable();
24922684
CL
704 if (!fault)
705 return 1;
706
707 end = start + bytes;
708 while (end > fault && end[-1] == value)
709 end--;
710
711 slab_bug(s, "%s overwritten", what);
f9f58285 712 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
713 fault, end - 1, fault[0], value);
714 print_trailer(s, page, object);
715
716 restore_bytes(s, what, value, fault, end);
717 return 0;
81819f0f
CL
718}
719
81819f0f
CL
720/*
721 * Object layout:
722 *
723 * object address
724 * Bytes of the object to be managed.
725 * If the freepointer may overlay the object then the free
726 * pointer is the first word of the object.
672bba3a 727 *
81819f0f
CL
728 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
729 * 0xa5 (POISON_END)
730 *
3b0efdfa 731 * object + s->object_size
81819f0f 732 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 733 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 734 * object_size == inuse.
672bba3a 735 *
81819f0f
CL
736 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
737 * 0xcc (RED_ACTIVE) for objects in use.
738 *
739 * object + s->inuse
672bba3a
CL
740 * Meta data starts here.
741 *
81819f0f
CL
742 * A. Free pointer (if we cannot overwrite object on free)
743 * B. Tracking data for SLAB_STORE_USER
672bba3a 744 * C. Padding to reach required alignment boundary or at mininum
6446faa2 745 * one word if debugging is on to be able to detect writes
672bba3a
CL
746 * before the word boundary.
747 *
748 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
749 *
750 * object + s->size
672bba3a 751 * Nothing is used beyond s->size.
81819f0f 752 *
3b0efdfa 753 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 754 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
755 * may be used with merged slabcaches.
756 */
757
81819f0f
CL
758static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
759{
760 unsigned long off = s->inuse; /* The end of info */
761
762 if (s->offset)
763 /* Freepointer is placed after the object. */
764 off += sizeof(void *);
765
766 if (s->flags & SLAB_STORE_USER)
767 /* We also have user information there */
768 off += 2 * sizeof(struct track);
769
770 if (s->size == off)
771 return 1;
772
24922684
CL
773 return check_bytes_and_report(s, page, p, "Object padding",
774 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
775}
776
39b26464 777/* Check the pad bytes at the end of a slab page */
81819f0f
CL
778static int slab_pad_check(struct kmem_cache *s, struct page *page)
779{
24922684
CL
780 u8 *start;
781 u8 *fault;
782 u8 *end;
783 int length;
784 int remainder;
81819f0f
CL
785
786 if (!(s->flags & SLAB_POISON))
787 return 1;
788
a973e9dd 789 start = page_address(page);
ab9a0f19 790 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
791 end = start + length;
792 remainder = length % s->size;
81819f0f
CL
793 if (!remainder)
794 return 1;
795
a79316c6 796 metadata_access_enable();
79824820 797 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 798 metadata_access_disable();
24922684
CL
799 if (!fault)
800 return 1;
801 while (end > fault && end[-1] == POISON_INUSE)
802 end--;
803
804 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 805 print_section("Padding ", end - remainder, remainder);
24922684 806
8a3d271d 807 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 808 return 0;
81819f0f
CL
809}
810
811static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 812 void *object, u8 val)
81819f0f
CL
813{
814 u8 *p = object;
3b0efdfa 815 u8 *endobject = object + s->object_size;
81819f0f
CL
816
817 if (s->flags & SLAB_RED_ZONE) {
24922684 818 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 819 endobject, val, s->inuse - s->object_size))
81819f0f 820 return 0;
81819f0f 821 } else {
3b0efdfa 822 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 823 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
824 endobject, POISON_INUSE,
825 s->inuse - s->object_size);
3adbefee 826 }
81819f0f
CL
827 }
828
829 if (s->flags & SLAB_POISON) {
f7cb1933 830 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 831 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 832 POISON_FREE, s->object_size - 1) ||
24922684 833 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 834 p + s->object_size - 1, POISON_END, 1)))
81819f0f 835 return 0;
81819f0f
CL
836 /*
837 * check_pad_bytes cleans up on its own.
838 */
839 check_pad_bytes(s, page, p);
840 }
841
f7cb1933 842 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
843 /*
844 * Object and freepointer overlap. Cannot check
845 * freepointer while object is allocated.
846 */
847 return 1;
848
849 /* Check free pointer validity */
850 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
851 object_err(s, page, p, "Freepointer corrupt");
852 /*
9f6c708e 853 * No choice but to zap it and thus lose the remainder
81819f0f 854 * of the free objects in this slab. May cause
672bba3a 855 * another error because the object count is now wrong.
81819f0f 856 */
a973e9dd 857 set_freepointer(s, p, NULL);
81819f0f
CL
858 return 0;
859 }
860 return 1;
861}
862
863static int check_slab(struct kmem_cache *s, struct page *page)
864{
39b26464
CL
865 int maxobj;
866
81819f0f
CL
867 VM_BUG_ON(!irqs_disabled());
868
869 if (!PageSlab(page)) {
24922684 870 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
871 return 0;
872 }
39b26464 873
ab9a0f19 874 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
875 if (page->objects > maxobj) {
876 slab_err(s, page, "objects %u > max %u",
f6edde9c 877 page->objects, maxobj);
39b26464
CL
878 return 0;
879 }
880 if (page->inuse > page->objects) {
24922684 881 slab_err(s, page, "inuse %u > max %u",
f6edde9c 882 page->inuse, page->objects);
81819f0f
CL
883 return 0;
884 }
885 /* Slab_pad_check fixes things up after itself */
886 slab_pad_check(s, page);
887 return 1;
888}
889
890/*
672bba3a
CL
891 * Determine if a certain object on a page is on the freelist. Must hold the
892 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
893 */
894static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
895{
896 int nr = 0;
881db7fb 897 void *fp;
81819f0f 898 void *object = NULL;
f6edde9c 899 int max_objects;
81819f0f 900
881db7fb 901 fp = page->freelist;
39b26464 902 while (fp && nr <= page->objects) {
81819f0f
CL
903 if (fp == search)
904 return 1;
905 if (!check_valid_pointer(s, page, fp)) {
906 if (object) {
907 object_err(s, page, object,
908 "Freechain corrupt");
a973e9dd 909 set_freepointer(s, object, NULL);
81819f0f 910 } else {
24922684 911 slab_err(s, page, "Freepointer corrupt");
a973e9dd 912 page->freelist = NULL;
39b26464 913 page->inuse = page->objects;
24922684 914 slab_fix(s, "Freelist cleared");
81819f0f
CL
915 return 0;
916 }
917 break;
918 }
919 object = fp;
920 fp = get_freepointer(s, object);
921 nr++;
922 }
923
ab9a0f19 924 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
925 if (max_objects > MAX_OBJS_PER_PAGE)
926 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
927
928 if (page->objects != max_objects) {
929 slab_err(s, page, "Wrong number of objects. Found %d but "
930 "should be %d", page->objects, max_objects);
931 page->objects = max_objects;
932 slab_fix(s, "Number of objects adjusted.");
933 }
39b26464 934 if (page->inuse != page->objects - nr) {
70d71228 935 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
936 "counted were %d", page->inuse, page->objects - nr);
937 page->inuse = page->objects - nr;
24922684 938 slab_fix(s, "Object count adjusted.");
81819f0f
CL
939 }
940 return search == NULL;
941}
942
0121c619
CL
943static void trace(struct kmem_cache *s, struct page *page, void *object,
944 int alloc)
3ec09742
CL
945{
946 if (s->flags & SLAB_TRACE) {
f9f58285 947 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
948 s->name,
949 alloc ? "alloc" : "free",
950 object, page->inuse,
951 page->freelist);
952
953 if (!alloc)
d0e0ac97
CG
954 print_section("Object ", (void *)object,
955 s->object_size);
3ec09742
CL
956
957 dump_stack();
958 }
959}
960
643b1138 961/*
672bba3a 962 * Tracking of fully allocated slabs for debugging purposes.
643b1138 963 */
5cc6eee8
CL
964static void add_full(struct kmem_cache *s,
965 struct kmem_cache_node *n, struct page *page)
643b1138 966{
5cc6eee8
CL
967 if (!(s->flags & SLAB_STORE_USER))
968 return;
969
255d0884 970 lockdep_assert_held(&n->list_lock);
643b1138 971 list_add(&page->lru, &n->full);
643b1138
CL
972}
973
c65c1877 974static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 975{
643b1138
CL
976 if (!(s->flags & SLAB_STORE_USER))
977 return;
978
255d0884 979 lockdep_assert_held(&n->list_lock);
643b1138 980 list_del(&page->lru);
643b1138
CL
981}
982
0f389ec6
CL
983/* Tracking of the number of slabs for debugging purposes */
984static inline unsigned long slabs_node(struct kmem_cache *s, int node)
985{
986 struct kmem_cache_node *n = get_node(s, node);
987
988 return atomic_long_read(&n->nr_slabs);
989}
990
26c02cf0
AB
991static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
992{
993 return atomic_long_read(&n->nr_slabs);
994}
995
205ab99d 996static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
997{
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 /*
1001 * May be called early in order to allocate a slab for the
1002 * kmem_cache_node structure. Solve the chicken-egg
1003 * dilemma by deferring the increment of the count during
1004 * bootstrap (see early_kmem_cache_node_alloc).
1005 */
338b2642 1006 if (likely(n)) {
0f389ec6 1007 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1008 atomic_long_add(objects, &n->total_objects);
1009 }
0f389ec6 1010}
205ab99d 1011static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1012{
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 atomic_long_dec(&n->nr_slabs);
205ab99d 1016 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1017}
1018
1019/* Object debug checks for alloc/free paths */
3ec09742
CL
1020static void setup_object_debug(struct kmem_cache *s, struct page *page,
1021 void *object)
1022{
1023 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1024 return;
1025
f7cb1933 1026 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1027 init_tracking(s, object);
1028}
1029
d0e0ac97
CG
1030static noinline int alloc_debug_processing(struct kmem_cache *s,
1031 struct page *page,
ce71e27c 1032 void *object, unsigned long addr)
81819f0f
CL
1033{
1034 if (!check_slab(s, page))
1035 goto bad;
1036
81819f0f
CL
1037 if (!check_valid_pointer(s, page, object)) {
1038 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1039 goto bad;
81819f0f
CL
1040 }
1041
f7cb1933 1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1043 goto bad;
81819f0f 1044
3ec09742
CL
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
f7cb1933 1049 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1050 return 1;
3ec09742 1051
81819f0f
CL
1052bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
672bba3a 1057 * as used avoids touching the remaining objects.
81819f0f 1058 */
24922684 1059 slab_fix(s, "Marking all objects used");
39b26464 1060 page->inuse = page->objects;
a973e9dd 1061 page->freelist = NULL;
81819f0f
CL
1062 }
1063 return 0;
1064}
1065
19c7ff9e
CL
1066static noinline struct kmem_cache_node *free_debug_processing(
1067 struct kmem_cache *s, struct page *page, void *object,
1068 unsigned long addr, unsigned long *flags)
81819f0f 1069{
19c7ff9e 1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1071
19c7ff9e 1072 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1073 slab_lock(page);
1074
81819f0f
CL
1075 if (!check_slab(s, page))
1076 goto fail;
1077
1078 if (!check_valid_pointer(s, page, object)) {
70d71228 1079 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1080 goto fail;
1081 }
1082
1083 if (on_freelist(s, page, object)) {
24922684 1084 object_err(s, page, object, "Object already free");
81819f0f
CL
1085 goto fail;
1086 }
1087
f7cb1933 1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1089 goto out;
81819f0f 1090
1b4f59e3 1091 if (unlikely(s != page->slab_cache)) {
3adbefee 1092 if (!PageSlab(page)) {
70d71228
CL
1093 slab_err(s, page, "Attempt to free object(0x%p) "
1094 "outside of slab", object);
1b4f59e3 1095 } else if (!page->slab_cache) {
f9f58285
FF
1096 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1097 object);
70d71228 1098 dump_stack();
06428780 1099 } else
24922684
CL
1100 object_err(s, page, object,
1101 "page slab pointer corrupt.");
81819f0f
CL
1102 goto fail;
1103 }
3ec09742 1104
3ec09742
CL
1105 if (s->flags & SLAB_STORE_USER)
1106 set_track(s, object, TRACK_FREE, addr);
1107 trace(s, page, object, 0);
f7cb1933 1108 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1109out:
881db7fb 1110 slab_unlock(page);
19c7ff9e
CL
1111 /*
1112 * Keep node_lock to preserve integrity
1113 * until the object is actually freed
1114 */
1115 return n;
3ec09742 1116
81819f0f 1117fail:
19c7ff9e
CL
1118 slab_unlock(page);
1119 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1120 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1121 return NULL;
81819f0f
CL
1122}
1123
41ecc55b
CL
1124static int __init setup_slub_debug(char *str)
1125{
f0630fff
CL
1126 slub_debug = DEBUG_DEFAULT_FLAGS;
1127 if (*str++ != '=' || !*str)
1128 /*
1129 * No options specified. Switch on full debugging.
1130 */
1131 goto out;
1132
1133 if (*str == ',')
1134 /*
1135 * No options but restriction on slabs. This means full
1136 * debugging for slabs matching a pattern.
1137 */
1138 goto check_slabs;
1139
1140 slub_debug = 0;
1141 if (*str == '-')
1142 /*
1143 * Switch off all debugging measures.
1144 */
1145 goto out;
1146
1147 /*
1148 * Determine which debug features should be switched on
1149 */
06428780 1150 for (; *str && *str != ','; str++) {
f0630fff
CL
1151 switch (tolower(*str)) {
1152 case 'f':
1153 slub_debug |= SLAB_DEBUG_FREE;
1154 break;
1155 case 'z':
1156 slub_debug |= SLAB_RED_ZONE;
1157 break;
1158 case 'p':
1159 slub_debug |= SLAB_POISON;
1160 break;
1161 case 'u':
1162 slub_debug |= SLAB_STORE_USER;
1163 break;
1164 case 't':
1165 slub_debug |= SLAB_TRACE;
1166 break;
4c13dd3b
DM
1167 case 'a':
1168 slub_debug |= SLAB_FAILSLAB;
1169 break;
08303a73
CA
1170 case 'o':
1171 /*
1172 * Avoid enabling debugging on caches if its minimum
1173 * order would increase as a result.
1174 */
1175 disable_higher_order_debug = 1;
1176 break;
f0630fff 1177 default:
f9f58285
FF
1178 pr_err("slub_debug option '%c' unknown. skipped\n",
1179 *str);
f0630fff 1180 }
41ecc55b
CL
1181 }
1182
f0630fff 1183check_slabs:
41ecc55b
CL
1184 if (*str == ',')
1185 slub_debug_slabs = str + 1;
f0630fff 1186out:
41ecc55b
CL
1187 return 1;
1188}
1189
1190__setup("slub_debug", setup_slub_debug);
1191
423c929c 1192unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1193 unsigned long flags, const char *name,
51cc5068 1194 void (*ctor)(void *))
41ecc55b
CL
1195{
1196 /*
e153362a 1197 * Enable debugging if selected on the kernel commandline.
41ecc55b 1198 */
c6f58d9b
CL
1199 if (slub_debug && (!slub_debug_slabs || (name &&
1200 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1201 flags |= slub_debug;
ba0268a8
CL
1202
1203 return flags;
41ecc55b
CL
1204}
1205#else
3ec09742
CL
1206static inline void setup_object_debug(struct kmem_cache *s,
1207 struct page *page, void *object) {}
41ecc55b 1208
3ec09742 1209static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1210 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1211
19c7ff9e
CL
1212static inline struct kmem_cache_node *free_debug_processing(
1213 struct kmem_cache *s, struct page *page, void *object,
1214 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1215
41ecc55b
CL
1216static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1217 { return 1; }
1218static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1219 void *object, u8 val) { return 1; }
5cc6eee8
CL
1220static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1221 struct page *page) {}
c65c1877
PZ
1222static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 struct page *page) {}
423c929c 1224unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1225 unsigned long flags, const char *name,
51cc5068 1226 void (*ctor)(void *))
ba0268a8
CL
1227{
1228 return flags;
1229}
41ecc55b 1230#define slub_debug 0
0f389ec6 1231
fdaa45e9
IM
1232#define disable_higher_order_debug 0
1233
0f389ec6
CL
1234static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1235 { return 0; }
26c02cf0
AB
1236static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1237 { return 0; }
205ab99d
CL
1238static inline void inc_slabs_node(struct kmem_cache *s, int node,
1239 int objects) {}
1240static inline void dec_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
7d550c56 1242
02e72cc6
AR
1243#endif /* CONFIG_SLUB_DEBUG */
1244
1245/*
1246 * Hooks for other subsystems that check memory allocations. In a typical
1247 * production configuration these hooks all should produce no code at all.
1248 */
d56791b3
RB
1249static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1250{
1251 kmemleak_alloc(ptr, size, 1, flags);
0316bec2 1252 kasan_kmalloc_large(ptr, size);
d56791b3
RB
1253}
1254
1255static inline void kfree_hook(const void *x)
1256{
1257 kmemleak_free(x);
0316bec2 1258 kasan_kfree_large(x);
d56791b3
RB
1259}
1260
8135be5a
VD
1261static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1262 gfp_t flags)
02e72cc6
AR
1263{
1264 flags &= gfp_allowed_mask;
1265 lockdep_trace_alloc(flags);
1266 might_sleep_if(flags & __GFP_WAIT);
7d550c56 1267
8135be5a
VD
1268 if (should_failslab(s->object_size, flags, s->flags))
1269 return NULL;
1270
1271 return memcg_kmem_get_cache(s, flags);
02e72cc6
AR
1272}
1273
1274static inline void slab_post_alloc_hook(struct kmem_cache *s,
1275 gfp_t flags, void *object)
d56791b3 1276{
02e72cc6
AR
1277 flags &= gfp_allowed_mask;
1278 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1279 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
8135be5a 1280 memcg_kmem_put_cache(s);
0316bec2 1281 kasan_slab_alloc(s, object);
d56791b3 1282}
7d550c56 1283
d56791b3
RB
1284static inline void slab_free_hook(struct kmem_cache *s, void *x)
1285{
1286 kmemleak_free_recursive(x, s->flags);
7d550c56 1287
02e72cc6
AR
1288 /*
1289 * Trouble is that we may no longer disable interrupts in the fast path
1290 * So in order to make the debug calls that expect irqs to be
1291 * disabled we need to disable interrupts temporarily.
