slab, cleanup: remove unneeded return
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
81819f0f 32
4a92379b
RK
33#include <trace/events/kmem.h>
34
81819f0f
CL
35/*
36 * Lock order:
881db7fb
CL
37 * 1. slub_lock (Global Semaphore)
38 * 2. node->list_lock
39 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 40 *
881db7fb
CL
41 * slub_lock
42 *
43 * The role of the slub_lock is to protect the list of all the slabs
44 * and to synchronize major metadata changes to slab cache structures.
45 *
46 * The slab_lock is only used for debugging and on arches that do not
47 * have the ability to do a cmpxchg_double. It only protects the second
48 * double word in the page struct. Meaning
49 * A. page->freelist -> List of object free in a page
50 * B. page->counters -> Counters of objects
51 * C. page->frozen -> frozen state
52 *
53 * If a slab is frozen then it is exempt from list management. It is not
54 * on any list. The processor that froze the slab is the one who can
55 * perform list operations on the page. Other processors may put objects
56 * onto the freelist but the processor that froze the slab is the only
57 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
58 *
59 * The list_lock protects the partial and full list on each node and
60 * the partial slab counter. If taken then no new slabs may be added or
61 * removed from the lists nor make the number of partial slabs be modified.
62 * (Note that the total number of slabs is an atomic value that may be
63 * modified without taking the list lock).
64 *
65 * The list_lock is a centralized lock and thus we avoid taking it as
66 * much as possible. As long as SLUB does not have to handle partial
67 * slabs, operations can continue without any centralized lock. F.e.
68 * allocating a long series of objects that fill up slabs does not require
69 * the list lock.
81819f0f
CL
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
b789ef51
CL
134/* Enable to log cmpxchg failures */
135#undef SLUB_DEBUG_CMPXCHG
136
2086d26a
CL
137/*
138 * Mininum number of partial slabs. These will be left on the partial
139 * lists even if they are empty. kmem_cache_shrink may reclaim them.
140 */
76be8950 141#define MIN_PARTIAL 5
e95eed57 142
2086d26a
CL
143/*
144 * Maximum number of desirable partial slabs.
145 * The existence of more partial slabs makes kmem_cache_shrink
146 * sort the partial list by the number of objects in the.
147 */
148#define MAX_PARTIAL 10
149
81819f0f
CL
150#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
151 SLAB_POISON | SLAB_STORE_USER)
672bba3a 152
fa5ec8a1 153/*
3de47213
DR
154 * Debugging flags that require metadata to be stored in the slab. These get
155 * disabled when slub_debug=O is used and a cache's min order increases with
156 * metadata.
fa5ec8a1 157 */
3de47213 158#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 159
81819f0f
CL
160/*
161 * Set of flags that will prevent slab merging
162 */
163#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
164 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
165 SLAB_FAILSLAB)
81819f0f
CL
166
167#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 168 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 169
210b5c06
CG
170#define OO_SHIFT 16
171#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 172#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 173
81819f0f 174/* Internal SLUB flags */
f90ec390 175#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 176#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
177
178static int kmem_size = sizeof(struct kmem_cache);
179
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
184static enum {
185 DOWN, /* No slab functionality available */
51df1142 186 PARTIAL, /* Kmem_cache_node works */
672bba3a 187 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
188 SYSFS /* Sysfs up */
189} slab_state = DOWN;
190
191/* A list of all slab caches on the system */
192static DECLARE_RWSEM(slub_lock);
5af328a5 193static LIST_HEAD(slab_caches);
81819f0f 194
02cbc874
CL
195/*
196 * Tracking user of a slab.
197 */
d6543e39 198#define TRACK_ADDRS_COUNT 16
02cbc874 199struct track {
ce71e27c 200 unsigned long addr; /* Called from address */
d6543e39
BG
201#ifdef CONFIG_STACKTRACE
202 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
203#endif
02cbc874
CL
204 int cpu; /* Was running on cpu */
205 int pid; /* Pid context */
206 unsigned long when; /* When did the operation occur */
207};
208
209enum track_item { TRACK_ALLOC, TRACK_FREE };
210
ab4d5ed5 211#ifdef CONFIG_SYSFS
81819f0f
CL
212static int sysfs_slab_add(struct kmem_cache *);
213static int sysfs_slab_alias(struct kmem_cache *, const char *);
214static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 215
81819f0f 216#else
0c710013
CL
217static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
218static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
219 { return 0; }
151c602f
CL
220static inline void sysfs_slab_remove(struct kmem_cache *s)
221{
84c1cf62 222 kfree(s->name);
151c602f
CL
223 kfree(s);
224}
8ff12cfc 225
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
84e554e6 231 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
232#endif
233}
234
81819f0f
CL
235/********************************************************************
236 * Core slab cache functions
237 *******************************************************************/
238
239int slab_is_available(void)
240{
241 return slab_state >= UP;
242}
243
244static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
245{
81819f0f 246 return s->node[node];
81819f0f
CL
247}
248
6446faa2 249/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
250static inline int check_valid_pointer(struct kmem_cache *s,
251 struct page *page, const void *object)
252{
253 void *base;
254
a973e9dd 255 if (!object)
02cbc874
CL
256 return 1;
257
a973e9dd 258 base = page_address(page);
39b26464 259 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
260 (object - base) % s->size) {
261 return 0;
262 }
263
264 return 1;
265}
266
7656c72b
CL
267static inline void *get_freepointer(struct kmem_cache *s, void *object)
268{
269 return *(void **)(object + s->offset);
270}
271
1393d9a1
CL
272static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
273{
274 void *p;
275
276#ifdef CONFIG_DEBUG_PAGEALLOC
277 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
278#else
279 p = get_freepointer(s, object);
280#endif
281 return p;
282}
283
7656c72b
CL
284static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
285{
286 *(void **)(object + s->offset) = fp;
287}
288
289/* Loop over all objects in a slab */
224a88be
CL
290#define for_each_object(__p, __s, __addr, __objects) \
291 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
292 __p += (__s)->size)
293
7656c72b
CL
294/* Determine object index from a given position */
295static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
296{
297 return (p - addr) / s->size;
298}
299
d71f606f
MK
300static inline size_t slab_ksize(const struct kmem_cache *s)
301{
302#ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debugging requires use of the padding between object
305 * and whatever may come after it.
306 */
307 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
308 return s->objsize;
309
310#endif
311 /*
312 * If we have the need to store the freelist pointer
313 * back there or track user information then we can
314 * only use the space before that information.
315 */
316 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
317 return s->inuse;
318 /*
319 * Else we can use all the padding etc for the allocation
320 */
321 return s->size;
322}
323
ab9a0f19
LJ
324static inline int order_objects(int order, unsigned long size, int reserved)
325{
326 return ((PAGE_SIZE << order) - reserved) / size;
327}
328
834f3d11 329static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 330 unsigned long size, int reserved)
834f3d11
CL
331{
332 struct kmem_cache_order_objects x = {
ab9a0f19 333 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
334 };
335
336 return x;
337}
338
339static inline int oo_order(struct kmem_cache_order_objects x)
340{
210b5c06 341 return x.x >> OO_SHIFT;
834f3d11
CL
342}
343
344static inline int oo_objects(struct kmem_cache_order_objects x)
345{
210b5c06 346 return x.x & OO_MASK;
834f3d11
CL
347}
348
881db7fb
CL
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
354 bit_spin_lock(PG_locked, &page->flags);
355}
356
357static __always_inline void slab_unlock(struct page *page)
358{
359 __bit_spin_unlock(PG_locked, &page->flags);
360}
361
1d07171c
CL
362/* Interrupts must be disabled (for the fallback code to work right) */
363static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
366 const char *n)
367{
368 VM_BUG_ON(!irqs_disabled());
2565409f
HC
369#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 371 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 372 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
373 freelist_old, counters_old,
374 freelist_new, counters_new))
375 return 1;
376 } else
377#endif
378 {
379 slab_lock(page);
380 if (page->freelist == freelist_old && page->counters == counters_old) {
381 page->freelist = freelist_new;
382 page->counters = counters_new;
383 slab_unlock(page);
384 return 1;
385 }
386 slab_unlock(page);
387 }
388
389 cpu_relax();
390 stat(s, CMPXCHG_DOUBLE_FAIL);
391
392#ifdef SLUB_DEBUG_CMPXCHG
393 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
394#endif
395
396 return 0;
397}
398
b789ef51
CL
399static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
400 void *freelist_old, unsigned long counters_old,
401 void *freelist_new, unsigned long counters_new,
402 const char *n)
403{
2565409f
HC
404#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
405 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 406 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 407 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
408 freelist_old, counters_old,
409 freelist_new, counters_new))
410 return 1;
411 } else
412#endif
413 {
1d07171c
CL
414 unsigned long flags;
415
416 local_irq_save(flags);
881db7fb 417 slab_lock(page);
b789ef51
CL
418 if (page->freelist == freelist_old && page->counters == counters_old) {
419 page->freelist = freelist_new;
420 page->counters = counters_new;
881db7fb 421 slab_unlock(page);
1d07171c 422 local_irq_restore(flags);
b789ef51
CL
423 return 1;
424 }
881db7fb 425 slab_unlock(page);
1d07171c 426 local_irq_restore(flags);
b789ef51
CL
427 }
428
429 cpu_relax();
430 stat(s, CMPXCHG_DOUBLE_FAIL);
431
432#ifdef SLUB_DEBUG_CMPXCHG
433 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
434#endif
435
436 return 0;
437}
438
41ecc55b 439#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
440/*
441 * Determine a map of object in use on a page.
442 *
881db7fb 443 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
444 * not vanish from under us.
445 */
446static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
447{
448 void *p;
449 void *addr = page_address(page);
450
451 for (p = page->freelist; p; p = get_freepointer(s, p))
452 set_bit(slab_index(p, s, addr), map);
453}
454
41ecc55b
CL
455/*
456 * Debug settings:
457 */
f0630fff
CL
458#ifdef CONFIG_SLUB_DEBUG_ON
459static int slub_debug = DEBUG_DEFAULT_FLAGS;
460#else
41ecc55b 461static int slub_debug;
f0630fff 462#endif
41ecc55b
CL
463
464static char *slub_debug_slabs;
fa5ec8a1 465static int disable_higher_order_debug;
41ecc55b 466
81819f0f
CL
467/*
468 * Object debugging
469 */
470static void print_section(char *text, u8 *addr, unsigned int length)
471{
ffc79d28
SAS
472 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
473 length, 1);
81819f0f
CL
474}
475
81819f0f
CL
476static struct track *get_track(struct kmem_cache *s, void *object,
477 enum track_item alloc)
478{
479 struct track *p;
480
481 if (s->offset)
482 p = object + s->offset + sizeof(void *);
483 else
484 p = object + s->inuse;
485
486 return p + alloc;
487}
488
489static void set_track(struct kmem_cache *s, void *object,
ce71e27c 490 enum track_item alloc, unsigned long addr)
81819f0f 491{
1a00df4a 492 struct track *p = get_track(s, object, alloc);
81819f0f 493
81819f0f 494 if (addr) {
d6543e39
BG
495#ifdef CONFIG_STACKTRACE
496 struct stack_trace trace;
497 int i;
498
499 trace.nr_entries = 0;
500 trace.max_entries = TRACK_ADDRS_COUNT;
501 trace.entries = p->addrs;
502 trace.skip = 3;
503 save_stack_trace(&trace);
504
505 /* See rant in lockdep.c */
506 if (trace.nr_entries != 0 &&
507 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
508 trace.nr_entries--;
509
510 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
511 p->addrs[i] = 0;
512#endif
81819f0f
CL
513 p->addr = addr;
514 p->cpu = smp_processor_id();
88e4ccf2 515 p->pid = current->pid;
81819f0f
CL
516 p->when = jiffies;
517 } else
518 memset(p, 0, sizeof(struct track));
519}
520
81819f0f
CL
521static void init_tracking(struct kmem_cache *s, void *object)
522{
24922684
CL
523 if (!(s->flags & SLAB_STORE_USER))
524 return;
525
ce71e27c
EGM
526 set_track(s, object, TRACK_FREE, 0UL);
527 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
528}
529
530static void print_track(const char *s, struct track *t)
531{
532 if (!t->addr)
533 return;
534
7daf705f 535 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 536 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
537#ifdef CONFIG_STACKTRACE
538 {
539 int i;
540 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
541 if (t->addrs[i])
542 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
543 else
544 break;
545 }
546#endif
24922684
CL
547}
548
549static void print_tracking(struct kmem_cache *s, void *object)
550{
551 if (!(s->flags & SLAB_STORE_USER))
552 return;
553
554 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
555 print_track("Freed", get_track(s, object, TRACK_FREE));
556}
557
558static void print_page_info(struct page *page)
559{
39b26464
CL
560 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
561 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
562
563}
564
565static void slab_bug(struct kmem_cache *s, char *fmt, ...)
566{
567 va_list args;
568 char buf[100];
569
570 va_start(args, fmt);
571 vsnprintf(buf, sizeof(buf), fmt, args);
572 va_end(args);
573 printk(KERN_ERR "========================================"
574 "=====================================\n");
265d47e7 575 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
576 printk(KERN_ERR "----------------------------------------"
577 "-------------------------------------\n\n");
81819f0f
CL
578}
579
24922684
CL
580static void slab_fix(struct kmem_cache *s, char *fmt, ...)
581{
582 va_list args;
583 char buf[100];
584
585 va_start(args, fmt);
586 vsnprintf(buf, sizeof(buf), fmt, args);
587 va_end(args);
588 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
589}
590
591static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
592{
593 unsigned int off; /* Offset of last byte */
a973e9dd 594 u8 *addr = page_address(page);
24922684
CL
595
596 print_tracking(s, p);
597
598 print_page_info(page);
599
600 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
601 p, p - addr, get_freepointer(s, p));
602
603 if (p > addr + 16)
ffc79d28 604 print_section("Bytes b4 ", p - 16, 16);
81819f0f 605
ffc79d28
SAS
606 print_section("Object ", p, min_t(unsigned long, s->objsize,
607 PAGE_SIZE));
81819f0f 608 if (s->flags & SLAB_RED_ZONE)
ffc79d28 609 print_section("Redzone ", p + s->objsize,
81819f0f
CL
610 s->inuse - s->objsize);
611
81819f0f
CL
612 if (s->offset)
613 off = s->offset + sizeof(void *);
614 else
615 off = s->inuse;
616
24922684 617 if (s->flags & SLAB_STORE_USER)
81819f0f 618 off += 2 * sizeof(struct track);
81819f0f
CL
619
620 if (off != s->size)
621 /* Beginning of the filler is the free pointer */
ffc79d28 622 print_section("Padding ", p + off, s->size - off);
24922684
CL
623
624 dump_stack();
81819f0f
CL
625}
626
627static void object_err(struct kmem_cache *s, struct page *page,
628 u8 *object, char *reason)
629{
3dc50637 630 slab_bug(s, "%s", reason);
24922684 631 print_trailer(s, page, object);
81819f0f
CL
632}
633
24922684 634static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
635{
636 va_list args;
637 char buf[100];
638
24922684
CL
639 va_start(args, fmt);
640 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 641 va_end(args);
3dc50637 642 slab_bug(s, "%s", buf);
24922684 643 print_page_info(page);
81819f0f
CL
644 dump_stack();
645}
646
f7cb1933 647static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
648{
649 u8 *p = object;
650
651 if (s->flags & __OBJECT_POISON) {
652 memset(p, POISON_FREE, s->objsize - 1);
06428780 653 p[s->objsize - 1] = POISON_END;
81819f0f
CL
654 }
655
656 if (s->flags & SLAB_RED_ZONE)
f7cb1933 657 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
658}
659
24922684
CL
660static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
661 void *from, void *to)
662{
663 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
664 memset(from, data, to - from);
665}
666
667static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
668 u8 *object, char *what,
06428780 669 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
670{
671 u8 *fault;
672 u8 *end;
673
79824820 674 fault = memchr_inv(start, value, bytes);
24922684
CL
675 if (!fault)
676 return 1;
677
678 end = start + bytes;
679 while (end > fault && end[-1] == value)
680 end--;
681
682 slab_bug(s, "%s overwritten", what);
683 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
684 fault, end - 1, fault[0], value);
685 print_trailer(s, page, object);
686
687 restore_bytes(s, what, value, fault, end);
688 return 0;
81819f0f
CL
689}
690
81819f0f
CL
691/*
692 * Object layout:
693 *
694 * object address
695 * Bytes of the object to be managed.
696 * If the freepointer may overlay the object then the free
697 * pointer is the first word of the object.
672bba3a 698 *
81819f0f
CL
699 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
700 * 0xa5 (POISON_END)
701 *
702 * object + s->objsize
703 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
704 * Padding is extended by another word if Redzoning is enabled and
705 * objsize == inuse.
706 *
81819f0f
CL
707 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
708 * 0xcc (RED_ACTIVE) for objects in use.
709 *
710 * object + s->inuse
672bba3a
CL
711 * Meta data starts here.
712 *
81819f0f
CL
713 * A. Free pointer (if we cannot overwrite object on free)
714 * B. Tracking data for SLAB_STORE_USER
672bba3a 715 * C. Padding to reach required alignment boundary or at mininum
6446faa2 716 * one word if debugging is on to be able to detect writes
672bba3a
CL
717 * before the word boundary.
718 *
719 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
720 *
721 * object + s->size
672bba3a 722 * Nothing is used beyond s->size.
81819f0f 723 *
672bba3a
CL
724 * If slabcaches are merged then the objsize and inuse boundaries are mostly
725 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
726 * may be used with merged slabcaches.
727 */
728
81819f0f
CL
729static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
730{
731 unsigned long off = s->inuse; /* The end of info */
732
733 if (s->offset)
734 /* Freepointer is placed after the object. */
735 off += sizeof(void *);
736
737 if (s->flags & SLAB_STORE_USER)
738 /* We also have user information there */
739 off += 2 * sizeof(struct track);
740
741 if (s->size == off)
742 return 1;
743
24922684
CL
744 return check_bytes_and_report(s, page, p, "Object padding",
745 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
746}
747
39b26464 748/* Check the pad bytes at the end of a slab page */
81819f0f
CL
749static int slab_pad_check(struct kmem_cache *s, struct page *page)
750{
24922684
CL
751 u8 *start;
752 u8 *fault;
753 u8 *end;
754 int length;
755 int remainder;
81819f0f
CL
756
757 if (!(s->flags & SLAB_POISON))
758 return 1;
759
a973e9dd 760 start = page_address(page);
ab9a0f19 761 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
762 end = start + length;
763 remainder = length % s->size;
81819f0f
CL
764 if (!remainder)
765 return 1;
766
79824820 767 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
768 if (!fault)
769 return 1;
770 while (end > fault && end[-1] == POISON_INUSE)
771 end--;
772
773 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 774 print_section("Padding ", end - remainder, remainder);
24922684 775
8a3d271d 776 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 777 return 0;
81819f0f
CL
778}
779
780static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 781 void *object, u8 val)
81819f0f
CL
782{
783 u8 *p = object;
784 u8 *endobject = object + s->objsize;
785
786 if (s->flags & SLAB_RED_ZONE) {
24922684 787 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 788 endobject, val, s->inuse - s->objsize))
81819f0f 789 return 0;
81819f0f 790 } else {
3adbefee
IM
791 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
792 check_bytes_and_report(s, page, p, "Alignment padding",
793 endobject, POISON_INUSE, s->inuse - s->objsize);
794 }
81819f0f
CL
795 }
796
797 if (s->flags & SLAB_POISON) {
f7cb1933 798 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
799 (!check_bytes_and_report(s, page, p, "Poison", p,
800 POISON_FREE, s->objsize - 1) ||
801 !check_bytes_and_report(s, page, p, "Poison",
06428780 802 p + s->objsize - 1, POISON_END, 1)))
81819f0f 803 return 0;
81819f0f
CL
804 /*
805 * check_pad_bytes cleans up on its own.
806 */
807 check_pad_bytes(s, page, p);
808 }
809
f7cb1933 810 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
811 /*
812 * Object and freepointer overlap. Cannot check
813 * freepointer while object is allocated.
814 */
815 return 1;
816
817 /* Check free pointer validity */
818 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
819 object_err(s, page, p, "Freepointer corrupt");
820 /*
9f6c708e 821 * No choice but to zap it and thus lose the remainder
81819f0f 822 * of the free objects in this slab. May cause
672bba3a 823 * another error because the object count is now wrong.
