SLUB: include lifetime stats and sets of cpus / nodes in tracking output
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
672bba3a
CL
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 71 * freed then the slab will show up again on the partial lists.
672bba3a
CL
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
81819f0f
CL
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive The slab is used as a cpu cache. Allocations
82 * may be performed from the slab. The slab is not
83 * on any slab list and cannot be moved onto one.
84 *
85 * PageError Slab requires special handling due to debug
86 * options set. This moves slab handling out of
87 * the fast path.
88 */
89
35e5d7ee
CL
90static inline int SlabDebug(struct page *page)
91{
41ecc55b 92#ifdef CONFIG_SLUB_DEBUG
35e5d7ee 93 return PageError(page);
41ecc55b
CL
94#else
95 return 0;
96#endif
35e5d7ee
CL
97}
98
99static inline void SetSlabDebug(struct page *page)
100{
41ecc55b 101#ifdef CONFIG_SLUB_DEBUG
35e5d7ee 102 SetPageError(page);
41ecc55b 103#endif
35e5d7ee
CL
104}
105
106static inline void ClearSlabDebug(struct page *page)
107{
41ecc55b 108#ifdef CONFIG_SLUB_DEBUG
35e5d7ee 109 ClearPageError(page);
41ecc55b 110#endif
35e5d7ee
CL
111}
112
81819f0f
CL
113/*
114 * Issues still to be resolved:
115 *
116 * - The per cpu array is updated for each new slab and and is a remote
117 * cacheline for most nodes. This could become a bouncing cacheline given
672bba3a
CL
118 * enough frequent updates. There are 16 pointers in a cacheline, so at
119 * max 16 cpus could compete for the cacheline which may be okay.
81819f0f
CL
120 *
121 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
122 *
81819f0f
CL
123 * - Variable sizing of the per node arrays
124 */
125
126/* Enable to test recovery from slab corruption on boot */
127#undef SLUB_RESILIENCY_TEST
128
129#if PAGE_SHIFT <= 12
130
131/*
132 * Small page size. Make sure that we do not fragment memory
133 */
134#define DEFAULT_MAX_ORDER 1
135#define DEFAULT_MIN_OBJECTS 4
136
137#else
138
139/*
140 * Large page machines are customarily able to handle larger
141 * page orders.
142 */
143#define DEFAULT_MAX_ORDER 2
144#define DEFAULT_MIN_OBJECTS 8
145
146#endif
147
2086d26a
CL
148/*
149 * Mininum number of partial slabs. These will be left on the partial
150 * lists even if they are empty. kmem_cache_shrink may reclaim them.
151 */
e95eed57
CL
152#define MIN_PARTIAL 2
153
2086d26a
CL
154/*
155 * Maximum number of desirable partial slabs.
156 * The existence of more partial slabs makes kmem_cache_shrink
157 * sort the partial list by the number of objects in the.
158 */
159#define MAX_PARTIAL 10
160
81819f0f
CL
161#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
162 SLAB_POISON | SLAB_STORE_USER)
672bba3a 163
81819f0f
CL
164/*
165 * Set of flags that will prevent slab merging
166 */
167#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
169
170#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
171 SLAB_CACHE_DMA)
172
173#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 174#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
175#endif
176
177#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 178#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
179#endif
180
181/* Internal SLUB flags */
182#define __OBJECT_POISON 0x80000000 /* Poison object */
183
65c02d4c
CL
184/* Not all arches define cache_line_size */
185#ifndef cache_line_size
186#define cache_line_size() L1_CACHE_BYTES
187#endif
188
81819f0f
CL
189static int kmem_size = sizeof(struct kmem_cache);
190
191#ifdef CONFIG_SMP
192static struct notifier_block slab_notifier;
193#endif
194
195static enum {
196 DOWN, /* No slab functionality available */
197 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 198 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
199 SYSFS /* Sysfs up */
200} slab_state = DOWN;
201
202/* A list of all slab caches on the system */
203static DECLARE_RWSEM(slub_lock);
204LIST_HEAD(slab_caches);
205
02cbc874
CL
206/*
207 * Tracking user of a slab.
208 */
209struct track {
210 void *addr; /* Called from address */
211 int cpu; /* Was running on cpu */
212 int pid; /* Pid context */
213 unsigned long when; /* When did the operation occur */
214};
215
216enum track_item { TRACK_ALLOC, TRACK_FREE };
217
41ecc55b 218#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
219static int sysfs_slab_add(struct kmem_cache *);
220static int sysfs_slab_alias(struct kmem_cache *, const char *);
221static void sysfs_slab_remove(struct kmem_cache *);
222#else
223static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
225static void sysfs_slab_remove(struct kmem_cache *s) {}
226#endif
227
228/********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
231
232int slab_is_available(void)
233{
234 return slab_state >= UP;
235}
236
237static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
238{
239#ifdef CONFIG_NUMA
240 return s->node[node];
241#else
242 return &s->local_node;
243#endif
244}
245
02cbc874
CL
246static inline int check_valid_pointer(struct kmem_cache *s,
247 struct page *page, const void *object)
248{
249 void *base;
250
251 if (!object)
252 return 1;
253
254 base = page_address(page);
255 if (object < base || object >= base + s->objects * s->size ||
256 (object - base) % s->size) {
257 return 0;
258 }
259
260 return 1;
261}
262
7656c72b
CL
263/*
264 * Slow version of get and set free pointer.
265 *
266 * This version requires touching the cache lines of kmem_cache which
267 * we avoid to do in the fast alloc free paths. There we obtain the offset
268 * from the page struct.
269 */
270static inline void *get_freepointer(struct kmem_cache *s, void *object)
271{
272 return *(void **)(object + s->offset);
273}
274
275static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
276{
277 *(void **)(object + s->offset) = fp;
278}
279
280/* Loop over all objects in a slab */
281#define for_each_object(__p, __s, __addr) \
282 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
283 __p += (__s)->size)
284
285/* Scan freelist */
286#define for_each_free_object(__p, __s, __free) \
287 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
288
289/* Determine object index from a given position */
290static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
291{
292 return (p - addr) / s->size;
293}
294
41ecc55b
CL
295#ifdef CONFIG_SLUB_DEBUG
296/*
297 * Debug settings:
298 */
299static int slub_debug;
300
301static char *slub_debug_slabs;
302
81819f0f
CL
303/*
304 * Object debugging
305 */
306static void print_section(char *text, u8 *addr, unsigned int length)
307{
308 int i, offset;
309 int newline = 1;
310 char ascii[17];
311
312 ascii[16] = 0;
313
314 for (i = 0; i < length; i++) {
315 if (newline) {
316 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
317 newline = 0;
318 }
319 printk(" %02x", addr[i]);
320 offset = i % 16;
321 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
322 if (offset == 15) {
323 printk(" %s\n",ascii);
324 newline = 1;
325 }
326 }
327 if (!newline) {
328 i %= 16;
329 while (i < 16) {
330 printk(" ");
331 ascii[i] = ' ';
332 i++;
333 }
334 printk(" %s\n", ascii);
335 }
336}
337
81819f0f
CL
338static struct track *get_track(struct kmem_cache *s, void *object,
339 enum track_item alloc)
340{
341 struct track *p;
342
343 if (s->offset)
344 p = object + s->offset + sizeof(void *);
345 else
346 p = object + s->inuse;
347
348 return p + alloc;
349}
350
351static void set_track(struct kmem_cache *s, void *object,
352 enum track_item alloc, void *addr)
353{
354 struct track *p;
355
356 if (s->offset)
357 p = object + s->offset + sizeof(void *);
358 else
359 p = object + s->inuse;
360
361 p += alloc;
362 if (addr) {
363 p->addr = addr;
364 p->cpu = smp_processor_id();
365 p->pid = current ? current->pid : -1;
366 p->when = jiffies;
367 } else
368 memset(p, 0, sizeof(struct track));
369}
370
81819f0f
CL
371static void init_tracking(struct kmem_cache *s, void *object)
372{
373 if (s->flags & SLAB_STORE_USER) {
374 set_track(s, object, TRACK_FREE, NULL);
375 set_track(s, object, TRACK_ALLOC, NULL);
376 }
377}
378
379static void print_track(const char *s, struct track *t)
380{
381 if (!t->addr)
382 return;
383
384 printk(KERN_ERR "%s: ", s);
385 __print_symbol("%s", (unsigned long)t->addr);
386 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
387}
388
389static void print_trailer(struct kmem_cache *s, u8 *p)
390{
391 unsigned int off; /* Offset of last byte */
392
393 if (s->flags & SLAB_RED_ZONE)
394 print_section("Redzone", p + s->objsize,
395 s->inuse - s->objsize);
396
397 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
398 p + s->offset,
399 get_freepointer(s, p));
400
401 if (s->offset)
402 off = s->offset + sizeof(void *);
403 else
404 off = s->inuse;
405
406 if (s->flags & SLAB_STORE_USER) {
407 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
408 print_track("Last free ", get_track(s, p, TRACK_FREE));
409 off += 2 * sizeof(struct track);
410 }
411
412 if (off != s->size)
413 /* Beginning of the filler is the free pointer */
414 print_section("Filler", p + off, s->size - off);
415}
416
417static void object_err(struct kmem_cache *s, struct page *page,
418 u8 *object, char *reason)
419{
420 u8 *addr = page_address(page);
421
422 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
423 s->name, reason, object, page);
424 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
425 object - addr, page->flags, page->inuse, page->freelist);
426 if (object > addr + 16)
427 print_section("Bytes b4", object - 16, 16);
428 print_section("Object", object, min(s->objsize, 128));
429 print_trailer(s, object);
430 dump_stack();
431}
432
433static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
434{
435 va_list args;
436 char buf[100];
437
438 va_start(args, reason);
439 vsnprintf(buf, sizeof(buf), reason, args);
440 va_end(args);
441 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
442 page);
443 dump_stack();
444}
445
446static void init_object(struct kmem_cache *s, void *object, int active)
447{
448 u8 *p = object;
449
450 if (s->flags & __OBJECT_POISON) {
451 memset(p, POISON_FREE, s->objsize - 1);
452 p[s->objsize -1] = POISON_END;
453 }
454
455 if (s->flags & SLAB_RED_ZONE)
456 memset(p + s->objsize,
457 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
458 s->inuse - s->objsize);
459}
460
461static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
462{
463 while (bytes) {
464 if (*start != (u8)value)
465 return 0;
466 start++;
467 bytes--;
468 }
469 return 1;
470}
471
81819f0f
CL
472/*
473 * Object layout:
474 *
475 * object address
476 * Bytes of the object to be managed.
477 * If the freepointer may overlay the object then the free
478 * pointer is the first word of the object.
672bba3a 479 *
81819f0f
CL
480 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
481 * 0xa5 (POISON_END)
482 *
483 * object + s->objsize
484 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
485 * Padding is extended by another word if Redzoning is enabled and
486 * objsize == inuse.
487 *
81819f0f
CL
488 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
489 * 0xcc (RED_ACTIVE) for objects in use.
490 *
491 * object + s->inuse
672bba3a
CL
492 * Meta data starts here.
493 *
81819f0f
CL
494 * A. Free pointer (if we cannot overwrite object on free)
495 * B. Tracking data for SLAB_STORE_USER
672bba3a
CL
496 * C. Padding to reach required alignment boundary or at mininum
497 * one word if debuggin is on to be able to detect writes
498 * before the word boundary.
499 *
500 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
501 *
502 * object + s->size
672bba3a 503 * Nothing is used beyond s->size.
81819f0f 504 *
672bba3a
CL
505 * If slabcaches are merged then the objsize and inuse boundaries are mostly
506 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
507 * may be used with merged slabcaches.
508 */
509
510static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
511 void *from, void *to)
512{
70d71228 513 printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
81819f0f
CL
514 s->name, message, data, from, to - 1);
515 memset(from, data, to - from);
516}
517
518static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
519{
520 unsigned long off = s->inuse; /* The end of info */
521
522 if (s->offset)
523 /* Freepointer is placed after the object. */
524 off += sizeof(void *);
525
526 if (s->flags & SLAB_STORE_USER)
527 /* We also have user information there */
528 off += 2 * sizeof(struct track);
529
530 if (s->size == off)
531 return 1;
532
533 if (check_bytes(p + off, POISON_INUSE, s->size - off))
534 return 1;
535
536 object_err(s, page, p, "Object padding check fails");
537
538 /*
539 * Restore padding
540 */
541 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
542 return 0;
543}
544
545static int slab_pad_check(struct kmem_cache *s, struct page *page)
546{
547 u8 *p;
548 int length, remainder;
549
550 if (!(s->flags & SLAB_POISON))
551 return 1;
552
553 p = page_address(page);
554 length = s->objects * s->size;
555 remainder = (PAGE_SIZE << s->order) - length;
556 if (!remainder)
557 return 1;
558
559 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
70d71228 560 slab_err(s, page, "Padding check failed");
81819f0f
CL
561 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
562 p + length + remainder);
563 return 0;
564 }
565 return 1;
566}
567
568static int check_object(struct kmem_cache *s, struct page *page,
569 void *object, int active)
570{
571 u8 *p = object;
572 u8 *endobject = object + s->objsize;
573
574 if (s->flags & SLAB_RED_ZONE) {
575 unsigned int red =
576 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
577
578 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
579 object_err(s, page, object,
580 active ? "Redzone Active" : "Redzone Inactive");
581 restore_bytes(s, "redzone", red,
582 endobject, object + s->inuse);
583 return 0;
584 }
585 } else {
586 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
587 !check_bytes(endobject, POISON_INUSE,
588 s->inuse - s->objsize)) {
589 object_err(s, page, p, "Alignment padding check fails");
590 /*
591 * Fix it so that there will not be another report.
