SLUB: add CONFIG_SLUB_DEBUG
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
672bba3a
CL
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 71 * freed then the slab will show up again on the partial lists.
672bba3a
CL
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
81819f0f
CL
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
81 * PageActive The slab is used as a cpu cache. Allocations
82 * may be performed from the slab. The slab is not
83 * on any slab list and cannot be moved onto one.
84 *
85 * PageError Slab requires special handling due to debug
86 * options set. This moves slab handling out of
87 * the fast path.
88 */
89
35e5d7ee
CL
90static inline int SlabDebug(struct page *page)
91{
41ecc55b 92#ifdef CONFIG_SLUB_DEBUG
35e5d7ee 93 return PageError(page);
41ecc55b
CL
94#else
95 return 0;
96#endif
35e5d7ee
CL
97}
98
99static inline void SetSlabDebug(struct page *page)
100{
41ecc55b 101#ifdef CONFIG_SLUB_DEBUG
35e5d7ee 102 SetPageError(page);
41ecc55b 103#endif
35e5d7ee
CL
104}
105
106static inline void ClearSlabDebug(struct page *page)
107{
41ecc55b 108#ifdef CONFIG_SLUB_DEBUG
35e5d7ee 109 ClearPageError(page);
41ecc55b 110#endif
35e5d7ee
CL
111}
112
81819f0f
CL
113/*
114 * Issues still to be resolved:
115 *
116 * - The per cpu array is updated for each new slab and and is a remote
117 * cacheline for most nodes. This could become a bouncing cacheline given
672bba3a
CL
118 * enough frequent updates. There are 16 pointers in a cacheline, so at
119 * max 16 cpus could compete for the cacheline which may be okay.
81819f0f
CL
120 *
121 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
122 *
81819f0f
CL
123 * - Variable sizing of the per node arrays
124 */
125
126/* Enable to test recovery from slab corruption on boot */
127#undef SLUB_RESILIENCY_TEST
128
129#if PAGE_SHIFT <= 12
130
131/*
132 * Small page size. Make sure that we do not fragment memory
133 */
134#define DEFAULT_MAX_ORDER 1
135#define DEFAULT_MIN_OBJECTS 4
136
137#else
138
139/*
140 * Large page machines are customarily able to handle larger
141 * page orders.
142 */
143#define DEFAULT_MAX_ORDER 2
144#define DEFAULT_MIN_OBJECTS 8
145
146#endif
147
2086d26a
CL
148/*
149 * Mininum number of partial slabs. These will be left on the partial
150 * lists even if they are empty. kmem_cache_shrink may reclaim them.
151 */
e95eed57
CL
152#define MIN_PARTIAL 2
153
2086d26a
CL
154/*
155 * Maximum number of desirable partial slabs.
156 * The existence of more partial slabs makes kmem_cache_shrink
157 * sort the partial list by the number of objects in the.
158 */
159#define MAX_PARTIAL 10
160
81819f0f
CL
161#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
162 SLAB_POISON | SLAB_STORE_USER)
672bba3a 163
81819f0f
CL
164/*
165 * Set of flags that will prevent slab merging
166 */
167#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
169
170#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
171 SLAB_CACHE_DMA)
172
173#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 174#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
175#endif
176
177#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 178#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
179#endif
180
181/* Internal SLUB flags */
182#define __OBJECT_POISON 0x80000000 /* Poison object */
183
65c02d4c
CL
184/* Not all arches define cache_line_size */
185#ifndef cache_line_size
186#define cache_line_size() L1_CACHE_BYTES
187#endif
188
81819f0f
CL
189static int kmem_size = sizeof(struct kmem_cache);
190
191#ifdef CONFIG_SMP
192static struct notifier_block slab_notifier;
193#endif
194
195static enum {
196 DOWN, /* No slab functionality available */
197 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 198 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
199 SYSFS /* Sysfs up */
200} slab_state = DOWN;
201
202/* A list of all slab caches on the system */
203static DECLARE_RWSEM(slub_lock);
204LIST_HEAD(slab_caches);
205
02cbc874
CL
206/*
207 * Tracking user of a slab.
208 */
209struct track {
210 void *addr; /* Called from address */
211 int cpu; /* Was running on cpu */
212 int pid; /* Pid context */
213 unsigned long when; /* When did the operation occur */
214};
215
216enum track_item { TRACK_ALLOC, TRACK_FREE };
217
41ecc55b 218#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
219static int sysfs_slab_add(struct kmem_cache *);
220static int sysfs_slab_alias(struct kmem_cache *, const char *);
221static void sysfs_slab_remove(struct kmem_cache *);
222#else
223static int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224static int sysfs_slab_alias(struct kmem_cache *s, const char *p) { return 0; }
225static void sysfs_slab_remove(struct kmem_cache *s) {}
226#endif
227
228/********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
231
232int slab_is_available(void)
233{
234 return slab_state >= UP;
235}
236
237static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
238{
239#ifdef CONFIG_NUMA
240 return s->node[node];
241#else
242 return &s->local_node;
243#endif
244}
245
02cbc874
CL
246static inline int check_valid_pointer(struct kmem_cache *s,
247 struct page *page, const void *object)
248{
249 void *base;
250
251 if (!object)
252 return 1;
253
254 base = page_address(page);
255 if (object < base || object >= base + s->objects * s->size ||
256 (object - base) % s->size) {
257 return 0;
258 }
259
260 return 1;
261}
262
7656c72b
CL
263/*
264 * Slow version of get and set free pointer.
265 *
266 * This version requires touching the cache lines of kmem_cache which
267 * we avoid to do in the fast alloc free paths. There we obtain the offset
268 * from the page struct.
269 */
270static inline void *get_freepointer(struct kmem_cache *s, void *object)
271{
272 return *(void **)(object + s->offset);
273}
274
275static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
276{
277 *(void **)(object + s->offset) = fp;
278}
279
280/* Loop over all objects in a slab */
281#define for_each_object(__p, __s, __addr) \
282 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
283 __p += (__s)->size)
284
285/* Scan freelist */
286#define for_each_free_object(__p, __s, __free) \
287 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
288
289/* Determine object index from a given position */
290static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
291{
292 return (p - addr) / s->size;
293}
294
41ecc55b
CL
295#ifdef CONFIG_SLUB_DEBUG
296/*
297 * Debug settings:
298 */
299static int slub_debug;
300
301static char *slub_debug_slabs;
302
81819f0f
CL
303/*
304 * Object debugging
305 */
306static void print_section(char *text, u8 *addr, unsigned int length)
307{
308 int i, offset;
309 int newline = 1;
310 char ascii[17];
311
312 ascii[16] = 0;
313
314 for (i = 0; i < length; i++) {
315 if (newline) {
316 printk(KERN_ERR "%10s 0x%p: ", text, addr + i);
317 newline = 0;
318 }
319 printk(" %02x", addr[i]);
320 offset = i % 16;
321 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
322 if (offset == 15) {
323 printk(" %s\n",ascii);
324 newline = 1;
325 }
326 }
327 if (!newline) {
328 i %= 16;
329 while (i < 16) {
330 printk(" ");
331 ascii[i] = ' ';
332 i++;
333 }
334 printk(" %s\n", ascii);
335 }
336}
337
81819f0f
CL
338static struct track *get_track(struct kmem_cache *s, void *object,
339 enum track_item alloc)
340{
341 struct track *p;
342
343 if (s->offset)
344 p = object + s->offset + sizeof(void *);
345 else
346 p = object + s->inuse;
347
348 return p + alloc;
349}
350
351static void set_track(struct kmem_cache *s, void *object,
352 enum track_item alloc, void *addr)
353{
354 struct track *p;
355
356 if (s->offset)
357 p = object + s->offset + sizeof(void *);
358 else
359 p = object + s->inuse;
360
361 p += alloc;
362 if (addr) {
363 p->addr = addr;
364 p->cpu = smp_processor_id();
365 p->pid = current ? current->pid : -1;
366 p->when = jiffies;
367 } else
368 memset(p, 0, sizeof(struct track));
369}
370
81819f0f
CL
371static void init_tracking(struct kmem_cache *s, void *object)
372{
373 if (s->flags & SLAB_STORE_USER) {
374 set_track(s, object, TRACK_FREE, NULL);
375 set_track(s, object, TRACK_ALLOC, NULL);
376 }
377}
378
379static void print_track(const char *s, struct track *t)
380{
381 if (!t->addr)
382 return;
383
384 printk(KERN_ERR "%s: ", s);
385 __print_symbol("%s", (unsigned long)t->addr);
386 printk(" jiffies_ago=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
387}
388
389static void print_trailer(struct kmem_cache *s, u8 *p)
390{
391 unsigned int off; /* Offset of last byte */
392
393 if (s->flags & SLAB_RED_ZONE)
394 print_section("Redzone", p + s->objsize,
395 s->inuse - s->objsize);
396
397 printk(KERN_ERR "FreePointer 0x%p -> 0x%p\n",
398 p + s->offset,
399 get_freepointer(s, p));
400
401 if (s->offset)
402 off = s->offset + sizeof(void *);
403 else
404 off = s->inuse;
405
406 if (s->flags & SLAB_STORE_USER) {
407 print_track("Last alloc", get_track(s, p, TRACK_ALLOC));
408 print_track("Last free ", get_track(s, p, TRACK_FREE));
409 off += 2 * sizeof(struct track);
410 }
411
412 if (off != s->size)
413 /* Beginning of the filler is the free pointer */
414 print_section("Filler", p + off, s->size - off);
415}
416
417static void object_err(struct kmem_cache *s, struct page *page,
418 u8 *object, char *reason)
419{
420 u8 *addr = page_address(page);
421
422 printk(KERN_ERR "*** SLUB %s: %s@0x%p slab 0x%p\n",
423 s->name, reason, object, page);
424 printk(KERN_ERR " offset=%tu flags=0x%04lx inuse=%u freelist=0x%p\n",
425 object - addr, page->flags, page->inuse, page->freelist);
426 if (object > addr + 16)
427 print_section("Bytes b4", object - 16, 16);
428 print_section("Object", object, min(s->objsize, 128));
429 print_trailer(s, object);
430 dump_stack();
431}
432
433static void slab_err(struct kmem_cache *s, struct page *page, char *reason, ...)
434{
435 va_list args;
436 char buf[100];
437
438 va_start(args, reason);
439 vsnprintf(buf, sizeof(buf), reason, args);
440 va_end(args);
441 printk(KERN_ERR "*** SLUB %s: %s in slab @0x%p\n", s->name, buf,
442 page);
443 dump_stack();
444}
445
446static void init_object(struct kmem_cache *s, void *object, int active)
447{
448 u8 *p = object;
449
450 if (s->flags & __OBJECT_POISON) {
451 memset(p, POISON_FREE, s->objsize - 1);
452 p[s->objsize -1] = POISON_END;
453 }
454
455 if (s->flags & SLAB_RED_ZONE)
456 memset(p + s->objsize,
457 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
458 s->inuse - s->objsize);
459}
460
461static int check_bytes(u8 *start, unsigned int value, unsigned int bytes)
462{
463 while (bytes) {
464 if (*start != (u8)value)
465 return 0;
466 start++;
467 bytes--;
468 }
469 return 1;
470}
471
81819f0f
CL
472/*
473 * Object layout:
474 *
475 * object address
476 * Bytes of the object to be managed.
477 * If the freepointer may overlay the object then the free
478 * pointer is the first word of the object.
672bba3a 479 *
81819f0f
CL
480 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
481 * 0xa5 (POISON_END)
482 *
483 * object + s->objsize
484 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
485 * Padding is extended by another word if Redzoning is enabled and
486 * objsize == inuse.
487 *
81819f0f
CL
488 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
489 * 0xcc (RED_ACTIVE) for objects in use.
490 *
491 * object + s->inuse
672bba3a
CL
492 * Meta data starts here.
493 *
81819f0f
CL
494 * A. Free pointer (if we cannot overwrite object on free)
495 * B. Tracking data for SLAB_STORE_USER
672bba3a
CL
496 * C. Padding to reach required alignment boundary or at mininum
497 * one word if debuggin is on to be able to detect writes
498 * before the word boundary.
499 *
500 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
501 *
502 * object + s->size
672bba3a 503 * Nothing is used beyond s->size.
81819f0f 504 *
672bba3a
CL
505 * If slabcaches are merged then the objsize and inuse boundaries are mostly
506 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
507 * may be used with merged slabcaches.