1292 */
1293#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1294 {
1295 unsigned long flags;
1296
1297 local_irq_save(flags);
1298 kmemcheck_slab_free(s, x, s->object_size);
1299 debug_check_no_locks_freed(x, s->object_size);
1300 local_irq_restore(flags);
1301 }
1302#endif
1303 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1304 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1305
1306 kasan_slab_free(s, x);
02e72cc6 1307}
205ab99d 1308
81819f0f
CL
1309/*
1310 * Slab allocation and freeing
1311 */
5dfb4175
VD
1312static inline struct page *alloc_slab_page(struct kmem_cache *s,
1313 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1314{
5dfb4175 1315 struct page *page;
65c3376a
CL
1316 int order = oo_order(oo);
1317
b1eeab67
VN
1318 flags |= __GFP_NOTRACK;
1319
5dfb4175
VD
1320 if (memcg_charge_slab(s, flags, order))
1321 return NULL;
1322
2154a336 1323 if (node == NUMA_NO_NODE)
5dfb4175 1324 page = alloc_pages(flags, order);
65c3376a 1325 else
5dfb4175
VD
1326 page = alloc_pages_exact_node(node, flags, order);
1327
1328 if (!page)
1329 memcg_uncharge_slab(s, order);
1330
1331 return page;
65c3376a
CL
1332}
1333
81819f0f
CL
1334static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1335{
06428780 1336 struct page *page;
834f3d11 1337 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1338 gfp_t alloc_gfp;
81819f0f 1339
7e0528da
CL
1340 flags &= gfp_allowed_mask;
1341
1342 if (flags & __GFP_WAIT)
1343 local_irq_enable();
1344
b7a49f0d 1345 flags |= s->allocflags;
e12ba74d 1346
ba52270d
PE
1347 /*
1348 * Let the initial higher-order allocation fail under memory pressure
1349 * so we fall-back to the minimum order allocation.
1350 */
1351 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1352
5dfb4175 1353 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1354 if (unlikely(!page)) {
1355 oo = s->min;
80c3a998 1356 alloc_gfp = flags;
65c3376a
CL
1357 /*
1358 * Allocation may have failed due to fragmentation.
1359 * Try a lower order alloc if possible
1360 */
5dfb4175 1361 page = alloc_slab_page(s, alloc_gfp, node, oo);
81819f0f 1362
7e0528da
CL
1363 if (page)
1364 stat(s, ORDER_FALLBACK);
65c3376a 1365 }
5a896d9e 1366
737b719e 1367 if (kmemcheck_enabled && page
5086c389 1368 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1369 int pages = 1 << oo_order(oo);
1370
80c3a998 1371 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1372
1373 /*
1374 * Objects from caches that have a constructor don't get
1375 * cleared when they're allocated, so we need to do it here.
1376 */
1377 if (s->ctor)
1378 kmemcheck_mark_uninitialized_pages(page, pages);
1379 else
1380 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1381 }
1382
737b719e
DR
1383 if (flags & __GFP_WAIT)
1384 local_irq_disable();
1385 if (!page)
1386 return NULL;
1387
834f3d11 1388 page->objects = oo_objects(oo);
81819f0f
CL
1389 mod_zone_page_state(page_zone(page),
1390 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1391 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1392 1 << oo_order(oo));
81819f0f
CL
1393
1394 return page;
1395}
1396
1397static void setup_object(struct kmem_cache *s, struct page *page,
1398 void *object)
1399{
3ec09742 1400 setup_object_debug(s, page, object);
0316bec2
AR
1401 if (unlikely(s->ctor)) {
1402 kasan_unpoison_object_data(s, object);
51cc5068 1403 s->ctor(object);
0316bec2
AR
1404 kasan_poison_object_data(s, object);
1405 }
81819f0f
CL
1406}
1407
1408static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1409{
1410 struct page *page;
81819f0f 1411 void *start;
81819f0f 1412 void *p;
1f458cbf 1413 int order;
54266640 1414 int idx;
81819f0f 1415
c871ac4e
AM
1416 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1417 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1418 BUG();
1419 }
81819f0f 1420
6cb06229
CL
1421 page = allocate_slab(s,
1422 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1423 if (!page)
1424 goto out;
1425
1f458cbf 1426 order = compound_order(page);
205ab99d 1427 inc_slabs_node(s, page_to_nid(page), page->objects);
1b4f59e3 1428 page->slab_cache = s;
c03f94cc 1429 __SetPageSlab(page);
2f064f34 1430 if (page_is_pfmemalloc(page))
072bb0aa 1431 SetPageSlabPfmemalloc(page);
81819f0f
CL
1432
1433 start = page_address(page);
81819f0f
CL
1434
1435 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1436 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1437
0316bec2
AR
1438 kasan_poison_slab(page);
1439
54266640
WY
1440 for_each_object_idx(p, idx, s, start, page->objects) {
1441 setup_object(s, page, p);
1442 if (likely(idx < page->objects))
1443 set_freepointer(s, p, p + s->size);
1444 else
1445 set_freepointer(s, p, NULL);
81819f0f 1446 }
81819f0f
CL
1447
1448 page->freelist = start;
e6e82ea1 1449 page->inuse = page->objects;
8cb0a506 1450 page->frozen = 1;
81819f0f 1451out:
81819f0f
CL
1452 return page;
1453}
1454
1455static void __free_slab(struct kmem_cache *s, struct page *page)
1456{
834f3d11
CL
1457 int order = compound_order(page);
1458 int pages = 1 << order;
81819f0f 1459
af537b0a 1460 if (kmem_cache_debug(s)) {
81819f0f
CL
1461 void *p;
1462
1463 slab_pad_check(s, page);
224a88be
CL
1464 for_each_object(p, s, page_address(page),
1465 page->objects)
f7cb1933 1466 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1467 }
1468
b1eeab67 1469 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1470
81819f0f
CL
1471 mod_zone_page_state(page_zone(page),
1472 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1473 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1474 -pages);
81819f0f 1475
072bb0aa 1476 __ClearPageSlabPfmemalloc(page);
49bd5221 1477 __ClearPageSlab(page);
1f458cbf 1478
22b751c3 1479 page_mapcount_reset(page);
1eb5ac64
NP
1480 if (current->reclaim_state)
1481 current->reclaim_state->reclaimed_slab += pages;
5dfb4175
VD
1482 __free_pages(page, order);
1483 memcg_uncharge_slab(s, order);
81819f0f
CL
1484}
1485
da9a638c
LJ
1486#define need_reserve_slab_rcu \
1487 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1488
81819f0f
CL
1489static void rcu_free_slab(struct rcu_head *h)
1490{
1491 struct page *page;
1492
da9a638c
LJ
1493 if (need_reserve_slab_rcu)
1494 page = virt_to_head_page(h);
1495 else
1496 page = container_of((struct list_head *)h, struct page, lru);
1497
1b4f59e3 1498 __free_slab(page->slab_cache, page);
81819f0f
CL
1499}
1500
1501static void free_slab(struct kmem_cache *s, struct page *page)
1502{
1503 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1504 struct rcu_head *head;
1505
1506 if (need_reserve_slab_rcu) {
1507 int order = compound_order(page);
1508 int offset = (PAGE_SIZE << order) - s->reserved;
1509
1510 VM_BUG_ON(s->reserved != sizeof(*head));
1511 head = page_address(page) + offset;
1512 } else {
1513 /*
1514 * RCU free overloads the RCU head over the LRU
1515 */
1516 head = (void *)&page->lru;
1517 }
81819f0f
CL
1518
1519 call_rcu(head, rcu_free_slab);
1520 } else
1521 __free_slab(s, page);
1522}
1523
1524static void discard_slab(struct kmem_cache *s, struct page *page)
1525{
205ab99d 1526 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1527 free_slab(s, page);
1528}
1529
1530/*
5cc6eee8 1531 * Management of partially allocated slabs.
81819f0f 1532 */
1e4dd946
SR
1533static inline void
1534__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1535{
e95eed57 1536 n->nr_partial++;
136333d1 1537 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1538 list_add_tail(&page->lru, &n->partial);
1539 else
1540 list_add(&page->lru, &n->partial);
81819f0f
CL
1541}
1542
1e4dd946
SR
1543static inline void add_partial(struct kmem_cache_node *n,
1544 struct page *page, int tail)
62e346a8 1545{
c65c1877 1546 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1547 __add_partial(n, page, tail);
1548}
c65c1877 1549
1e4dd946
SR
1550static inline void
1551__remove_partial(struct kmem_cache_node *n, struct page *page)
1552{
62e346a8
CL
1553 list_del(&page->lru);
1554 n->nr_partial--;
1555}
1556
1e4dd946
SR
1557static inline void remove_partial(struct kmem_cache_node *n,
1558 struct page *page)
1559{
1560 lockdep_assert_held(&n->list_lock);
1561 __remove_partial(n, page);
1562}
1563
81819f0f 1564/*
7ced3719
CL
1565 * Remove slab from the partial list, freeze it and
1566 * return the pointer to the freelist.
81819f0f 1567 *
497b66f2 1568 * Returns a list of objects or NULL if it fails.
81819f0f 1569 */
497b66f2 1570static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1571 struct kmem_cache_node *n, struct page *page,
633b0764 1572 int mode, int *objects)
81819f0f 1573{
2cfb7455
CL
1574 void *freelist;
1575 unsigned long counters;
1576 struct page new;
1577
c65c1877
PZ
1578 lockdep_assert_held(&n->list_lock);
1579
2cfb7455
CL
1580 /*
1581 * Zap the freelist and set the frozen bit.
1582 * The old freelist is the list of objects for the
1583 * per cpu allocation list.
1584 */
7ced3719
CL
1585 freelist = page->freelist;
1586 counters = page->counters;
1587 new.counters = counters;
633b0764 1588 *objects = new.objects - new.inuse;
23910c50 1589 if (mode) {
7ced3719 1590 new.inuse = page->objects;
23910c50
PE
1591 new.freelist = NULL;
1592 } else {
1593 new.freelist = freelist;
1594 }
2cfb7455 1595
a0132ac0 1596 VM_BUG_ON(new.frozen);
7ced3719 1597 new.frozen = 1;
2cfb7455 1598
7ced3719 1599 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1600 freelist, counters,
02d7633f 1601 new.freelist, new.counters,
7ced3719 1602 "acquire_slab"))
7ced3719 1603 return NULL;
2cfb7455
CL
1604
1605 remove_partial(n, page);
7ced3719 1606 WARN_ON(!freelist);
49e22585 1607 return freelist;
81819f0f
CL
1608}
1609
633b0764 1610static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1611static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1612
81819f0f 1613/*
672bba3a 1614 * Try to allocate a partial slab from a specific node.
81819f0f 1615 */
8ba00bb6
JK
1616static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1617 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1618{
49e22585
CL
1619 struct page *page, *page2;
1620 void *object = NULL;
633b0764
JK
1621 int available = 0;
1622 int objects;
81819f0f
CL
1623
1624 /*
1625 * Racy check. If we mistakenly see no partial slabs then we
1626 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1627 * partial slab and there is none available then get_partials()
1628 * will return NULL.
81819f0f
CL
1629 */
1630 if (!n || !n->nr_partial)
1631 return NULL;
1632
1633 spin_lock(&n->list_lock);
49e22585 1634 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1635 void *t;
49e22585 1636
8ba00bb6
JK
1637 if (!pfmemalloc_match(page, flags))
1638 continue;
1639
633b0764 1640 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1641 if (!t)
1642 break;
1643
633b0764 1644 available += objects;
12d79634 1645 if (!object) {
49e22585 1646 c->page = page;
49e22585 1647 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1648 object = t;
49e22585 1649 } else {
633b0764 1650 put_cpu_partial(s, page, 0);
8028dcea 1651 stat(s, CPU_PARTIAL_NODE);
49e22585 1652 }
345c905d
JK
1653 if (!kmem_cache_has_cpu_partial(s)
1654 || available > s->cpu_partial / 2)
49e22585
CL
1655 break;
1656
497b66f2 1657 }
81819f0f 1658 spin_unlock(&n->list_lock);
497b66f2 1659 return object;
81819f0f
CL
1660}
1661
1662/*
672bba3a 1663 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1664 */
de3ec035 1665static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1666 struct kmem_cache_cpu *c)
81819f0f
CL
1667{
1668#ifdef CONFIG_NUMA
1669 struct zonelist *zonelist;
dd1a239f 1670 struct zoneref *z;
54a6eb5c
MG
1671 struct zone *zone;
1672 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1673 void *object;
cc9a6c87 1674 unsigned int cpuset_mems_cookie;
81819f0f
CL
1675
1676 /*
672bba3a
CL
1677 * The defrag ratio allows a configuration of the tradeoffs between
1678 * inter node defragmentation and node local allocations. A lower
1679 * defrag_ratio increases the tendency to do local allocations
1680 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1681 *
672bba3a
CL
1682 * If the defrag_ratio is set to 0 then kmalloc() always
1683 * returns node local objects. If the ratio is higher then kmalloc()
1684 * may return off node objects because partial slabs are obtained
1685 * from other nodes and filled up.
81819f0f 1686 *
6446faa2 1687 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1688 * defrag_ratio = 1000) then every (well almost) allocation will
1689 * first attempt to defrag slab caches on other nodes. This means
1690 * scanning over all nodes to look for partial slabs which may be
1691 * expensive if we do it every time we are trying to find a slab
1692 * with available objects.
81819f0f 1693 */
9824601e
CL
1694 if (!s->remote_node_defrag_ratio ||
1695 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1696 return NULL;
1697
cc9a6c87 1698 do {
d26914d1 1699 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1700 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1701 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1702 struct kmem_cache_node *n;
1703
1704 n = get_node(s, zone_to_nid(zone));
1705
dee2f8aa 1706 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1707 n->nr_partial > s->min_partial) {
8ba00bb6 1708 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1709 if (object) {
1710 /*
d26914d1
MG
1711 * Don't check read_mems_allowed_retry()
1712 * here - if mems_allowed was updated in
1713 * parallel, that was a harmless race
1714 * between allocation and the cpuset
1715 * update
cc9a6c87 1716 */
cc9a6c87
MG
1717 return object;
1718 }
c0ff7453 1719 }
81819f0f 1720 }
d26914d1 1721 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1722#endif
1723 return NULL;
1724}
1725
1726/*
1727 * Get a partial page, lock it and return it.
1728 */
497b66f2 1729static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1730 struct kmem_cache_cpu *c)
81819f0f 1731{
497b66f2 1732 void *object;
a561ce00
JK
1733 int searchnode = node;
1734
1735 if (node == NUMA_NO_NODE)
1736 searchnode = numa_mem_id();
1737 else if (!node_present_pages(node))
1738 searchnode = node_to_mem_node(node);
81819f0f 1739
8ba00bb6 1740 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1741 if (object || node != NUMA_NO_NODE)
1742 return object;
81819f0f 1743
acd19fd1 1744 return get_any_partial(s, flags, c);
81819f0f
CL
1745}
1746
8a5ec0ba
CL
1747#ifdef CONFIG_PREEMPT
1748/*
1749 * Calculate the next globally unique transaction for disambiguiation
1750 * during cmpxchg. The transactions start with the cpu number and are then
1751 * incremented by CONFIG_NR_CPUS.
1752 */
1753#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1754#else
1755/*
1756 * No preemption supported therefore also no need to check for
1757 * different cpus.
1758 */
1759#define TID_STEP 1
1760#endif
1761
1762static inline unsigned long next_tid(unsigned long tid)
1763{
1764 return tid + TID_STEP;
1765}
1766
1767static inline unsigned int tid_to_cpu(unsigned long tid)
1768{
1769 return tid % TID_STEP;
1770}
1771
1772static inline unsigned long tid_to_event(unsigned long tid)
1773{
1774 return tid / TID_STEP;
1775}
1776
1777static inline unsigned int init_tid(int cpu)
1778{
1779 return cpu;
1780}
1781
1782static inline void note_cmpxchg_failure(const char *n,
1783 const struct kmem_cache *s, unsigned long tid)
1784{
1785#ifdef SLUB_DEBUG_CMPXCHG
1786 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1787
f9f58285 1788 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1789
1790#ifdef CONFIG_PREEMPT
1791 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1792 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1793 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1794 else
1795#endif
1796 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1797 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1798 tid_to_event(tid), tid_to_event(actual_tid));
1799 else
f9f58285 1800 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1801 actual_tid, tid, next_tid(tid));
1802#endif
4fdccdfb 1803 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1804}
1805
788e1aad 1806static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1807{
8a5ec0ba
CL
1808 int cpu;
1809
1810 for_each_possible_cpu(cpu)
1811 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1812}
2cfb7455 1813
81819f0f
CL
1814/*
1815 * Remove the cpu slab
1816 */
d0e0ac97
CG
1817static void deactivate_slab(struct kmem_cache *s, struct page *page,
1818 void *freelist)
81819f0f 1819{
2cfb7455 1820 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1821 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1822 int lock = 0;
1823 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1824 void *nextfree;
136333d1 1825 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1826 struct page new;
1827 struct page old;
1828
1829 if (page->freelist) {
84e554e6 1830 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1831 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1832 }
1833
894b8788 1834 /*
2cfb7455
CL
1835 * Stage one: Free all available per cpu objects back
1836 * to the page freelist while it is still frozen. Leave the
1837 * last one.
1838 *
1839 * There is no need to take the list->lock because the page
1840 * is still frozen.
1841 */
1842 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1843 void *prior;
1844 unsigned long counters;
1845
1846 do {
1847 prior = page->freelist;
1848 counters = page->counters;
1849 set_freepointer(s, freelist, prior);
1850 new.counters = counters;
1851 new.inuse--;
a0132ac0 1852 VM_BUG_ON(!new.frozen);
2cfb7455 1853
1d07171c 1854 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1855 prior, counters,
1856 freelist, new.counters,
1857 "drain percpu freelist"));
1858
1859 freelist = nextfree;
1860 }
1861
894b8788 1862 /*
2cfb7455
CL
1863 * Stage two: Ensure that the page is unfrozen while the
1864 * list presence reflects the actual number of objects
1865 * during unfreeze.