81819f0f 824 */
a973e9dd 825 set_freepointer(s, p, NULL);
81819f0f
CL
826 return 0;
827 }
828 return 1;
829}
830
831static int check_slab(struct kmem_cache *s, struct page *page)
832{
39b26464
CL
833 int maxobj;
834
81819f0f
CL
835 VM_BUG_ON(!irqs_disabled());
836
837 if (!PageSlab(page)) {
24922684 838 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
839 return 0;
840 }
39b26464 841
ab9a0f19 842 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
843 if (page->objects > maxobj) {
844 slab_err(s, page, "objects %u > max %u",
845 s->name, page->objects, maxobj);
846 return 0;
847 }
848 if (page->inuse > page->objects) {
24922684 849 slab_err(s, page, "inuse %u > max %u",
39b26464 850 s->name, page->inuse, page->objects);
81819f0f
CL
851 return 0;
852 }
853 /* Slab_pad_check fixes things up after itself */
854 slab_pad_check(s, page);
855 return 1;
856}
857
858/*
672bba3a
CL
859 * Determine if a certain object on a page is on the freelist. Must hold the
860 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
861 */
862static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
863{
864 int nr = 0;
881db7fb 865 void *fp;
81819f0f 866 void *object = NULL;
224a88be 867 unsigned long max_objects;
81819f0f 868
881db7fb 869 fp = page->freelist;
39b26464 870 while (fp && nr <= page->objects) {
81819f0f
CL
871 if (fp == search)
872 return 1;
873 if (!check_valid_pointer(s, page, fp)) {
874 if (object) {
875 object_err(s, page, object,
876 "Freechain corrupt");
a973e9dd 877 set_freepointer(s, object, NULL);
81819f0f
CL
878 break;
879 } else {
24922684 880 slab_err(s, page, "Freepointer corrupt");
a973e9dd 881 page->freelist = NULL;
39b26464 882 page->inuse = page->objects;
24922684 883 slab_fix(s, "Freelist cleared");
81819f0f
CL
884 return 0;
885 }
886 break;
887 }
888 object = fp;
889 fp = get_freepointer(s, object);
890 nr++;
891 }
892
ab9a0f19 893 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
894 if (max_objects > MAX_OBJS_PER_PAGE)
895 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
896
897 if (page->objects != max_objects) {
898 slab_err(s, page, "Wrong number of objects. Found %d but "
899 "should be %d", page->objects, max_objects);
900 page->objects = max_objects;
901 slab_fix(s, "Number of objects adjusted.");
902 }
39b26464 903 if (page->inuse != page->objects - nr) {
70d71228 904 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
905 "counted were %d", page->inuse, page->objects - nr);
906 page->inuse = page->objects - nr;
24922684 907 slab_fix(s, "Object count adjusted.");
81819f0f
CL
908 }
909 return search == NULL;
910}
911
0121c619
CL
912static void trace(struct kmem_cache *s, struct page *page, void *object,
913 int alloc)
3ec09742
CL
914{
915 if (s->flags & SLAB_TRACE) {
916 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
917 s->name,
918 alloc ? "alloc" : "free",
919 object, page->inuse,
920 page->freelist);
921
922 if (!alloc)
ffc79d28 923 print_section("Object ", (void *)object, s->objsize);
3ec09742
CL
924
925 dump_stack();
926 }
927}
928
c016b0bd
CL
929/*
930 * Hooks for other subsystems that check memory allocations. In a typical
931 * production configuration these hooks all should produce no code at all.
932 */
933static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
934{
c1d50836 935 flags &= gfp_allowed_mask;
c016b0bd
CL
936 lockdep_trace_alloc(flags);
937 might_sleep_if(flags & __GFP_WAIT);
938
939 return should_failslab(s->objsize, flags, s->flags);
940}
941
942static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
943{
c1d50836 944 flags &= gfp_allowed_mask;
b3d41885 945 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
946 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
947}
948
949static inline void slab_free_hook(struct kmem_cache *s, void *x)
950{
951 kmemleak_free_recursive(x, s->flags);
c016b0bd 952
d3f661d6
CL
953 /*
954 * Trouble is that we may no longer disable interupts in the fast path
955 * So in order to make the debug calls that expect irqs to be
956 * disabled we need to disable interrupts temporarily.
957 */
958#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
959 {
960 unsigned long flags;
961
962 local_irq_save(flags);
963 kmemcheck_slab_free(s, x, s->objsize);
964 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
965 local_irq_restore(flags);
966 }
967#endif
f9b615de
TG
968 if (!(s->flags & SLAB_DEBUG_OBJECTS))
969 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
970}
971
643b1138 972/*
672bba3a 973 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
974 *
975 * list_lock must be held.
643b1138 976 */
5cc6eee8
CL
977static void add_full(struct kmem_cache *s,
978 struct kmem_cache_node *n, struct page *page)
643b1138 979{
5cc6eee8
CL
980 if (!(s->flags & SLAB_STORE_USER))
981 return;
982
643b1138 983 list_add(&page->lru, &n->full);
643b1138
CL
984}
985
5cc6eee8
CL
986/*
987 * list_lock must be held.
988 */
643b1138
CL
989static void remove_full(struct kmem_cache *s, struct page *page)
990{
643b1138
CL
991 if (!(s->flags & SLAB_STORE_USER))
992 return;
993
643b1138 994 list_del(&page->lru);
643b1138
CL
995}
996
0f389ec6
CL
997/* Tracking of the number of slabs for debugging purposes */
998static inline unsigned long slabs_node(struct kmem_cache *s, int node)
999{
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 return atomic_long_read(&n->nr_slabs);
1003}
1004
26c02cf0
AB
1005static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1006{
1007 return atomic_long_read(&n->nr_slabs);
1008}
1009
205ab99d 1010static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1011{
1012 struct kmem_cache_node *n = get_node(s, node);
1013
1014 /*
1015 * May be called early in order to allocate a slab for the
1016 * kmem_cache_node structure. Solve the chicken-egg
1017 * dilemma by deferring the increment of the count during
1018 * bootstrap (see early_kmem_cache_node_alloc).
1019 */
7340cc84 1020 if (n) {
0f389ec6 1021 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1022 atomic_long_add(objects, &n->total_objects);
1023 }
0f389ec6 1024}
205ab99d 1025static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1026{
1027 struct kmem_cache_node *n = get_node(s, node);
1028
1029 atomic_long_dec(&n->nr_slabs);
205ab99d 1030 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1031}
1032
1033/* Object debug checks for alloc/free paths */
3ec09742
CL
1034static void setup_object_debug(struct kmem_cache *s, struct page *page,
1035 void *object)
1036{
1037 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1038 return;
1039
f7cb1933 1040 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1041 init_tracking(s, object);
1042}
1043
1537066c 1044static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1045 void *object, unsigned long addr)
81819f0f
CL
1046{
1047 if (!check_slab(s, page))
1048 goto bad;
1049
81819f0f
CL
1050 if (!check_valid_pointer(s, page, object)) {
1051 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1052 goto bad;
81819f0f
CL
1053 }
1054
f7cb1933 1055 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1056 goto bad;
81819f0f 1057
3ec09742
CL
1058 /* Success perform special debug activities for allocs */
1059 if (s->flags & SLAB_STORE_USER)
1060 set_track(s, object, TRACK_ALLOC, addr);
1061 trace(s, page, object, 1);
f7cb1933 1062 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1063 return 1;
3ec09742 1064
81819f0f
CL
1065bad:
1066 if (PageSlab(page)) {
1067 /*
1068 * If this is a slab page then lets do the best we can
1069 * to avoid issues in the future. Marking all objects
672bba3a 1070 * as used avoids touching the remaining objects.
81819f0f 1071 */
24922684 1072 slab_fix(s, "Marking all objects used");
39b26464 1073 page->inuse = page->objects;
a973e9dd 1074 page->freelist = NULL;
81819f0f
CL
1075 }
1076 return 0;
1077}
1078
1537066c
CL
1079static noinline int free_debug_processing(struct kmem_cache *s,
1080 struct page *page, void *object, unsigned long addr)
81819f0f 1081{
5c2e4bbb
CL
1082 unsigned long flags;
1083 int rc = 0;
1084
1085 local_irq_save(flags);
881db7fb
CL
1086 slab_lock(page);
1087
81819f0f
CL
1088 if (!check_slab(s, page))
1089 goto fail;
1090
1091 if (!check_valid_pointer(s, page, object)) {
70d71228 1092 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1093 goto fail;
1094 }
1095
1096 if (on_freelist(s, page, object)) {
24922684 1097 object_err(s, page, object, "Object already free");
81819f0f
CL
1098 goto fail;
1099 }
1100
f7cb1933 1101 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1102 goto out;
81819f0f
CL
1103
1104 if (unlikely(s != page->slab)) {
3adbefee 1105 if (!PageSlab(page)) {
70d71228
CL
1106 slab_err(s, page, "Attempt to free object(0x%p) "
1107 "outside of slab", object);
3adbefee 1108 } else if (!page->slab) {
81819f0f 1109 printk(KERN_ERR
70d71228 1110 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1111 object);
70d71228 1112 dump_stack();
06428780 1113 } else
24922684
CL
1114 object_err(s, page, object,
1115 "page slab pointer corrupt.");
81819f0f
CL
1116 goto fail;
1117 }
3ec09742 1118
3ec09742
CL
1119 if (s->flags & SLAB_STORE_USER)
1120 set_track(s, object, TRACK_FREE, addr);
1121 trace(s, page, object, 0);
f7cb1933 1122 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1123 rc = 1;
1124out:
881db7fb 1125 slab_unlock(page);
5c2e4bbb
CL
1126 local_irq_restore(flags);
1127 return rc;
3ec09742 1128
81819f0f 1129fail:
24922684 1130 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1131 goto out;
81819f0f
CL
1132}
1133
41ecc55b
CL
1134static int __init setup_slub_debug(char *str)
1135{
f0630fff
CL
1136 slub_debug = DEBUG_DEFAULT_FLAGS;
1137 if (*str++ != '=' || !*str)
1138 /*
1139 * No options specified. Switch on full debugging.
1140 */
1141 goto out;
1142
1143 if (*str == ',')
1144 /*
1145 * No options but restriction on slabs. This means full
1146 * debugging for slabs matching a pattern.
1147 */
1148 goto check_slabs;
1149
fa5ec8a1
DR
1150 if (tolower(*str) == 'o') {
1151 /*
1152 * Avoid enabling debugging on caches if its minimum order
1153 * would increase as a result.
1154 */
1155 disable_higher_order_debug = 1;
1156 goto out;
1157 }
1158
f0630fff
CL
1159 slub_debug = 0;
1160 if (*str == '-')
1161 /*
1162 * Switch off all debugging measures.
1163 */
1164 goto out;
1165
1166 /*
1167 * Determine which debug features should be switched on
1168 */
06428780 1169 for (; *str && *str != ','; str++) {
f0630fff
CL
1170 switch (tolower(*str)) {
1171 case 'f':
1172 slub_debug |= SLAB_DEBUG_FREE;
1173 break;
1174 case 'z':
1175 slub_debug |= SLAB_RED_ZONE;
1176 break;
1177 case 'p':
1178 slub_debug |= SLAB_POISON;
1179 break;
1180 case 'u':
1181 slub_debug |= SLAB_STORE_USER;
1182 break;
1183 case 't':
1184 slub_debug |= SLAB_TRACE;
1185 break;
4c13dd3b
DM
1186 case 'a':
1187 slub_debug |= SLAB_FAILSLAB;
1188 break;
f0630fff
CL
1189 default:
1190 printk(KERN_ERR "slub_debug option '%c' "
06428780 1191 "unknown. skipped\n", *str);
f0630fff 1192 }
41ecc55b
CL
1193 }
1194
f0630fff 1195check_slabs:
41ecc55b
CL
1196 if (*str == ',')
1197 slub_debug_slabs = str + 1;
f0630fff 1198out:
41ecc55b
CL
1199 return 1;
1200}
1201
1202__setup("slub_debug", setup_slub_debug);
1203
ba0268a8
CL
1204static unsigned long kmem_cache_flags(unsigned long objsize,
1205 unsigned long flags, const char *name,
51cc5068 1206 void (*ctor)(void *))
41ecc55b
CL
1207{
1208 /*
e153362a 1209 * Enable debugging if selected on the kernel commandline.
41ecc55b 1210 */
e153362a 1211 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1212 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1213 flags |= slub_debug;
ba0268a8
CL
1214
1215 return flags;
41ecc55b
CL
1216}
1217#else
3ec09742
CL
1218static inline void setup_object_debug(struct kmem_cache *s,
1219 struct page *page, void *object) {}
41ecc55b 1220
3ec09742 1221static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1222 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1223
3ec09742 1224static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1225 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1226
41ecc55b
CL
1227static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1228 { return 1; }
1229static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1230 void *object, u8 val) { return 1; }
5cc6eee8
CL
1231static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1232 struct page *page) {}
2cfb7455 1233static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1234static inline unsigned long kmem_cache_flags(unsigned long objsize,
1235 unsigned long flags, const char *name,
51cc5068 1236 void (*ctor)(void *))
ba0268a8
CL
1237{
1238 return flags;
1239}
41ecc55b 1240#define slub_debug 0
0f389ec6 1241
fdaa45e9
IM
1242#define disable_higher_order_debug 0
1243
0f389ec6
CL
1244static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1245 { return 0; }
26c02cf0
AB
1246static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1247 { return 0; }
205ab99d
CL
1248static inline void inc_slabs_node(struct kmem_cache *s, int node,
1249 int objects) {}
1250static inline void dec_slabs_node(struct kmem_cache *s, int node,
1251 int objects) {}
7d550c56
CL
1252
1253static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1254 { return 0; }
1255
1256static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1257 void *object) {}
1258
1259static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1260
ab4d5ed5 1261#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1262
81819f0f
CL
1263/*
1264 * Slab allocation and freeing
1265 */
65c3376a
CL
1266static inline struct page *alloc_slab_page(gfp_t flags, int node,
1267 struct kmem_cache_order_objects oo)
1268{
1269 int order = oo_order(oo);
1270
b1eeab67
VN
1271 flags |= __GFP_NOTRACK;
1272
2154a336 1273 if (node == NUMA_NO_NODE)
65c3376a
CL
1274 return alloc_pages(flags, order);
1275 else
6b65aaf3 1276 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1277}
1278
81819f0f
CL
1279static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1280{
06428780 1281 struct page *page;
834f3d11 1282 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1283 gfp_t alloc_gfp;
81819f0f 1284
7e0528da
CL
1285 flags &= gfp_allowed_mask;
1286
1287 if (flags & __GFP_WAIT)
1288 local_irq_enable();
1289
b7a49f0d 1290 flags |= s->allocflags;
e12ba74d 1291
ba52270d
PE
1292 /*
1293 * Let the initial higher-order allocation fail under memory pressure
1294 * so we fall-back to the minimum order allocation.
1295 */
1296 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1297
1298 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1299 if (unlikely(!page)) {
1300 oo = s->min;
1301 /*
1302 * Allocation may have failed due to fragmentation.
1303 * Try a lower order alloc if possible
1304 */
1305 page = alloc_slab_page(flags, node, oo);
81819f0f 1306
7e0528da
CL
1307 if (page)
1308 stat(s, ORDER_FALLBACK);
65c3376a 1309 }
5a896d9e 1310
7e0528da
CL
1311 if (flags & __GFP_WAIT)
1312 local_irq_disable();
1313
1314 if (!page)
1315 return NULL;
1316
5a896d9e 1317 if (kmemcheck_enabled
5086c389 1318 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1319 int pages = 1 << oo_order(oo);
1320
1321 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1322
1323 /*
1324 * Objects from caches that have a constructor don't get
1325 * cleared when they're allocated, so we need to do it here.
1326 */
1327 if (s->ctor)
1328 kmemcheck_mark_uninitialized_pages(page, pages);
1329 else
1330 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1331 }
1332
834f3d11 1333 page->objects = oo_objects(oo);
81819f0f
CL
1334 mod_zone_page_state(page_zone(page),
1335 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1336 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1337 1 << oo_order(oo));
81819f0f
CL
1338
1339 return page;
1340}
1341
1342static void setup_object(struct kmem_cache *s, struct page *page,
1343 void *object)
1344{
3ec09742 1345 setup_object_debug(s, page, object);
4f104934 1346 if (unlikely(s->ctor))
51cc5068 1347 s->ctor(object);
81819f0f
CL
1348}
1349
1350static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1351{
1352 struct page *page;
81819f0f 1353 void *start;
81819f0f
CL
1354 void *last;
1355 void *p;
1356
6cb06229 1357 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1358
6cb06229
CL
1359 page = allocate_slab(s,
1360 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1361 if (!page)
1362 goto out;
1363
205ab99d 1364 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1365 page->slab = s;
1366 page->flags |= 1 << PG_slab;
81819f0f
CL
1367
1368 start = page_address(page);
81819f0f
CL
1369
1370 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1371 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1372
1373 last = start;
224a88be 1374 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1375 setup_object(s, page, last);
1376 set_freepointer(s, last, p);
1377 last = p;
1378 }
1379 setup_object(s, page, last);
a973e9dd 1380 set_freepointer(s, last, NULL);
81819f0f
CL
1381
1382 page->freelist = start;
e6e82ea1 1383 page->inuse = page->objects;
8cb0a506 1384 page->frozen = 1;
81819f0f 1385out:
81819f0f
CL
1386 return page;
1387}
1388
1389static void __free_slab(struct kmem_cache *s, struct page *page)
1390{
834f3d11
CL
1391 int order = compound_order(page);
1392 int pages = 1 << order;
81819f0f 1393
af537b0a 1394 if (kmem_cache_debug(s)) {
81819f0f
CL
1395 void *p;
1396
1397 slab_pad_check(s, page);
224a88be
CL
1398 for_each_object(p, s, page_address(page),
1399 page->objects)
f7cb1933 1400 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1401 }
1402
b1eeab67 1403 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1404
81819f0f
CL
1405 mod_zone_page_state(page_zone(page),
1406 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1407 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1408 -pages);
81819f0f 1409
49bd5221
CL
1410 __ClearPageSlab(page);
1411 reset_page_mapcount(page);
1eb5ac64
NP
1412 if (current->reclaim_state)
1413 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1414 __free_pages(page, order);
81819f0f
CL
1415}
1416
da9a638c
LJ
1417#define need_reserve_slab_rcu \
1418 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1419
81819f0f
CL
1420static void rcu_free_slab(struct rcu_head *h)
1421{
1422 struct page *page;
1423
da9a638c
LJ
1424 if (need_reserve_slab_rcu)
1425 page = virt_to_head_page(h);
1426 else
1427 page = container_of((struct list_head *)h, struct page, lru);
1428
81819f0f
CL
1429 __free_slab(page->slab, page);
1430}
1431
1432static void free_slab(struct kmem_cache *s, struct page *page)
1433{
1434 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1435 struct rcu_head *head;
1436
1437 if (need_reserve_slab_rcu) {
1438 int order = compound_order(page);
1439 int offset = (PAGE_SIZE << order) - s->reserved;
1440
1441 VM_BUG_ON(s->reserved != sizeof(*head));
1442 head = page_address(page) + offset;
1443 } else {
1444 /*
1445 * RCU free overloads the RCU head over the LRU
1446 */
1447 head = (void *)&page->lru;
1448 }
81819f0f
CL
1449
1450 call_rcu(head, rcu_free_slab);
1451 } else
1452 __free_slab(s, page);
1453}
1454
1455static void discard_slab(struct kmem_cache *s, struct page *page)
1456{
205ab99d 1457 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1458 free_slab(s, page);
1459}
1460
1461/*
5cc6eee8
CL
1462 * Management of partially allocated slabs.
1463 *
1464 * list_lock must be held.
81819f0f 1465 */
5cc6eee8 1466static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1467 struct page *page, int tail)
81819f0f 1468{
e95eed57 1469 n->nr_partial++;
136333d1 1470 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1471 list_add_tail(&page->lru, &n->partial);
1472 else
1473 list_add(&page->lru, &n->partial);
81819f0f
CL
1474}
1475
5cc6eee8
CL
1476/*
1477 * list_lock must be held.
1478 */
1479static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1480 struct page *page)
1481{
1482 list_del(&page->lru);
1483 n->nr_partial--;
1484}
1485
81819f0f 1486/*
5cc6eee8
CL
1487 * Lock slab, remove from the partial list and put the object into the
1488 * per cpu freelist.