508 */
509
510static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
511 void *from, void *to)
512{
70d71228 513 printk(KERN_ERR "@@@ SLUB %s: Restoring %s (0x%x) from 0x%p-0x%p\n",
81819f0f
CL
514 s->name, message, data, from, to - 1);
515 memset(from, data, to - from);
516}
517
518static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
519{
520 unsigned long off = s->inuse; /* The end of info */
521
522 if (s->offset)
523 /* Freepointer is placed after the object. */
524 off += sizeof(void *);
525
526 if (s->flags & SLAB_STORE_USER)
527 /* We also have user information there */
528 off += 2 * sizeof(struct track);
529
530 if (s->size == off)
531 return 1;
532
533 if (check_bytes(p + off, POISON_INUSE, s->size - off))
534 return 1;
535
536 object_err(s, page, p, "Object padding check fails");
537
538 /*
539 * Restore padding
540 */
541 restore_bytes(s, "object padding", POISON_INUSE, p + off, p + s->size);
542 return 0;
543}
544
545static int slab_pad_check(struct kmem_cache *s, struct page *page)
546{
547 u8 *p;
548 int length, remainder;
549
550 if (!(s->flags & SLAB_POISON))
551 return 1;
552
553 p = page_address(page);
554 length = s->objects * s->size;
555 remainder = (PAGE_SIZE << s->order) - length;
556 if (!remainder)
557 return 1;
558
559 if (!check_bytes(p + length, POISON_INUSE, remainder)) {
70d71228 560 slab_err(s, page, "Padding check failed");
81819f0f
CL
561 restore_bytes(s, "slab padding", POISON_INUSE, p + length,
562 p + length + remainder);
563 return 0;
564 }
565 return 1;
566}
567
568static int check_object(struct kmem_cache *s, struct page *page,
569 void *object, int active)
570{
571 u8 *p = object;
572 u8 *endobject = object + s->objsize;
573
574 if (s->flags & SLAB_RED_ZONE) {
575 unsigned int red =
576 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
577
578 if (!check_bytes(endobject, red, s->inuse - s->objsize)) {
579 object_err(s, page, object,
580 active ? "Redzone Active" : "Redzone Inactive");
581 restore_bytes(s, "redzone", red,
582 endobject, object + s->inuse);
583 return 0;
584 }
585 } else {
586 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse &&
587 !check_bytes(endobject, POISON_INUSE,
588 s->inuse - s->objsize)) {
589 object_err(s, page, p, "Alignment padding check fails");
590 /*
591 * Fix it so that there will not be another report.
592 *
593 * Hmmm... We may be corrupting an object that now expects
594 * to be longer than allowed.
595 */
596 restore_bytes(s, "alignment padding", POISON_INUSE,
597 endobject, object + s->inuse);
598 }
599 }
600
601 if (s->flags & SLAB_POISON) {
602 if (!active && (s->flags & __OBJECT_POISON) &&
603 (!check_bytes(p, POISON_FREE, s->objsize - 1) ||
604 p[s->objsize - 1] != POISON_END)) {
605
606 object_err(s, page, p, "Poison check failed");
607 restore_bytes(s, "Poison", POISON_FREE,
608 p, p + s->objsize -1);
609 restore_bytes(s, "Poison", POISON_END,
610 p + s->objsize - 1, p + s->objsize);
611 return 0;
612 }
613 /*
614 * check_pad_bytes cleans up on its own.
615 */
616 check_pad_bytes(s, page, p);
617 }
618
619 if (!s->offset && active)
620 /*
621 * Object and freepointer overlap. Cannot check
622 * freepointer while object is allocated.
623 */
624 return 1;
625
626 /* Check free pointer validity */
627 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
628 object_err(s, page, p, "Freepointer corrupt");
629 /*
630 * No choice but to zap it and thus loose the remainder
631 * of the free objects in this slab. May cause
672bba3a 632 * another error because the object count is now wrong.
81819f0f
CL
633 */
634 set_freepointer(s, p, NULL);
635 return 0;
636 }
637 return 1;
638}
639
640static int check_slab(struct kmem_cache *s, struct page *page)
641{
642 VM_BUG_ON(!irqs_disabled());
643
644 if (!PageSlab(page)) {
70d71228
CL
645 slab_err(s, page, "Not a valid slab page flags=%lx "
646 "mapping=0x%p count=%d", page->flags, page->mapping,
81819f0f
CL
647 page_count(page));
648 return 0;
649 }
650 if (page->offset * sizeof(void *) != s->offset) {
70d71228
CL
651 slab_err(s, page, "Corrupted offset %lu flags=0x%lx "
652 "mapping=0x%p count=%d",
81819f0f 653 (unsigned long)(page->offset * sizeof(void *)),
81819f0f
CL
654 page->flags,
655 page->mapping,
656 page_count(page));
81819f0f
CL
657 return 0;
658 }
659 if (page->inuse > s->objects) {
70d71228
CL
660 slab_err(s, page, "inuse %u > max %u @0x%p flags=%lx "
661 "mapping=0x%p count=%d",
662 s->name, page->inuse, s->objects, page->flags,
81819f0f 663 page->mapping, page_count(page));
81819f0f
CL
664 return 0;
665 }
666 /* Slab_pad_check fixes things up after itself */
667 slab_pad_check(s, page);
668 return 1;
669}
670
671/*
672bba3a
CL
672 * Determine if a certain object on a page is on the freelist. Must hold the
673 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
674 */
675static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
676{
677 int nr = 0;
678 void *fp = page->freelist;
679 void *object = NULL;
680
681 while (fp && nr <= s->objects) {
682 if (fp == search)
683 return 1;
684 if (!check_valid_pointer(s, page, fp)) {
685 if (object) {
686 object_err(s, page, object,
687 "Freechain corrupt");
688 set_freepointer(s, object, NULL);
689 break;
690 } else {
70d71228
CL
691 slab_err(s, page, "Freepointer 0x%p corrupt",
692 fp);
81819f0f
CL
693 page->freelist = NULL;
694 page->inuse = s->objects;
70d71228
CL
695 printk(KERN_ERR "@@@ SLUB %s: Freelist "
696 "cleared. Slab 0x%p\n",
697 s->name, page);
81819f0f
CL
698 return 0;
699 }
700 break;
701 }
702 object = fp;
703 fp = get_freepointer(s, object);
704 nr++;
705 }
706
707 if (page->inuse != s->objects - nr) {
70d71228
CL
708 slab_err(s, page, "Wrong object count. Counter is %d but "
709 "counted were %d", s, page, page->inuse,
710 s->objects - nr);
81819f0f 711 page->inuse = s->objects - nr;
70d71228
CL
712 printk(KERN_ERR "@@@ SLUB %s: Object count adjusted. "
713 "Slab @0x%p\n", s->name, page);
81819f0f
CL
714 }
715 return search == NULL;
716}
717
643b1138 718/*
672bba3a 719 * Tracking of fully allocated slabs for debugging purposes.
643b1138 720 */
e95eed57 721static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 722{
643b1138
CL
723 spin_lock(&n->list_lock);
724 list_add(&page->lru, &n->full);
725 spin_unlock(&n->list_lock);
726}
727
728static void remove_full(struct kmem_cache *s, struct page *page)
729{
730 struct kmem_cache_node *n;
731
732 if (!(s->flags & SLAB_STORE_USER))
733 return;
734
735 n = get_node(s, page_to_nid(page));
736
737 spin_lock(&n->list_lock);
738 list_del(&page->lru);
739 spin_unlock(&n->list_lock);
740}
741
81819f0f
CL
742static int alloc_object_checks(struct kmem_cache *s, struct page *page,
743 void *object)
744{
745 if (!check_slab(s, page))
746 goto bad;
747
748 if (object && !on_freelist(s, page, object)) {
70d71228
CL
749 slab_err(s, page, "Object 0x%p already allocated", object);
750 goto bad;
81819f0f
CL
751 }
752
753 if (!check_valid_pointer(s, page, object)) {
754 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 755 goto bad;
81819f0f
CL
756 }
757
758 if (!object)
759 return 1;
760
761 if (!check_object(s, page, object, 0))
762 goto bad;
81819f0f 763
81819f0f 764 return 1;
81819f0f
CL
765bad:
766 if (PageSlab(page)) {
767 /*
768 * If this is a slab page then lets do the best we can
769 * to avoid issues in the future. Marking all objects
672bba3a 770 * as used avoids touching the remaining objects.
81819f0f
CL
771 */
772 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
773 s->name, page);
774 page->inuse = s->objects;
775 page->freelist = NULL;
776 /* Fix up fields that may be corrupted */
777 page->offset = s->offset / sizeof(void *);
778 }
779 return 0;
780}
781
782static int free_object_checks(struct kmem_cache *s, struct page *page,
783 void *object)
784{
785 if (!check_slab(s, page))
786 goto fail;
787
788 if (!check_valid_pointer(s, page, object)) {
70d71228 789 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
790 goto fail;
791 }
792
793 if (on_freelist(s, page, object)) {
70d71228 794 slab_err(s, page, "Object 0x%p already free", object);
81819f0f
CL
795 goto fail;
796 }
797
798 if (!check_object(s, page, object, 1))
799 return 0;
800
801 if (unlikely(s != page->slab)) {
802 if (!PageSlab(page))
70d71228
CL
803 slab_err(s, page, "Attempt to free object(0x%p) "
804 "outside of slab", object);
81819f0f 805 else
70d71228 806 if (!page->slab) {
81819f0f 807 printk(KERN_ERR
70d71228 808 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 809 object);
70d71228
CL
810 dump_stack();
811 }
81819f0f 812 else
70d71228
CL
813 slab_err(s, page, "object at 0x%p belongs "
814 "to slab %s", object, page->slab->name);
81819f0f
CL
815 goto fail;
816 }
81819f0f
CL
817 return 1;
818fail:
81819f0f
CL
819 printk(KERN_ERR "@@@ SLUB: %s slab 0x%p object at 0x%p not freed.\n",
820 s->name, page, object);
821 return 0;
822}
823
636f0d7d
CL
824static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
825{
826 if (s->flags & SLAB_TRACE) {
827 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
828 s->name,
829 alloc ? "alloc" : "free",
830 object, page->inuse,
831 page->freelist);
832
833 if (!alloc)
834 print_section("Object", (void *)object, s->objsize);
835
836 dump_stack();
837 }
838}
839
41ecc55b
CL
840static int __init setup_slub_debug(char *str)
841{
842 if (!str || *str != '=')
843 slub_debug = DEBUG_DEFAULT_FLAGS;
844 else {
845 str++;
846 if (*str == 0 || *str == ',')
847 slub_debug = DEBUG_DEFAULT_FLAGS;
848 else
849 for( ;*str && *str != ','; str++)
850 switch (*str) {
851 case 'f' : case 'F' :
852 slub_debug |= SLAB_DEBUG_FREE;
853 break;
854 case 'z' : case 'Z' :
855 slub_debug |= SLAB_RED_ZONE;
856 break;
857 case 'p' : case 'P' :
858 slub_debug |= SLAB_POISON;
859 break;
860 case 'u' : case 'U' :
861 slub_debug |= SLAB_STORE_USER;
862 break;
863 case 't' : case 'T' :
864 slub_debug |= SLAB_TRACE;
865 break;
866 default:
867 printk(KERN_ERR "slub_debug option '%c' "
868 "unknown. skipped\n",*str);
869 }
870 }
871
872 if (*str == ',')
873 slub_debug_slabs = str + 1;
874 return 1;
875}
876
877__setup("slub_debug", setup_slub_debug);
878
879static void kmem_cache_open_debug_check(struct kmem_cache *s)
880{
881 /*
882 * The page->offset field is only 16 bit wide. This is an offset
883 * in units of words from the beginning of an object. If the slab
884 * size is bigger then we cannot move the free pointer behind the
885 * object anymore.
886 *
887 * On 32 bit platforms the limit is 256k. On 64bit platforms
888 * the limit is 512k.
889 *
890 * Debugging or ctor/dtors may create a need to move the free
891 * pointer. Fail if this happens.
892 */
893 if (s->size >= 65535 * sizeof(void *)) {
894 BUG_ON(s->flags & (SLAB_RED_ZONE | SLAB_POISON |
895 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
896 BUG_ON(s->ctor || s->dtor);
897 }
898 else
899 /*
900 * Enable debugging if selected on the kernel commandline.