592 *
593 * Hmmm... We may be corrupting an object that now expects
594 * to be longer than allowed.
595 */
596 restore_bytes(s, "alignment padding", POISON_INUSE,
597 endobject, object + s->inuse);
598 }
599 }
600
601 if (s->flags & SLAB_POISON) {
602 if (!active && (s->flags & __OBJECT_POISON) &&
603 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
604 p[s->objsize - 1] != POISON_END)) {
605
606 object_err(s, page, p, "Poison check failed");
607 restore_bytes(s, "Poison", POISON_FREE,
608 p, p + s->objsize -1);
609 restore_bytes(s, "Poison", POISON_END,
610 p + s->objsize - 1, p + s->objsize);
611 return 0;
612 }
613 /*
614 * check_pad_bytes cleans up on its own.
615 */
616 check_pad_bytes(s, page, p);
617 }
618
619 if (!s->offset && active)
620 /*
621 * Object and freepointer overlap. Cannot check
622 * freepointer while object is allocated.
623 */
624 return 1;
625
626 /* Check free pointer validity */
627 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
628 object_err(s, page, p, "Freepointer corrupt");
629 /*
630 * No choice but to zap it and thus loose the remainder
631 * of the free objects in this slab. May cause
672bba3a 632 * another error because the object count is now wrong.
81819f0f
CL
633 */
634 set_freepointer(s, p, NULL);
635 return 0;
636 }
637 return 1;
638}
639
640static int check_slab(struct kmem_cache *s, struct page *page)
641{
642 VM_BUG_ON(!irqs_disabled());
643
644 if (!PageSlab(page)) {
70d71228
CL
645 slab_err(s, page, "Not a valid slab page flags=%lx "
646 "mapping=0x%p count=%d", page->flags, page->mapping,
81819f0f
CL
647 page_count(page));
648 return 0;
649 }
650 if (page->offset * sizeof(void *) != s->offset) {
70d71228
CL
651 slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
652 "mapping=0x%p count=%d",
81819f0f 653 (unsigned long)(page->offset * sizeof(void *)),
81819f0f
CL
654 page->flags,
655 page->mapping,
656 page_count(page));
81819f0f
CL
657 return 0;
658 }
659 if (page->inuse > s->objects) {
70d71228
CL
660 slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
661 "mapping=0x%p count=%d",
662 s->name, page->inuse, s->objects, page->flags,
81819f0f 663 page->mapping, page_count(page));
81819f0f
CL
664 return 0;
665 }
666 /* Slab_pad_check fixes things up after itself */
667 slab_pad_check(s, page);
668 return 1;
669}
670
671/*
672bba3a
CL
672 * Determine if a certain object on a page is on the freelist. Must hold the
673 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
674 */
675static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
676{
677 int nr = 0;
678 void *fp = page->freelist;
679 void *object = NULL;
680
681 while (fp && nr <= s->objects) {
682 if (fp == search)
683 return 1;
684 if (!check_valid_pointer(s, page, fp)) {
685 if (object) {
686 object_err(s, page, object,
687 "Freechain corrupt");
688 set_freepointer(s, object, NULL);
689 break;
690 } else {
70d71228
CL
691 slab_err(s, page, "Freepointer 0x%p corrupt",
692 fp);
81819f0f
CL
693 page->freelist = NULL;
694 page->inuse = s->objects;
70d71228
CL
695 printk(KERN_ERR "@@@ SLUB %s: Freelist "
696 "cleared. Slab 0x%p\n",
697 s->name, page);
81819f0f
CL
698 return 0;
699 }
700 break;
701 }
702 object = fp;
703 fp = get_freepointer(s, object);
704 nr++;
705 }
706
707 if (page->inuse != s->objects - nr) {
70d71228
CL
708 slab_err(s, page, "Wrong object count. Counter is %d but "
709 "counted were %d", s, page, page->inuse,
710 s->objects - nr);
81819f0f 711 page->inuse = s->objects - nr;
70d71228
CL
712 printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
713 "Slab @0x%p\n", s->name, page);
81819f0f
CL
714 }
715 return search == NULL;
716}
717
643b1138 718/*
672bba3a 719 * Tracking of fully allocated slabs for debugging purposes.
643b1138 720 */
e95eed57 721static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 722{
643b1138
CL
723 spin_lock(&n->list_lock);
724 list_add(&page->lru, &n->full);
725 spin_unlock(&n->list_lock);
726}
727
728static void remove_full(struct kmem_cache *s, struct page *page)
729{
730 struct kmem_cache_node *n;
731
732 if (!(s->flags & SLAB_STORE_USER))
733 return;
734
735 n = get_node(s, page_to_nid(page));
736
737 spin_lock(&n->list_lock);
738 list_del(&page->lru);
739 spin_unlock(&n->list_lock);
740}
741
81819f0f
CL
742static int alloc_object_checks(struct kmem_cache *s, struct page *page,
743 void *object)
744{
745 if (!check_slab(s, page))
746 goto bad;
747
748 if (object && !on_freelist(s, page, object)) {
70d71228
CL
749 slab_err(s, page, "Object 0x%p already allocated", object);
750 goto bad;
81819f0f
CL
751 }
752
753 if (!check_valid_pointer(s, page, object)) {
754 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 755 goto bad;
81819f0f
CL
756 }
757
758 if (!object)
759 return 1;
760
761 if (!check_object(s, page, object, 0))
762 goto bad;
81819f0f 763
81819f0f 764 return 1;
81819f0f
CL
765bad:
766 if (PageSlab(page)) {
767 /*
768 * If this is a slab page then lets do the best we can
769 * to avoid issues in the future. Marking all objects
672bba3a 770 * as used avoids touching the remaining objects.
81819f0f
CL
771 */
772 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
773 s->name, page);
774 page->inuse = s->objects;
775 page->freelist = NULL;
776 /* Fix up fields that may be corrupted */
777 page->offset = s->offset / sizeof(void *);
778 }
779 return 0;
780}
781
782static int free_object_checks(struct kmem_cache *s, struct page *page,
783 void *object)
784{
785 if (!check_slab(s, page))
786 goto fail;
787
788 if (!check_valid_pointer(s, page, object)) {
70d71228 789 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
790 goto fail;
791 }
792
793 if (on_freelist(s, page, object)) {
70d71228 794 slab_err(s, page, "Object 0x%p already free", object);
81819f0f
CL
795 goto fail;
796 }
797
798 if (!check_object(s, page, object, 1))
799 return 0;
800
801 if (unlikely(s != page->slab)) {
802 if (!PageSlab(page))
70d71228
CL
803 slab_err(s, page, "Attempt to free object(0x%p) "
804 "outside of slab", object);
81819f0f 805 else
70d71228 806 if (!page->slab) {
81819f0f 807 printk(KERN_ERR
70d71228 808 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 809 object);
70d71228
CL
810 dump_stack();
811 }
81819f0f 812 else
70d71228
CL
813 slab_err(s, page, "object at 0x%p belongs "
814 "to slab %s", object, page->slab->name);
81819f0f
CL
815 goto fail;
816 }
81819f0f
CL
817 return 1;
818fail:
81819f0f
CL
819 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
820 s->name, page, object);
821 return 0;
822}
823
636f0d7d
CL
824static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
825{
826 if (s->flags & SLAB_TRACE) {
827 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
828 s->name,
829 alloc ? "alloc" : "free",
830 object, page->inuse,
831 page->freelist);
832
833 if (!alloc)
834 print_section("Object", (void *)object, s->objsize);
835
836 dump_stack();
837 }
838}
839
41ecc55b
CL
840static int __init setup_slub_debug(char *str)
841{
842 if (!str || *str != '=')
843 slub_debug = DEBUG_DEFAULT_FLAGS;
844 else {
845 str++;
846 if (*str == 0 || *str == ',')
847 slub_debug = DEBUG_DEFAULT_FLAGS;
848 else
849 for( ;*str && *str != ','; str++)
850 switch (*str) {
851 case 'f' : case 'F' :
852 slub_debug |= SLAB_DEBUG_FREE;
853 break;
854 case 'z' : case 'Z' :
855 slub_debug |= SLAB_RED_ZONE;
856 break;
857 case 'p' : case 'P' :
858 slub_debug |= SLAB_POISON;
859 break;
860 case 'u' : case 'U' :
861 slub_debug |= SLAB_STORE_USER;
862 break;
863 case 't' : case 'T' :
864 slub_debug |= SLAB_TRACE;
865 break;
866 default:
867 printk(KERN_ERR "slub_debug option '%c' "
868 "unknown. skipped\n",*str);
869 }
870 }
871
872 if (*str == ',')
873 slub_debug_slabs = str + 1;
874 return 1;
875}
876
877__setup("slub_debug", setup_slub_debug);
878
879static void kmem_cache_open_debug_check(struct kmem_cache *s)
880{
881 /*
882 * The page->offset field is only 16 bit wide. This is an offset
883 * in units of words from the beginning of an object. If the slab
884 * size is bigger then we cannot move the free pointer behind the
885 * object anymore.
886 *
887 * On 32 bit platforms the limit is 256k. On 64bit platforms
888 * the limit is 512k.
889 *
890 * Debugging or ctor/dtors may create a need to move the free
891 * pointer. Fail if this happens.
892 */
893 if (s->size >= 65535 * sizeof(void *)) {
894 BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
895 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
896 BUG_ON(s->ctor || s->dtor);
897 }
898 else
899 /*
900 * Enable debugging if selected on the kernel commandline.