1866 *
1867 * We setup the list membership and then perform a cmpxchg
1868 * with the count. If there is a mismatch then the page
1869 * is not unfrozen but the page is on the wrong list.
1870 *
1871 * Then we restart the process which may have to remove
1872 * the page from the list that we just put it on again
1873 * because the number of objects in the slab may have
1874 * changed.
894b8788 1875 */
2cfb7455 1876redo:
894b8788 1877
2cfb7455
CL
1878 old.freelist = page->freelist;
1879 old.counters = page->counters;
a0132ac0 1880 VM_BUG_ON(!old.frozen);
7c2e132c 1881
2cfb7455
CL
1882 /* Determine target state of the slab */
1883 new.counters = old.counters;
1884 if (freelist) {
1885 new.inuse--;
1886 set_freepointer(s, freelist, old.freelist);
1887 new.freelist = freelist;
1888 } else
1889 new.freelist = old.freelist;
1890
1891 new.frozen = 0;
1892
8a5b20ae 1893 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1894 m = M_FREE;
1895 else if (new.freelist) {
1896 m = M_PARTIAL;
1897 if (!lock) {
1898 lock = 1;
1899 /*
1900 * Taking the spinlock removes the possiblity
1901 * that acquire_slab() will see a slab page that
1902 * is frozen
1903 */
1904 spin_lock(&n->list_lock);
1905 }
1906 } else {
1907 m = M_FULL;
1908 if (kmem_cache_debug(s) && !lock) {
1909 lock = 1;
1910 /*
1911 * This also ensures that the scanning of full
1912 * slabs from diagnostic functions will not see
1913 * any frozen slabs.
1914 */
1915 spin_lock(&n->list_lock);
1916 }
1917 }
1918
1919 if (l != m) {
1920
1921 if (l == M_PARTIAL)
1922
1923 remove_partial(n, page);
1924
1925 else if (l == M_FULL)
894b8788 1926
c65c1877 1927 remove_full(s, n, page);
2cfb7455
CL
1928
1929 if (m == M_PARTIAL) {
1930
1931 add_partial(n, page, tail);
136333d1 1932 stat(s, tail);
2cfb7455
CL
1933
1934 } else if (m == M_FULL) {
894b8788 1935
2cfb7455
CL
1936 stat(s, DEACTIVATE_FULL);
1937 add_full(s, n, page);
1938
1939 }
1940 }
1941
1942 l = m;
1d07171c 1943 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1944 old.freelist, old.counters,
1945 new.freelist, new.counters,
1946 "unfreezing slab"))
1947 goto redo;
1948
2cfb7455
CL
1949 if (lock)
1950 spin_unlock(&n->list_lock);
1951
1952 if (m == M_FREE) {
1953 stat(s, DEACTIVATE_EMPTY);
1954 discard_slab(s, page);
1955 stat(s, FREE_SLAB);
894b8788 1956 }
81819f0f
CL
1957}
1958
d24ac77f
JK
1959/*
1960 * Unfreeze all the cpu partial slabs.
1961 *
59a09917
CL
1962 * This function must be called with interrupts disabled
1963 * for the cpu using c (or some other guarantee must be there
1964 * to guarantee no concurrent accesses).
d24ac77f 1965 */
59a09917
CL
1966static void unfreeze_partials(struct kmem_cache *s,
1967 struct kmem_cache_cpu *c)
49e22585 1968{
345c905d 1969#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1970 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1971 struct page *page, *discard_page = NULL;
49e22585
CL
1972
1973 while ((page = c->partial)) {
49e22585
CL
1974 struct page new;
1975 struct page old;
1976
1977 c->partial = page->next;
43d77867
JK
1978
1979 n2 = get_node(s, page_to_nid(page));
1980 if (n != n2) {
1981 if (n)
1982 spin_unlock(&n->list_lock);
1983
1984 n = n2;
1985 spin_lock(&n->list_lock);
1986 }
49e22585
CL
1987
1988 do {
1989
1990 old.freelist = page->freelist;
1991 old.counters = page->counters;
a0132ac0 1992 VM_BUG_ON(!old.frozen);
49e22585
CL
1993
1994 new.counters = old.counters;
1995 new.freelist = old.freelist;
1996
1997 new.frozen = 0;
1998
d24ac77f 1999 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2000 old.freelist, old.counters,
2001 new.freelist, new.counters,
2002 "unfreezing slab"));
2003
8a5b20ae 2004 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2005 page->next = discard_page;
2006 discard_page = page;
43d77867
JK
2007 } else {
2008 add_partial(n, page, DEACTIVATE_TO_TAIL);
2009 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2010 }
2011 }
2012
2013 if (n)
2014 spin_unlock(&n->list_lock);
9ada1934
SL
2015
2016 while (discard_page) {
2017 page = discard_page;
2018 discard_page = discard_page->next;
2019
2020 stat(s, DEACTIVATE_EMPTY);
2021 discard_slab(s, page);
2022 stat(s, FREE_SLAB);
2023 }
345c905d 2024#endif
49e22585
CL
2025}
2026
2027/*
2028 * Put a page that was just frozen (in __slab_free) into a partial page
2029 * slot if available. This is done without interrupts disabled and without
2030 * preemption disabled. The cmpxchg is racy and may put the partial page
2031 * onto a random cpus partial slot.
2032 *
2033 * If we did not find a slot then simply move all the partials to the
2034 * per node partial list.
2035 */
633b0764 2036static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2037{
345c905d 2038#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2039 struct page *oldpage;
2040 int pages;
2041 int pobjects;
2042
d6e0b7fa 2043 preempt_disable();
49e22585
CL
2044 do {
2045 pages = 0;
2046 pobjects = 0;
2047 oldpage = this_cpu_read(s->cpu_slab->partial);
2048
2049 if (oldpage) {
2050 pobjects = oldpage->pobjects;
2051 pages = oldpage->pages;
2052 if (drain && pobjects > s->cpu_partial) {
2053 unsigned long flags;
2054 /*
2055 * partial array is full. Move the existing
2056 * set to the per node partial list.
2057 */
2058 local_irq_save(flags);
59a09917 2059 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2060 local_irq_restore(flags);
e24fc410 2061 oldpage = NULL;
49e22585
CL
2062 pobjects = 0;
2063 pages = 0;
8028dcea 2064 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2065 }
2066 }
2067
2068 pages++;
2069 pobjects += page->objects - page->inuse;
2070
2071 page->pages = pages;
2072 page->pobjects = pobjects;
2073 page->next = oldpage;
2074
d0e0ac97
CG
2075 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2076 != oldpage);
d6e0b7fa
VD
2077 if (unlikely(!s->cpu_partial)) {
2078 unsigned long flags;
2079
2080 local_irq_save(flags);
2081 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2082 local_irq_restore(flags);
2083 }
2084 preempt_enable();
345c905d 2085#endif
49e22585
CL
2086}
2087
dfb4f096 2088static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2089{
84e554e6 2090 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2091 deactivate_slab(s, c->page, c->freelist);
2092
2093 c->tid = next_tid(c->tid);
2094 c->page = NULL;
2095 c->freelist = NULL;
81819f0f
CL
2096}
2097
2098/*
2099 * Flush cpu slab.
6446faa2 2100 *
81819f0f
CL
2101 * Called from IPI handler with interrupts disabled.
2102 */
0c710013 2103static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2104{
9dfc6e68 2105 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2106
49e22585
CL
2107 if (likely(c)) {
2108 if (c->page)
2109 flush_slab(s, c);
2110
59a09917 2111 unfreeze_partials(s, c);
49e22585 2112 }
81819f0f
CL
2113}
2114
2115static void flush_cpu_slab(void *d)
2116{
2117 struct kmem_cache *s = d;
81819f0f 2118
dfb4f096 2119 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2120}
2121
a8364d55
GBY
2122static bool has_cpu_slab(int cpu, void *info)
2123{
2124 struct kmem_cache *s = info;
2125 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2126
02e1a9cd 2127 return c->page || c->partial;
a8364d55
GBY
2128}
2129
81819f0f
CL
2130static void flush_all(struct kmem_cache *s)
2131{
a8364d55 2132 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2133}
2134
dfb4f096
CL
2135/*
2136 * Check if the objects in a per cpu structure fit numa
2137 * locality expectations.
2138 */
57d437d2 2139static inline int node_match(struct page *page, int node)
dfb4f096
CL
2140{
2141#ifdef CONFIG_NUMA
4d7868e6 2142 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2143 return 0;
2144#endif
2145 return 1;
2146}
2147
9a02d699 2148#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2149static int count_free(struct page *page)
2150{
2151 return page->objects - page->inuse;
2152}
2153
9a02d699
DR
2154static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2155{
2156 return atomic_long_read(&n->total_objects);
2157}
2158#endif /* CONFIG_SLUB_DEBUG */
2159
2160#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2161static unsigned long count_partial(struct kmem_cache_node *n,
2162 int (*get_count)(struct page *))
2163{
2164 unsigned long flags;
2165 unsigned long x = 0;
2166 struct page *page;
2167
2168 spin_lock_irqsave(&n->list_lock, flags);
2169 list_for_each_entry(page, &n->partial, lru)
2170 x += get_count(page);
2171 spin_unlock_irqrestore(&n->list_lock, flags);
2172 return x;
2173}
9a02d699 2174#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2175
781b2ba6
PE
2176static noinline void
2177slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2178{
9a02d699
DR
2179#ifdef CONFIG_SLUB_DEBUG
2180 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2181 DEFAULT_RATELIMIT_BURST);
781b2ba6 2182 int node;
fa45dc25 2183 struct kmem_cache_node *n;
781b2ba6 2184
9a02d699
DR
2185 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2186 return;
2187
f9f58285 2188 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2189 nid, gfpflags);
f9f58285
FF
2190 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2191 s->name, s->object_size, s->size, oo_order(s->oo),
2192 oo_order(s->min));
781b2ba6 2193
3b0efdfa 2194 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2195 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2196 s->name);
fa5ec8a1 2197
fa45dc25 2198 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2199 unsigned long nr_slabs;
2200 unsigned long nr_objs;
2201 unsigned long nr_free;
2202
26c02cf0
AB
2203 nr_free = count_partial(n, count_free);
2204 nr_slabs = node_nr_slabs(n);
2205 nr_objs = node_nr_objs(n);
781b2ba6 2206
f9f58285 2207 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2208 node, nr_slabs, nr_objs, nr_free);
2209 }
9a02d699 2210#endif
781b2ba6
PE
2211}
2212
497b66f2
CL
2213static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2214 int node, struct kmem_cache_cpu **pc)
2215{
6faa6833 2216 void *freelist;
188fd063
CL
2217 struct kmem_cache_cpu *c = *pc;
2218 struct page *page;
497b66f2 2219
188fd063 2220 freelist = get_partial(s, flags, node, c);
497b66f2 2221
188fd063
CL
2222 if (freelist)
2223 return freelist;
2224
2225 page = new_slab(s, flags, node);
497b66f2 2226 if (page) {
7c8e0181 2227 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2228 if (c->page)
2229 flush_slab(s, c);
2230
2231 /*
2232 * No other reference to the page yet so we can
2233 * muck around with it freely without cmpxchg
2234 */
6faa6833 2235 freelist = page->freelist;
497b66f2
CL
2236 page->freelist = NULL;
2237
2238 stat(s, ALLOC_SLAB);
497b66f2
CL
2239 c->page = page;
2240 *pc = c;
2241 } else
6faa6833 2242 freelist = NULL;
497b66f2 2243
6faa6833 2244 return freelist;
497b66f2
CL
2245}
2246
072bb0aa
MG
2247static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2248{
2249 if (unlikely(PageSlabPfmemalloc(page)))
2250 return gfp_pfmemalloc_allowed(gfpflags);
2251
2252 return true;
2253}
2254
213eeb9f 2255/*
d0e0ac97
CG
2256 * Check the page->freelist of a page and either transfer the freelist to the
2257 * per cpu freelist or deactivate the page.
213eeb9f
CL
2258 *
2259 * The page is still frozen if the return value is not NULL.
2260 *
2261 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2262 *
2263 * This function must be called with interrupt disabled.
213eeb9f
CL
2264 */
2265static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2266{
2267 struct page new;
2268 unsigned long counters;
2269 void *freelist;
2270
2271 do {
2272 freelist = page->freelist;
2273 counters = page->counters;
6faa6833 2274
213eeb9f 2275 new.counters = counters;
a0132ac0 2276 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2277
2278 new.inuse = page->objects;
2279 new.frozen = freelist != NULL;
2280
d24ac77f 2281 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2282 freelist, counters,
2283 NULL, new.counters,
2284 "get_freelist"));
2285
2286 return freelist;
2287}
2288
81819f0f 2289/*
894b8788
CL
2290 * Slow path. The lockless freelist is empty or we need to perform
2291 * debugging duties.
2292 *
894b8788
CL
2293 * Processing is still very fast if new objects have been freed to the
2294 * regular freelist. In that case we simply take over the regular freelist
2295 * as the lockless freelist and zap the regular freelist.
81819f0f 2296 *
894b8788
CL
2297 * If that is not working then we fall back to the partial lists. We take the
2298 * first element of the freelist as the object to allocate now and move the
2299 * rest of the freelist to the lockless freelist.
81819f0f 2300 *
894b8788 2301 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2302 * we need to allocate a new slab. This is the slowest path since it involves
2303 * a call to the page allocator and the setup of a new slab.
81819f0f 2304 */
ce71e27c
EGM
2305static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2306 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2307{
6faa6833 2308 void *freelist;
f6e7def7 2309 struct page *page;
8a5ec0ba
CL
2310 unsigned long flags;
2311
2312 local_irq_save(flags);
2313#ifdef CONFIG_PREEMPT
2314 /*
2315 * We may have been preempted and rescheduled on a different
2316 * cpu before disabling interrupts. Need to reload cpu area
2317 * pointer.
2318 */
2319 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2320#endif
81819f0f 2321
f6e7def7
CL
2322 page = c->page;
2323 if (!page)
81819f0f 2324 goto new_slab;
49e22585 2325redo:
6faa6833 2326
57d437d2 2327 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2328 int searchnode = node;
2329
2330 if (node != NUMA_NO_NODE && !node_present_pages(node))
2331 searchnode = node_to_mem_node(node);
2332
2333 if (unlikely(!node_match(page, searchnode))) {
2334 stat(s, ALLOC_NODE_MISMATCH);
2335 deactivate_slab(s, page, c->freelist);
2336 c->page = NULL;
2337 c->freelist = NULL;
2338 goto new_slab;
2339 }
fc59c053 2340 }
6446faa2 2341
072bb0aa
MG
2342 /*
2343 * By rights, we should be searching for a slab page that was
2344 * PFMEMALLOC but right now, we are losing the pfmemalloc
2345 * information when the page leaves the per-cpu allocator
2346 */
2347 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2348 deactivate_slab(s, page, c->freelist);
2349 c->page = NULL;
2350 c->freelist = NULL;
2351 goto new_slab;
2352 }
2353
73736e03 2354 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2355 freelist = c->freelist;
2356 if (freelist)
73736e03 2357 goto load_freelist;
03e404af 2358
f6e7def7 2359 freelist = get_freelist(s, page);
6446faa2 2360
6faa6833 2361 if (!freelist) {
03e404af
CL
2362 c->page = NULL;
2363 stat(s, DEACTIVATE_BYPASS);
fc59c053 2364 goto new_slab;
03e404af 2365 }
6446faa2 2366
84e554e6 2367 stat(s, ALLOC_REFILL);
6446faa2 2368
894b8788 2369load_freelist:
507effea
CL
2370 /*
2371 * freelist is pointing to the list of objects to be used.
2372 * page is pointing to the page from which the objects are obtained.
2373 * That page must be frozen for per cpu allocations to work.
2374 */
a0132ac0 2375 VM_BUG_ON(!c->page->frozen);
6faa6833 2376 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2377 c->tid = next_tid(c->tid);
2378 local_irq_restore(flags);
6faa6833 2379 return freelist;
81819f0f 2380
81819f0f 2381new_slab:
2cfb7455 2382
49e22585 2383 if (c->partial) {
f6e7def7
CL
2384 page = c->page = c->partial;
2385 c->partial = page->next;
49e22585
CL
2386 stat(s, CPU_PARTIAL_ALLOC);
2387 c->freelist = NULL;
2388 goto redo;
81819f0f
CL
2389 }
2390
188fd063 2391 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2392
f4697436 2393 if (unlikely(!freelist)) {
9a02d699 2394 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2395 local_irq_restore(flags);
2396 return NULL;
81819f0f 2397 }
2cfb7455 2398
f6e7def7 2399 page = c->page;
5091b74a 2400 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2401 goto load_freelist;
2cfb7455 2402
497b66f2 2403 /* Only entered in the debug case */
d0e0ac97
CG
2404 if (kmem_cache_debug(s) &&
2405 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2406 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2407
f6e7def7 2408 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2409 c->page = NULL;
2410 c->freelist = NULL;
a71ae47a 2411 local_irq_restore(flags);
6faa6833 2412 return freelist;
894b8788
CL
2413}
2414
2415/*
2416 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2417 * have the fastpath folded into their functions. So no function call
2418 * overhead for requests that can be satisfied on the fastpath.
2419 *
2420 * The fastpath works by first checking if the lockless freelist can be used.
2421 * If not then __slab_alloc is called for slow processing.
2422 *
2423 * Otherwise we can simply pick the next object from the lockless free list.
2424 */
2b847c3c 2425static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2426 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2427{
894b8788 2428 void **object;
dfb4f096 2429 struct kmem_cache_cpu *c;
57d437d2 2430 struct page *page;
8a5ec0ba 2431 unsigned long tid;
1f84260c 2432
8135be5a
VD
2433 s = slab_pre_alloc_hook(s, gfpflags);
2434 if (!s)
773ff60e 2435 return NULL;
8a5ec0ba 2436redo:
8a5ec0ba
CL
2437 /*
2438 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2439 * enabled. We may switch back and forth between cpus while
2440 * reading from one cpu area. That does not matter as long
2441 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2442 *
9aabf810
JK
2443 * We should guarantee that tid and kmem_cache are retrieved on
2444 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2445 * to check if it is matched or not.
