mm, sl[au]b: create common functions for boot slab creation
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
81819f0f 21#include <linux/seq_file.h>
5a896d9e 22#include <linux/kmemcheck.h>
81819f0f
CL
23#include <linux/cpu.h>
24#include <linux/cpuset.h>
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
bfa71457 32#include <linux/stacktrace.h>
4de900b4 33#include <linux/prefetch.h>
81819f0f 34
4a92379b
RK
35#include <trace/events/kmem.h>
36
072bb0aa
MG
37#include "internal.h"
38
81819f0f
CL
39/*
40 * Lock order:
18004c5d 41 * 1. slab_mutex (Global Mutex)
881db7fb
CL
42 * 2. node->list_lock
43 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 44 *
18004c5d 45 * slab_mutex
881db7fb 46 *
18004c5d 47 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
48 * and to synchronize major metadata changes to slab cache structures.
49 *
50 * The slab_lock is only used for debugging and on arches that do not
51 * have the ability to do a cmpxchg_double. It only protects the second
52 * double word in the page struct. Meaning
53 * A. page->freelist -> List of object free in a page
54 * B. page->counters -> Counters of objects
55 * C. page->frozen -> frozen state
56 *
57 * If a slab is frozen then it is exempt from list management. It is not
58 * on any list. The processor that froze the slab is the one who can
59 * perform list operations on the page. Other processors may put objects
60 * onto the freelist but the processor that froze the slab is the only
61 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
62 *
63 * The list_lock protects the partial and full list on each node and
64 * the partial slab counter. If taken then no new slabs may be added or
65 * removed from the lists nor make the number of partial slabs be modified.
66 * (Note that the total number of slabs is an atomic value that may be
67 * modified without taking the list lock).
68 *
69 * The list_lock is a centralized lock and thus we avoid taking it as
70 * much as possible. As long as SLUB does not have to handle partial
71 * slabs, operations can continue without any centralized lock. F.e.
72 * allocating a long series of objects that fill up slabs does not require
73 * the list lock.
81819f0f
CL
74 * Interrupts are disabled during allocation and deallocation in order to
75 * make the slab allocator safe to use in the context of an irq. In addition
76 * interrupts are disabled to ensure that the processor does not change
77 * while handling per_cpu slabs, due to kernel preemption.
78 *
79 * SLUB assigns one slab for allocation to each processor.
80 * Allocations only occur from these slabs called cpu slabs.
81 *
672bba3a
CL
82 * Slabs with free elements are kept on a partial list and during regular
83 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 84 * freed then the slab will show up again on the partial lists.
672bba3a
CL
85 * We track full slabs for debugging purposes though because otherwise we
86 * cannot scan all objects.
81819f0f
CL
87 *
88 * Slabs are freed when they become empty. Teardown and setup is
89 * minimal so we rely on the page allocators per cpu caches for
90 * fast frees and allocs.
91 *
92 * Overloading of page flags that are otherwise used for LRU management.
93 *
4b6f0750
CL
94 * PageActive The slab is frozen and exempt from list processing.
95 * This means that the slab is dedicated to a purpose
96 * such as satisfying allocations for a specific
97 * processor. Objects may be freed in the slab while
98 * it is frozen but slab_free will then skip the usual
99 * list operations. It is up to the processor holding
100 * the slab to integrate the slab into the slab lists
101 * when the slab is no longer needed.
102 *
103 * One use of this flag is to mark slabs that are
104 * used for allocations. Then such a slab becomes a cpu
105 * slab. The cpu slab may be equipped with an additional
dfb4f096 106 * freelist that allows lockless access to
894b8788
CL
107 * free objects in addition to the regular freelist
108 * that requires the slab lock.
81819f0f
CL
109 *
110 * PageError Slab requires special handling due to debug
111 * options set. This moves slab handling out of
894b8788 112 * the fast path and disables lockless freelists.
81819f0f
CL
113 */
114
af537b0a
CL
115static inline int kmem_cache_debug(struct kmem_cache *s)
116{
5577bd8a 117#ifdef CONFIG_SLUB_DEBUG
af537b0a 118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 119#else
af537b0a 120 return 0;
5577bd8a 121#endif
af537b0a 122}
5577bd8a 123
81819f0f
CL
124/*
125 * Issues still to be resolved:
126 *
81819f0f
CL
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
81819f0f
CL
129 * - Variable sizing of the per node arrays
130 */
131
132/* Enable to test recovery from slab corruption on boot */
133#undef SLUB_RESILIENCY_TEST
134
b789ef51
CL
135/* Enable to log cmpxchg failures */
136#undef SLUB_DEBUG_CMPXCHG
137
2086d26a
CL
138/*
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 */
76be8950 142#define MIN_PARTIAL 5
e95eed57 143
2086d26a
CL
144/*
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
148 */
149#define MAX_PARTIAL 10
150
81819f0f
CL
151#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 SLAB_POISON | SLAB_STORE_USER)
672bba3a 153
fa5ec8a1 154/*
3de47213
DR
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
fa5ec8a1 158 */
3de47213 159#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 160
81819f0f
CL
161/*
162 * Set of flags that will prevent slab merging
163 */
164#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 SLAB_FAILSLAB)
81819f0f
CL
167
168#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 169 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 170
210b5c06
CG
171#define OO_SHIFT 16
172#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 173#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 174
81819f0f 175/* Internal SLUB flags */
f90ec390 176#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 177#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
178
179static int kmem_size = sizeof(struct kmem_cache);
180
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
d6543e39 188#define TRACK_ADDRS_COUNT 16
02cbc874 189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
d6543e39
BG
191#ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193#endif
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
204static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 205
81819f0f 206#else
0c710013
CL
207static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
db265eca 210static inline void sysfs_slab_remove(struct kmem_cache *s) { }
8ff12cfc 211
81819f0f
CL
212#endif
213
4fdccdfb 214static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
215{
216#ifdef CONFIG_SLUB_STATS
84e554e6 217 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
218#endif
219}
220
81819f0f
CL
221/********************************************************************
222 * Core slab cache functions
223 *******************************************************************/
224
81819f0f
CL
225static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
226{
81819f0f 227 return s->node[node];
81819f0f
CL
228}
229
6446faa2 230/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
231static inline int check_valid_pointer(struct kmem_cache *s,
232 struct page *page, const void *object)
233{
234 void *base;
235
a973e9dd 236 if (!object)
02cbc874
CL
237 return 1;
238
a973e9dd 239 base = page_address(page);
39b26464 240 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
241 (object - base) % s->size) {
242 return 0;
243 }
244
245 return 1;
246}
247
7656c72b
CL
248static inline void *get_freepointer(struct kmem_cache *s, void *object)
249{
250 return *(void **)(object + s->offset);
251}
252
0ad9500e
ED
253static void prefetch_freepointer(const struct kmem_cache *s, void *object)
254{
255 prefetch(object + s->offset);
256}
257
1393d9a1
CL
258static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
259{
260 void *p;
261
262#ifdef CONFIG_DEBUG_PAGEALLOC
263 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
264#else
265 p = get_freepointer(s, object);
266#endif
267 return p;
268}
269
7656c72b
CL
270static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
271{
272 *(void **)(object + s->offset) = fp;
273}
274
275/* Loop over all objects in a slab */
224a88be
CL
276#define for_each_object(__p, __s, __addr, __objects) \
277 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
278 __p += (__s)->size)
279
7656c72b
CL
280/* Determine object index from a given position */
281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282{
283 return (p - addr) / s->size;
284}
285
d71f606f
MK
286static inline size_t slab_ksize(const struct kmem_cache *s)
287{
288#ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 294 return s->object_size;
d71f606f
MK
295
296#endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308}
309
ab9a0f19
LJ
310static inline int order_objects(int order, unsigned long size, int reserved)
311{
312 return ((PAGE_SIZE << order) - reserved) / size;
313}
314
834f3d11 315static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 316 unsigned long size, int reserved)
834f3d11
CL
317{
318 struct kmem_cache_order_objects x = {
ab9a0f19 319 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
320 };
321
322 return x;
323}
324
325static inline int oo_order(struct kmem_cache_order_objects x)
326{
210b5c06 327 return x.x >> OO_SHIFT;
834f3d11
CL
328}
329
330static inline int oo_objects(struct kmem_cache_order_objects x)
331{
210b5c06 332 return x.x & OO_MASK;
834f3d11
CL
333}
334
881db7fb
CL
335/*
336 * Per slab locking using the pagelock
337 */
338static __always_inline void slab_lock(struct page *page)
339{
340 bit_spin_lock(PG_locked, &page->flags);
341}
342
343static __always_inline void slab_unlock(struct page *page)
344{
345 __bit_spin_unlock(PG_locked, &page->flags);
346}
347
1d07171c
CL
348/* Interrupts must be disabled (for the fallback code to work right) */
349static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
350 void *freelist_old, unsigned long counters_old,
351 void *freelist_new, unsigned long counters_new,
352 const char *n)
353{
354 VM_BUG_ON(!irqs_disabled());
2565409f
HC
355#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
356 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 357 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 358 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
359 freelist_old, counters_old,
360 freelist_new, counters_new))
361 return 1;
362 } else
363#endif
364 {
365 slab_lock(page);
366 if (page->freelist == freelist_old && page->counters == counters_old) {
367 page->freelist = freelist_new;
368 page->counters = counters_new;
369 slab_unlock(page);
370 return 1;
371 }
372 slab_unlock(page);
373 }
374
375 cpu_relax();
376 stat(s, CMPXCHG_DOUBLE_FAIL);
377
378#ifdef SLUB_DEBUG_CMPXCHG
379 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
380#endif
381
382 return 0;
383}
384
b789ef51
CL
385static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
386 void *freelist_old, unsigned long counters_old,
387 void *freelist_new, unsigned long counters_new,
388 const char *n)
389{
2565409f
HC
390#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
391 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 392 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 393 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
394 freelist_old, counters_old,
395 freelist_new, counters_new))
396 return 1;
397 } else
398#endif
399 {
1d07171c
CL
400 unsigned long flags;
401
402 local_irq_save(flags);
881db7fb 403 slab_lock(page);
b789ef51
CL
404 if (page->freelist == freelist_old && page->counters == counters_old) {
405 page->freelist = freelist_new;
406 page->counters = counters_new;
881db7fb 407 slab_unlock(page);
1d07171c 408 local_irq_restore(flags);
b789ef51
CL
409 return 1;
410 }
881db7fb 411 slab_unlock(page);
1d07171c 412 local_irq_restore(flags);
b789ef51
CL
413 }
414
415 cpu_relax();
416 stat(s, CMPXCHG_DOUBLE_FAIL);
417
418#ifdef SLUB_DEBUG_CMPXCHG
419 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
420#endif
421
422 return 0;
423}
424
41ecc55b 425#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
426/*
427 * Determine a map of object in use on a page.
428 *
881db7fb 429 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
430 * not vanish from under us.
431 */
432static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
433{
434 void *p;
435 void *addr = page_address(page);
436
437 for (p = page->freelist; p; p = get_freepointer(s, p))
438 set_bit(slab_index(p, s, addr), map);
439}
440
41ecc55b
CL
441/*
442 * Debug settings:
443 */
f0630fff
CL
444#ifdef CONFIG_SLUB_DEBUG_ON
445static int slub_debug = DEBUG_DEFAULT_FLAGS;
446#else
41ecc55b 447static int slub_debug;
f0630fff 448#endif
41ecc55b
CL
449
450static char *slub_debug_slabs;
fa5ec8a1 451static int disable_higher_order_debug;
41ecc55b 452
81819f0f
CL
453/*
454 * Object debugging
455 */
456static void print_section(char *text, u8 *addr, unsigned int length)
457{
ffc79d28
SAS
458 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
459 length, 1);
81819f0f
CL
460}
461
81819f0f
CL
462static struct track *get_track(struct kmem_cache *s, void *object,
463 enum track_item alloc)
464{
465 struct track *p;
466
467 if (s->offset)
468 p = object + s->offset + sizeof(void *);
469 else
470 p = object + s->inuse;
471
472 return p + alloc;
473}
474
475static void set_track(struct kmem_cache *s, void *object,
ce71e27c 476 enum track_item alloc, unsigned long addr)
81819f0f 477{
1a00df4a 478 struct track *p = get_track(s, object, alloc);
81819f0f 479
81819f0f 480 if (addr) {
d6543e39
BG
481#ifdef CONFIG_STACKTRACE
482 struct stack_trace trace;
483 int i;
484
485 trace.nr_entries = 0;
486 trace.max_entries = TRACK_ADDRS_COUNT;
487 trace.entries = p->addrs;
488 trace.skip = 3;
489 save_stack_trace(&trace);
490
491 /* See rant in lockdep.c */
492 if (trace.nr_entries != 0 &&
493 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
494 trace.nr_entries--;
495
496 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
497 p->addrs[i] = 0;
498#endif
81819f0f
CL
499 p->addr = addr;
500 p->cpu = smp_processor_id();
88e4ccf2 501 p->pid = current->pid;
81819f0f
CL
502 p->when = jiffies;
503 } else
504 memset(p, 0, sizeof(struct track));
505}
506
81819f0f
CL
507static void init_tracking(struct kmem_cache *s, void *object)
508{
24922684
CL
509 if (!(s->flags & SLAB_STORE_USER))
510 return;
511
ce71e27c
EGM
512 set_track(s, object, TRACK_FREE, 0UL);
513 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
514}
515
516static void print_track(const char *s, struct track *t)
517{
518 if (!t->addr)
519 return;
520
7daf705f 521 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 522 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
523#ifdef CONFIG_STACKTRACE
524 {
525 int i;
526 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
527 if (t->addrs[i])
528 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
529 else
530 break;
531 }
532#endif
24922684
CL
533}
534
535static void print_tracking(struct kmem_cache *s, void *object)
536{
537 if (!(s->flags & SLAB_STORE_USER))
538 return;
539
540 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
541 print_track("Freed", get_track(s, object, TRACK_FREE));
542}
543
544static void print_page_info(struct page *page)
545{
39b26464
CL
546 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
547 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
548
549}
550
551static void slab_bug(struct kmem_cache *s, char *fmt, ...)
552{
553 va_list args;
554 char buf[100];
555
556 va_start(args, fmt);
557 vsnprintf(buf, sizeof(buf), fmt, args);
558 va_end(args);
559 printk(KERN_ERR "========================================"
560 "=====================================\n");
265d47e7 561 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
562 printk(KERN_ERR "----------------------------------------"
563 "-------------------------------------\n\n");
645df230
DJ
564
565 add_taint(TAINT_BAD_PAGE);
81819f0f
CL
566}
567
24922684
CL
568static void slab_fix(struct kmem_cache *s, char *fmt, ...)
569{
570 va_list args;
571 char buf[100];
572
573 va_start(args, fmt);
574 vsnprintf(buf, sizeof(buf), fmt, args);
575 va_end(args);
576 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
577}
578
579static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
580{
581 unsigned int off; /* Offset of last byte */
a973e9dd 582 u8 *addr = page_address(page);
24922684
CL
583
584 print_tracking(s, p);
585
586 print_page_info(page);
587
588 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
589 p, p - addr, get_freepointer(s, p));
590
591 if (p > addr + 16)
ffc79d28 592 print_section("Bytes b4 ", p - 16, 16);
81819f0f 593
3b0efdfa 594 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 595 PAGE_SIZE));
81819f0f 596 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
597 print_section("Redzone ", p + s->object_size,
598 s->inuse - s->object_size);
81819f0f 599
81819f0f
CL
600 if (s->offset)
601 off = s->offset + sizeof(void *);
602 else
603 off = s->inuse;
604
24922684 605 if (s->flags & SLAB_STORE_USER)
81819f0f 606 off += 2 * sizeof(struct track);
81819f0f
CL
607
608 if (off != s->size)
609 /* Beginning of the filler is the free pointer */
ffc79d28 610 print_section("Padding ", p + off, s->size - off);
24922684
CL
611
612 dump_stack();
81819f0f
CL
613}
614
615static void object_err(struct kmem_cache *s, struct page *page,
616 u8 *object, char *reason)
617{
3dc50637 618 slab_bug(s, "%s", reason);
24922684 619 print_trailer(s, page, object);
81819f0f
CL
620}
621
945cf2b6 622static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
81819f0f
CL
623{
624 va_list args;
625 char buf[100];
626
24922684
CL
627 va_start(args, fmt);
628 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 629 va_end(args);
3dc50637 630 slab_bug(s, "%s", buf);
24922684 631 print_page_info(page);
81819f0f
CL
632 dump_stack();
633}
634
f7cb1933 635static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
636{
637 u8 *p = object;
638
639 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
640 memset(p, POISON_FREE, s->object_size - 1);
641 p[s->object_size - 1] = POISON_END;
81819f0f
CL
642 }
643
644 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 645 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
646}
647
24922684
CL
648static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
649 void *from, void *to)
650{
651 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
652 memset(from, data, to - from);
653}
654
655static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
656 u8 *object, char *what,
06428780 657 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
658{
659 u8 *fault;
660 u8 *end;
661
79824820 662 fault = memchr_inv(start, value, bytes);
24922684
CL
663 if (!fault)
664 return 1;
665
666 end = start + bytes;
667 while (end > fault && end[-1] == value)
668 end--;
669
670 slab_bug(s, "%s overwritten", what);
671 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
672 fault, end - 1, fault[0], value);
673 print_trailer(s, page, object);
674
675 restore_bytes(s, what, value, fault, end);
676 return 0;
81819f0f
CL
677}
678
81819f0f
CL
679/*
680 * Object layout:
681 *
682 * object address
683 * Bytes of the object to be managed.
684 * If the freepointer may overlay the object then the free
685 * pointer is the first word of the object.
672bba3a 686 *
81819f0f
CL
687 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
688 * 0xa5 (POISON_END)
689 *
3b0efdfa 690 * object + s->object_size
81819f0f 691 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 692 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 693 * object_size == inuse.
672bba3a 694 *
81819f0f
CL
695 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
696 * 0xcc (RED_ACTIVE) for objects in use.
697 *
698 * object + s->inuse
672bba3a
CL
699 * Meta data starts here.
700 *
81819f0f
CL
701 * A. Free pointer (if we cannot overwrite object on free)
702 * B. Tracking data for SLAB_STORE_USER
672bba3a 703 * C. Padding to reach required alignment boundary or at mininum
6446faa2 704 * one word if debugging is on to be able to detect writes
672bba3a
CL
705 * before the word boundary.
706 *
707 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
708 *
709 * object + s->size
672bba3a 710 * Nothing is used beyond s->size.
81819f0f 711 *
3b0efdfa 712 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 713 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
714 * may be used with merged slabcaches.
715 */
716
81819f0f
CL
717static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
718{
719 unsigned long off = s->inuse; /* The end of info */
720
721 if (s->offset)
722 /* Freepointer is placed after the object. */
723 off += sizeof(void *);
724
725 if (s->flags & SLAB_STORE_USER)
726 /* We also have user information there */
727 off += 2 * sizeof(struct track);
728
729 if (s->size == off)
730 return 1;
731
24922684
CL
732 return check_bytes_and_report(s, page, p, "Object padding",
733 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
734}
735
39b26464 736/* Check the pad bytes at the end of a slab page */
81819f0f
CL
737static int slab_pad_check(struct kmem_cache *s, struct page *page)
738{
24922684
CL
739 u8 *start;
740 u8 *fault;
741 u8 *end;
742 int length;
743 int remainder;
81819f0f
CL
744
745 if (!(s->flags & SLAB_POISON))
746 return 1;
747
a973e9dd 748 start = page_address(page);
ab9a0f19 749 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
750 end = start + length;
751 remainder = length % s->size;
81819f0f
CL
752 if (!remainder)
753 return 1;
754
79824820 755 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
756 if (!fault)
757 return 1;
758 while (end > fault && end[-1] == POISON_INUSE)
759 end--;
760
761 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 762 print_section("Padding ", end - remainder, remainder);
24922684 763
8a3d271d 764 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 765 return 0;
81819f0f
CL
766}
767
768static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 769 void *object, u8 val)
81819f0f
CL
770{
771 u8 *p = object;
3b0efdfa 772 u8 *endobject = object + s->object_size;
81819f0f
CL
773
774 if (s->flags & SLAB_RED_ZONE) {
24922684 775 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 776 endobject, val, s->inuse - s->object_size))
81819f0f 777 return 0;
81819f0f 778 } else {
3b0efdfa 779 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 780 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 781 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 782 }
81819f0f
CL
783 }
784
785 if (s->flags & SLAB_POISON) {
f7cb1933 786 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 787 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 788 POISON_FREE, s->object_size - 1) ||
24922684 789 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 790 p + s->object_size - 1, POISON_END, 1)))
81819f0f 791 return 0;
81819f0f
CL
792 /*
793 * check_pad_bytes cleans up on its own.