901 */
902 if (slub_debug && (!slub_debug_slabs ||
903 strncmp(slub_debug_slabs, s->name,
904 strlen(slub_debug_slabs)) == 0))
905 s->flags |= slub_debug;
906}
907#else
908
909static inline int alloc_object_checks(struct kmem_cache *s,
910 struct page *page, void *object) { return 0; }
911
912static inline int free_object_checks(struct kmem_cache *s,
913 struct page *page, void *object) { return 0; }
914
915static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
916static inline void remove_full(struct kmem_cache *s, struct page *page) {}
917static inline void trace(struct kmem_cache *s, struct page *page,
918 void *object, int alloc) {}
919static inline void init_object(struct kmem_cache *s,
920 void *object, int active) {}
921static inline void init_tracking(struct kmem_cache *s, void *object) {}
922static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
923 { return 1; }
924static inline int check_object(struct kmem_cache *s, struct page *page,
925 void *object, int active) { return 1; }
926static inline void set_track(struct kmem_cache *s, void *object,
927 enum track_item alloc, void *addr) {}
928static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
929#define slub_debug 0
930#endif
81819f0f
CL
931/*
932 * Slab allocation and freeing
933 */
934static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
935{
936 struct page * page;
937 int pages = 1 << s->order;
938
939 if (s->order)
940 flags |= __GFP_COMP;
941
942 if (s->flags & SLAB_CACHE_DMA)
943 flags |= SLUB_DMA;
944
945 if (node == -1)
946 page = alloc_pages(flags, s->order);
947 else
948 page = alloc_pages_node(node, flags, s->order);
949
950 if (!page)
951 return NULL;
952
953 mod_zone_page_state(page_zone(page),
954 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
955 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
956 pages);
957
958 return page;
959}
960
961static void setup_object(struct kmem_cache *s, struct page *page,
962 void *object)
963{
35e5d7ee 964 if (SlabDebug(page)) {
81819f0f
CL
965 init_object(s, object, 0);
966 init_tracking(s, object);
967 }
968
4f104934
CL
969 if (unlikely(s->ctor))
970 s->ctor(object, s, SLAB_CTOR_CONSTRUCTOR);
81819f0f
CL
971}
972
973static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
974{
975 struct page *page;
976 struct kmem_cache_node *n;
977 void *start;
978 void *end;
979 void *last;
980 void *p;
981
81819f0f
CL
982 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
983
984 if (flags & __GFP_WAIT)
985 local_irq_enable();
986
987 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
988 if (!page)
989 goto out;
990
991 n = get_node(s, page_to_nid(page));
992 if (n)
993 atomic_long_inc(&n->nr_slabs);
994 page->offset = s->offset / sizeof(void *);
995 page->slab = s;
996 page->flags |= 1 << PG_slab;
997 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
998 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 999 SetSlabDebug(page);
81819f0f
CL
1000
1001 start = page_address(page);
1002 end = start + s->objects * s->size;
1003
1004 if (unlikely(s->flags & SLAB_POISON))
1005 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1006
1007 last = start;
7656c72b 1008 for_each_object(p, s, start) {
81819f0f
CL
1009 setup_object(s, page, last);
1010 set_freepointer(s, last, p);
1011 last = p;
1012 }
1013 setup_object(s, page, last);
1014 set_freepointer(s, last, NULL);
1015
1016 page->freelist = start;
1017 page->inuse = 0;
1018out:
1019 if (flags & __GFP_WAIT)
1020 local_irq_disable();
1021 return page;
1022}
1023
1024static void __free_slab(struct kmem_cache *s, struct page *page)
1025{
1026 int pages = 1 << s->order;
1027
35e5d7ee 1028 if (unlikely(SlabDebug(page) || s->dtor)) {
81819f0f
CL
1029 void *p;
1030
1031 slab_pad_check(s, page);
7656c72b 1032 for_each_object(p, s, page_address(page)) {
81819f0f
CL
1033 if (s->dtor)
1034 s->dtor(p, s, 0);
1035 check_object(s, page, p, 0);
1036 }
1037 }
1038
1039 mod_zone_page_state(page_zone(page),
1040 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1041 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1042 - pages);
1043
1044 page->mapping = NULL;
1045 __free_pages(page, s->order);
1046}
1047
1048static void rcu_free_slab(struct rcu_head *h)
1049{
1050 struct page *page;
1051
1052 page = container_of((struct list_head *)h, struct page, lru);
1053 __free_slab(page->slab, page);
1054}
1055
1056static void free_slab(struct kmem_cache *s, struct page *page)
1057{
1058 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1059 /*
1060 * RCU free overloads the RCU head over the LRU
1061 */
1062 struct rcu_head *head = (void *)&page->lru;
1063
1064 call_rcu(head, rcu_free_slab);
1065 } else
1066 __free_slab(s, page);
1067}
1068
1069static void discard_slab(struct kmem_cache *s, struct page *page)
1070{
1071 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1072
1073 atomic_long_dec(&n->nr_slabs);
1074 reset_page_mapcount(page);
35e5d7ee
CL
1075 ClearSlabDebug(page);
1076 __ClearPageSlab(page);
81819f0f
CL
1077 free_slab(s, page);
1078}
1079
1080/*
1081 * Per slab locking using the pagelock
1082 */
1083static __always_inline void slab_lock(struct page *page)
1084{
1085 bit_spin_lock(PG_locked, &page->flags);
1086}
1087
1088static __always_inline void slab_unlock(struct page *page)
1089{
1090 bit_spin_unlock(PG_locked, &page->flags);
1091}
1092
1093static __always_inline int slab_trylock(struct page *page)
1094{
1095 int rc = 1;
1096
1097 rc = bit_spin_trylock(PG_locked, &page->flags);
1098 return rc;
1099}
1100
1101/*
1102 * Management of partially allocated slabs
1103 */
e95eed57 1104static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
81819f0f 1105{
e95eed57
CL
1106 spin_lock(&n->list_lock);
1107 n->nr_partial++;
1108 list_add_tail(&page->lru, &n->partial);
1109 spin_unlock(&n->list_lock);
1110}
81819f0f 1111
e95eed57
CL
1112static void add_partial(struct kmem_cache_node *n, struct page *page)
1113{
81819f0f
CL
1114 spin_lock(&n->list_lock);
1115 n->nr_partial++;
1116 list_add(&page->lru, &n->partial);
1117 spin_unlock(&n->list_lock);
1118}
1119
1120static void remove_partial(struct kmem_cache *s,
1121 struct page *page)
1122{
1123 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1124
1125 spin_lock(&n->list_lock);
1126 list_del(&page->lru);
1127 n->nr_partial--;
1128 spin_unlock(&n->list_lock);
1129}
1130
1131/*
672bba3a 1132 * Lock slab and remove from the partial list.
81819f0f 1133 *
672bba3a 1134 * Must hold list_lock.
81819f0f
CL
1135 */
1136static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
1137{
1138 if (slab_trylock(page)) {
1139 list_del(&page->lru);
1140 n->nr_partial--;
1141 return 1;
1142 }
1143 return 0;
1144}
1145
1146/*
672bba3a 1147 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1148 */
1149static struct page *get_partial_node(struct kmem_cache_node *n)
1150{
1151 struct page *page;
1152
1153 /*
1154 * Racy check. If we mistakenly see no partial slabs then we
1155 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1156 * partial slab and there is none available then get_partials()
1157 * will return NULL.
81819f0f
CL
1158 */
1159 if (!n || !n->nr_partial)
1160 return NULL;
1161
1162 spin_lock(&n->list_lock);
1163 list_for_each_entry(page, &n->partial, lru)
1164 if (lock_and_del_slab(n, page))
1165 goto out;
1166 page = NULL;
1167out:
1168 spin_unlock(&n->list_lock);
1169 return page;
1170}
1171
1172/*
672bba3a 1173 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1174 */
1175static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1176{
1177#ifdef CONFIG_NUMA
1178 struct zonelist *zonelist;
1179 struct zone **z;
1180 struct page *page;
1181
1182 /*
672bba3a
CL
1183 * The defrag ratio allows a configuration of the tradeoffs between
1184 * inter node defragmentation and node local allocations. A lower
1185 * defrag_ratio increases the tendency to do local allocations
1186 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1187 *
672bba3a
CL
1188 * If the defrag_ratio is set to 0 then kmalloc() always
1189 * returns node local objects. If the ratio is higher then kmalloc()
1190 * may return off node objects because partial slabs are obtained
1191 * from other nodes and filled up.
81819f0f
CL
1192 *
1193 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1194 * defrag_ratio = 1000) then every (well almost) allocation will
1195 * first attempt to defrag slab caches on other nodes. This means
1196 * scanning over all nodes to look for partial slabs which may be
1197 * expensive if we do it every time we are trying to find a slab
1198 * with available objects.
81819f0f
CL
1199 */
1200 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1201 return NULL;
1202
1203 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1204 ->node_zonelists[gfp_zone(flags)];
1205 for (z = zonelist->zones; *z; z++) {
1206 struct kmem_cache_node *n;
1207
1208 n = get_node(s, zone_to_nid(*z));
1209
1210 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1211 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1212 page = get_partial_node(n);
1213 if (page)
1214 return page;
1215 }
1216 }
1217#endif
1218 return NULL;
1219}
1220
1221/*
1222 * Get a partial page, lock it and return it.
1223 */
1224static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1225{
1226 struct page *page;
1227 int searchnode = (node == -1) ? numa_node_id() : node;
1228
1229 page = get_partial_node(get_node(s, searchnode));
1230 if (page || (flags & __GFP_THISNODE))
1231 return page;
1232
1233 return get_any_partial(s, flags);
1234}
1235
1236/*
1237 * Move a page back to the lists.
1238 *
1239 * Must be called with the slab lock held.
1240 *
1241 * On exit the slab lock will have been dropped.
1242 */
1243static void putback_slab(struct kmem_cache *s, struct page *page)
1244{
e95eed57
CL
1245 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1246
81819f0f 1247 if (page->inuse) {
e95eed57 1248
81819f0f 1249 if (page->freelist)
e95eed57 1250 add_partial(n, page);
35e5d7ee 1251 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
e95eed57 1252 add_full(n, page);
81819f0f 1253 slab_unlock(page);
e95eed57 1254
81819f0f 1255 } else {
e95eed57
CL
1256 if (n->nr_partial < MIN_PARTIAL) {
1257 /*
672bba3a
CL
1258 * Adding an empty slab to the partial slabs in order
1259 * to avoid page allocator overhead. This slab needs
1260 * to come after the other slabs with objects in
1261 * order to fill them up. That way the size of the
1262 * partial list stays small. kmem_cache_shrink can
1263 * reclaim empty slabs from the partial list.
e95eed57
CL
1264 */
1265 add_partial_tail(n, page);
1266 slab_unlock(page);
1267 } else {
1268 slab_unlock(page);
1269 discard_slab(s, page);
1270 }
81819f0f
CL
1271 }
1272}
1273
1274/*
1275 * Remove the cpu slab
1276 */
1277static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1278{
1279 s->cpu_slab[cpu] = NULL;
1280 ClearPageActive(page);
1281
1282 putback_slab(s, page);
1283}
1284
1285static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1286{
1287 slab_lock(page);
1288 deactivate_slab(s, page, cpu);
1289}
1290
1291/*
1292 * Flush cpu slab.
1293 * Called from IPI handler with interrupts disabled.
1294 */
1295static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1296{
1297 struct page *page = s->cpu_slab[cpu];
1298
1299 if (likely(page))
1300 flush_slab(s, page, cpu);
1301}
1302
1303static void flush_cpu_slab(void *d)
1304{
1305 struct kmem_cache *s = d;
1306 int cpu = smp_processor_id();
1307
1308 __flush_cpu_slab(s, cpu);
1309}
1310
1311static void flush_all(struct kmem_cache *s)
1312{
1313#ifdef CONFIG_SMP
1314 on_each_cpu(flush_cpu_slab, s, 1, 1);
1315#else
1316 unsigned long flags;
1317
1318 local_irq_save(flags);
1319 flush_cpu_slab(s);
1320 local_irq_restore(flags);
1321#endif
1322}
1323
1324/*
1325 * slab_alloc is optimized to only modify two cachelines on the fast path
1326 * (aside from the stack):
1327 *
1328 * 1. The page struct
1329 * 2. The first cacheline of the object to be allocated.
1330 *
672bba3a 1331 * The only other cache lines that are read (apart from code) is the
81819f0f
CL
1332 * per cpu array in the kmem_cache struct.
1333 *
1334 * Fastpath is not possible if we need to get a new slab or have
35e5d7ee 1335 * debugging enabled (which means all slabs are marked with SlabDebug)
81819f0f 1336 */
77c5e2d0
CL
1337static void *slab_alloc(struct kmem_cache *s,
1338 gfp_t gfpflags, int node, void *addr)
81819f0f
CL
1339{
1340 struct page *page;
1341 void **object;
1342 unsigned long flags;
1343 int cpu;
1344
1345 local_irq_save(flags);
1346 cpu = smp_processor_id();
1347 page = s->cpu_slab[cpu];
1348 if (!page)
1349 goto new_slab;
1350
1351 slab_lock(page);
1352 if (unlikely(node != -1 && page_to_nid(page) != node))
1353 goto another_slab;
1354redo:
1355 object = page->freelist;
1356 if (unlikely(!object))
1357 goto another_slab;
35e5d7ee 1358 if (unlikely(SlabDebug(page)))
81819f0f
CL
1359 goto debug;
1360
1361have_object:
1362 page->inuse++;
1363 page->freelist = object[page->offset];
1364 slab_unlock(page);
1365 local_irq_restore(flags);
1366 return object;
1367
1368another_slab:
1369 deactivate_slab(s, page, cpu);
1370
1371new_slab:
1372 page = get_partial(s, gfpflags, node);
1373 if (likely(page)) {
1374have_slab:
1375 s->cpu_slab[cpu] = page;
1376 SetPageActive(page);
1377 goto redo;
1378 }
1379
1380 page = new_slab(s, gfpflags, node);
1381 if (page) {
1382 cpu = smp_processor_id();
1383 if (s->cpu_slab[cpu]) {
1384 /*
672bba3a
CL
1385 * Someone else populated the cpu_slab while we
1386 * enabled interrupts, or we have gotten scheduled
1387 * on another cpu. The page may not be on the
1388 * requested node even if __GFP_THISNODE was
1389 * specified. So we need to recheck.
81819f0f
CL
1390 */
1391 if (node == -1 ||
1392 page_to_nid(s->cpu_slab[cpu]) == node) {
1393 /*
1394 * Current cpuslab is acceptable and we
1395 * want the current one since its cache hot
1396 */
1397 discard_slab(s, page);
1398 page = s->cpu_slab[cpu];
1399 slab_lock(page);
1400 goto redo;
1401 }
672bba3a 1402 /* New slab does not fit our expectations */
81819f0f
CL
1403 flush_slab(s, s->cpu_slab[cpu], cpu);
1404 }
1405 slab_lock(page);
1406 goto have_slab;
1407 }
1408 local_irq_restore(flags);
1409 return NULL;
1410debug:
1411 if (!alloc_object_checks(s, page, object))
1412 goto another_slab;
1413 if (s->flags & SLAB_STORE_USER)
77c5e2d0 1414 set_track(s, object, TRACK_ALLOC, addr);
636f0d7d 1415 trace(s, page, object, 1);
70d71228 1416 init_object(s, object, 1);
81819f0f
CL
1417 goto have_object;
1418}
1419
1420void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1421{
77c5e2d0 1422 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1423}
1424EXPORT_SYMBOL(kmem_cache_alloc);
1425
1426#ifdef CONFIG_NUMA
1427void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1428{
77c5e2d0 1429 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1430}
1431EXPORT_SYMBOL(kmem_cache_alloc_node);
1432#endif
1433
1434/*
1435 * The fastpath only writes the cacheline of the page struct and the first
1436 * cacheline of the object.