8a5ec0ba 2446 */
9aabf810
JK
2447 do {
2448 tid = this_cpu_read(s->cpu_slab->tid);
2449 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2450 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2451 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2452
2453 /*
2454 * Irqless object alloc/free algorithm used here depends on sequence
2455 * of fetching cpu_slab's data. tid should be fetched before anything
2456 * on c to guarantee that object and page associated with previous tid
2457 * won't be used with current tid. If we fetch tid first, object and
2458 * page could be one associated with next tid and our alloc/free
2459 * request will be failed. In this case, we will retry. So, no problem.
2460 */
2461 barrier();
8a5ec0ba 2462
8a5ec0ba
CL
2463 /*
2464 * The transaction ids are globally unique per cpu and per operation on
2465 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2466 * occurs on the right processor and that there was no operation on the
2467 * linked list in between.
2468 */
8a5ec0ba 2469
9dfc6e68 2470 object = c->freelist;
57d437d2 2471 page = c->page;
8eae1492 2472 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2473 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2474 stat(s, ALLOC_SLOWPATH);
2475 } else {
0ad9500e
ED
2476 void *next_object = get_freepointer_safe(s, object);
2477
8a5ec0ba 2478 /*
25985edc 2479 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2480 * operation and if we are on the right processor.
2481 *
d0e0ac97
CG
2482 * The cmpxchg does the following atomically (without lock
2483 * semantics!)
8a5ec0ba
CL
2484 * 1. Relocate first pointer to the current per cpu area.
2485 * 2. Verify that tid and freelist have not been changed
2486 * 3. If they were not changed replace tid and freelist
2487 *
d0e0ac97
CG
2488 * Since this is without lock semantics the protection is only
2489 * against code executing on this cpu *not* from access by
2490 * other cpus.
8a5ec0ba 2491 */
933393f5 2492 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2493 s->cpu_slab->freelist, s->cpu_slab->tid,
2494 object, tid,
0ad9500e 2495 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2496
2497 note_cmpxchg_failure("slab_alloc", s, tid);
2498 goto redo;
2499 }
0ad9500e 2500 prefetch_freepointer(s, next_object);
84e554e6 2501 stat(s, ALLOC_FASTPATH);
894b8788 2502 }
8a5ec0ba 2503
74e2134f 2504 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2505 memset(object, 0, s->object_size);
d07dbea4 2506
c016b0bd 2507 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2508
894b8788 2509 return object;
81819f0f
CL
2510}
2511
2b847c3c
EG
2512static __always_inline void *slab_alloc(struct kmem_cache *s,
2513 gfp_t gfpflags, unsigned long addr)
2514{
2515 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2516}
2517
81819f0f
CL
2518void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2519{
2b847c3c 2520 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2521
d0e0ac97
CG
2522 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2523 s->size, gfpflags);
5b882be4
EGM
2524
2525 return ret;
81819f0f
CL
2526}
2527EXPORT_SYMBOL(kmem_cache_alloc);
2528
0f24f128 2529#ifdef CONFIG_TRACING
4a92379b
RK
2530void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2531{
2b847c3c 2532 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2533 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0316bec2 2534 kasan_kmalloc(s, ret, size);
4a92379b
RK
2535 return ret;
2536}
2537EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2538#endif
2539
81819f0f
CL
2540#ifdef CONFIG_NUMA
2541void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2542{
2b847c3c 2543 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2544
ca2b84cb 2545 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2546 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2547
2548 return ret;
81819f0f
CL
2549}
2550EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2551
0f24f128 2552#ifdef CONFIG_TRACING
4a92379b 2553void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2554 gfp_t gfpflags,
4a92379b 2555 int node, size_t size)
5b882be4 2556{
2b847c3c 2557 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2558
2559 trace_kmalloc_node(_RET_IP_, ret,
2560 size, s->size, gfpflags, node);
0316bec2
AR
2561
2562 kasan_kmalloc(s, ret, size);
4a92379b 2563 return ret;
5b882be4 2564}
4a92379b 2565EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2566#endif
5d1f57e4 2567#endif
5b882be4 2568
81819f0f 2569/*
94e4d712 2570 * Slow path handling. This may still be called frequently since objects
894b8788 2571 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2572 *
894b8788
CL
2573 * So we still attempt to reduce cache line usage. Just take the slab
2574 * lock and free the item. If there is no additional partial page
2575 * handling required then we can return immediately.
81819f0f 2576 */
894b8788 2577static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2578 void *x, unsigned long addr)
81819f0f
CL
2579{
2580 void *prior;
2581 void **object = (void *)x;
2cfb7455 2582 int was_frozen;
2cfb7455
CL
2583 struct page new;
2584 unsigned long counters;
2585 struct kmem_cache_node *n = NULL;
61728d1e 2586 unsigned long uninitialized_var(flags);
81819f0f 2587
8a5ec0ba 2588 stat(s, FREE_SLOWPATH);
81819f0f 2589
19c7ff9e
CL
2590 if (kmem_cache_debug(s) &&
2591 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2592 return;
6446faa2 2593
2cfb7455 2594 do {
837d678d
JK
2595 if (unlikely(n)) {
2596 spin_unlock_irqrestore(&n->list_lock, flags);
2597 n = NULL;
2598 }
2cfb7455
CL
2599 prior = page->freelist;
2600 counters = page->counters;
2601 set_freepointer(s, object, prior);
2602 new.counters = counters;
2603 was_frozen = new.frozen;
2604 new.inuse--;
837d678d 2605 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2606
c65c1877 2607 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2608
2609 /*
d0e0ac97
CG
2610 * Slab was on no list before and will be
2611 * partially empty
2612 * We can defer the list move and instead
2613 * freeze it.
49e22585
CL
2614 */
2615 new.frozen = 1;
2616
c65c1877 2617 } else { /* Needs to be taken off a list */
49e22585 2618
b455def2 2619 n = get_node(s, page_to_nid(page));
49e22585
CL
2620 /*
2621 * Speculatively acquire the list_lock.
2622 * If the cmpxchg does not succeed then we may
2623 * drop the list_lock without any processing.
2624 *
2625 * Otherwise the list_lock will synchronize with
2626 * other processors updating the list of slabs.
2627 */
2628 spin_lock_irqsave(&n->list_lock, flags);
2629
2630 }
2cfb7455 2631 }
81819f0f 2632
2cfb7455
CL
2633 } while (!cmpxchg_double_slab(s, page,
2634 prior, counters,
2635 object, new.counters,
2636 "__slab_free"));
81819f0f 2637
2cfb7455 2638 if (likely(!n)) {
49e22585
CL
2639
2640 /*
2641 * If we just froze the page then put it onto the
2642 * per cpu partial list.
2643 */
8028dcea 2644 if (new.frozen && !was_frozen) {
49e22585 2645 put_cpu_partial(s, page, 1);
8028dcea
AS
2646 stat(s, CPU_PARTIAL_FREE);
2647 }
49e22585 2648 /*
2cfb7455
CL
2649 * The list lock was not taken therefore no list
2650 * activity can be necessary.
2651 */
b455def2
L
2652 if (was_frozen)
2653 stat(s, FREE_FROZEN);
2654 return;
2655 }
81819f0f 2656
8a5b20ae 2657 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2658 goto slab_empty;
2659
81819f0f 2660 /*
837d678d
JK
2661 * Objects left in the slab. If it was not on the partial list before
2662 * then add it.
81819f0f 2663 */
345c905d
JK
2664 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2665 if (kmem_cache_debug(s))
c65c1877 2666 remove_full(s, n, page);
837d678d
JK
2667 add_partial(n, page, DEACTIVATE_TO_TAIL);
2668 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2669 }
80f08c19 2670 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2671 return;
2672
2673slab_empty:
a973e9dd 2674 if (prior) {
81819f0f 2675 /*
6fbabb20 2676 * Slab on the partial list.
81819f0f 2677 */
5cc6eee8 2678 remove_partial(n, page);
84e554e6 2679 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2680 } else {
6fbabb20 2681 /* Slab must be on the full list */
c65c1877
PZ
2682 remove_full(s, n, page);
2683 }
2cfb7455 2684
80f08c19 2685 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2686 stat(s, FREE_SLAB);
81819f0f 2687 discard_slab(s, page);
81819f0f
CL
2688}
2689
894b8788
CL
2690/*
2691 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2692 * can perform fastpath freeing without additional function calls.
2693 *
2694 * The fastpath is only possible if we are freeing to the current cpu slab
2695 * of this processor. This typically the case if we have just allocated
2696 * the item before.
2697 *
2698 * If fastpath is not possible then fall back to __slab_free where we deal
2699 * with all sorts of special processing.
2700 */
06428780 2701static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2702 struct page *page, void *x, unsigned long addr)
894b8788
CL
2703{
2704 void **object = (void *)x;
dfb4f096 2705 struct kmem_cache_cpu *c;
8a5ec0ba 2706 unsigned long tid;
1f84260c 2707
c016b0bd
CL
2708 slab_free_hook(s, x);
2709
8a5ec0ba
CL
2710redo:
2711 /*
2712 * Determine the currently cpus per cpu slab.
2713 * The cpu may change afterward. However that does not matter since
2714 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2715 * during the cmpxchg then the free will succeed.
8a5ec0ba 2716 */
9aabf810
JK
2717 do {
2718 tid = this_cpu_read(s->cpu_slab->tid);
2719 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2720 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2721 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2722
9aabf810
JK
2723 /* Same with comment on barrier() in slab_alloc_node() */
2724 barrier();
c016b0bd 2725
442b06bc 2726 if (likely(page == c->page)) {
ff12059e 2727 set_freepointer(s, object, c->freelist);
8a5ec0ba 2728
933393f5 2729 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2730 s->cpu_slab->freelist, s->cpu_slab->tid,
2731 c->freelist, tid,
2732 object, next_tid(tid)))) {
2733
2734 note_cmpxchg_failure("slab_free", s, tid);
2735 goto redo;
2736 }
84e554e6 2737 stat(s, FREE_FASTPATH);
894b8788 2738 } else
ff12059e 2739 __slab_free(s, page, x, addr);
894b8788 2740
894b8788
CL
2741}
2742
81819f0f
CL
2743void kmem_cache_free(struct kmem_cache *s, void *x)
2744{
b9ce5ef4
GC
2745 s = cache_from_obj(s, x);
2746 if (!s)
79576102 2747 return;
b9ce5ef4 2748 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2749 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2750}
2751EXPORT_SYMBOL(kmem_cache_free);
2752
484748f0
CL
2753void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2754{
2755 __kmem_cache_free_bulk(s, size, p);
2756}
2757EXPORT_SYMBOL(kmem_cache_free_bulk);
2758
2759bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2760 void **p)
2761{
2762 return __kmem_cache_alloc_bulk(s, flags, size, p);
2763}
2764EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2765
2766
81819f0f 2767/*
672bba3a
CL
2768 * Object placement in a slab is made very easy because we always start at
2769 * offset 0. If we tune the size of the object to the alignment then we can
2770 * get the required alignment by putting one properly sized object after
2771 * another.
81819f0f
CL
2772 *
2773 * Notice that the allocation order determines the sizes of the per cpu
2774 * caches. Each processor has always one slab available for allocations.
2775 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2776 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2777 * locking overhead.
81819f0f
CL
2778 */
2779
2780/*
2781 * Mininum / Maximum order of slab pages. This influences locking overhead
2782 * and slab fragmentation. A higher order reduces the number of partial slabs
2783 * and increases the number of allocations possible without having to
2784 * take the list_lock.
2785 */
2786static int slub_min_order;
114e9e89 2787static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2788static int slub_min_objects;
81819f0f 2789
81819f0f
CL
2790/*
2791 * Calculate the order of allocation given an slab object size.
2792 *
672bba3a
CL
2793 * The order of allocation has significant impact on performance and other
2794 * system components. Generally order 0 allocations should be preferred since
2795 * order 0 does not cause fragmentation in the page allocator. Larger objects
2796 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2797 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2798 * would be wasted.
2799 *
2800 * In order to reach satisfactory performance we must ensure that a minimum
2801 * number of objects is in one slab. Otherwise we may generate too much
2802 * activity on the partial lists which requires taking the list_lock. This is
2803 * less a concern for large slabs though which are rarely used.
81819f0f 2804 *
672bba3a
CL
2805 * slub_max_order specifies the order where we begin to stop considering the
2806 * number of objects in a slab as critical. If we reach slub_max_order then
2807 * we try to keep the page order as low as possible. So we accept more waste
2808 * of space in favor of a small page order.
81819f0f 2809 *
672bba3a
CL
2810 * Higher order allocations also allow the placement of more objects in a
2811 * slab and thereby reduce object handling overhead. If the user has
2812 * requested a higher mininum order then we start with that one instead of
2813 * the smallest order which will fit the object.
81819f0f 2814 */
5e6d444e 2815static inline int slab_order(int size, int min_objects,
ab9a0f19 2816 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2817{
2818 int order;
2819 int rem;
6300ea75 2820 int min_order = slub_min_order;
81819f0f 2821
ab9a0f19 2822 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2823 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2824
6300ea75 2825 for (order = max(min_order,
5e6d444e
CL
2826 fls(min_objects * size - 1) - PAGE_SHIFT);
2827 order <= max_order; order++) {
81819f0f 2828
5e6d444e 2829 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2830
ab9a0f19 2831 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2832 continue;
2833
ab9a0f19 2834 rem = (slab_size - reserved) % size;
81819f0f 2835
5e6d444e 2836 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2837 break;
2838
2839 }
672bba3a 2840
81819f0f
CL
2841 return order;
2842}
2843
ab9a0f19 2844static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2845{
2846 int order;
2847 int min_objects;
2848 int fraction;
e8120ff1 2849 int max_objects;
5e6d444e
CL
2850
2851 /*
2852 * Attempt to find best configuration for a slab. This
2853 * works by first attempting to generate a layout with
2854 * the best configuration and backing off gradually.
2855 *
2856 * First we reduce the acceptable waste in a slab. Then
2857 * we reduce the minimum objects required in a slab.
2858 */
2859 min_objects = slub_min_objects;
9b2cd506
CL
2860 if (!min_objects)
2861 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2862 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2863 min_objects = min(min_objects, max_objects);
2864
5e6d444e 2865 while (min_objects > 1) {
c124f5b5 2866 fraction = 16;
5e6d444e
CL
2867 while (fraction >= 4) {
2868 order = slab_order(size, min_objects,
ab9a0f19 2869 slub_max_order, fraction, reserved);
5e6d444e
CL
2870 if (order <= slub_max_order)
2871 return order;
2872 fraction /= 2;
2873 }
5086c389 2874 min_objects--;
5e6d444e
CL
2875 }
2876
2877 /*
2878 * We were unable to place multiple objects in a slab. Now
2879 * lets see if we can place a single object there.
2880 */
ab9a0f19 2881 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2882 if (order <= slub_max_order)
2883 return order;
2884
2885 /*
2886 * Doh this slab cannot be placed using slub_max_order.
2887 */
ab9a0f19 2888 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2889 if (order < MAX_ORDER)
5e6d444e
CL
2890 return order;
2891 return -ENOSYS;
2892}
2893
5595cffc 2894static void
4053497d 2895init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2896{
2897 n->nr_partial = 0;
81819f0f
CL
2898 spin_lock_init(&n->list_lock);
2899 INIT_LIST_HEAD(&n->partial);
8ab1372f 2900#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2901 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2902 atomic_long_set(&n->total_objects, 0);
643b1138 2903 INIT_LIST_HEAD(&n->full);
8ab1372f 2904#endif
81819f0f
CL
2905}
2906
55136592 2907static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2908{
6c182dc0 2909 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2910 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2911
8a5ec0ba 2912 /*
d4d84fef
CM
2913 * Must align to double word boundary for the double cmpxchg
2914 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2915 */
d4d84fef
CM
2916 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2917 2 * sizeof(void *));
8a5ec0ba
CL
2918
2919 if (!s->cpu_slab)
2920 return 0;
2921
2922 init_kmem_cache_cpus(s);
4c93c355 2923
8a5ec0ba 2924 return 1;
4c93c355 2925}
4c93c355 2926
51df1142
CL
2927static struct kmem_cache *kmem_cache_node;
2928
81819f0f
CL
2929/*
2930 * No kmalloc_node yet so do it by hand. We know that this is the first
2931 * slab on the node for this slabcache. There are no concurrent accesses
2932 * possible.
2933 *
721ae22a
ZYW
2934 * Note that this function only works on the kmem_cache_node
2935 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2936 * memory on a fresh node that has no slab structures yet.
81819f0f 2937 */
55136592 2938static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2939{
2940 struct page *page;
2941 struct kmem_cache_node *n;
2942
51df1142 2943 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2944
51df1142 2945 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2946
2947 BUG_ON(!page);
a2f92ee7 2948 if (page_to_nid(page) != node) {
f9f58285
FF
2949 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2950 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
2951 }
2952
81819f0f
CL
2953 n = page->freelist;
2954 BUG_ON(!n);
51df1142 2955 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2956 page->inuse = 1;
8cb0a506 2957 page->frozen = 0;
51df1142 2958 kmem_cache_node->node[node] = n;
8ab1372f 2959#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2960 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2961 init_tracking(kmem_cache_node, n);
8ab1372f 2962#endif
0316bec2 2963 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
4053497d 2964 init_kmem_cache_node(n);
51df1142 2965 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2966
67b6c900 2967 /*
1e4dd946
SR
2968 * No locks need to be taken here as it has just been
2969 * initialized and there is no concurrent access.