81819f0f 1489 *
497b66f2
CL
1490 * Returns a list of objects or NULL if it fails.
1491 *
672bba3a 1492 * Must hold list_lock.
81819f0f 1493 */
497b66f2 1494static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1495 struct kmem_cache_node *n, struct page *page,
49e22585 1496 int mode)
81819f0f 1497{
2cfb7455
CL
1498 void *freelist;
1499 unsigned long counters;
1500 struct page new;
1501
2cfb7455
CL
1502 /*
1503 * Zap the freelist and set the frozen bit.
1504 * The old freelist is the list of objects for the
1505 * per cpu allocation list.
1506 */
1507 do {
1508 freelist = page->freelist;
1509 counters = page->counters;
1510 new.counters = counters;
49e22585
CL
1511 if (mode)
1512 new.inuse = page->objects;
2cfb7455
CL
1513
1514 VM_BUG_ON(new.frozen);
1515 new.frozen = 1;
1516
1d07171c 1517 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1518 freelist, counters,
1519 NULL, new.counters,
1520 "lock and freeze"));
1521
1522 remove_partial(n, page);
49e22585 1523 return freelist;
81819f0f
CL
1524}
1525
49e22585
CL
1526static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1527
81819f0f 1528/*
672bba3a 1529 * Try to allocate a partial slab from a specific node.
81819f0f 1530 */
497b66f2 1531static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1532 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1533{
49e22585
CL
1534 struct page *page, *page2;
1535 void *object = NULL;
81819f0f
CL
1536
1537 /*
1538 * Racy check. If we mistakenly see no partial slabs then we
1539 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1540 * partial slab and there is none available then get_partials()
1541 * will return NULL.
81819f0f
CL
1542 */
1543 if (!n || !n->nr_partial)
1544 return NULL;
1545
1546 spin_lock(&n->list_lock);
49e22585 1547 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1548 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1549 int available;
1550
1551 if (!t)
1552 break;
1553
12d79634 1554 if (!object) {
49e22585
CL
1555 c->page = page;
1556 c->node = page_to_nid(page);
1557 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1558 object = t;
1559 available = page->objects - page->inuse;
1560 } else {
1561 page->freelist = t;
1562 available = put_cpu_partial(s, page, 0);
1563 }
1564 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1565 break;
1566
497b66f2 1567 }
81819f0f 1568 spin_unlock(&n->list_lock);
497b66f2 1569 return object;
81819f0f
CL
1570}
1571
1572/*
672bba3a 1573 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1574 */
acd19fd1
CL
1575static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1576 struct kmem_cache_cpu *c)
81819f0f
CL
1577{
1578#ifdef CONFIG_NUMA
1579 struct zonelist *zonelist;
dd1a239f 1580 struct zoneref *z;
54a6eb5c
MG
1581 struct zone *zone;
1582 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1583 void *object;
81819f0f
CL
1584
1585 /*
672bba3a
CL
1586 * The defrag ratio allows a configuration of the tradeoffs between
1587 * inter node defragmentation and node local allocations. A lower
1588 * defrag_ratio increases the tendency to do local allocations
1589 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1590 *
672bba3a
CL
1591 * If the defrag_ratio is set to 0 then kmalloc() always
1592 * returns node local objects. If the ratio is higher then kmalloc()
1593 * may return off node objects because partial slabs are obtained
1594 * from other nodes and filled up.
81819f0f 1595 *
6446faa2 1596 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1597 * defrag_ratio = 1000) then every (well almost) allocation will
1598 * first attempt to defrag slab caches on other nodes. This means
1599 * scanning over all nodes to look for partial slabs which may be
1600 * expensive if we do it every time we are trying to find a slab
1601 * with available objects.
81819f0f 1602 */
9824601e
CL
1603 if (!s->remote_node_defrag_ratio ||
1604 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1605 return NULL;
1606
c0ff7453 1607 get_mems_allowed();
0e88460d 1608 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1609 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1610 struct kmem_cache_node *n;
1611
54a6eb5c 1612 n = get_node(s, zone_to_nid(zone));
81819f0f 1613
54a6eb5c 1614 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1615 n->nr_partial > s->min_partial) {
497b66f2
CL
1616 object = get_partial_node(s, n, c);
1617 if (object) {
c0ff7453 1618 put_mems_allowed();
497b66f2 1619 return object;
c0ff7453 1620 }
81819f0f
CL
1621 }
1622 }
c0ff7453 1623 put_mems_allowed();
81819f0f
CL
1624#endif
1625 return NULL;
1626}
1627
1628/*
1629 * Get a partial page, lock it and return it.
1630 */
497b66f2 1631static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1632 struct kmem_cache_cpu *c)
81819f0f 1633{
497b66f2 1634 void *object;
2154a336 1635 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1636
497b66f2
CL
1637 object = get_partial_node(s, get_node(s, searchnode), c);
1638 if (object || node != NUMA_NO_NODE)
1639 return object;
81819f0f 1640
acd19fd1 1641 return get_any_partial(s, flags, c);
81819f0f
CL
1642}
1643
8a5ec0ba
CL
1644#ifdef CONFIG_PREEMPT
1645/*
1646 * Calculate the next globally unique transaction for disambiguiation
1647 * during cmpxchg. The transactions start with the cpu number and are then
1648 * incremented by CONFIG_NR_CPUS.
1649 */
1650#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1651#else
1652/*
1653 * No preemption supported therefore also no need to check for
1654 * different cpus.
1655 */
1656#define TID_STEP 1
1657#endif
1658
1659static inline unsigned long next_tid(unsigned long tid)
1660{
1661 return tid + TID_STEP;
1662}
1663
1664static inline unsigned int tid_to_cpu(unsigned long tid)
1665{
1666 return tid % TID_STEP;
1667}
1668
1669static inline unsigned long tid_to_event(unsigned long tid)
1670{
1671 return tid / TID_STEP;
1672}
1673
1674static inline unsigned int init_tid(int cpu)
1675{
1676 return cpu;
1677}
1678
1679static inline void note_cmpxchg_failure(const char *n,
1680 const struct kmem_cache *s, unsigned long tid)
1681{
1682#ifdef SLUB_DEBUG_CMPXCHG
1683 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1684
1685 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1686
1687#ifdef CONFIG_PREEMPT
1688 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1689 printk("due to cpu change %d -> %d\n",
1690 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1691 else
1692#endif
1693 if (tid_to_event(tid) != tid_to_event(actual_tid))
1694 printk("due to cpu running other code. Event %ld->%ld\n",
1695 tid_to_event(tid), tid_to_event(actual_tid));
1696 else
1697 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1698 actual_tid, tid, next_tid(tid));
1699#endif
4fdccdfb 1700 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1701}
1702
8a5ec0ba
CL
1703void init_kmem_cache_cpus(struct kmem_cache *s)
1704{
8a5ec0ba
CL
1705 int cpu;
1706
1707 for_each_possible_cpu(cpu)
1708 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1709}
2cfb7455 1710
81819f0f
CL
1711/*
1712 * Remove the cpu slab
1713 */
dfb4f096 1714static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1715{
2cfb7455 1716 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1717 struct page *page = c->page;
2cfb7455
CL
1718 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1719 int lock = 0;
1720 enum slab_modes l = M_NONE, m = M_NONE;
1721 void *freelist;
1722 void *nextfree;
136333d1 1723 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1724 struct page new;
1725 struct page old;
1726
1727 if (page->freelist) {
84e554e6 1728 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1729 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1730 }
1731
1732 c->tid = next_tid(c->tid);
1733 c->page = NULL;
1734 freelist = c->freelist;
1735 c->freelist = NULL;
1736
894b8788 1737 /*
2cfb7455
CL
1738 * Stage one: Free all available per cpu objects back
1739 * to the page freelist while it is still frozen. Leave the
1740 * last one.
1741 *
1742 * There is no need to take the list->lock because the page
1743 * is still frozen.
1744 */
1745 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1746 void *prior;
1747 unsigned long counters;
1748
1749 do {
1750 prior = page->freelist;
1751 counters = page->counters;
1752 set_freepointer(s, freelist, prior);
1753 new.counters = counters;
1754 new.inuse--;
1755 VM_BUG_ON(!new.frozen);
1756
1d07171c 1757 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1758 prior, counters,
1759 freelist, new.counters,
1760 "drain percpu freelist"));
1761
1762 freelist = nextfree;
1763 }
1764
894b8788 1765 /*
2cfb7455
CL
1766 * Stage two: Ensure that the page is unfrozen while the
1767 * list presence reflects the actual number of objects
1768 * during unfreeze.
1769 *
1770 * We setup the list membership and then perform a cmpxchg
1771 * with the count. If there is a mismatch then the page
1772 * is not unfrozen but the page is on the wrong list.
1773 *
1774 * Then we restart the process which may have to remove
1775 * the page from the list that we just put it on again
1776 * because the number of objects in the slab may have
1777 * changed.
894b8788 1778 */
2cfb7455 1779redo:
894b8788 1780
2cfb7455
CL
1781 old.freelist = page->freelist;
1782 old.counters = page->counters;
1783 VM_BUG_ON(!old.frozen);
7c2e132c 1784
2cfb7455
CL
1785 /* Determine target state of the slab */
1786 new.counters = old.counters;
1787 if (freelist) {
1788 new.inuse--;
1789 set_freepointer(s, freelist, old.freelist);
1790 new.freelist = freelist;
1791 } else
1792 new.freelist = old.freelist;
1793
1794 new.frozen = 0;
1795
81107188 1796 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1797 m = M_FREE;
1798 else if (new.freelist) {
1799 m = M_PARTIAL;
1800 if (!lock) {
1801 lock = 1;
1802 /*
1803 * Taking the spinlock removes the possiblity
1804 * that acquire_slab() will see a slab page that
1805 * is frozen
1806 */
1807 spin_lock(&n->list_lock);
1808 }
1809 } else {
1810 m = M_FULL;
1811 if (kmem_cache_debug(s) && !lock) {
1812 lock = 1;
1813 /*
1814 * This also ensures that the scanning of full
1815 * slabs from diagnostic functions will not see
1816 * any frozen slabs.
1817 */
1818 spin_lock(&n->list_lock);
1819 }
1820 }
1821
1822 if (l != m) {
1823
1824 if (l == M_PARTIAL)
1825
1826 remove_partial(n, page);
1827
1828 else if (l == M_FULL)
894b8788 1829
2cfb7455
CL
1830 remove_full(s, page);
1831
1832 if (m == M_PARTIAL) {
1833
1834 add_partial(n, page, tail);
136333d1 1835 stat(s, tail);
2cfb7455
CL
1836
1837 } else if (m == M_FULL) {
894b8788 1838
2cfb7455
CL
1839 stat(s, DEACTIVATE_FULL);
1840 add_full(s, n, page);
1841
1842 }
1843 }
1844
1845 l = m;
1d07171c 1846 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1847 old.freelist, old.counters,
1848 new.freelist, new.counters,
1849 "unfreezing slab"))
1850 goto redo;
1851
2cfb7455
CL
1852 if (lock)
1853 spin_unlock(&n->list_lock);
1854
1855 if (m == M_FREE) {
1856 stat(s, DEACTIVATE_EMPTY);
1857 discard_slab(s, page);
1858 stat(s, FREE_SLAB);
894b8788 1859 }
81819f0f
CL
1860}
1861
49e22585
CL
1862/* Unfreeze all the cpu partial slabs */
1863static void unfreeze_partials(struct kmem_cache *s)
1864{
1865 struct kmem_cache_node *n = NULL;
1866 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1867 struct page *page, *discard_page = NULL;
49e22585
CL
1868
1869 while ((page = c->partial)) {
1870 enum slab_modes { M_PARTIAL, M_FREE };
1871 enum slab_modes l, m;
1872 struct page new;
1873 struct page old;
1874
1875 c->partial = page->next;
1876 l = M_FREE;
1877
1878 do {
1879
1880 old.freelist = page->freelist;
1881 old.counters = page->counters;
1882 VM_BUG_ON(!old.frozen);
1883
1884 new.counters = old.counters;
1885 new.freelist = old.freelist;
1886
1887 new.frozen = 0;
1888
dcc3be6a 1889 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
49e22585
CL
1890 m = M_FREE;
1891 else {
1892 struct kmem_cache_node *n2 = get_node(s,
1893 page_to_nid(page));
1894
1895 m = M_PARTIAL;
1896 if (n != n2) {
1897 if (n)
1898 spin_unlock(&n->list_lock);
1899
1900 n = n2;
1901 spin_lock(&n->list_lock);
1902 }
1903 }
1904
1905 if (l != m) {
4c493a5a 1906 if (l == M_PARTIAL) {
49e22585 1907 remove_partial(n, page);
4c493a5a
SL
1908 stat(s, FREE_REMOVE_PARTIAL);
1909 } else {
f64ae042
SL
1910 add_partial(n, page,
1911 DEACTIVATE_TO_TAIL);
4c493a5a
SL
1912 stat(s, FREE_ADD_PARTIAL);
1913 }
49e22585
CL
1914
1915 l = m;
1916 }
1917
1918 } while (!cmpxchg_double_slab(s, page,
1919 old.freelist, old.counters,
1920 new.freelist, new.counters,
1921 "unfreezing slab"));
1922
1923 if (m == M_FREE) {
9ada1934
SL
1924 page->next = discard_page;
1925 discard_page = page;
49e22585
CL
1926 }
1927 }
1928
1929 if (n)
1930 spin_unlock(&n->list_lock);
9ada1934
SL
1931
1932 while (discard_page) {
1933 page = discard_page;
1934 discard_page = discard_page->next;
1935
1936 stat(s, DEACTIVATE_EMPTY);
1937 discard_slab(s, page);
1938 stat(s, FREE_SLAB);
1939 }
49e22585
CL
1940}
1941
1942/*
1943 * Put a page that was just frozen (in __slab_free) into a partial page
1944 * slot if available. This is done without interrupts disabled and without
1945 * preemption disabled. The cmpxchg is racy and may put the partial page
1946 * onto a random cpus partial slot.
1947 *
1948 * If we did not find a slot then simply move all the partials to the
1949 * per node partial list.
1950 */
1951int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1952{
1953 struct page *oldpage;
1954 int pages;
1955 int pobjects;
1956
1957 do {
1958 pages = 0;
1959 pobjects = 0;
1960 oldpage = this_cpu_read(s->cpu_slab->partial);
1961
1962 if (oldpage) {
1963 pobjects = oldpage->pobjects;
1964 pages = oldpage->pages;
1965 if (drain && pobjects > s->cpu_partial) {
1966 unsigned long flags;
1967 /*
1968 * partial array is full. Move the existing
1969 * set to the per node partial list.
1970 */
1971 local_irq_save(flags);
1972 unfreeze_partials(s);
1973 local_irq_restore(flags);
1974 pobjects = 0;
1975 pages = 0;
1976 }
1977 }
1978
1979 pages++;
1980 pobjects += page->objects - page->inuse;
1981
1982 page->pages = pages;
1983 page->pobjects = pobjects;
1984 page->next = oldpage;
1985
933393f5 1986 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1987 stat(s, CPU_PARTIAL_FREE);
1988 return pobjects;
1989}
1990
dfb4f096 1991static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1992{
84e554e6 1993 stat(s, CPUSLAB_FLUSH);
dfb4f096 1994 deactivate_slab(s, c);
81819f0f
CL
1995}
1996
1997/*
1998 * Flush cpu slab.
6446faa2 1999 *
81819f0f
CL
2000 * Called from IPI handler with interrupts disabled.
2001 */
0c710013 2002static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2003{
9dfc6e68 2004 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2005
49e22585
CL
2006 if (likely(c)) {
2007 if (c->page)
2008 flush_slab(s, c);
2009
2010 unfreeze_partials(s);
2011 }
81819f0f
CL
2012}
2013
2014static void flush_cpu_slab(void *d)
2015{
2016 struct kmem_cache *s = d;
81819f0f 2017
dfb4f096 2018 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2019}
2020
2021static void flush_all(struct kmem_cache *s)
2022{
15c8b6c1 2023 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
2024}
2025
dfb4f096
CL
2026/*
2027 * Check if the objects in a per cpu structure fit numa
2028 * locality expectations.
2029 */
2030static inline int node_match(struct kmem_cache_cpu *c, int node)
2031{
2032#ifdef CONFIG_NUMA
2154a336 2033 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
2034 return 0;
2035#endif
2036 return 1;
2037}
2038
781b2ba6
PE
2039static int count_free(struct page *page)
2040{
2041 return page->objects - page->inuse;
2042}
2043
2044static unsigned long count_partial(struct kmem_cache_node *n,
2045 int (*get_count)(struct page *))
2046{
2047 unsigned long flags;
2048 unsigned long x = 0;
2049 struct page *page;
2050
2051 spin_lock_irqsave(&n->list_lock, flags);
2052 list_for_each_entry(page, &n->partial, lru)
2053 x += get_count(page);
2054 spin_unlock_irqrestore(&n->list_lock, flags);
2055 return x;
2056}
2057
26c02cf0
AB
2058static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2059{
2060#ifdef CONFIG_SLUB_DEBUG
2061 return atomic_long_read(&n->total_objects);
2062#else
2063 return 0;
2064#endif
2065}
2066
781b2ba6
PE
2067static noinline void
2068slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2069{
2070 int node;
2071
2072 printk(KERN_WARNING
2073 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2074 nid, gfpflags);
2075 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2076 "default order: %d, min order: %d\n", s->name, s->objsize,
2077 s->size, oo_order(s->oo), oo_order(s->min));
2078
fa5ec8a1
DR
2079 if (oo_order(s->min) > get_order(s->objsize))
2080 printk(KERN_WARNING " %s debugging increased min order, use "
2081 "slub_debug=O to disable.\n", s->name);
2082
781b2ba6
PE
2083 for_each_online_node(node) {
2084 struct kmem_cache_node *n = get_node(s, node);
2085 unsigned long nr_slabs;
2086 unsigned long nr_objs;
2087 unsigned long nr_free;
2088
2089 if (!n)
2090 continue;
2091
26c02cf0
AB
2092 nr_free = count_partial(n, count_free);
2093 nr_slabs = node_nr_slabs(n);
2094 nr_objs = node_nr_objs(n);
781b2ba6
PE
2095
2096 printk(KERN_WARNING
2097 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2098 node, nr_slabs, nr_objs, nr_free);
2099 }
2100}
2101
497b66f2
CL
2102static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2103 int node, struct kmem_cache_cpu **pc)
2104{
2105 void *object;
2106 struct kmem_cache_cpu *c;
2107 struct page *page = new_slab(s, flags, node);
2108
2109 if (page) {
2110 c = __this_cpu_ptr(s->cpu_slab);
2111 if (c->page)
2112 flush_slab(s, c);
2113
2114 /*
2115 * No other reference to the page yet so we can
2116 * muck around with it freely without cmpxchg
2117 */
2118 object = page->freelist;
2119 page->freelist = NULL;
2120
2121 stat(s, ALLOC_SLAB);
2122 c->node = page_to_nid(page);
2123 c->page = page;
2124 *pc = c;
2125 } else
2126 object = NULL;
2127
2128 return object;
2129}
2130
213eeb9f
CL
2131/*
2132 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2133 * or deactivate the page.
2134 *
2135 * The page is still frozen if the return value is not NULL.
2136 *
2137 * If this function returns NULL then the page has been unfrozen.
2138 */
2139static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2140{
2141 struct page new;
2142 unsigned long counters;
2143 void *freelist;
2144
2145 do {
2146 freelist = page->freelist;
2147 counters = page->counters;
2148 new.counters = counters;
2149 VM_BUG_ON(!new.frozen);
2150
2151 new.inuse = page->objects;
2152 new.frozen = freelist != NULL;
2153
2154 } while (!cmpxchg_double_slab(s, page,
2155 freelist, counters,
2156 NULL, new.counters,
2157 "get_freelist"));
2158
2159 return freelist;
2160}
2161
81819f0f 2162/*
894b8788
CL
2163 * Slow path. The lockless freelist is empty or we need to perform
2164 * debugging duties.
2165 *
894b8788
CL
2166 * Processing is still very fast if new objects have been freed to the
2167 * regular freelist. In that case we simply take over the regular freelist
2168 * as the lockless freelist and zap the regular freelist.
81819f0f 2169 *
894b8788
CL
2170 * If that is not working then we fall back to the partial lists. We take the
2171 * first element of the freelist as the object to allocate now and move the
2172 * rest of the freelist to the lockless freelist.