794 */
795 check_pad_bytes(s, page, p);
796 }
797
f7cb1933 798 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
799 /*
800 * Object and freepointer overlap. Cannot check
801 * freepointer while object is allocated.
802 */
803 return 1;
804
805 /* Check free pointer validity */
806 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
807 object_err(s, page, p, "Freepointer corrupt");
808 /*
9f6c708e 809 * No choice but to zap it and thus lose the remainder
81819f0f 810 * of the free objects in this slab. May cause
672bba3a 811 * another error because the object count is now wrong.
81819f0f 812 */
a973e9dd 813 set_freepointer(s, p, NULL);
81819f0f
CL
814 return 0;
815 }
816 return 1;
817}
818
819static int check_slab(struct kmem_cache *s, struct page *page)
820{
39b26464
CL
821 int maxobj;
822
81819f0f
CL
823 VM_BUG_ON(!irqs_disabled());
824
825 if (!PageSlab(page)) {
24922684 826 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
827 return 0;
828 }
39b26464 829
ab9a0f19 830 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
831 if (page->objects > maxobj) {
832 slab_err(s, page, "objects %u > max %u",
833 s->name, page->objects, maxobj);
834 return 0;
835 }
836 if (page->inuse > page->objects) {
24922684 837 slab_err(s, page, "inuse %u > max %u",
39b26464 838 s->name, page->inuse, page->objects);
81819f0f
CL
839 return 0;
840 }
841 /* Slab_pad_check fixes things up after itself */
842 slab_pad_check(s, page);
843 return 1;
844}
845
846/*
672bba3a
CL
847 * Determine if a certain object on a page is on the freelist. Must hold the
848 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
849 */
850static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
851{
852 int nr = 0;
881db7fb 853 void *fp;
81819f0f 854 void *object = NULL;
224a88be 855 unsigned long max_objects;
81819f0f 856
881db7fb 857 fp = page->freelist;
39b26464 858 while (fp && nr <= page->objects) {
81819f0f
CL
859 if (fp == search)
860 return 1;
861 if (!check_valid_pointer(s, page, fp)) {
862 if (object) {
863 object_err(s, page, object,
864 "Freechain corrupt");
a973e9dd 865 set_freepointer(s, object, NULL);
81819f0f
CL
866 break;
867 } else {
24922684 868 slab_err(s, page, "Freepointer corrupt");
a973e9dd 869 page->freelist = NULL;
39b26464 870 page->inuse = page->objects;
24922684 871 slab_fix(s, "Freelist cleared");
81819f0f
CL
872 return 0;
873 }
874 break;
875 }
876 object = fp;
877 fp = get_freepointer(s, object);
878 nr++;
879 }
880
ab9a0f19 881 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
882 if (max_objects > MAX_OBJS_PER_PAGE)
883 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
884
885 if (page->objects != max_objects) {
886 slab_err(s, page, "Wrong number of objects. Found %d but "
887 "should be %d", page->objects, max_objects);
888 page->objects = max_objects;
889 slab_fix(s, "Number of objects adjusted.");
890 }
39b26464 891 if (page->inuse != page->objects - nr) {
70d71228 892 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
893 "counted were %d", page->inuse, page->objects - nr);
894 page->inuse = page->objects - nr;
24922684 895 slab_fix(s, "Object count adjusted.");
81819f0f
CL
896 }
897 return search == NULL;
898}
899
0121c619
CL
900static void trace(struct kmem_cache *s, struct page *page, void *object,
901 int alloc)
3ec09742
CL
902{
903 if (s->flags & SLAB_TRACE) {
904 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
905 s->name,
906 alloc ? "alloc" : "free",
907 object, page->inuse,
908 page->freelist);
909
910 if (!alloc)
3b0efdfa 911 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
912
913 dump_stack();
914 }
915}
916
c016b0bd
CL
917/*
918 * Hooks for other subsystems that check memory allocations. In a typical
919 * production configuration these hooks all should produce no code at all.
920 */
921static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
922{
c1d50836 923 flags &= gfp_allowed_mask;
c016b0bd
CL
924 lockdep_trace_alloc(flags);
925 might_sleep_if(flags & __GFP_WAIT);
926
3b0efdfa 927 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
928}
929
930static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
931{
c1d50836 932 flags &= gfp_allowed_mask;
b3d41885 933 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 934 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
935}
936
937static inline void slab_free_hook(struct kmem_cache *s, void *x)
938{
939 kmemleak_free_recursive(x, s->flags);
c016b0bd 940
d3f661d6
CL
941 /*
942 * Trouble is that we may no longer disable interupts in the fast path
943 * So in order to make the debug calls that expect irqs to be
944 * disabled we need to disable interrupts temporarily.
945 */
946#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
947 {
948 unsigned long flags;
949
950 local_irq_save(flags);
3b0efdfa
CL
951 kmemcheck_slab_free(s, x, s->object_size);
952 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
953 local_irq_restore(flags);
954 }
955#endif
f9b615de 956 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 957 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
958}
959
643b1138 960/*
672bba3a 961 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
962 *
963 * list_lock must be held.
643b1138 964 */
5cc6eee8
CL
965static void add_full(struct kmem_cache *s,
966 struct kmem_cache_node *n, struct page *page)
643b1138 967{
5cc6eee8
CL
968 if (!(s->flags & SLAB_STORE_USER))
969 return;
970
643b1138 971 list_add(&page->lru, &n->full);
643b1138
CL
972}
973
5cc6eee8
CL
974/*
975 * list_lock must be held.
976 */
643b1138
CL
977static void remove_full(struct kmem_cache *s, struct page *page)
978{
643b1138
CL
979 if (!(s->flags & SLAB_STORE_USER))
980 return;
981
643b1138 982 list_del(&page->lru);
643b1138
CL
983}
984
0f389ec6
CL
985/* Tracking of the number of slabs for debugging purposes */
986static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987{
988 struct kmem_cache_node *n = get_node(s, node);
989
990 return atomic_long_read(&n->nr_slabs);
991}
992
26c02cf0
AB
993static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994{
995 return atomic_long_read(&n->nr_slabs);
996}
997
205ab99d 998static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
999{
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 /*
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1007 */
7340cc84 1008 if (n) {
0f389ec6 1009 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1010 atomic_long_add(objects, &n->total_objects);
1011 }
0f389ec6 1012}
205ab99d 1013static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1014{
1015 struct kmem_cache_node *n = get_node(s, node);
1016
1017 atomic_long_dec(&n->nr_slabs);
205ab99d 1018 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1019}
1020
1021/* Object debug checks for alloc/free paths */
3ec09742
CL
1022static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 void *object)
1024{
1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 return;
1027
f7cb1933 1028 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1029 init_tracking(s, object);
1030}
1031
1537066c 1032static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1033 void *object, unsigned long addr)
81819f0f
CL
1034{
1035 if (!check_slab(s, page))
1036 goto bad;
1037
81819f0f
CL
1038 if (!check_valid_pointer(s, page, object)) {
1039 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1040 goto bad;
81819f0f
CL
1041 }
1042
f7cb1933 1043 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1044 goto bad;
81819f0f 1045
3ec09742
CL
1046 /* Success perform special debug activities for allocs */
1047 if (s->flags & SLAB_STORE_USER)
1048 set_track(s, object, TRACK_ALLOC, addr);
1049 trace(s, page, object, 1);
f7cb1933 1050 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1051 return 1;
3ec09742 1052
81819f0f
CL
1053bad:
1054 if (PageSlab(page)) {
1055 /*
1056 * If this is a slab page then lets do the best we can
1057 * to avoid issues in the future. Marking all objects
672bba3a 1058 * as used avoids touching the remaining objects.
81819f0f 1059 */
24922684 1060 slab_fix(s, "Marking all objects used");
39b26464 1061 page->inuse = page->objects;
a973e9dd 1062 page->freelist = NULL;
81819f0f
CL
1063 }
1064 return 0;
1065}
1066
19c7ff9e
CL
1067static noinline struct kmem_cache_node *free_debug_processing(
1068 struct kmem_cache *s, struct page *page, void *object,
1069 unsigned long addr, unsigned long *flags)
81819f0f 1070{
19c7ff9e 1071 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1072
19c7ff9e 1073 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1074 slab_lock(page);
1075
81819f0f
CL
1076 if (!check_slab(s, page))
1077 goto fail;
1078
1079 if (!check_valid_pointer(s, page, object)) {
70d71228 1080 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1081 goto fail;
1082 }
1083
1084 if (on_freelist(s, page, object)) {
24922684 1085 object_err(s, page, object, "Object already free");
81819f0f
CL
1086 goto fail;
1087 }
1088
f7cb1933 1089 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1090 goto out;
81819f0f 1091
1b4f59e3 1092 if (unlikely(s != page->slab_cache)) {
3adbefee 1093 if (!PageSlab(page)) {
70d71228
CL
1094 slab_err(s, page, "Attempt to free object(0x%p) "
1095 "outside of slab", object);
1b4f59e3 1096 } else if (!page->slab_cache) {
81819f0f 1097 printk(KERN_ERR
70d71228 1098 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1099 object);
70d71228 1100 dump_stack();
06428780 1101 } else
24922684
CL
1102 object_err(s, page, object,
1103 "page slab pointer corrupt.");
81819f0f
CL
1104 goto fail;
1105 }
3ec09742 1106
3ec09742
CL
1107 if (s->flags & SLAB_STORE_USER)
1108 set_track(s, object, TRACK_FREE, addr);
1109 trace(s, page, object, 0);
f7cb1933 1110 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1111out:
881db7fb 1112 slab_unlock(page);
19c7ff9e
CL
1113 /*
1114 * Keep node_lock to preserve integrity
1115 * until the object is actually freed
1116 */
1117 return n;
3ec09742 1118
81819f0f 1119fail:
19c7ff9e
CL
1120 slab_unlock(page);
1121 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1122 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1123 return NULL;
81819f0f
CL
1124}
1125
41ecc55b
CL
1126static int __init setup_slub_debug(char *str)
1127{
f0630fff
CL
1128 slub_debug = DEBUG_DEFAULT_FLAGS;
1129 if (*str++ != '=' || !*str)
1130 /*
1131 * No options specified. Switch on full debugging.
1132 */
1133 goto out;
1134
1135 if (*str == ',')
1136 /*
1137 * No options but restriction on slabs. This means full
1138 * debugging for slabs matching a pattern.
1139 */
1140 goto check_slabs;
1141
fa5ec8a1
DR
1142 if (tolower(*str) == 'o') {
1143 /*
1144 * Avoid enabling debugging on caches if its minimum order
1145 * would increase as a result.
1146 */
1147 disable_higher_order_debug = 1;
1148 goto out;
1149 }
1150
f0630fff
CL
1151 slub_debug = 0;
1152 if (*str == '-')
1153 /*
1154 * Switch off all debugging measures.
1155 */
1156 goto out;
1157
1158 /*
1159 * Determine which debug features should be switched on
1160 */
06428780 1161 for (; *str && *str != ','; str++) {
f0630fff
CL
1162 switch (tolower(*str)) {
1163 case 'f':
1164 slub_debug |= SLAB_DEBUG_FREE;
1165 break;
1166 case 'z':
1167 slub_debug |= SLAB_RED_ZONE;
1168 break;
1169 case 'p':
1170 slub_debug |= SLAB_POISON;
1171 break;
1172 case 'u':
1173 slub_debug |= SLAB_STORE_USER;
1174 break;
1175 case 't':
1176 slub_debug |= SLAB_TRACE;
1177 break;
4c13dd3b
DM
1178 case 'a':
1179 slub_debug |= SLAB_FAILSLAB;
1180 break;
f0630fff
CL
1181 default:
1182 printk(KERN_ERR "slub_debug option '%c' "
06428780 1183 "unknown. skipped\n", *str);
f0630fff 1184 }
41ecc55b
CL
1185 }
1186
f0630fff 1187check_slabs:
41ecc55b
CL
1188 if (*str == ',')
1189 slub_debug_slabs = str + 1;
f0630fff 1190out:
41ecc55b
CL
1191 return 1;
1192}
1193
1194__setup("slub_debug", setup_slub_debug);
1195
3b0efdfa 1196static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1197 unsigned long flags, const char *name,
51cc5068 1198 void (*ctor)(void *))
41ecc55b
CL
1199{
1200 /*
e153362a 1201 * Enable debugging if selected on the kernel commandline.
41ecc55b 1202 */
e153362a 1203 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1204 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1205 flags |= slub_debug;
ba0268a8
CL
1206
1207 return flags;
41ecc55b
CL
1208}
1209#else
3ec09742
CL
1210static inline void setup_object_debug(struct kmem_cache *s,
1211 struct page *page, void *object) {}
41ecc55b 1212
3ec09742 1213static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1214 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1215
19c7ff9e
CL
1216static inline struct kmem_cache_node *free_debug_processing(
1217 struct kmem_cache *s, struct page *page, void *object,
1218 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1219
41ecc55b
CL
1220static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1221 { return 1; }
1222static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1223 void *object, u8 val) { return 1; }
5cc6eee8
CL
1224static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
2cfb7455 1226static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1227static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1228 unsigned long flags, const char *name,
51cc5068 1229 void (*ctor)(void *))
ba0268a8
CL
1230{
1231 return flags;
1232}
41ecc55b 1233#define slub_debug 0
0f389ec6 1234
fdaa45e9
IM
1235#define disable_higher_order_debug 0
1236
0f389ec6
CL
1237static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1238 { return 0; }
26c02cf0
AB
1239static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1240 { return 0; }
205ab99d
CL
1241static inline void inc_slabs_node(struct kmem_cache *s, int node,
1242 int objects) {}
1243static inline void dec_slabs_node(struct kmem_cache *s, int node,
1244 int objects) {}
7d550c56
CL
1245
1246static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 { return 0; }
1248
1249static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1250 void *object) {}
1251
1252static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1253
ab4d5ed5 1254#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1255
81819f0f
CL
1256/*
1257 * Slab allocation and freeing
1258 */
65c3376a
CL
1259static inline struct page *alloc_slab_page(gfp_t flags, int node,
1260 struct kmem_cache_order_objects oo)
1261{
1262 int order = oo_order(oo);
1263
b1eeab67
VN
1264 flags |= __GFP_NOTRACK;
1265
2154a336 1266 if (node == NUMA_NO_NODE)
65c3376a
CL
1267 return alloc_pages(flags, order);
1268 else
6b65aaf3 1269 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1270}
1271
81819f0f
CL
1272static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1273{
06428780 1274 struct page *page;
834f3d11 1275 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1276 gfp_t alloc_gfp;
81819f0f 1277
7e0528da
CL
1278 flags &= gfp_allowed_mask;
1279
1280 if (flags & __GFP_WAIT)
1281 local_irq_enable();
1282
b7a49f0d 1283 flags |= s->allocflags;
e12ba74d 1284
ba52270d
PE
1285 /*
1286 * Let the initial higher-order allocation fail under memory pressure
1287 * so we fall-back to the minimum order allocation.
1288 */
1289 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1290
1291 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1292 if (unlikely(!page)) {
1293 oo = s->min;
1294 /*
1295 * Allocation may have failed due to fragmentation.
1296 * Try a lower order alloc if possible
1297 */
1298 page = alloc_slab_page(flags, node, oo);
81819f0f 1299
7e0528da
CL
1300 if (page)
1301 stat(s, ORDER_FALLBACK);
65c3376a 1302 }
5a896d9e 1303
737b719e 1304 if (kmemcheck_enabled && page
5086c389 1305 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1306 int pages = 1 << oo_order(oo);
1307
1308 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1309
1310 /*
1311 * Objects from caches that have a constructor don't get
1312 * cleared when they're allocated, so we need to do it here.
1313 */
1314 if (s->ctor)
1315 kmemcheck_mark_uninitialized_pages(page, pages);
1316 else
1317 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1318 }
1319
737b719e
DR
1320 if (flags & __GFP_WAIT)
1321 local_irq_disable();
1322 if (!page)
1323 return NULL;
1324
834f3d11 1325 page->objects = oo_objects(oo);
81819f0f
CL
1326 mod_zone_page_state(page_zone(page),
1327 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1328 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1329 1 << oo_order(oo));
81819f0f
CL
1330
1331 return page;
1332}
1333
1334static void setup_object(struct kmem_cache *s, struct page *page,
1335 void *object)
1336{
3ec09742 1337 setup_object_debug(s, page, object);
4f104934 1338 if (unlikely(s->ctor))
51cc5068 1339 s->ctor(object);
81819f0f
CL
1340}
1341
1342static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1343{
1344 struct page *page;
81819f0f 1345 void *start;
81819f0f
CL
1346 void *last;
1347 void *p;
1348
6cb06229 1349 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1350
6cb06229
CL
1351 page = allocate_slab(s,
1352 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1353 if (!page)
1354 goto out;
1355
205ab99d 1356 inc_slabs_node(s, page_to_nid(page), page->objects);
1b4f59e3 1357 page->slab_cache = s;
c03f94cc 1358 __SetPageSlab(page);
072bb0aa
MG
1359 if (page->pfmemalloc)
1360 SetPageSlabPfmemalloc(page);
81819f0f
CL
1361
1362 start = page_address(page);
81819f0f
CL
1363
1364 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1365 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1366
1367 last = start;
224a88be 1368 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1369 setup_object(s, page, last);
1370 set_freepointer(s, last, p);
1371 last = p;
1372 }
1373 setup_object(s, page, last);
a973e9dd 1374 set_freepointer(s, last, NULL);
81819f0f
CL
1375
1376 page->freelist = start;
e6e82ea1 1377 page->inuse = page->objects;
8cb0a506 1378 page->frozen = 1;
81819f0f 1379out:
81819f0f
CL
1380 return page;
1381}
1382
1383static void __free_slab(struct kmem_cache *s, struct page *page)
1384{
834f3d11
CL
1385 int order = compound_order(page);
1386 int pages = 1 << order;
81819f0f 1387
af537b0a 1388 if (kmem_cache_debug(s)) {
81819f0f
CL
1389 void *p;
1390
1391 slab_pad_check(s, page);
224a88be
CL
1392 for_each_object(p, s, page_address(page),
1393 page->objects)
f7cb1933 1394 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1395 }
1396
b1eeab67 1397 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1398
81819f0f
CL
1399 mod_zone_page_state(page_zone(page),
1400 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1401 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1402 -pages);
81819f0f 1403
072bb0aa 1404 __ClearPageSlabPfmemalloc(page);
49bd5221
CL
1405 __ClearPageSlab(page);
1406 reset_page_mapcount(page);
1eb5ac64
NP
1407 if (current->reclaim_state)
1408 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1409 __free_pages(page, order);
81819f0f
CL
1410}
1411
da9a638c
LJ
1412#define need_reserve_slab_rcu \
1413 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1414
81819f0f
CL
1415static void rcu_free_slab(struct rcu_head *h)
1416{
1417 struct page *page;
1418
da9a638c
LJ
1419 if (need_reserve_slab_rcu)
1420 page = virt_to_head_page(h);
1421 else
1422 page = container_of((struct list_head *)h, struct page, lru);
1423
1b4f59e3 1424 __free_slab(page->slab_cache, page);
81819f0f
CL
1425}
1426
1427static void free_slab(struct kmem_cache *s, struct page *page)
1428{
1429 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1430 struct rcu_head *head;
1431
1432 if (need_reserve_slab_rcu) {
1433 int order = compound_order(page);
1434 int offset = (PAGE_SIZE << order) - s->reserved;
1435
1436 VM_BUG_ON(s->reserved != sizeof(*head));
1437 head = page_address(page) + offset;
1438 } else {
1439 /*
1440 * RCU free overloads the RCU head over the LRU
1441 */
1442 head = (void *)&page->lru;
1443 }
81819f0f
CL
1444
1445 call_rcu(head, rcu_free_slab);
1446 } else
1447 __free_slab(s, page);
1448}
1449
1450static void discard_slab(struct kmem_cache *s, struct page *page)
1451{
205ab99d 1452 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1453 free_slab(s, page);
1454}
1455
1456/*
5cc6eee8
CL
1457 * Management of partially allocated slabs.