1437 *
672bba3a
CL
1438 * We read the cpu_slab cacheline to check if the slab is the per cpu
1439 * slab for this processor.
81819f0f 1440 */
77c5e2d0
CL
1441static void slab_free(struct kmem_cache *s, struct page *page,
1442 void *x, void *addr)
81819f0f
CL
1443{
1444 void *prior;
1445 void **object = (void *)x;
1446 unsigned long flags;
1447
1448 local_irq_save(flags);
1449 slab_lock(page);
1450
35e5d7ee 1451 if (unlikely(SlabDebug(page)))
81819f0f
CL
1452 goto debug;
1453checks_ok:
1454 prior = object[page->offset] = page->freelist;
1455 page->freelist = object;
1456 page->inuse--;
1457
1458 if (unlikely(PageActive(page)))
1459 /*
1460 * Cpu slabs are never on partial lists and are
1461 * never freed.
1462 */
1463 goto out_unlock;
1464
1465 if (unlikely(!page->inuse))
1466 goto slab_empty;
1467
1468 /*
1469 * Objects left in the slab. If it
1470 * was not on the partial list before
1471 * then add it.
1472 */
1473 if (unlikely(!prior))
e95eed57 1474 add_partial(get_node(s, page_to_nid(page)), page);
81819f0f
CL
1475
1476out_unlock:
1477 slab_unlock(page);
1478 local_irq_restore(flags);
1479 return;
1480
1481slab_empty:
1482 if (prior)
1483 /*
672bba3a 1484 * Slab still on the partial list.
81819f0f
CL
1485 */
1486 remove_partial(s, page);
1487
1488 slab_unlock(page);
1489 discard_slab(s, page);
1490 local_irq_restore(flags);
1491 return;
1492
1493debug:
77c5e2d0
CL
1494 if (!free_object_checks(s, page, x))
1495 goto out_unlock;
643b1138
CL
1496 if (!PageActive(page) && !page->freelist)
1497 remove_full(s, page);
77c5e2d0
CL
1498 if (s->flags & SLAB_STORE_USER)
1499 set_track(s, x, TRACK_FREE, addr);
636f0d7d 1500 trace(s, page, object, 0);
70d71228 1501 init_object(s, object, 0);
77c5e2d0 1502 goto checks_ok;
81819f0f
CL
1503}
1504
1505void kmem_cache_free(struct kmem_cache *s, void *x)
1506{
77c5e2d0 1507 struct page *page;
81819f0f 1508
b49af68f 1509 page = virt_to_head_page(x);
81819f0f 1510
77c5e2d0 1511 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1512}
1513EXPORT_SYMBOL(kmem_cache_free);
1514
1515/* Figure out on which slab object the object resides */
1516static struct page *get_object_page(const void *x)
1517{
b49af68f 1518 struct page *page = virt_to_head_page(x);
81819f0f
CL
1519
1520 if (!PageSlab(page))
1521 return NULL;
1522
1523 return page;
1524}
1525
1526/*
672bba3a
CL
1527 * Object placement in a slab is made very easy because we always start at
1528 * offset 0. If we tune the size of the object to the alignment then we can
1529 * get the required alignment by putting one properly sized object after
1530 * another.
81819f0f
CL
1531 *
1532 * Notice that the allocation order determines the sizes of the per cpu
1533 * caches. Each processor has always one slab available for allocations.
1534 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1535 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1536 * locking overhead.
81819f0f
CL
1537 */
1538
1539/*
1540 * Mininum / Maximum order of slab pages. This influences locking overhead
1541 * and slab fragmentation. A higher order reduces the number of partial slabs
1542 * and increases the number of allocations possible without having to
1543 * take the list_lock.
1544 */
1545static int slub_min_order;
1546static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1547static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1548
1549/*
1550 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1551 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1552 */
1553static int slub_nomerge;
1554
81819f0f
CL
1555/*
1556 * Calculate the order of allocation given an slab object size.
1557 *
672bba3a
CL
1558 * The order of allocation has significant impact on performance and other
1559 * system components. Generally order 0 allocations should be preferred since
1560 * order 0 does not cause fragmentation in the page allocator. Larger objects
1561 * be problematic to put into order 0 slabs because there may be too much
1562 * unused space left. We go to a higher order if more than 1/8th of the slab
1563 * would be wasted.
1564 *
1565 * In order to reach satisfactory performance we must ensure that a minimum
1566 * number of objects is in one slab. Otherwise we may generate too much
1567 * activity on the partial lists which requires taking the list_lock. This is
1568 * less a concern for large slabs though which are rarely used.
81819f0f 1569 *
672bba3a
CL
1570 * slub_max_order specifies the order where we begin to stop considering the
1571 * number of objects in a slab as critical. If we reach slub_max_order then
1572 * we try to keep the page order as low as possible. So we accept more waste
1573 * of space in favor of a small page order.
81819f0f 1574 *
672bba3a
CL
1575 * Higher order allocations also allow the placement of more objects in a
1576 * slab and thereby reduce object handling overhead. If the user has
1577 * requested a higher mininum order then we start with that one instead of
1578 * the smallest order which will fit the object.
81819f0f
CL
1579 */
1580static int calculate_order(int size)
1581{
1582 int order;
1583 int rem;
1584
1585 for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT);
1586 order < MAX_ORDER; order++) {
1587 unsigned long slab_size = PAGE_SIZE << order;
1588
45edfa58 1589 if (order < slub_max_order &&
81819f0f
CL
1590 slab_size < slub_min_objects * size)
1591 continue;
1592
1593 if (slab_size < size)
1594 continue;
1595
45edfa58
CL
1596 if (order >= slub_max_order)
1597 break;
1598
81819f0f
CL
1599 rem = slab_size % size;
1600
672bba3a 1601 if (rem <= slab_size / 8)
81819f0f
CL
1602 break;
1603
1604 }
1605 if (order >= MAX_ORDER)
1606 return -E2BIG;
672bba3a 1607
81819f0f
CL
1608 return order;
1609}
1610
1611/*
672bba3a 1612 * Figure out what the alignment of the objects will be.
81819f0f
CL
1613 */
1614static unsigned long calculate_alignment(unsigned long flags,
1615 unsigned long align, unsigned long size)
1616{
1617 /*
1618 * If the user wants hardware cache aligned objects then
1619 * follow that suggestion if the object is sufficiently
1620 * large.
1621 *
1622 * The hardware cache alignment cannot override the
1623 * specified alignment though. If that is greater
1624 * then use it.
1625 */
5af60839 1626 if ((flags & SLAB_HWCACHE_ALIGN) &&
65c02d4c
CL
1627 size > cache_line_size() / 2)
1628 return max_t(unsigned long, align, cache_line_size());
81819f0f
CL
1629
1630 if (align < ARCH_SLAB_MINALIGN)
1631 return ARCH_SLAB_MINALIGN;
1632
1633 return ALIGN(align, sizeof(void *));
1634}
1635
1636static void init_kmem_cache_node(struct kmem_cache_node *n)
1637{
1638 n->nr_partial = 0;
1639 atomic_long_set(&n->nr_slabs, 0);
1640 spin_lock_init(&n->list_lock);
1641 INIT_LIST_HEAD(&n->partial);
643b1138 1642 INIT_LIST_HEAD(&n->full);
81819f0f
CL
1643}
1644
1645#ifdef CONFIG_NUMA
1646/*
1647 * No kmalloc_node yet so do it by hand. We know that this is the first
1648 * slab on the node for this slabcache. There are no concurrent accesses
1649 * possible.
1650 *
1651 * Note that this function only works on the kmalloc_node_cache
1652 * when allocating for the kmalloc_node_cache.
1653 */
1654static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1655 int node)
1656{
1657 struct page *page;
1658 struct kmem_cache_node *n;
1659
1660 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1661
1662 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1663 /* new_slab() disables interupts */
1664 local_irq_enable();
1665
1666 BUG_ON(!page);
1667 n = page->freelist;
1668 BUG_ON(!n);
1669 page->freelist = get_freepointer(kmalloc_caches, n);
1670 page->inuse++;
1671 kmalloc_caches->node[node] = n;
1672 init_object(kmalloc_caches, n, 1);
1673 init_kmem_cache_node(n);
1674 atomic_long_inc(&n->nr_slabs);
e95eed57 1675 add_partial(n, page);
81819f0f
CL
1676 return n;
1677}
1678
1679static void free_kmem_cache_nodes(struct kmem_cache *s)
1680{
1681 int node;
1682
1683 for_each_online_node(node) {
1684 struct kmem_cache_node *n = s->node[node];
1685 if (n && n != &s->local_node)
1686 kmem_cache_free(kmalloc_caches, n);
1687 s->node[node] = NULL;
1688 }
1689}
1690
1691static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1692{
1693 int node;
1694 int local_node;
1695
1696 if (slab_state >= UP)
1697 local_node = page_to_nid(virt_to_page(s));
1698 else
1699 local_node = 0;
1700
1701 for_each_online_node(node) {
1702 struct kmem_cache_node *n;
1703
1704 if (local_node == node)
1705 n = &s->local_node;
1706 else {
1707 if (slab_state == DOWN) {
1708 n = early_kmem_cache_node_alloc(gfpflags,
1709 node);
1710 continue;
1711 }
1712 n = kmem_cache_alloc_node(kmalloc_caches,
1713 gfpflags, node);
1714
1715 if (!n) {
1716 free_kmem_cache_nodes(s);
1717 return 0;
1718 }
1719
1720 }
1721 s->node[node] = n;
1722 init_kmem_cache_node(n);
1723 }
1724 return 1;
1725}
1726#else
1727static void free_kmem_cache_nodes(struct kmem_cache *s)
1728{
1729}
1730
1731static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1732{
1733 init_kmem_cache_node(&s->local_node);
1734 return 1;
1735}
1736#endif
1737
1738/*
1739 * calculate_sizes() determines the order and the distribution of data within
1740 * a slab object.
1741 */
1742static int calculate_sizes(struct kmem_cache *s)
1743{
1744 unsigned long flags = s->flags;
1745 unsigned long size = s->objsize;
1746 unsigned long align = s->align;
1747
1748 /*
1749 * Determine if we can poison the object itself. If the user of
1750 * the slab may touch the object after free or before allocation
1751 * then we should never poison the object itself.
1752 */
1753 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1754 !s->ctor && !s->dtor)
1755 s->flags |= __OBJECT_POISON;
1756 else
1757 s->flags &= ~__OBJECT_POISON;
1758
1759 /*
1760 * Round up object size to the next word boundary. We can only
1761 * place the free pointer at word boundaries and this determines
1762 * the possible location of the free pointer.
1763 */
1764 size = ALIGN(size, sizeof(void *));
1765
41ecc55b 1766#ifdef CONFIG_SLUB_DEBUG
81819f0f 1767 /*
672bba3a 1768 * If we are Redzoning then check if there is some space between the
81819f0f 1769 * end of the object and the free pointer. If not then add an
672bba3a 1770 * additional word to have some bytes to store Redzone information.
81819f0f
CL
1771 */
1772 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1773 size += sizeof(void *);
41ecc55b 1774#endif
81819f0f
CL
1775
1776 /*
672bba3a
CL
1777 * With that we have determined the number of bytes in actual use
1778 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
1779 */
1780 s->inuse = size;
1781
41ecc55b 1782#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
1783 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1784 s->ctor || s->dtor)) {
1785 /*
1786 * Relocate free pointer after the object if it is not
1787 * permitted to overwrite the first word of the object on
1788 * kmem_cache_free.
1789 *
1790 * This is the case if we do RCU, have a constructor or
1791 * destructor or are poisoning the objects.
1792 */
1793 s->offset = size;
1794 size += sizeof(void *);
1795 }
1796
1797 if (flags & SLAB_STORE_USER)
1798 /*
1799 * Need to store information about allocs and frees after
1800 * the object.
1801 */
1802 size += 2 * sizeof(struct track);
1803
be7b3fbc 1804 if (flags & SLAB_RED_ZONE)
81819f0f
CL
1805 /*
1806 * Add some empty padding so that we can catch
1807 * overwrites from earlier objects rather than let
1808 * tracking information or the free pointer be
1809 * corrupted if an user writes before the start
1810 * of the object.
1811 */
1812 size += sizeof(void *);
41ecc55b 1813#endif
672bba3a 1814
81819f0f
CL
1815 /*
1816 * Determine the alignment based on various parameters that the
65c02d4c
CL
1817 * user specified and the dynamic determination of cache line size
1818 * on bootup.
81819f0f
CL
1819 */
1820 align = calculate_alignment(flags, align, s->objsize);
1821
1822 /*
1823 * SLUB stores one object immediately after another beginning from
1824 * offset 0. In order to align the objects we have to simply size
1825 * each object to conform to the alignment.
1826 */
1827 size = ALIGN(size, align);
1828 s->size = size;
1829
1830 s->order = calculate_order(size);
1831 if (s->order < 0)
1832 return 0;
1833
1834 /*
1835 * Determine the number of objects per slab
1836 */
1837 s->objects = (PAGE_SIZE << s->order) / size;
1838
1839 /*
1840 * Verify that the number of objects is within permitted limits.