901 */
902 if (slub_debug && (!slub_debug_slabs ||
903 strncmp(slub_debug_slabs, s->name,
904 strlen(slub_debug_slabs)) == 0))
905 s->flags |= slub_debug;
906}
907#else
908
909static inline int alloc_object_checks(struct kmem_cache *s,
910 struct page *page, void *object) { return 0; }
911
912static inline int free_object_checks(struct kmem_cache *s,
913 struct page *page, void *object) { return 0; }
914
915static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
916static inline void remove_full(struct kmem_cache *s, struct page *page) {}
917static inline void trace(struct kmem_cache *s, struct page *page,
918 void *object, int alloc) {}
919static inline void init_object(struct kmem_cache *s,
920 void *object, int active) {}
921static inline void init_tracking(struct kmem_cache *s, void *object) {}
922static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
923 { return 1; }
924static inline int check_object(struct kmem_cache *s, struct page *page,
925 void *object, int active) { return 1; }
926static inline void set_track(struct kmem_cache *s, void *object,
927 enum track_item alloc, void *addr) {}
928static inline void kmem_cache_open_debug_check(struct kmem_cache *s) {}
929#define slub_debug 0
930#endif
81819f0f
CL
931/*
932 * Slab allocation and freeing
933 */
934static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
935{
936 struct page * page;
937 int pages = 1 << s->order;
938
939 if (s->order)
940 flags |= __GFP_COMP;
941
942 if (s->flags & SLAB_CACHE_DMA)
943 flags |= SLUB_DMA;
944
945 if (node == -1)
946 page = alloc_pages(flags, s->order);
947 else
948 page = alloc_pages_node(node, flags, s->order);
949
950 if (!page)
951 return NULL;
952
953 mod_zone_page_state(page_zone(page),
954 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
955 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
956 pages);
957
958 return page;
959}
960
961static void setup_object(struct kmem_cache *s, struct page *page,
962 void *object)
963{
35e5d7ee 964 if (SlabDebug(page)) {
81819f0f
CL
965 init_object(s, object, 0);
966 init_tracking(s, object);
967 }
968
4f104934
CL
969 if (unlikely(s->ctor))
970 s->ctor(object, s, SLAB_CTOR_CONSTRUCTOR);
81819f0f
CL
971}
972
973static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
974{
975 struct page *page;
976 struct kmem_cache_node *n;
977 void *start;
978 void *end;
979 void *last;
980 void *p;
981
81819f0f
CL
982 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
983
984 if (flags & __GFP_WAIT)
985 local_irq_enable();
986
987 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
988 if (!page)
989 goto out;
990
991 n = get_node(s, page_to_nid(page));
992 if (n)
993 atomic_long_inc(&n->nr_slabs);
994 page->offset = s->offset / sizeof(void *);
995 page->slab = s;
996 page->flags |= 1 << PG_slab;
997 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
998 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 999 SetSlabDebug(page);
81819f0f
CL
1000
1001 start = page_address(page);
1002 end = start + s->objects * s->size;
1003
1004 if (unlikely(s->flags & SLAB_POISON))
1005 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1006
1007 last = start;
7656c72b 1008 for_each_object(p, s, start) {
81819f0f
CL
1009 setup_object(s, page, last);
1010 set_freepointer(s, last, p);
1011 last = p;
1012 }
1013 setup_object(s, page, last);
1014 set_freepointer(s, last, NULL);
1015
1016 page->freelist = start;
1017 page->inuse = 0;
1018out:
1019 if (flags & __GFP_WAIT)
1020 local_irq_disable();
1021 return page;
1022}
1023
1024static void __free_slab(struct kmem_cache *s, struct page *page)
1025{
1026 int pages = 1 << s->order;
1027
35e5d7ee 1028 if (unlikely(SlabDebug(page) || s->dtor)) {
81819f0f
CL
1029 void *p;
1030
1031 slab_pad_check(s, page);
7656c72b 1032 for_each_object(p, s, page_address(page)) {
81819f0f
CL
1033 if (s->dtor)
1034 s->dtor(p, s, 0);
1035 check_object(s, page, p, 0);
1036 }
1037 }
1038
1039 mod_zone_page_state(page_zone(page),
1040 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1041 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1042 - pages);
1043
1044 page->mapping = NULL;
1045 __free_pages(page, s->order);
1046}
1047
1048static void rcu_free_slab(struct rcu_head *h)
1049{
1050 struct page *page;
1051
1052 page = container_of((struct list_head *)h, struct page, lru);
1053 __free_slab(page->slab, page);
1054}
1055
1056static void free_slab(struct kmem_cache *s, struct page *page)
1057{
1058 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1059 /*
1060 * RCU free overloads the RCU head over the LRU
1061 */
1062 struct rcu_head *head = (void *)&page->lru;
1063
1064 call_rcu(head, rcu_free_slab);
1065 } else
1066 __free_slab(s, page);
1067}
1068
1069static void discard_slab(struct kmem_cache *s, struct page *page)
1070{
1071 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1072
1073 atomic_long_dec(&n->nr_slabs);
1074 reset_page_mapcount(page);
35e5d7ee
CL
1075 ClearSlabDebug(page);
1076 __ClearPageSlab(page);
81819f0f
CL
1077 free_slab(s, page);
1078}
1079
1080/*
1081 * Per slab locking using the pagelock
1082 */
1083static __always_inline void slab_lock(struct page *page)
1084{
1085 bit_spin_lock(PG_locked, &page->flags);
1086}
1087
1088static __always_inline void slab_unlock(struct page *page)
1089{
1090 bit_spin_unlock(PG_locked, &page->flags);
1091}
1092
1093static __always_inline int slab_trylock(struct page *page)
1094{
1095 int rc = 1;
1096
1097 rc = bit_spin_trylock(PG_locked, &page->flags);
1098 return rc;
1099}
1100
1101/*
1102 * Management of partially allocated slabs
1103 */
e95eed57 1104static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
81819f0f 1105{
e95eed57
CL
1106 spin_lock(&n->list_lock);
1107 n->nr_partial++;
1108 list_add_tail(&page->lru, &n->partial);
1109 spin_unlock(&n->list_lock);
1110}
81819f0f 1111
e95eed57
CL
1112static void add_partial(struct kmem_cache_node *n, struct page *page)
1113{
81819f0f
CL
1114 spin_lock(&n->list_lock);
1115 n->nr_partial++;
1116 list_add(&page->lru, &n->partial);
1117 spin_unlock(&n->list_lock);
1118}
1119
1120static void remove_partial(struct kmem_cache *s,
1121 struct page *page)
1122{
1123 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1124
1125 spin_lock(&n->list_lock);
1126 list_del(&page->lru);
1127 n->nr_partial--;
1128 spin_unlock(&n->list_lock);
1129}
1130
1131/*
672bba3a 1132 * Lock slab and remove from the partial list.
81819f0f 1133 *
672bba3a 1134 * Must hold list_lock.
81819f0f
CL
1135 */
1136static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
1137{
1138 if (slab_trylock(page)) {
1139 list_del(&page->lru);
1140 n->nr_partial--;
1141 return 1;
1142 }
1143 return 0;
1144}
1145
1146/*
672bba3a 1147 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1148 */
1149static struct page *get_partial_node(struct kmem_cache_node *n)
1150{
1151 struct page *page;
1152
1153 /*
1154 * Racy check. If we mistakenly see no partial slabs then we
1155 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1156 * partial slab and there is none available then get_partials()
1157 * will return NULL.
81819f0f
CL
1158 */
1159 if (!n || !n->nr_partial)
1160 return NULL;
1161
1162 spin_lock(&n->list_lock);
1163 list_for_each_entry(page, &n->partial, lru)
1164 if (lock_and_del_slab(n, page))
1165 goto out;
1166 page = NULL;
1167out:
1168 spin_unlock(&n->list_lock);
1169 return page;
1170}
1171
1172/*
672bba3a 1173 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1174 */
1175static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1176{
1177#ifdef CONFIG_NUMA
1178 struct zonelist *zonelist;
1179 struct zone **z;
1180 struct page *page;
1181
1182 /*
672bba3a
CL
1183 * The defrag ratio allows a configuration of the tradeoffs between
1184 * inter node defragmentation and node local allocations. A lower
1185 * defrag_ratio increases the tendency to do local allocations
1186 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1187 *
672bba3a
CL
1188 * If the defrag_ratio is set to 0 then kmalloc() always
1189 * returns node local objects. If the ratio is higher then kmalloc()
1190 * may return off node objects because partial slabs are obtained
1191 * from other nodes and filled up.
81819f0f
CL
1192 *
1193 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1194 * defrag_ratio = 1000) then every (well almost) allocation will
1195 * first attempt to defrag slab caches on other nodes. This means
1196 * scanning over all nodes to look for partial slabs which may be
1197 * expensive if we do it every time we are trying to find a slab
1198 * with available objects.
81819f0f
CL
1199 */
1200 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1201 return NULL;
1202
1203 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1204 ->node_zonelists[gfp_zone(flags)];
1205 for (z = zonelist->zones; *z; z++) {
1206 struct kmem_cache_node *n;
1207
1208 n = get_node(s, zone_to_nid(*z));
1209
1210 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1211 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1212 page = get_partial_node(n);
1213 if (page)
1214 return page;
1215 }
1216 }
1217#endif
1218 return NULL;
1219}
1220
1221/*
1222 * Get a partial page, lock it and return it.
1223 */
1224static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1225{
1226 struct page *page;
1227 int searchnode = (node == -1) ? numa_node_id() : node;
1228
1229 page = get_partial_node(get_node(s, searchnode));
1230 if (page || (flags & __GFP_THISNODE))
1231 return page;
1232
1233 return get_any_partial(s, flags);
1234}
1235
1236/*
1237 * Move a page back to the lists.
1238 *
1239 * Must be called with the slab lock held.
1240 *
1241 * On exit the slab lock will have been dropped.
1242 */
1243static void putback_slab(struct kmem_cache *s, struct page *page)
1244{
e95eed57
CL
1245 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1246
81819f0f 1247 if (page->inuse) {
e95eed57 1248
81819f0f 1249 if (page->freelist)
e95eed57 1250 add_partial(n, page);
35e5d7ee 1251 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
e95eed57 1252 add_full(n, page);
81819f0f 1253 slab_unlock(page);
e95eed57 1254
81819f0f 1255 } else {
e95eed57
CL
1256 if (n->nr_partial < MIN_PARTIAL) {
1257 /*
672bba3a
CL
1258 * Adding an empty slab to the partial slabs in order
1259 * to avoid page allocator overhead. This slab needs
1260 * to come after the other slabs with objects in
1261 * order to fill them up. That way the size of the
1262 * partial list stays small. kmem_cache_shrink can
1263 * reclaim empty slabs from the partial list.
e95eed57
CL
1264 */
1265 add_partial_tail(n, page);
1266 slab_unlock(page);
1267 } else {
1268 slab_unlock(page);
1269 discard_slab(s, page);
1270 }
81819f0f
CL
1271 }
1272}
1273
1274/*
1275 * Remove the cpu slab
1276 */
1277static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1278{
1279 s->cpu_slab[cpu] = NULL;
1280 ClearPageActive(page);
1281
1282 putback_slab(s, page);
1283}
1284
1285static void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
1286{
1287 slab_lock(page);
1288 deactivate_slab(s, page, cpu);
1289}
1290
1291/*
1292 * Flush cpu slab.
1293 * Called from IPI handler with interrupts disabled.
1294 */
1295static void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1296{
1297 struct page *page = s->cpu_slab[cpu];
1298
1299 if (likely(page))
1300 flush_slab(s, page, cpu);
1301}
1302
1303static void flush_cpu_slab(void *d)
1304{
1305 struct kmem_cache *s = d;
1306 int cpu = smp_processor_id();
1307
1308 __flush_cpu_slab(s, cpu);
1309}
1310
1311static void flush_all(struct kmem_cache *s)
1312{
1313#ifdef CONFIG_SMP
1314 on_each_cpu(flush_cpu_slab, s, 1, 1);
1315#else
1316 unsigned long flags;
1317
1318 local_irq_save(flags);
1319 flush_cpu_slab(s);
1320 local_irq_restore(flags);
1321#endif
1322}
1323
1324/*
1325 * slab_alloc is optimized to only modify two cachelines on the fast path
1326 * (aside from the stack):
1327 *
1328 * 1. The page struct
1329 * 2. The first cacheline of the object to be allocated.
1330 *
672bba3a 1331 * The only other cache lines that are read (apart from code) is the
81819f0f
CL
1332 * per cpu array in the kmem_cache struct.