1458 *
1459 * list_lock must be held.
81819f0f 1460 */
5cc6eee8 1461static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1462 struct page *page, int tail)
81819f0f 1463{
e95eed57 1464 n->nr_partial++;
136333d1 1465 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1466 list_add_tail(&page->lru, &n->partial);
1467 else
1468 list_add(&page->lru, &n->partial);
81819f0f
CL
1469}
1470
5cc6eee8
CL
1471/*
1472 * list_lock must be held.
1473 */
1474static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1475 struct page *page)
1476{
1477 list_del(&page->lru);
1478 n->nr_partial--;
1479}
1480
81819f0f 1481/*
7ced3719
CL
1482 * Remove slab from the partial list, freeze it and
1483 * return the pointer to the freelist.
81819f0f 1484 *
497b66f2
CL
1485 * Returns a list of objects or NULL if it fails.
1486 *
7ced3719 1487 * Must hold list_lock since we modify the partial list.
81819f0f 1488 */
497b66f2 1489static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1490 struct kmem_cache_node *n, struct page *page,
49e22585 1491 int mode)
81819f0f 1492{
2cfb7455
CL
1493 void *freelist;
1494 unsigned long counters;
1495 struct page new;
1496
2cfb7455
CL
1497 /*
1498 * Zap the freelist and set the frozen bit.
1499 * The old freelist is the list of objects for the
1500 * per cpu allocation list.
1501 */
7ced3719
CL
1502 freelist = page->freelist;
1503 counters = page->counters;
1504 new.counters = counters;
23910c50 1505 if (mode) {
7ced3719 1506 new.inuse = page->objects;
23910c50
PE
1507 new.freelist = NULL;
1508 } else {
1509 new.freelist = freelist;
1510 }
2cfb7455 1511
7ced3719
CL
1512 VM_BUG_ON(new.frozen);
1513 new.frozen = 1;
2cfb7455 1514
7ced3719 1515 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1516 freelist, counters,
02d7633f 1517 new.freelist, new.counters,
7ced3719 1518 "acquire_slab"))
7ced3719 1519 return NULL;
2cfb7455
CL
1520
1521 remove_partial(n, page);
7ced3719 1522 WARN_ON(!freelist);
49e22585 1523 return freelist;
81819f0f
CL
1524}
1525
49e22585 1526static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1527static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1528
81819f0f 1529/*
672bba3a 1530 * Try to allocate a partial slab from a specific node.
81819f0f 1531 */
8ba00bb6
JK
1532static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1533 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1534{
49e22585
CL
1535 struct page *page, *page2;
1536 void *object = NULL;
81819f0f
CL
1537
1538 /*
1539 * Racy check. If we mistakenly see no partial slabs then we
1540 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1541 * partial slab and there is none available then get_partials()
1542 * will return NULL.
81819f0f
CL
1543 */
1544 if (!n || !n->nr_partial)
1545 return NULL;
1546
1547 spin_lock(&n->list_lock);
49e22585 1548 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1549 void *t;
49e22585
CL
1550 int available;
1551
8ba00bb6
JK
1552 if (!pfmemalloc_match(page, flags))
1553 continue;
1554
1555 t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1556 if (!t)
1557 break;
1558
12d79634 1559 if (!object) {
49e22585 1560 c->page = page;
49e22585 1561 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1562 object = t;
1563 available = page->objects - page->inuse;
1564 } else {
49e22585 1565 available = put_cpu_partial(s, page, 0);
8028dcea 1566 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1567 }
1568 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1569 break;
1570
497b66f2 1571 }
81819f0f 1572 spin_unlock(&n->list_lock);
497b66f2 1573 return object;
81819f0f
CL
1574}
1575
1576/*
672bba3a 1577 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1578 */
de3ec035 1579static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1580 struct kmem_cache_cpu *c)
81819f0f
CL
1581{
1582#ifdef CONFIG_NUMA
1583 struct zonelist *zonelist;
dd1a239f 1584 struct zoneref *z;
54a6eb5c
MG
1585 struct zone *zone;
1586 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1587 void *object;
cc9a6c87 1588 unsigned int cpuset_mems_cookie;
81819f0f
CL
1589
1590 /*
672bba3a
CL
1591 * The defrag ratio allows a configuration of the tradeoffs between
1592 * inter node defragmentation and node local allocations. A lower
1593 * defrag_ratio increases the tendency to do local allocations
1594 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1595 *
672bba3a
CL
1596 * If the defrag_ratio is set to 0 then kmalloc() always
1597 * returns node local objects. If the ratio is higher then kmalloc()
1598 * may return off node objects because partial slabs are obtained
1599 * from other nodes and filled up.
81819f0f 1600 *
6446faa2 1601 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1602 * defrag_ratio = 1000) then every (well almost) allocation will
1603 * first attempt to defrag slab caches on other nodes. This means
1604 * scanning over all nodes to look for partial slabs which may be
1605 * expensive if we do it every time we are trying to find a slab
1606 * with available objects.
81819f0f 1607 */
9824601e
CL
1608 if (!s->remote_node_defrag_ratio ||
1609 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1610 return NULL;
1611
cc9a6c87
MG
1612 do {
1613 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1614 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1615 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1616 struct kmem_cache_node *n;
1617
1618 n = get_node(s, zone_to_nid(zone));
1619
1620 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1621 n->nr_partial > s->min_partial) {
8ba00bb6 1622 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1623 if (object) {
1624 /*
1625 * Return the object even if
1626 * put_mems_allowed indicated that
1627 * the cpuset mems_allowed was
1628 * updated in parallel. It's a
1629 * harmless race between the alloc
1630 * and the cpuset update.
1631 */
1632 put_mems_allowed(cpuset_mems_cookie);
1633 return object;
1634 }
c0ff7453 1635 }
81819f0f 1636 }
cc9a6c87 1637 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1638#endif
1639 return NULL;
1640}
1641
1642/*
1643 * Get a partial page, lock it and return it.
1644 */
497b66f2 1645static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1646 struct kmem_cache_cpu *c)
81819f0f 1647{
497b66f2 1648 void *object;
2154a336 1649 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1650
8ba00bb6 1651 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1652 if (object || node != NUMA_NO_NODE)
1653 return object;
81819f0f 1654
acd19fd1 1655 return get_any_partial(s, flags, c);
81819f0f
CL
1656}
1657
8a5ec0ba
CL
1658#ifdef CONFIG_PREEMPT
1659/*
1660 * Calculate the next globally unique transaction for disambiguiation
1661 * during cmpxchg. The transactions start with the cpu number and are then
1662 * incremented by CONFIG_NR_CPUS.
1663 */
1664#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1665#else
1666/*
1667 * No preemption supported therefore also no need to check for
1668 * different cpus.
1669 */
1670#define TID_STEP 1
1671#endif
1672
1673static inline unsigned long next_tid(unsigned long tid)
1674{
1675 return tid + TID_STEP;
1676}
1677
1678static inline unsigned int tid_to_cpu(unsigned long tid)
1679{
1680 return tid % TID_STEP;
1681}
1682
1683static inline unsigned long tid_to_event(unsigned long tid)
1684{
1685 return tid / TID_STEP;
1686}
1687
1688static inline unsigned int init_tid(int cpu)
1689{
1690 return cpu;
1691}
1692
1693static inline void note_cmpxchg_failure(const char *n,
1694 const struct kmem_cache *s, unsigned long tid)
1695{
1696#ifdef SLUB_DEBUG_CMPXCHG
1697 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1698
1699 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1700
1701#ifdef CONFIG_PREEMPT
1702 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1703 printk("due to cpu change %d -> %d\n",
1704 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1705 else
1706#endif
1707 if (tid_to_event(tid) != tid_to_event(actual_tid))
1708 printk("due to cpu running other code. Event %ld->%ld\n",
1709 tid_to_event(tid), tid_to_event(actual_tid));
1710 else
1711 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1712 actual_tid, tid, next_tid(tid));
1713#endif
4fdccdfb 1714 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1715}
1716
788e1aad 1717static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1718{
8a5ec0ba
CL
1719 int cpu;
1720
1721 for_each_possible_cpu(cpu)
1722 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1723}
2cfb7455 1724
81819f0f
CL
1725/*
1726 * Remove the cpu slab
1727 */
c17dda40 1728static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1729{
2cfb7455 1730 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1731 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1732 int lock = 0;
1733 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1734 void *nextfree;
136333d1 1735 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1736 struct page new;
1737 struct page old;
1738
1739 if (page->freelist) {
84e554e6 1740 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1741 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1742 }
1743
894b8788 1744 /*
2cfb7455
CL
1745 * Stage one: Free all available per cpu objects back
1746 * to the page freelist while it is still frozen. Leave the
1747 * last one.
1748 *
1749 * There is no need to take the list->lock because the page
1750 * is still frozen.
1751 */
1752 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1753 void *prior;
1754 unsigned long counters;
1755
1756 do {
1757 prior = page->freelist;
1758 counters = page->counters;
1759 set_freepointer(s, freelist, prior);
1760 new.counters = counters;
1761 new.inuse--;
1762 VM_BUG_ON(!new.frozen);
1763
1d07171c 1764 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1765 prior, counters,
1766 freelist, new.counters,
1767 "drain percpu freelist"));
1768
1769 freelist = nextfree;
1770 }
1771
894b8788 1772 /*
2cfb7455
CL
1773 * Stage two: Ensure that the page is unfrozen while the
1774 * list presence reflects the actual number of objects
1775 * during unfreeze.
1776 *
1777 * We setup the list membership and then perform a cmpxchg
1778 * with the count. If there is a mismatch then the page
1779 * is not unfrozen but the page is on the wrong list.
1780 *
1781 * Then we restart the process which may have to remove
1782 * the page from the list that we just put it on again
1783 * because the number of objects in the slab may have
1784 * changed.
894b8788 1785 */
2cfb7455 1786redo:
894b8788 1787
2cfb7455
CL
1788 old.freelist = page->freelist;
1789 old.counters = page->counters;
1790 VM_BUG_ON(!old.frozen);
7c2e132c 1791
2cfb7455
CL
1792 /* Determine target state of the slab */
1793 new.counters = old.counters;
1794 if (freelist) {
1795 new.inuse--;
1796 set_freepointer(s, freelist, old.freelist);
1797 new.freelist = freelist;
1798 } else
1799 new.freelist = old.freelist;
1800
1801 new.frozen = 0;
1802
81107188 1803 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1804 m = M_FREE;
1805 else if (new.freelist) {
1806 m = M_PARTIAL;
1807 if (!lock) {
1808 lock = 1;
1809 /*
1810 * Taking the spinlock removes the possiblity
1811 * that acquire_slab() will see a slab page that
1812 * is frozen
1813 */
1814 spin_lock(&n->list_lock);
1815 }
1816 } else {
1817 m = M_FULL;
1818 if (kmem_cache_debug(s) && !lock) {
1819 lock = 1;
1820 /*
1821 * This also ensures that the scanning of full
1822 * slabs from diagnostic functions will not see
1823 * any frozen slabs.
1824 */
1825 spin_lock(&n->list_lock);
1826 }
1827 }
1828
1829 if (l != m) {
1830
1831 if (l == M_PARTIAL)
1832
1833 remove_partial(n, page);
1834
1835 else if (l == M_FULL)
894b8788 1836
2cfb7455
CL
1837 remove_full(s, page);
1838
1839 if (m == M_PARTIAL) {
1840
1841 add_partial(n, page, tail);
136333d1 1842 stat(s, tail);
2cfb7455
CL
1843
1844 } else if (m == M_FULL) {
894b8788 1845
2cfb7455
CL
1846 stat(s, DEACTIVATE_FULL);
1847 add_full(s, n, page);
1848
1849 }
1850 }
1851
1852 l = m;
1d07171c 1853 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1854 old.freelist, old.counters,
1855 new.freelist, new.counters,
1856 "unfreezing slab"))
1857 goto redo;
1858
2cfb7455
CL
1859 if (lock)
1860 spin_unlock(&n->list_lock);
1861
1862 if (m == M_FREE) {
1863 stat(s, DEACTIVATE_EMPTY);
1864 discard_slab(s, page);
1865 stat(s, FREE_SLAB);
894b8788 1866 }
81819f0f
CL
1867}
1868
d24ac77f
JK
1869/*
1870 * Unfreeze all the cpu partial slabs.
1871 *
59a09917
CL
1872 * This function must be called with interrupts disabled
1873 * for the cpu using c (or some other guarantee must be there
1874 * to guarantee no concurrent accesses).
d24ac77f 1875 */
59a09917
CL
1876static void unfreeze_partials(struct kmem_cache *s,
1877 struct kmem_cache_cpu *c)
49e22585 1878{
43d77867 1879 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1880 struct page *page, *discard_page = NULL;
49e22585
CL
1881
1882 while ((page = c->partial)) {
49e22585
CL
1883 struct page new;
1884 struct page old;
1885
1886 c->partial = page->next;
43d77867
JK
1887
1888 n2 = get_node(s, page_to_nid(page));
1889 if (n != n2) {
1890 if (n)
1891 spin_unlock(&n->list_lock);
1892
1893 n = n2;
1894 spin_lock(&n->list_lock);
1895 }
49e22585
CL
1896
1897 do {
1898
1899 old.freelist = page->freelist;
1900 old.counters = page->counters;
1901 VM_BUG_ON(!old.frozen);
1902
1903 new.counters = old.counters;
1904 new.freelist = old.freelist;
1905
1906 new.frozen = 0;
1907
d24ac77f 1908 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1909 old.freelist, old.counters,
1910 new.freelist, new.counters,
1911 "unfreezing slab"));
1912
43d77867 1913 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1914 page->next = discard_page;
1915 discard_page = page;
43d77867
JK
1916 } else {
1917 add_partial(n, page, DEACTIVATE_TO_TAIL);
1918 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1919 }
1920 }
1921
1922 if (n)
1923 spin_unlock(&n->list_lock);
9ada1934
SL
1924
1925 while (discard_page) {
1926 page = discard_page;
1927 discard_page = discard_page->next;
1928
1929 stat(s, DEACTIVATE_EMPTY);
1930 discard_slab(s, page);
1931 stat(s, FREE_SLAB);
1932 }
49e22585
CL
1933}
1934
1935/*
1936 * Put a page that was just frozen (in __slab_free) into a partial page
1937 * slot if available. This is done without interrupts disabled and without
1938 * preemption disabled. The cmpxchg is racy and may put the partial page
1939 * onto a random cpus partial slot.
1940 *
1941 * If we did not find a slot then simply move all the partials to the
1942 * per node partial list.
1943 */
788e1aad 1944static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585
CL
1945{
1946 struct page *oldpage;
1947 int pages;
1948 int pobjects;
1949
1950 do {
1951 pages = 0;
1952 pobjects = 0;
1953 oldpage = this_cpu_read(s->cpu_slab->partial);
1954
1955 if (oldpage) {
1956 pobjects = oldpage->pobjects;
1957 pages = oldpage->pages;
1958 if (drain && pobjects > s->cpu_partial) {
1959 unsigned long flags;
1960 /*
1961 * partial array is full. Move the existing
1962 * set to the per node partial list.
1963 */
1964 local_irq_save(flags);
59a09917 1965 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 1966 local_irq_restore(flags);
e24fc410 1967 oldpage = NULL;
49e22585
CL
1968 pobjects = 0;
1969 pages = 0;
8028dcea 1970 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1971 }
1972 }
1973
1974 pages++;
1975 pobjects += page->objects - page->inuse;
1976
1977 page->pages = pages;
1978 page->pobjects = pobjects;
1979 page->next = oldpage;
1980
933393f5 1981 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1982 return pobjects;
1983}
1984
dfb4f096 1985static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1986{
84e554e6 1987 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
1988 deactivate_slab(s, c->page, c->freelist);
1989
1990 c->tid = next_tid(c->tid);
1991 c->page = NULL;
1992 c->freelist = NULL;
81819f0f
CL
1993}
1994
1995/*
1996 * Flush cpu slab.
6446faa2 1997 *
81819f0f
CL
1998 * Called from IPI handler with interrupts disabled.
1999 */
0c710013 2000static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2001{
9dfc6e68 2002 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2003
49e22585
CL
2004 if (likely(c)) {
2005 if (c->page)
2006 flush_slab(s, c);
2007
59a09917 2008 unfreeze_partials(s, c);
49e22585 2009 }
81819f0f
CL
2010}
2011
2012static void flush_cpu_slab(void *d)
2013{
2014 struct kmem_cache *s = d;
81819f0f 2015
dfb4f096 2016 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2017}
2018
a8364d55
GBY
2019static bool has_cpu_slab(int cpu, void *info)
2020{
2021 struct kmem_cache *s = info;
2022 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2023
02e1a9cd 2024 return c->page || c->partial;
a8364d55
GBY
2025}
2026
81819f0f
CL
2027static void flush_all(struct kmem_cache *s)
2028{
a8364d55 2029 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2030}
2031
dfb4f096
CL
2032/*
2033 * Check if the objects in a per cpu structure fit numa
2034 * locality expectations.
2035 */
57d437d2 2036static inline int node_match(struct page *page, int node)
dfb4f096
CL
2037{
2038#ifdef CONFIG_NUMA
57d437d2 2039 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2040 return 0;
2041#endif
2042 return 1;
2043}
2044
781b2ba6
PE
2045static int count_free(struct page *page)
2046{
2047 return page->objects - page->inuse;
2048}
2049
2050static unsigned long count_partial(struct kmem_cache_node *n,
2051 int (*get_count)(struct page *))
2052{
2053 unsigned long flags;
2054 unsigned long x = 0;
2055 struct page *page;
2056
2057 spin_lock_irqsave(&n->list_lock, flags);
2058 list_for_each_entry(page, &n->partial, lru)
2059 x += get_count(page);
2060 spin_unlock_irqrestore(&n->list_lock, flags);
2061 return x;
2062}
2063
26c02cf0
AB
2064static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2065{
2066#ifdef CONFIG_SLUB_DEBUG
2067 return atomic_long_read(&n->total_objects);
2068#else
2069 return 0;
2070#endif
2071}
2072
781b2ba6
PE
2073static noinline void
2074slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2075{
2076 int node;
2077
2078 printk(KERN_WARNING
2079 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2080 nid, gfpflags);
2081 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2082 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2083 s->size, oo_order(s->oo), oo_order(s->min));
2084
3b0efdfa 2085 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2086 printk(KERN_WARNING " %s debugging increased min order, use "
2087 "slub_debug=O to disable.\n", s->name);
2088
781b2ba6
PE
2089 for_each_online_node(node) {
2090 struct kmem_cache_node *n = get_node(s, node);
2091 unsigned long nr_slabs;
2092 unsigned long nr_objs;
2093 unsigned long nr_free;
2094
2095 if (!n)
2096 continue;
2097
26c02cf0
AB
2098 nr_free = count_partial(n, count_free);
2099 nr_slabs = node_nr_slabs(n);
2100 nr_objs = node_nr_objs(n);
781b2ba6
PE
2101
2102 printk(KERN_WARNING
2103 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2104 node, nr_slabs, nr_objs, nr_free);
2105 }
2106}
2107
497b66f2
CL
2108static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2109 int node, struct kmem_cache_cpu **pc)
2110{
6faa6833 2111 void *freelist;
188fd063
CL
2112 struct kmem_cache_cpu *c = *pc;
2113 struct page *page;
497b66f2 2114
188fd063 2115 freelist = get_partial(s, flags, node, c);
497b66f2 2116
188fd063
CL
2117 if (freelist)
2118 return freelist;
2119
2120 page = new_slab(s, flags, node);
497b66f2
CL
2121 if (page) {
2122 c = __this_cpu_ptr(s->cpu_slab);
2123 if (c->page)
2124 flush_slab(s, c);
2125
2126 /*
2127 * No other reference to the page yet so we can
2128 * muck around with it freely without cmpxchg
2129 */
6faa6833 2130 freelist = page->freelist;
497b66f2
CL
2131 page->freelist = NULL;
2132
2133 stat(s, ALLOC_SLAB);
497b66f2
CL
2134 c->page = page;
2135 *pc = c;
2136 } else
6faa6833 2137 freelist = NULL;
497b66f2 2138
6faa6833 2139 return freelist;
497b66f2
CL
2140}
2141
072bb0aa
MG
2142static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2143{
2144 if (unlikely(PageSlabPfmemalloc(page)))
2145 return gfp_pfmemalloc_allowed(gfpflags);
2146
2147 return true;
2148}
2149
213eeb9f
CL
2150/*
2151 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2152 * or deactivate the page.