81819f0f 2173 *
894b8788 2174 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2175 * we need to allocate a new slab. This is the slowest path since it involves
2176 * a call to the page allocator and the setup of a new slab.
81819f0f 2177 */
ce71e27c
EGM
2178static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2179 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2180{
81819f0f 2181 void **object;
8a5ec0ba
CL
2182 unsigned long flags;
2183
2184 local_irq_save(flags);
2185#ifdef CONFIG_PREEMPT
2186 /*
2187 * We may have been preempted and rescheduled on a different
2188 * cpu before disabling interrupts. Need to reload cpu area
2189 * pointer.
2190 */
2191 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2192#endif
81819f0f 2193
497b66f2 2194 if (!c->page)
81819f0f 2195 goto new_slab;
49e22585 2196redo:
fc59c053 2197 if (unlikely(!node_match(c, node))) {
e36a2652 2198 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2199 deactivate_slab(s, c);
2200 goto new_slab;
2201 }
6446faa2 2202
73736e03
ED
2203 /* must check again c->freelist in case of cpu migration or IRQ */
2204 object = c->freelist;
2205 if (object)
2206 goto load_freelist;
03e404af 2207
2cfb7455 2208 stat(s, ALLOC_SLOWPATH);
03e404af 2209
213eeb9f 2210 object = get_freelist(s, c->page);
6446faa2 2211
49e22585 2212 if (!object) {
03e404af
CL
2213 c->page = NULL;
2214 stat(s, DEACTIVATE_BYPASS);
fc59c053 2215 goto new_slab;
03e404af 2216 }
6446faa2 2217
84e554e6 2218 stat(s, ALLOC_REFILL);
6446faa2 2219
894b8788 2220load_freelist:
ff12059e 2221 c->freelist = get_freepointer(s, object);
8a5ec0ba
CL
2222 c->tid = next_tid(c->tid);
2223 local_irq_restore(flags);
81819f0f
CL
2224 return object;
2225
81819f0f 2226new_slab:
2cfb7455 2227
49e22585
CL
2228 if (c->partial) {
2229 c->page = c->partial;
2230 c->partial = c->page->next;
2231 c->node = page_to_nid(c->page);
2232 stat(s, CPU_PARTIAL_ALLOC);
2233 c->freelist = NULL;
2234 goto redo;
81819f0f
CL
2235 }
2236
49e22585 2237 /* Then do expensive stuff like retrieving pages from the partial lists */
497b66f2 2238 object = get_partial(s, gfpflags, node, c);
b811c202 2239
497b66f2 2240 if (unlikely(!object)) {
01ad8a7b 2241
497b66f2 2242 object = new_slab_objects(s, gfpflags, node, &c);
2cfb7455 2243
497b66f2
CL
2244 if (unlikely(!object)) {
2245 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2246 slab_out_of_memory(s, gfpflags, node);
9e577e8b 2247
497b66f2
CL
2248 local_irq_restore(flags);
2249 return NULL;
2250 }
81819f0f 2251 }
2cfb7455 2252
497b66f2 2253 if (likely(!kmem_cache_debug(s)))
4b6f0750 2254 goto load_freelist;
2cfb7455 2255
497b66f2
CL
2256 /* Only entered in the debug case */
2257 if (!alloc_debug_processing(s, c->page, object, addr))
2258 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2259
2cfb7455 2260 c->freelist = get_freepointer(s, object);
442b06bc 2261 deactivate_slab(s, c);
15b7c514 2262 c->node = NUMA_NO_NODE;
a71ae47a
CL
2263 local_irq_restore(flags);
2264 return object;
894b8788
CL
2265}
2266
2267/*
2268 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2269 * have the fastpath folded into their functions. So no function call
2270 * overhead for requests that can be satisfied on the fastpath.
2271 *
2272 * The fastpath works by first checking if the lockless freelist can be used.
2273 * If not then __slab_alloc is called for slow processing.
2274 *
2275 * Otherwise we can simply pick the next object from the lockless free list.
2276 */
06428780 2277static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2278 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2279{
894b8788 2280 void **object;
dfb4f096 2281 struct kmem_cache_cpu *c;
8a5ec0ba 2282 unsigned long tid;
1f84260c 2283
c016b0bd 2284 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2285 return NULL;
1f84260c 2286
8a5ec0ba 2287redo:
8a5ec0ba
CL
2288
2289 /*
2290 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2291 * enabled. We may switch back and forth between cpus while
2292 * reading from one cpu area. That does not matter as long
2293 * as we end up on the original cpu again when doing the cmpxchg.
2294 */
9dfc6e68 2295 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2296
8a5ec0ba
CL
2297 /*
2298 * The transaction ids are globally unique per cpu and per operation on
2299 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2300 * occurs on the right processor and that there was no operation on the
2301 * linked list in between.
2302 */
2303 tid = c->tid;
2304 barrier();
8a5ec0ba 2305
9dfc6e68 2306 object = c->freelist;
9dfc6e68 2307 if (unlikely(!object || !node_match(c, node)))
894b8788 2308
dfb4f096 2309 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2310
2311 else {
8a5ec0ba 2312 /*
25985edc 2313 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2314 * operation and if we are on the right processor.
2315 *
2316 * The cmpxchg does the following atomically (without lock semantics!)
2317 * 1. Relocate first pointer to the current per cpu area.
2318 * 2. Verify that tid and freelist have not been changed
2319 * 3. If they were not changed replace tid and freelist
2320 *
2321 * Since this is without lock semantics the protection is only against
2322 * code executing on this cpu *not* from access by other cpus.
2323 */
933393f5 2324 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2325 s->cpu_slab->freelist, s->cpu_slab->tid,
2326 object, tid,
1393d9a1 2327 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
2328
2329 note_cmpxchg_failure("slab_alloc", s, tid);
2330 goto redo;
2331 }
84e554e6 2332 stat(s, ALLOC_FASTPATH);
894b8788 2333 }
8a5ec0ba 2334
74e2134f 2335 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2336 memset(object, 0, s->objsize);
d07dbea4 2337
c016b0bd 2338 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2339
894b8788 2340 return object;
81819f0f
CL
2341}
2342
2343void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2344{
2154a336 2345 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2346
ca2b84cb 2347 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2348
2349 return ret;
81819f0f
CL
2350}
2351EXPORT_SYMBOL(kmem_cache_alloc);
2352
0f24f128 2353#ifdef CONFIG_TRACING
4a92379b
RK
2354void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2355{
2356 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2357 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2358 return ret;
2359}
2360EXPORT_SYMBOL(kmem_cache_alloc_trace);
2361
2362void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2363{
4a92379b
RK
2364 void *ret = kmalloc_order(size, flags, order);
2365 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2366 return ret;
5b882be4 2367}
4a92379b 2368EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2369#endif
2370
81819f0f
CL
2371#ifdef CONFIG_NUMA
2372void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2373{
5b882be4
EGM
2374 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2375
ca2b84cb
EGM
2376 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2377 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2378
2379 return ret;
81819f0f
CL
2380}
2381EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2382
0f24f128 2383#ifdef CONFIG_TRACING
4a92379b 2384void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2385 gfp_t gfpflags,
4a92379b 2386 int node, size_t size)
5b882be4 2387{
4a92379b
RK
2388 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2389
2390 trace_kmalloc_node(_RET_IP_, ret,
2391 size, s->size, gfpflags, node);
2392 return ret;
5b882be4 2393}
4a92379b 2394EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2395#endif
5d1f57e4 2396#endif
5b882be4 2397
81819f0f 2398/*
894b8788
CL
2399 * Slow patch handling. This may still be called frequently since objects
2400 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2401 *
894b8788
CL
2402 * So we still attempt to reduce cache line usage. Just take the slab
2403 * lock and free the item. If there is no additional partial page
2404 * handling required then we can return immediately.
81819f0f 2405 */
894b8788 2406static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2407 void *x, unsigned long addr)
81819f0f
CL
2408{
2409 void *prior;
2410 void **object = (void *)x;
2cfb7455
CL
2411 int was_frozen;
2412 int inuse;
2413 struct page new;
2414 unsigned long counters;
2415 struct kmem_cache_node *n = NULL;
61728d1e 2416 unsigned long uninitialized_var(flags);
81819f0f 2417
8a5ec0ba 2418 stat(s, FREE_SLOWPATH);
81819f0f 2419
8dc16c6c 2420 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2421 return;
6446faa2 2422
2cfb7455
CL
2423 do {
2424 prior = page->freelist;
2425 counters = page->counters;
2426 set_freepointer(s, object, prior);
2427 new.counters = counters;
2428 was_frozen = new.frozen;
2429 new.inuse--;
2430 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2431
2432 if (!kmem_cache_debug(s) && !prior)
2433
2434 /*
2435 * Slab was on no list before and will be partially empty
2436 * We can defer the list move and instead freeze it.
2437 */
2438 new.frozen = 1;
2439
2440 else { /* Needs to be taken off a list */
2441
2442 n = get_node(s, page_to_nid(page));
2443 /*
2444 * Speculatively acquire the list_lock.
2445 * If the cmpxchg does not succeed then we may
2446 * drop the list_lock without any processing.
2447 *
2448 * Otherwise the list_lock will synchronize with
2449 * other processors updating the list of slabs.
2450 */
2451 spin_lock_irqsave(&n->list_lock, flags);
2452
2453 }
2cfb7455
CL
2454 }
2455 inuse = new.inuse;
81819f0f 2456
2cfb7455
CL
2457 } while (!cmpxchg_double_slab(s, page,
2458 prior, counters,
2459 object, new.counters,
2460 "__slab_free"));
81819f0f 2461
2cfb7455 2462 if (likely(!n)) {
49e22585
CL
2463
2464 /*
2465 * If we just froze the page then put it onto the
2466 * per cpu partial list.
2467 */
2468 if (new.frozen && !was_frozen)
2469 put_cpu_partial(s, page, 1);
2470
2471 /*
2cfb7455
CL
2472 * The list lock was not taken therefore no list
2473 * activity can be necessary.
2474 */
2475 if (was_frozen)
2476 stat(s, FREE_FROZEN);
80f08c19 2477 return;
2cfb7455 2478 }
81819f0f
CL
2479
2480 /*
2cfb7455
CL
2481 * was_frozen may have been set after we acquired the list_lock in
2482 * an earlier loop. So we need to check it here again.
81819f0f 2483 */
2cfb7455
CL
2484 if (was_frozen)
2485 stat(s, FREE_FROZEN);
2486 else {
2487 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2488 goto slab_empty;
81819f0f 2489
2cfb7455
CL
2490 /*
2491 * Objects left in the slab. If it was not on the partial list before
2492 * then add it.
2493 */
2494 if (unlikely(!prior)) {
2495 remove_full(s, page);
136333d1 2496 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2497 stat(s, FREE_ADD_PARTIAL);
2498 }
8ff12cfc 2499 }
80f08c19 2500 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2501 return;
2502
2503slab_empty:
a973e9dd 2504 if (prior) {
81819f0f 2505 /*
6fbabb20 2506 * Slab on the partial list.
81819f0f 2507 */
5cc6eee8 2508 remove_partial(n, page);
84e554e6 2509 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2510 } else
2511 /* Slab must be on the full list */
2512 remove_full(s, page);
2cfb7455 2513
80f08c19 2514 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2515 stat(s, FREE_SLAB);
81819f0f 2516 discard_slab(s, page);
81819f0f
CL
2517}
2518
894b8788
CL
2519/*
2520 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2521 * can perform fastpath freeing without additional function calls.
2522 *
2523 * The fastpath is only possible if we are freeing to the current cpu slab
2524 * of this processor. This typically the case if we have just allocated
2525 * the item before.
2526 *
2527 * If fastpath is not possible then fall back to __slab_free where we deal
2528 * with all sorts of special processing.
2529 */
06428780 2530static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2531 struct page *page, void *x, unsigned long addr)
894b8788
CL
2532{
2533 void **object = (void *)x;
dfb4f096 2534 struct kmem_cache_cpu *c;
8a5ec0ba 2535 unsigned long tid;
1f84260c 2536
c016b0bd
CL
2537 slab_free_hook(s, x);
2538
8a5ec0ba
CL
2539redo:
2540 /*
2541 * Determine the currently cpus per cpu slab.
2542 * The cpu may change afterward. However that does not matter since
2543 * data is retrieved via this pointer. If we are on the same cpu
2544 * during the cmpxchg then the free will succedd.
2545 */
9dfc6e68 2546 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2547
8a5ec0ba
CL
2548 tid = c->tid;
2549 barrier();
c016b0bd 2550
442b06bc 2551 if (likely(page == c->page)) {
ff12059e 2552 set_freepointer(s, object, c->freelist);
8a5ec0ba 2553
933393f5 2554 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2555 s->cpu_slab->freelist, s->cpu_slab->tid,
2556 c->freelist, tid,
2557 object, next_tid(tid)))) {
2558
2559 note_cmpxchg_failure("slab_free", s, tid);
2560 goto redo;
2561 }
84e554e6 2562 stat(s, FREE_FASTPATH);
894b8788 2563 } else
ff12059e 2564 __slab_free(s, page, x, addr);
894b8788 2565
894b8788
CL
2566}
2567
81819f0f
CL
2568void kmem_cache_free(struct kmem_cache *s, void *x)
2569{
77c5e2d0 2570 struct page *page;
81819f0f 2571
b49af68f 2572 page = virt_to_head_page(x);
81819f0f 2573
ce71e27c 2574 slab_free(s, page, x, _RET_IP_);
5b882be4 2575
ca2b84cb 2576 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2577}
2578EXPORT_SYMBOL(kmem_cache_free);
2579
81819f0f 2580/*
672bba3a
CL
2581 * Object placement in a slab is made very easy because we always start at
2582 * offset 0. If we tune the size of the object to the alignment then we can
2583 * get the required alignment by putting one properly sized object after
2584 * another.
81819f0f
CL
2585 *
2586 * Notice that the allocation order determines the sizes of the per cpu
2587 * caches. Each processor has always one slab available for allocations.
2588 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2589 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2590 * locking overhead.
81819f0f
CL
2591 */
2592
2593/*
2594 * Mininum / Maximum order of slab pages. This influences locking overhead
2595 * and slab fragmentation. A higher order reduces the number of partial slabs
2596 * and increases the number of allocations possible without having to
2597 * take the list_lock.
2598 */
2599static int slub_min_order;
114e9e89 2600static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2601static int slub_min_objects;
81819f0f
CL
2602
2603/*
2604 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2605 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2606 */
2607static int slub_nomerge;
2608
81819f0f
CL
2609/*
2610 * Calculate the order of allocation given an slab object size.
2611 *
672bba3a
CL
2612 * The order of allocation has significant impact on performance and other
2613 * system components. Generally order 0 allocations should be preferred since
2614 * order 0 does not cause fragmentation in the page allocator. Larger objects
2615 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2616 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2617 * would be wasted.
2618 *
2619 * In order to reach satisfactory performance we must ensure that a minimum
2620 * number of objects is in one slab. Otherwise we may generate too much
2621 * activity on the partial lists which requires taking the list_lock. This is
2622 * less a concern for large slabs though which are rarely used.
81819f0f 2623 *
672bba3a
CL
2624 * slub_max_order specifies the order where we begin to stop considering the
2625 * number of objects in a slab as critical. If we reach slub_max_order then
2626 * we try to keep the page order as low as possible. So we accept more waste
2627 * of space in favor of a small page order.
81819f0f 2628 *
672bba3a
CL
2629 * Higher order allocations also allow the placement of more objects in a
2630 * slab and thereby reduce object handling overhead. If the user has
2631 * requested a higher mininum order then we start with that one instead of
2632 * the smallest order which will fit the object.
81819f0f 2633 */
5e6d444e 2634static inline int slab_order(int size, int min_objects,
ab9a0f19 2635 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2636{
2637 int order;
2638 int rem;
6300ea75 2639 int min_order = slub_min_order;
81819f0f 2640
ab9a0f19 2641 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2642 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2643
6300ea75 2644 for (order = max(min_order,
5e6d444e
CL
2645 fls(min_objects * size - 1) - PAGE_SHIFT);
2646 order <= max_order; order++) {
81819f0f 2647
5e6d444e 2648 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2649
ab9a0f19 2650 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2651 continue;
2652
ab9a0f19 2653 rem = (slab_size - reserved) % size;
81819f0f 2654
5e6d444e 2655 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2656 break;
2657
2658 }
672bba3a 2659
81819f0f
CL
2660 return order;
2661}
2662
ab9a0f19 2663static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2664{
2665 int order;
2666 int min_objects;
2667 int fraction;
e8120ff1 2668 int max_objects;
5e6d444e
CL
2669
2670 /*
2671 * Attempt to find best configuration for a slab. This
2672 * works by first attempting to generate a layout with
2673 * the best configuration and backing off gradually.
2674 *
2675 * First we reduce the acceptable waste in a slab. Then
2676 * we reduce the minimum objects required in a slab.
2677 */
2678 min_objects = slub_min_objects;
9b2cd506
CL
2679 if (!min_objects)
2680 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2681 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2682 min_objects = min(min_objects, max_objects);
2683
5e6d444e 2684 while (min_objects > 1) {
c124f5b5 2685 fraction = 16;
5e6d444e
CL
2686 while (fraction >= 4) {
2687 order = slab_order(size, min_objects,
ab9a0f19 2688 slub_max_order, fraction, reserved);
5e6d444e
CL
2689 if (order <= slub_max_order)
2690 return order;
2691 fraction /= 2;
2692 }
5086c389 2693 min_objects--;
5e6d444e
CL
2694 }
2695
2696 /*
2697 * We were unable to place multiple objects in a slab. Now
2698 * lets see if we can place a single object there.
2699 */
ab9a0f19 2700 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2701 if (order <= slub_max_order)
2702 return order;
2703
2704 /*
2705 * Doh this slab cannot be placed using slub_max_order.
2706 */
ab9a0f19 2707 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2708 if (order < MAX_ORDER)
5e6d444e
CL
2709 return order;
2710 return -ENOSYS;
2711}
2712
81819f0f 2713/*
672bba3a 2714 * Figure out what the alignment of the objects will be.
81819f0f
CL
2715 */
2716static unsigned long calculate_alignment(unsigned long flags,
2717 unsigned long align, unsigned long size)
2718{
2719 /*
6446faa2
CL
2720 * If the user wants hardware cache aligned objects then follow that
2721 * suggestion if the object is sufficiently large.
81819f0f 2722 *
6446faa2
CL
2723 * The hardware cache alignment cannot override the specified
2724 * alignment though. If that is greater then use it.
81819f0f 2725 */
b6210386
NP
2726 if (flags & SLAB_HWCACHE_ALIGN) {
2727 unsigned long ralign = cache_line_size();
2728 while (size <= ralign / 2)
2729 ralign /= 2;
2730 align = max(align, ralign);
2731 }
81819f0f
CL
2732
2733 if (align < ARCH_SLAB_MINALIGN)
b6210386 2734 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2735
2736 return ALIGN(align, sizeof(void *));
2737}
2738
5595cffc
PE
2739static void
2740init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2741{
2742 n->nr_partial = 0;
81819f0f
CL
2743 spin_lock_init(&n->list_lock);
2744 INIT_LIST_HEAD(&n->partial);
8ab1372f 2745#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2746 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2747 atomic_long_set(&n->total_objects, 0);
643b1138 2748 INIT_LIST_HEAD(&n->full);
8ab1372f 2749#endif
81819f0f
CL
2750}
2751
55136592 2752static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2753{
6c182dc0
CL
2754 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2755 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2756
8a5ec0ba 2757 /*
d4d84fef
CM
2758 * Must align to double word boundary for the double cmpxchg
2759 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2760 */
d4d84fef
CM
2761 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2762 2 * sizeof(void *));
8a5ec0ba
CL
2763
2764 if (!s->cpu_slab)
2765 return 0;
2766
2767 init_kmem_cache_cpus(s);
4c93c355 2768
8a5ec0ba 2769 return 1;
4c93c355 2770}
4c93c355 2771
51df1142
CL
2772static struct kmem_cache *kmem_cache_node;
2773
81819f0f
CL
2774/*
2775 * No kmalloc_node yet so do it by hand. We know that this is the first
2776 * slab on the node for this slabcache. There are no concurrent accesses
2777 * possible.
2778 *
2779 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2780 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2781 * memory on a fresh node that has no slab structures yet.