1841 * The page->inuse field is only 16 bit wide! So we cannot have
1842 * more than 64k objects per slab.
1843 */
1844 if (!s->objects || s->objects > 65535)
1845 return 0;
1846 return 1;
1847
1848}
1849
81819f0f
CL
1850static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1851 const char *name, size_t size,
1852 size_t align, unsigned long flags,
1853 void (*ctor)(void *, struct kmem_cache *, unsigned long),
1854 void (*dtor)(void *, struct kmem_cache *, unsigned long))
1855{
1856 memset(s, 0, kmem_size);
1857 s->name = name;
1858 s->ctor = ctor;
1859 s->dtor = dtor;
1860 s->objsize = size;
1861 s->flags = flags;
1862 s->align = align;
41ecc55b 1863 kmem_cache_open_debug_check(s);
81819f0f
CL
1864
1865 if (!calculate_sizes(s))
1866 goto error;
1867
1868 s->refcount = 1;
1869#ifdef CONFIG_NUMA
1870 s->defrag_ratio = 100;
1871#endif
1872
1873 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
1874 return 1;
1875error:
1876 if (flags & SLAB_PANIC)
1877 panic("Cannot create slab %s size=%lu realsize=%u "
1878 "order=%u offset=%u flags=%lx\n",
1879 s->name, (unsigned long)size, s->size, s->order,
1880 s->offset, flags);
1881 return 0;
1882}
1883EXPORT_SYMBOL(kmem_cache_open);
1884
1885/*
1886 * Check if a given pointer is valid
1887 */
1888int kmem_ptr_validate(struct kmem_cache *s, const void *object)
1889{
1890 struct page * page;
81819f0f
CL
1891
1892 page = get_object_page(object);
1893
1894 if (!page || s != page->slab)
1895 /* No slab or wrong slab */
1896 return 0;
1897
abcd08a6 1898 if (!check_valid_pointer(s, page, object))
81819f0f
CL
1899 return 0;
1900
1901 /*
1902 * We could also check if the object is on the slabs freelist.
1903 * But this would be too expensive and it seems that the main
1904 * purpose of kmem_ptr_valid is to check if the object belongs
1905 * to a certain slab.
1906 */
1907 return 1;
1908}
1909EXPORT_SYMBOL(kmem_ptr_validate);
1910
1911/*
1912 * Determine the size of a slab object
1913 */
1914unsigned int kmem_cache_size(struct kmem_cache *s)
1915{
1916 return s->objsize;
1917}
1918EXPORT_SYMBOL(kmem_cache_size);
1919
1920const char *kmem_cache_name(struct kmem_cache *s)
1921{
1922 return s->name;
1923}
1924EXPORT_SYMBOL(kmem_cache_name);
1925
1926/*
672bba3a
CL
1927 * Attempt to free all slabs on a node. Return the number of slabs we
1928 * were unable to free.
81819f0f
CL
1929 */
1930static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
1931 struct list_head *list)
1932{
1933 int slabs_inuse = 0;
1934 unsigned long flags;
1935 struct page *page, *h;
1936
1937 spin_lock_irqsave(&n->list_lock, flags);
1938 list_for_each_entry_safe(page, h, list, lru)
1939 if (!page->inuse) {
1940 list_del(&page->lru);
1941 discard_slab(s, page);
1942 } else
1943 slabs_inuse++;
1944 spin_unlock_irqrestore(&n->list_lock, flags);
1945 return slabs_inuse;
1946}
1947
1948/*
672bba3a 1949 * Release all resources used by a slab cache.
81819f0f
CL
1950 */
1951static int kmem_cache_close(struct kmem_cache *s)
1952{
1953 int node;
1954
1955 flush_all(s);
1956
1957 /* Attempt to free all objects */
1958 for_each_online_node(node) {
1959 struct kmem_cache_node *n = get_node(s, node);
1960
2086d26a 1961 n->nr_partial -= free_list(s, n, &n->partial);
81819f0f
CL
1962 if (atomic_long_read(&n->nr_slabs))
1963 return 1;
1964 }
1965 free_kmem_cache_nodes(s);
1966 return 0;
1967}
1968
1969/*
1970 * Close a cache and release the kmem_cache structure
1971 * (must be used for caches created using kmem_cache_create)
1972 */
1973void kmem_cache_destroy(struct kmem_cache *s)
1974{
1975 down_write(&slub_lock);
1976 s->refcount--;
1977 if (!s->refcount) {
1978 list_del(&s->list);
1979 if (kmem_cache_close(s))
1980 WARN_ON(1);
1981 sysfs_slab_remove(s);
1982 kfree(s);
1983 }
1984 up_write(&slub_lock);
1985}
1986EXPORT_SYMBOL(kmem_cache_destroy);
1987
1988/********************************************************************
1989 * Kmalloc subsystem
1990 *******************************************************************/
1991
1992struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
1993EXPORT_SYMBOL(kmalloc_caches);
1994
1995#ifdef CONFIG_ZONE_DMA
1996static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
1997#endif
1998
1999static int __init setup_slub_min_order(char *str)
2000{
2001 get_option (&str, &slub_min_order);
2002
2003 return 1;
2004}
2005
2006__setup("slub_min_order=", setup_slub_min_order);
2007
2008static int __init setup_slub_max_order(char *str)
2009{
2010 get_option (&str, &slub_max_order);
2011
2012 return 1;
2013}
2014
2015__setup("slub_max_order=", setup_slub_max_order);
2016
2017static int __init setup_slub_min_objects(char *str)
2018{
2019 get_option (&str, &slub_min_objects);
2020
2021 return 1;
2022}
2023
2024__setup("slub_min_objects=", setup_slub_min_objects);
2025
2026static int __init setup_slub_nomerge(char *str)
2027{
2028 slub_nomerge = 1;
2029 return 1;
2030}
2031
2032__setup("slub_nomerge", setup_slub_nomerge);
2033
81819f0f
CL
2034static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2035 const char *name, int size, gfp_t gfp_flags)
2036{
2037 unsigned int flags = 0;
2038
2039 if (gfp_flags & SLUB_DMA)
2040 flags = SLAB_CACHE_DMA;
2041
2042 down_write(&slub_lock);
2043 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2044 flags, NULL, NULL))
2045 goto panic;
2046
2047 list_add(&s->list, &slab_caches);
2048 up_write(&slub_lock);
2049 if (sysfs_slab_add(s))
2050 goto panic;
2051 return s;
2052
2053panic:
2054 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2055}
2056
2057static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2058{
2059 int index = kmalloc_index(size);
2060
614410d5 2061 if (!index)
81819f0f
CL
2062 return NULL;
2063
2064 /* Allocation too large? */
2065 BUG_ON(index < 0);
2066
2067#ifdef CONFIG_ZONE_DMA
2068 if ((flags & SLUB_DMA)) {
2069 struct kmem_cache *s;
2070 struct kmem_cache *x;
2071 char *text;
2072 size_t realsize;
2073
2074 s = kmalloc_caches_dma[index];
2075 if (s)
2076 return s;
2077
2078 /* Dynamically create dma cache */
2079 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2080 if (!x)
2081 panic("Unable to allocate memory for dma cache\n");
2082
2083 if (index <= KMALLOC_SHIFT_HIGH)
2084 realsize = 1 << index;
2085 else {
2086 if (index == 1)
2087 realsize = 96;
2088 else
2089 realsize = 192;
2090 }
2091
2092 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2093 (unsigned int)realsize);
2094 s = create_kmalloc_cache(x, text, realsize, flags);
2095 kmalloc_caches_dma[index] = s;
2096 return s;
2097 }
2098#endif
2099 return &kmalloc_caches[index];
2100}
2101
2102void *__kmalloc(size_t size, gfp_t flags)
2103{
2104 struct kmem_cache *s = get_slab(size, flags);
2105
2106 if (s)
77c5e2d0 2107 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2108 return NULL;
2109}
2110EXPORT_SYMBOL(__kmalloc);
2111
2112#ifdef CONFIG_NUMA
2113void *__kmalloc_node(size_t size, gfp_t flags, int node)
2114{
2115 struct kmem_cache *s = get_slab(size, flags);
2116
2117 if (s)
77c5e2d0 2118 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2119 return NULL;
2120}
2121EXPORT_SYMBOL(__kmalloc_node);
2122#endif
2123
2124size_t ksize(const void *object)
2125{
2126 struct page *page = get_object_page(object);
2127 struct kmem_cache *s;
2128
2129 BUG_ON(!page);
2130 s = page->slab;
2131 BUG_ON(!s);
2132
2133 /*
2134 * Debugging requires use of the padding between object
2135 * and whatever may come after it.
2136 */
2137 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2138 return s->objsize;
2139
2140 /*
2141 * If we have the need to store the freelist pointer
2142 * back there or track user information then we can
2143 * only use the space before that information.
2144 */
2145 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2146 return s->inuse;
2147
2148 /*
2149 * Else we can use all the padding etc for the allocation
2150 */
2151 return s->size;
2152}
2153EXPORT_SYMBOL(ksize);
2154
2155void kfree(const void *x)
2156{
2157 struct kmem_cache *s;
2158 struct page *page;
2159
2160 if (!x)
2161 return;
2162
b49af68f 2163 page = virt_to_head_page(x);
81819f0f
CL
2164 s = page->slab;
2165
77c5e2d0 2166 slab_free(s, page, (void *)x, __builtin_return_address(0));
81819f0f
CL
2167}
2168EXPORT_SYMBOL(kfree);
2169
2086d26a 2170/*
672bba3a
CL
2171 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2172 * the remaining slabs by the number of items in use. The slabs with the
2173 * most items in use come first. New allocations will then fill those up
2174 * and thus they can be removed from the partial lists.
2175 *
2176 * The slabs with the least items are placed last. This results in them
2177 * being allocated from last increasing the chance that the last objects
2178 * are freed in them.
2086d26a
CL
2179 */
2180int kmem_cache_shrink(struct kmem_cache *s)
2181{
2182 int node;
2183 int i;
2184 struct kmem_cache_node *n;
2185 struct page *page;
2186 struct page *t;
2187 struct list_head *slabs_by_inuse =
2188 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2189 unsigned long flags;
2190
2191 if (!slabs_by_inuse)
2192 return -ENOMEM;
2193
2194 flush_all(s);
2195 for_each_online_node(node) {
2196 n = get_node(s, node);
2197
2198 if (!n->nr_partial)
2199 continue;
2200
2201 for (i = 0; i < s->objects; i++)
2202 INIT_LIST_HEAD(slabs_by_inuse + i);
2203
2204 spin_lock_irqsave(&n->list_lock, flags);
2205
2206 /*
672bba3a 2207 * Build lists indexed by the items in use in each slab.
2086d26a 2208 *
672bba3a
CL
2209 * Note that concurrent frees may occur while we hold the
2210 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2211 */
2212 list_for_each_entry_safe(page, t, &n->partial, lru) {
2213 if (!page->inuse && slab_trylock(page)) {
2214 /*
2215 * Must hold slab lock here because slab_free
2216 * may have freed the last object and be
2217 * waiting to release the slab.
2218 */
2219 list_del(&page->lru);
2220 n->nr_partial--;
2221 slab_unlock(page);
2222 discard_slab(s, page);
2223 } else {
2224 if (n->nr_partial > MAX_PARTIAL)
2225 list_move(&page->lru,
2226 slabs_by_inuse + page->inuse);
2227 }
2228 }
2229
2230 if (n->nr_partial <= MAX_PARTIAL)
2231 goto out;
2232
2233 /*
672bba3a
CL
2234 * Rebuild the partial list with the slabs filled up most
2235 * first and the least used slabs at the end.
2086d26a
CL
2236 */
2237 for (i = s->objects - 1; i >= 0; i--)
2238 list_splice(slabs_by_inuse + i, n->partial.prev);
2239
2240 out:
2241 spin_unlock_irqrestore(&n->list_lock, flags);
2242 }
2243
2244 kfree(slabs_by_inuse);
2245 return 0;
2246}
2247EXPORT_SYMBOL(kmem_cache_shrink);
2248
81819f0f
CL
2249/**
2250 * krealloc - reallocate memory. The contents will remain unchanged.
2251 *
2252 * @p: object to reallocate memory for.
2253 * @new_size: how many bytes of memory are required.
2254 * @flags: the type of memory to allocate.
2255 *
2256 * The contents of the object pointed to are preserved up to the
2257 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2258 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2259 * %NULL pointer, the object pointed to is freed.