2153 *
2154 * The page is still frozen if the return value is not NULL.
2155 *
2156 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2157 *
2158 * This function must be called with interrupt disabled.
213eeb9f
CL
2159 */
2160static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2161{
2162 struct page new;
2163 unsigned long counters;
2164 void *freelist;
2165
2166 do {
2167 freelist = page->freelist;
2168 counters = page->counters;
6faa6833 2169
213eeb9f
CL
2170 new.counters = counters;
2171 VM_BUG_ON(!new.frozen);
2172
2173 new.inuse = page->objects;
2174 new.frozen = freelist != NULL;
2175
d24ac77f 2176 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2177 freelist, counters,
2178 NULL, new.counters,
2179 "get_freelist"));
2180
2181 return freelist;
2182}
2183
81819f0f 2184/*
894b8788
CL
2185 * Slow path. The lockless freelist is empty or we need to perform
2186 * debugging duties.
2187 *
894b8788
CL
2188 * Processing is still very fast if new objects have been freed to the
2189 * regular freelist. In that case we simply take over the regular freelist
2190 * as the lockless freelist and zap the regular freelist.
81819f0f 2191 *
894b8788
CL
2192 * If that is not working then we fall back to the partial lists. We take the
2193 * first element of the freelist as the object to allocate now and move the
2194 * rest of the freelist to the lockless freelist.
81819f0f 2195 *
894b8788 2196 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2197 * we need to allocate a new slab. This is the slowest path since it involves
2198 * a call to the page allocator and the setup of a new slab.
81819f0f 2199 */
ce71e27c
EGM
2200static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2201 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2202{
6faa6833 2203 void *freelist;
f6e7def7 2204 struct page *page;
8a5ec0ba
CL
2205 unsigned long flags;
2206
2207 local_irq_save(flags);
2208#ifdef CONFIG_PREEMPT
2209 /*
2210 * We may have been preempted and rescheduled on a different
2211 * cpu before disabling interrupts. Need to reload cpu area
2212 * pointer.
2213 */
2214 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2215#endif
81819f0f 2216
f6e7def7
CL
2217 page = c->page;
2218 if (!page)
81819f0f 2219 goto new_slab;
49e22585 2220redo:
6faa6833 2221
57d437d2 2222 if (unlikely(!node_match(page, node))) {
e36a2652 2223 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2224 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2225 c->page = NULL;
2226 c->freelist = NULL;
fc59c053
CL
2227 goto new_slab;
2228 }
6446faa2 2229
072bb0aa
MG
2230 /*
2231 * By rights, we should be searching for a slab page that was
2232 * PFMEMALLOC but right now, we are losing the pfmemalloc
2233 * information when the page leaves the per-cpu allocator
2234 */
2235 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2236 deactivate_slab(s, page, c->freelist);
2237 c->page = NULL;
2238 c->freelist = NULL;
2239 goto new_slab;
2240 }
2241
73736e03 2242 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2243 freelist = c->freelist;
2244 if (freelist)
73736e03 2245 goto load_freelist;
03e404af 2246
2cfb7455 2247 stat(s, ALLOC_SLOWPATH);
03e404af 2248
f6e7def7 2249 freelist = get_freelist(s, page);
6446faa2 2250
6faa6833 2251 if (!freelist) {
03e404af
CL
2252 c->page = NULL;
2253 stat(s, DEACTIVATE_BYPASS);
fc59c053 2254 goto new_slab;
03e404af 2255 }
6446faa2 2256
84e554e6 2257 stat(s, ALLOC_REFILL);
6446faa2 2258
894b8788 2259load_freelist:
507effea
CL
2260 /*
2261 * freelist is pointing to the list of objects to be used.
2262 * page is pointing to the page from which the objects are obtained.
2263 * That page must be frozen for per cpu allocations to work.
2264 */
2265 VM_BUG_ON(!c->page->frozen);
6faa6833 2266 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2267 c->tid = next_tid(c->tid);
2268 local_irq_restore(flags);
6faa6833 2269 return freelist;
81819f0f 2270
81819f0f 2271new_slab:
2cfb7455 2272
49e22585 2273 if (c->partial) {
f6e7def7
CL
2274 page = c->page = c->partial;
2275 c->partial = page->next;
49e22585
CL
2276 stat(s, CPU_PARTIAL_ALLOC);
2277 c->freelist = NULL;
2278 goto redo;
81819f0f
CL
2279 }
2280
188fd063 2281 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2282
f4697436
CL
2283 if (unlikely(!freelist)) {
2284 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2285 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2286
f4697436
CL
2287 local_irq_restore(flags);
2288 return NULL;
81819f0f 2289 }
2cfb7455 2290
f6e7def7 2291 page = c->page;
5091b74a 2292 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2293 goto load_freelist;
2cfb7455 2294
497b66f2 2295 /* Only entered in the debug case */
5091b74a 2296 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2297 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2298
f6e7def7 2299 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2300 c->page = NULL;
2301 c->freelist = NULL;
a71ae47a 2302 local_irq_restore(flags);
6faa6833 2303 return freelist;
894b8788
CL
2304}
2305
2306/*
2307 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2308 * have the fastpath folded into their functions. So no function call
2309 * overhead for requests that can be satisfied on the fastpath.
2310 *
2311 * The fastpath works by first checking if the lockless freelist can be used.
2312 * If not then __slab_alloc is called for slow processing.
2313 *
2314 * Otherwise we can simply pick the next object from the lockless free list.
2315 */
2b847c3c 2316static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2317 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2318{
894b8788 2319 void **object;
dfb4f096 2320 struct kmem_cache_cpu *c;
57d437d2 2321 struct page *page;
8a5ec0ba 2322 unsigned long tid;
1f84260c 2323
c016b0bd 2324 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2325 return NULL;
1f84260c 2326
8a5ec0ba 2327redo:
8a5ec0ba
CL
2328
2329 /*
2330 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2331 * enabled. We may switch back and forth between cpus while
2332 * reading from one cpu area. That does not matter as long
2333 * as we end up on the original cpu again when doing the cmpxchg.
2334 */
9dfc6e68 2335 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2336
8a5ec0ba
CL
2337 /*
2338 * The transaction ids are globally unique per cpu and per operation on
2339 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2340 * occurs on the right processor and that there was no operation on the
2341 * linked list in between.
2342 */
2343 tid = c->tid;
2344 barrier();
8a5ec0ba 2345
9dfc6e68 2346 object = c->freelist;
57d437d2 2347 page = c->page;
5091b74a 2348 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2349 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2350
2351 else {
0ad9500e
ED
2352 void *next_object = get_freepointer_safe(s, object);
2353
8a5ec0ba 2354 /*
25985edc 2355 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2356 * operation and if we are on the right processor.
2357 *
2358 * The cmpxchg does the following atomically (without lock semantics!)
2359 * 1. Relocate first pointer to the current per cpu area.
2360 * 2. Verify that tid and freelist have not been changed
2361 * 3. If they were not changed replace tid and freelist
2362 *
2363 * Since this is without lock semantics the protection is only against
2364 * code executing on this cpu *not* from access by other cpus.
2365 */
933393f5 2366 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2367 s->cpu_slab->freelist, s->cpu_slab->tid,
2368 object, tid,
0ad9500e 2369 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2370
2371 note_cmpxchg_failure("slab_alloc", s, tid);
2372 goto redo;
2373 }
0ad9500e 2374 prefetch_freepointer(s, next_object);
84e554e6 2375 stat(s, ALLOC_FASTPATH);
894b8788 2376 }
8a5ec0ba 2377
74e2134f 2378 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2379 memset(object, 0, s->object_size);
d07dbea4 2380
c016b0bd 2381 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2382
894b8788 2383 return object;
81819f0f
CL
2384}
2385
2b847c3c
EG
2386static __always_inline void *slab_alloc(struct kmem_cache *s,
2387 gfp_t gfpflags, unsigned long addr)
2388{
2389 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2390}
2391
81819f0f
CL
2392void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2393{
2b847c3c 2394 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2395
3b0efdfa 2396 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2397
2398 return ret;
81819f0f
CL
2399}
2400EXPORT_SYMBOL(kmem_cache_alloc);
2401
0f24f128 2402#ifdef CONFIG_TRACING
4a92379b
RK
2403void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2404{
2b847c3c 2405 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2406 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2407 return ret;
2408}
2409EXPORT_SYMBOL(kmem_cache_alloc_trace);
2410
2411void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2412{
4a92379b
RK
2413 void *ret = kmalloc_order(size, flags, order);
2414 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2415 return ret;
5b882be4 2416}
4a92379b 2417EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2418#endif
2419
81819f0f
CL
2420#ifdef CONFIG_NUMA
2421void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2422{
2b847c3c 2423 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2424
ca2b84cb 2425 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2426 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2427
2428 return ret;
81819f0f
CL
2429}
2430EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2431
0f24f128 2432#ifdef CONFIG_TRACING
4a92379b 2433void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2434 gfp_t gfpflags,
4a92379b 2435 int node, size_t size)
5b882be4 2436{
2b847c3c 2437 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2438
2439 trace_kmalloc_node(_RET_IP_, ret,
2440 size, s->size, gfpflags, node);
2441 return ret;
5b882be4 2442}
4a92379b 2443EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2444#endif
5d1f57e4 2445#endif
5b882be4 2446
81819f0f 2447/*
894b8788
CL
2448 * Slow patch handling. This may still be called frequently since objects
2449 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2450 *
894b8788
CL
2451 * So we still attempt to reduce cache line usage. Just take the slab
2452 * lock and free the item. If there is no additional partial page
2453 * handling required then we can return immediately.
81819f0f 2454 */
894b8788 2455static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2456 void *x, unsigned long addr)
81819f0f
CL
2457{
2458 void *prior;
2459 void **object = (void *)x;
2cfb7455 2460 int was_frozen;
2cfb7455
CL
2461 struct page new;
2462 unsigned long counters;
2463 struct kmem_cache_node *n = NULL;
61728d1e 2464 unsigned long uninitialized_var(flags);
81819f0f 2465
8a5ec0ba 2466 stat(s, FREE_SLOWPATH);
81819f0f 2467
19c7ff9e
CL
2468 if (kmem_cache_debug(s) &&
2469 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2470 return;
6446faa2 2471
2cfb7455 2472 do {
837d678d
JK
2473 if (unlikely(n)) {
2474 spin_unlock_irqrestore(&n->list_lock, flags);
2475 n = NULL;
2476 }
2cfb7455
CL
2477 prior = page->freelist;
2478 counters = page->counters;
2479 set_freepointer(s, object, prior);
2480 new.counters = counters;
2481 was_frozen = new.frozen;
2482 new.inuse--;
837d678d 2483 if ((!new.inuse || !prior) && !was_frozen) {
49e22585
CL
2484
2485 if (!kmem_cache_debug(s) && !prior)
2486
2487 /*
2488 * Slab was on no list before and will be partially empty
2489 * We can defer the list move and instead freeze it.
2490 */
2491 new.frozen = 1;
2492
2493 else { /* Needs to be taken off a list */
2494
2495 n = get_node(s, page_to_nid(page));
2496 /*
2497 * Speculatively acquire the list_lock.
2498 * If the cmpxchg does not succeed then we may
2499 * drop the list_lock without any processing.
2500 *
2501 * Otherwise the list_lock will synchronize with
2502 * other processors updating the list of slabs.
2503 */
2504 spin_lock_irqsave(&n->list_lock, flags);
2505
2506 }
2cfb7455 2507 }
81819f0f 2508
2cfb7455
CL
2509 } while (!cmpxchg_double_slab(s, page,
2510 prior, counters,
2511 object, new.counters,
2512 "__slab_free"));
81819f0f 2513
2cfb7455 2514 if (likely(!n)) {
49e22585
CL
2515
2516 /*
2517 * If we just froze the page then put it onto the
2518 * per cpu partial list.
2519 */
8028dcea 2520 if (new.frozen && !was_frozen) {
49e22585 2521 put_cpu_partial(s, page, 1);
8028dcea
AS
2522 stat(s, CPU_PARTIAL_FREE);
2523 }
49e22585 2524 /*
2cfb7455
CL
2525 * The list lock was not taken therefore no list
2526 * activity can be necessary.
2527 */
2528 if (was_frozen)
2529 stat(s, FREE_FROZEN);
80f08c19 2530 return;
2cfb7455 2531 }
81819f0f 2532
837d678d
JK
2533 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2534 goto slab_empty;
2535
81819f0f 2536 /*
837d678d
JK
2537 * Objects left in the slab. If it was not on the partial list before
2538 * then add it.
81819f0f 2539 */
837d678d
JK
2540 if (kmem_cache_debug(s) && unlikely(!prior)) {
2541 remove_full(s, page);
2542 add_partial(n, page, DEACTIVATE_TO_TAIL);
2543 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2544 }
80f08c19 2545 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2546 return;
2547
2548slab_empty:
a973e9dd 2549 if (prior) {
81819f0f 2550 /*
6fbabb20 2551 * Slab on the partial list.
81819f0f 2552 */
5cc6eee8 2553 remove_partial(n, page);
84e554e6 2554 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2555 } else
2556 /* Slab must be on the full list */
2557 remove_full(s, page);
2cfb7455 2558
80f08c19 2559 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2560 stat(s, FREE_SLAB);
81819f0f 2561 discard_slab(s, page);
81819f0f
CL
2562}
2563
894b8788
CL
2564/*
2565 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2566 * can perform fastpath freeing without additional function calls.
2567 *
2568 * The fastpath is only possible if we are freeing to the current cpu slab
2569 * of this processor. This typically the case if we have just allocated
2570 * the item before.
2571 *
2572 * If fastpath is not possible then fall back to __slab_free where we deal
2573 * with all sorts of special processing.
2574 */
06428780 2575static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2576 struct page *page, void *x, unsigned long addr)
894b8788
CL
2577{
2578 void **object = (void *)x;
dfb4f096 2579 struct kmem_cache_cpu *c;
8a5ec0ba 2580 unsigned long tid;
1f84260c 2581
c016b0bd
CL
2582 slab_free_hook(s, x);
2583
8a5ec0ba
CL
2584redo:
2585 /*
2586 * Determine the currently cpus per cpu slab.
2587 * The cpu may change afterward. However that does not matter since
2588 * data is retrieved via this pointer. If we are on the same cpu
2589 * during the cmpxchg then the free will succedd.
2590 */
9dfc6e68 2591 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2592
8a5ec0ba
CL
2593 tid = c->tid;
2594 barrier();
c016b0bd 2595
442b06bc 2596 if (likely(page == c->page)) {
ff12059e 2597 set_freepointer(s, object, c->freelist);
8a5ec0ba 2598
933393f5 2599 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2600 s->cpu_slab->freelist, s->cpu_slab->tid,
2601 c->freelist, tid,
2602 object, next_tid(tid)))) {
2603
2604 note_cmpxchg_failure("slab_free", s, tid);
2605 goto redo;
2606 }
84e554e6 2607 stat(s, FREE_FASTPATH);
894b8788 2608 } else
ff12059e 2609 __slab_free(s, page, x, addr);
894b8788 2610
894b8788
CL
2611}
2612
81819f0f
CL
2613void kmem_cache_free(struct kmem_cache *s, void *x)
2614{
77c5e2d0 2615 struct page *page;
81819f0f 2616
b49af68f 2617 page = virt_to_head_page(x);
81819f0f 2618
1b4f59e3 2619 if (kmem_cache_debug(s) && page->slab_cache != s) {
79576102 2620 pr_err("kmem_cache_free: Wrong slab cache. %s but object"
1b4f59e3 2621 " is from %s\n", page->slab_cache->name, s->name);
79576102
CL
2622 WARN_ON_ONCE(1);
2623 return;
2624 }
2625
ce71e27c 2626 slab_free(s, page, x, _RET_IP_);
5b882be4 2627
ca2b84cb 2628 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2629}
2630EXPORT_SYMBOL(kmem_cache_free);
2631
81819f0f 2632/*
672bba3a
CL
2633 * Object placement in a slab is made very easy because we always start at
2634 * offset 0. If we tune the size of the object to the alignment then we can
2635 * get the required alignment by putting one properly sized object after
2636 * another.
81819f0f
CL
2637 *
2638 * Notice that the allocation order determines the sizes of the per cpu
2639 * caches. Each processor has always one slab available for allocations.
2640 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2641 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2642 * locking overhead.
81819f0f
CL
2643 */
2644
2645/*
2646 * Mininum / Maximum order of slab pages. This influences locking overhead
2647 * and slab fragmentation. A higher order reduces the number of partial slabs
2648 * and increases the number of allocations possible without having to
2649 * take the list_lock.
2650 */
2651static int slub_min_order;
114e9e89 2652static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2653static int slub_min_objects;
81819f0f
CL
2654
2655/*
2656 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2657 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2658 */
2659static int slub_nomerge;
2660
81819f0f
CL
2661/*
2662 * Calculate the order of allocation given an slab object size.
2663 *
672bba3a
CL
2664 * The order of allocation has significant impact on performance and other
2665 * system components. Generally order 0 allocations should be preferred since
2666 * order 0 does not cause fragmentation in the page allocator. Larger objects
2667 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2668 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2669 * would be wasted.
2670 *
2671 * In order to reach satisfactory performance we must ensure that a minimum
2672 * number of objects is in one slab. Otherwise we may generate too much
2673 * activity on the partial lists which requires taking the list_lock. This is
2674 * less a concern for large slabs though which are rarely used.
81819f0f 2675 *
672bba3a
CL
2676 * slub_max_order specifies the order where we begin to stop considering the
2677 * number of objects in a slab as critical. If we reach slub_max_order then
2678 * we try to keep the page order as low as possible. So we accept more waste
2679 * of space in favor of a small page order.
81819f0f 2680 *
672bba3a
CL
2681 * Higher order allocations also allow the placement of more objects in a
2682 * slab and thereby reduce object handling overhead. If the user has
2683 * requested a higher mininum order then we start with that one instead of
2684 * the smallest order which will fit the object.
81819f0f 2685 */
5e6d444e 2686static inline int slab_order(int size, int min_objects,
ab9a0f19 2687 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2688{
2689 int order;
2690 int rem;
6300ea75 2691 int min_order = slub_min_order;
81819f0f 2692
ab9a0f19 2693 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2694 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2695
6300ea75 2696 for (order = max(min_order,
5e6d444e
CL
2697 fls(min_objects * size - 1) - PAGE_SHIFT);
2698 order <= max_order; order++) {
81819f0f 2699
5e6d444e 2700 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2701
ab9a0f19 2702 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2703 continue;
2704
ab9a0f19 2705 rem = (slab_size - reserved) % size;
81819f0f 2706
5e6d444e 2707 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2708 break;
2709
2710 }
672bba3a 2711
81819f0f
CL
2712 return order;
2713}
2714
ab9a0f19 2715static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2716{
2717 int order;
2718 int min_objects;
2719 int fraction;
e8120ff1 2720 int max_objects;
5e6d444e
CL
2721
2722 /*
2723 * Attempt to find best configuration for a slab. This
2724 * works by first attempting to generate a layout with
2725 * the best configuration and backing off gradually.
2726 *
2727 * First we reduce the acceptable waste in a slab. Then
2728 * we reduce the minimum objects required in a slab.
2729 */
2730 min_objects = slub_min_objects;
9b2cd506
CL
2731 if (!min_objects)
2732 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2733 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2734 min_objects = min(min_objects, max_objects);
2735
5e6d444e 2736 while (min_objects > 1) {
c124f5b5 2737 fraction = 16;
5e6d444e
CL
2738 while (fraction >= 4) {
2739 order = slab_order(size, min_objects,
ab9a0f19 2740 slub_max_order, fraction, reserved);
5e6d444e
CL
2741 if (order <= slub_max_order)
2742 return order;
2743 fraction /= 2;
2744 }
5086c389 2745 min_objects--;
5e6d444e
CL
2746 }
2747
2748 /*
2749 * We were unable to place multiple objects in a slab. Now
2750 * lets see if we can place a single object there.
2751 */
ab9a0f19 2752 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2753 if (order <= slub_max_order)
2754 return order;
2755
2756 /*
2757 * Doh this slab cannot be placed using slub_max_order.