67b6c900 2970 */
1e4dd946 2971 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2972}
2973
2974static void free_kmem_cache_nodes(struct kmem_cache *s)
2975{
2976 int node;
fa45dc25 2977 struct kmem_cache_node *n;
81819f0f 2978
fa45dc25
CL
2979 for_each_kmem_cache_node(s, node, n) {
2980 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
2981 s->node[node] = NULL;
2982 }
2983}
2984
55136592 2985static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2986{
2987 int node;
81819f0f 2988
f64dc58c 2989 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2990 struct kmem_cache_node *n;
2991
73367bd8 2992 if (slab_state == DOWN) {
55136592 2993 early_kmem_cache_node_alloc(node);
73367bd8
AD
2994 continue;
2995 }
51df1142 2996 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2997 GFP_KERNEL, node);
81819f0f 2998
73367bd8
AD
2999 if (!n) {
3000 free_kmem_cache_nodes(s);
3001 return 0;
81819f0f 3002 }
73367bd8 3003
81819f0f 3004 s->node[node] = n;
4053497d 3005 init_kmem_cache_node(n);
81819f0f
CL
3006 }
3007 return 1;
3008}
81819f0f 3009
c0bdb232 3010static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3011{
3012 if (min < MIN_PARTIAL)
3013 min = MIN_PARTIAL;
3014 else if (min > MAX_PARTIAL)
3015 min = MAX_PARTIAL;
3016 s->min_partial = min;
3017}
3018
81819f0f
CL
3019/*
3020 * calculate_sizes() determines the order and the distribution of data within
3021 * a slab object.
3022 */
06b285dc 3023static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3024{
3025 unsigned long flags = s->flags;
3b0efdfa 3026 unsigned long size = s->object_size;
834f3d11 3027 int order;
81819f0f 3028
d8b42bf5
CL
3029 /*
3030 * Round up object size to the next word boundary. We can only
3031 * place the free pointer at word boundaries and this determines
3032 * the possible location of the free pointer.
3033 */
3034 size = ALIGN(size, sizeof(void *));
3035
3036#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3037 /*
3038 * Determine if we can poison the object itself. If the user of
3039 * the slab may touch the object after free or before allocation
3040 * then we should never poison the object itself.
3041 */
3042 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3043 !s->ctor)
81819f0f
CL
3044 s->flags |= __OBJECT_POISON;
3045 else
3046 s->flags &= ~__OBJECT_POISON;
3047
81819f0f
CL
3048
3049 /*
672bba3a 3050 * If we are Redzoning then check if there is some space between the
81819f0f 3051 * end of the object and the free pointer. If not then add an
672bba3a 3052 * additional word to have some bytes to store Redzone information.
81819f0f 3053 */
3b0efdfa 3054 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3055 size += sizeof(void *);
41ecc55b 3056#endif
81819f0f
CL
3057
3058 /*
672bba3a
CL
3059 * With that we have determined the number of bytes in actual use
3060 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3061 */
3062 s->inuse = size;
3063
3064 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3065 s->ctor)) {
81819f0f
CL
3066 /*
3067 * Relocate free pointer after the object if it is not
3068 * permitted to overwrite the first word of the object on
3069 * kmem_cache_free.
3070 *
3071 * This is the case if we do RCU, have a constructor or
3072 * destructor or are poisoning the objects.
3073 */
3074 s->offset = size;
3075 size += sizeof(void *);
3076 }
3077
c12b3c62 3078#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3079 if (flags & SLAB_STORE_USER)
3080 /*
3081 * Need to store information about allocs and frees after
3082 * the object.
3083 */
3084 size += 2 * sizeof(struct track);
3085
be7b3fbc 3086 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3087 /*
3088 * Add some empty padding so that we can catch
3089 * overwrites from earlier objects rather than let
3090 * tracking information or the free pointer be
0211a9c8 3091 * corrupted if a user writes before the start
81819f0f
CL
3092 * of the object.
3093 */
3094 size += sizeof(void *);
41ecc55b 3095#endif
672bba3a 3096
81819f0f
CL
3097 /*
3098 * SLUB stores one object immediately after another beginning from
3099 * offset 0. In order to align the objects we have to simply size
3100 * each object to conform to the alignment.
3101 */
45906855 3102 size = ALIGN(size, s->align);
81819f0f 3103 s->size = size;
06b285dc
CL
3104 if (forced_order >= 0)
3105 order = forced_order;
3106 else
ab9a0f19 3107 order = calculate_order(size, s->reserved);
81819f0f 3108
834f3d11 3109 if (order < 0)
81819f0f
CL
3110 return 0;
3111
b7a49f0d 3112 s->allocflags = 0;
834f3d11 3113 if (order)
b7a49f0d
CL
3114 s->allocflags |= __GFP_COMP;
3115
3116 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3117 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3118
3119 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3120 s->allocflags |= __GFP_RECLAIMABLE;
3121
81819f0f
CL
3122 /*
3123 * Determine the number of objects per slab
3124 */
ab9a0f19
LJ
3125 s->oo = oo_make(order, size, s->reserved);
3126 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3127 if (oo_objects(s->oo) > oo_objects(s->max))
3128 s->max = s->oo;
81819f0f 3129
834f3d11 3130 return !!oo_objects(s->oo);
81819f0f
CL
3131}
3132
8a13a4cc 3133static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3134{
8a13a4cc 3135 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3136 s->reserved = 0;
81819f0f 3137
da9a638c
LJ
3138 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3139 s->reserved = sizeof(struct rcu_head);
81819f0f 3140
06b285dc 3141 if (!calculate_sizes(s, -1))
81819f0f 3142 goto error;
3de47213
DR
3143 if (disable_higher_order_debug) {
3144 /*
3145 * Disable debugging flags that store metadata if the min slab
3146 * order increased.
3147 */
3b0efdfa 3148 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3149 s->flags &= ~DEBUG_METADATA_FLAGS;
3150 s->offset = 0;
3151 if (!calculate_sizes(s, -1))
3152 goto error;
3153 }
3154 }
81819f0f 3155
2565409f
HC
3156#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3157 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3158 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3159 /* Enable fast mode */
3160 s->flags |= __CMPXCHG_DOUBLE;
3161#endif
3162
3b89d7d8
DR
3163 /*
3164 * The larger the object size is, the more pages we want on the partial
3165 * list to avoid pounding the page allocator excessively.
3166 */
49e22585
CL
3167 set_min_partial(s, ilog2(s->size) / 2);
3168
3169 /*
3170 * cpu_partial determined the maximum number of objects kept in the
3171 * per cpu partial lists of a processor.
3172 *
3173 * Per cpu partial lists mainly contain slabs that just have one
3174 * object freed. If they are used for allocation then they can be
3175 * filled up again with minimal effort. The slab will never hit the
3176 * per node partial lists and therefore no locking will be required.
3177 *
3178 * This setting also determines
3179 *
3180 * A) The number of objects from per cpu partial slabs dumped to the
3181 * per node list when we reach the limit.
9f264904 3182 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3183 * per node list when we run out of per cpu objects. We only fetch
3184 * 50% to keep some capacity around for frees.
49e22585 3185 */
345c905d 3186 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3187 s->cpu_partial = 0;
3188 else if (s->size >= PAGE_SIZE)
49e22585
CL
3189 s->cpu_partial = 2;
3190 else if (s->size >= 1024)
3191 s->cpu_partial = 6;
3192 else if (s->size >= 256)
3193 s->cpu_partial = 13;
3194 else
3195 s->cpu_partial = 30;
3196
81819f0f 3197#ifdef CONFIG_NUMA
e2cb96b7 3198 s->remote_node_defrag_ratio = 1000;
81819f0f 3199#endif
55136592 3200 if (!init_kmem_cache_nodes(s))
dfb4f096 3201 goto error;
81819f0f 3202
55136592 3203 if (alloc_kmem_cache_cpus(s))
278b1bb1 3204 return 0;
ff12059e 3205
4c93c355 3206 free_kmem_cache_nodes(s);
81819f0f
CL
3207error:
3208 if (flags & SLAB_PANIC)
3209 panic("Cannot create slab %s size=%lu realsize=%u "
3210 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3211 s->name, (unsigned long)s->size, s->size,
3212 oo_order(s->oo), s->offset, flags);
278b1bb1 3213 return -EINVAL;
81819f0f 3214}
81819f0f 3215
33b12c38
CL
3216static void list_slab_objects(struct kmem_cache *s, struct page *page,
3217 const char *text)
3218{
3219#ifdef CONFIG_SLUB_DEBUG
3220 void *addr = page_address(page);
3221 void *p;
a5dd5c11
NK
3222 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3223 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3224 if (!map)
3225 return;
945cf2b6 3226 slab_err(s, page, text, s->name);
33b12c38 3227 slab_lock(page);
33b12c38 3228
5f80b13a 3229 get_map(s, page, map);
33b12c38
CL
3230 for_each_object(p, s, addr, page->objects) {
3231
3232 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3233 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3234 print_tracking(s, p);
3235 }
3236 }
3237 slab_unlock(page);
bbd7d57b 3238 kfree(map);
33b12c38
CL
3239#endif
3240}
3241
81819f0f 3242/*
599870b1 3243 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3244 * This is called from kmem_cache_close(). We must be the last thread
3245 * using the cache and therefore we do not need to lock anymore.
81819f0f 3246 */
599870b1 3247static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3248{
81819f0f
CL
3249 struct page *page, *h;
3250
33b12c38 3251 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3252 if (!page->inuse) {
1e4dd946 3253 __remove_partial(n, page);
81819f0f 3254 discard_slab(s, page);
33b12c38
CL
3255 } else {
3256 list_slab_objects(s, page,
945cf2b6 3257 "Objects remaining in %s on kmem_cache_close()");
599870b1 3258 }
33b12c38 3259 }
81819f0f
CL
3260}
3261
3262/*
672bba3a 3263 * Release all resources used by a slab cache.
81819f0f 3264 */
0c710013 3265static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3266{
3267 int node;
fa45dc25 3268 struct kmem_cache_node *n;
81819f0f
CL
3269
3270 flush_all(s);
81819f0f 3271 /* Attempt to free all objects */
fa45dc25 3272 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3273 free_partial(s, n);
3274 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3275 return 1;
3276 }
945cf2b6 3277 free_percpu(s->cpu_slab);
81819f0f
CL
3278 free_kmem_cache_nodes(s);
3279 return 0;
3280}
3281
945cf2b6 3282int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3283{
41a21285 3284 return kmem_cache_close(s);
81819f0f 3285}
81819f0f
CL
3286
3287/********************************************************************
3288 * Kmalloc subsystem
3289 *******************************************************************/
3290
81819f0f
CL
3291static int __init setup_slub_min_order(char *str)
3292{
06428780 3293 get_option(&str, &slub_min_order);
81819f0f
CL
3294
3295 return 1;
3296}
3297
3298__setup("slub_min_order=", setup_slub_min_order);
3299
3300static int __init setup_slub_max_order(char *str)
3301{
06428780 3302 get_option(&str, &slub_max_order);
818cf590 3303 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3304
3305 return 1;
3306}
3307
3308__setup("slub_max_order=", setup_slub_max_order);
3309
3310static int __init setup_slub_min_objects(char *str)
3311{
06428780 3312 get_option(&str, &slub_min_objects);
81819f0f
CL
3313
3314 return 1;
3315}
3316
3317__setup("slub_min_objects=", setup_slub_min_objects);
3318
81819f0f
CL
3319void *__kmalloc(size_t size, gfp_t flags)
3320{
aadb4bc4 3321 struct kmem_cache *s;
5b882be4 3322 void *ret;
81819f0f 3323
95a05b42 3324 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3325 return kmalloc_large(size, flags);
aadb4bc4 3326
2c59dd65 3327 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3328
3329 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3330 return s;
3331
2b847c3c 3332 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3333
ca2b84cb 3334 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3335
0316bec2
AR
3336 kasan_kmalloc(s, ret, size);
3337
5b882be4 3338 return ret;
81819f0f
CL
3339}
3340EXPORT_SYMBOL(__kmalloc);
3341
5d1f57e4 3342#ifdef CONFIG_NUMA
f619cfe1
CL
3343static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3344{
b1eeab67 3345 struct page *page;
e4f7c0b4 3346 void *ptr = NULL;
f619cfe1 3347
52383431
VD
3348 flags |= __GFP_COMP | __GFP_NOTRACK;
3349 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3350 if (page)
e4f7c0b4
CM
3351 ptr = page_address(page);
3352
d56791b3 3353 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3354 return ptr;
f619cfe1
CL
3355}
3356
81819f0f
CL
3357void *__kmalloc_node(size_t size, gfp_t flags, int node)
3358{
aadb4bc4 3359 struct kmem_cache *s;
5b882be4 3360 void *ret;
81819f0f 3361
95a05b42 3362 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3363 ret = kmalloc_large_node(size, flags, node);
3364
ca2b84cb
EGM
3365 trace_kmalloc_node(_RET_IP_, ret,
3366 size, PAGE_SIZE << get_order(size),
3367 flags, node);
5b882be4
EGM
3368
3369 return ret;
3370 }
aadb4bc4 3371
2c59dd65 3372 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3373
3374 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3375 return s;
3376
2b847c3c 3377 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3378
ca2b84cb 3379 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3380
0316bec2
AR
3381 kasan_kmalloc(s, ret, size);
3382
5b882be4 3383 return ret;
81819f0f
CL
3384}
3385EXPORT_SYMBOL(__kmalloc_node);
3386#endif
3387
0316bec2 3388static size_t __ksize(const void *object)
81819f0f 3389{
272c1d21 3390 struct page *page;
81819f0f 3391
ef8b4520 3392 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3393 return 0;
3394
294a80a8 3395 page = virt_to_head_page(object);
294a80a8 3396
76994412
PE
3397 if (unlikely(!PageSlab(page))) {
3398 WARN_ON(!PageCompound(page));
294a80a8 3399 return PAGE_SIZE << compound_order(page);
76994412 3400 }
81819f0f 3401
1b4f59e3 3402 return slab_ksize(page->slab_cache);
81819f0f 3403}
0316bec2
AR
3404
3405size_t ksize(const void *object)
3406{
3407 size_t size = __ksize(object);
3408 /* We assume that ksize callers could use whole allocated area,
3409 so we need unpoison this area. */
3410 kasan_krealloc(object, size);
3411 return size;
3412}
b1aabecd 3413EXPORT_SYMBOL(ksize);
81819f0f
CL
3414
3415void kfree(const void *x)
3416{
81819f0f 3417 struct page *page;
5bb983b0 3418 void *object = (void *)x;
81819f0f 3419
2121db74
PE
3420 trace_kfree(_RET_IP_, x);
3421
2408c550 3422 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3423 return;
3424
b49af68f 3425 page = virt_to_head_page(x);
aadb4bc4 3426 if (unlikely(!PageSlab(page))) {
0937502a 3427 BUG_ON(!PageCompound(page));
d56791b3 3428 kfree_hook(x);
52383431 3429 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3430 return;
3431 }
1b4f59e3 3432 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3433}
3434EXPORT_SYMBOL(kfree);
3435
832f37f5
VD
3436#define SHRINK_PROMOTE_MAX 32
3437
2086d26a 3438/*
832f37f5
VD
3439 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3440 * up most to the head of the partial lists. New allocations will then
3441 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3442 *
3443 * The slabs with the least items are placed last. This results in them
3444 * being allocated from last increasing the chance that the last objects
3445 * are freed in them.
2086d26a 3446 */
d6e0b7fa 3447int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3448{
3449 int node;
3450 int i;
3451 struct kmem_cache_node *n;
3452 struct page *page;
3453 struct page *t;
832f37f5
VD
3454 struct list_head discard;
3455 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3456 unsigned long flags;
ce3712d7 3457 int ret = 0;
2086d26a 3458
d6e0b7fa
VD
3459 if (deactivate) {
3460 /*
3461 * Disable empty slabs caching. Used to avoid pinning offline
3462 * memory cgroups by kmem pages that can be freed.
3463 */
3464 s->cpu_partial = 0;
3465 s->min_partial = 0;
3466
3467 /*
3468 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3469 * so we have to make sure the change is visible.
3470 */
3471 kick_all_cpus_sync();
3472 }
3473
2086d26a 3474 flush_all(s);
fa45dc25 3475 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3476 INIT_LIST_HEAD(&discard);
3477 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3478 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3479
3480 spin_lock_irqsave(&n->list_lock, flags);
3481
3482 /*
832f37f5 3483 * Build lists of slabs to discard or promote.
2086d26a 3484 *
672bba3a
CL
3485 * Note that concurrent frees may occur while we hold the
3486 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3487 */
3488 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3489 int free = page->objects - page->inuse;
3490
3491 /* Do not reread page->inuse */
3492 barrier();
3493
3494 /* We do not keep full slabs on the list */
3495 BUG_ON(free <= 0);
3496
3497 if (free == page->objects) {
3498 list_move(&page->lru, &discard);
69cb8e6b 3499 n->nr_partial--;
832f37f5
VD
3500 } else if (free <= SHRINK_PROMOTE_MAX)
3501 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3502 }
3503
2086d26a 3504 /*
832f37f5
VD
3505 * Promote the slabs filled up most to the head of the
3506 * partial list.
2086d26a 3507 */
832f37f5
VD
3508 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3509 list_splice(promote + i, &n->partial);
2086d26a 3510
2086d26a 3511 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3512
3513 /* Release empty slabs */
832f37f5 3514 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3515 discard_slab(s, page);
ce3712d7
VD
3516
3517 if (slabs_node(s, node))
3518 ret = 1;
2086d26a
CL
3519 }
3520
ce3712d7 3521 return ret;
2086d26a 3522}
2086d26a 3523
b9049e23
YG
3524static int slab_mem_going_offline_callback(void *arg)
3525{
3526 struct kmem_cache *s;
3527
18004c5d 3528 mutex_lock(&slab_mutex);
b9049e23 3529 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3530 __kmem_cache_shrink(s, false);
18004c5d 3531 mutex_unlock(&slab_mutex);
b9049e23
YG
3532
3533 return 0;
3534}
3535
3536static void slab_mem_offline_callback(void *arg)
3537{
3538 struct kmem_cache_node *n;
3539 struct kmem_cache *s;
3540 struct memory_notify *marg = arg;
3541 int offline_node;
3542
b9d5ab25 3543 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3544
3545 /*
3546 * If the node still has available memory. we need kmem_cache_node
3547 * for it yet.
3548 */
3549 if (offline_node < 0)
3550 return;
3551
18004c5d 3552 mutex_lock(&slab_mutex);
b9049e23
YG
3553 list_for_each_entry(s, &slab_caches, list) {
3554 n = get_node(s, offline_node);
3555 if (n) {
3556 /*
3557 * if n->nr_slabs > 0, slabs still exist on the node
3558 * that is going down. We were unable to free them,
c9404c9c 3559 * and offline_pages() function shouldn't call this
b9049e23
YG
3560 * callback. So, we must fail.