81819f0f 2782 */
55136592 2783static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2784{
2785 struct page *page;
2786 struct kmem_cache_node *n;
2787
51df1142 2788 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2789
51df1142 2790 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2791
2792 BUG_ON(!page);
a2f92ee7
CL
2793 if (page_to_nid(page) != node) {
2794 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2795 "node %d\n", node);
2796 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2797 "in order to be able to continue\n");
2798 }
2799
81819f0f
CL
2800 n = page->freelist;
2801 BUG_ON(!n);
51df1142 2802 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2803 page->inuse = 1;
8cb0a506 2804 page->frozen = 0;
51df1142 2805 kmem_cache_node->node[node] = n;
8ab1372f 2806#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2807 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2808 init_tracking(kmem_cache_node, n);
8ab1372f 2809#endif
51df1142
CL
2810 init_kmem_cache_node(n, kmem_cache_node);
2811 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2812
136333d1 2813 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2814}
2815
2816static void free_kmem_cache_nodes(struct kmem_cache *s)
2817{
2818 int node;
2819
f64dc58c 2820 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2821 struct kmem_cache_node *n = s->node[node];
51df1142 2822
73367bd8 2823 if (n)
51df1142
CL
2824 kmem_cache_free(kmem_cache_node, n);
2825
81819f0f
CL
2826 s->node[node] = NULL;
2827 }
2828}
2829
55136592 2830static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2831{
2832 int node;
81819f0f 2833
f64dc58c 2834 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2835 struct kmem_cache_node *n;
2836
73367bd8 2837 if (slab_state == DOWN) {
55136592 2838 early_kmem_cache_node_alloc(node);
73367bd8
AD
2839 continue;
2840 }
51df1142 2841 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2842 GFP_KERNEL, node);
81819f0f 2843
73367bd8
AD
2844 if (!n) {
2845 free_kmem_cache_nodes(s);
2846 return 0;
81819f0f 2847 }
73367bd8 2848
81819f0f 2849 s->node[node] = n;
5595cffc 2850 init_kmem_cache_node(n, s);
81819f0f
CL
2851 }
2852 return 1;
2853}
81819f0f 2854
c0bdb232 2855static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2856{
2857 if (min < MIN_PARTIAL)
2858 min = MIN_PARTIAL;
2859 else if (min > MAX_PARTIAL)
2860 min = MAX_PARTIAL;
2861 s->min_partial = min;
2862}
2863
81819f0f
CL
2864/*
2865 * calculate_sizes() determines the order and the distribution of data within
2866 * a slab object.
2867 */
06b285dc 2868static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2869{
2870 unsigned long flags = s->flags;
2871 unsigned long size = s->objsize;
2872 unsigned long align = s->align;
834f3d11 2873 int order;
81819f0f 2874
d8b42bf5
CL
2875 /*
2876 * Round up object size to the next word boundary. We can only
2877 * place the free pointer at word boundaries and this determines
2878 * the possible location of the free pointer.
2879 */
2880 size = ALIGN(size, sizeof(void *));
2881
2882#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2883 /*
2884 * Determine if we can poison the object itself. If the user of
2885 * the slab may touch the object after free or before allocation
2886 * then we should never poison the object itself.
2887 */
2888 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2889 !s->ctor)
81819f0f
CL
2890 s->flags |= __OBJECT_POISON;
2891 else
2892 s->flags &= ~__OBJECT_POISON;
2893
81819f0f
CL
2894
2895 /*
672bba3a 2896 * If we are Redzoning then check if there is some space between the
81819f0f 2897 * end of the object and the free pointer. If not then add an
672bba3a 2898 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2899 */
2900 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2901 size += sizeof(void *);
41ecc55b 2902#endif
81819f0f
CL
2903
2904 /*
672bba3a
CL
2905 * With that we have determined the number of bytes in actual use
2906 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2907 */
2908 s->inuse = size;
2909
2910 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2911 s->ctor)) {
81819f0f
CL
2912 /*
2913 * Relocate free pointer after the object if it is not
2914 * permitted to overwrite the first word of the object on
2915 * kmem_cache_free.
2916 *
2917 * This is the case if we do RCU, have a constructor or
2918 * destructor or are poisoning the objects.
2919 */
2920 s->offset = size;
2921 size += sizeof(void *);
2922 }
2923
c12b3c62 2924#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2925 if (flags & SLAB_STORE_USER)
2926 /*
2927 * Need to store information about allocs and frees after
2928 * the object.
2929 */
2930 size += 2 * sizeof(struct track);
2931
be7b3fbc 2932 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2933 /*
2934 * Add some empty padding so that we can catch
2935 * overwrites from earlier objects rather than let
2936 * tracking information or the free pointer be
0211a9c8 2937 * corrupted if a user writes before the start
81819f0f
CL
2938 * of the object.
2939 */
2940 size += sizeof(void *);
41ecc55b 2941#endif
672bba3a 2942
81819f0f
CL
2943 /*
2944 * Determine the alignment based on various parameters that the
65c02d4c
CL
2945 * user specified and the dynamic determination of cache line size
2946 * on bootup.
81819f0f
CL
2947 */
2948 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2949 s->align = align;
81819f0f
CL
2950
2951 /*
2952 * SLUB stores one object immediately after another beginning from
2953 * offset 0. In order to align the objects we have to simply size
2954 * each object to conform to the alignment.
2955 */
2956 size = ALIGN(size, align);
2957 s->size = size;
06b285dc
CL
2958 if (forced_order >= 0)
2959 order = forced_order;
2960 else
ab9a0f19 2961 order = calculate_order(size, s->reserved);
81819f0f 2962
834f3d11 2963 if (order < 0)
81819f0f
CL
2964 return 0;
2965
b7a49f0d 2966 s->allocflags = 0;
834f3d11 2967 if (order)
b7a49f0d
CL
2968 s->allocflags |= __GFP_COMP;
2969
2970 if (s->flags & SLAB_CACHE_DMA)
2971 s->allocflags |= SLUB_DMA;
2972
2973 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2974 s->allocflags |= __GFP_RECLAIMABLE;
2975
81819f0f
CL
2976 /*
2977 * Determine the number of objects per slab
2978 */
ab9a0f19
LJ
2979 s->oo = oo_make(order, size, s->reserved);
2980 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2981 if (oo_objects(s->oo) > oo_objects(s->max))
2982 s->max = s->oo;
81819f0f 2983
834f3d11 2984 return !!oo_objects(s->oo);
81819f0f
CL
2985
2986}
2987
55136592 2988static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2989 const char *name, size_t size,
2990 size_t align, unsigned long flags,
51cc5068 2991 void (*ctor)(void *))
81819f0f
CL
2992{
2993 memset(s, 0, kmem_size);
2994 s->name = name;
2995 s->ctor = ctor;
81819f0f 2996 s->objsize = size;
81819f0f 2997 s->align = align;
ba0268a8 2998 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2999 s->reserved = 0;
81819f0f 3000
da9a638c
LJ
3001 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3002 s->reserved = sizeof(struct rcu_head);
81819f0f 3003
06b285dc 3004 if (!calculate_sizes(s, -1))
81819f0f 3005 goto error;
3de47213
DR
3006 if (disable_higher_order_debug) {
3007 /*
3008 * Disable debugging flags that store metadata if the min slab
3009 * order increased.
3010 */
3011 if (get_order(s->size) > get_order(s->objsize)) {
3012 s->flags &= ~DEBUG_METADATA_FLAGS;
3013 s->offset = 0;
3014 if (!calculate_sizes(s, -1))
3015 goto error;
3016 }
3017 }
81819f0f 3018
2565409f
HC
3019#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3020 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3021 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3022 /* Enable fast mode */
3023 s->flags |= __CMPXCHG_DOUBLE;
3024#endif
3025
3b89d7d8
DR
3026 /*
3027 * The larger the object size is, the more pages we want on the partial
3028 * list to avoid pounding the page allocator excessively.
3029 */
49e22585
CL
3030 set_min_partial(s, ilog2(s->size) / 2);
3031
3032 /*
3033 * cpu_partial determined the maximum number of objects kept in the
3034 * per cpu partial lists of a processor.
3035 *
3036 * Per cpu partial lists mainly contain slabs that just have one
3037 * object freed. If they are used for allocation then they can be
3038 * filled up again with minimal effort. The slab will never hit the
3039 * per node partial lists and therefore no locking will be required.
3040 *
3041 * This setting also determines
3042 *
3043 * A) The number of objects from per cpu partial slabs dumped to the
3044 * per node list when we reach the limit.
9f264904 3045 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3046 * per node list when we run out of per cpu objects. We only fetch 50%
3047 * to keep some capacity around for frees.
3048 */
8f1e33da
CL
3049 if (kmem_cache_debug(s))
3050 s->cpu_partial = 0;
3051 else if (s->size >= PAGE_SIZE)
49e22585
CL
3052 s->cpu_partial = 2;
3053 else if (s->size >= 1024)
3054 s->cpu_partial = 6;
3055 else if (s->size >= 256)
3056 s->cpu_partial = 13;
3057 else
3058 s->cpu_partial = 30;
3059
81819f0f
CL
3060 s->refcount = 1;
3061#ifdef CONFIG_NUMA
e2cb96b7 3062 s->remote_node_defrag_ratio = 1000;
81819f0f 3063#endif
55136592 3064 if (!init_kmem_cache_nodes(s))
dfb4f096 3065 goto error;
81819f0f 3066
55136592 3067 if (alloc_kmem_cache_cpus(s))
81819f0f 3068 return 1;
ff12059e 3069
4c93c355 3070 free_kmem_cache_nodes(s);
81819f0f
CL
3071error:
3072 if (flags & SLAB_PANIC)
3073 panic("Cannot create slab %s size=%lu realsize=%u "
3074 "order=%u offset=%u flags=%lx\n",
834f3d11 3075 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3076 s->offset, flags);
3077 return 0;
3078}
81819f0f 3079
81819f0f
CL
3080/*
3081 * Determine the size of a slab object
3082 */
3083unsigned int kmem_cache_size(struct kmem_cache *s)
3084{
3085 return s->objsize;
3086}
3087EXPORT_SYMBOL(kmem_cache_size);
3088
33b12c38
CL
3089static void list_slab_objects(struct kmem_cache *s, struct page *page,
3090 const char *text)
3091{
3092#ifdef CONFIG_SLUB_DEBUG
3093 void *addr = page_address(page);
3094 void *p;
a5dd5c11
NK
3095 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3096 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3097 if (!map)
3098 return;
33b12c38
CL
3099 slab_err(s, page, "%s", text);
3100 slab_lock(page);
33b12c38 3101
5f80b13a 3102 get_map(s, page, map);
33b12c38
CL
3103 for_each_object(p, s, addr, page->objects) {
3104
3105 if (!test_bit(slab_index(p, s, addr), map)) {
3106 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3107 p, p - addr);
3108 print_tracking(s, p);
3109 }
3110 }
3111 slab_unlock(page);
bbd7d57b 3112 kfree(map);
33b12c38
CL
3113#endif
3114}
3115
81819f0f 3116/*
599870b1 3117 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3118 * This is called from kmem_cache_close(). We must be the last thread
3119 * using the cache and therefore we do not need to lock anymore.
81819f0f 3120 */
599870b1 3121static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3122{
81819f0f
CL
3123 struct page *page, *h;
3124
33b12c38 3125 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3126 if (!page->inuse) {
5cc6eee8 3127 remove_partial(n, page);
81819f0f 3128 discard_slab(s, page);
33b12c38
CL
3129 } else {
3130 list_slab_objects(s, page,
3131 "Objects remaining on kmem_cache_close()");
599870b1 3132 }
33b12c38 3133 }
81819f0f
CL
3134}
3135
3136/*
672bba3a 3137 * Release all resources used by a slab cache.
81819f0f 3138 */
0c710013 3139static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3140{
3141 int node;
3142
3143 flush_all(s);
9dfc6e68 3144 free_percpu(s->cpu_slab);
81819f0f 3145 /* Attempt to free all objects */
f64dc58c 3146 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3147 struct kmem_cache_node *n = get_node(s, node);
3148
599870b1
CL
3149 free_partial(s, n);
3150 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3151 return 1;
3152 }
3153 free_kmem_cache_nodes(s);
3154 return 0;
3155}
3156
3157/*
3158 * Close a cache and release the kmem_cache structure
3159 * (must be used for caches created using kmem_cache_create)
3160 */
3161void kmem_cache_destroy(struct kmem_cache *s)
3162{
3163 down_write(&slub_lock);
3164 s->refcount--;
3165 if (!s->refcount) {
3166 list_del(&s->list);
69cb8e6b 3167 up_write(&slub_lock);
d629d819
PE
3168 if (kmem_cache_close(s)) {
3169 printk(KERN_ERR "SLUB %s: %s called for cache that "
3170 "still has objects.\n", s->name, __func__);
3171 dump_stack();
3172 }
d76b1590
ED
3173 if (s->flags & SLAB_DESTROY_BY_RCU)
3174 rcu_barrier();
81819f0f 3175 sysfs_slab_remove(s);
69cb8e6b
CL
3176 } else
3177 up_write(&slub_lock);
81819f0f
CL
3178}
3179EXPORT_SYMBOL(kmem_cache_destroy);
3180
3181/********************************************************************
3182 * Kmalloc subsystem
3183 *******************************************************************/
3184
51df1142 3185struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3186EXPORT_SYMBOL(kmalloc_caches);
3187
51df1142
CL
3188static struct kmem_cache *kmem_cache;
3189
55136592 3190#ifdef CONFIG_ZONE_DMA
51df1142 3191static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3192#endif
3193
81819f0f
CL
3194static int __init setup_slub_min_order(char *str)
3195{
06428780 3196 get_option(&str, &slub_min_order);
81819f0f
CL
3197
3198 return 1;
3199}
3200
3201__setup("slub_min_order=", setup_slub_min_order);
3202
3203static int __init setup_slub_max_order(char *str)
3204{
06428780 3205 get_option(&str, &slub_max_order);
818cf590 3206 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3207
3208 return 1;
3209}
3210
3211__setup("slub_max_order=", setup_slub_max_order);
3212
3213static int __init setup_slub_min_objects(char *str)
3214{
06428780 3215 get_option(&str, &slub_min_objects);
81819f0f
CL
3216
3217 return 1;
3218}
3219
3220__setup("slub_min_objects=", setup_slub_min_objects);
3221
3222static int __init setup_slub_nomerge(char *str)
3223{
3224 slub_nomerge = 1;
3225 return 1;
3226}
3227
3228__setup("slub_nomerge", setup_slub_nomerge);
3229
51df1142
CL
3230static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3231 int size, unsigned int flags)
81819f0f 3232{
51df1142
CL
3233 struct kmem_cache *s;
3234
3235 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3236
83b519e8
PE
3237 /*
3238 * This function is called with IRQs disabled during early-boot on
3239 * single CPU so there's no need to take slub_lock here.
3240 */
55136592 3241 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3242 flags, NULL))
81819f0f
CL
3243 goto panic;
3244
3245 list_add(&s->list, &slab_caches);
51df1142 3246 return s;
81819f0f
CL
3247
3248panic:
3249 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3250 return NULL;
81819f0f
CL
3251}
3252
f1b26339
CL
3253/*
3254 * Conversion table for small slabs sizes / 8 to the index in the
3255 * kmalloc array. This is necessary for slabs < 192 since we have non power
3256 * of two cache sizes there. The size of larger slabs can be determined using
3257 * fls.
3258 */
3259static s8 size_index[24] = {
3260 3, /* 8 */
3261 4, /* 16 */
3262 5, /* 24 */
3263 5, /* 32 */
3264 6, /* 40 */
3265 6, /* 48 */
3266 6, /* 56 */
3267 6, /* 64 */
3268 1, /* 72 */
3269 1, /* 80 */
3270 1, /* 88 */
3271 1, /* 96 */
3272 7, /* 104 */
3273 7, /* 112 */
3274 7, /* 120 */
3275 7, /* 128 */
3276 2, /* 136 */
3277 2, /* 144 */
3278 2, /* 152 */
3279 2, /* 160 */
3280 2, /* 168 */
3281 2, /* 176 */
3282 2, /* 184 */
3283 2 /* 192 */
3284};
3285
acdfcd04
AK
3286static inline int size_index_elem(size_t bytes)
3287{
3288 return (bytes - 1) / 8;
3289}
3290
81819f0f
CL
3291static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3292{
f1b26339 3293 int index;
81819f0f 3294
f1b26339
CL
3295 if (size <= 192) {
3296 if (!size)
3297 return ZERO_SIZE_PTR;
81819f0f 3298
acdfcd04 3299 index = size_index[size_index_elem(size)];
aadb4bc4 3300 } else
f1b26339 3301 index = fls(size - 1);
81819f0f
CL
3302
3303#ifdef CONFIG_ZONE_DMA
f1b26339 3304 if (unlikely((flags & SLUB_DMA)))
51df1142 3305 return kmalloc_dma_caches[index];
f1b26339 3306
81819f0f 3307#endif
51df1142 3308 return kmalloc_caches[index];
81819f0f
CL
3309}
3310
3311void *__kmalloc(size_t size, gfp_t flags)
3312{
aadb4bc4 3313 struct kmem_cache *s;
5b882be4 3314 void *ret;
81819f0f 3315
ffadd4d0 3316 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3317 return kmalloc_large(size, flags);
aadb4bc4
CL
3318
3319 s = get_slab(size, flags);
3320
3321 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3322 return s;
3323
2154a336 3324 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3325
ca2b84cb 3326 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3327
3328 return ret;
81819f0f
CL
3329}
3330EXPORT_SYMBOL(__kmalloc);
3331
5d1f57e4 3332#ifdef CONFIG_NUMA
f619cfe1
CL
3333static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3334{
b1eeab67 3335 struct page *page;
e4f7c0b4 3336 void *ptr = NULL;
f619cfe1 3337
b1eeab67
VN
3338 flags |= __GFP_COMP | __GFP_NOTRACK;
3339 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3340 if (page)
e4f7c0b4
CM
3341 ptr = page_address(page);
3342
3343 kmemleak_alloc(ptr, size, 1, flags);
3344 return ptr;
f619cfe1
CL
3345}
3346
81819f0f
CL
3347void *__kmalloc_node(size_t size, gfp_t flags, int node)
3348{
aadb4bc4 3349 struct kmem_cache *s;
5b882be4 3350 void *ret;
81819f0f 3351
057685cf 3352 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3353 ret = kmalloc_large_node(size, flags, node);
3354
ca2b84cb
EGM
3355 trace_kmalloc_node(_RET_IP_, ret,
3356 size, PAGE_SIZE << get_order(size),
3357 flags, node);
5b882be4
EGM
3358
3359 return ret;
3360 }
aadb4bc4
CL
3361
3362 s = get_slab(size, flags);
3363
3364 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3365 return s;
3366
5b882be4
EGM
3367 ret = slab_alloc(s, flags, node, _RET_IP_);
3368
ca2b84cb 3369 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3370
3371 return ret;
81819f0f
CL
3372}
3373EXPORT_SYMBOL(__kmalloc_node);
3374#endif
3375
3376size_t ksize(const void *object)
3377{
272c1d21 3378 struct page *page;
81819f0f 3379
ef8b4520 3380 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3381 return 0;
3382
294a80a8 3383 page = virt_to_head_page(object);
294a80a8 3384
76994412
PE
3385 if (unlikely(!PageSlab(page))) {
3386 WARN_ON(!PageCompound(page));
294a80a8 3387 return PAGE_SIZE << compound_order(page);
76994412 3388 }
81819f0f 3389
b3d41885 3390 return slab_ksize(page->slab);
81819f0f 3391}
b1aabecd 3392EXPORT_SYMBOL(ksize);
81819f0f 3393
d18a90dd
BG
3394#ifdef CONFIG_SLUB_DEBUG
3395bool verify_mem_not_deleted(const void *x)
3396{
3397 struct page *page;
3398 void *object = (void *)x;
3399 unsigned long flags;
3400 bool rv;
3401
3402 if (unlikely(ZERO_OR_NULL_PTR(x)))
3403 return false;
3404
3405 local_irq_save(flags);
3406
3407 page = virt_to_head_page(x);
3408 if (unlikely(!PageSlab(page))) {
3409 /* maybe it was from stack? */
3410 rv = true;
3411 goto out_unlock;
3412 }
3413
3414 slab_lock(page);
3415 if (on_freelist(page->slab, page, object)) {
3416 object_err(page->slab, page, object, "Object is on free-list");
3417 rv = false;
3418 } else {
3419 rv = true;
3420 }
3421 slab_unlock(page);
3422
3423out_unlock:
3424 local_irq_restore(flags);
3425 return rv;
3426}
3427EXPORT_SYMBOL(verify_mem_not_deleted);
3428#endif
3429
81819f0f
CL
3430void kfree(const void *x)
3431{
81819f0f 3432 struct page *page;
5bb983b0 3433 void *object = (void *)x;
81819f0f 3434
2121db74
PE
3435 trace_kfree(_RET_IP_, x);
3436
2408c550 3437 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3438 return;
3439
b49af68f 3440 page = virt_to_head_page(x);
aadb4bc4 3441 if (unlikely(!PageSlab(page))) {
0937502a 3442 BUG_ON(!PageCompound(page));
e4f7c0b4 3443 kmemleak_free(x);
aadb4bc4
CL
3444 put_page(page);
3445 return;
3446 }
ce71e27c 3447 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3448}
3449EXPORT_SYMBOL(kfree);
3450
2086d26a 3451/*
672bba3a
CL
3452 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3453 * the remaining slabs by the number of items in use. The slabs with the
3454 * most items in use come first. New allocations will then fill those up
3455 * and thus they can be removed from the partial lists.