2758 */
ab9a0f19 2759 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2760 if (order < MAX_ORDER)
5e6d444e
CL
2761 return order;
2762 return -ENOSYS;
2763}
2764
81819f0f 2765/*
672bba3a 2766 * Figure out what the alignment of the objects will be.
81819f0f
CL
2767 */
2768static unsigned long calculate_alignment(unsigned long flags,
2769 unsigned long align, unsigned long size)
2770{
2771 /*
6446faa2
CL
2772 * If the user wants hardware cache aligned objects then follow that
2773 * suggestion if the object is sufficiently large.
81819f0f 2774 *
6446faa2
CL
2775 * The hardware cache alignment cannot override the specified
2776 * alignment though. If that is greater then use it.
81819f0f 2777 */
b6210386
NP
2778 if (flags & SLAB_HWCACHE_ALIGN) {
2779 unsigned long ralign = cache_line_size();
2780 while (size <= ralign / 2)
2781 ralign /= 2;
2782 align = max(align, ralign);
2783 }
81819f0f
CL
2784
2785 if (align < ARCH_SLAB_MINALIGN)
b6210386 2786 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2787
2788 return ALIGN(align, sizeof(void *));
2789}
2790
5595cffc 2791static void
4053497d 2792init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2793{
2794 n->nr_partial = 0;
81819f0f
CL
2795 spin_lock_init(&n->list_lock);
2796 INIT_LIST_HEAD(&n->partial);
8ab1372f 2797#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2798 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2799 atomic_long_set(&n->total_objects, 0);
643b1138 2800 INIT_LIST_HEAD(&n->full);
8ab1372f 2801#endif
81819f0f
CL
2802}
2803
55136592 2804static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2805{
6c182dc0
CL
2806 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2807 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2808
8a5ec0ba 2809 /*
d4d84fef
CM
2810 * Must align to double word boundary for the double cmpxchg
2811 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2812 */
d4d84fef
CM
2813 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2814 2 * sizeof(void *));
8a5ec0ba
CL
2815
2816 if (!s->cpu_slab)
2817 return 0;
2818
2819 init_kmem_cache_cpus(s);
4c93c355 2820
8a5ec0ba 2821 return 1;
4c93c355 2822}
4c93c355 2823
51df1142
CL
2824static struct kmem_cache *kmem_cache_node;
2825
81819f0f
CL
2826/*
2827 * No kmalloc_node yet so do it by hand. We know that this is the first
2828 * slab on the node for this slabcache. There are no concurrent accesses
2829 * possible.
2830 *
2831 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2832 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2833 * memory on a fresh node that has no slab structures yet.
81819f0f 2834 */
55136592 2835static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2836{
2837 struct page *page;
2838 struct kmem_cache_node *n;
2839
51df1142 2840 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2841
51df1142 2842 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2843
2844 BUG_ON(!page);
a2f92ee7
CL
2845 if (page_to_nid(page) != node) {
2846 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2847 "node %d\n", node);
2848 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2849 "in order to be able to continue\n");
2850 }
2851
81819f0f
CL
2852 n = page->freelist;
2853 BUG_ON(!n);
51df1142 2854 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2855 page->inuse = 1;
8cb0a506 2856 page->frozen = 0;
51df1142 2857 kmem_cache_node->node[node] = n;
8ab1372f 2858#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2859 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2860 init_tracking(kmem_cache_node, n);
8ab1372f 2861#endif
4053497d 2862 init_kmem_cache_node(n);
51df1142 2863 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2864
136333d1 2865 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2866}
2867
2868static void free_kmem_cache_nodes(struct kmem_cache *s)
2869{
2870 int node;
2871
f64dc58c 2872 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2873 struct kmem_cache_node *n = s->node[node];
51df1142 2874
73367bd8 2875 if (n)
51df1142
CL
2876 kmem_cache_free(kmem_cache_node, n);
2877
81819f0f
CL
2878 s->node[node] = NULL;
2879 }
2880}
2881
55136592 2882static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2883{
2884 int node;
81819f0f 2885
f64dc58c 2886 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2887 struct kmem_cache_node *n;
2888
73367bd8 2889 if (slab_state == DOWN) {
55136592 2890 early_kmem_cache_node_alloc(node);
73367bd8
AD
2891 continue;
2892 }
51df1142 2893 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2894 GFP_KERNEL, node);
81819f0f 2895
73367bd8
AD
2896 if (!n) {
2897 free_kmem_cache_nodes(s);
2898 return 0;
81819f0f 2899 }
73367bd8 2900
81819f0f 2901 s->node[node] = n;
4053497d 2902 init_kmem_cache_node(n);
81819f0f
CL
2903 }
2904 return 1;
2905}
81819f0f 2906
c0bdb232 2907static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2908{
2909 if (min < MIN_PARTIAL)
2910 min = MIN_PARTIAL;
2911 else if (min > MAX_PARTIAL)
2912 min = MAX_PARTIAL;
2913 s->min_partial = min;
2914}
2915
81819f0f
CL
2916/*
2917 * calculate_sizes() determines the order and the distribution of data within
2918 * a slab object.
2919 */
06b285dc 2920static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2921{
2922 unsigned long flags = s->flags;
3b0efdfa 2923 unsigned long size = s->object_size;
81819f0f 2924 unsigned long align = s->align;
834f3d11 2925 int order;
81819f0f 2926
d8b42bf5
CL
2927 /*
2928 * Round up object size to the next word boundary. We can only
2929 * place the free pointer at word boundaries and this determines
2930 * the possible location of the free pointer.
2931 */
2932 size = ALIGN(size, sizeof(void *));
2933
2934#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2935 /*
2936 * Determine if we can poison the object itself. If the user of
2937 * the slab may touch the object after free or before allocation
2938 * then we should never poison the object itself.
2939 */
2940 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2941 !s->ctor)
81819f0f
CL
2942 s->flags |= __OBJECT_POISON;
2943 else
2944 s->flags &= ~__OBJECT_POISON;
2945
81819f0f
CL
2946
2947 /*
672bba3a 2948 * If we are Redzoning then check if there is some space between the
81819f0f 2949 * end of the object and the free pointer. If not then add an
672bba3a 2950 * additional word to have some bytes to store Redzone information.
81819f0f 2951 */
3b0efdfa 2952 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2953 size += sizeof(void *);
41ecc55b 2954#endif
81819f0f
CL
2955
2956 /*
672bba3a
CL
2957 * With that we have determined the number of bytes in actual use
2958 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2959 */
2960 s->inuse = size;
2961
2962 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2963 s->ctor)) {
81819f0f
CL
2964 /*
2965 * Relocate free pointer after the object if it is not
2966 * permitted to overwrite the first word of the object on
2967 * kmem_cache_free.
2968 *
2969 * This is the case if we do RCU, have a constructor or
2970 * destructor or are poisoning the objects.
2971 */
2972 s->offset = size;
2973 size += sizeof(void *);
2974 }
2975
c12b3c62 2976#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2977 if (flags & SLAB_STORE_USER)
2978 /*
2979 * Need to store information about allocs and frees after
2980 * the object.
2981 */
2982 size += 2 * sizeof(struct track);
2983
be7b3fbc 2984 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2985 /*
2986 * Add some empty padding so that we can catch
2987 * overwrites from earlier objects rather than let
2988 * tracking information or the free pointer be
0211a9c8 2989 * corrupted if a user writes before the start
81819f0f
CL
2990 * of the object.
2991 */
2992 size += sizeof(void *);
41ecc55b 2993#endif
672bba3a 2994
81819f0f
CL
2995 /*
2996 * Determine the alignment based on various parameters that the
65c02d4c
CL
2997 * user specified and the dynamic determination of cache line size
2998 * on bootup.
81819f0f 2999 */
3b0efdfa 3000 align = calculate_alignment(flags, align, s->object_size);
dcb0ce1b 3001 s->align = align;
81819f0f
CL
3002
3003 /*
3004 * SLUB stores one object immediately after another beginning from
3005 * offset 0. In order to align the objects we have to simply size
3006 * each object to conform to the alignment.
3007 */
3008 size = ALIGN(size, align);
3009 s->size = size;
06b285dc
CL
3010 if (forced_order >= 0)
3011 order = forced_order;
3012 else
ab9a0f19 3013 order = calculate_order(size, s->reserved);
81819f0f 3014
834f3d11 3015 if (order < 0)
81819f0f
CL
3016 return 0;
3017
b7a49f0d 3018 s->allocflags = 0;
834f3d11 3019 if (order)
b7a49f0d
CL
3020 s->allocflags |= __GFP_COMP;
3021
3022 if (s->flags & SLAB_CACHE_DMA)
3023 s->allocflags |= SLUB_DMA;
3024
3025 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3026 s->allocflags |= __GFP_RECLAIMABLE;
3027
81819f0f
CL
3028 /*
3029 * Determine the number of objects per slab
3030 */
ab9a0f19
LJ
3031 s->oo = oo_make(order, size, s->reserved);
3032 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3033 if (oo_objects(s->oo) > oo_objects(s->max))
3034 s->max = s->oo;
81819f0f 3035
834f3d11 3036 return !!oo_objects(s->oo);
81819f0f
CL
3037
3038}
3039
8a13a4cc 3040static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3041{
8a13a4cc 3042 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3043 s->reserved = 0;
81819f0f 3044
da9a638c
LJ
3045 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3046 s->reserved = sizeof(struct rcu_head);
81819f0f 3047
06b285dc 3048 if (!calculate_sizes(s, -1))
81819f0f 3049 goto error;
3de47213
DR
3050 if (disable_higher_order_debug) {
3051 /*
3052 * Disable debugging flags that store metadata if the min slab
3053 * order increased.
3054 */
3b0efdfa 3055 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3056 s->flags &= ~DEBUG_METADATA_FLAGS;
3057 s->offset = 0;
3058 if (!calculate_sizes(s, -1))
3059 goto error;
3060 }
3061 }
81819f0f 3062
2565409f
HC
3063#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3064 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3065 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3066 /* Enable fast mode */
3067 s->flags |= __CMPXCHG_DOUBLE;
3068#endif
3069
3b89d7d8
DR
3070 /*
3071 * The larger the object size is, the more pages we want on the partial
3072 * list to avoid pounding the page allocator excessively.
3073 */
49e22585
CL
3074 set_min_partial(s, ilog2(s->size) / 2);
3075
3076 /*
3077 * cpu_partial determined the maximum number of objects kept in the
3078 * per cpu partial lists of a processor.
3079 *
3080 * Per cpu partial lists mainly contain slabs that just have one
3081 * object freed. If they are used for allocation then they can be
3082 * filled up again with minimal effort. The slab will never hit the
3083 * per node partial lists and therefore no locking will be required.
3084 *
3085 * This setting also determines
3086 *
3087 * A) The number of objects from per cpu partial slabs dumped to the
3088 * per node list when we reach the limit.
9f264904 3089 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3090 * per node list when we run out of per cpu objects. We only fetch 50%
3091 * to keep some capacity around for frees.
3092 */
8f1e33da
CL
3093 if (kmem_cache_debug(s))
3094 s->cpu_partial = 0;
3095 else if (s->size >= PAGE_SIZE)
49e22585
CL
3096 s->cpu_partial = 2;
3097 else if (s->size >= 1024)
3098 s->cpu_partial = 6;
3099 else if (s->size >= 256)
3100 s->cpu_partial = 13;
3101 else
3102 s->cpu_partial = 30;
3103
81819f0f 3104#ifdef CONFIG_NUMA
e2cb96b7 3105 s->remote_node_defrag_ratio = 1000;
81819f0f 3106#endif
55136592 3107 if (!init_kmem_cache_nodes(s))
dfb4f096 3108 goto error;
81819f0f 3109
55136592 3110 if (alloc_kmem_cache_cpus(s))
278b1bb1 3111 return 0;
ff12059e 3112
4c93c355 3113 free_kmem_cache_nodes(s);
81819f0f
CL
3114error:
3115 if (flags & SLAB_PANIC)
3116 panic("Cannot create slab %s size=%lu realsize=%u "
3117 "order=%u offset=%u flags=%lx\n",
8a13a4cc 3118 s->name, (unsigned long)s->size, s->size, oo_order(s->oo),
81819f0f 3119 s->offset, flags);
278b1bb1 3120 return -EINVAL;
81819f0f 3121}
81819f0f 3122
33b12c38
CL
3123static void list_slab_objects(struct kmem_cache *s, struct page *page,
3124 const char *text)
3125{
3126#ifdef CONFIG_SLUB_DEBUG
3127 void *addr = page_address(page);
3128 void *p;
a5dd5c11
NK
3129 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3130 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3131 if (!map)
3132 return;
945cf2b6 3133 slab_err(s, page, text, s->name);
33b12c38 3134 slab_lock(page);
33b12c38 3135
5f80b13a 3136 get_map(s, page, map);
33b12c38
CL
3137 for_each_object(p, s, addr, page->objects) {
3138
3139 if (!test_bit(slab_index(p, s, addr), map)) {
3140 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3141 p, p - addr);
3142 print_tracking(s, p);
3143 }
3144 }
3145 slab_unlock(page);
bbd7d57b 3146 kfree(map);
33b12c38
CL
3147#endif
3148}
3149
81819f0f 3150/*
599870b1 3151 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3152 * This is called from kmem_cache_close(). We must be the last thread
3153 * using the cache and therefore we do not need to lock anymore.
81819f0f 3154 */
599870b1 3155static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3156{
81819f0f
CL
3157 struct page *page, *h;
3158
33b12c38 3159 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3160 if (!page->inuse) {
5cc6eee8 3161 remove_partial(n, page);
81819f0f 3162 discard_slab(s, page);
33b12c38
CL
3163 } else {
3164 list_slab_objects(s, page,
945cf2b6 3165 "Objects remaining in %s on kmem_cache_close()");
599870b1 3166 }
33b12c38 3167 }
81819f0f
CL
3168}
3169
3170/*
672bba3a 3171 * Release all resources used by a slab cache.
81819f0f 3172 */
0c710013 3173static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3174{
3175 int node;
3176
3177 flush_all(s);
81819f0f 3178 /* Attempt to free all objects */
f64dc58c 3179 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3180 struct kmem_cache_node *n = get_node(s, node);
3181
599870b1
CL
3182 free_partial(s, n);
3183 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3184 return 1;
3185 }
945cf2b6 3186 free_percpu(s->cpu_slab);
81819f0f
CL
3187 free_kmem_cache_nodes(s);
3188 return 0;
3189}
3190
945cf2b6 3191int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3192{
12c3667f 3193 int rc = kmem_cache_close(s);
945cf2b6 3194
12c3667f 3195 if (!rc)
81819f0f 3196 sysfs_slab_remove(s);
12c3667f
CL
3197
3198 return rc;
81819f0f 3199}
81819f0f
CL
3200
3201/********************************************************************
3202 * Kmalloc subsystem
3203 *******************************************************************/
3204
51df1142 3205struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3206EXPORT_SYMBOL(kmalloc_caches);
3207
55136592 3208#ifdef CONFIG_ZONE_DMA
51df1142 3209static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3210#endif
3211
81819f0f
CL
3212static int __init setup_slub_min_order(char *str)
3213{
06428780 3214 get_option(&str, &slub_min_order);
81819f0f
CL
3215
3216 return 1;
3217}
3218
3219__setup("slub_min_order=", setup_slub_min_order);
3220
3221static int __init setup_slub_max_order(char *str)
3222{
06428780 3223 get_option(&str, &slub_max_order);
818cf590 3224 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3225
3226 return 1;
3227}
3228
3229__setup("slub_max_order=", setup_slub_max_order);
3230
3231static int __init setup_slub_min_objects(char *str)
3232{
06428780 3233 get_option(&str, &slub_min_objects);
81819f0f
CL
3234
3235 return 1;
3236}
3237
3238__setup("slub_min_objects=", setup_slub_min_objects);
3239
3240static int __init setup_slub_nomerge(char *str)
3241{
3242 slub_nomerge = 1;
3243 return 1;
3244}
3245
3246__setup("slub_nomerge", setup_slub_nomerge);
3247
f1b26339
CL
3248/*
3249 * Conversion table for small slabs sizes / 8 to the index in the
3250 * kmalloc array. This is necessary for slabs < 192 since we have non power
3251 * of two cache sizes there. The size of larger slabs can be determined using
3252 * fls.
3253 */
3254static s8 size_index[24] = {
3255 3, /* 8 */
3256 4, /* 16 */
3257 5, /* 24 */
3258 5, /* 32 */
3259 6, /* 40 */
3260 6, /* 48 */
3261 6, /* 56 */
3262 6, /* 64 */
3263 1, /* 72 */
3264 1, /* 80 */
3265 1, /* 88 */
3266 1, /* 96 */
3267 7, /* 104 */
3268 7, /* 112 */
3269 7, /* 120 */
3270 7, /* 128 */
3271 2, /* 136 */
3272 2, /* 144 */
3273 2, /* 152 */
3274 2, /* 160 */
3275 2, /* 168 */
3276 2, /* 176 */
3277 2, /* 184 */
3278 2 /* 192 */
3279};
3280
acdfcd04
AK
3281static inline int size_index_elem(size_t bytes)
3282{
3283 return (bytes - 1) / 8;
3284}
3285
81819f0f
CL
3286static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3287{
f1b26339 3288 int index;
81819f0f 3289
f1b26339
CL
3290 if (size <= 192) {
3291 if (!size)
3292 return ZERO_SIZE_PTR;
81819f0f 3293
acdfcd04 3294 index = size_index[size_index_elem(size)];
aadb4bc4 3295 } else
f1b26339 3296 index = fls(size - 1);
81819f0f
CL
3297
3298#ifdef CONFIG_ZONE_DMA
f1b26339 3299 if (unlikely((flags & SLUB_DMA)))
51df1142 3300 return kmalloc_dma_caches[index];
f1b26339 3301
81819f0f 3302#endif
51df1142 3303 return kmalloc_caches[index];
81819f0f
CL
3304}
3305
3306void *__kmalloc(size_t size, gfp_t flags)
3307{
aadb4bc4 3308 struct kmem_cache *s;
5b882be4 3309 void *ret;
81819f0f 3310
ffadd4d0 3311 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3312 return kmalloc_large(size, flags);
aadb4bc4
CL
3313
3314 s = get_slab(size, flags);
3315
3316 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3317 return s;
3318
2b847c3c 3319 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3320
ca2b84cb 3321 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3322
3323 return ret;
81819f0f
CL
3324}
3325EXPORT_SYMBOL(__kmalloc);
3326
5d1f57e4 3327#ifdef CONFIG_NUMA
f619cfe1
CL
3328static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3329{
b1eeab67 3330 struct page *page;
e4f7c0b4 3331 void *ptr = NULL;
f619cfe1 3332
b1eeab67
VN
3333 flags |= __GFP_COMP | __GFP_NOTRACK;
3334 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3335 if (page)
e4f7c0b4
CM
3336 ptr = page_address(page);
3337
3338 kmemleak_alloc(ptr, size, 1, flags);
3339 return ptr;
f619cfe1
CL
3340}
3341
81819f0f
CL
3342void *__kmalloc_node(size_t size, gfp_t flags, int node)
3343{
aadb4bc4 3344 struct kmem_cache *s;
5b882be4 3345 void *ret;
81819f0f 3346
057685cf 3347 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3348 ret = kmalloc_large_node(size, flags, node);
3349
ca2b84cb
EGM
3350 trace_kmalloc_node(_RET_IP_, ret,
3351 size, PAGE_SIZE << get_order(size),
3352 flags, node);
5b882be4
EGM
3353
3354 return ret;
3355 }
aadb4bc4
CL
3356
3357 s = get_slab(size, flags);
3358
3359 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3360 return s;
3361
2b847c3c 3362 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3363
ca2b84cb 3364 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3365
3366 return ret;
81819f0f
CL
3367}
3368EXPORT_SYMBOL(__kmalloc_node);
3369#endif
3370
3371size_t ksize(const void *object)
3372{
272c1d21 3373 struct page *page;
81819f0f 3374
ef8b4520 3375 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3376 return 0;
3377
294a80a8 3378 page = virt_to_head_page(object);
294a80a8 3379
76994412
PE
3380 if (unlikely(!PageSlab(page))) {
3381 WARN_ON(!PageCompound(page));
294a80a8 3382 return PAGE_SIZE << compound_order(page);
76994412 3383 }
81819f0f 3384
1b4f59e3 3385 return slab_ksize(page->slab_cache);
81819f0f 3386}
b1aabecd 3387EXPORT_SYMBOL(ksize);
81819f0f 3388
d18a90dd
BG
3389#ifdef CONFIG_SLUB_DEBUG
3390bool verify_mem_not_deleted(const void *x)
3391{
3392 struct page *page;
3393 void *object = (void *)x;
3394 unsigned long flags;
3395 bool rv;
3396
3397 if (unlikely(ZERO_OR_NULL_PTR(x)))
3398 return false;
3399
3400 local_irq_save(flags);
3401
3402 page = virt_to_head_page(x);
3403 if (unlikely(!PageSlab(page))) {
3404 /* maybe it was from stack? */
3405 rv = true;
3406 goto out_unlock;
3407 }
3408
3409 slab_lock(page);
1b4f59e3
GC
3410 if (on_freelist(page->slab_cache, page, object)) {
3411 object_err(page->slab_cache, page, object, "Object is on free-list");
d18a90dd
BG
3412 rv = false;
3413 } else {
3414 rv = true;
3415 }
3416 slab_unlock(page);
3417
3418out_unlock:
3419 local_irq_restore(flags);
3420 return rv;
3421}
3422EXPORT_SYMBOL(verify_mem_not_deleted);
3423#endif
3424
81819f0f
CL
3425void kfree(const void *x)
3426{
81819f0f 3427 struct page *page;
5bb983b0 3428 void *object = (void *)x;
81819f0f 3429
2121db74
PE
3430 trace_kfree(_RET_IP_, x);
3431
2408c550 3432 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3433 return;
3434
b49af68f 3435 page = virt_to_head_page(x);
aadb4bc4 3436 if (unlikely(!PageSlab(page))) {
0937502a 3437 BUG_ON(!PageCompound(page));
e4f7c0b4 3438 kmemleak_free(x);
d9b7f226 3439 __free_pages(page, compound_order(page));
aadb4bc4
CL
3440 return;
3441 }
1b4f59e3 3442 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3443}
3444EXPORT_SYMBOL(kfree);
3445
2086d26a 3446/*
672bba3a
CL
3447 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3448 * the remaining slabs by the number of items in use. The slabs with the
3449 * most items in use come first. New allocations will then fill those up
3450 * and thus they can be removed from the partial lists.