3561 */
0f389ec6 3562 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3563
3564 s->node[offline_node] = NULL;
8de66a0c 3565 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3566 }
3567 }
18004c5d 3568 mutex_unlock(&slab_mutex);
b9049e23
YG
3569}
3570
3571static int slab_mem_going_online_callback(void *arg)
3572{
3573 struct kmem_cache_node *n;
3574 struct kmem_cache *s;
3575 struct memory_notify *marg = arg;
b9d5ab25 3576 int nid = marg->status_change_nid_normal;
b9049e23
YG
3577 int ret = 0;
3578
3579 /*
3580 * If the node's memory is already available, then kmem_cache_node is
3581 * already created. Nothing to do.
3582 */
3583 if (nid < 0)
3584 return 0;
3585
3586 /*
0121c619 3587 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3588 * allocate a kmem_cache_node structure in order to bring the node
3589 * online.
3590 */
18004c5d 3591 mutex_lock(&slab_mutex);
b9049e23
YG
3592 list_for_each_entry(s, &slab_caches, list) {
3593 /*
3594 * XXX: kmem_cache_alloc_node will fallback to other nodes
3595 * since memory is not yet available from the node that
3596 * is brought up.
3597 */
8de66a0c 3598 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3599 if (!n) {
3600 ret = -ENOMEM;
3601 goto out;
3602 }
4053497d 3603 init_kmem_cache_node(n);
b9049e23
YG
3604 s->node[nid] = n;
3605 }
3606out:
18004c5d 3607 mutex_unlock(&slab_mutex);
b9049e23
YG
3608 return ret;
3609}
3610
3611static int slab_memory_callback(struct notifier_block *self,
3612 unsigned long action, void *arg)
3613{
3614 int ret = 0;
3615
3616 switch (action) {
3617 case MEM_GOING_ONLINE:
3618 ret = slab_mem_going_online_callback(arg);
3619 break;
3620 case MEM_GOING_OFFLINE:
3621 ret = slab_mem_going_offline_callback(arg);
3622 break;
3623 case MEM_OFFLINE:
3624 case MEM_CANCEL_ONLINE:
3625 slab_mem_offline_callback(arg);
3626 break;
3627 case MEM_ONLINE:
3628 case MEM_CANCEL_OFFLINE:
3629 break;
3630 }
dc19f9db
KH
3631 if (ret)
3632 ret = notifier_from_errno(ret);
3633 else
3634 ret = NOTIFY_OK;
b9049e23
YG
3635 return ret;
3636}
3637
3ac38faa
AM
3638static struct notifier_block slab_memory_callback_nb = {
3639 .notifier_call = slab_memory_callback,
3640 .priority = SLAB_CALLBACK_PRI,
3641};
b9049e23 3642
81819f0f
CL
3643/********************************************************************
3644 * Basic setup of slabs
3645 *******************************************************************/
3646
51df1142
CL
3647/*
3648 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3649 * the page allocator. Allocate them properly then fix up the pointers
3650 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3651 */
3652
dffb4d60 3653static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3654{
3655 int node;
dffb4d60 3656 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3657 struct kmem_cache_node *n;
51df1142 3658
dffb4d60 3659 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3660
7d557b3c
GC
3661 /*
3662 * This runs very early, and only the boot processor is supposed to be
3663 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3664 * IPIs around.
3665 */
3666 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3667 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3668 struct page *p;
3669
fa45dc25
CL
3670 list_for_each_entry(p, &n->partial, lru)
3671 p->slab_cache = s;
51df1142 3672
607bf324 3673#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3674 list_for_each_entry(p, &n->full, lru)
3675 p->slab_cache = s;
51df1142 3676#endif
51df1142 3677 }
f7ce3190 3678 slab_init_memcg_params(s);
dffb4d60
CL
3679 list_add(&s->list, &slab_caches);
3680 return s;
51df1142
CL
3681}
3682
81819f0f
CL
3683void __init kmem_cache_init(void)
3684{
dffb4d60
CL
3685 static __initdata struct kmem_cache boot_kmem_cache,
3686 boot_kmem_cache_node;
51df1142 3687
fc8d8620
SG
3688 if (debug_guardpage_minorder())
3689 slub_max_order = 0;
3690
dffb4d60
CL
3691 kmem_cache_node = &boot_kmem_cache_node;
3692 kmem_cache = &boot_kmem_cache;
51df1142 3693
dffb4d60
CL
3694 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3695 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3696
3ac38faa 3697 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3698
3699 /* Able to allocate the per node structures */
3700 slab_state = PARTIAL;
3701
dffb4d60
CL
3702 create_boot_cache(kmem_cache, "kmem_cache",
3703 offsetof(struct kmem_cache, node) +
3704 nr_node_ids * sizeof(struct kmem_cache_node *),
3705 SLAB_HWCACHE_ALIGN);
8a13a4cc 3706
dffb4d60 3707 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3708
51df1142
CL
3709 /*
3710 * Allocate kmem_cache_node properly from the kmem_cache slab.
3711 * kmem_cache_node is separately allocated so no need to
3712 * update any list pointers.
3713 */
dffb4d60 3714 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3715
3716 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 3717 setup_kmalloc_cache_index_table();
f97d5f63 3718 create_kmalloc_caches(0);
81819f0f
CL
3719
3720#ifdef CONFIG_SMP
3721 register_cpu_notifier(&slab_notifier);
9dfc6e68 3722#endif
81819f0f 3723
f9f58285 3724 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3725 cache_line_size(),
81819f0f
CL
3726 slub_min_order, slub_max_order, slub_min_objects,
3727 nr_cpu_ids, nr_node_ids);
3728}
3729
7e85ee0c
PE
3730void __init kmem_cache_init_late(void)
3731{
7e85ee0c
PE
3732}
3733
2633d7a0 3734struct kmem_cache *
a44cb944
VD
3735__kmem_cache_alias(const char *name, size_t size, size_t align,
3736 unsigned long flags, void (*ctor)(void *))
81819f0f 3737{
426589f5 3738 struct kmem_cache *s, *c;
81819f0f 3739
a44cb944 3740 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3741 if (s) {
3742 s->refcount++;
84d0ddd6 3743
81819f0f
CL
3744 /*
3745 * Adjust the object sizes so that we clear
3746 * the complete object on kzalloc.
3747 */
3b0efdfa 3748 s->object_size = max(s->object_size, (int)size);
81819f0f 3749 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3750
426589f5 3751 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3752 c->object_size = s->object_size;
3753 c->inuse = max_t(int, c->inuse,
3754 ALIGN(size, sizeof(void *)));
3755 }
3756
7b8f3b66 3757 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3758 s->refcount--;
cbb79694 3759 s = NULL;
7b8f3b66 3760 }
a0e1d1be 3761 }
6446faa2 3762
cbb79694
CL
3763 return s;
3764}
84c1cf62 3765
8a13a4cc 3766int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3767{
aac3a166
PE
3768 int err;
3769
3770 err = kmem_cache_open(s, flags);
3771 if (err)
3772 return err;
20cea968 3773
45530c44
CL
3774 /* Mutex is not taken during early boot */
3775 if (slab_state <= UP)
3776 return 0;
3777
107dab5c 3778 memcg_propagate_slab_attrs(s);
aac3a166 3779 err = sysfs_slab_add(s);
aac3a166
PE
3780 if (err)
3781 kmem_cache_close(s);
20cea968 3782
aac3a166 3783 return err;
81819f0f 3784}
81819f0f 3785
81819f0f 3786#ifdef CONFIG_SMP
81819f0f 3787/*
672bba3a
CL
3788 * Use the cpu notifier to insure that the cpu slabs are flushed when
3789 * necessary.
81819f0f 3790 */
0db0628d 3791static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3792 unsigned long action, void *hcpu)
3793{
3794 long cpu = (long)hcpu;
5b95a4ac
CL
3795 struct kmem_cache *s;
3796 unsigned long flags;
81819f0f
CL
3797
3798 switch (action) {
3799 case CPU_UP_CANCELED:
8bb78442 3800 case CPU_UP_CANCELED_FROZEN:
81819f0f 3801 case CPU_DEAD:
8bb78442 3802 case CPU_DEAD_FROZEN:
18004c5d 3803 mutex_lock(&slab_mutex);
5b95a4ac
CL
3804 list_for_each_entry(s, &slab_caches, list) {
3805 local_irq_save(flags);
3806 __flush_cpu_slab(s, cpu);
3807 local_irq_restore(flags);
3808 }
18004c5d 3809 mutex_unlock(&slab_mutex);
81819f0f
CL
3810 break;
3811 default:
3812 break;
3813 }
3814 return NOTIFY_OK;
3815}
3816
0db0628d 3817static struct notifier_block slab_notifier = {
3adbefee 3818 .notifier_call = slab_cpuup_callback
06428780 3819};
81819f0f
CL
3820
3821#endif
3822
ce71e27c 3823void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3824{
aadb4bc4 3825 struct kmem_cache *s;
94b528d0 3826 void *ret;
aadb4bc4 3827
95a05b42 3828 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3829 return kmalloc_large(size, gfpflags);
3830
2c59dd65 3831 s = kmalloc_slab(size, gfpflags);
81819f0f 3832
2408c550 3833 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3834 return s;
81819f0f 3835
2b847c3c 3836 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3837
25985edc 3838 /* Honor the call site pointer we received. */
ca2b84cb 3839 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3840
3841 return ret;
81819f0f
CL
3842}
3843
5d1f57e4 3844#ifdef CONFIG_NUMA
81819f0f 3845void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3846 int node, unsigned long caller)
81819f0f 3847{
aadb4bc4 3848 struct kmem_cache *s;
94b528d0 3849 void *ret;
aadb4bc4 3850
95a05b42 3851 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3852 ret = kmalloc_large_node(size, gfpflags, node);
3853
3854 trace_kmalloc_node(caller, ret,
3855 size, PAGE_SIZE << get_order(size),
3856 gfpflags, node);
3857
3858 return ret;
3859 }
eada35ef 3860
2c59dd65 3861 s = kmalloc_slab(size, gfpflags);
81819f0f 3862
2408c550 3863 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3864 return s;
81819f0f 3865
2b847c3c 3866 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3867
25985edc 3868 /* Honor the call site pointer we received. */
ca2b84cb 3869 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3870
3871 return ret;
81819f0f 3872}
5d1f57e4 3873#endif
81819f0f 3874
ab4d5ed5 3875#ifdef CONFIG_SYSFS
205ab99d
CL
3876static int count_inuse(struct page *page)
3877{
3878 return page->inuse;
3879}
3880
3881static int count_total(struct page *page)
3882{
3883 return page->objects;
3884}
ab4d5ed5 3885#endif
205ab99d 3886
ab4d5ed5 3887#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3888static int validate_slab(struct kmem_cache *s, struct page *page,
3889 unsigned long *map)
53e15af0
CL
3890{
3891 void *p;
a973e9dd 3892 void *addr = page_address(page);
53e15af0
CL
3893
3894 if (!check_slab(s, page) ||
3895 !on_freelist(s, page, NULL))
3896 return 0;
3897
3898 /* Now we know that a valid freelist exists */
39b26464 3899 bitmap_zero(map, page->objects);
53e15af0 3900
5f80b13a
CL
3901 get_map(s, page, map);
3902 for_each_object(p, s, addr, page->objects) {
3903 if (test_bit(slab_index(p, s, addr), map))
3904 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3905 return 0;
53e15af0
CL
3906 }
3907
224a88be 3908 for_each_object(p, s, addr, page->objects)
7656c72b 3909 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3910 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3911 return 0;
3912 return 1;
3913}
3914
434e245d
CL
3915static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3916 unsigned long *map)
53e15af0 3917{
881db7fb
CL
3918 slab_lock(page);
3919 validate_slab(s, page, map);
3920 slab_unlock(page);
53e15af0
CL
3921}
3922
434e245d
CL
3923static int validate_slab_node(struct kmem_cache *s,
3924 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3925{
3926 unsigned long count = 0;
3927 struct page *page;
3928 unsigned long flags;
3929
3930 spin_lock_irqsave(&n->list_lock, flags);
3931
3932 list_for_each_entry(page, &n->partial, lru) {
434e245d 3933 validate_slab_slab(s, page, map);
53e15af0
CL
3934 count++;
3935 }
3936 if (count != n->nr_partial)
f9f58285
FF
3937 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3938 s->name, count, n->nr_partial);
53e15af0
CL
3939
3940 if (!(s->flags & SLAB_STORE_USER))
3941 goto out;
3942
3943 list_for_each_entry(page, &n->full, lru) {
434e245d 3944 validate_slab_slab(s, page, map);
53e15af0
CL
3945 count++;
3946 }
3947 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3948 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3949 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
3950
3951out:
3952 spin_unlock_irqrestore(&n->list_lock, flags);
3953 return count;
3954}
3955
434e245d 3956static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3957{
3958 int node;
3959 unsigned long count = 0;
205ab99d 3960 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 3961 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 3962 struct kmem_cache_node *n;
434e245d
CL
3963
3964 if (!map)
3965 return -ENOMEM;
53e15af0
CL
3966
3967 flush_all(s);
fa45dc25 3968 for_each_kmem_cache_node(s, node, n)
434e245d 3969 count += validate_slab_node(s, n, map);
434e245d 3970 kfree(map);
53e15af0
CL
3971 return count;
3972}
88a420e4 3973/*
672bba3a 3974 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3975 * and freed.
3976 */
3977
3978struct location {
3979 unsigned long count;
ce71e27c 3980 unsigned long addr;
45edfa58
CL
3981 long long sum_time;
3982 long min_time;
3983 long max_time;
3984 long min_pid;
3985 long max_pid;
174596a0 3986 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3987 nodemask_t nodes;
88a420e4
CL
3988};
3989
3990struct loc_track {
3991 unsigned long max;
3992 unsigned long count;
3993 struct location *loc;
3994};
3995
3996static void free_loc_track(struct loc_track *t)
3997{
3998 if (t->max)
3999 free_pages((unsigned long)t->loc,
4000 get_order(sizeof(struct location) * t->max));
4001}
4002
68dff6a9 4003static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4004{
4005 struct location *l;
4006 int order;
4007
88a420e4
CL
4008 order = get_order(sizeof(struct location) * max);
4009
68dff6a9 4010 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4011 if (!l)
4012 return 0;
4013
4014 if (t->count) {
4015 memcpy(l, t->loc, sizeof(struct location) * t->count);
4016 free_loc_track(t);
4017 }
4018 t->max = max;
4019 t->loc = l;
4020 return 1;
4021}
4022
4023static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4024 const struct track *track)
88a420e4
CL
4025{
4026 long start, end, pos;
4027 struct location *l;
ce71e27c 4028 unsigned long caddr;
45edfa58 4029 unsigned long age = jiffies - track->when;
88a420e4
CL
4030
4031 start = -1;
4032 end = t->count;
4033
4034 for ( ; ; ) {
4035 pos = start + (end - start + 1) / 2;
4036
4037 /*
4038 * There is nothing at "end". If we end up there
4039 * we need to add something to before end.
4040 */
4041 if (pos == end)
4042 break;
4043
4044 caddr = t->loc[pos].addr;
45edfa58
CL
4045 if (track->addr == caddr) {
4046
4047 l = &t->loc[pos];
4048 l->count++;
4049 if (track->when) {
4050 l->sum_time += age;
4051 if (age < l->min_time)
4052 l->min_time = age;
4053 if (age > l->max_time)
4054 l->max_time = age;
4055
4056 if (track->pid < l->min_pid)
4057 l->min_pid = track->pid;
4058 if (track->pid > l->max_pid)
4059 l->max_pid = track->pid;
4060
174596a0
RR
4061 cpumask_set_cpu(track->cpu,
4062 to_cpumask(l->cpus));
45edfa58
CL
4063 }
4064 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4065 return 1;
4066 }
4067
45edfa58 4068 if (track->addr < caddr)
88a420e4
CL
4069 end = pos;
4070 else
4071 start = pos;
4072 }
4073
4074 /*
672bba3a 4075 * Not found. Insert new tracking element.