1333 *
1334 * Fastpath is not possible if we need to get a new slab or have
35e5d7ee 1335 * debugging enabled (which means all slabs are marked with SlabDebug)
81819f0f 1336 */
77c5e2d0
CL
1337static void *slab_alloc(struct kmem_cache *s,
1338 gfp_t gfpflags, int node, void *addr)
81819f0f
CL
1339{
1340 struct page *page;
1341 void **object;
1342 unsigned long flags;
1343 int cpu;
1344
1345 local_irq_save(flags);
1346 cpu = smp_processor_id();
1347 page = s->cpu_slab[cpu];
1348 if (!page)
1349 goto new_slab;
1350
1351 slab_lock(page);
1352 if (unlikely(node != -1 && page_to_nid(page) != node))
1353 goto another_slab;
1354redo:
1355 object = page->freelist;
1356 if (unlikely(!object))
1357 goto another_slab;
35e5d7ee 1358 if (unlikely(SlabDebug(page)))
81819f0f
CL
1359 goto debug;
1360
1361have_object:
1362 page->inuse++;
1363 page->freelist = object[page->offset];
1364 slab_unlock(page);
1365 local_irq_restore(flags);
1366 return object;
1367
1368another_slab:
1369 deactivate_slab(s, page, cpu);
1370
1371new_slab:
1372 page = get_partial(s, gfpflags, node);
1373 if (likely(page)) {
1374have_slab:
1375 s->cpu_slab[cpu] = page;
1376 SetPageActive(page);
1377 goto redo;
1378 }
1379
1380 page = new_slab(s, gfpflags, node);
1381 if (page) {
1382 cpu = smp_processor_id();
1383 if (s->cpu_slab[cpu]) {
1384 /*
672bba3a
CL
1385 * Someone else populated the cpu_slab while we
1386 * enabled interrupts, or we have gotten scheduled
1387 * on another cpu. The page may not be on the
1388 * requested node even if __GFP_THISNODE was
1389 * specified. So we need to recheck.
81819f0f
CL
1390 */
1391 if (node == -1 ||
1392 page_to_nid(s->cpu_slab[cpu]) == node) {
1393 /*
1394 * Current cpuslab is acceptable and we
1395 * want the current one since its cache hot
1396 */
1397 discard_slab(s, page);
1398 page = s->cpu_slab[cpu];
1399 slab_lock(page);
1400 goto redo;
1401 }
672bba3a 1402 /* New slab does not fit our expectations */
81819f0f
CL
1403 flush_slab(s, s->cpu_slab[cpu], cpu);
1404 }
1405 slab_lock(page);
1406 goto have_slab;
1407 }
1408 local_irq_restore(flags);
1409 return NULL;
1410debug:
1411 if (!alloc_object_checks(s, page, object))
1412 goto another_slab;
1413 if (s->flags & SLAB_STORE_USER)
77c5e2d0 1414 set_track(s, object, TRACK_ALLOC, addr);
636f0d7d 1415 trace(s, page, object, 1);
70d71228 1416 init_object(s, object, 1);
81819f0f
CL
1417 goto have_object;
1418}
1419
1420void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1421{
77c5e2d0 1422 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1423}
1424EXPORT_SYMBOL(kmem_cache_alloc);
1425
1426#ifdef CONFIG_NUMA
1427void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1428{
77c5e2d0 1429 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1430}
1431EXPORT_SYMBOL(kmem_cache_alloc_node);
1432#endif
1433
1434/*
1435 * The fastpath only writes the cacheline of the page struct and the first
1436 * cacheline of the object.
1437 *
672bba3a
CL
1438 * We read the cpu_slab cacheline to check if the slab is the per cpu
1439 * slab for this processor.
81819f0f 1440 */
77c5e2d0
CL
1441static void slab_free(struct kmem_cache *s, struct page *page,
1442 void *x, void *addr)
81819f0f
CL
1443{
1444 void *prior;
1445 void **object = (void *)x;
1446 unsigned long flags;
1447
1448 local_irq_save(flags);
1449 slab_lock(page);
1450
35e5d7ee 1451 if (unlikely(SlabDebug(page)))
81819f0f
CL
1452 goto debug;
1453checks_ok:
1454 prior = object[page->offset] = page->freelist;
1455 page->freelist = object;
1456 page->inuse--;
1457
1458 if (unlikely(PageActive(page)))
1459 /*
1460 * Cpu slabs are never on partial lists and are
1461 * never freed.
1462 */
1463 goto out_unlock;
1464
1465 if (unlikely(!page->inuse))
1466 goto slab_empty;
1467
1468 /*
1469 * Objects left in the slab. If it
1470 * was not on the partial list before
1471 * then add it.
1472 */
1473 if (unlikely(!prior))
e95eed57 1474 add_partial(get_node(s, page_to_nid(page)), page);
81819f0f
CL
1475
1476out_unlock:
1477 slab_unlock(page);
1478 local_irq_restore(flags);
1479 return;
1480
1481slab_empty:
1482 if (prior)
1483 /*
672bba3a 1484 * Slab still on the partial list.
81819f0f
CL
1485 */
1486 remove_partial(s, page);
1487
1488 slab_unlock(page);
1489 discard_slab(s, page);
1490 local_irq_restore(flags);
1491 return;
1492
1493debug:
77c5e2d0
CL
1494 if (!free_object_checks(s, page, x))
1495 goto out_unlock;
643b1138
CL
1496 if (!PageActive(page) && !page->freelist)
1497 remove_full(s, page);
77c5e2d0
CL
1498 if (s->flags & SLAB_STORE_USER)
1499 set_track(s, x, TRACK_FREE, addr);
636f0d7d 1500 trace(s, page, object, 0);
70d71228 1501 init_object(s, object, 0);
77c5e2d0 1502 goto checks_ok;
81819f0f
CL
1503}
1504
1505void kmem_cache_free(struct kmem_cache *s, void *x)
1506{
77c5e2d0 1507 struct page *page;
81819f0f 1508
b49af68f 1509 page = virt_to_head_page(x);
81819f0f 1510
77c5e2d0 1511 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1512}
1513EXPORT_SYMBOL(kmem_cache_free);
1514
1515/* Figure out on which slab object the object resides */
1516static struct page *get_object_page(const void *x)
1517{
b49af68f 1518 struct page *page = virt_to_head_page(x);
81819f0f
CL
1519
1520 if (!PageSlab(page))
1521 return NULL;
1522
1523 return page;
1524}
1525
1526/*
672bba3a
CL
1527 * Object placement in a slab is made very easy because we always start at
1528 * offset 0. If we tune the size of the object to the alignment then we can
1529 * get the required alignment by putting one properly sized object after
1530 * another.
81819f0f
CL
1531 *
1532 * Notice that the allocation order determines the sizes of the per cpu
1533 * caches. Each processor has always one slab available for allocations.
1534 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1535 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1536 * locking overhead.
81819f0f
CL
1537 */
1538
1539/*
1540 * Mininum / Maximum order of slab pages. This influences locking overhead
1541 * and slab fragmentation. A higher order reduces the number of partial slabs
1542 * and increases the number of allocations possible without having to
1543 * take the list_lock.
1544 */
1545static int slub_min_order;
1546static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1547static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1548
1549/*
1550 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1551 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1552 */
1553static int slub_nomerge;
1554
81819f0f
CL
1555/*
1556 * Calculate the order of allocation given an slab object size.
1557 *
672bba3a
CL
1558 * The order of allocation has significant impact on performance and other
1559 * system components. Generally order 0 allocations should be preferred since
1560 * order 0 does not cause fragmentation in the page allocator. Larger objects
1561 * be problematic to put into order 0 slabs because there may be too much
1562 * unused space left. We go to a higher order if more than 1/8th of the slab
1563 * would be wasted.
1564 *
1565 * In order to reach satisfactory performance we must ensure that a minimum
1566 * number of objects is in one slab. Otherwise we may generate too much
1567 * activity on the partial lists which requires taking the list_lock. This is
1568 * less a concern for large slabs though which are rarely used.
81819f0f 1569 *
672bba3a
CL
1570 * slub_max_order specifies the order where we begin to stop considering the
1571 * number of objects in a slab as critical. If we reach slub_max_order then
1572 * we try to keep the page order as low as possible. So we accept more waste
1573 * of space in favor of a small page order.
81819f0f 1574 *
672bba3a
CL
1575 * Higher order allocations also allow the placement of more objects in a
1576 * slab and thereby reduce object handling overhead. If the user has
1577 * requested a higher mininum order then we start with that one instead of
1578 * the smallest order which will fit the object.
81819f0f
CL
1579 */
1580static int calculate_order(int size)
1581{
1582 int order;
1583 int rem;
1584
1585 for (order = max(slub_min_order, fls(size - 1) - PAGE_SHIFT);
1586 order < MAX_ORDER; order++) {
1587 unsigned long slab_size = PAGE_SIZE << order;
1588
1589 if (slub_max_order > order &&
1590 slab_size < slub_min_objects * size)
1591 continue;
1592
1593 if (slab_size < size)
1594 continue;
1595
1596 rem = slab_size % size;
1597
672bba3a 1598 if (rem <= slab_size / 8)
81819f0f
CL
1599 break;
1600
1601 }
1602 if (order >= MAX_ORDER)
1603 return -E2BIG;
672bba3a 1604
81819f0f
CL
1605 return order;
1606}
1607
1608/*
672bba3a 1609 * Figure out what the alignment of the objects will be.
81819f0f
CL
1610 */
1611static unsigned long calculate_alignment(unsigned long flags,
1612 unsigned long align, unsigned long size)
1613{
1614 /*
1615 * If the user wants hardware cache aligned objects then
1616 * follow that suggestion if the object is sufficiently
1617 * large.
1618 *
1619 * The hardware cache alignment cannot override the
1620 * specified alignment though. If that is greater
1621 * then use it.
1622 */
5af60839 1623 if ((flags & SLAB_HWCACHE_ALIGN) &&
65c02d4c
CL
1624 size > cache_line_size() / 2)
1625 return max_t(unsigned long, align, cache_line_size());
81819f0f
CL
1626
1627 if (align < ARCH_SLAB_MINALIGN)
1628 return ARCH_SLAB_MINALIGN;
1629
1630 return ALIGN(align, sizeof(void *));
1631}
1632
1633static void init_kmem_cache_node(struct kmem_cache_node *n)
1634{
1635 n->nr_partial = 0;
1636 atomic_long_set(&n->nr_slabs, 0);
1637 spin_lock_init(&n->list_lock);
1638 INIT_LIST_HEAD(&n->partial);
643b1138 1639 INIT_LIST_HEAD(&n->full);
81819f0f
CL
1640}
1641
1642#ifdef CONFIG_NUMA
1643/*
1644 * No kmalloc_node yet so do it by hand. We know that this is the first
1645 * slab on the node for this slabcache. There are no concurrent accesses
1646 * possible.
1647 *
1648 * Note that this function only works on the kmalloc_node_cache
1649 * when allocating for the kmalloc_node_cache.
1650 */
1651static struct kmem_cache_node * __init early_kmem_cache_node_alloc(gfp_t gfpflags,
1652 int node)
1653{
1654 struct page *page;
1655 struct kmem_cache_node *n;
1656
1657 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1658
1659 page = new_slab(kmalloc_caches, gfpflags | GFP_THISNODE, node);
1660 /* new_slab() disables interupts */
1661 local_irq_enable();
1662
1663 BUG_ON(!page);
1664 n = page->freelist;
1665 BUG_ON(!n);
1666 page->freelist = get_freepointer(kmalloc_caches, n);
1667 page->inuse++;
1668 kmalloc_caches->node[node] = n;
1669 init_object(kmalloc_caches, n, 1);
1670 init_kmem_cache_node(n);
1671 atomic_long_inc(&n->nr_slabs);
e95eed57 1672 add_partial(n, page);
81819f0f
CL
1673 return n;
1674}
1675
1676static void free_kmem_cache_nodes(struct kmem_cache *s)
1677{
1678 int node;
1679
1680 for_each_online_node(node) {
1681 struct kmem_cache_node *n = s->node[node];
1682 if (n && n != &s->local_node)
1683 kmem_cache_free(kmalloc_caches, n);
1684 s->node[node] = NULL;
1685 }
1686}
1687
1688static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1689{
1690 int node;
1691 int local_node;
1692
1693 if (slab_state >= UP)
1694 local_node = page_to_nid(virt_to_page(s));
1695 else
1696 local_node = 0;
1697
1698 for_each_online_node(node) {
1699 struct kmem_cache_node *n;
1700
1701 if (local_node == node)
1702 n = &s->local_node;
1703 else {
1704 if (slab_state == DOWN) {
1705 n = early_kmem_cache_node_alloc(gfpflags,
1706 node);
1707 continue;
1708 }
1709 n = kmem_cache_alloc_node(kmalloc_caches,
1710 gfpflags, node);
1711
1712 if (!n) {
1713 free_kmem_cache_nodes(s);
1714 return 0;
1715 }
1716
1717 }
1718 s->node[node] = n;
1719 init_kmem_cache_node(n);
1720 }
1721 return 1;
1722}
1723#else
1724static void free_kmem_cache_nodes(struct kmem_cache *s)
1725{
1726}
1727
1728static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1729{
1730 init_kmem_cache_node(&s->local_node);
1731 return 1;
1732}
1733#endif
1734
1735/*
1736 * calculate_sizes() determines the order and the distribution of data within
1737 * a slab object.