3451 *
3452 * The slabs with the least items are placed last. This results in them
3453 * being allocated from last increasing the chance that the last objects
3454 * are freed in them.
2086d26a
CL
3455 */
3456int kmem_cache_shrink(struct kmem_cache *s)
3457{
3458 int node;
3459 int i;
3460 struct kmem_cache_node *n;
3461 struct page *page;
3462 struct page *t;
205ab99d 3463 int objects = oo_objects(s->max);
2086d26a 3464 struct list_head *slabs_by_inuse =
834f3d11 3465 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3466 unsigned long flags;
3467
3468 if (!slabs_by_inuse)
3469 return -ENOMEM;
3470
3471 flush_all(s);
f64dc58c 3472 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3473 n = get_node(s, node);
3474
3475 if (!n->nr_partial)
3476 continue;
3477
834f3d11 3478 for (i = 0; i < objects; i++)
2086d26a
CL
3479 INIT_LIST_HEAD(slabs_by_inuse + i);
3480
3481 spin_lock_irqsave(&n->list_lock, flags);
3482
3483 /*
672bba3a 3484 * Build lists indexed by the items in use in each slab.
2086d26a 3485 *
672bba3a
CL
3486 * Note that concurrent frees may occur while we hold the
3487 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3488 */
3489 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3490 list_move(&page->lru, slabs_by_inuse + page->inuse);
3491 if (!page->inuse)
3492 n->nr_partial--;
2086d26a
CL
3493 }
3494
2086d26a 3495 /*
672bba3a
CL
3496 * Rebuild the partial list with the slabs filled up most
3497 * first and the least used slabs at the end.
2086d26a 3498 */
69cb8e6b 3499 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3500 list_splice(slabs_by_inuse + i, n->partial.prev);
3501
2086d26a 3502 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3503
3504 /* Release empty slabs */
3505 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3506 discard_slab(s, page);
2086d26a
CL
3507 }
3508
3509 kfree(slabs_by_inuse);
3510 return 0;
3511}
3512EXPORT_SYMBOL(kmem_cache_shrink);
3513
92a5bbc1 3514#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3515static int slab_mem_going_offline_callback(void *arg)
3516{
3517 struct kmem_cache *s;
3518
18004c5d 3519 mutex_lock(&slab_mutex);
b9049e23
YG
3520 list_for_each_entry(s, &slab_caches, list)
3521 kmem_cache_shrink(s);
18004c5d 3522 mutex_unlock(&slab_mutex);
b9049e23
YG
3523
3524 return 0;
3525}
3526
3527static void slab_mem_offline_callback(void *arg)
3528{
3529 struct kmem_cache_node *n;
3530 struct kmem_cache *s;
3531 struct memory_notify *marg = arg;
3532 int offline_node;
3533
3534 offline_node = marg->status_change_nid;
3535
3536 /*
3537 * If the node still has available memory. we need kmem_cache_node
3538 * for it yet.
3539 */
3540 if (offline_node < 0)
3541 return;
3542
18004c5d 3543 mutex_lock(&slab_mutex);
b9049e23
YG
3544 list_for_each_entry(s, &slab_caches, list) {
3545 n = get_node(s, offline_node);
3546 if (n) {
3547 /*
3548 * if n->nr_slabs > 0, slabs still exist on the node
3549 * that is going down. We were unable to free them,
c9404c9c 3550 * and offline_pages() function shouldn't call this
b9049e23
YG
3551 * callback. So, we must fail.
3552 */
0f389ec6 3553 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3554
3555 s->node[offline_node] = NULL;
8de66a0c 3556 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3557 }
3558 }
18004c5d 3559 mutex_unlock(&slab_mutex);
b9049e23
YG
3560}
3561
3562static int slab_mem_going_online_callback(void *arg)
3563{
3564 struct kmem_cache_node *n;
3565 struct kmem_cache *s;
3566 struct memory_notify *marg = arg;
3567 int nid = marg->status_change_nid;
3568 int ret = 0;
3569
3570 /*
3571 * If the node's memory is already available, then kmem_cache_node is
3572 * already created. Nothing to do.
3573 */
3574 if (nid < 0)
3575 return 0;
3576
3577 /*
0121c619 3578 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3579 * allocate a kmem_cache_node structure in order to bring the node
3580 * online.
3581 */
18004c5d 3582 mutex_lock(&slab_mutex);
b9049e23
YG
3583 list_for_each_entry(s, &slab_caches, list) {
3584 /*
3585 * XXX: kmem_cache_alloc_node will fallback to other nodes
3586 * since memory is not yet available from the node that
3587 * is brought up.
3588 */
8de66a0c 3589 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3590 if (!n) {
3591 ret = -ENOMEM;
3592 goto out;
3593 }
4053497d 3594 init_kmem_cache_node(n);
b9049e23
YG
3595 s->node[nid] = n;
3596 }
3597out:
18004c5d 3598 mutex_unlock(&slab_mutex);
b9049e23
YG
3599 return ret;
3600}
3601
3602static int slab_memory_callback(struct notifier_block *self,
3603 unsigned long action, void *arg)
3604{
3605 int ret = 0;
3606
3607 switch (action) {
3608 case MEM_GOING_ONLINE:
3609 ret = slab_mem_going_online_callback(arg);
3610 break;
3611 case MEM_GOING_OFFLINE:
3612 ret = slab_mem_going_offline_callback(arg);
3613 break;
3614 case MEM_OFFLINE:
3615 case MEM_CANCEL_ONLINE:
3616 slab_mem_offline_callback(arg);
3617 break;
3618 case MEM_ONLINE:
3619 case MEM_CANCEL_OFFLINE:
3620 break;
3621 }
dc19f9db
KH
3622 if (ret)
3623 ret = notifier_from_errno(ret);
3624 else
3625 ret = NOTIFY_OK;
b9049e23
YG
3626 return ret;
3627}
3628
3629#endif /* CONFIG_MEMORY_HOTPLUG */
3630
81819f0f
CL
3631/********************************************************************
3632 * Basic setup of slabs
3633 *******************************************************************/
3634
51df1142
CL
3635/*
3636 * Used for early kmem_cache structures that were allocated using
3637 * the page allocator
3638 */
3639
3640static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3641{
3642 int node;
3643
3644 list_add(&s->list, &slab_caches);
3645 s->refcount = -1;
3646
3647 for_each_node_state(node, N_NORMAL_MEMORY) {
3648 struct kmem_cache_node *n = get_node(s, node);
3649 struct page *p;
3650
3651 if (n) {
3652 list_for_each_entry(p, &n->partial, lru)
1b4f59e3 3653 p->slab_cache = s;
51df1142 3654
607bf324 3655#ifdef CONFIG_SLUB_DEBUG
51df1142 3656 list_for_each_entry(p, &n->full, lru)
1b4f59e3 3657 p->slab_cache = s;
51df1142
CL
3658#endif
3659 }
3660 }
3661}
3662
81819f0f
CL
3663void __init kmem_cache_init(void)
3664{
3665 int i;
4b356be0 3666 int caches = 0;
51df1142
CL
3667 struct kmem_cache *temp_kmem_cache;
3668 int order;
51df1142
CL
3669 struct kmem_cache *temp_kmem_cache_node;
3670 unsigned long kmalloc_size;
3671
fc8d8620
SG
3672 if (debug_guardpage_minorder())
3673 slub_max_order = 0;
3674
51df1142 3675 kmem_size = offsetof(struct kmem_cache, node) +
cbb79694 3676 nr_node_ids * sizeof(struct kmem_cache_node *);
51df1142
CL
3677
3678 /* Allocate two kmem_caches from the page allocator */
3679 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3680 order = get_order(2 * kmalloc_size);
9df53b15 3681 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT | __GFP_ZERO, order);
51df1142 3682
81819f0f
CL
3683 /*
3684 * Must first have the slab cache available for the allocations of the
672bba3a 3685 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3686 * kmem_cache_open for slab_state == DOWN.
3687 */
51df1142
CL
3688 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3689
8a13a4cc
CL
3690 kmem_cache_node->name = "kmem_cache_node";
3691 kmem_cache_node->size = kmem_cache_node->object_size =
3692 sizeof(struct kmem_cache_node);
3693 kmem_cache_open(kmem_cache_node, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
b9049e23 3694
0c40ba4f 3695 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3696
3697 /* Able to allocate the per node structures */
3698 slab_state = PARTIAL;
3699
51df1142 3700 temp_kmem_cache = kmem_cache;
8a13a4cc
CL
3701 kmem_cache->name = "kmem_cache";
3702 kmem_cache->size = kmem_cache->object_size = kmem_size;
3703 kmem_cache_open(kmem_cache, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3704
51df1142
CL
3705 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3706 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3707
51df1142
CL
3708 /*
3709 * Allocate kmem_cache_node properly from the kmem_cache slab.
3710 * kmem_cache_node is separately allocated so no need to
3711 * update any list pointers.
3712 */
3713 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3714
51df1142
CL
3715 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3716 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3717
3718 kmem_cache_bootstrap_fixup(kmem_cache_node);
3719
3720 caches++;
51df1142
CL
3721 kmem_cache_bootstrap_fixup(kmem_cache);
3722 caches++;
3723 /* Free temporary boot structure */
3724 free_pages((unsigned long)temp_kmem_cache, order);
3725
3726 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3727
3728 /*
3729 * Patch up the size_index table if we have strange large alignment
3730 * requirements for the kmalloc array. This is only the case for
6446faa2 3731 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3732 *
3733 * Largest permitted alignment is 256 bytes due to the way we
3734 * handle the index determination for the smaller caches.
3735 *
3736 * Make sure that nothing crazy happens if someone starts tinkering
3737 * around with ARCH_KMALLOC_MINALIGN
3738 */
3739 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3740 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3741
acdfcd04
AK
3742 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3743 int elem = size_index_elem(i);
3744 if (elem >= ARRAY_SIZE(size_index))
3745 break;
3746 size_index[elem] = KMALLOC_SHIFT_LOW;
3747 }
f1b26339 3748
acdfcd04
AK
3749 if (KMALLOC_MIN_SIZE == 64) {
3750 /*
3751 * The 96 byte size cache is not used if the alignment
3752 * is 64 byte.
3753 */
3754 for (i = 64 + 8; i <= 96; i += 8)
3755 size_index[size_index_elem(i)] = 7;
3756 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3757 /*
3758 * The 192 byte sized cache is not used if the alignment
3759 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3760 * instead.
3761 */
3762 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3763 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3764 }
3765
51df1142
CL
3766 /* Caches that are not of the two-to-the-power-of size */
3767 if (KMALLOC_MIN_SIZE <= 32) {
3768 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3769 caches++;
3770 }
3771
3772 if (KMALLOC_MIN_SIZE <= 64) {
3773 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3774 caches++;
3775 }
3776
3777 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3778 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3779 caches++;
3780 }
3781
81819f0f
CL
3782 slab_state = UP;
3783
3784 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3785 if (KMALLOC_MIN_SIZE <= 32) {
3786 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3787 BUG_ON(!kmalloc_caches[1]->name);
3788 }
3789
3790 if (KMALLOC_MIN_SIZE <= 64) {
3791 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3792 BUG_ON(!kmalloc_caches[2]->name);
3793 }
3794
d7278bd7
CL
3795 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3796 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3797
3798 BUG_ON(!s);
51df1142 3799 kmalloc_caches[i]->name = s;
d7278bd7 3800 }
81819f0f
CL
3801
3802#ifdef CONFIG_SMP
3803 register_cpu_notifier(&slab_notifier);
9dfc6e68 3804#endif
81819f0f 3805
55136592 3806#ifdef CONFIG_ZONE_DMA
51df1142
CL
3807 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3808 struct kmem_cache *s = kmalloc_caches[i];
55136592 3809
51df1142 3810 if (s && s->size) {
55136592 3811 char *name = kasprintf(GFP_NOWAIT,
3b0efdfa 3812 "dma-kmalloc-%d", s->object_size);
55136592
CL
3813
3814 BUG_ON(!name);
51df1142 3815 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3b0efdfa 3816 s->object_size, SLAB_CACHE_DMA);
55136592
CL
3817 }
3818 }
3819#endif
3adbefee
IM
3820 printk(KERN_INFO
3821 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3822 " CPUs=%d, Nodes=%d\n",
3823 caches, cache_line_size(),
81819f0f
CL
3824 slub_min_order, slub_max_order, slub_min_objects,
3825 nr_cpu_ids, nr_node_ids);
3826}
3827
7e85ee0c
PE
3828void __init kmem_cache_init_late(void)
3829{
7e85ee0c
PE
3830}
3831
81819f0f
CL
3832/*
3833 * Find a mergeable slab cache
3834 */
3835static int slab_unmergeable(struct kmem_cache *s)
3836{
3837 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3838 return 1;
3839
c59def9f 3840 if (s->ctor)
81819f0f
CL
3841 return 1;
3842
8ffa6875
CL
3843 /*
3844 * We may have set a slab to be unmergeable during bootstrap.
3845 */
3846 if (s->refcount < 0)
3847 return 1;
3848
81819f0f
CL
3849 return 0;
3850}
3851
3852static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3853 size_t align, unsigned long flags, const char *name,
51cc5068 3854 void (*ctor)(void *))
81819f0f 3855{
5b95a4ac 3856 struct kmem_cache *s;
81819f0f
CL
3857
3858 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3859 return NULL;
3860
c59def9f 3861 if (ctor)
81819f0f
CL
3862 return NULL;
3863
3864 size = ALIGN(size, sizeof(void *));
3865 align = calculate_alignment(flags, align, size);
3866 size = ALIGN(size, align);
ba0268a8 3867 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3868
5b95a4ac 3869 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3870 if (slab_unmergeable(s))
3871 continue;
3872
3873 if (size > s->size)
3874 continue;
3875
ba0268a8 3876 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3877 continue;
3878 /*
3879 * Check if alignment is compatible.
3880 * Courtesy of Adrian Drzewiecki
3881 */
06428780 3882 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3883 continue;
3884
3885 if (s->size - size >= sizeof(void *))
3886 continue;
3887
3888 return s;
3889 }
3890 return NULL;
3891}
3892
cbb79694 3893struct kmem_cache *__kmem_cache_alias(const char *name, size_t size,
51cc5068 3894 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3895{
3896 struct kmem_cache *s;
3897
ba0268a8 3898 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3899 if (s) {
3900 s->refcount++;
3901 /*
3902 * Adjust the object sizes so that we clear
3903 * the complete object on kzalloc.
3904 */
3b0efdfa 3905 s->object_size = max(s->object_size, (int)size);
81819f0f 3906 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3907
7b8f3b66 3908 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3909 s->refcount--;
cbb79694 3910 s = NULL;
7b8f3b66 3911 }
a0e1d1be 3912 }
6446faa2 3913
cbb79694
CL
3914 return s;
3915}
84c1cf62 3916
8a13a4cc 3917int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3918{
aac3a166
PE
3919 int err;
3920
3921 err = kmem_cache_open(s, flags);
3922 if (err)
3923 return err;
20cea968 3924
45530c44
CL
3925 /* Mutex is not taken during early boot */
3926 if (slab_state <= UP)
3927 return 0;
3928
aac3a166
PE
3929 mutex_unlock(&slab_mutex);
3930 err = sysfs_slab_add(s);
3931 mutex_lock(&slab_mutex);
20cea968 3932
aac3a166
PE
3933 if (err)
3934 kmem_cache_close(s);
20cea968 3935
aac3a166 3936 return err;
81819f0f 3937}
81819f0f 3938
81819f0f 3939#ifdef CONFIG_SMP
81819f0f 3940/*
672bba3a
CL
3941 * Use the cpu notifier to insure that the cpu slabs are flushed when
3942 * necessary.