2260 */
2261void *krealloc(const void *p, size_t new_size, gfp_t flags)
2262{
81819f0f 2263 void *ret;
1f99a283 2264 size_t ks;
81819f0f
CL
2265
2266 if (unlikely(!p))
2267 return kmalloc(new_size, flags);
2268
2269 if (unlikely(!new_size)) {
2270 kfree(p);
2271 return NULL;
2272 }
2273
1f99a283
CL
2274 ks = ksize(p);
2275 if (ks >= new_size)
81819f0f
CL
2276 return (void *)p;
2277
2278 ret = kmalloc(new_size, flags);
2279 if (ret) {
1f99a283 2280 memcpy(ret, p, min(new_size, ks));
81819f0f
CL
2281 kfree(p);
2282 }
2283 return ret;
2284}
2285EXPORT_SYMBOL(krealloc);
2286
2287/********************************************************************
2288 * Basic setup of slabs
2289 *******************************************************************/
2290
2291void __init kmem_cache_init(void)
2292{
2293 int i;
2294
2295#ifdef CONFIG_NUMA
2296 /*
2297 * Must first have the slab cache available for the allocations of the
672bba3a 2298 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2299 * kmem_cache_open for slab_state == DOWN.
2300 */
2301 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2302 sizeof(struct kmem_cache_node), GFP_KERNEL);
2303#endif
2304
2305 /* Able to allocate the per node structures */
2306 slab_state = PARTIAL;
2307
2308 /* Caches that are not of the two-to-the-power-of size */
2309 create_kmalloc_cache(&kmalloc_caches[1],
2310 "kmalloc-96", 96, GFP_KERNEL);
2311 create_kmalloc_cache(&kmalloc_caches[2],
2312 "kmalloc-192", 192, GFP_KERNEL);
2313
2314 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2315 create_kmalloc_cache(&kmalloc_caches[i],
2316 "kmalloc", 1 << i, GFP_KERNEL);
2317
2318 slab_state = UP;
2319
2320 /* Provide the correct kmalloc names now that the caches are up */
2321 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2322 kmalloc_caches[i]. name =
2323 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2324
2325#ifdef CONFIG_SMP
2326 register_cpu_notifier(&slab_notifier);
2327#endif
2328
2329 if (nr_cpu_ids) /* Remove when nr_cpu_ids is fixed upstream ! */
2330 kmem_size = offsetof(struct kmem_cache, cpu_slab)
2331 + nr_cpu_ids * sizeof(struct page *);
2332
2333 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2334 " Processors=%d, Nodes=%d\n",
65c02d4c 2335 KMALLOC_SHIFT_HIGH, cache_line_size(),
81819f0f
CL
2336 slub_min_order, slub_max_order, slub_min_objects,
2337 nr_cpu_ids, nr_node_ids);
2338}
2339
2340/*
2341 * Find a mergeable slab cache
2342 */
2343static int slab_unmergeable(struct kmem_cache *s)
2344{
2345 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2346 return 1;
2347
2348 if (s->ctor || s->dtor)
2349 return 1;
2350
2351 return 0;
2352}
2353
2354static struct kmem_cache *find_mergeable(size_t size,
2355 size_t align, unsigned long flags,
2356 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2357 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2358{
2359 struct list_head *h;
2360
2361 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2362 return NULL;
2363
2364 if (ctor || dtor)
2365 return NULL;
2366
2367 size = ALIGN(size, sizeof(void *));
2368 align = calculate_alignment(flags, align, size);
2369 size = ALIGN(size, align);
2370
2371 list_for_each(h, &slab_caches) {
2372 struct kmem_cache *s =
2373 container_of(h, struct kmem_cache, list);
2374
2375 if (slab_unmergeable(s))
2376 continue;
2377
2378 if (size > s->size)
2379 continue;
2380
2381 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2382 (s->flags & SLUB_MERGE_SAME))
2383 continue;
2384 /*
2385 * Check if alignment is compatible.
2386 * Courtesy of Adrian Drzewiecki
2387 */
2388 if ((s->size & ~(align -1)) != s->size)
2389 continue;
2390
2391 if (s->size - size >= sizeof(void *))
2392 continue;
2393
2394 return s;
2395 }
2396 return NULL;
2397}
2398
2399struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2400 size_t align, unsigned long flags,
2401 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2402 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2403{
2404 struct kmem_cache *s;
2405
2406 down_write(&slub_lock);
2407 s = find_mergeable(size, align, flags, dtor, ctor);
2408 if (s) {
2409 s->refcount++;
2410 /*
2411 * Adjust the object sizes so that we clear
2412 * the complete object on kzalloc.
2413 */
2414 s->objsize = max(s->objsize, (int)size);
2415 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2416 if (sysfs_slab_alias(s, name))
2417 goto err;
2418 } else {
2419 s = kmalloc(kmem_size, GFP_KERNEL);
2420 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2421 size, align, flags, ctor, dtor)) {
2422 if (sysfs_slab_add(s)) {
2423 kfree(s);
2424 goto err;
2425 }
2426 list_add(&s->list, &slab_caches);
2427 } else
2428 kfree(s);
2429 }
2430 up_write(&slub_lock);
2431 return s;
2432
2433err:
2434 up_write(&slub_lock);
2435 if (flags & SLAB_PANIC)
2436 panic("Cannot create slabcache %s\n", name);
2437 else
2438 s = NULL;
2439 return s;
2440}
2441EXPORT_SYMBOL(kmem_cache_create);
2442
2443void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2444{
2445 void *x;
2446
77c5e2d0 2447 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2448 if (x)
2449 memset(x, 0, s->objsize);
2450 return x;
2451}
2452EXPORT_SYMBOL(kmem_cache_zalloc);
2453
2454#ifdef CONFIG_SMP
2455static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2456{
2457 struct list_head *h;
2458
2459 down_read(&slub_lock);
2460 list_for_each(h, &slab_caches) {
2461 struct kmem_cache *s =
2462 container_of(h, struct kmem_cache, list);
2463
2464 func(s, cpu);
2465 }
2466 up_read(&slub_lock);
2467}
2468
2469/*
672bba3a
CL
2470 * Use the cpu notifier to insure that the cpu slabs are flushed when
2471 * necessary.
81819f0f
CL
2472 */
2473static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2474 unsigned long action, void *hcpu)
2475{
2476 long cpu = (long)hcpu;
2477
2478 switch (action) {
2479 case CPU_UP_CANCELED:
2480 case CPU_DEAD:
2481 for_all_slabs(__flush_cpu_slab, cpu);
2482 break;
2483 default:
2484 break;
2485 }
2486 return NOTIFY_OK;
2487}
2488
2489static struct notifier_block __cpuinitdata slab_notifier =
2490 { &slab_cpuup_callback, NULL, 0 };
2491
2492#endif
2493
81819f0f
CL
2494#ifdef CONFIG_NUMA
2495
2496/*****************************************************************
2497 * Generic reaper used to support the page allocator
2498 * (the cpu slabs are reaped by a per slab workqueue).
2499 *
2500 * Maybe move this to the page allocator?
2501 ****************************************************************/
2502
2503static DEFINE_PER_CPU(unsigned long, reap_node);
2504
2505static void init_reap_node(int cpu)
2506{
2507 int node;
2508
2509 node = next_node(cpu_to_node(cpu), node_online_map);
2510 if (node == MAX_NUMNODES)
2511 node = first_node(node_online_map);
2512
2513 __get_cpu_var(reap_node) = node;
2514}
2515
2516static void next_reap_node(void)
2517{
2518 int node = __get_cpu_var(reap_node);
2519
2520 /*
2521 * Also drain per cpu pages on remote zones
2522 */
2523 if (node != numa_node_id())
2524 drain_node_pages(node);
2525
2526 node = next_node(node, node_online_map);
2527 if (unlikely(node >= MAX_NUMNODES))
2528 node = first_node(node_online_map);
2529 __get_cpu_var(reap_node) = node;
2530}
2531#else
2532#define init_reap_node(cpu) do { } while (0)
2533#define next_reap_node(void) do { } while (0)
2534#endif
2535
2536#define REAPTIMEOUT_CPUC (2*HZ)
2537
2538#ifdef CONFIG_SMP
2539static DEFINE_PER_CPU(struct delayed_work, reap_work);
2540
2541static void cache_reap(struct work_struct *unused)
2542{
2543 next_reap_node();
2544 refresh_cpu_vm_stats(smp_processor_id());
2545 schedule_delayed_work(&__get_cpu_var(reap_work),
2546 REAPTIMEOUT_CPUC);
2547}
2548
2549static void __devinit start_cpu_timer(int cpu)
2550{
2551 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
2552
2553 /*
2554 * When this gets called from do_initcalls via cpucache_init(),
2555 * init_workqueues() has already run, so keventd will be setup
2556 * at that time.
2557 */
2558 if (keventd_up() && reap_work->work.func == NULL) {
2559 init_reap_node(cpu);
2560 INIT_DELAYED_WORK(reap_work, cache_reap);
2561 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
2562 }
2563}
2564
2565static int __init cpucache_init(void)
2566{
2567 int cpu;
2568
2569 /*
2570 * Register the timers that drain pcp pages and update vm statistics
2571 */
2572 for_each_online_cpu(cpu)
2573 start_cpu_timer(cpu);
2574 return 0;
2575}
2576__initcall(cpucache_init);
2577#endif
2578
81819f0f
CL
2579void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2580{
2581 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2582
2583 if (!s)
2584 return NULL;
2585
77c5e2d0 2586 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
2587}
2588
2589void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2590 int node, void *caller)
2591{
2592 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2593
2594 if (!s)
2595 return NULL;
2596
77c5e2d0 2597 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
2598}
2599
41ecc55b 2600#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
53e15af0
CL
2601static int validate_slab(struct kmem_cache *s, struct page *page)
2602{
2603 void *p;
2604 void *addr = page_address(page);
7656c72b 2605 DECLARE_BITMAP(map, s->objects);
53e15af0
CL
2606
2607 if (!check_slab(s, page) ||
2608 !on_freelist(s, page, NULL))
2609 return 0;
2610
2611 /* Now we know that a valid freelist exists */
2612 bitmap_zero(map, s->objects);
2613
7656c72b
CL
2614 for_each_free_object(p, s, page->freelist) {
2615 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
2616 if (!check_object(s, page, p, 0))
2617 return 0;
2618 }
2619
7656c72b
CL
2620 for_each_object(p, s, addr)
2621 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
2622 if (!check_object(s, page, p, 1))
2623 return 0;
2624 return 1;
2625}
2626
2627static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2628{
2629 if (slab_trylock(page)) {
2630 validate_slab(s, page);
2631 slab_unlock(page);
2632 } else
2633 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2634 s->name, page);
2635
2636 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
2637 if (!SlabDebug(page))
2638 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
2639 "on slab 0x%p\n", s->name, page);
2640 } else {
35e5d7ee
CL
2641 if (SlabDebug(page))
2642 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
2643 "slab 0x%p\n", s->name, page);
2644 }
2645}
2646
2647static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2648{
2649 unsigned long count = 0;
2650 struct page *page;
2651 unsigned long flags;
2652
2653 spin_lock_irqsave(&n->list_lock, flags);
2654
2655 list_for_each_entry(page, &n->partial, lru) {
2656 validate_slab_slab(s, page);
2657 count++;
2658 }
2659 if (count != n->nr_partial)
2660 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2661 "counter=%ld\n", s->name, count, n->nr_partial);
2662
2663 if (!(s->flags & SLAB_STORE_USER))
2664 goto out;
2665
2666 list_for_each_entry(page, &n->full, lru) {
2667 validate_slab_slab(s, page);
2668 count++;
2669 }
2670 if (count != atomic_long_read(&n->nr_slabs))
2671 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2672 "counter=%ld\n", s->name, count,
2673 atomic_long_read(&n->nr_slabs));
2674
2675out:
2676 spin_unlock_irqrestore(&n->list_lock, flags);
2677 return count;
2678}
2679
2680static unsigned long validate_slab_cache(struct kmem_cache *s)
2681{
2682 int node;
2683 unsigned long count = 0;
2684
2685 flush_all(s);
2686 for_each_online_node(node) {
2687 struct kmem_cache_node *n = get_node(s, node);
2688
2689 count += validate_slab_node(s, n);
2690 }
2691 return count;
2692}
2693
b3459709
CL
2694#ifdef SLUB_RESILIENCY_TEST
2695static void resiliency_test(void)
2696{
2697 u8 *p;
2698
2699 printk(KERN_ERR "SLUB resiliency testing\n");
2700 printk(KERN_ERR "-----------------------\n");
2701 printk(KERN_ERR "A. Corruption after allocation\n");
2702
2703 p = kzalloc(16, GFP_KERNEL);
2704 p[16] = 0x12;
2705 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2706 " 0x12->0x%p\n\n", p + 16);
2707
2708 validate_slab_cache(kmalloc_caches + 4);
2709
2710 /* Hmmm... The next two are dangerous */
2711 p = kzalloc(32, GFP_KERNEL);
2712 p[32 + sizeof(void *)] = 0x34;
2713 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2714 " 0x34 -> -0x%p\n", p);
2715 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2716
2717 validate_slab_cache(kmalloc_caches + 5);
2718 p = kzalloc(64, GFP_KERNEL);
2719 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2720 *p = 0x56;
2721 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2722 p);
2723 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2724 validate_slab_cache(kmalloc_caches + 6);
2725
2726 printk(KERN_ERR "\nB. Corruption after free\n");
2727 p = kzalloc(128, GFP_KERNEL);
2728 kfree(p);
2729 *p = 0x78;
2730 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2731 validate_slab_cache(kmalloc_caches + 7);
2732
2733 p = kzalloc(256, GFP_KERNEL);
2734 kfree(p);
2735 p[50] = 0x9a;
2736 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2737 validate_slab_cache(kmalloc_caches + 8);
2738
2739 p = kzalloc(512, GFP_KERNEL);
2740 kfree(p);
2741 p[512] = 0xab;
2742 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2743 validate_slab_cache(kmalloc_caches + 9);
2744}
2745#else
2746static void resiliency_test(void) {};
2747#endif
2748
88a420e4 2749/*
672bba3a 2750 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
2751 * and freed.