88a420e4 4076 */
68dff6a9 4077 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4078 return 0;
4079
4080 l = t->loc + pos;
4081 if (pos < t->count)
4082 memmove(l + 1, l,
4083 (t->count - pos) * sizeof(struct location));
4084 t->count++;
4085 l->count = 1;
45edfa58
CL
4086 l->addr = track->addr;
4087 l->sum_time = age;
4088 l->min_time = age;
4089 l->max_time = age;
4090 l->min_pid = track->pid;
4091 l->max_pid = track->pid;
174596a0
RR
4092 cpumask_clear(to_cpumask(l->cpus));
4093 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4094 nodes_clear(l->nodes);
4095 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4096 return 1;
4097}
4098
4099static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4100 struct page *page, enum track_item alloc,
a5dd5c11 4101 unsigned long *map)
88a420e4 4102{
a973e9dd 4103 void *addr = page_address(page);
88a420e4
CL
4104 void *p;
4105
39b26464 4106 bitmap_zero(map, page->objects);
5f80b13a 4107 get_map(s, page, map);
88a420e4 4108
224a88be 4109 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4110 if (!test_bit(slab_index(p, s, addr), map))
4111 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4112}
4113
4114static int list_locations(struct kmem_cache *s, char *buf,
4115 enum track_item alloc)
4116{
e374d483 4117 int len = 0;
88a420e4 4118 unsigned long i;
68dff6a9 4119 struct loc_track t = { 0, 0, NULL };
88a420e4 4120 int node;
bbd7d57b
ED
4121 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4122 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4123 struct kmem_cache_node *n;
88a420e4 4124
bbd7d57b
ED
4125 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4126 GFP_TEMPORARY)) {
4127 kfree(map);
68dff6a9 4128 return sprintf(buf, "Out of memory\n");
bbd7d57b 4129 }
88a420e4
CL
4130 /* Push back cpu slabs */
4131 flush_all(s);
4132
fa45dc25 4133 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4134 unsigned long flags;
4135 struct page *page;
4136
9e86943b 4137 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4138 continue;
4139
4140 spin_lock_irqsave(&n->list_lock, flags);
4141 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4142 process_slab(&t, s, page, alloc, map);
88a420e4 4143 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4144 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4145 spin_unlock_irqrestore(&n->list_lock, flags);
4146 }
4147
4148 for (i = 0; i < t.count; i++) {
45edfa58 4149 struct location *l = &t.loc[i];
88a420e4 4150
9c246247 4151 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4152 break;
e374d483 4153 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4154
4155 if (l->addr)
62c70bce 4156 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4157 else
e374d483 4158 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4159
4160 if (l->sum_time != l->min_time) {
e374d483 4161 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4162 l->min_time,
4163 (long)div_u64(l->sum_time, l->count),
4164 l->max_time);
45edfa58 4165 } else
e374d483 4166 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4167 l->min_time);
4168
4169 if (l->min_pid != l->max_pid)
e374d483 4170 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4171 l->min_pid, l->max_pid);
4172 else
e374d483 4173 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4174 l->min_pid);
4175
174596a0
RR
4176 if (num_online_cpus() > 1 &&
4177 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4178 len < PAGE_SIZE - 60)
4179 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4180 " cpus=%*pbl",
4181 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4182
62bc62a8 4183 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4184 len < PAGE_SIZE - 60)
4185 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4186 " nodes=%*pbl",
4187 nodemask_pr_args(&l->nodes));
45edfa58 4188
e374d483 4189 len += sprintf(buf + len, "\n");
88a420e4
CL
4190 }
4191
4192 free_loc_track(&t);
bbd7d57b 4193 kfree(map);
88a420e4 4194 if (!t.count)
e374d483
HH
4195 len += sprintf(buf, "No data\n");
4196 return len;
88a420e4 4197}
ab4d5ed5 4198#endif
88a420e4 4199
a5a84755 4200#ifdef SLUB_RESILIENCY_TEST
c07b8183 4201static void __init resiliency_test(void)
a5a84755
CL
4202{
4203 u8 *p;
4204
95a05b42 4205 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4206
f9f58285
FF
4207 pr_err("SLUB resiliency testing\n");
4208 pr_err("-----------------------\n");
4209 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4210
4211 p = kzalloc(16, GFP_KERNEL);
4212 p[16] = 0x12;
f9f58285
FF
4213 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4214 p + 16);
a5a84755
CL
4215
4216 validate_slab_cache(kmalloc_caches[4]);
4217
4218 /* Hmmm... The next two are dangerous */
4219 p = kzalloc(32, GFP_KERNEL);
4220 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4221 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4222 p);
4223 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4224
4225 validate_slab_cache(kmalloc_caches[5]);
4226 p = kzalloc(64, GFP_KERNEL);
4227 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4228 *p = 0x56;
f9f58285
FF
4229 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4230 p);
4231 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4232 validate_slab_cache(kmalloc_caches[6]);
4233
f9f58285 4234 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4235 p = kzalloc(128, GFP_KERNEL);
4236 kfree(p);
4237 *p = 0x78;
f9f58285 4238 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4239 validate_slab_cache(kmalloc_caches[7]);
4240
4241 p = kzalloc(256, GFP_KERNEL);
4242 kfree(p);
4243 p[50] = 0x9a;
f9f58285 4244 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4245 validate_slab_cache(kmalloc_caches[8]);
4246
4247 p = kzalloc(512, GFP_KERNEL);
4248 kfree(p);
4249 p[512] = 0xab;
f9f58285 4250 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4251 validate_slab_cache(kmalloc_caches[9]);
4252}
4253#else
4254#ifdef CONFIG_SYSFS
4255static void resiliency_test(void) {};
4256#endif
4257#endif
4258
ab4d5ed5 4259#ifdef CONFIG_SYSFS
81819f0f 4260enum slab_stat_type {
205ab99d
CL
4261 SL_ALL, /* All slabs */
4262 SL_PARTIAL, /* Only partially allocated slabs */
4263 SL_CPU, /* Only slabs used for cpu caches */
4264 SL_OBJECTS, /* Determine allocated objects not slabs */
4265 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4266};
4267
205ab99d 4268#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4269#define SO_PARTIAL (1 << SL_PARTIAL)
4270#define SO_CPU (1 << SL_CPU)
4271#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4272#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4273
62e5c4b4
CG
4274static ssize_t show_slab_objects(struct kmem_cache *s,
4275 char *buf, unsigned long flags)
81819f0f
CL
4276{
4277 unsigned long total = 0;
81819f0f
CL
4278 int node;
4279 int x;
4280 unsigned long *nodes;
81819f0f 4281
e35e1a97 4282 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4283 if (!nodes)
4284 return -ENOMEM;
81819f0f 4285
205ab99d
CL
4286 if (flags & SO_CPU) {
4287 int cpu;
81819f0f 4288
205ab99d 4289 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4290 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4291 cpu);
ec3ab083 4292 int node;
49e22585 4293 struct page *page;
dfb4f096 4294
4db0c3c2 4295 page = READ_ONCE(c->page);
ec3ab083
CL
4296 if (!page)
4297 continue;
205ab99d 4298
ec3ab083
CL
4299 node = page_to_nid(page);
4300 if (flags & SO_TOTAL)
4301 x = page->objects;
4302 else if (flags & SO_OBJECTS)
4303 x = page->inuse;
4304 else
4305 x = 1;
49e22585 4306
ec3ab083
CL
4307 total += x;
4308 nodes[node] += x;
4309
4db0c3c2 4310 page = READ_ONCE(c->partial);
49e22585 4311 if (page) {
8afb1474
LZ
4312 node = page_to_nid(page);
4313 if (flags & SO_TOTAL)
4314 WARN_ON_ONCE(1);
4315 else if (flags & SO_OBJECTS)
4316 WARN_ON_ONCE(1);
4317 else
4318 x = page->pages;
bc6697d8
ED
4319 total += x;
4320 nodes[node] += x;
49e22585 4321 }
81819f0f
CL
4322 }
4323 }
4324
bfc8c901 4325 get_online_mems();
ab4d5ed5 4326#ifdef CONFIG_SLUB_DEBUG
205ab99d 4327 if (flags & SO_ALL) {
fa45dc25
CL
4328 struct kmem_cache_node *n;
4329
4330 for_each_kmem_cache_node(s, node, n) {
205ab99d 4331
d0e0ac97
CG
4332 if (flags & SO_TOTAL)
4333 x = atomic_long_read(&n->total_objects);
4334 else if (flags & SO_OBJECTS)
4335 x = atomic_long_read(&n->total_objects) -
4336 count_partial(n, count_free);
81819f0f 4337 else
205ab99d 4338 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4339 total += x;
4340 nodes[node] += x;
4341 }
4342
ab4d5ed5
CL
4343 } else
4344#endif
4345 if (flags & SO_PARTIAL) {
fa45dc25 4346 struct kmem_cache_node *n;
81819f0f 4347
fa45dc25 4348 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4349 if (flags & SO_TOTAL)
4350 x = count_partial(n, count_total);
4351 else if (flags & SO_OBJECTS)
4352 x = count_partial(n, count_inuse);
81819f0f 4353 else
205ab99d 4354 x = n->nr_partial;
81819f0f
CL
4355 total += x;
4356 nodes[node] += x;
4357 }
4358 }
81819f0f
CL
4359 x = sprintf(buf, "%lu", total);
4360#ifdef CONFIG_NUMA
fa45dc25 4361 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4362 if (nodes[node])
4363 x += sprintf(buf + x, " N%d=%lu",
4364 node, nodes[node]);
4365#endif
bfc8c901 4366 put_online_mems();
81819f0f
CL
4367 kfree(nodes);
4368 return x + sprintf(buf + x, "\n");
4369}
4370
ab4d5ed5 4371#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4372static int any_slab_objects(struct kmem_cache *s)
4373{
4374 int node;
fa45dc25 4375 struct kmem_cache_node *n;
81819f0f 4376
fa45dc25 4377 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4378 if (atomic_long_read(&n->total_objects))
81819f0f 4379 return 1;
fa45dc25 4380
81819f0f
CL
4381 return 0;
4382}
ab4d5ed5 4383#endif
81819f0f
CL
4384
4385#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4386#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4387
4388struct slab_attribute {
4389 struct attribute attr;
4390 ssize_t (*show)(struct kmem_cache *s, char *buf);
4391 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4392};
4393
4394#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4395 static struct slab_attribute _name##_attr = \
4396 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4397
4398#define SLAB_ATTR(_name) \
4399 static struct slab_attribute _name##_attr = \
ab067e99 4400 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4401
81819f0f
CL
4402static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4403{
4404 return sprintf(buf, "%d\n", s->size);
4405}
4406SLAB_ATTR_RO(slab_size);
4407
4408static ssize_t align_show(struct kmem_cache *s, char *buf)
4409{
4410 return sprintf(buf, "%d\n", s->align);
4411}
4412SLAB_ATTR_RO(align);
4413
4414static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4415{
3b0efdfa 4416 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4417}
4418SLAB_ATTR_RO(object_size);
4419
4420static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4421{
834f3d11 4422 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4423}
4424SLAB_ATTR_RO(objs_per_slab);
4425
06b285dc
CL
4426static ssize_t order_store(struct kmem_cache *s,
4427 const char *buf, size_t length)
4428{
0121c619
CL
4429 unsigned long order;
4430 int err;
4431
3dbb95f7 4432 err = kstrtoul(buf, 10, &order);
0121c619
CL
4433 if (err)
4434 return err;
06b285dc
CL
4435
4436 if (order > slub_max_order || order < slub_min_order)
4437 return -EINVAL;
4438
4439 calculate_sizes(s, order);
4440 return length;
4441}
4442
81819f0f
CL
4443static ssize_t order_show(struct kmem_cache *s, char *buf)
4444{
834f3d11 4445 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4446}
06b285dc 4447SLAB_ATTR(order);
81819f0f 4448
73d342b1
DR
4449static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4450{
4451 return sprintf(buf, "%lu\n", s->min_partial);
4452}
4453
4454static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4455 size_t length)
4456{
4457 unsigned long min;
4458 int err;
4459
3dbb95f7 4460 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4461 if (err)
4462 return err;
4463
c0bdb232 4464 set_min_partial(s, min);
73d342b1
DR
4465 return length;
4466}
4467SLAB_ATTR(min_partial);
4468
49e22585
CL
4469static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4470{
4471 return sprintf(buf, "%u\n", s->cpu_partial);
4472}
4473
4474static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4475 size_t length)
4476{
4477 unsigned long objects;
4478 int err;
4479
3dbb95f7 4480 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4481 if (err)
4482 return err;
345c905d 4483 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4484 return -EINVAL;
49e22585
CL
4485
4486 s->cpu_partial = objects;
4487 flush_all(s);
4488 return length;
4489}
4490SLAB_ATTR(cpu_partial);
4491
81819f0f
CL
4492static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4493{
62c70bce
JP
4494 if (!s->ctor)
4495 return 0;
4496 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4497}
4498SLAB_ATTR_RO(ctor);
4499
81819f0f
CL
4500static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4501{
4307c14f 4502 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4503}
4504SLAB_ATTR_RO(aliases);
4505
81819f0f
CL
4506static ssize_t partial_show(struct kmem_cache *s, char *buf)
4507{
d9acf4b7 4508 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4509}
4510SLAB_ATTR_RO(partial);
4511
4512static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4513{
d9acf4b7 4514 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4515}
4516SLAB_ATTR_RO(cpu_slabs);
4517
4518static ssize_t objects_show(struct kmem_cache *s, char *buf)
4519{
205ab99d 4520 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4521}
4522SLAB_ATTR_RO(objects);
4523
205ab99d
CL
4524static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4525{
4526 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4527}
4528SLAB_ATTR_RO(objects_partial);
4529
49e22585
CL
4530static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4531{
4532 int objects = 0;
4533 int pages = 0;
4534 int cpu;
4535 int len;
4536
4537 for_each_online_cpu(cpu) {
4538 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4539
4540 if (page) {
4541 pages += page->pages;
4542 objects += page->pobjects;
4543 }
4544 }
4545
4546 len = sprintf(buf, "%d(%d)", objects, pages);
4547
4548#ifdef CONFIG_SMP
4549 for_each_online_cpu(cpu) {
4550 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4551
4552 if (page && len < PAGE_SIZE - 20)
4553 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4554 page->pobjects, page->pages);
4555 }
4556#endif
4557 return len + sprintf(buf + len, "\n");
4558}
4559SLAB_ATTR_RO(slabs_cpu_partial);
4560
a5a84755
CL
4561static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4562{
4563 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4564}
4565
4566static ssize_t reclaim_account_store(struct kmem_cache *s,
4567 const char *buf, size_t length)
4568{
4569 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4570 if (buf[0] == '1')
4571 s->flags |= SLAB_RECLAIM_ACCOUNT;
4572 return length;
4573}
4574SLAB_ATTR(reclaim_account);
4575
4576static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4577{
4578 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4579}
4580SLAB_ATTR_RO(hwcache_align);
4581
4582#ifdef CONFIG_ZONE_DMA
4583static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4584{
4585 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4586}
4587SLAB_ATTR_RO(cache_dma);
4588#endif
4589
4590static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4591{
4592 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4593}
4594SLAB_ATTR_RO(destroy_by_rcu);
4595
ab9a0f19
LJ
4596static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4597{
4598 return sprintf(buf, "%d\n", s->reserved);
4599}
4600SLAB_ATTR_RO(reserved);
4601
ab4d5ed5 4602#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4603static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4604{
4605 return show_slab_objects(s, buf, SO_ALL);
4606}
4607SLAB_ATTR_RO(slabs);
4608
205ab99d
CL
4609static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4610{
4611 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4612}
4613SLAB_ATTR_RO(total_objects);
4614
81819f0f
CL
4615static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4616{
4617 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4618}
4619
4620static ssize_t sanity_checks_store(struct kmem_cache *s,
4621 const char *buf, size_t length)
4622{
4623 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4624 if (buf[0] == '1') {
4625 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4626 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4627 }
81819f0f
CL
4628 return length;
4629}
4630SLAB_ATTR(sanity_checks);
4631
4632static ssize_t trace_show(struct kmem_cache *s, char *buf)
4633{
4634 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4635}
4636
4637static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4638 size_t length)
4639{
c9e16131
CL
4640 /*
4641 * Tracing a merged cache is going to give confusing results
4642 * as well as cause other issues like converting a mergeable
4643 * cache into an umergeable one.