81819f0f
CL
3943 */
3944static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3945 unsigned long action, void *hcpu)
3946{
3947 long cpu = (long)hcpu;
5b95a4ac
CL
3948 struct kmem_cache *s;
3949 unsigned long flags;
81819f0f
CL
3950
3951 switch (action) {
3952 case CPU_UP_CANCELED:
8bb78442 3953 case CPU_UP_CANCELED_FROZEN:
81819f0f 3954 case CPU_DEAD:
8bb78442 3955 case CPU_DEAD_FROZEN:
18004c5d 3956 mutex_lock(&slab_mutex);
5b95a4ac
CL
3957 list_for_each_entry(s, &slab_caches, list) {
3958 local_irq_save(flags);
3959 __flush_cpu_slab(s, cpu);
3960 local_irq_restore(flags);
3961 }
18004c5d 3962 mutex_unlock(&slab_mutex);
81819f0f
CL
3963 break;
3964 default:
3965 break;
3966 }
3967 return NOTIFY_OK;
3968}
3969
06428780 3970static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3971 .notifier_call = slab_cpuup_callback
06428780 3972};
81819f0f
CL
3973
3974#endif
3975
ce71e27c 3976void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3977{
aadb4bc4 3978 struct kmem_cache *s;
94b528d0 3979 void *ret;
aadb4bc4 3980
ffadd4d0 3981 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3982 return kmalloc_large(size, gfpflags);
3983
aadb4bc4 3984 s = get_slab(size, gfpflags);
81819f0f 3985
2408c550 3986 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3987 return s;
81819f0f 3988
2b847c3c 3989 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3990
25985edc 3991 /* Honor the call site pointer we received. */
ca2b84cb 3992 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3993
3994 return ret;
81819f0f
CL
3995}
3996
5d1f57e4 3997#ifdef CONFIG_NUMA
81819f0f 3998void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3999 int node, unsigned long caller)
81819f0f 4000{
aadb4bc4 4001 struct kmem_cache *s;
94b528d0 4002 void *ret;
aadb4bc4 4003
d3e14aa3
XF
4004 if (unlikely(size > SLUB_MAX_SIZE)) {
4005 ret = kmalloc_large_node(size, gfpflags, node);
4006
4007 trace_kmalloc_node(caller, ret,
4008 size, PAGE_SIZE << get_order(size),
4009 gfpflags, node);
4010
4011 return ret;
4012 }
eada35ef 4013
aadb4bc4 4014 s = get_slab(size, gfpflags);
81819f0f 4015
2408c550 4016 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4017 return s;
81819f0f 4018
2b847c3c 4019 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4020
25985edc 4021 /* Honor the call site pointer we received. */
ca2b84cb 4022 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4023
4024 return ret;
81819f0f 4025}
5d1f57e4 4026#endif
81819f0f 4027
ab4d5ed5 4028#ifdef CONFIG_SYSFS
205ab99d
CL
4029static int count_inuse(struct page *page)
4030{
4031 return page->inuse;
4032}
4033
4034static int count_total(struct page *page)
4035{
4036 return page->objects;
4037}
ab4d5ed5 4038#endif
205ab99d 4039
ab4d5ed5 4040#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4041static int validate_slab(struct kmem_cache *s, struct page *page,
4042 unsigned long *map)
53e15af0
CL
4043{
4044 void *p;
a973e9dd 4045 void *addr = page_address(page);
53e15af0
CL
4046
4047 if (!check_slab(s, page) ||
4048 !on_freelist(s, page, NULL))
4049 return 0;
4050
4051 /* Now we know that a valid freelist exists */
39b26464 4052 bitmap_zero(map, page->objects);
53e15af0 4053
5f80b13a
CL
4054 get_map(s, page, map);
4055 for_each_object(p, s, addr, page->objects) {
4056 if (test_bit(slab_index(p, s, addr), map))
4057 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4058 return 0;
53e15af0
CL
4059 }
4060
224a88be 4061 for_each_object(p, s, addr, page->objects)
7656c72b 4062 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4063 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4064 return 0;
4065 return 1;
4066}
4067
434e245d
CL
4068static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4069 unsigned long *map)
53e15af0 4070{
881db7fb
CL
4071 slab_lock(page);
4072 validate_slab(s, page, map);
4073 slab_unlock(page);
53e15af0
CL
4074}
4075
434e245d
CL
4076static int validate_slab_node(struct kmem_cache *s,
4077 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4078{
4079 unsigned long count = 0;
4080 struct page *page;
4081 unsigned long flags;
4082
4083 spin_lock_irqsave(&n->list_lock, flags);
4084
4085 list_for_each_entry(page, &n->partial, lru) {
434e245d 4086 validate_slab_slab(s, page, map);
53e15af0
CL
4087 count++;
4088 }
4089 if (count != n->nr_partial)
4090 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4091 "counter=%ld\n", s->name, count, n->nr_partial);
4092
4093 if (!(s->flags & SLAB_STORE_USER))
4094 goto out;
4095
4096 list_for_each_entry(page, &n->full, lru) {
434e245d 4097 validate_slab_slab(s, page, map);
53e15af0
CL
4098 count++;
4099 }
4100 if (count != atomic_long_read(&n->nr_slabs))
4101 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4102 "counter=%ld\n", s->name, count,
4103 atomic_long_read(&n->nr_slabs));
4104
4105out:
4106 spin_unlock_irqrestore(&n->list_lock, flags);
4107 return count;
4108}
4109
434e245d 4110static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4111{
4112 int node;
4113 unsigned long count = 0;
205ab99d 4114 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4115 sizeof(unsigned long), GFP_KERNEL);
4116
4117 if (!map)
4118 return -ENOMEM;
53e15af0
CL
4119
4120 flush_all(s);
f64dc58c 4121 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4122 struct kmem_cache_node *n = get_node(s, node);
4123
434e245d 4124 count += validate_slab_node(s, n, map);
53e15af0 4125 }
434e245d 4126 kfree(map);
53e15af0
CL
4127 return count;
4128}
88a420e4 4129/*
672bba3a 4130 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4131 * and freed.
4132 */
4133
4134struct location {
4135 unsigned long count;
ce71e27c 4136 unsigned long addr;
45edfa58
CL
4137 long long sum_time;
4138 long min_time;
4139 long max_time;
4140 long min_pid;
4141 long max_pid;
174596a0 4142 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4143 nodemask_t nodes;
88a420e4
CL
4144};
4145
4146struct loc_track {
4147 unsigned long max;
4148 unsigned long count;
4149 struct location *loc;
4150};
4151
4152static void free_loc_track(struct loc_track *t)
4153{
4154 if (t->max)
4155 free_pages((unsigned long)t->loc,
4156 get_order(sizeof(struct location) * t->max));
4157}
4158
68dff6a9 4159static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4160{
4161 struct location *l;
4162 int order;
4163
88a420e4
CL
4164 order = get_order(sizeof(struct location) * max);
4165
68dff6a9 4166 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4167 if (!l)
4168 return 0;
4169
4170 if (t->count) {
4171 memcpy(l, t->loc, sizeof(struct location) * t->count);
4172 free_loc_track(t);
4173 }
4174 t->max = max;
4175 t->loc = l;
4176 return 1;
4177}
4178
4179static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4180 const struct track *track)
88a420e4
CL
4181{
4182 long start, end, pos;
4183 struct location *l;
ce71e27c 4184 unsigned long caddr;
45edfa58 4185 unsigned long age = jiffies - track->when;
88a420e4
CL
4186
4187 start = -1;
4188 end = t->count;
4189
4190 for ( ; ; ) {
4191 pos = start + (end - start + 1) / 2;
4192
4193 /*
4194 * There is nothing at "end". If we end up there
4195 * we need to add something to before end.
4196 */
4197 if (pos == end)
4198 break;
4199
4200 caddr = t->loc[pos].addr;
45edfa58
CL
4201 if (track->addr == caddr) {
4202
4203 l = &t->loc[pos];
4204 l->count++;
4205 if (track->when) {
4206 l->sum_time += age;
4207 if (age < l->min_time)
4208 l->min_time = age;
4209 if (age > l->max_time)
4210 l->max_time = age;
4211
4212 if (track->pid < l->min_pid)
4213 l->min_pid = track->pid;
4214 if (track->pid > l->max_pid)
4215 l->max_pid = track->pid;
4216
174596a0
RR
4217 cpumask_set_cpu(track->cpu,
4218 to_cpumask(l->cpus));
45edfa58
CL
4219 }
4220 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4221 return 1;
4222 }
4223
45edfa58 4224 if (track->addr < caddr)
88a420e4
CL
4225 end = pos;
4226 else
4227 start = pos;
4228 }
4229
4230 /*
672bba3a 4231 * Not found. Insert new tracking element.
88a420e4 4232 */
68dff6a9 4233 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4234 return 0;
4235
4236 l = t->loc + pos;
4237 if (pos < t->count)
4238 memmove(l + 1, l,
4239 (t->count - pos) * sizeof(struct location));
4240 t->count++;
4241 l->count = 1;
45edfa58
CL
4242 l->addr = track->addr;
4243 l->sum_time = age;
4244 l->min_time = age;
4245 l->max_time = age;
4246 l->min_pid = track->pid;
4247 l->max_pid = track->pid;
174596a0
RR
4248 cpumask_clear(to_cpumask(l->cpus));
4249 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4250 nodes_clear(l->nodes);
4251 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4252 return 1;
4253}
4254
4255static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4256 struct page *page, enum track_item alloc,
a5dd5c11 4257 unsigned long *map)
88a420e4 4258{
a973e9dd 4259 void *addr = page_address(page);
88a420e4
CL
4260 void *p;
4261
39b26464 4262 bitmap_zero(map, page->objects);
5f80b13a 4263 get_map(s, page, map);
88a420e4 4264
224a88be 4265 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4266 if (!test_bit(slab_index(p, s, addr), map))
4267 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4268}
4269
4270static int list_locations(struct kmem_cache *s, char *buf,
4271 enum track_item alloc)
4272{
e374d483 4273 int len = 0;
88a420e4 4274 unsigned long i;
68dff6a9 4275 struct loc_track t = { 0, 0, NULL };
88a420e4 4276 int node;
bbd7d57b
ED
4277 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4278 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4279
bbd7d57b
ED
4280 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4281 GFP_TEMPORARY)) {
4282 kfree(map);
68dff6a9 4283 return sprintf(buf, "Out of memory\n");
bbd7d57b 4284 }
88a420e4
CL
4285 /* Push back cpu slabs */
4286 flush_all(s);
4287
f64dc58c 4288 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4289 struct kmem_cache_node *n = get_node(s, node);
4290 unsigned long flags;
4291 struct page *page;
4292
9e86943b 4293 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4294 continue;
4295
4296 spin_lock_irqsave(&n->list_lock, flags);
4297 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4298 process_slab(&t, s, page, alloc, map);
88a420e4 4299 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4300 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4301 spin_unlock_irqrestore(&n->list_lock, flags);
4302 }
4303
4304 for (i = 0; i < t.count; i++) {
45edfa58 4305 struct location *l = &t.loc[i];
88a420e4 4306
9c246247 4307 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4308 break;
e374d483 4309 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4310
4311 if (l->addr)
62c70bce 4312 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4313 else
e374d483 4314 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4315
4316 if (l->sum_time != l->min_time) {
e374d483 4317 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4318 l->min_time,
4319 (long)div_u64(l->sum_time, l->count),
4320 l->max_time);
45edfa58 4321 } else
e374d483 4322 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4323 l->min_time);
4324
4325 if (l->min_pid != l->max_pid)
e374d483 4326 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4327 l->min_pid, l->max_pid);
4328 else
e374d483 4329 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4330 l->min_pid);
4331
174596a0
RR
4332 if (num_online_cpus() > 1 &&
4333 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4334 len < PAGE_SIZE - 60) {
4335 len += sprintf(buf + len, " cpus=");
4336 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4337 to_cpumask(l->cpus));
45edfa58
CL
4338 }
4339
62bc62a8 4340 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4341 len < PAGE_SIZE - 60) {
4342 len += sprintf(buf + len, " nodes=");
4343 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4344 l->nodes);
4345 }
4346
e374d483 4347 len += sprintf(buf + len, "\n");
88a420e4
CL
4348 }
4349
4350 free_loc_track(&t);
bbd7d57b 4351 kfree(map);
88a420e4 4352 if (!t.count)
e374d483
HH
4353 len += sprintf(buf, "No data\n");
4354 return len;
88a420e4 4355}
ab4d5ed5 4356#endif
88a420e4 4357
a5a84755
CL
4358#ifdef SLUB_RESILIENCY_TEST
4359static void resiliency_test(void)
4360{
4361 u8 *p;
4362
4363 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4364
4365 printk(KERN_ERR "SLUB resiliency testing\n");
4366 printk(KERN_ERR "-----------------------\n");
4367 printk(KERN_ERR "A. Corruption after allocation\n");
4368
4369 p = kzalloc(16, GFP_KERNEL);
4370 p[16] = 0x12;
4371 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4372 " 0x12->0x%p\n\n", p + 16);
4373
4374 validate_slab_cache(kmalloc_caches[4]);
4375
4376 /* Hmmm... The next two are dangerous */
4377 p = kzalloc(32, GFP_KERNEL);
4378 p[32 + sizeof(void *)] = 0x34;
4379 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4380 " 0x34 -> -0x%p\n", p);
4381 printk(KERN_ERR
4382 "If allocated object is overwritten then not detectable\n\n");
4383
4384 validate_slab_cache(kmalloc_caches[5]);
4385 p = kzalloc(64, GFP_KERNEL);
4386 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4387 *p = 0x56;
4388 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4389 p);
4390 printk(KERN_ERR
4391 "If allocated object is overwritten then not detectable\n\n");
4392 validate_slab_cache(kmalloc_caches[6]);
4393
4394 printk(KERN_ERR "\nB. Corruption after free\n");
4395 p = kzalloc(128, GFP_KERNEL);
4396 kfree(p);
4397 *p = 0x78;
4398 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4399 validate_slab_cache(kmalloc_caches[7]);
4400
4401 p = kzalloc(256, GFP_KERNEL);
4402 kfree(p);
4403 p[50] = 0x9a;
4404 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4405 p);
4406 validate_slab_cache(kmalloc_caches[8]);
4407
4408 p = kzalloc(512, GFP_KERNEL);
4409 kfree(p);
4410 p[512] = 0xab;
4411 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4412 validate_slab_cache(kmalloc_caches[9]);
4413}
4414#else
4415#ifdef CONFIG_SYSFS
4416static void resiliency_test(void) {};
4417#endif
4418#endif
4419
ab4d5ed5 4420#ifdef CONFIG_SYSFS
81819f0f 4421enum slab_stat_type {
205ab99d
CL
4422 SL_ALL, /* All slabs */
4423 SL_PARTIAL, /* Only partially allocated slabs */
4424 SL_CPU, /* Only slabs used for cpu caches */
4425 SL_OBJECTS, /* Determine allocated objects not slabs */
4426 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4427};
4428
205ab99d 4429#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4430#define SO_PARTIAL (1 << SL_PARTIAL)
4431#define SO_CPU (1 << SL_CPU)
4432#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4433#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4434
62e5c4b4
CG
4435static ssize_t show_slab_objects(struct kmem_cache *s,
4436 char *buf, unsigned long flags)
81819f0f
CL
4437{
4438 unsigned long total = 0;
81819f0f
CL
4439 int node;
4440 int x;
4441 unsigned long *nodes;
4442 unsigned long *per_cpu;
4443
4444 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4445 if (!nodes)
4446 return -ENOMEM;
81819f0f
CL
4447 per_cpu = nodes + nr_node_ids;
4448
205ab99d
CL
4449 if (flags & SO_CPU) {
4450 int cpu;
81819f0f 4451
205ab99d 4452 for_each_possible_cpu(cpu) {
9dfc6e68 4453 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4454 int node;
49e22585 4455 struct page *page;
dfb4f096 4456
bc6697d8 4457 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4458 if (!page)
4459 continue;
205ab99d 4460
ec3ab083
CL
4461 node = page_to_nid(page);
4462 if (flags & SO_TOTAL)
4463 x = page->objects;
4464 else if (flags & SO_OBJECTS)
4465 x = page->inuse;
4466 else
4467 x = 1;
49e22585 4468
ec3ab083
CL
4469 total += x;
4470 nodes[node] += x;
4471
4472 page = ACCESS_ONCE(c->partial);
49e22585
CL
4473 if (page) {
4474 x = page->pobjects;
bc6697d8
ED
4475 total += x;
4476 nodes[node] += x;
49e22585 4477 }
ec3ab083 4478
bc6697d8 4479 per_cpu[node]++;
81819f0f
CL
4480 }
4481 }
4482
04d94879 4483 lock_memory_hotplug();
ab4d5ed5 4484#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4485 if (flags & SO_ALL) {
4486 for_each_node_state(node, N_NORMAL_MEMORY) {
4487 struct kmem_cache_node *n = get_node(s, node);
4488
4489 if (flags & SO_TOTAL)
4490 x = atomic_long_read(&n->total_objects);
4491 else if (flags & SO_OBJECTS)
4492 x = atomic_long_read(&n->total_objects) -
4493 count_partial(n, count_free);
81819f0f 4494
81819f0f 4495 else
205ab99d 4496 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4497 total += x;
4498 nodes[node] += x;
4499 }
4500
ab4d5ed5
CL
4501 } else
4502#endif
4503 if (flags & SO_PARTIAL) {
205ab99d
CL
4504 for_each_node_state(node, N_NORMAL_MEMORY) {
4505 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4506
205ab99d
CL
4507 if (flags & SO_TOTAL)
4508 x = count_partial(n, count_total);
4509 else if (flags & SO_OBJECTS)
4510 x = count_partial(n, count_inuse);
81819f0f 4511 else
205ab99d 4512 x = n->nr_partial;
81819f0f
CL
4513 total += x;
4514 nodes[node] += x;
4515 }
4516 }
81819f0f
CL
4517 x = sprintf(buf, "%lu", total);
4518#ifdef CONFIG_NUMA
f64dc58c 4519 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4520 if (nodes[node])
4521 x += sprintf(buf + x, " N%d=%lu",
4522 node, nodes[node]);
4523#endif
04d94879 4524 unlock_memory_hotplug();
81819f0f
CL
4525 kfree(nodes);
4526 return x + sprintf(buf + x, "\n");
4527}
4528
ab4d5ed5 4529#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4530static int any_slab_objects(struct kmem_cache *s)
4531{
4532 int node;
81819f0f 4533
dfb4f096 4534 for_each_online_node(node) {
81819f0f
CL
4535 struct kmem_cache_node *n = get_node(s, node);
4536
dfb4f096
CL
4537 if (!n)
4538 continue;
4539
4ea33e2d 4540 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4541 return 1;
4542 }
4543 return 0;
4544}
ab4d5ed5 4545#endif
81819f0f
CL
4546
4547#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4548#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4549
4550struct slab_attribute {
4551 struct attribute attr;
4552 ssize_t (*show)(struct kmem_cache *s, char *buf);
4553 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4554};
4555
4556#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4557 static struct slab_attribute _name##_attr = \
4558 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4559
4560#define SLAB_ATTR(_name) \
4561 static struct slab_attribute _name##_attr = \
ab067e99 4562 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4563
81819f0f
CL
4564static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4565{
4566 return sprintf(buf, "%d\n", s->size);
4567}
4568SLAB_ATTR_RO(slab_size);
4569
4570static ssize_t align_show(struct kmem_cache *s, char *buf)
4571{
4572 return sprintf(buf, "%d\n", s->align);
4573}
4574SLAB_ATTR_RO(align);
4575
4576static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4577{
3b0efdfa 4578 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4579}
4580SLAB_ATTR_RO(object_size);
4581
4582static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4583{
834f3d11 4584 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4585}
4586SLAB_ATTR_RO(objs_per_slab);
4587
06b285dc
CL
4588static ssize_t order_store(struct kmem_cache *s,
4589 const char *buf, size_t length)
4590{
0121c619
CL
4591 unsigned long order;
4592 int err;
4593
4594 err = strict_strtoul(buf, 10, &order);
4595 if (err)
4596 return err;
06b285dc
CL
4597
4598 if (order > slub_max_order || order < slub_min_order)
4599 return -EINVAL;
4600
4601 calculate_sizes(s, order);
4602 return length;
4603}
4604
81819f0f
CL
4605static ssize_t order_show(struct kmem_cache *s, char *buf)
4606{
834f3d11 4607 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4608}
06b285dc 4609SLAB_ATTR(order);
81819f0f 4610
73d342b1
DR
4611static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4612{
4613 return sprintf(buf, "%lu\n", s->min_partial);
4614}
4615
4616static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4617 size_t length)
4618{
4619 unsigned long min;
4620 int err;
4621
4622 err = strict_strtoul(buf, 10, &min);
4623 if (err)
4624 return err;
4625
c0bdb232 4626 set_min_partial(s, min);
73d342b1
DR
4627 return length;
4628}
4629SLAB_ATTR(min_partial);
4630
49e22585
CL
4631static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4632{
4633 return sprintf(buf, "%u\n", s->cpu_partial);
4634}
4635
4636static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4637 size_t length)
4638{
4639 unsigned long objects;
4640 int err;
4641
4642 err = strict_strtoul(buf, 10, &objects);
4643 if (err)
4644 return err;
74ee4ef1
DR
4645 if (objects && kmem_cache_debug(s))
4646 return -EINVAL;
49e22585
CL
4647
4648 s->cpu_partial = objects;
4649 flush_all(s);
4650 return length;
4651}
4652SLAB_ATTR(cpu_partial);
4653
81819f0f
CL
4654static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4655{
62c70bce
JP
4656 if (!s->ctor)
4657 return 0;
4658 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4659}
4660SLAB_ATTR_RO(ctor);
4661
81819f0f
CL
4662static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4663{
4664 return sprintf(buf, "%d\n", s->refcount - 1);
4665}
4666SLAB_ATTR_RO(aliases);
4667
81819f0f
CL