1738 */
1739static int calculate_sizes(struct kmem_cache *s)
1740{
1741 unsigned long flags = s->flags;
1742 unsigned long size = s->objsize;
1743 unsigned long align = s->align;
1744
1745 /*
1746 * Determine if we can poison the object itself. If the user of
1747 * the slab may touch the object after free or before allocation
1748 * then we should never poison the object itself.
1749 */
1750 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
1751 !s->ctor && !s->dtor)
1752 s->flags |= __OBJECT_POISON;
1753 else
1754 s->flags &= ~__OBJECT_POISON;
1755
1756 /*
1757 * Round up object size to the next word boundary. We can only
1758 * place the free pointer at word boundaries and this determines
1759 * the possible location of the free pointer.
1760 */
1761 size = ALIGN(size, sizeof(void *));
1762
41ecc55b 1763#ifdef CONFIG_SLUB_DEBUG
81819f0f 1764 /*
672bba3a 1765 * If we are Redzoning then check if there is some space between the
81819f0f 1766 * end of the object and the free pointer. If not then add an
672bba3a 1767 * additional word to have some bytes to store Redzone information.
81819f0f
CL
1768 */
1769 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
1770 size += sizeof(void *);
41ecc55b 1771#endif
81819f0f
CL
1772
1773 /*
672bba3a
CL
1774 * With that we have determined the number of bytes in actual use
1775 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
1776 */
1777 s->inuse = size;
1778
41ecc55b 1779#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
1780 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
1781 s->ctor || s->dtor)) {
1782 /*
1783 * Relocate free pointer after the object if it is not
1784 * permitted to overwrite the first word of the object on
1785 * kmem_cache_free.
1786 *
1787 * This is the case if we do RCU, have a constructor or
1788 * destructor or are poisoning the objects.
1789 */
1790 s->offset = size;
1791 size += sizeof(void *);
1792 }
1793
1794 if (flags & SLAB_STORE_USER)
1795 /*
1796 * Need to store information about allocs and frees after
1797 * the object.
1798 */
1799 size += 2 * sizeof(struct track);
1800
be7b3fbc 1801 if (flags & SLAB_RED_ZONE)
81819f0f
CL
1802 /*
1803 * Add some empty padding so that we can catch
1804 * overwrites from earlier objects rather than let
1805 * tracking information or the free pointer be
1806 * corrupted if an user writes before the start
1807 * of the object.
1808 */
1809 size += sizeof(void *);
41ecc55b 1810#endif
672bba3a 1811
81819f0f
CL
1812 /*
1813 * Determine the alignment based on various parameters that the
65c02d4c
CL
1814 * user specified and the dynamic determination of cache line size
1815 * on bootup.
81819f0f
CL
1816 */
1817 align = calculate_alignment(flags, align, s->objsize);
1818
1819 /*
1820 * SLUB stores one object immediately after another beginning from
1821 * offset 0. In order to align the objects we have to simply size
1822 * each object to conform to the alignment.
1823 */
1824 size = ALIGN(size, align);
1825 s->size = size;
1826
1827 s->order = calculate_order(size);
1828 if (s->order < 0)
1829 return 0;
1830
1831 /*
1832 * Determine the number of objects per slab
1833 */
1834 s->objects = (PAGE_SIZE << s->order) / size;
1835
1836 /*
1837 * Verify that the number of objects is within permitted limits.
1838 * The page->inuse field is only 16 bit wide! So we cannot have
1839 * more than 64k objects per slab.
1840 */
1841 if (!s->objects || s->objects > 65535)
1842 return 0;
1843 return 1;
1844
1845}
1846
81819f0f
CL
1847static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
1848 const char *name, size_t size,
1849 size_t align, unsigned long flags,
1850 void (*ctor)(void *, struct kmem_cache *, unsigned long),
1851 void (*dtor)(void *, struct kmem_cache *, unsigned long))
1852{
1853 memset(s, 0, kmem_size);
1854 s->name = name;
1855 s->ctor = ctor;
1856 s->dtor = dtor;
1857 s->objsize = size;
1858 s->flags = flags;
1859 s->align = align;
41ecc55b 1860 kmem_cache_open_debug_check(s);
81819f0f
CL
1861
1862 if (!calculate_sizes(s))
1863 goto error;
1864
1865 s->refcount = 1;
1866#ifdef CONFIG_NUMA
1867 s->defrag_ratio = 100;
1868#endif
1869
1870 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
1871 return 1;
1872error:
1873 if (flags & SLAB_PANIC)
1874 panic("Cannot create slab %s size=%lu realsize=%u "
1875 "order=%u offset=%u flags=%lx\n",
1876 s->name, (unsigned long)size, s->size, s->order,
1877 s->offset, flags);
1878 return 0;
1879}
1880EXPORT_SYMBOL(kmem_cache_open);
1881
1882/*
1883 * Check if a given pointer is valid
1884 */
1885int kmem_ptr_validate(struct kmem_cache *s, const void *object)
1886{
1887 struct page * page;
81819f0f
CL
1888
1889 page = get_object_page(object);
1890
1891 if (!page || s != page->slab)
1892 /* No slab or wrong slab */
1893 return 0;
1894
abcd08a6 1895 if (!check_valid_pointer(s, page, object))
81819f0f
CL
1896 return 0;
1897
1898 /*
1899 * We could also check if the object is on the slabs freelist.
1900 * But this would be too expensive and it seems that the main
1901 * purpose of kmem_ptr_valid is to check if the object belongs
1902 * to a certain slab.
1903 */
1904 return 1;
1905}
1906EXPORT_SYMBOL(kmem_ptr_validate);
1907
1908/*
1909 * Determine the size of a slab object
1910 */
1911unsigned int kmem_cache_size(struct kmem_cache *s)
1912{
1913 return s->objsize;
1914}
1915EXPORT_SYMBOL(kmem_cache_size);
1916
1917const char *kmem_cache_name(struct kmem_cache *s)
1918{
1919 return s->name;
1920}
1921EXPORT_SYMBOL(kmem_cache_name);
1922
1923/*
672bba3a
CL
1924 * Attempt to free all slabs on a node. Return the number of slabs we
1925 * were unable to free.
81819f0f
CL
1926 */
1927static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
1928 struct list_head *list)
1929{
1930 int slabs_inuse = 0;
1931 unsigned long flags;
1932 struct page *page, *h;
1933
1934 spin_lock_irqsave(&n->list_lock, flags);
1935 list_for_each_entry_safe(page, h, list, lru)
1936 if (!page->inuse) {
1937 list_del(&page->lru);
1938 discard_slab(s, page);
1939 } else
1940 slabs_inuse++;
1941 spin_unlock_irqrestore(&n->list_lock, flags);
1942 return slabs_inuse;
1943}
1944
1945/*
672bba3a 1946 * Release all resources used by a slab cache.
81819f0f
CL
1947 */
1948static int kmem_cache_close(struct kmem_cache *s)
1949{
1950 int node;
1951
1952 flush_all(s);
1953
1954 /* Attempt to free all objects */
1955 for_each_online_node(node) {
1956 struct kmem_cache_node *n = get_node(s, node);
1957
2086d26a 1958 n->nr_partial -= free_list(s, n, &n->partial);
81819f0f
CL
1959 if (atomic_long_read(&n->nr_slabs))
1960 return 1;
1961 }
1962 free_kmem_cache_nodes(s);
1963 return 0;
1964}
1965
1966/*
1967 * Close a cache and release the kmem_cache structure
1968 * (must be used for caches created using kmem_cache_create)
1969 */
1970void kmem_cache_destroy(struct kmem_cache *s)
1971{
1972 down_write(&slub_lock);
1973 s->refcount--;
1974 if (!s->refcount) {
1975 list_del(&s->list);
1976 if (kmem_cache_close(s))
1977 WARN_ON(1);
1978 sysfs_slab_remove(s);
1979 kfree(s);
1980 }
1981 up_write(&slub_lock);
1982}
1983EXPORT_SYMBOL(kmem_cache_destroy);
1984
1985/********************************************************************
1986 * Kmalloc subsystem
1987 *******************************************************************/
1988
1989struct kmem_cache kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __cacheline_aligned;
1990EXPORT_SYMBOL(kmalloc_caches);
1991
1992#ifdef CONFIG_ZONE_DMA
1993static struct kmem_cache *kmalloc_caches_dma[KMALLOC_SHIFT_HIGH + 1];
1994#endif
1995
1996static int __init setup_slub_min_order(char *str)
1997{
1998 get_option (&str, &slub_min_order);
1999
2000 return 1;
2001}
2002
2003__setup("slub_min_order=", setup_slub_min_order);
2004
2005static int __init setup_slub_max_order(char *str)
2006{
2007 get_option (&str, &slub_max_order);
2008
2009 return 1;
2010}
2011
2012__setup("slub_max_order=", setup_slub_max_order);
2013
2014static int __init setup_slub_min_objects(char *str)
2015{
2016 get_option (&str, &slub_min_objects);
2017
2018 return 1;
2019}
2020
2021__setup("slub_min_objects=", setup_slub_min_objects);
2022
2023static int __init setup_slub_nomerge(char *str)
2024{
2025 slub_nomerge = 1;
2026 return 1;
2027}
2028
2029__setup("slub_nomerge", setup_slub_nomerge);
2030
81819f0f
CL
2031static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2032 const char *name, int size, gfp_t gfp_flags)
2033{
2034 unsigned int flags = 0;
2035
2036 if (gfp_flags & SLUB_DMA)
2037 flags = SLAB_CACHE_DMA;
2038
2039 down_write(&slub_lock);
2040 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2041 flags, NULL, NULL))
2042 goto panic;
2043
2044 list_add(&s->list, &slab_caches);
2045 up_write(&slub_lock);
2046 if (sysfs_slab_add(s))
2047 goto panic;
2048 return s;
2049
2050panic:
2051 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2052}
2053
2054static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2055{
2056 int index = kmalloc_index(size);
2057
614410d5 2058 if (!index)
81819f0f
CL
2059 return NULL;
2060
2061 /* Allocation too large? */
2062 BUG_ON(index < 0);
2063
2064#ifdef CONFIG_ZONE_DMA
2065 if ((flags & SLUB_DMA)) {
2066 struct kmem_cache *s;
2067 struct kmem_cache *x;
2068 char *text;
2069 size_t realsize;
2070
2071 s = kmalloc_caches_dma[index];
2072 if (s)
2073 return s;
2074
2075 /* Dynamically create dma cache */
2076 x = kmalloc(kmem_size, flags & ~SLUB_DMA);
2077 if (!x)
2078 panic("Unable to allocate memory for dma cache\n");
2079
2080 if (index <= KMALLOC_SHIFT_HIGH)
2081 realsize = 1 << index;
2082 else {
2083 if (index == 1)
2084 realsize = 96;
2085 else
2086 realsize = 192;
2087 }
2088
2089 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2090 (unsigned int)realsize);
2091 s = create_kmalloc_cache(x, text, realsize, flags);
2092 kmalloc_caches_dma[index] = s;
2093 return s;
2094 }
2095#endif
2096 return &kmalloc_caches[index];
2097}
2098
2099void *__kmalloc(size_t size, gfp_t flags)
2100{
2101 struct kmem_cache *s = get_slab(size, flags);
2102
2103 if (s)
77c5e2d0 2104 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2105 return NULL;
2106}
2107EXPORT_SYMBOL(__kmalloc);
2108
2109#ifdef CONFIG_NUMA
2110void *__kmalloc_node(size_t size, gfp_t flags, int node)
2111{
2112 struct kmem_cache *s = get_slab(size, flags);
2113
2114 if (s)
77c5e2d0 2115 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2116 return NULL;
2117}
2118EXPORT_SYMBOL(__kmalloc_node);
2119#endif
2120
2121size_t ksize(const void *object)
2122{
2123 struct page *page = get_object_page(object);
2124 struct kmem_cache *s;
2125
2126 BUG_ON(!page);
2127 s = page->slab;
2128 BUG_ON(!s);
2129
2130 /*
2131 * Debugging requires use of the padding between object
2132 * and whatever may come after it.
2133 */
2134 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2135 return s->objsize;
2136
2137 /*
2138 * If we have the need to store the freelist pointer
2139 * back there or track user information then we can
2140 * only use the space before that information.