2752 */
2753
2754struct location {
2755 unsigned long count;
2756 void *addr;
45edfa58
CL
2757 long long sum_time;
2758 long min_time;
2759 long max_time;
2760 long min_pid;
2761 long max_pid;
2762 cpumask_t cpus;
2763 nodemask_t nodes;
88a420e4
CL
2764};
2765
2766struct loc_track {
2767 unsigned long max;
2768 unsigned long count;
2769 struct location *loc;
2770};
2771
2772static void free_loc_track(struct loc_track *t)
2773{
2774 if (t->max)
2775 free_pages((unsigned long)t->loc,
2776 get_order(sizeof(struct location) * t->max));
2777}
2778
2779static int alloc_loc_track(struct loc_track *t, unsigned long max)
2780{
2781 struct location *l;
2782 int order;
2783
2784 if (!max)
2785 max = PAGE_SIZE / sizeof(struct location);
2786
2787 order = get_order(sizeof(struct location) * max);
2788
2789 l = (void *)__get_free_pages(GFP_KERNEL, order);
2790
2791 if (!l)
2792 return 0;
2793
2794 if (t->count) {
2795 memcpy(l, t->loc, sizeof(struct location) * t->count);
2796 free_loc_track(t);
2797 }
2798 t->max = max;
2799 t->loc = l;
2800 return 1;
2801}
2802
2803static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 2804 const struct track *track)
88a420e4
CL
2805{
2806 long start, end, pos;
2807 struct location *l;
2808 void *caddr;
45edfa58 2809 unsigned long age = jiffies - track->when;
88a420e4
CL
2810
2811 start = -1;
2812 end = t->count;
2813
2814 for ( ; ; ) {
2815 pos = start + (end - start + 1) / 2;
2816
2817 /*
2818 * There is nothing at "end". If we end up there
2819 * we need to add something to before end.
2820 */
2821 if (pos == end)
2822 break;
2823
2824 caddr = t->loc[pos].addr;
45edfa58
CL
2825 if (track->addr == caddr) {
2826
2827 l = &t->loc[pos];
2828 l->count++;
2829 if (track->when) {
2830 l->sum_time += age;
2831 if (age < l->min_time)
2832 l->min_time = age;
2833 if (age > l->max_time)
2834 l->max_time = age;
2835
2836 if (track->pid < l->min_pid)
2837 l->min_pid = track->pid;
2838 if (track->pid > l->max_pid)
2839 l->max_pid = track->pid;
2840
2841 cpu_set(track->cpu, l->cpus);
2842 }
2843 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
2844 return 1;
2845 }
2846
45edfa58 2847 if (track->addr < caddr)
88a420e4
CL
2848 end = pos;
2849 else
2850 start = pos;
2851 }
2852
2853 /*
672bba3a 2854 * Not found. Insert new tracking element.
88a420e4
CL
2855 */
2856 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2857 return 0;
2858
2859 l = t->loc + pos;
2860 if (pos < t->count)
2861 memmove(l + 1, l,
2862 (t->count - pos) * sizeof(struct location));
2863 t->count++;
2864 l->count = 1;
45edfa58
CL
2865 l->addr = track->addr;
2866 l->sum_time = age;
2867 l->min_time = age;
2868 l->max_time = age;
2869 l->min_pid = track->pid;
2870 l->max_pid = track->pid;
2871 cpus_clear(l->cpus);
2872 cpu_set(track->cpu, l->cpus);
2873 nodes_clear(l->nodes);
2874 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
2875 return 1;
2876}
2877
2878static void process_slab(struct loc_track *t, struct kmem_cache *s,
2879 struct page *page, enum track_item alloc)
2880{
2881 void *addr = page_address(page);
7656c72b 2882 DECLARE_BITMAP(map, s->objects);
88a420e4
CL
2883 void *p;
2884
2885 bitmap_zero(map, s->objects);
7656c72b
CL
2886 for_each_free_object(p, s, page->freelist)
2887 set_bit(slab_index(p, s, addr), map);
88a420e4 2888
7656c72b 2889 for_each_object(p, s, addr)
45edfa58
CL
2890 if (!test_bit(slab_index(p, s, addr), map))
2891 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
2892}
2893
2894static int list_locations(struct kmem_cache *s, char *buf,
2895 enum track_item alloc)
2896{
2897 int n = 0;
2898 unsigned long i;
2899 struct loc_track t;
2900 int node;
2901
2902 t.count = 0;
2903 t.max = 0;
2904
2905 /* Push back cpu slabs */
2906 flush_all(s);
2907
2908 for_each_online_node(node) {
2909 struct kmem_cache_node *n = get_node(s, node);
2910 unsigned long flags;
2911 struct page *page;
2912
2913 if (!atomic_read(&n->nr_slabs))
2914 continue;
2915
2916 spin_lock_irqsave(&n->list_lock, flags);
2917 list_for_each_entry(page, &n->partial, lru)
2918 process_slab(&t, s, page, alloc);
2919 list_for_each_entry(page, &n->full, lru)
2920 process_slab(&t, s, page, alloc);
2921 spin_unlock_irqrestore(&n->list_lock, flags);
2922 }
2923
2924 for (i = 0; i < t.count; i++) {
45edfa58 2925 struct location *l = &t.loc[i];
88a420e4
CL
2926
2927 if (n > PAGE_SIZE - 100)
2928 break;
45edfa58
CL
2929 n += sprintf(buf + n, "%7ld ", l->count);
2930
2931 if (l->addr)
2932 n += sprint_symbol(buf + n, (unsigned long)l->addr);
88a420e4
CL
2933 else
2934 n += sprintf(buf + n, "<not-available>");
45edfa58
CL
2935
2936 if (l->sum_time != l->min_time) {
2937 unsigned long remainder;
2938
2939 n += sprintf(buf + n, " age=%ld/%ld/%ld",
2940 l->min_time,
2941 div_long_long_rem(l->sum_time, l->count, &remainder),
2942 l->max_time);
2943 } else
2944 n += sprintf(buf + n, " age=%ld",
2945 l->min_time);
2946
2947 if (l->min_pid != l->max_pid)
2948 n += sprintf(buf + n, " pid=%ld-%ld",
2949 l->min_pid, l->max_pid);
2950 else
2951 n += sprintf(buf + n, " pid=%ld",
2952 l->min_pid);
2953
2954 if (num_online_cpus() > 1 && !cpus_empty(l->cpus)) {
2955 n += sprintf(buf + n, " cpus=");
2956 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
2957 l->cpus);
2958 }
2959
2960 if (num_online_nodes() > 1 && !nodes_empty(l->nodes)) {
2961 n += sprintf(buf + n, " nodes=");
2962 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
2963 l->nodes);
2964 }
2965
88a420e4
CL
2966 n += sprintf(buf + n, "\n");
2967 }
2968
2969 free_loc_track(&t);
2970 if (!t.count)
2971 n += sprintf(buf, "No data\n");
2972 return n;
2973}
2974
81819f0f
CL
2975static unsigned long count_partial(struct kmem_cache_node *n)
2976{
2977 unsigned long flags;
2978 unsigned long x = 0;
2979 struct page *page;
2980
2981 spin_lock_irqsave(&n->list_lock, flags);
2982 list_for_each_entry(page, &n->partial, lru)
2983 x += page->inuse;
2984 spin_unlock_irqrestore(&n->list_lock, flags);
2985 return x;
2986}
2987
2988enum slab_stat_type {
2989 SL_FULL,
2990 SL_PARTIAL,
2991 SL_CPU,
2992 SL_OBJECTS
2993};
2994
2995#define SO_FULL (1 << SL_FULL)
2996#define SO_PARTIAL (1 << SL_PARTIAL)
2997#define SO_CPU (1 << SL_CPU)
2998#define SO_OBJECTS (1 << SL_OBJECTS)
2999
3000static unsigned long slab_objects(struct kmem_cache *s,
3001 char *buf, unsigned long flags)
3002{
3003 unsigned long total = 0;
3004 int cpu;
3005 int node;
3006 int x;
3007 unsigned long *nodes;
3008 unsigned long *per_cpu;
3009
3010 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3011 per_cpu = nodes + nr_node_ids;
3012
3013 for_each_possible_cpu(cpu) {
3014 struct page *page = s->cpu_slab[cpu];
3015 int node;
3016
3017 if (page) {
3018 node = page_to_nid(page);
3019 if (flags & SO_CPU) {
3020 int x = 0;
3021
3022 if (flags & SO_OBJECTS)
3023 x = page->inuse;
3024 else
3025 x = 1;
3026 total += x;
3027 nodes[node] += x;
3028 }
3029 per_cpu[node]++;
3030 }
3031 }
3032
3033 for_each_online_node(node) {
3034 struct kmem_cache_node *n = get_node(s, node);
3035
3036 if (flags & SO_PARTIAL) {
3037 if (flags & SO_OBJECTS)
3038 x = count_partial(n);
3039 else
3040 x = n->nr_partial;
3041 total += x;
3042 nodes[node] += x;
3043 }
3044
3045 if (flags & SO_FULL) {
3046 int full_slabs = atomic_read(&n->nr_slabs)
3047 - per_cpu[node]
3048 - n->nr_partial;
3049
3050 if (flags & SO_OBJECTS)
3051 x = full_slabs * s->objects;
3052 else
3053 x = full_slabs;
3054 total += x;
3055 nodes[node] += x;
3056 }
3057 }
3058
3059 x = sprintf(buf, "%lu", total);
3060#ifdef CONFIG_NUMA
3061 for_each_online_node(node)
3062 if (nodes[node])
3063 x += sprintf(buf + x, " N%d=%lu",
3064 node, nodes[node]);
3065#endif
3066 kfree(nodes);
3067 return x + sprintf(buf + x, "\n");
3068}
3069
3070static int any_slab_objects(struct kmem_cache *s)
3071{
3072 int node;
3073 int cpu;
3074
3075 for_each_possible_cpu(cpu)
3076 if (s->cpu_slab[cpu])
3077 return 1;
3078
3079 for_each_node(node) {
3080 struct kmem_cache_node *n = get_node(s, node);
3081
3082 if (n->nr_partial || atomic_read(&n->nr_slabs))
3083 return 1;
3084 }
3085 return 0;
3086}
3087
3088#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3089#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3090
3091struct slab_attribute {
3092 struct attribute attr;
3093 ssize_t (*show)(struct kmem_cache *s, char *buf);
3094 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3095};
3096
3097#define SLAB_ATTR_RO(_name) \
3098 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3099
3100#define SLAB_ATTR(_name) \
3101 static struct slab_attribute _name##_attr = \
3102 __ATTR(_name, 0644, _name##_show, _name##_store)
3103
81819f0f
CL
3104static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3105{
3106 return sprintf(buf, "%d\n", s->size);
3107}
3108SLAB_ATTR_RO(slab_size);
3109
3110static ssize_t align_show(struct kmem_cache *s, char *buf)
3111{
3112 return sprintf(buf, "%d\n", s->align);
3113}
3114SLAB_ATTR_RO(align);
3115
3116static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3117{
3118 return sprintf(buf, "%d\n", s->objsize);
3119}
3120SLAB_ATTR_RO(object_size);
3121
3122static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3123{
3124 return sprintf(buf, "%d\n", s->objects);
3125}
3126SLAB_ATTR_RO(objs_per_slab);
3127
3128static ssize_t order_show(struct kmem_cache *s, char *buf)
3129{
3130 return sprintf(buf, "%d\n", s->order);
3131}
3132SLAB_ATTR_RO(order);
3133
3134static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3135{
3136 if (s->ctor) {
3137 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3138
3139 return n + sprintf(buf + n, "\n");
3140 }
3141 return 0;
3142}
3143SLAB_ATTR_RO(ctor);
3144
3145static ssize_t dtor_show(struct kmem_cache *s, char *buf)
3146{
3147 if (s->dtor) {
3148 int n = sprint_symbol(buf, (unsigned long)s->dtor);
3149
3150 return n + sprintf(buf + n, "\n");
3151 }
3152 return 0;
3153}
3154SLAB_ATTR_RO(dtor);
3155
3156static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3157{
3158 return sprintf(buf, "%d\n", s->refcount - 1);
3159}
3160SLAB_ATTR_RO(aliases);
3161
3162static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3163{
3164 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3165}
3166SLAB_ATTR_RO(slabs);
3167
3168static ssize_t partial_show(struct kmem_cache *s, char *buf)
3169{
3170 return slab_objects(s, buf, SO_PARTIAL);
3171}
3172SLAB_ATTR_RO(partial);
3173
3174static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3175{
3176 return slab_objects(s, buf, SO_CPU);
3177}
3178SLAB_ATTR_RO(cpu_slabs);
3179
3180static ssize_t objects_show(struct kmem_cache *s, char *buf)
3181{
3182 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3183}
3184SLAB_ATTR_RO(objects);
3185
3186static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3187{
3188 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3189}
3190
3191static ssize_t sanity_checks_store(struct kmem_cache *s,