4644 */
4645 if (s->refcount > 1)
4646 return -EINVAL;
4647
81819f0f 4648 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4649 if (buf[0] == '1') {
4650 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4651 s->flags |= SLAB_TRACE;
b789ef51 4652 }
81819f0f
CL
4653 return length;
4654}
4655SLAB_ATTR(trace);
4656
81819f0f
CL
4657static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4658{
4659 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4660}
4661
4662static ssize_t red_zone_store(struct kmem_cache *s,
4663 const char *buf, size_t length)
4664{
4665 if (any_slab_objects(s))
4666 return -EBUSY;
4667
4668 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4669 if (buf[0] == '1') {
4670 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4671 s->flags |= SLAB_RED_ZONE;
b789ef51 4672 }
06b285dc 4673 calculate_sizes(s, -1);
81819f0f
CL
4674 return length;
4675}
4676SLAB_ATTR(red_zone);
4677
4678static ssize_t poison_show(struct kmem_cache *s, char *buf)
4679{
4680 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4681}
4682
4683static ssize_t poison_store(struct kmem_cache *s,
4684 const char *buf, size_t length)
4685{
4686 if (any_slab_objects(s))
4687 return -EBUSY;
4688
4689 s->flags &= ~SLAB_POISON;
b789ef51
CL
4690 if (buf[0] == '1') {
4691 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4692 s->flags |= SLAB_POISON;
b789ef51 4693 }
06b285dc 4694 calculate_sizes(s, -1);
81819f0f
CL
4695 return length;
4696}
4697SLAB_ATTR(poison);
4698
4699static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4700{
4701 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4702}
4703
4704static ssize_t store_user_store(struct kmem_cache *s,
4705 const char *buf, size_t length)
4706{
4707 if (any_slab_objects(s))
4708 return -EBUSY;
4709
4710 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4711 if (buf[0] == '1') {
4712 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4713 s->flags |= SLAB_STORE_USER;
b789ef51 4714 }
06b285dc 4715 calculate_sizes(s, -1);
81819f0f
CL
4716 return length;
4717}
4718SLAB_ATTR(store_user);
4719
53e15af0
CL
4720static ssize_t validate_show(struct kmem_cache *s, char *buf)
4721{
4722 return 0;
4723}
4724
4725static ssize_t validate_store(struct kmem_cache *s,
4726 const char *buf, size_t length)
4727{
434e245d
CL
4728 int ret = -EINVAL;
4729
4730 if (buf[0] == '1') {
4731 ret = validate_slab_cache(s);
4732 if (ret >= 0)
4733 ret = length;
4734 }
4735 return ret;
53e15af0
CL
4736}
4737SLAB_ATTR(validate);
a5a84755
CL
4738
4739static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4740{
4741 if (!(s->flags & SLAB_STORE_USER))
4742 return -ENOSYS;
4743 return list_locations(s, buf, TRACK_ALLOC);
4744}
4745SLAB_ATTR_RO(alloc_calls);
4746
4747static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4748{
4749 if (!(s->flags & SLAB_STORE_USER))
4750 return -ENOSYS;
4751 return list_locations(s, buf, TRACK_FREE);
4752}
4753SLAB_ATTR_RO(free_calls);
4754#endif /* CONFIG_SLUB_DEBUG */
4755
4756#ifdef CONFIG_FAILSLAB
4757static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4758{
4759 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4760}
4761
4762static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4763 size_t length)
4764{
c9e16131
CL
4765 if (s->refcount > 1)
4766 return -EINVAL;
4767
a5a84755
CL
4768 s->flags &= ~SLAB_FAILSLAB;
4769 if (buf[0] == '1')
4770 s->flags |= SLAB_FAILSLAB;
4771 return length;
4772}
4773SLAB_ATTR(failslab);
ab4d5ed5 4774#endif
53e15af0 4775
2086d26a
CL
4776static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4777{
4778 return 0;
4779}
4780
4781static ssize_t shrink_store(struct kmem_cache *s,
4782 const char *buf, size_t length)
4783{
832f37f5
VD
4784 if (buf[0] == '1')
4785 kmem_cache_shrink(s);
4786 else
2086d26a
CL
4787 return -EINVAL;
4788 return length;
4789}
4790SLAB_ATTR(shrink);
4791
81819f0f 4792#ifdef CONFIG_NUMA
9824601e 4793static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4794{
9824601e 4795 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4796}
4797
9824601e 4798static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4799 const char *buf, size_t length)
4800{
0121c619
CL
4801 unsigned long ratio;
4802 int err;
4803
3dbb95f7 4804 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4805 if (err)
4806 return err;
4807
e2cb96b7 4808 if (ratio <= 100)
0121c619 4809 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4810
81819f0f
CL
4811 return length;
4812}
9824601e 4813SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4814#endif
4815
8ff12cfc 4816#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4817static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4818{
4819 unsigned long sum = 0;
4820 int cpu;
4821 int len;
4822 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4823
4824 if (!data)
4825 return -ENOMEM;
4826
4827 for_each_online_cpu(cpu) {
9dfc6e68 4828 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4829
4830 data[cpu] = x;
4831 sum += x;
4832 }
4833
4834 len = sprintf(buf, "%lu", sum);
4835
50ef37b9 4836#ifdef CONFIG_SMP
8ff12cfc
CL
4837 for_each_online_cpu(cpu) {
4838 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4839 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4840 }
50ef37b9 4841#endif
8ff12cfc
CL
4842 kfree(data);
4843 return len + sprintf(buf + len, "\n");
4844}
4845
78eb00cc
DR
4846static void clear_stat(struct kmem_cache *s, enum stat_item si)
4847{
4848 int cpu;
4849
4850 for_each_online_cpu(cpu)
9dfc6e68 4851 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4852}
4853
8ff12cfc
CL
4854#define STAT_ATTR(si, text) \
4855static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4856{ \
4857 return show_stat(s, buf, si); \
4858} \
78eb00cc
DR
4859static ssize_t text##_store(struct kmem_cache *s, \
4860 const char *buf, size_t length) \
4861{ \
4862 if (buf[0] != '0') \
4863 return -EINVAL; \
4864 clear_stat(s, si); \
4865 return length; \
4866} \
4867SLAB_ATTR(text); \
8ff12cfc
CL
4868
4869STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4870STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4871STAT_ATTR(FREE_FASTPATH, free_fastpath);
4872STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4873STAT_ATTR(FREE_FROZEN, free_frozen);
4874STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4875STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4876STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4877STAT_ATTR(ALLOC_SLAB, alloc_slab);
4878STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4879STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4880STAT_ATTR(FREE_SLAB, free_slab);
4881STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4882STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4883STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4884STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4885STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4886STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4887STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4888STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4889STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4890STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4891STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4892STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4893STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4894STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4895#endif
4896
06428780 4897static struct attribute *slab_attrs[] = {
81819f0f
CL
4898 &slab_size_attr.attr,
4899 &object_size_attr.attr,
4900 &objs_per_slab_attr.attr,
4901 &order_attr.attr,
73d342b1 4902 &min_partial_attr.attr,
49e22585 4903 &cpu_partial_attr.attr,
81819f0f 4904 &objects_attr.attr,
205ab99d 4905 &objects_partial_attr.attr,
81819f0f
CL
4906 &partial_attr.attr,
4907 &cpu_slabs_attr.attr,
4908 &ctor_attr.attr,
81819f0f
CL
4909 &aliases_attr.attr,
4910 &align_attr.attr,
81819f0f
CL
4911 &hwcache_align_attr.attr,
4912 &reclaim_account_attr.attr,
4913 &destroy_by_rcu_attr.attr,
a5a84755 4914 &shrink_attr.attr,
ab9a0f19 4915 &reserved_attr.attr,
49e22585 4916 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4917#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4918 &total_objects_attr.attr,
4919 &slabs_attr.attr,
4920 &sanity_checks_attr.attr,
4921 &trace_attr.attr,
81819f0f
CL
4922 &red_zone_attr.attr,
4923 &poison_attr.attr,
4924 &store_user_attr.attr,
53e15af0 4925 &validate_attr.attr,
88a420e4
CL
4926 &alloc_calls_attr.attr,
4927 &free_calls_attr.attr,
ab4d5ed5 4928#endif
81819f0f
CL
4929#ifdef CONFIG_ZONE_DMA
4930 &cache_dma_attr.attr,
4931#endif
4932#ifdef CONFIG_NUMA
9824601e 4933 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4934#endif
4935#ifdef CONFIG_SLUB_STATS
4936 &alloc_fastpath_attr.attr,
4937 &alloc_slowpath_attr.attr,
4938 &free_fastpath_attr.attr,
4939 &free_slowpath_attr.attr,
4940 &free_frozen_attr.attr,
4941 &free_add_partial_attr.attr,
4942 &free_remove_partial_attr.attr,
4943 &alloc_from_partial_attr.attr,
4944 &alloc_slab_attr.attr,
4945 &alloc_refill_attr.attr,
e36a2652 4946 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4947 &free_slab_attr.attr,
4948 &cpuslab_flush_attr.attr,
4949 &deactivate_full_attr.attr,
4950 &deactivate_empty_attr.attr,
4951 &deactivate_to_head_attr.attr,
4952 &deactivate_to_tail_attr.attr,
4953 &deactivate_remote_frees_attr.attr,
03e404af 4954 &deactivate_bypass_attr.attr,
65c3376a 4955 &order_fallback_attr.attr,
b789ef51
CL
4956 &cmpxchg_double_fail_attr.attr,
4957 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4958 &cpu_partial_alloc_attr.attr,
4959 &cpu_partial_free_attr.attr,
8028dcea
AS
4960 &cpu_partial_node_attr.attr,
4961 &cpu_partial_drain_attr.attr,
81819f0f 4962#endif
4c13dd3b
DM
4963#ifdef CONFIG_FAILSLAB
4964 &failslab_attr.attr,
4965#endif
4966
81819f0f
CL
4967 NULL
4968};
4969
4970static struct attribute_group slab_attr_group = {
4971 .attrs = slab_attrs,
4972};
4973
4974static ssize_t slab_attr_show(struct kobject *kobj,
4975 struct attribute *attr,
4976 char *buf)
4977{
4978 struct slab_attribute *attribute;
4979 struct kmem_cache *s;
4980 int err;
4981
4982 attribute = to_slab_attr(attr);
4983 s = to_slab(kobj);
4984
4985 if (!attribute->show)
4986 return -EIO;
4987
4988 err = attribute->show(s, buf);
4989
4990 return err;
4991}
4992
4993static ssize_t slab_attr_store(struct kobject *kobj,
4994 struct attribute *attr,
4995 const char *buf, size_t len)
4996{
4997 struct slab_attribute *attribute;
4998 struct kmem_cache *s;
4999 int err;
5000
5001 attribute = to_slab_attr(attr);
5002 s = to_slab(kobj);
5003
5004 if (!attribute->store)
5005 return -EIO;
5006
5007 err = attribute->store(s, buf, len);
107dab5c
GC
5008#ifdef CONFIG_MEMCG_KMEM
5009 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5010 struct kmem_cache *c;
81819f0f 5011
107dab5c
GC
5012 mutex_lock(&slab_mutex);
5013 if (s->max_attr_size < len)
5014 s->max_attr_size = len;
5015
ebe945c2
GC
5016 /*
5017 * This is a best effort propagation, so this function's return
5018 * value will be determined by the parent cache only. This is
5019 * basically because not all attributes will have a well
5020 * defined semantics for rollbacks - most of the actions will
5021 * have permanent effects.
5022 *
5023 * Returning the error value of any of the children that fail
5024 * is not 100 % defined, in the sense that users seeing the
5025 * error code won't be able to know anything about the state of
5026 * the cache.
5027 *
5028 * Only returning the error code for the parent cache at least
5029 * has well defined semantics. The cache being written to
5030 * directly either failed or succeeded, in which case we loop
5031 * through the descendants with best-effort propagation.
5032 */
426589f5
VD
5033 for_each_memcg_cache(c, s)
5034 attribute->store(c, buf, len);
107dab5c
GC
5035 mutex_unlock(&slab_mutex);
5036 }
5037#endif
81819f0f
CL
5038 return err;
5039}
5040
107dab5c
GC
5041static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5042{
5043#ifdef CONFIG_MEMCG_KMEM
5044 int i;
5045 char *buffer = NULL;
93030d83 5046 struct kmem_cache *root_cache;
107dab5c 5047
93030d83 5048 if (is_root_cache(s))
107dab5c
GC
5049 return;
5050
f7ce3190 5051 root_cache = s->memcg_params.root_cache;
93030d83 5052
107dab5c
GC
5053 /*
5054 * This mean this cache had no attribute written. Therefore, no point
5055 * in copying default values around
5056 */
93030d83 5057 if (!root_cache->max_attr_size)
107dab5c
GC
5058 return;
5059
5060 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5061 char mbuf[64];
5062 char *buf;
5063 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5064
5065 if (!attr || !attr->store || !attr->show)
5066 continue;
5067
5068 /*
5069 * It is really bad that we have to allocate here, so we will
5070 * do it only as a fallback. If we actually allocate, though,
5071 * we can just use the allocated buffer until the end.
5072 *
5073 * Most of the slub attributes will tend to be very small in
5074 * size, but sysfs allows buffers up to a page, so they can
5075 * theoretically happen.
5076 */
5077 if (buffer)
5078 buf = buffer;
93030d83 5079 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5080 buf = mbuf;
5081 else {
5082 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5083 if (WARN_ON(!buffer))
5084 continue;
5085 buf = buffer;
5086 }
5087
93030d83 5088 attr->show(root_cache, buf);
107dab5c
GC
5089 attr->store(s, buf, strlen(buf));
5090 }
5091
5092 if (buffer)
5093 free_page((unsigned long)buffer);
5094#endif
5095}
5096
41a21285
CL
5097static void kmem_cache_release(struct kobject *k)
5098{
5099 slab_kmem_cache_release(to_slab(k));
5100}
5101
52cf25d0 5102static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5103 .show = slab_attr_show,
5104 .store = slab_attr_store,
5105};
5106
5107static struct kobj_type slab_ktype = {
5108 .sysfs_ops = &slab_sysfs_ops,
41a21285 5109 .release = kmem_cache_release,
81819f0f
CL
5110};
5111
5112static int uevent_filter(struct kset *kset, struct kobject *kobj)
5113{
5114 struct kobj_type *ktype = get_ktype(kobj);
5115
5116 if (ktype == &slab_ktype)
5117 return 1;
5118 return 0;
5119}
5120
9cd43611 5121static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5122 .filter = uevent_filter,
5123};
5124
27c3a314 5125static struct kset *slab_kset;
81819f0f 5126
9a41707b
VD
5127static inline struct kset *cache_kset(struct kmem_cache *s)
5128{
5129#ifdef CONFIG_MEMCG_KMEM
5130 if (!is_root_cache(s))
f7ce3190 5131 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5132#endif
5133 return slab_kset;
5134}
5135
81819f0f
CL
5136#define ID_STR_LENGTH 64
5137
5138/* Create a unique string id for a slab cache:
6446faa2
CL
5139 *
5140 * Format :[flags-]size
81819f0f
CL
5141 */
5142static char *create_unique_id(struct kmem_cache *s)
5143{
5144 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5145 char *p = name;
5146
5147 BUG_ON(!name);
5148
5149 *p++ = ':';
5150 /*
5151 * First flags affecting slabcache operations. We will only
5152 * get here for aliasable slabs so we do not need to support
5153 * too many flags. The flags here must cover all flags that
5154 * are matched during merging to guarantee that the id is
5155 * unique.
5156 */
5157 if (s->flags & SLAB_CACHE_DMA)
5158 *p++ = 'd';
5159 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5160 *p++ = 'a';
5161 if (s->flags & SLAB_DEBUG_FREE)
5162 *p++ = 'F';
5a896d9e
VN
5163 if (!(s->flags & SLAB_NOTRACK))
5164 *p++ = 't';
81819f0f
CL
5165 if (p != name + 1)
5166 *p++ = '-';
5167 p += sprintf(p, "%07d", s->size);
2633d7a0 5168
81819f0f
CL
5169 BUG_ON(p > name + ID_STR_LENGTH - 1);
5170 return name;
5171}
5172
5173static int sysfs_slab_add(struct kmem_cache *s)
5174{
5175 int err;
5176 const char *name;
45530c44 5177 int unmergeable = slab_unmergeable(s);
81819f0f 5178
81819f0f
CL
5179 if (unmergeable) {
5180 /*
5181 * Slabcache can never be merged so we can use the name proper.
5182 * This is typically the case for debug situations. In that
5183 * case we can catch duplicate names easily.
5184 */
27c3a314 5185 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5186 name = s->name;
5187 } else {
5188 /*
5189 * Create a unique name for the slab as a target
5190 * for the symlinks.
5191 */
5192 name = create_unique_id(s);
5193 }
5194
9a41707b 5195 s->kobj.kset = cache_kset(s);
26e4f205 5196 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5197 if (err)
5198 goto out_put_kobj;
81819f0f
CL
5199
5200 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5201 if (err)
5202 goto out_del_kobj;
9a41707b
VD
5203
5204#ifdef CONFIG_MEMCG_KMEM
5205 if (is_root_cache(s)) {
5206 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5207 if (!s->memcg_kset) {
54b6a731
DJ
5208 err = -ENOMEM;
5209 goto out_del_kobj;
9a41707b
VD
5210 }
5211 }
5212#endif
5213
81819f0f
CL
5214 kobject_uevent(&s->kobj, KOBJ_ADD);
5215 if (!unmergeable) {
5216 /* Setup first alias */
5217 sysfs_slab_alias(s, s->name);
81819f0f 5218 }
54b6a731
DJ
5219out:
5220 if (!unmergeable)
5221 kfree(name);
5222 return err;
5223out_del_kobj:
5224 kobject_del(&s->kobj);
5225out_put_kobj:
5226 kobject_put(&s->kobj);
5227 goto out;
81819f0f
CL
5228}
5229
41a21285 5230void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5231{
97d06609 5232 if (slab_state < FULL)
2bce6485
CL
5233 /*
5234 * Sysfs has not been setup yet so no need to remove the
5235 * cache from sysfs.
5236 */
5237 return;
5238
9a41707b
VD
5239#ifdef CONFIG_MEMCG_KMEM
5240 kset_unregister(s->memcg_kset);
5241#endif
81819f0f
CL
5242 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5243 kobject_del(&s->kobj);
151c602f 5244 kobject_put(&s->kobj);
81819f0f
CL
5245}
5246
5247/*
5248 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5249 * available lest we lose that information.
81819f0f
CL
5250 */
5251struct saved_alias {
5252 struct kmem_cache *s;
5253 const char *name;
5254 struct saved_alias *next;
5255};
5256
5af328a5 5257static struct saved_alias *alias_list;
81819f0f
CL
5258
5259static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5260{
5261 struct saved_alias *al;
5262
97d06609 5263 if (slab_state == FULL) {
81819f0f
CL
5264 /*
5265 * If we have a leftover link then remove it.
5266 */
27c3a314
GKH
5267 sysfs_remove_link(&slab_kset->kobj, name);
5268 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5269 }
5270
5271 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5272 if (!al)
5273 return -ENOMEM;
5274
5275 al->s = s;
5276 al->name = name;
5277 al->next = alias_list;
5278 alias_list = al;
5279 return 0;
5280}
5281
5282static int __init slab_sysfs_init(void)
5283{
5b95a4ac 5284 struct kmem_cache *s;
81819f0f
CL
5285 int err;
5286
18004c5d 5287 mutex_lock(&slab_mutex);
2bce6485 5288
0ff21e46 5289 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5290 if (!slab_kset) {
18004c5d 5291 mutex_unlock(&slab_mutex);
f9f58285 5292 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5293 return -ENOSYS;
5294 }
5295
97d06609 5296 slab_state = FULL;
26a7bd03 5297
5b95a4ac 5298 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5299 err = sysfs_slab_add(s);
5d540fb7 5300 if (err)
f9f58285
FF
5301 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5302 s->name);
26a7bd03 5303 }
81819f0f
CL
5304
5305 while (alias_list) {
5306 struct saved_alias *al = alias_list;
5307
5308 alias_list = alias_list->next;
5309 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5310 if (err)
f9f58285
FF
5311 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5312 al->name);
81819f0f
CL
5313 kfree(al);
5314 }
5315
18004c5d 5316 mutex_unlock(&slab_mutex);
81819f0f
CL
5317 resiliency_test();
5318 return 0;
5319}
5320
5321__initcall(slab_sysfs_init);
ab4d5ed5 5322#endif /* CONFIG_SYSFS */
57ed3eda
PE
5323
5324/*
5325 * The /proc/slabinfo ABI
5326 */
158a9624 5327#ifdef CONFIG_SLABINFO
0d7561c6 5328void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5329{
57ed3eda 5330 unsigned long nr_slabs = 0;
205ab99d
CL
5331 unsigned long nr_objs = 0;
5332 unsigned long nr_free = 0;
57ed3eda 5333 int node;
fa45dc25 5334 struct kmem_cache_node *n;
57ed3eda 5335
fa45dc25 5336 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5337 nr_slabs += node_nr_slabs(n);
5338 nr_objs += node_nr_objs(n);
205ab99d 5339 nr_free += count_partial(n, count_free);
57ed3eda
PE
5340 }
5341
0d7561c6
GC
5342 sinfo->active_objs = nr_objs - nr_free;
5343 sinfo->num_objs = nr_objs;
5344 sinfo->active_slabs = nr_slabs;
5345 sinfo->num_slabs = nr_slabs;
5346 sinfo->objects_per_slab = oo_objects(s->oo);
5347 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5348}
5349
0d7561c6 5350void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5351{
7b3c3a50
AD
5352}
5353
b7454ad3
GC
5354ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5355 size_t count, loff_t *ppos)
7b3c3a50 5356{
b7454ad3 5357 return -EIO;
7b3c3a50 5358}
158a9624 5359#endif /* CONFIG_SLABINFO */