2141 */
2142 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2143 return s->inuse;
2144
2145 /*
2146 * Else we can use all the padding etc for the allocation
2147 */
2148 return s->size;
2149}
2150EXPORT_SYMBOL(ksize);
2151
2152void kfree(const void *x)
2153{
2154 struct kmem_cache *s;
2155 struct page *page;
2156
2157 if (!x)
2158 return;
2159
b49af68f 2160 page = virt_to_head_page(x);
81819f0f
CL
2161 s = page->slab;
2162
77c5e2d0 2163 slab_free(s, page, (void *)x, __builtin_return_address(0));
81819f0f
CL
2164}
2165EXPORT_SYMBOL(kfree);
2166
2086d26a 2167/*
672bba3a
CL
2168 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2169 * the remaining slabs by the number of items in use. The slabs with the
2170 * most items in use come first. New allocations will then fill those up
2171 * and thus they can be removed from the partial lists.
2172 *
2173 * The slabs with the least items are placed last. This results in them
2174 * being allocated from last increasing the chance that the last objects
2175 * are freed in them.
2086d26a
CL
2176 */
2177int kmem_cache_shrink(struct kmem_cache *s)
2178{
2179 int node;
2180 int i;
2181 struct kmem_cache_node *n;
2182 struct page *page;
2183 struct page *t;
2184 struct list_head *slabs_by_inuse =
2185 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2186 unsigned long flags;
2187
2188 if (!slabs_by_inuse)
2189 return -ENOMEM;
2190
2191 flush_all(s);
2192 for_each_online_node(node) {
2193 n = get_node(s, node);
2194
2195 if (!n->nr_partial)
2196 continue;
2197
2198 for (i = 0; i < s->objects; i++)
2199 INIT_LIST_HEAD(slabs_by_inuse + i);
2200
2201 spin_lock_irqsave(&n->list_lock, flags);
2202
2203 /*
672bba3a 2204 * Build lists indexed by the items in use in each slab.
2086d26a 2205 *
672bba3a
CL
2206 * Note that concurrent frees may occur while we hold the
2207 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2208 */
2209 list_for_each_entry_safe(page, t, &n->partial, lru) {
2210 if (!page->inuse && slab_trylock(page)) {
2211 /*
2212 * Must hold slab lock here because slab_free
2213 * may have freed the last object and be
2214 * waiting to release the slab.
2215 */
2216 list_del(&page->lru);
2217 n->nr_partial--;
2218 slab_unlock(page);
2219 discard_slab(s, page);
2220 } else {
2221 if (n->nr_partial > MAX_PARTIAL)
2222 list_move(&page->lru,
2223 slabs_by_inuse + page->inuse);
2224 }
2225 }
2226
2227 if (n->nr_partial <= MAX_PARTIAL)
2228 goto out;
2229
2230 /*
672bba3a
CL
2231 * Rebuild the partial list with the slabs filled up most
2232 * first and the least used slabs at the end.
2086d26a
CL
2233 */
2234 for (i = s->objects - 1; i >= 0; i--)
2235 list_splice(slabs_by_inuse + i, n->partial.prev);
2236
2237 out:
2238 spin_unlock_irqrestore(&n->list_lock, flags);
2239 }
2240
2241 kfree(slabs_by_inuse);
2242 return 0;
2243}
2244EXPORT_SYMBOL(kmem_cache_shrink);
2245
81819f0f
CL
2246/**
2247 * krealloc - reallocate memory. The contents will remain unchanged.
2248 *
2249 * @p: object to reallocate memory for.
2250 * @new_size: how many bytes of memory are required.
2251 * @flags: the type of memory to allocate.
2252 *
2253 * The contents of the object pointed to are preserved up to the
2254 * lesser of the new and old sizes. If @p is %NULL, krealloc()
2255 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
2256 * %NULL pointer, the object pointed to is freed.
2257 */
2258void *krealloc(const void *p, size_t new_size, gfp_t flags)
2259{
81819f0f 2260 void *ret;
1f99a283 2261 size_t ks;
81819f0f
CL
2262
2263 if (unlikely(!p))
2264 return kmalloc(new_size, flags);
2265
2266 if (unlikely(!new_size)) {
2267 kfree(p);
2268 return NULL;
2269 }
2270
1f99a283
CL
2271 ks = ksize(p);
2272 if (ks >= new_size)
81819f0f
CL
2273 return (void *)p;
2274
2275 ret = kmalloc(new_size, flags);
2276 if (ret) {
1f99a283 2277 memcpy(ret, p, min(new_size, ks));
81819f0f
CL
2278 kfree(p);
2279 }
2280 return ret;
2281}
2282EXPORT_SYMBOL(krealloc);
2283
2284/********************************************************************
2285 * Basic setup of slabs
2286 *******************************************************************/
2287
2288void __init kmem_cache_init(void)
2289{
2290 int i;
2291
2292#ifdef CONFIG_NUMA
2293 /*
2294 * Must first have the slab cache available for the allocations of the
672bba3a 2295 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2296 * kmem_cache_open for slab_state == DOWN.
2297 */
2298 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2299 sizeof(struct kmem_cache_node), GFP_KERNEL);
2300#endif
2301
2302 /* Able to allocate the per node structures */
2303 slab_state = PARTIAL;
2304
2305 /* Caches that are not of the two-to-the-power-of size */
2306 create_kmalloc_cache(&kmalloc_caches[1],
2307 "kmalloc-96", 96, GFP_KERNEL);
2308 create_kmalloc_cache(&kmalloc_caches[2],
2309 "kmalloc-192", 192, GFP_KERNEL);
2310
2311 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2312 create_kmalloc_cache(&kmalloc_caches[i],
2313 "kmalloc", 1 << i, GFP_KERNEL);
2314
2315 slab_state = UP;
2316
2317 /* Provide the correct kmalloc names now that the caches are up */
2318 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
2319 kmalloc_caches[i]. name =
2320 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2321
2322#ifdef CONFIG_SMP
2323 register_cpu_notifier(&slab_notifier);
2324#endif
2325
2326 if (nr_cpu_ids) /* Remove when nr_cpu_ids is fixed upstream ! */
2327 kmem_size = offsetof(struct kmem_cache, cpu_slab)
2328 + nr_cpu_ids * sizeof(struct page *);
2329
2330 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2331 " Processors=%d, Nodes=%d\n",
65c02d4c 2332 KMALLOC_SHIFT_HIGH, cache_line_size(),
81819f0f
CL
2333 slub_min_order, slub_max_order, slub_min_objects,
2334 nr_cpu_ids, nr_node_ids);
2335}
2336
2337/*
2338 * Find a mergeable slab cache
2339 */
2340static int slab_unmergeable(struct kmem_cache *s)
2341{
2342 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2343 return 1;
2344
2345 if (s->ctor || s->dtor)
2346 return 1;
2347
2348 return 0;
2349}
2350
2351static struct kmem_cache *find_mergeable(size_t size,
2352 size_t align, unsigned long flags,
2353 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2354 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2355{
2356 struct list_head *h;
2357
2358 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2359 return NULL;
2360
2361 if (ctor || dtor)
2362 return NULL;
2363
2364 size = ALIGN(size, sizeof(void *));
2365 align = calculate_alignment(flags, align, size);
2366 size = ALIGN(size, align);
2367
2368 list_for_each(h, &slab_caches) {
2369 struct kmem_cache *s =
2370 container_of(h, struct kmem_cache, list);
2371
2372 if (slab_unmergeable(s))
2373 continue;
2374
2375 if (size > s->size)
2376 continue;
2377
2378 if (((flags | slub_debug) & SLUB_MERGE_SAME) !=
2379 (s->flags & SLUB_MERGE_SAME))
2380 continue;
2381 /*
2382 * Check if alignment is compatible.
2383 * Courtesy of Adrian Drzewiecki
2384 */
2385 if ((s->size & ~(align -1)) != s->size)
2386 continue;
2387
2388 if (s->size - size >= sizeof(void *))
2389 continue;
2390
2391 return s;
2392 }
2393 return NULL;
2394}
2395
2396struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2397 size_t align, unsigned long flags,
2398 void (*ctor)(void *, struct kmem_cache *, unsigned long),
2399 void (*dtor)(void *, struct kmem_cache *, unsigned long))
2400{
2401 struct kmem_cache *s;
2402
2403 down_write(&slub_lock);
2404 s = find_mergeable(size, align, flags, dtor, ctor);
2405 if (s) {
2406 s->refcount++;
2407 /*
2408 * Adjust the object sizes so that we clear
2409 * the complete object on kzalloc.
2410 */
2411 s->objsize = max(s->objsize, (int)size);
2412 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2413 if (sysfs_slab_alias(s, name))
2414 goto err;
2415 } else {
2416 s = kmalloc(kmem_size, GFP_KERNEL);
2417 if (s && kmem_cache_open(s, GFP_KERNEL, name,
2418 size, align, flags, ctor, dtor)) {
2419 if (sysfs_slab_add(s)) {
2420 kfree(s);
2421 goto err;
2422 }
2423 list_add(&s->list, &slab_caches);
2424 } else
2425 kfree(s);
2426 }
2427 up_write(&slub_lock);
2428 return s;
2429
2430err:
2431 up_write(&slub_lock);
2432 if (flags & SLAB_PANIC)
2433 panic("Cannot create slabcache %s\n", name);
2434 else
2435 s = NULL;
2436 return s;
2437}
2438EXPORT_SYMBOL(kmem_cache_create);
2439
2440void *kmem_cache_zalloc(struct kmem_cache *s, gfp_t flags)
2441{
2442 void *x;
2443
77c5e2d0 2444 x = slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2445 if (x)
2446 memset(x, 0, s->objsize);
2447 return x;
2448}
2449EXPORT_SYMBOL(kmem_cache_zalloc);
2450
2451#ifdef CONFIG_SMP
2452static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
2453{
2454 struct list_head *h;
2455
2456 down_read(&slub_lock);
2457 list_for_each(h, &slab_caches) {
2458 struct kmem_cache *s =
2459 container_of(h, struct kmem_cache, list);
2460
2461 func(s, cpu);
2462 }
2463 up_read(&slub_lock);
2464}
2465
2466/*
672bba3a
CL
2467 * Use the cpu notifier to insure that the cpu slabs are flushed when
2468 * necessary.
81819f0f
CL
2469 */
2470static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2471 unsigned long action, void *hcpu)
2472{
2473 long cpu = (long)hcpu;
2474
2475 switch (action) {
2476 case CPU_UP_CANCELED:
2477 case CPU_DEAD:
2478 for_all_slabs(__flush_cpu_slab, cpu);
2479 break;
2480 default:
2481 break;
2482 }
2483 return NOTIFY_OK;
2484}
2485
2486static struct notifier_block __cpuinitdata slab_notifier =
2487 { &slab_cpuup_callback, NULL, 0 };
2488
2489#endif
2490
81819f0f
CL
2491#ifdef CONFIG_NUMA
2492
2493/*****************************************************************
2494 * Generic reaper used to support the page allocator
2495 * (the cpu slabs are reaped by a per slab workqueue).
2496 *
2497 * Maybe move this to the page allocator?
2498 ****************************************************************/
2499
2500static DEFINE_PER_CPU(unsigned long, reap_node);
2501
2502static void init_reap_node(int cpu)
2503{
2504 int node;
2505
2506 node = next_node(cpu_to_node(cpu), node_online_map);
2507 if (node == MAX_NUMNODES)
2508 node = first_node(node_online_map);
2509
2510 __get_cpu_var(reap_node) = node;
2511}
2512
2513static void next_reap_node(void)
2514{
2515 int node = __get_cpu_var(reap_node);
2516
2517 /*
2518 * Also drain per cpu pages on remote zones
2519 */
2520 if (node != numa_node_id())
2521 drain_node_pages(node);
2522
2523 node = next_node(node, node_online_map);
2524 if (unlikely(node >= MAX_NUMNODES))
2525 node = first_node(node_online_map);
2526 __get_cpu_var(reap_node) = node;
2527}
2528#else
2529#define init_reap_node(cpu) do { } while (0)
2530#define next_reap_node(void) do { } while (0)
2531#endif
2532
2533#define REAPTIMEOUT_CPUC (2*HZ)
2534
2535#ifdef CONFIG_SMP
2536static DEFINE_PER_CPU(struct delayed_work, reap_work);
2537
2538static void cache_reap(struct work_struct *unused)
2539{
2540 next_reap_node();
2541 refresh_cpu_vm_stats(smp_processor_id());
2542 schedule_delayed_work(&__get_cpu_var(reap_work),
2543 REAPTIMEOUT_CPUC);
2544}
2545
2546static void __devinit start_cpu_timer(int cpu)
2547{
2548 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
2549
2550 /*
2551 * When this gets called from do_initcalls via cpucache_init(),
2552 * init_workqueues() has already run, so keventd will be setup
2553 * at that time.