3192 const char *buf, size_t length)
3193{
3194 s->flags &= ~SLAB_DEBUG_FREE;
3195 if (buf[0] == '1')
3196 s->flags |= SLAB_DEBUG_FREE;
3197 return length;
3198}
3199SLAB_ATTR(sanity_checks);
3200
3201static ssize_t trace_show(struct kmem_cache *s, char *buf)
3202{
3203 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3204}
3205
3206static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3207 size_t length)
3208{
3209 s->flags &= ~SLAB_TRACE;
3210 if (buf[0] == '1')
3211 s->flags |= SLAB_TRACE;
3212 return length;
3213}
3214SLAB_ATTR(trace);
3215
3216static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3217{
3218 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3219}
3220
3221static ssize_t reclaim_account_store(struct kmem_cache *s,
3222 const char *buf, size_t length)
3223{
3224 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3225 if (buf[0] == '1')
3226 s->flags |= SLAB_RECLAIM_ACCOUNT;
3227 return length;
3228}
3229SLAB_ATTR(reclaim_account);
3230
3231static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3232{
5af60839 3233 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3234}
3235SLAB_ATTR_RO(hwcache_align);
3236
3237#ifdef CONFIG_ZONE_DMA
3238static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3239{
3240 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3241}
3242SLAB_ATTR_RO(cache_dma);
3243#endif
3244
3245static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3246{
3247 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3248}
3249SLAB_ATTR_RO(destroy_by_rcu);
3250
3251static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3252{
3253 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3254}
3255
3256static ssize_t red_zone_store(struct kmem_cache *s,
3257 const char *buf, size_t length)
3258{
3259 if (any_slab_objects(s))
3260 return -EBUSY;
3261
3262 s->flags &= ~SLAB_RED_ZONE;
3263 if (buf[0] == '1')
3264 s->flags |= SLAB_RED_ZONE;
3265 calculate_sizes(s);
3266 return length;
3267}
3268SLAB_ATTR(red_zone);
3269
3270static ssize_t poison_show(struct kmem_cache *s, char *buf)
3271{
3272 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3273}
3274
3275static ssize_t poison_store(struct kmem_cache *s,
3276 const char *buf, size_t length)
3277{
3278 if (any_slab_objects(s))
3279 return -EBUSY;
3280
3281 s->flags &= ~SLAB_POISON;
3282 if (buf[0] == '1')
3283 s->flags |= SLAB_POISON;
3284 calculate_sizes(s);
3285 return length;
3286}
3287SLAB_ATTR(poison);
3288
3289static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3290{
3291 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3292}
3293
3294static ssize_t store_user_store(struct kmem_cache *s,
3295 const char *buf, size_t length)
3296{
3297 if (any_slab_objects(s))
3298 return -EBUSY;
3299
3300 s->flags &= ~SLAB_STORE_USER;
3301 if (buf[0] == '1')
3302 s->flags |= SLAB_STORE_USER;
3303 calculate_sizes(s);
3304 return length;
3305}
3306SLAB_ATTR(store_user);
3307
53e15af0
CL
3308static ssize_t validate_show(struct kmem_cache *s, char *buf)
3309{
3310 return 0;
3311}
3312
3313static ssize_t validate_store(struct kmem_cache *s,
3314 const char *buf, size_t length)
3315{
3316 if (buf[0] == '1')
3317 validate_slab_cache(s);
3318 else
3319 return -EINVAL;
3320 return length;
3321}
3322SLAB_ATTR(validate);
3323
2086d26a
CL
3324static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3325{
3326 return 0;
3327}
3328
3329static ssize_t shrink_store(struct kmem_cache *s,
3330 const char *buf, size_t length)
3331{
3332 if (buf[0] == '1') {
3333 int rc = kmem_cache_shrink(s);
3334
3335 if (rc)
3336 return rc;
3337 } else
3338 return -EINVAL;
3339 return length;
3340}
3341SLAB_ATTR(shrink);
3342
88a420e4
CL
3343static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3344{
3345 if (!(s->flags & SLAB_STORE_USER))
3346 return -ENOSYS;
3347 return list_locations(s, buf, TRACK_ALLOC);
3348}
3349SLAB_ATTR_RO(alloc_calls);
3350
3351static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3352{
3353 if (!(s->flags & SLAB_STORE_USER))
3354 return -ENOSYS;
3355 return list_locations(s, buf, TRACK_FREE);
3356}
3357SLAB_ATTR_RO(free_calls);
3358
81819f0f
CL
3359#ifdef CONFIG_NUMA
3360static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3361{
3362 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3363}
3364
3365static ssize_t defrag_ratio_store(struct kmem_cache *s,
3366 const char *buf, size_t length)
3367{
3368 int n = simple_strtoul(buf, NULL, 10);
3369
3370 if (n < 100)
3371 s->defrag_ratio = n * 10;
3372 return length;
3373}
3374SLAB_ATTR(defrag_ratio);
3375#endif
3376
3377static struct attribute * slab_attrs[] = {
3378 &slab_size_attr.attr,
3379 &object_size_attr.attr,
3380 &objs_per_slab_attr.attr,
3381 &order_attr.attr,
3382 &objects_attr.attr,
3383 &slabs_attr.attr,
3384 &partial_attr.attr,
3385 &cpu_slabs_attr.attr,
3386 &ctor_attr.attr,
3387 &dtor_attr.attr,
3388 &aliases_attr.attr,
3389 &align_attr.attr,
3390 &sanity_checks_attr.attr,
3391 &trace_attr.attr,
3392 &hwcache_align_attr.attr,
3393 &reclaim_account_attr.attr,
3394 &destroy_by_rcu_attr.attr,
3395 &red_zone_attr.attr,
3396 &poison_attr.attr,
3397 &store_user_attr.attr,
53e15af0 3398 &validate_attr.attr,
2086d26a 3399 &shrink_attr.attr,
88a420e4
CL
3400 &alloc_calls_attr.attr,
3401 &free_calls_attr.attr,
81819f0f
CL
3402#ifdef CONFIG_ZONE_DMA
3403 &cache_dma_attr.attr,
3404#endif
3405#ifdef CONFIG_NUMA
3406 &defrag_ratio_attr.attr,
3407#endif
3408 NULL
3409};
3410
3411static struct attribute_group slab_attr_group = {
3412 .attrs = slab_attrs,
3413};
3414
3415static ssize_t slab_attr_show(struct kobject *kobj,
3416 struct attribute *attr,
3417 char *buf)
3418{
3419 struct slab_attribute *attribute;
3420 struct kmem_cache *s;
3421 int err;
3422
3423 attribute = to_slab_attr(attr);
3424 s = to_slab(kobj);
3425
3426 if (!attribute->show)
3427 return -EIO;
3428
3429 err = attribute->show(s, buf);
3430
3431 return err;
3432}
3433
3434static ssize_t slab_attr_store(struct kobject *kobj,
3435 struct attribute *attr,
3436 const char *buf, size_t len)
3437{
3438 struct slab_attribute *attribute;
3439 struct kmem_cache *s;
3440 int err;
3441
3442 attribute = to_slab_attr(attr);
3443 s = to_slab(kobj);
3444
3445 if (!attribute->store)
3446 return -EIO;
3447
3448 err = attribute->store(s, buf, len);
3449
3450 return err;
3451}
3452
3453static struct sysfs_ops slab_sysfs_ops = {
3454 .show = slab_attr_show,
3455 .store = slab_attr_store,
3456};
3457
3458static struct kobj_type slab_ktype = {
3459 .sysfs_ops = &slab_sysfs_ops,
3460};
3461
3462static int uevent_filter(struct kset *kset, struct kobject *kobj)
3463{
3464 struct kobj_type *ktype = get_ktype(kobj);
3465
3466 if (ktype == &slab_ktype)
3467 return 1;
3468 return 0;
3469}
3470
3471static struct kset_uevent_ops slab_uevent_ops = {
3472 .filter = uevent_filter,
3473};
3474
3475decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3476
3477#define ID_STR_LENGTH 64
3478
3479/* Create a unique string id for a slab cache:
3480 * format
3481 * :[flags-]size:[memory address of kmemcache]
3482 */
3483static char *create_unique_id(struct kmem_cache *s)
3484{
3485 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3486 char *p = name;
3487
3488 BUG_ON(!name);
3489
3490 *p++ = ':';
3491 /*
3492 * First flags affecting slabcache operations. We will only
3493 * get here for aliasable slabs so we do not need to support
3494 * too many flags. The flags here must cover all flags that
3495 * are matched during merging to guarantee that the id is
3496 * unique.
3497 */
3498 if (s->flags & SLAB_CACHE_DMA)
3499 *p++ = 'd';
3500 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3501 *p++ = 'a';
3502 if (s->flags & SLAB_DEBUG_FREE)
3503 *p++ = 'F';
3504 if (p != name + 1)
3505 *p++ = '-';
3506 p += sprintf(p, "%07d", s->size);
3507 BUG_ON(p > name + ID_STR_LENGTH - 1);
3508 return name;
3509}
3510
3511static int sysfs_slab_add(struct kmem_cache *s)
3512{
3513 int err;
3514 const char *name;
3515 int unmergeable;
3516
3517 if (slab_state < SYSFS)
3518 /* Defer until later */
3519 return 0;
3520
3521 unmergeable = slab_unmergeable(s);
3522 if (unmergeable) {
3523 /*
3524 * Slabcache can never be merged so we can use the name proper.
3525 * This is typically the case for debug situations. In that
3526 * case we can catch duplicate names easily.
3527 */
0f9008ef 3528 sysfs_remove_link(&slab_subsys.kobj, s->name);
81819f0f
CL
3529 name = s->name;
3530 } else {
3531 /*
3532 * Create a unique name for the slab as a target
3533 * for the symlinks.
3534 */
3535 name = create_unique_id(s);
3536 }
3537
3538 kobj_set_kset_s(s, slab_subsys);
3539 kobject_set_name(&s->kobj, name);
3540 kobject_init(&s->kobj);
3541 err = kobject_add(&s->kobj);
3542 if (err)
3543 return err;
3544
3545 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3546 if (err)
3547 return err;
3548 kobject_uevent(&s->kobj, KOBJ_ADD);
3549 if (!unmergeable) {
3550 /* Setup first alias */
3551 sysfs_slab_alias(s, s->name);
3552 kfree(name);
3553 }
3554 return 0;
3555}
3556
3557static void sysfs_slab_remove(struct kmem_cache *s)
3558{
3559 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3560 kobject_del(&s->kobj);
3561}
3562
3563/*
3564 * Need to buffer aliases during bootup until sysfs becomes
3565 * available lest we loose that information.
3566 */
3567struct saved_alias {
3568 struct kmem_cache *s;
3569 const char *name;
3570 struct saved_alias *next;
3571};
3572
3573struct saved_alias *alias_list;
3574
3575static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3576{
3577 struct saved_alias *al;
3578
3579 if (slab_state == SYSFS) {
3580 /*
3581 * If we have a leftover link then remove it.
3582 */
0f9008ef
LT
3583 sysfs_remove_link(&slab_subsys.kobj, name);
3584 return sysfs_create_link(&slab_subsys.kobj,
81819f0f
CL
3585 &s->kobj, name);
3586 }
3587
3588 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3589 if (!al)
3590 return -ENOMEM;
3591
3592 al->s = s;
3593 al->name = name;
3594 al->next = alias_list;
3595 alias_list = al;
3596 return 0;
3597}
3598
3599static int __init slab_sysfs_init(void)
3600{
26a7bd03 3601 struct list_head *h;
81819f0f
CL
3602 int err;
3603
3604 err = subsystem_register(&slab_subsys);
3605 if (err) {
3606 printk(KERN_ERR "Cannot register slab subsystem.\n");
3607 return -ENOSYS;
3608 }
3609
26a7bd03
CL
3610 slab_state = SYSFS;
3611
3612 list_for_each(h, &slab_caches) {
3613 struct kmem_cache *s =
3614 container_of(h, struct kmem_cache, list);
3615
3616 err = sysfs_slab_add(s);
3617 BUG_ON(err);
3618 }
81819f0f
CL
3619
3620 while (alias_list) {
3621 struct saved_alias *al = alias_list;
3622
3623 alias_list = alias_list->next;
3624 err = sysfs_slab_alias(al->s, al->name);
3625 BUG_ON(err);
3626 kfree(al);
3627 }
3628
3629 resiliency_test();
3630 return 0;
3631}
3632
3633__initcall(slab_sysfs_init);
81819f0f 3634#endif