3456 *
3457 * The slabs with the least items are placed last. This results in them
3458 * being allocated from last increasing the chance that the last objects
3459 * are freed in them.
2086d26a
CL
3460 */
3461int kmem_cache_shrink(struct kmem_cache *s)
3462{
3463 int node;
3464 int i;
3465 struct kmem_cache_node *n;
3466 struct page *page;
3467 struct page *t;
205ab99d 3468 int objects = oo_objects(s->max);
2086d26a 3469 struct list_head *slabs_by_inuse =
834f3d11 3470 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3471 unsigned long flags;
3472
3473 if (!slabs_by_inuse)
3474 return -ENOMEM;
3475
3476 flush_all(s);
f64dc58c 3477 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3478 n = get_node(s, node);
3479
3480 if (!n->nr_partial)
3481 continue;
3482
834f3d11 3483 for (i = 0; i < objects; i++)
2086d26a
CL
3484 INIT_LIST_HEAD(slabs_by_inuse + i);
3485
3486 spin_lock_irqsave(&n->list_lock, flags);
3487
3488 /*
672bba3a 3489 * Build lists indexed by the items in use in each slab.
2086d26a 3490 *
672bba3a
CL
3491 * Note that concurrent frees may occur while we hold the
3492 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3493 */
3494 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3495 list_move(&page->lru, slabs_by_inuse + page->inuse);
3496 if (!page->inuse)
3497 n->nr_partial--;
2086d26a
CL
3498 }
3499
2086d26a 3500 /*
672bba3a
CL
3501 * Rebuild the partial list with the slabs filled up most
3502 * first and the least used slabs at the end.
2086d26a 3503 */
69cb8e6b 3504 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3505 list_splice(slabs_by_inuse + i, n->partial.prev);
3506
2086d26a 3507 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3508
3509 /* Release empty slabs */
3510 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3511 discard_slab(s, page);
2086d26a
CL
3512 }
3513
3514 kfree(slabs_by_inuse);
3515 return 0;
3516}
3517EXPORT_SYMBOL(kmem_cache_shrink);
3518
92a5bbc1 3519#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3520static int slab_mem_going_offline_callback(void *arg)
3521{
3522 struct kmem_cache *s;
3523
3524 down_read(&slub_lock);
3525 list_for_each_entry(s, &slab_caches, list)
3526 kmem_cache_shrink(s);
3527 up_read(&slub_lock);
3528
3529 return 0;
3530}
3531
3532static void slab_mem_offline_callback(void *arg)
3533{
3534 struct kmem_cache_node *n;
3535 struct kmem_cache *s;
3536 struct memory_notify *marg = arg;
3537 int offline_node;
3538
3539 offline_node = marg->status_change_nid;
3540
3541 /*
3542 * If the node still has available memory. we need kmem_cache_node
3543 * for it yet.
3544 */
3545 if (offline_node < 0)
3546 return;
3547
3548 down_read(&slub_lock);
3549 list_for_each_entry(s, &slab_caches, list) {
3550 n = get_node(s, offline_node);
3551 if (n) {
3552 /*
3553 * if n->nr_slabs > 0, slabs still exist on the node
3554 * that is going down. We were unable to free them,
c9404c9c 3555 * and offline_pages() function shouldn't call this
b9049e23
YG
3556 * callback. So, we must fail.
3557 */
0f389ec6 3558 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3559
3560 s->node[offline_node] = NULL;
8de66a0c 3561 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3562 }
3563 }
3564 up_read(&slub_lock);
3565}
3566
3567static int slab_mem_going_online_callback(void *arg)
3568{
3569 struct kmem_cache_node *n;
3570 struct kmem_cache *s;
3571 struct memory_notify *marg = arg;
3572 int nid = marg->status_change_nid;
3573 int ret = 0;
3574
3575 /*
3576 * If the node's memory is already available, then kmem_cache_node is
3577 * already created. Nothing to do.
3578 */
3579 if (nid < 0)
3580 return 0;
3581
3582 /*
0121c619 3583 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3584 * allocate a kmem_cache_node structure in order to bring the node
3585 * online.
3586 */
3587 down_read(&slub_lock);
3588 list_for_each_entry(s, &slab_caches, list) {
3589 /*
3590 * XXX: kmem_cache_alloc_node will fallback to other nodes
3591 * since memory is not yet available from the node that
3592 * is brought up.
3593 */
8de66a0c 3594 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3595 if (!n) {
3596 ret = -ENOMEM;
3597 goto out;
3598 }
5595cffc 3599 init_kmem_cache_node(n, s);
b9049e23
YG
3600 s->node[nid] = n;
3601 }
3602out:
3603 up_read(&slub_lock);
3604 return ret;
3605}
3606
3607static int slab_memory_callback(struct notifier_block *self,
3608 unsigned long action, void *arg)
3609{
3610 int ret = 0;
3611
3612 switch (action) {
3613 case MEM_GOING_ONLINE:
3614 ret = slab_mem_going_online_callback(arg);
3615 break;
3616 case MEM_GOING_OFFLINE:
3617 ret = slab_mem_going_offline_callback(arg);
3618 break;
3619 case MEM_OFFLINE:
3620 case MEM_CANCEL_ONLINE:
3621 slab_mem_offline_callback(arg);
3622 break;
3623 case MEM_ONLINE:
3624 case MEM_CANCEL_OFFLINE:
3625 break;
3626 }
dc19f9db
KH
3627 if (ret)
3628 ret = notifier_from_errno(ret);
3629 else
3630 ret = NOTIFY_OK;
b9049e23
YG
3631 return ret;
3632}
3633
3634#endif /* CONFIG_MEMORY_HOTPLUG */
3635
81819f0f
CL
3636/********************************************************************
3637 * Basic setup of slabs
3638 *******************************************************************/
3639
51df1142
CL
3640/*
3641 * Used for early kmem_cache structures that were allocated using
3642 * the page allocator
3643 */
3644
3645static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3646{
3647 int node;
3648
3649 list_add(&s->list, &slab_caches);
3650 s->refcount = -1;
3651
3652 for_each_node_state(node, N_NORMAL_MEMORY) {
3653 struct kmem_cache_node *n = get_node(s, node);
3654 struct page *p;
3655
3656 if (n) {
3657 list_for_each_entry(p, &n->partial, lru)
3658 p->slab = s;
3659
607bf324 3660#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3661 list_for_each_entry(p, &n->full, lru)
3662 p->slab = s;
3663#endif
3664 }
3665 }
3666}
3667
81819f0f
CL
3668void __init kmem_cache_init(void)
3669{
3670 int i;
4b356be0 3671 int caches = 0;
51df1142
CL
3672 struct kmem_cache *temp_kmem_cache;
3673 int order;
51df1142
CL
3674 struct kmem_cache *temp_kmem_cache_node;
3675 unsigned long kmalloc_size;
3676
fc8d8620
SG
3677 if (debug_guardpage_minorder())
3678 slub_max_order = 0;
3679
51df1142
CL
3680 kmem_size = offsetof(struct kmem_cache, node) +
3681 nr_node_ids * sizeof(struct kmem_cache_node *);
3682
3683 /* Allocate two kmem_caches from the page allocator */
3684 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3685 order = get_order(2 * kmalloc_size);
3686 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3687
81819f0f
CL
3688 /*
3689 * Must first have the slab cache available for the allocations of the
672bba3a 3690 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3691 * kmem_cache_open for slab_state == DOWN.
3692 */
51df1142
CL
3693 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3694
3695 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3696 sizeof(struct kmem_cache_node),
3697 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3698
0c40ba4f 3699 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3700
3701 /* Able to allocate the per node structures */
3702 slab_state = PARTIAL;
3703
51df1142
CL
3704 temp_kmem_cache = kmem_cache;
3705 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3706 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3707 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3708 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3709
51df1142
CL
3710 /*
3711 * Allocate kmem_cache_node properly from the kmem_cache slab.
3712 * kmem_cache_node is separately allocated so no need to
3713 * update any list pointers.
3714 */
3715 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3716
51df1142
CL
3717 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3718 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3719
3720 kmem_cache_bootstrap_fixup(kmem_cache_node);
3721
3722 caches++;
51df1142
CL
3723 kmem_cache_bootstrap_fixup(kmem_cache);
3724 caches++;
3725 /* Free temporary boot structure */
3726 free_pages((unsigned long)temp_kmem_cache, order);
3727
3728 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3729
3730 /*
3731 * Patch up the size_index table if we have strange large alignment
3732 * requirements for the kmalloc array. This is only the case for
6446faa2 3733 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3734 *
3735 * Largest permitted alignment is 256 bytes due to the way we
3736 * handle the index determination for the smaller caches.
3737 *
3738 * Make sure that nothing crazy happens if someone starts tinkering
3739 * around with ARCH_KMALLOC_MINALIGN
3740 */
3741 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3742 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3743
acdfcd04
AK
3744 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3745 int elem = size_index_elem(i);
3746 if (elem >= ARRAY_SIZE(size_index))
3747 break;
3748 size_index[elem] = KMALLOC_SHIFT_LOW;
3749 }
f1b26339 3750
acdfcd04
AK
3751 if (KMALLOC_MIN_SIZE == 64) {
3752 /*
3753 * The 96 byte size cache is not used if the alignment
3754 * is 64 byte.
3755 */
3756 for (i = 64 + 8; i <= 96; i += 8)
3757 size_index[size_index_elem(i)] = 7;
3758 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3759 /*
3760 * The 192 byte sized cache is not used if the alignment
3761 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3762 * instead.
3763 */
3764 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3765 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3766 }
3767
51df1142
CL
3768 /* Caches that are not of the two-to-the-power-of size */
3769 if (KMALLOC_MIN_SIZE <= 32) {
3770 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3771 caches++;
3772 }
3773
3774 if (KMALLOC_MIN_SIZE <= 64) {
3775 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3776 caches++;
3777 }
3778
3779 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3780 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3781 caches++;
3782 }
3783
81819f0f
CL
3784 slab_state = UP;
3785
3786 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3787 if (KMALLOC_MIN_SIZE <= 32) {
3788 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3789 BUG_ON(!kmalloc_caches[1]->name);
3790 }
3791
3792 if (KMALLOC_MIN_SIZE <= 64) {
3793 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3794 BUG_ON(!kmalloc_caches[2]->name);
3795 }
3796
d7278bd7
CL
3797 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3798 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3799
3800 BUG_ON(!s);
51df1142 3801 kmalloc_caches[i]->name = s;
d7278bd7 3802 }
81819f0f
CL
3803
3804#ifdef CONFIG_SMP
3805 register_cpu_notifier(&slab_notifier);
9dfc6e68 3806#endif
81819f0f 3807
55136592 3808#ifdef CONFIG_ZONE_DMA
51df1142
CL
3809 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3810 struct kmem_cache *s = kmalloc_caches[i];
55136592 3811
51df1142 3812 if (s && s->size) {
55136592
CL
3813 char *name = kasprintf(GFP_NOWAIT,
3814 "dma-kmalloc-%d", s->objsize);
3815
3816 BUG_ON(!name);
51df1142
CL
3817 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3818 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3819 }
3820 }
3821#endif
3adbefee
IM
3822 printk(KERN_INFO
3823 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3824 " CPUs=%d, Nodes=%d\n",
3825 caches, cache_line_size(),
81819f0f
CL
3826 slub_min_order, slub_max_order, slub_min_objects,
3827 nr_cpu_ids, nr_node_ids);
3828}
3829
7e85ee0c
PE
3830void __init kmem_cache_init_late(void)
3831{
7e85ee0c
PE
3832}
3833
81819f0f
CL
3834/*
3835 * Find a mergeable slab cache
3836 */
3837static int slab_unmergeable(struct kmem_cache *s)
3838{
3839 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3840 return 1;
3841
c59def9f 3842 if (s->ctor)
81819f0f
CL
3843 return 1;
3844
8ffa6875
CL
3845 /*
3846 * We may have set a slab to be unmergeable during bootstrap.
3847 */
3848 if (s->refcount < 0)
3849 return 1;
3850
81819f0f
CL
3851 return 0;
3852}
3853
3854static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3855 size_t align, unsigned long flags, const char *name,
51cc5068 3856 void (*ctor)(void *))
81819f0f 3857{
5b95a4ac 3858 struct kmem_cache *s;
81819f0f
CL
3859
3860 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3861 return NULL;
3862
c59def9f 3863 if (ctor)
81819f0f
CL
3864 return NULL;
3865
3866 size = ALIGN(size, sizeof(void *));
3867 align = calculate_alignment(flags, align, size);
3868 size = ALIGN(size, align);
ba0268a8 3869 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3870
5b95a4ac 3871 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3872 if (slab_unmergeable(s))
3873 continue;
3874
3875 if (size > s->size)
3876 continue;
3877
ba0268a8 3878 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3879 continue;
3880 /*
3881 * Check if alignment is compatible.
3882 * Courtesy of Adrian Drzewiecki
3883 */
06428780 3884 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3885 continue;
3886
3887 if (s->size - size >= sizeof(void *))
3888 continue;
3889
3890 return s;
3891 }
3892 return NULL;
3893}
3894
3895struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3896 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3897{
3898 struct kmem_cache *s;
84c1cf62 3899 char *n;
81819f0f 3900
fe1ff49d
BH
3901 if (WARN_ON(!name))
3902 return NULL;
3903
81819f0f 3904 down_write(&slub_lock);
ba0268a8 3905 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3906 if (s) {
3907 s->refcount++;
3908 /*
3909 * Adjust the object sizes so that we clear
3910 * the complete object on kzalloc.
3911 */
3912 s->objsize = max(s->objsize, (int)size);
3913 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3914
7b8f3b66 3915 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3916 s->refcount--;
81819f0f 3917 goto err;
7b8f3b66 3918 }
2bce6485 3919 up_write(&slub_lock);
a0e1d1be
CL
3920 return s;
3921 }
6446faa2 3922
84c1cf62
PE
3923 n = kstrdup(name, GFP_KERNEL);
3924 if (!n)
3925 goto err;
3926
a0e1d1be
CL
3927 s = kmalloc(kmem_size, GFP_KERNEL);
3928 if (s) {
84c1cf62 3929 if (kmem_cache_open(s, n,
c59def9f 3930 size, align, flags, ctor)) {
81819f0f 3931 list_add(&s->list, &slab_caches);
7b8f3b66 3932 if (sysfs_slab_add(s)) {
7b8f3b66 3933 list_del(&s->list);
84c1cf62 3934 kfree(n);
7b8f3b66 3935 kfree(s);
a0e1d1be 3936 goto err;
7b8f3b66 3937 }
2bce6485 3938 up_write(&slub_lock);
a0e1d1be
CL
3939 return s;
3940 }
84c1cf62 3941 kfree(n);
a0e1d1be 3942 kfree(s);
81819f0f 3943 }
68cee4f1 3944err:
81819f0f 3945 up_write(&slub_lock);
81819f0f 3946
81819f0f
CL
3947 if (flags & SLAB_PANIC)
3948 panic("Cannot create slabcache %s\n", name);
3949 else
3950 s = NULL;
3951 return s;
3952}
3953EXPORT_SYMBOL(kmem_cache_create);
3954
81819f0f 3955#ifdef CONFIG_SMP
81819f0f 3956/*
672bba3a
CL
3957 * Use the cpu notifier to insure that the cpu slabs are flushed when
3958 * necessary.
81819f0f
CL
3959 */
3960static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3961 unsigned long action, void *hcpu)
3962{
3963 long cpu = (long)hcpu;
5b95a4ac
CL
3964 struct kmem_cache *s;
3965 unsigned long flags;
81819f0f
CL
3966
3967 switch (action) {
3968 case CPU_UP_CANCELED:
8bb78442 3969 case CPU_UP_CANCELED_FROZEN:
81819f0f 3970 case CPU_DEAD:
8bb78442 3971 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3972 down_read(&slub_lock);
3973 list_for_each_entry(s, &slab_caches, list) {
3974 local_irq_save(flags);
3975 __flush_cpu_slab(s, cpu);
3976 local_irq_restore(flags);
3977 }
3978 up_read(&slub_lock);
81819f0f
CL
3979 break;
3980 default:
3981 break;
3982 }
3983 return NOTIFY_OK;
3984}
3985
06428780 3986static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3987 .notifier_call = slab_cpuup_callback
06428780 3988};
81819f0f
CL
3989
3990#endif
3991
ce71e27c 3992void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3993{
aadb4bc4 3994 struct kmem_cache *s;
94b528d0 3995 void *ret;
aadb4bc4 3996
ffadd4d0 3997 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3998 return kmalloc_large(size, gfpflags);
3999
aadb4bc4 4000 s = get_slab(size, gfpflags);
81819f0f 4001
2408c550 4002 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4003 return s;
81819f0f 4004
2154a336 4005 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4006
25985edc 4007 /* Honor the call site pointer we received. */
ca2b84cb 4008 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4009
4010 return ret;
81819f0f
CL
4011}
4012
5d1f57e4 4013#ifdef CONFIG_NUMA
81819f0f 4014void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4015 int node, unsigned long caller)
81819f0f 4016{
aadb4bc4 4017 struct kmem_cache *s;
94b528d0 4018 void *ret;
aadb4bc4 4019
d3e14aa3
XF
4020 if (unlikely(size > SLUB_MAX_SIZE)) {
4021 ret = kmalloc_large_node(size, gfpflags, node);
4022
4023 trace_kmalloc_node(caller, ret,
4024 size, PAGE_SIZE << get_order(size),
4025 gfpflags, node);
4026
4027 return ret;
4028 }
eada35ef 4029
aadb4bc4 4030 s = get_slab(size, gfpflags);
81819f0f 4031
2408c550 4032 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4033 return s;
81819f0f 4034
94b528d0
EGM
4035 ret = slab_alloc(s, gfpflags, node, caller);
4036
25985edc 4037 /* Honor the call site pointer we received. */
ca2b84cb 4038 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4039
4040 return ret;
81819f0f 4041}
5d1f57e4 4042#endif
81819f0f 4043
ab4d5ed5 4044#ifdef CONFIG_SYSFS
205ab99d
CL
4045static int count_inuse(struct page *page)
4046{
4047 return page->inuse;
4048}
4049
4050static int count_total(struct page *page)
4051{
4052 return page->objects;
4053}
ab4d5ed5 4054#endif
205ab99d 4055
ab4d5ed5 4056#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4057static int validate_slab(struct kmem_cache *s, struct page *page,
4058 unsigned long *map)
53e15af0
CL
4059{
4060 void *p;
a973e9dd 4061 void *addr = page_address(page);
53e15af0
CL
4062
4063 if (!check_slab(s, page) ||
4064 !on_freelist(s, page, NULL))
4065 return 0;
4066
4067 /* Now we know that a valid freelist exists */
39b26464 4068 bitmap_zero(map, page->objects);
53e15af0 4069
5f80b13a
CL
4070 get_map(s, page, map);
4071 for_each_object(p, s, addr, page->objects) {
4072 if (test_bit(slab_index(p, s, addr), map))
4073 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4074 return 0;
53e15af0
CL
4075 }
4076
224a88be 4077 for_each_object(p, s, addr, page->objects)
7656c72b 4078 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4079 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4080 return 0;
4081 return 1;
4082}
4083
434e245d
CL
4084static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4085 unsigned long *map)
53e15af0 4086{
881db7fb
CL
4087 slab_lock(page);
4088 validate_slab(s, page, map);
4089 slab_unlock(page);
53e15af0
CL
4090}
4091
434e245d
CL
4092static int validate_slab_node(struct kmem_cache *s,
4093 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4094{
4095 unsigned long count = 0;
4096 struct page *page;
4097 unsigned long flags;
4098
4099 spin_lock_irqsave(&n->list_lock, flags);
4100
4101 list_for_each_entry(page, &n->partial, lru) {
434e245d 4102 validate_slab_slab(s, page, map);
53e15af0
CL
4103 count++;
4104 }
4105 if (count != n->nr_partial)
4106 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4107 "counter=%ld\n", s->name, count, n->nr_partial);
4108
4109 if (!(s->flags & SLAB_STORE_USER))
4110 goto out;
4111
4112 list_for_each_entry(page, &n->full, lru) {
434e245d 4113 validate_slab_slab(s, page, map);
53e15af0
CL
4114 count++;
4115 }
4116 if (count != atomic_long_read(&n->nr_slabs))
4117 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4118 "counter=%ld\n", s->name, count,
4119 atomic_long_read(&n->nr_slabs));
4120
4121out:
4122 spin_unlock_irqrestore(&n->list_lock, flags);
4123 return count;
4124}
4125
434e245d 4126static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4127{
4128 int node;
4129 unsigned long count = 0;
205ab99d 4130 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4131 sizeof(unsigned long), GFP_KERNEL);
4132
4133 if (!map)
4134 return -ENOMEM;
53e15af0
CL
4135
4136 flush_all(s);
f64dc58c 4137 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4138 struct kmem_cache_node *n = get_node(s, node);
4139
434e245d 4140 count += validate_slab_node(s, n, map);
53e15af0 4141 }
434e245d 4142 kfree(map);
53e15af0
CL
4143 return count;
4144}
88a420e4 4145/*
672bba3a 4146 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4147 * and freed.