2554 */
2555 if (keventd_up() && reap_work->work.func == NULL) {
2556 init_reap_node(cpu);
2557 INIT_DELAYED_WORK(reap_work, cache_reap);
2558 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
2559 }
2560}
2561
2562static int __init cpucache_init(void)
2563{
2564 int cpu;
2565
2566 /*
2567 * Register the timers that drain pcp pages and update vm statistics
2568 */
2569 for_each_online_cpu(cpu)
2570 start_cpu_timer(cpu);
2571 return 0;
2572}
2573__initcall(cpucache_init);
2574#endif
2575
81819f0f
CL
2576void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2577{
2578 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2579
2580 if (!s)
2581 return NULL;
2582
77c5e2d0 2583 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
2584}
2585
2586void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2587 int node, void *caller)
2588{
2589 struct kmem_cache *s = get_slab(size, gfpflags);
81819f0f
CL
2590
2591 if (!s)
2592 return NULL;
2593
77c5e2d0 2594 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
2595}
2596
41ecc55b 2597#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
53e15af0
CL
2598static int validate_slab(struct kmem_cache *s, struct page *page)
2599{
2600 void *p;
2601 void *addr = page_address(page);
7656c72b 2602 DECLARE_BITMAP(map, s->objects);
53e15af0
CL
2603
2604 if (!check_slab(s, page) ||
2605 !on_freelist(s, page, NULL))
2606 return 0;
2607
2608 /* Now we know that a valid freelist exists */
2609 bitmap_zero(map, s->objects);
2610
7656c72b
CL
2611 for_each_free_object(p, s, page->freelist) {
2612 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
2613 if (!check_object(s, page, p, 0))
2614 return 0;
2615 }
2616
7656c72b
CL
2617 for_each_object(p, s, addr)
2618 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
2619 if (!check_object(s, page, p, 1))
2620 return 0;
2621 return 1;
2622}
2623
2624static void validate_slab_slab(struct kmem_cache *s, struct page *page)
2625{
2626 if (slab_trylock(page)) {
2627 validate_slab(s, page);
2628 slab_unlock(page);
2629 } else
2630 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2631 s->name, page);
2632
2633 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
2634 if (!SlabDebug(page))
2635 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
2636 "on slab 0x%p\n", s->name, page);
2637 } else {
35e5d7ee
CL
2638 if (SlabDebug(page))
2639 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
2640 "slab 0x%p\n", s->name, page);
2641 }
2642}
2643
2644static int validate_slab_node(struct kmem_cache *s, struct kmem_cache_node *n)
2645{
2646 unsigned long count = 0;
2647 struct page *page;
2648 unsigned long flags;
2649
2650 spin_lock_irqsave(&n->list_lock, flags);
2651
2652 list_for_each_entry(page, &n->partial, lru) {
2653 validate_slab_slab(s, page);
2654 count++;
2655 }
2656 if (count != n->nr_partial)
2657 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2658 "counter=%ld\n", s->name, count, n->nr_partial);
2659
2660 if (!(s->flags & SLAB_STORE_USER))
2661 goto out;
2662
2663 list_for_each_entry(page, &n->full, lru) {
2664 validate_slab_slab(s, page);
2665 count++;
2666 }
2667 if (count != atomic_long_read(&n->nr_slabs))
2668 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2669 "counter=%ld\n", s->name, count,
2670 atomic_long_read(&n->nr_slabs));
2671
2672out:
2673 spin_unlock_irqrestore(&n->list_lock, flags);
2674 return count;
2675}
2676
2677static unsigned long validate_slab_cache(struct kmem_cache *s)
2678{
2679 int node;
2680 unsigned long count = 0;
2681
2682 flush_all(s);
2683 for_each_online_node(node) {
2684 struct kmem_cache_node *n = get_node(s, node);
2685
2686 count += validate_slab_node(s, n);
2687 }
2688 return count;
2689}
2690
b3459709
CL
2691#ifdef SLUB_RESILIENCY_TEST
2692static void resiliency_test(void)
2693{
2694 u8 *p;
2695
2696 printk(KERN_ERR "SLUB resiliency testing\n");
2697 printk(KERN_ERR "-----------------------\n");
2698 printk(KERN_ERR "A. Corruption after allocation\n");
2699
2700 p = kzalloc(16, GFP_KERNEL);
2701 p[16] = 0x12;
2702 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2703 " 0x12->0x%p\n\n", p + 16);
2704
2705 validate_slab_cache(kmalloc_caches + 4);
2706
2707 /* Hmmm... The next two are dangerous */
2708 p = kzalloc(32, GFP_KERNEL);
2709 p[32 + sizeof(void *)] = 0x34;
2710 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2711 " 0x34 -> -0x%p\n", p);
2712 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2713
2714 validate_slab_cache(kmalloc_caches + 5);
2715 p = kzalloc(64, GFP_KERNEL);
2716 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2717 *p = 0x56;
2718 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2719 p);
2720 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2721 validate_slab_cache(kmalloc_caches + 6);
2722
2723 printk(KERN_ERR "\nB. Corruption after free\n");
2724 p = kzalloc(128, GFP_KERNEL);
2725 kfree(p);
2726 *p = 0x78;
2727 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2728 validate_slab_cache(kmalloc_caches + 7);
2729
2730 p = kzalloc(256, GFP_KERNEL);
2731 kfree(p);
2732 p[50] = 0x9a;
2733 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2734 validate_slab_cache(kmalloc_caches + 8);
2735
2736 p = kzalloc(512, GFP_KERNEL);
2737 kfree(p);
2738 p[512] = 0xab;
2739 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2740 validate_slab_cache(kmalloc_caches + 9);
2741}
2742#else
2743static void resiliency_test(void) {};
2744#endif
2745
88a420e4 2746/*
672bba3a 2747 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
2748 * and freed.
2749 */
2750
2751struct location {
2752 unsigned long count;
2753 void *addr;
2754};
2755
2756struct loc_track {
2757 unsigned long max;
2758 unsigned long count;
2759 struct location *loc;
2760};
2761
2762static void free_loc_track(struct loc_track *t)
2763{
2764 if (t->max)
2765 free_pages((unsigned long)t->loc,
2766 get_order(sizeof(struct location) * t->max));
2767}
2768
2769static int alloc_loc_track(struct loc_track *t, unsigned long max)
2770{
2771 struct location *l;
2772 int order;
2773
2774 if (!max)
2775 max = PAGE_SIZE / sizeof(struct location);
2776
2777 order = get_order(sizeof(struct location) * max);
2778
2779 l = (void *)__get_free_pages(GFP_KERNEL, order);
2780
2781 if (!l)
2782 return 0;
2783
2784 if (t->count) {
2785 memcpy(l, t->loc, sizeof(struct location) * t->count);
2786 free_loc_track(t);
2787 }
2788 t->max = max;
2789 t->loc = l;
2790 return 1;
2791}
2792
2793static int add_location(struct loc_track *t, struct kmem_cache *s,
2794 void *addr)
2795{
2796 long start, end, pos;
2797 struct location *l;
2798 void *caddr;
2799
2800 start = -1;
2801 end = t->count;
2802
2803 for ( ; ; ) {
2804 pos = start + (end - start + 1) / 2;
2805
2806 /*
2807 * There is nothing at "end". If we end up there
2808 * we need to add something to before end.
2809 */
2810 if (pos == end)
2811 break;
2812
2813 caddr = t->loc[pos].addr;
2814 if (addr == caddr) {
2815 t->loc[pos].count++;
2816 return 1;
2817 }
2818
2819 if (addr < caddr)
2820 end = pos;
2821 else
2822 start = pos;
2823 }
2824
2825 /*
672bba3a 2826 * Not found. Insert new tracking element.
88a420e4
CL
2827 */
2828 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
2829 return 0;
2830
2831 l = t->loc + pos;
2832 if (pos < t->count)
2833 memmove(l + 1, l,
2834 (t->count - pos) * sizeof(struct location));
2835 t->count++;
2836 l->count = 1;
2837 l->addr = addr;
2838 return 1;
2839}
2840
2841static void process_slab(struct loc_track *t, struct kmem_cache *s,
2842 struct page *page, enum track_item alloc)
2843{
2844 void *addr = page_address(page);
7656c72b 2845 DECLARE_BITMAP(map, s->objects);
88a420e4
CL
2846 void *p;
2847
2848 bitmap_zero(map, s->objects);
7656c72b
CL
2849 for_each_free_object(p, s, page->freelist)
2850 set_bit(slab_index(p, s, addr), map);
88a420e4 2851
7656c72b
CL
2852 for_each_object(p, s, addr)
2853 if (!test_bit(slab_index(p, s, addr), map)) {
88a420e4
CL
2854 void *addr = get_track(s, p, alloc)->addr;
2855
2856 add_location(t, s, addr);
2857 }
2858}
2859
2860static int list_locations(struct kmem_cache *s, char *buf,
2861 enum track_item alloc)
2862{
2863 int n = 0;
2864 unsigned long i;
2865 struct loc_track t;
2866 int node;
2867
2868 t.count = 0;
2869 t.max = 0;
2870
2871 /* Push back cpu slabs */
2872 flush_all(s);
2873
2874 for_each_online_node(node) {
2875 struct kmem_cache_node *n = get_node(s, node);
2876 unsigned long flags;
2877 struct page *page;
2878
2879 if (!atomic_read(&n->nr_slabs))
2880 continue;
2881
2882 spin_lock_irqsave(&n->list_lock, flags);
2883 list_for_each_entry(page, &n->partial, lru)
2884 process_slab(&t, s, page, alloc);
2885 list_for_each_entry(page, &n->full, lru)
2886 process_slab(&t, s, page, alloc);
2887 spin_unlock_irqrestore(&n->list_lock, flags);
2888 }
2889
2890 for (i = 0; i < t.count; i++) {
2891 void *addr = t.loc[i].addr;
2892
2893 if (n > PAGE_SIZE - 100)
2894 break;
2895 n += sprintf(buf + n, "%7ld ", t.loc[i].count);
2896 if (addr)
2897 n += sprint_symbol(buf + n, (unsigned long)t.loc[i].addr);
2898 else
2899 n += sprintf(buf + n, "<not-available>");
2900 n += sprintf(buf + n, "\n");
2901 }
2902
2903 free_loc_track(&t);
2904 if (!t.count)
2905 n += sprintf(buf, "No data\n");
2906 return n;
2907}
2908
81819f0f
CL
2909static unsigned long count_partial(struct kmem_cache_node *n)
2910{
2911 unsigned long flags;
2912 unsigned long x = 0;
2913 struct page *page;
2914
2915 spin_lock_irqsave(&n->list_lock, flags);
2916 list_for_each_entry(page, &n->partial, lru)
2917 x += page->inuse;
2918 spin_unlock_irqrestore(&n->list_lock, flags);
2919 return x;
2920}
2921
2922enum slab_stat_type {
2923 SL_FULL,
2924 SL_PARTIAL,
2925 SL_CPU,
2926 SL_OBJECTS
2927};
2928
2929#define SO_FULL (1 << SL_FULL)
2930#define SO_PARTIAL (1 << SL_PARTIAL)
2931#define SO_CPU (1 << SL_CPU)
2932#define SO_OBJECTS (1 << SL_OBJECTS)
2933
2934static unsigned long slab_objects(struct kmem_cache *s,
2935 char *buf, unsigned long flags)
2936{
2937 unsigned long total = 0;
2938 int cpu;
2939 int node;
2940 int x;
2941 unsigned long *nodes;
2942 unsigned long *per_cpu;
2943
2944 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
2945 per_cpu = nodes + nr_node_ids;
2946
2947 for_each_possible_cpu(cpu) {
2948 struct page *page = s->cpu_slab[cpu];
2949 int node;
2950
2951 if (page) {
2952 node = page_to_nid(page);
2953 if (flags & SO_CPU) {
2954 int x = 0;
2955
2956 if (flags & SO_OBJECTS)
2957 x = page->inuse;
2958 else
2959 x = 1;
2960 total += x;
2961 nodes[node] += x;
2962 }
2963 per_cpu[node]++;
2964 }
2965 }
2966
2967 for_each_online_node(node) {
2968 struct kmem_cache_node *n = get_node(s, node);
2969
2970 if (flags & SO_PARTIAL) {
2971 if (flags & SO_OBJECTS)
2972 x = count_partial(n);
2973 else
2974 x = n->nr_partial;
2975 total += x;
2976 nodes[node] += x;
2977 }
2978
2979 if (flags & SO_FULL) {
2980 int full_slabs = atomic_read(&n->nr_slabs)
2981 - per_cpu[node]
2982 - n->nr_partial;
2983
2984 if (flags & SO_OBJECTS)
2985 x = full_slabs * s->objects;
2986 else
2987 x = full_slabs;
2988 total += x;
2989 nodes[node] += x;
2990 }
2991 }
2992
2993 x = sprintf(buf, "%lu", total);
2994#ifdef CONFIG_NUMA