4668static ssize_t partial_show(struct kmem_cache *s, char *buf)
4669{
d9acf4b7 4670 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4671}
4672SLAB_ATTR_RO(partial);
4673
4674static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4675{
d9acf4b7 4676 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4677}
4678SLAB_ATTR_RO(cpu_slabs);
4679
4680static ssize_t objects_show(struct kmem_cache *s, char *buf)
4681{
205ab99d 4682 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4683}
4684SLAB_ATTR_RO(objects);
4685
205ab99d
CL
4686static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4687{
4688 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4689}
4690SLAB_ATTR_RO(objects_partial);
4691
49e22585
CL
4692static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4693{
4694 int objects = 0;
4695 int pages = 0;
4696 int cpu;
4697 int len;
4698
4699 for_each_online_cpu(cpu) {
4700 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4701
4702 if (page) {
4703 pages += page->pages;
4704 objects += page->pobjects;
4705 }
4706 }
4707
4708 len = sprintf(buf, "%d(%d)", objects, pages);
4709
4710#ifdef CONFIG_SMP
4711 for_each_online_cpu(cpu) {
4712 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4713
4714 if (page && len < PAGE_SIZE - 20)
4715 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4716 page->pobjects, page->pages);
4717 }
4718#endif
4719 return len + sprintf(buf + len, "\n");
4720}
4721SLAB_ATTR_RO(slabs_cpu_partial);
4722
a5a84755
CL
4723static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4724{
4725 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4726}
4727
4728static ssize_t reclaim_account_store(struct kmem_cache *s,
4729 const char *buf, size_t length)
4730{
4731 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4732 if (buf[0] == '1')
4733 s->flags |= SLAB_RECLAIM_ACCOUNT;
4734 return length;
4735}
4736SLAB_ATTR(reclaim_account);
4737
4738static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4739{
4740 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4741}
4742SLAB_ATTR_RO(hwcache_align);
4743
4744#ifdef CONFIG_ZONE_DMA
4745static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4746{
4747 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4748}
4749SLAB_ATTR_RO(cache_dma);
4750#endif
4751
4752static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4753{
4754 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4755}
4756SLAB_ATTR_RO(destroy_by_rcu);
4757
ab9a0f19
LJ
4758static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4759{
4760 return sprintf(buf, "%d\n", s->reserved);
4761}
4762SLAB_ATTR_RO(reserved);
4763
ab4d5ed5 4764#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4765static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4766{
4767 return show_slab_objects(s, buf, SO_ALL);
4768}
4769SLAB_ATTR_RO(slabs);
4770
205ab99d
CL
4771static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4772{
4773 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4774}
4775SLAB_ATTR_RO(total_objects);
4776
81819f0f
CL
4777static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4778{
4779 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4780}
4781
4782static ssize_t sanity_checks_store(struct kmem_cache *s,
4783 const char *buf, size_t length)
4784{
4785 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4786 if (buf[0] == '1') {
4787 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4788 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4789 }
81819f0f
CL
4790 return length;
4791}
4792SLAB_ATTR(sanity_checks);
4793
4794static ssize_t trace_show(struct kmem_cache *s, char *buf)
4795{
4796 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4797}
4798
4799static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4800 size_t length)
4801{
4802 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4803 if (buf[0] == '1') {
4804 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4805 s->flags |= SLAB_TRACE;
b789ef51 4806 }
81819f0f
CL
4807 return length;
4808}
4809SLAB_ATTR(trace);
4810
81819f0f
CL
4811static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4812{
4813 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4814}
4815
4816static ssize_t red_zone_store(struct kmem_cache *s,
4817 const char *buf, size_t length)
4818{
4819 if (any_slab_objects(s))
4820 return -EBUSY;
4821
4822 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4823 if (buf[0] == '1') {
4824 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4825 s->flags |= SLAB_RED_ZONE;
b789ef51 4826 }
06b285dc 4827 calculate_sizes(s, -1);
81819f0f
CL
4828 return length;
4829}
4830SLAB_ATTR(red_zone);
4831
4832static ssize_t poison_show(struct kmem_cache *s, char *buf)
4833{
4834 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4835}
4836
4837static ssize_t poison_store(struct kmem_cache *s,
4838 const char *buf, size_t length)
4839{
4840 if (any_slab_objects(s))
4841 return -EBUSY;
4842
4843 s->flags &= ~SLAB_POISON;
b789ef51
CL
4844 if (buf[0] == '1') {
4845 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4846 s->flags |= SLAB_POISON;
b789ef51 4847 }
06b285dc 4848 calculate_sizes(s, -1);
81819f0f
CL
4849 return length;
4850}
4851SLAB_ATTR(poison);
4852
4853static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4854{
4855 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4856}
4857
4858static ssize_t store_user_store(struct kmem_cache *s,
4859 const char *buf, size_t length)
4860{
4861 if (any_slab_objects(s))
4862 return -EBUSY;
4863
4864 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4865 if (buf[0] == '1') {
4866 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4867 s->flags |= SLAB_STORE_USER;
b789ef51 4868 }
06b285dc 4869 calculate_sizes(s, -1);
81819f0f
CL
4870 return length;
4871}
4872SLAB_ATTR(store_user);
4873
53e15af0
CL
4874static ssize_t validate_show(struct kmem_cache *s, char *buf)
4875{
4876 return 0;
4877}
4878
4879static ssize_t validate_store(struct kmem_cache *s,
4880 const char *buf, size_t length)
4881{
434e245d
CL
4882 int ret = -EINVAL;
4883
4884 if (buf[0] == '1') {
4885 ret = validate_slab_cache(s);
4886 if (ret >= 0)
4887 ret = length;
4888 }
4889 return ret;
53e15af0
CL
4890}
4891SLAB_ATTR(validate);
a5a84755
CL
4892
4893static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4894{
4895 if (!(s->flags & SLAB_STORE_USER))
4896 return -ENOSYS;
4897 return list_locations(s, buf, TRACK_ALLOC);
4898}
4899SLAB_ATTR_RO(alloc_calls);
4900
4901static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4902{
4903 if (!(s->flags & SLAB_STORE_USER))
4904 return -ENOSYS;
4905 return list_locations(s, buf, TRACK_FREE);
4906}
4907SLAB_ATTR_RO(free_calls);
4908#endif /* CONFIG_SLUB_DEBUG */
4909
4910#ifdef CONFIG_FAILSLAB
4911static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4912{
4913 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4914}
4915
4916static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4917 size_t length)
4918{
4919 s->flags &= ~SLAB_FAILSLAB;
4920 if (buf[0] == '1')
4921 s->flags |= SLAB_FAILSLAB;
4922 return length;
4923}
4924SLAB_ATTR(failslab);
ab4d5ed5 4925#endif
53e15af0 4926
2086d26a
CL
4927static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4928{
4929 return 0;
4930}
4931
4932static ssize_t shrink_store(struct kmem_cache *s,
4933 const char *buf, size_t length)
4934{
4935 if (buf[0] == '1') {
4936 int rc = kmem_cache_shrink(s);
4937
4938 if (rc)
4939 return rc;
4940 } else
4941 return -EINVAL;
4942 return length;
4943}
4944SLAB_ATTR(shrink);
4945
81819f0f 4946#ifdef CONFIG_NUMA
9824601e 4947static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4948{
9824601e 4949 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4950}
4951
9824601e 4952static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4953 const char *buf, size_t length)
4954{
0121c619
CL
4955 unsigned long ratio;
4956 int err;
4957
4958 err = strict_strtoul(buf, 10, &ratio);
4959 if (err)
4960 return err;
4961
e2cb96b7 4962 if (ratio <= 100)
0121c619 4963 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4964
81819f0f
CL
4965 return length;
4966}
9824601e 4967SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4968#endif
4969
8ff12cfc 4970#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4971static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4972{
4973 unsigned long sum = 0;
4974 int cpu;
4975 int len;
4976 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4977
4978 if (!data)
4979 return -ENOMEM;
4980
4981 for_each_online_cpu(cpu) {
9dfc6e68 4982 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4983
4984 data[cpu] = x;
4985 sum += x;
4986 }
4987
4988 len = sprintf(buf, "%lu", sum);
4989
50ef37b9 4990#ifdef CONFIG_SMP
8ff12cfc
CL
4991 for_each_online_cpu(cpu) {
4992 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4993 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4994 }
50ef37b9 4995#endif
8ff12cfc
CL
4996 kfree(data);
4997 return len + sprintf(buf + len, "\n");
4998}
4999
78eb00cc
DR
5000static void clear_stat(struct kmem_cache *s, enum stat_item si)
5001{
5002 int cpu;
5003
5004 for_each_online_cpu(cpu)
9dfc6e68 5005 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5006}
5007
8ff12cfc
CL
5008#define STAT_ATTR(si, text) \
5009static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5010{ \
5011 return show_stat(s, buf, si); \
5012} \
78eb00cc
DR
5013static ssize_t text##_store(struct kmem_cache *s, \
5014 const char *buf, size_t length) \
5015{ \
5016 if (buf[0] != '0') \
5017 return -EINVAL; \
5018 clear_stat(s, si); \
5019 return length; \
5020} \
5021SLAB_ATTR(text); \
8ff12cfc
CL
5022
5023STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5024STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5025STAT_ATTR(FREE_FASTPATH, free_fastpath);
5026STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5027STAT_ATTR(FREE_FROZEN, free_frozen);
5028STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5029STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5030STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5031STAT_ATTR(ALLOC_SLAB, alloc_slab);
5032STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5033STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5034STAT_ATTR(FREE_SLAB, free_slab);
5035STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5036STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5037STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5038STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5039STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5040STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5041STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5042STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5043STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5044STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5045STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5046STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5047STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5048STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5049#endif
5050
06428780 5051static struct attribute *slab_attrs[] = {
81819f0f
CL
5052 &slab_size_attr.attr,
5053 &object_size_attr.attr,
5054 &objs_per_slab_attr.attr,
5055 &order_attr.attr,
73d342b1 5056 &min_partial_attr.attr,
49e22585 5057 &cpu_partial_attr.attr,
81819f0f 5058 &objects_attr.attr,
205ab99d 5059 &objects_partial_attr.attr,
81819f0f
CL
5060 &partial_attr.attr,
5061 &cpu_slabs_attr.attr,
5062 &ctor_attr.attr,
81819f0f
CL
5063 &aliases_attr.attr,
5064 &align_attr.attr,
81819f0f
CL
5065 &hwcache_align_attr.attr,
5066 &reclaim_account_attr.attr,
5067 &destroy_by_rcu_attr.attr,
a5a84755 5068 &shrink_attr.attr,
ab9a0f19 5069 &reserved_attr.attr,
49e22585 5070 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5071#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5072 &total_objects_attr.attr,
5073 &slabs_attr.attr,
5074 &sanity_checks_attr.attr,
5075 &trace_attr.attr,
81819f0f
CL
5076 &red_zone_attr.attr,
5077 &poison_attr.attr,
5078 &store_user_attr.attr,
53e15af0 5079 &validate_attr.attr,
88a420e4
CL
5080 &alloc_calls_attr.attr,
5081 &free_calls_attr.attr,
ab4d5ed5 5082#endif
81819f0f
CL
5083#ifdef CONFIG_ZONE_DMA
5084 &cache_dma_attr.attr,
5085#endif
5086#ifdef CONFIG_NUMA
9824601e 5087 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5088#endif
5089#ifdef CONFIG_SLUB_STATS
5090 &alloc_fastpath_attr.attr,
5091 &alloc_slowpath_attr.attr,
5092 &free_fastpath_attr.attr,
5093 &free_slowpath_attr.attr,
5094 &free_frozen_attr.attr,
5095 &free_add_partial_attr.attr,
5096 &free_remove_partial_attr.attr,
5097 &alloc_from_partial_attr.attr,
5098 &alloc_slab_attr.attr,
5099 &alloc_refill_attr.attr,
e36a2652 5100 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5101 &free_slab_attr.attr,
5102 &cpuslab_flush_attr.attr,
5103 &deactivate_full_attr.attr,
5104 &deactivate_empty_attr.attr,
5105 &deactivate_to_head_attr.attr,
5106 &deactivate_to_tail_attr.attr,
5107 &deactivate_remote_frees_attr.attr,
03e404af 5108 &deactivate_bypass_attr.attr,
65c3376a 5109 &order_fallback_attr.attr,
b789ef51
CL
5110 &cmpxchg_double_fail_attr.attr,
5111 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5112 &cpu_partial_alloc_attr.attr,
5113 &cpu_partial_free_attr.attr,
8028dcea
AS
5114 &cpu_partial_node_attr.attr,
5115 &cpu_partial_drain_attr.attr,
81819f0f 5116#endif
4c13dd3b
DM
5117#ifdef CONFIG_FAILSLAB
5118 &failslab_attr.attr,
5119#endif
5120
81819f0f
CL
5121 NULL
5122};
5123
5124static struct attribute_group slab_attr_group = {
5125 .attrs = slab_attrs,
5126};
5127
5128static ssize_t slab_attr_show(struct kobject *kobj,
5129 struct attribute *attr,
5130 char *buf)
5131{
5132 struct slab_attribute *attribute;
5133 struct kmem_cache *s;
5134 int err;
5135
5136 attribute = to_slab_attr(attr);
5137 s = to_slab(kobj);
5138
5139 if (!attribute->show)
5140 return -EIO;
5141
5142 err = attribute->show(s, buf);
5143
5144 return err;
5145}
5146
5147static ssize_t slab_attr_store(struct kobject *kobj,
5148 struct attribute *attr,
5149 const char *buf, size_t len)
5150{
5151 struct slab_attribute *attribute;
5152 struct kmem_cache *s;
5153 int err;
5154
5155 attribute = to_slab_attr(attr);
5156 s = to_slab(kobj);
5157
5158 if (!attribute->store)
5159 return -EIO;
5160
5161 err = attribute->store(s, buf, len);
5162
5163 return err;
5164}
5165
52cf25d0 5166static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5167 .show = slab_attr_show,
5168 .store = slab_attr_store,
5169};
5170
5171static struct kobj_type slab_ktype = {
5172 .sysfs_ops = &slab_sysfs_ops,
5173};
5174
5175static int uevent_filter(struct kset *kset, struct kobject *kobj)
5176{
5177 struct kobj_type *ktype = get_ktype(kobj);
5178
5179 if (ktype == &slab_ktype)
5180 return 1;
5181 return 0;
5182}
5183
9cd43611 5184static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5185 .filter = uevent_filter,
5186};
5187
27c3a314 5188static struct kset *slab_kset;
81819f0f
CL
5189
5190#define ID_STR_LENGTH 64
5191
5192/* Create a unique string id for a slab cache:
6446faa2
CL
5193 *
5194 * Format :[flags-]size
81819f0f
CL
5195 */
5196static char *create_unique_id(struct kmem_cache *s)
5197{
5198 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5199 char *p = name;
5200
5201 BUG_ON(!name);
5202
5203 *p++ = ':';
5204 /*
5205 * First flags affecting slabcache operations. We will only
5206 * get here for aliasable slabs so we do not need to support
5207 * too many flags. The flags here must cover all flags that
5208 * are matched during merging to guarantee that the id is
5209 * unique.
5210 */
5211 if (s->flags & SLAB_CACHE_DMA)
5212 *p++ = 'd';
5213 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5214 *p++ = 'a';
5215 if (s->flags & SLAB_DEBUG_FREE)
5216 *p++ = 'F';
5a896d9e
VN
5217 if (!(s->flags & SLAB_NOTRACK))
5218 *p++ = 't';
81819f0f
CL
5219 if (p != name + 1)
5220 *p++ = '-';
5221 p += sprintf(p, "%07d", s->size);
5222 BUG_ON(p > name + ID_STR_LENGTH - 1);
5223 return name;
5224}
5225
5226static int sysfs_slab_add(struct kmem_cache *s)
5227{
5228 int err;
5229 const char *name;
45530c44 5230 int unmergeable = slab_unmergeable(s);
81819f0f 5231
81819f0f
CL
5232 if (unmergeable) {
5233 /*
5234 * Slabcache can never be merged so we can use the name proper.
5235 * This is typically the case for debug situations. In that
5236 * case we can catch duplicate names easily.
5237 */
27c3a314 5238 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5239 name = s->name;
5240 } else {
5241 /*
5242 * Create a unique name for the slab as a target
5243 * for the symlinks.
5244 */
5245 name = create_unique_id(s);
5246 }
5247
27c3a314 5248 s->kobj.kset = slab_kset;
1eada11c
GKH
5249 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5250 if (err) {
5251 kobject_put(&s->kobj);
81819f0f 5252 return err;
1eada11c 5253 }
81819f0f
CL
5254
5255 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5256 if (err) {
5257 kobject_del(&s->kobj);
5258 kobject_put(&s->kobj);
81819f0f 5259 return err;
5788d8ad 5260 }
81819f0f
CL
5261 kobject_uevent(&s->kobj, KOBJ_ADD);
5262 if (!unmergeable) {
5263 /* Setup first alias */
5264 sysfs_slab_alias(s, s->name);
5265 kfree(name);
5266 }
5267 return 0;
5268}
5269
5270static void sysfs_slab_remove(struct kmem_cache *s)
5271{
97d06609 5272 if (slab_state < FULL)
2bce6485
CL
5273 /*
5274 * Sysfs has not been setup yet so no need to remove the
5275 * cache from sysfs.
5276 */
5277 return;
5278
81819f0f
CL
5279 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5280 kobject_del(&s->kobj);
151c602f 5281 kobject_put(&s->kobj);
81819f0f
CL
5282}
5283
5284/*
5285 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5286 * available lest we lose that information.
81819f0f
CL
5287 */
5288struct saved_alias {
5289 struct kmem_cache *s;
5290 const char *name;
5291 struct saved_alias *next;
5292};
5293
5af328a5 5294static struct saved_alias *alias_list;
81819f0f
CL
5295
5296static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5297{
5298 struct saved_alias *al;
5299
97d06609 5300 if (slab_state == FULL) {
81819f0f
CL
5301 /*
5302 * If we have a leftover link then remove it.
5303 */
27c3a314
GKH
5304 sysfs_remove_link(&slab_kset->kobj, name);
5305 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5306 }
5307
5308 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5309 if (!al)
5310 return -ENOMEM;
5311
5312 al->s = s;
5313 al->name = name;
5314 al->next = alias_list;
5315 alias_list = al;
5316 return 0;
5317}
5318
5319static int __init slab_sysfs_init(void)
5320{
5b95a4ac 5321 struct kmem_cache *s;
81819f0f
CL
5322 int err;
5323
18004c5d 5324 mutex_lock(&slab_mutex);
2bce6485 5325
0ff21e46 5326 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5327 if (!slab_kset) {
18004c5d 5328 mutex_unlock(&slab_mutex);
81819f0f
CL
5329 printk(KERN_ERR "Cannot register slab subsystem.\n");
5330 return -ENOSYS;
5331 }
5332
97d06609 5333 slab_state = FULL;
26a7bd03 5334
5b95a4ac 5335 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5336 err = sysfs_slab_add(s);
5d540fb7
CL
5337 if (err)
5338 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5339 " to sysfs\n", s->name);
26a7bd03 5340 }
81819f0f
CL
5341
5342 while (alias_list) {
5343 struct saved_alias *al = alias_list;
5344
5345 alias_list = alias_list->next;
5346 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5347 if (err)
5348 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5349 " %s to sysfs\n", al->name);
81819f0f
CL
5350 kfree(al);
5351 }
5352
18004c5d 5353 mutex_unlock(&slab_mutex);
81819f0f
CL
5354 resiliency_test();
5355 return 0;
5356}
5357
5358__initcall(slab_sysfs_init);
ab4d5ed5 5359#endif /* CONFIG_SYSFS */
57ed3eda
PE
5360
5361/*
5362 * The /proc/slabinfo ABI
5363 */
158a9624 5364#ifdef CONFIG_SLABINFO
0d7561c6 5365void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda
PE
5366{
5367 unsigned long nr_partials = 0;
5368 unsigned long nr_slabs = 0;
205ab99d
CL
5369 unsigned long nr_objs = 0;
5370 unsigned long nr_free = 0;
57ed3eda
PE
5371 int node;
5372
57ed3eda
PE
5373 for_each_online_node(node) {
5374 struct kmem_cache_node *n = get_node(s, node);
5375
5376 if (!n)
5377 continue;
5378
5379 nr_partials += n->nr_partial;
5380 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5381 nr_objs += atomic_long_read(&n->total_objects);
5382 nr_free += count_partial(n, count_free);
57ed3eda
PE
5383 }
5384
0d7561c6
GC
5385 sinfo->active_objs = nr_objs - nr_free;
5386 sinfo->num_objs = nr_objs;
5387 sinfo->active_slabs = nr_slabs;
5388 sinfo->num_slabs = nr_slabs;
5389 sinfo->objects_per_slab = oo_objects(s->oo);
5390 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5391}
5392
0d7561c6 5393void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5394{
7b3c3a50
AD
5395}
5396
b7454ad3
GC
5397ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5398 size_t count, loff_t *ppos)
7b3c3a50 5399{
b7454ad3 5400 return -EIO;
7b3c3a50 5401}
158a9624 5402#endif /* CONFIG_SLABINFO */