4148 */
4149
4150struct location {
4151 unsigned long count;
ce71e27c 4152 unsigned long addr;
45edfa58
CL
4153 long long sum_time;
4154 long min_time;
4155 long max_time;
4156 long min_pid;
4157 long max_pid;
174596a0 4158 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4159 nodemask_t nodes;
88a420e4
CL
4160};
4161
4162struct loc_track {
4163 unsigned long max;
4164 unsigned long count;
4165 struct location *loc;
4166};
4167
4168static void free_loc_track(struct loc_track *t)
4169{
4170 if (t->max)
4171 free_pages((unsigned long)t->loc,
4172 get_order(sizeof(struct location) * t->max));
4173}
4174
68dff6a9 4175static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4176{
4177 struct location *l;
4178 int order;
4179
88a420e4
CL
4180 order = get_order(sizeof(struct location) * max);
4181
68dff6a9 4182 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4183 if (!l)
4184 return 0;
4185
4186 if (t->count) {
4187 memcpy(l, t->loc, sizeof(struct location) * t->count);
4188 free_loc_track(t);
4189 }
4190 t->max = max;
4191 t->loc = l;
4192 return 1;
4193}
4194
4195static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4196 const struct track *track)
88a420e4
CL
4197{
4198 long start, end, pos;
4199 struct location *l;
ce71e27c 4200 unsigned long caddr;
45edfa58 4201 unsigned long age = jiffies - track->when;
88a420e4
CL
4202
4203 start = -1;
4204 end = t->count;
4205
4206 for ( ; ; ) {
4207 pos = start + (end - start + 1) / 2;
4208
4209 /*
4210 * There is nothing at "end". If we end up there
4211 * we need to add something to before end.
4212 */
4213 if (pos == end)
4214 break;
4215
4216 caddr = t->loc[pos].addr;
45edfa58
CL
4217 if (track->addr == caddr) {
4218
4219 l = &t->loc[pos];
4220 l->count++;
4221 if (track->when) {
4222 l->sum_time += age;
4223 if (age < l->min_time)
4224 l->min_time = age;
4225 if (age > l->max_time)
4226 l->max_time = age;
4227
4228 if (track->pid < l->min_pid)
4229 l->min_pid = track->pid;
4230 if (track->pid > l->max_pid)
4231 l->max_pid = track->pid;
4232
174596a0
RR
4233 cpumask_set_cpu(track->cpu,
4234 to_cpumask(l->cpus));
45edfa58
CL
4235 }
4236 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4237 return 1;
4238 }
4239
45edfa58 4240 if (track->addr < caddr)
88a420e4
CL
4241 end = pos;
4242 else
4243 start = pos;
4244 }
4245
4246 /*
672bba3a 4247 * Not found. Insert new tracking element.
88a420e4 4248 */
68dff6a9 4249 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4250 return 0;
4251
4252 l = t->loc + pos;
4253 if (pos < t->count)
4254 memmove(l + 1, l,
4255 (t->count - pos) * sizeof(struct location));
4256 t->count++;
4257 l->count = 1;
45edfa58
CL
4258 l->addr = track->addr;
4259 l->sum_time = age;
4260 l->min_time = age;
4261 l->max_time = age;
4262 l->min_pid = track->pid;
4263 l->max_pid = track->pid;
174596a0
RR
4264 cpumask_clear(to_cpumask(l->cpus));
4265 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4266 nodes_clear(l->nodes);
4267 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4268 return 1;
4269}
4270
4271static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4272 struct page *page, enum track_item alloc,
a5dd5c11 4273 unsigned long *map)
88a420e4 4274{
a973e9dd 4275 void *addr = page_address(page);
88a420e4
CL
4276 void *p;
4277
39b26464 4278 bitmap_zero(map, page->objects);
5f80b13a 4279 get_map(s, page, map);
88a420e4 4280
224a88be 4281 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4282 if (!test_bit(slab_index(p, s, addr), map))
4283 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4284}
4285
4286static int list_locations(struct kmem_cache *s, char *buf,
4287 enum track_item alloc)
4288{
e374d483 4289 int len = 0;
88a420e4 4290 unsigned long i;
68dff6a9 4291 struct loc_track t = { 0, 0, NULL };
88a420e4 4292 int node;
bbd7d57b
ED
4293 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4294 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4295
bbd7d57b
ED
4296 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4297 GFP_TEMPORARY)) {
4298 kfree(map);
68dff6a9 4299 return sprintf(buf, "Out of memory\n");
bbd7d57b 4300 }
88a420e4
CL
4301 /* Push back cpu slabs */
4302 flush_all(s);
4303
f64dc58c 4304 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4305 struct kmem_cache_node *n = get_node(s, node);
4306 unsigned long flags;
4307 struct page *page;
4308
9e86943b 4309 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4310 continue;
4311
4312 spin_lock_irqsave(&n->list_lock, flags);
4313 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4314 process_slab(&t, s, page, alloc, map);
88a420e4 4315 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4316 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4317 spin_unlock_irqrestore(&n->list_lock, flags);
4318 }
4319
4320 for (i = 0; i < t.count; i++) {
45edfa58 4321 struct location *l = &t.loc[i];
88a420e4 4322
9c246247 4323 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4324 break;
e374d483 4325 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4326
4327 if (l->addr)
62c70bce 4328 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4329 else
e374d483 4330 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4331
4332 if (l->sum_time != l->min_time) {
e374d483 4333 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4334 l->min_time,
4335 (long)div_u64(l->sum_time, l->count),
4336 l->max_time);
45edfa58 4337 } else
e374d483 4338 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4339 l->min_time);
4340
4341 if (l->min_pid != l->max_pid)
e374d483 4342 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4343 l->min_pid, l->max_pid);
4344 else
e374d483 4345 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4346 l->min_pid);
4347
174596a0
RR
4348 if (num_online_cpus() > 1 &&
4349 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4350 len < PAGE_SIZE - 60) {
4351 len += sprintf(buf + len, " cpus=");
4352 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4353 to_cpumask(l->cpus));
45edfa58
CL
4354 }
4355
62bc62a8 4356 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4357 len < PAGE_SIZE - 60) {
4358 len += sprintf(buf + len, " nodes=");
4359 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4360 l->nodes);
4361 }
4362
e374d483 4363 len += sprintf(buf + len, "\n");
88a420e4
CL
4364 }
4365
4366 free_loc_track(&t);
bbd7d57b 4367 kfree(map);
88a420e4 4368 if (!t.count)
e374d483
HH
4369 len += sprintf(buf, "No data\n");
4370 return len;
88a420e4 4371}
ab4d5ed5 4372#endif
88a420e4 4373
a5a84755
CL
4374#ifdef SLUB_RESILIENCY_TEST
4375static void resiliency_test(void)
4376{
4377 u8 *p;
4378
4379 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4380
4381 printk(KERN_ERR "SLUB resiliency testing\n");
4382 printk(KERN_ERR "-----------------------\n");
4383 printk(KERN_ERR "A. Corruption after allocation\n");
4384
4385 p = kzalloc(16, GFP_KERNEL);
4386 p[16] = 0x12;
4387 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4388 " 0x12->0x%p\n\n", p + 16);
4389
4390 validate_slab_cache(kmalloc_caches[4]);
4391
4392 /* Hmmm... The next two are dangerous */
4393 p = kzalloc(32, GFP_KERNEL);
4394 p[32 + sizeof(void *)] = 0x34;
4395 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4396 " 0x34 -> -0x%p\n", p);
4397 printk(KERN_ERR
4398 "If allocated object is overwritten then not detectable\n\n");
4399
4400 validate_slab_cache(kmalloc_caches[5]);
4401 p = kzalloc(64, GFP_KERNEL);
4402 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4403 *p = 0x56;
4404 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4405 p);
4406 printk(KERN_ERR
4407 "If allocated object is overwritten then not detectable\n\n");
4408 validate_slab_cache(kmalloc_caches[6]);
4409
4410 printk(KERN_ERR "\nB. Corruption after free\n");
4411 p = kzalloc(128, GFP_KERNEL);
4412 kfree(p);
4413 *p = 0x78;
4414 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4415 validate_slab_cache(kmalloc_caches[7]);
4416
4417 p = kzalloc(256, GFP_KERNEL);
4418 kfree(p);
4419 p[50] = 0x9a;
4420 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4421 p);
4422 validate_slab_cache(kmalloc_caches[8]);
4423
4424 p = kzalloc(512, GFP_KERNEL);
4425 kfree(p);
4426 p[512] = 0xab;
4427 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4428 validate_slab_cache(kmalloc_caches[9]);
4429}
4430#else
4431#ifdef CONFIG_SYSFS
4432static void resiliency_test(void) {};
4433#endif
4434#endif
4435
ab4d5ed5 4436#ifdef CONFIG_SYSFS
81819f0f 4437enum slab_stat_type {
205ab99d
CL
4438 SL_ALL, /* All slabs */
4439 SL_PARTIAL, /* Only partially allocated slabs */
4440 SL_CPU, /* Only slabs used for cpu caches */
4441 SL_OBJECTS, /* Determine allocated objects not slabs */
4442 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4443};
4444
205ab99d 4445#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4446#define SO_PARTIAL (1 << SL_PARTIAL)
4447#define SO_CPU (1 << SL_CPU)
4448#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4449#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4450
62e5c4b4
CG
4451static ssize_t show_slab_objects(struct kmem_cache *s,
4452 char *buf, unsigned long flags)
81819f0f
CL
4453{
4454 unsigned long total = 0;
81819f0f
CL
4455 int node;
4456 int x;
4457 unsigned long *nodes;
4458 unsigned long *per_cpu;
4459
4460 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4461 if (!nodes)
4462 return -ENOMEM;
81819f0f
CL
4463 per_cpu = nodes + nr_node_ids;
4464
205ab99d
CL
4465 if (flags & SO_CPU) {
4466 int cpu;
81819f0f 4467
205ab99d 4468 for_each_possible_cpu(cpu) {
9dfc6e68 4469 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
bc6697d8 4470 int node = ACCESS_ONCE(c->node);
49e22585 4471 struct page *page;
dfb4f096 4472
bc6697d8 4473 if (node < 0)
205ab99d 4474 continue;
bc6697d8
ED
4475 page = ACCESS_ONCE(c->page);
4476 if (page) {
4477 if (flags & SO_TOTAL)
4478 x = page->objects;
205ab99d 4479 else if (flags & SO_OBJECTS)
bc6697d8 4480 x = page->inuse;
81819f0f
CL
4481 else
4482 x = 1;
205ab99d 4483
81819f0f 4484 total += x;
bc6697d8 4485 nodes[node] += x;
81819f0f 4486 }
49e22585
CL
4487 page = c->partial;
4488
4489 if (page) {
4490 x = page->pobjects;
bc6697d8
ED
4491 total += x;
4492 nodes[node] += x;
49e22585 4493 }
bc6697d8 4494 per_cpu[node]++;
81819f0f
CL
4495 }
4496 }
4497
04d94879 4498 lock_memory_hotplug();
ab4d5ed5 4499#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4500 if (flags & SO_ALL) {
4501 for_each_node_state(node, N_NORMAL_MEMORY) {
4502 struct kmem_cache_node *n = get_node(s, node);
4503
4504 if (flags & SO_TOTAL)
4505 x = atomic_long_read(&n->total_objects);
4506 else if (flags & SO_OBJECTS)
4507 x = atomic_long_read(&n->total_objects) -
4508 count_partial(n, count_free);
81819f0f 4509
81819f0f 4510 else
205ab99d 4511 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4512 total += x;
4513 nodes[node] += x;
4514 }
4515
ab4d5ed5
CL
4516 } else
4517#endif
4518 if (flags & SO_PARTIAL) {
205ab99d
CL
4519 for_each_node_state(node, N_NORMAL_MEMORY) {
4520 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4521
205ab99d
CL
4522 if (flags & SO_TOTAL)
4523 x = count_partial(n, count_total);
4524 else if (flags & SO_OBJECTS)
4525 x = count_partial(n, count_inuse);
81819f0f 4526 else
205ab99d 4527 x = n->nr_partial;
81819f0f
CL
4528 total += x;
4529 nodes[node] += x;
4530 }
4531 }
81819f0f
CL
4532 x = sprintf(buf, "%lu", total);
4533#ifdef CONFIG_NUMA
f64dc58c 4534 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4535 if (nodes[node])
4536 x += sprintf(buf + x, " N%d=%lu",
4537 node, nodes[node]);
4538#endif
04d94879 4539 unlock_memory_hotplug();
81819f0f
CL
4540 kfree(nodes);
4541 return x + sprintf(buf + x, "\n");
4542}
4543
ab4d5ed5 4544#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4545static int any_slab_objects(struct kmem_cache *s)
4546{
4547 int node;
81819f0f 4548
dfb4f096 4549 for_each_online_node(node) {
81819f0f
CL
4550 struct kmem_cache_node *n = get_node(s, node);
4551
dfb4f096
CL
4552 if (!n)
4553 continue;
4554
4ea33e2d 4555 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4556 return 1;
4557 }
4558 return 0;
4559}
ab4d5ed5 4560#endif
81819f0f
CL
4561
4562#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4563#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4564
4565struct slab_attribute {
4566 struct attribute attr;
4567 ssize_t (*show)(struct kmem_cache *s, char *buf);
4568 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4569};
4570
4571#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4572 static struct slab_attribute _name##_attr = \
4573 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4574
4575#define SLAB_ATTR(_name) \
4576 static struct slab_attribute _name##_attr = \
ab067e99 4577 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4578
81819f0f
CL
4579static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4580{
4581 return sprintf(buf, "%d\n", s->size);
4582}
4583SLAB_ATTR_RO(slab_size);
4584
4585static ssize_t align_show(struct kmem_cache *s, char *buf)
4586{
4587 return sprintf(buf, "%d\n", s->align);
4588}
4589SLAB_ATTR_RO(align);
4590
4591static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4592{
4593 return sprintf(buf, "%d\n", s->objsize);
4594}
4595SLAB_ATTR_RO(object_size);
4596
4597static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4598{
834f3d11 4599 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4600}
4601SLAB_ATTR_RO(objs_per_slab);
4602
06b285dc
CL
4603static ssize_t order_store(struct kmem_cache *s,
4604 const char *buf, size_t length)
4605{
0121c619
CL
4606 unsigned long order;
4607 int err;
4608
4609 err = strict_strtoul(buf, 10, &order);
4610 if (err)
4611 return err;
06b285dc
CL
4612
4613 if (order > slub_max_order || order < slub_min_order)
4614 return -EINVAL;
4615
4616 calculate_sizes(s, order);
4617 return length;
4618}
4619
81819f0f
CL
4620static ssize_t order_show(struct kmem_cache *s, char *buf)
4621{
834f3d11 4622 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4623}
06b285dc 4624SLAB_ATTR(order);
81819f0f 4625
73d342b1
DR
4626static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4627{
4628 return sprintf(buf, "%lu\n", s->min_partial);
4629}
4630
4631static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4632 size_t length)
4633{
4634 unsigned long min;
4635 int err;
4636
4637 err = strict_strtoul(buf, 10, &min);
4638 if (err)
4639 return err;
4640
c0bdb232 4641 set_min_partial(s, min);
73d342b1
DR
4642 return length;
4643}
4644SLAB_ATTR(min_partial);
4645
49e22585
CL
4646static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4647{
4648 return sprintf(buf, "%u\n", s->cpu_partial);
4649}
4650
4651static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4652 size_t length)
4653{
4654 unsigned long objects;
4655 int err;
4656
4657 err = strict_strtoul(buf, 10, &objects);
4658 if (err)
4659 return err;
74ee4ef1
DR
4660 if (objects && kmem_cache_debug(s))
4661 return -EINVAL;
49e22585
CL
4662
4663 s->cpu_partial = objects;
4664 flush_all(s);
4665 return length;
4666}
4667SLAB_ATTR(cpu_partial);
4668
81819f0f
CL
4669static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4670{
62c70bce
JP
4671 if (!s->ctor)
4672 return 0;
4673 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4674}
4675SLAB_ATTR_RO(ctor);
4676
81819f0f
CL
4677static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4678{
4679 return sprintf(buf, "%d\n", s->refcount - 1);
4680}
4681SLAB_ATTR_RO(aliases);
4682
81819f0f
CL
4683static ssize_t partial_show(struct kmem_cache *s, char *buf)
4684{
d9acf4b7 4685 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4686}
4687SLAB_ATTR_RO(partial);
4688
4689static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4690{
d9acf4b7 4691 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4692}
4693SLAB_ATTR_RO(cpu_slabs);
4694
4695static ssize_t objects_show(struct kmem_cache *s, char *buf)
4696{
205ab99d 4697 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4698}
4699SLAB_ATTR_RO(objects);
4700
205ab99d
CL
4701static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4702{
4703 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4704}
4705SLAB_ATTR_RO(objects_partial);
4706
49e22585
CL
4707static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4708{
4709 int objects = 0;
4710 int pages = 0;
4711 int cpu;
4712 int len;
4713
4714 for_each_online_cpu(cpu) {
4715 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4716
4717 if (page) {
4718 pages += page->pages;
4719 objects += page->pobjects;
4720 }
4721 }
4722
4723 len = sprintf(buf, "%d(%d)", objects, pages);
4724
4725#ifdef CONFIG_SMP
4726 for_each_online_cpu(cpu) {
4727 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4728
4729 if (page && len < PAGE_SIZE - 20)
4730 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4731 page->pobjects, page->pages);
4732 }
4733#endif
4734 return len + sprintf(buf + len, "\n");
4735}
4736SLAB_ATTR_RO(slabs_cpu_partial);
4737
a5a84755
CL
4738static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4739{
4740 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4741}
4742
4743static ssize_t reclaim_account_store(struct kmem_cache *s,
4744 const char *buf, size_t length)
4745{
4746 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4747 if (buf[0] == '1')
4748 s->flags |= SLAB_RECLAIM_ACCOUNT;
4749 return length;
4750}
4751SLAB_ATTR(reclaim_account);
4752
4753static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4754{
4755 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4756}
4757SLAB_ATTR_RO(hwcache_align);
4758
4759#ifdef CONFIG_ZONE_DMA
4760static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4761{
4762 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4763}
4764SLAB_ATTR_RO(cache_dma);
4765#endif
4766
4767static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4768{
4769 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4770}
4771SLAB_ATTR_RO(destroy_by_rcu);
4772
ab9a0f19
LJ
4773static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4774{
4775 return sprintf(buf, "%d\n", s->reserved);
4776}
4777SLAB_ATTR_RO(reserved);
4778
ab4d5ed5 4779#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4780static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4781{
4782 return show_slab_objects(s, buf, SO_ALL);
4783}
4784SLAB_ATTR_RO(slabs);
4785
205ab99d
CL
4786static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4787{
4788 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4789}
4790SLAB_ATTR_RO(total_objects);
4791
81819f0f
CL
4792static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4793{
4794 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4795}
4796
4797static ssize_t sanity_checks_store(struct kmem_cache *s,
4798 const char *buf, size_t length)
4799{
4800 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4801 if (buf[0] == '1') {
4802 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4803 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4804 }
81819f0f
CL
4805 return length;
4806}
4807SLAB_ATTR(sanity_checks);
4808
4809static ssize_t trace_show(struct kmem_cache *s, char *buf)
4810{
4811 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4812}
4813
4814static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4815 size_t length)
4816{
4817 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4818 if (buf[0] == '1') {
4819 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4820 s->flags |= SLAB_TRACE;
b789ef51 4821 }
81819f0f
CL
4822 return length;
4823}
4824SLAB_ATTR(trace);
4825
81819f0f
CL
4826static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4827{
4828 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4829}
4830
4831static ssize_t red_zone_store(struct kmem_cache *s,
4832 const char *buf, size_t length)
4833{
4834 if (any_slab_objects(s))
4835 return -EBUSY;
4836
4837 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4838 if (buf[0] == '1') {
4839 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4840 s->flags |= SLAB_RED_ZONE;
b789ef51 4841 }
06b285dc 4842 calculate_sizes(s, -1);
81819f0f
CL
4843 return length;
4844}
4845SLAB_ATTR(red_zone);
4846
4847static ssize_t poison_show(struct kmem_cache *s, char *buf)
4848{
4849 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4850}
4851
4852static ssize_t poison_store(struct kmem_cache *s,
4853 const char *buf, size_t length)
4854{
4855 if (any_slab_objects(s))
4856 return -EBUSY;
4857
4858 s->flags &= ~SLAB_POISON;
b789ef51
CL
4859 if (buf[0] == '1') {
4860 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4861 s->flags |= SLAB_POISON;
b789ef51 4862 }
06b285dc 4863 calculate_sizes(s, -1);
81819f0f
CL
4864 return length;
4865}
4866SLAB_ATTR(poison);
4867
4868static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4869{
4870 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4871}
4872
4873static ssize_t store_user_store(struct kmem_cache *s,
4874 const char *buf, size_t length)
4875{
4876 if (any_slab_objects(s))
4877 return -EBUSY;
4878
4879 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4880 if (buf[0] == '1') {
4881 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4882 s->flags |= SLAB_STORE_USER;
b789ef51 4883 }
06b285dc 4884 calculate_sizes(s, -1);
81819f0f
CL
4885 return length;
4886}
4887SLAB_ATTR(store_user);
4888
53e15af0
CL
4889static ssize_t validate_show(struct kmem_cache *s, char *buf)
4890{
4891 return 0;
4892}
4893
4894static ssize_t validate_store(struct kmem_cache *s,
4895 const char *buf, size_t length)
4896{
434e245d
CL
4897 int ret = -EINVAL;
4898
4899 if (buf[0] == '1') {
4900 ret = validate_slab_cache(s);
4901 if (ret >= 0)
4902 ret = length;
4903 }
4904 return ret;
53e15af0
CL
4905}
4906SLAB_ATTR(validate);
a5a84755
CL
4907
4908static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4909{
4910 if (!(s->flags & SLAB_STORE_USER))
4911 return -ENOSYS;
4912 return list_locations(s, buf, TRACK_ALLOC);
4913}
4914SLAB_ATTR_RO(alloc_calls);
4915
4916static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4917{
4918 if (!(s->flags & SLAB_STORE_USER))
4919 return -ENOSYS;
4920 return list_locations(s, buf, TRACK_FREE);
4921}
4922SLAB_ATTR_RO(free_calls);
4923#endif /* CONFIG_SLUB_DEBUG */
4924
4925#ifdef CONFIG_FAILSLAB
4926static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4927{
4928 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4929}
4930
4931static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4932 size_t length)
4933{
4934 s->flags &= ~SLAB_FAILSLAB;
4935 if (buf[0] == '1')
4936 s->flags |= SLAB_FAILSLAB;
4937 return length;
4938}
4939SLAB_ATTR(failslab);
ab4d5ed5 4940#endif
53e15af0 4941
2086d26a
CL
4942static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4943{
4944 return 0;
4945}
4946
4947static ssize_t shrink_store(struct kmem_cache *s,
4948 const char *buf, size_t length)
4949{
4950 if (buf[0] == '1') {
4951 int rc = kmem_cache_shrink(s);
4952
4953 if (rc)
4954 return rc;
4955 } else
4956 return -EINVAL;
4957 return length;
4958}
4959SLAB_ATTR(shrink);
4960
81819f0f 4961#ifdef CONFIG_NUMA
9824601e 4962static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4963{
9824601e 4964 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4965}
4966
9824601e 4967static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4968 const char *buf, size_t length)
4969{
0121c619
CL
4970 unsigned long ratio;
4971 int err;
4972
4973 err = strict_strtoul(buf, 10, &ratio);
4974 if (err)
4975 return err;
4976
e2cb96b7 4977 if (ratio <= 100)
0121c619 4978 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4979
81819f0f
CL
4980 return length;
4981}
9824601e 4982SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4983#endif
4984
8ff12cfc 4985#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4986static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4987{
4988 unsigned long sum = 0;
4989 int cpu;
4990 int len;
4991 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4992
4993 if (!data)
4994 return -ENOMEM;
4995
4996 for_each_online_cpu(cpu) {
9dfc6e68 4997 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4998
4999 data[cpu] = x;
5000 sum += x;
5001 }
5002
5003 len = sprintf(buf, "%lu", sum);
5004
50ef37b9 5005#ifdef CONFIG_SMP
8ff12cfc
CL
5006 for_each_online_cpu(cpu) {
5007 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5008 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5009 }
50ef37b9 5010#endif
8ff12cfc
CL
5011 kfree(data);
5012 return len + sprintf(buf + len, "\n");
5013}
5014
78eb00cc
DR
5015static void clear_stat(struct kmem_cache *s, enum stat_item si)
5016{
5017 int cpu;
5018
5019 for_each_online_cpu(cpu)
9dfc6e68 5020 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5021}
5022
8ff12cfc
CL
5023#define STAT_ATTR(si, text) \
5024static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5025{ \
5026 return show_stat(s, buf, si); \
5027} \
78eb00cc
DR
5028static ssize_t text##_store(struct kmem_cache *s, \
5029 const char *buf, size_t length) \
5030{ \
5031 if (buf[0] != '0') \
5032 return -EINVAL; \
5033 clear_stat(s, si); \
5034 return length; \
5035} \
5036SLAB_ATTR(text); \
8ff12cfc
CL
5037
5038STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5039STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5040STAT_ATTR(FREE_FASTPATH, free_fastpath);
5041STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5042STAT_ATTR(FREE_FROZEN, free_frozen);
5043STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5044STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5045STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5046STAT_ATTR(ALLOC_SLAB, alloc_slab);
5047STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5048STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5049STAT_ATTR(FREE_SLAB, free_slab);
5050STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5051STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5052STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5053STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5054STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5055STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5056STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5057STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5058STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5059STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5060STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5061STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8ff12cfc
CL
5062#endif
5063
06428780 5064static struct attribute *slab_attrs[] = {
81819f0f
CL
5065 &slab_size_attr.attr,
5066 &object_size_attr.attr,
5067 &objs_per_slab_attr.attr,
5068 &order_attr.attr,
73d342b1 5069 &min_partial_attr.attr,
49e22585 5070 &cpu_partial_attr.attr,
81819f0f 5071 &objects_attr.attr,
205ab99d 5072 &objects_partial_attr.attr,
81819f0f
CL
5073 &partial_attr.attr,
5074 &cpu_slabs_attr.attr,
5075 &ctor_attr.attr,
81819f0f
CL
5076 &aliases_attr.attr,
5077 &align_attr.attr,
81819f0f
CL
5078 &hwcache_align_attr.attr,
5079 &reclaim_account_attr.attr,
5080 &destroy_by_rcu_attr.attr,
a5a84755 5081 &shrink_attr.attr,
ab9a0f19 5082 &reserved_attr.attr,
49e22585 5083 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5084#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5085 &total_objects_attr.attr,
5086 &slabs_attr.attr,
5087 &sanity_checks_attr.attr,
5088 &trace_attr.attr,
81819f0f
CL
5089 &red_zone_attr.attr,
5090 &poison_attr.attr,
5091 &store_user_attr.attr,
53e15af0 5092 &validate_attr.attr,
88a420e4
CL
5093 &alloc_calls_attr.attr,
5094 &free_calls_attr.attr,
ab4d5ed5 5095#endif
81819f0f
CL
5096#ifdef CONFIG_ZONE_DMA
5097 &cache_dma_attr.attr,
5098#endif
5099#ifdef CONFIG_NUMA
9824601e 5100 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5101#endif
5102#ifdef CONFIG_SLUB_STATS
5103 &alloc_fastpath_attr.attr,
5104 &alloc_slowpath_attr.attr,
5105 &free_fastpath_attr.attr,
5106 &free_slowpath_attr.attr,
5107 &free_frozen_attr.attr,
5108 &free_add_partial_attr.attr,
5109 &free_remove_partial_attr.attr,
5110 &alloc_from_partial_attr.attr,
5111 &alloc_slab_attr.attr,
5112 &alloc_refill_attr.attr,
e36a2652 5113 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5114 &free_slab_attr.attr,
5115 &cpuslab_flush_attr.attr,
5116 &deactivate_full_attr.attr,
5117 &deactivate_empty_attr.attr,
5118 &deactivate_to_head_attr.attr,
5119 &deactivate_to_tail_attr.attr,
5120 &deactivate_remote_frees_attr.attr,
03e404af 5121 &deactivate_bypass_attr.attr,
65c3376a 5122 &order_fallback_attr.attr,
b789ef51
CL
5123 &cmpxchg_double_fail_attr.attr,
5124 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5125 &cpu_partial_alloc_attr.attr,
5126 &cpu_partial_free_attr.attr,
81819f0f 5127#endif
4c13dd3b
DM
5128#ifdef CONFIG_FAILSLAB
5129 &failslab_attr.attr,
5130#endif
5131
81819f0f
CL
5132 NULL
5133};
5134
5135static struct attribute_group slab_attr_group = {
5136 .attrs = slab_attrs,
5137};
5138
5139static ssize_t slab_attr_show(struct kobject *kobj,
5140 struct attribute *attr,
5141 char *buf)
5142{
5143 struct slab_attribute *attribute;
5144 struct kmem_cache *s;
5145 int err;
5146
5147 attribute = to_slab_attr(attr);
5148 s = to_slab(kobj);
5149
5150 if (!attribute->show)
5151 return -EIO;
5152
5153 err = attribute->show(s, buf);
5154
5155 return err;
5156}
5157
5158static ssize_t slab_attr_store(struct kobject *kobj,
5159 struct attribute *attr,
5160 const char *buf, size_t len)
5161{
5162 struct slab_attribute *attribute;
5163 struct kmem_cache *s;
5164 int err;
5165
5166 attribute = to_slab_attr(attr);
5167 s = to_slab(kobj);
5168
5169 if (!attribute->store)
5170 return -EIO;
5171
5172 err = attribute->store(s, buf, len);
5173
5174 return err;
5175}
5176
151c602f
CL
5177static void kmem_cache_release(struct kobject *kobj)
5178{
5179 struct kmem_cache *s = to_slab(kobj);
5180
84c1cf62 5181 kfree(s->name);
151c602f
CL
5182 kfree(s);
5183}
5184
52cf25d0 5185static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5186 .show = slab_attr_show,
5187 .store = slab_attr_store,
5188};
5189
5190static struct kobj_type slab_ktype = {
5191 .sysfs_ops = &slab_sysfs_ops,
151c602f 5192 .release = kmem_cache_release
81819f0f
CL
5193};
5194
5195static int uevent_filter(struct kset *kset, struct kobject *kobj)
5196{
5197 struct kobj_type *ktype = get_ktype(kobj);
5198
5199 if (ktype == &slab_ktype)
5200 return 1;
5201 return 0;
5202}
5203
9cd43611 5204static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5205 .filter = uevent_filter,
5206};
5207
27c3a314 5208static struct kset *slab_kset;
81819f0f
CL
5209
5210#define ID_STR_LENGTH 64
5211
5212/* Create a unique string id for a slab cache:
6446faa2
CL
5213 *
5214 * Format :[flags-]size
81819f0f
CL
5215 */
5216static char *create_unique_id(struct kmem_cache *s)
5217{
5218 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5219 char *p = name;
5220
5221 BUG_ON(!name);
5222
5223 *p++ = ':';
5224 /*
5225 * First flags affecting slabcache operations. We will only
5226 * get here for aliasable slabs so we do not need to support
5227 * too many flags. The flags here must cover all flags that
5228 * are matched during merging to guarantee that the id is
5229 * unique.
5230 */
5231 if (s->flags & SLAB_CACHE_DMA)
5232 *p++ = 'd';
5233 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5234 *p++ = 'a';
5235 if (s->flags & SLAB_DEBUG_FREE)
5236 *p++ = 'F';
5a896d9e
VN
5237 if (!(s->flags & SLAB_NOTRACK))
5238 *p++ = 't';
81819f0f
CL
5239 if (p != name + 1)
5240 *p++ = '-';
5241 p += sprintf(p, "%07d", s->size);
5242 BUG_ON(p > name + ID_STR_LENGTH - 1);
5243 return name;
5244}
5245
5246static int sysfs_slab_add(struct kmem_cache *s)
5247{
5248 int err;
5249 const char *name;
5250 int unmergeable;
5251
5252 if (slab_state < SYSFS)
5253 /* Defer until later */
5254 return 0;
5255
5256 unmergeable = slab_unmergeable(s);
5257 if (unmergeable) {
5258 /*
5259 * Slabcache can never be merged so we can use the name proper.
5260 * This is typically the case for debug situations. In that
5261 * case we can catch duplicate names easily.
5262 */
27c3a314 5263 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5264 name = s->name;
5265 } else {
5266 /*
5267 * Create a unique name for the slab as a target
5268 * for the symlinks.
5269 */
5270 name = create_unique_id(s);
5271 }
5272
27c3a314 5273 s->kobj.kset = slab_kset;
1eada11c
GKH
5274 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5275 if (err) {
5276 kobject_put(&s->kobj);
81819f0f 5277 return err;
1eada11c 5278 }
81819f0f
CL
5279
5280 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5281 if (err) {
5282 kobject_del(&s->kobj);
5283 kobject_put(&s->kobj);
81819f0f 5284 return err;
5788d8ad 5285 }
81819f0f
CL
5286 kobject_uevent(&s->kobj, KOBJ_ADD);
5287 if (!unmergeable) {
5288 /* Setup first alias */
5289 sysfs_slab_alias(s, s->name);
5290 kfree(name);
5291 }
5292 return 0;
5293}
5294
5295static void sysfs_slab_remove(struct kmem_cache *s)
5296{
2bce6485
CL
5297 if (slab_state < SYSFS)
5298 /*
5299 * Sysfs has not been setup yet so no need to remove the
5300 * cache from sysfs.
5301 */
5302 return;
5303
81819f0f
CL
5304 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5305 kobject_del(&s->kobj);
151c602f 5306 kobject_put(&s->kobj);
81819f0f
CL
5307}
5308
5309/*
5310 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5311 * available lest we lose that information.
81819f0f
CL
5312 */
5313struct saved_alias {
5314 struct kmem_cache *s;
5315 const char *name;
5316 struct saved_alias *next;
5317};
5318
5af328a5 5319static struct saved_alias *alias_list;
81819f0f
CL
5320
5321static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5322{
5323 struct saved_alias *al;
5324
5325 if (slab_state == SYSFS) {
5326 /*
5327 * If we have a leftover link then remove it.
5328 */
27c3a314
GKH
5329 sysfs_remove_link(&slab_kset->kobj, name);
5330 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5331 }
5332
5333 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5334 if (!al)
5335 return -ENOMEM;
5336
5337 al->s = s;
5338 al->name = name;
5339 al->next = alias_list;
5340 alias_list = al;
5341 return 0;
5342}
5343
5344static int __init slab_sysfs_init(void)
5345{
5b95a4ac 5346 struct kmem_cache *s;
81819f0f
CL
5347 int err;
5348
2bce6485
CL
5349 down_write(&slub_lock);
5350
0ff21e46 5351 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5352 if (!slab_kset) {
2bce6485 5353 up_write(&slub_lock);
81819f0f
CL
5354 printk(KERN_ERR "Cannot register slab subsystem.\n");
5355 return -ENOSYS;
5356 }
5357
26a7bd03
CL
5358 slab_state = SYSFS;
5359
5b95a4ac 5360 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5361 err = sysfs_slab_add(s);
5d540fb7
CL
5362 if (err)
5363 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5364 " to sysfs\n", s->name);
26a7bd03 5365 }
81819f0f
CL
5366
5367 while (alias_list) {
5368 struct saved_alias *al = alias_list;
5369
5370 alias_list = alias_list->next;
5371 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5372 if (err)
5373 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5374 " %s to sysfs\n", s->name);
81819f0f
CL
5375 kfree(al);
5376 }
5377
2bce6485 5378 up_write(&slub_lock);
81819f0f
CL
5379 resiliency_test();
5380 return 0;
5381}
5382
5383__initcall(slab_sysfs_init);
ab4d5ed5 5384#endif /* CONFIG_SYSFS */
57ed3eda
PE
5385
5386/*
5387 * The /proc/slabinfo ABI
5388 */
158a9624 5389#ifdef CONFIG_SLABINFO
57ed3eda
PE
5390static void print_slabinfo_header(struct seq_file *m)
5391{
5392 seq_puts(m, "slabinfo - version: 2.1\n");
5393 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5394 "<objperslab> <pagesperslab>");
5395 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5396 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5397 seq_putc(m, '\n');
5398}
5399
5400static void *s_start(struct seq_file *m, loff_t *pos)
5401{
5402 loff_t n = *pos;
5403
5404 down_read(&slub_lock);
5405 if (!n)
5406 print_slabinfo_header(m);
5407
5408 return seq_list_start(&slab_caches, *pos);
5409}
5410
5411static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5412{
5413 return seq_list_next(p, &slab_caches, pos);
5414}
5415
5416static void s_stop(struct seq_file *m, void *p)
5417{
5418 up_read(&slub_lock);
5419}
5420
5421static int s_show(struct seq_file *m, void *p)
5422{
5423 unsigned long nr_partials = 0;
5424 unsigned long nr_slabs = 0;
5425 unsigned long nr_inuse = 0;
205ab99d
CL
5426 unsigned long nr_objs = 0;
5427 unsigned long nr_free = 0;
57ed3eda
PE
5428 struct kmem_cache *s;
5429 int node;
5430
5431 s = list_entry(p, struct kmem_cache, list);
5432
5433 for_each_online_node(node) {
5434 struct kmem_cache_node *n = get_node(s, node);
5435
5436 if (!n)
5437 continue;
5438
5439 nr_partials += n->nr_partial;
5440 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5441 nr_objs += atomic_long_read(&n->total_objects);
5442 nr_free += count_partial(n, count_free);
57ed3eda
PE
5443 }
5444
205ab99d 5445 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5446
5447 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5448 nr_objs, s->size, oo_objects(s->oo),
5449 (1 << oo_order(s->oo)));
57ed3eda
PE
5450 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5451 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5452 0UL);
5453 seq_putc(m, '\n');
5454 return 0;
5455}
5456
7b3c3a50 5457static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5458 .start = s_start,
5459 .next = s_next,
5460 .stop = s_stop,
5461 .show = s_show,
5462};
5463
7b3c3a50
AD
5464static int slabinfo_open(struct inode *inode, struct file *file)
5465{
5466 return seq_open(file, &slabinfo_op);
5467}
5468
5469static const struct file_operations proc_slabinfo_operations = {
5470 .open = slabinfo_open,
5471 .read = seq_read,
5472 .llseek = seq_lseek,
5473 .release = seq_release,
5474};
5475
5476static int __init slab_proc_init(void)
5477{
ab067e99 5478 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5479 return 0;
5480}
5481module_init(slab_proc_init);
158a9624 5482#endif /* CONFIG_SLABINFO */