2995 for_each_online_node(node)
2996 if (nodes[node])
2997 x += sprintf(buf + x, " N%d=%lu",
2998 node, nodes[node]);
2999#endif
3000 kfree(nodes);
3001 return x + sprintf(buf + x, "\n");
3002}
3003
3004static int any_slab_objects(struct kmem_cache *s)
3005{
3006 int node;
3007 int cpu;
3008
3009 for_each_possible_cpu(cpu)
3010 if (s->cpu_slab[cpu])
3011 return 1;
3012
3013 for_each_node(node) {
3014 struct kmem_cache_node *n = get_node(s, node);
3015
3016 if (n->nr_partial || atomic_read(&n->nr_slabs))
3017 return 1;
3018 }
3019 return 0;
3020}
3021
3022#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3023#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3024
3025struct slab_attribute {
3026 struct attribute attr;
3027 ssize_t (*show)(struct kmem_cache *s, char *buf);
3028 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3029};
3030
3031#define SLAB_ATTR_RO(_name) \
3032 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3033
3034#define SLAB_ATTR(_name) \
3035 static struct slab_attribute _name##_attr = \
3036 __ATTR(_name, 0644, _name##_show, _name##_store)
3037
81819f0f
CL
3038static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3039{
3040 return sprintf(buf, "%d\n", s->size);
3041}
3042SLAB_ATTR_RO(slab_size);
3043
3044static ssize_t align_show(struct kmem_cache *s, char *buf)
3045{
3046 return sprintf(buf, "%d\n", s->align);
3047}
3048SLAB_ATTR_RO(align);
3049
3050static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3051{
3052 return sprintf(buf, "%d\n", s->objsize);
3053}
3054SLAB_ATTR_RO(object_size);
3055
3056static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3057{
3058 return sprintf(buf, "%d\n", s->objects);
3059}
3060SLAB_ATTR_RO(objs_per_slab);
3061
3062static ssize_t order_show(struct kmem_cache *s, char *buf)
3063{
3064 return sprintf(buf, "%d\n", s->order);
3065}
3066SLAB_ATTR_RO(order);
3067
3068static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3069{
3070 if (s->ctor) {
3071 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3072
3073 return n + sprintf(buf + n, "\n");
3074 }
3075 return 0;
3076}
3077SLAB_ATTR_RO(ctor);
3078
3079static ssize_t dtor_show(struct kmem_cache *s, char *buf)
3080{
3081 if (s->dtor) {
3082 int n = sprint_symbol(buf, (unsigned long)s->dtor);
3083
3084 return n + sprintf(buf + n, "\n");
3085 }
3086 return 0;
3087}
3088SLAB_ATTR_RO(dtor);
3089
3090static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3091{
3092 return sprintf(buf, "%d\n", s->refcount - 1);
3093}
3094SLAB_ATTR_RO(aliases);
3095
3096static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3097{
3098 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3099}
3100SLAB_ATTR_RO(slabs);
3101
3102static ssize_t partial_show(struct kmem_cache *s, char *buf)
3103{
3104 return slab_objects(s, buf, SO_PARTIAL);
3105}
3106SLAB_ATTR_RO(partial);
3107
3108static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3109{
3110 return slab_objects(s, buf, SO_CPU);
3111}
3112SLAB_ATTR_RO(cpu_slabs);
3113
3114static ssize_t objects_show(struct kmem_cache *s, char *buf)
3115{
3116 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3117}
3118SLAB_ATTR_RO(objects);
3119
3120static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3121{
3122 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3123}
3124
3125static ssize_t sanity_checks_store(struct kmem_cache *s,
3126 const char *buf, size_t length)
3127{
3128 s->flags &= ~SLAB_DEBUG_FREE;
3129 if (buf[0] == '1')
3130 s->flags |= SLAB_DEBUG_FREE;
3131 return length;
3132}
3133SLAB_ATTR(sanity_checks);
3134
3135static ssize_t trace_show(struct kmem_cache *s, char *buf)
3136{
3137 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3138}
3139
3140static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3141 size_t length)
3142{
3143 s->flags &= ~SLAB_TRACE;
3144 if (buf[0] == '1')
3145 s->flags |= SLAB_TRACE;
3146 return length;
3147}
3148SLAB_ATTR(trace);
3149
3150static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3151{
3152 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3153}
3154
3155static ssize_t reclaim_account_store(struct kmem_cache *s,
3156 const char *buf, size_t length)
3157{
3158 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3159 if (buf[0] == '1')
3160 s->flags |= SLAB_RECLAIM_ACCOUNT;
3161 return length;
3162}
3163SLAB_ATTR(reclaim_account);
3164
3165static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3166{
5af60839 3167 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3168}
3169SLAB_ATTR_RO(hwcache_align);
3170
3171#ifdef CONFIG_ZONE_DMA
3172static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3173{
3174 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3175}
3176SLAB_ATTR_RO(cache_dma);
3177#endif
3178
3179static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3180{
3181 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3182}
3183SLAB_ATTR_RO(destroy_by_rcu);
3184
3185static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3186{
3187 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3188}
3189
3190static ssize_t red_zone_store(struct kmem_cache *s,
3191 const char *buf, size_t length)
3192{
3193 if (any_slab_objects(s))
3194 return -EBUSY;
3195
3196 s->flags &= ~SLAB_RED_ZONE;
3197 if (buf[0] == '1')
3198 s->flags |= SLAB_RED_ZONE;
3199 calculate_sizes(s);
3200 return length;
3201}
3202SLAB_ATTR(red_zone);
3203
3204static ssize_t poison_show(struct kmem_cache *s, char *buf)
3205{
3206 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3207}
3208
3209static ssize_t poison_store(struct kmem_cache *s,
3210 const char *buf, size_t length)
3211{
3212 if (any_slab_objects(s))
3213 return -EBUSY;
3214
3215 s->flags &= ~SLAB_POISON;
3216 if (buf[0] == '1')
3217 s->flags |= SLAB_POISON;
3218 calculate_sizes(s);
3219 return length;
3220}
3221SLAB_ATTR(poison);
3222
3223static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3224{
3225 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3226}
3227
3228static ssize_t store_user_store(struct kmem_cache *s,
3229 const char *buf, size_t length)
3230{
3231 if (any_slab_objects(s))
3232 return -EBUSY;
3233
3234 s->flags &= ~SLAB_STORE_USER;
3235 if (buf[0] == '1')
3236 s->flags |= SLAB_STORE_USER;
3237 calculate_sizes(s);
3238 return length;
3239}
3240SLAB_ATTR(store_user);
3241
53e15af0
CL
3242static ssize_t validate_show(struct kmem_cache *s, char *buf)
3243{
3244 return 0;
3245}
3246
3247static ssize_t validate_store(struct kmem_cache *s,
3248 const char *buf, size_t length)
3249{
3250 if (buf[0] == '1')
3251 validate_slab_cache(s);
3252 else
3253 return -EINVAL;
3254 return length;
3255}
3256SLAB_ATTR(validate);
3257
2086d26a
CL
3258static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3259{
3260 return 0;
3261}
3262
3263static ssize_t shrink_store(struct kmem_cache *s,
3264 const char *buf, size_t length)
3265{
3266 if (buf[0] == '1') {
3267 int rc = kmem_cache_shrink(s);
3268
3269 if (rc)
3270 return rc;
3271 } else
3272 return -EINVAL;
3273 return length;
3274}
3275SLAB_ATTR(shrink);
3276
88a420e4
CL
3277static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3278{
3279 if (!(s->flags & SLAB_STORE_USER))
3280 return -ENOSYS;
3281 return list_locations(s, buf, TRACK_ALLOC);
3282}
3283SLAB_ATTR_RO(alloc_calls);
3284
3285static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3286{
3287 if (!(s->flags & SLAB_STORE_USER))
3288 return -ENOSYS;
3289 return list_locations(s, buf, TRACK_FREE);
3290}
3291SLAB_ATTR_RO(free_calls);
3292
81819f0f
CL
3293#ifdef CONFIG_NUMA
3294static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3295{
3296 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3297}
3298
3299static ssize_t defrag_ratio_store(struct kmem_cache *s,
3300 const char *buf, size_t length)
3301{
3302 int n = simple_strtoul(buf, NULL, 10);
3303
3304 if (n < 100)
3305 s->defrag_ratio = n * 10;
3306 return length;
3307}
3308SLAB_ATTR(defrag_ratio);
3309#endif
3310
3311static struct attribute * slab_attrs[] = {
3312 &slab_size_attr.attr,
3313 &object_size_attr.attr,
3314 &objs_per_slab_attr.attr,
3315 &order_attr.attr,
3316 &objects_attr.attr,
3317 &slabs_attr.attr,
3318 &partial_attr.attr,
3319 &cpu_slabs_attr.attr,
3320 &ctor_attr.attr,
3321 &dtor_attr.attr,
3322 &aliases_attr.attr,
3323 &align_attr.attr,
3324 &sanity_checks_attr.attr,
3325 &trace_attr.attr,
3326 &hwcache_align_attr.attr,
3327 &reclaim_account_attr.attr,
3328 &destroy_by_rcu_attr.attr,
3329 &red_zone_attr.attr,
3330 &poison_attr.attr,
3331 &store_user_attr.attr,
53e15af0 3332 &validate_attr.attr,
2086d26a 3333 &shrink_attr.attr,
88a420e4
CL
3334 &alloc_calls_attr.attr,
3335 &free_calls_attr.attr,
81819f0f
CL
3336#ifdef CONFIG_ZONE_DMA
3337 &cache_dma_attr.attr,
3338#endif
3339#ifdef CONFIG_NUMA
3340 &defrag_ratio_attr.attr,
3341#endif
3342 NULL
3343};
3344
3345static struct attribute_group slab_attr_group = {
3346 .attrs = slab_attrs,
3347};
3348
3349static ssize_t slab_attr_show(struct kobject *kobj,
3350 struct attribute *attr,
3351 char *buf)
3352{
3353 struct slab_attribute *attribute;
3354 struct kmem_cache *s;
3355 int err;
3356
3357 attribute = to_slab_attr(attr);
3358 s = to_slab(kobj);
3359
3360 if (!attribute->show)
3361 return -EIO;
3362
3363 err = attribute->show(s, buf);
3364
3365 return err;
3366}
3367
3368static ssize_t slab_attr_store(struct kobject *kobj,
3369 struct attribute *attr,
3370 const char *buf, size_t len)
3371{
3372 struct slab_attribute *attribute;
3373 struct kmem_cache *s;
3374 int err;
3375
3376 attribute = to_slab_attr(attr);
3377 s = to_slab(kobj);
3378
3379 if (!attribute->store)
3380 return -EIO;
3381
3382 err = attribute->store(s, buf, len);
3383
3384 return err;
3385}
3386
3387static struct sysfs_ops slab_sysfs_ops = {
3388 .show = slab_attr_show,
3389 .store = slab_attr_store,
3390};
3391
3392static struct kobj_type slab_ktype = {
3393 .sysfs_ops = &slab_sysfs_ops,
3394};
3395
3396static int uevent_filter(struct kset *kset, struct kobject *kobj)
3397{
3398 struct kobj_type *ktype = get_ktype(kobj);
3399
3400 if (ktype == &slab_ktype)
3401 return 1;
3402 return 0;
3403}
3404
3405static struct kset_uevent_ops slab_uevent_ops = {
3406 .filter = uevent_filter,
3407};
3408
3409decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3410
3411#define ID_STR_LENGTH 64
3412
3413/* Create a unique string id for a slab cache:
3414 * format
3415 * :[flags-]size:[memory address of kmemcache]
3416 */
3417static char *create_unique_id(struct kmem_cache *s)
3418{
3419 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3420 char *p = name;
3421
3422 BUG_ON(!name);
3423
3424 *p++ = ':';
3425 /*
3426 * First flags affecting slabcache operations. We will only
3427 * get here for aliasable slabs so we do not need to support
3428 * too many flags. The flags here must cover all flags that
3429 * are matched during merging to guarantee that the id is
3430 * unique.
3431 */
3432 if (s->flags & SLAB_CACHE_DMA)
3433 *p++ = 'd';
3434 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3435 *p++ = 'a';
3436 if (s->flags & SLAB_DEBUG_FREE)
3437 *p++ = 'F';
3438 if (p != name + 1)
3439 *p++ = '-';
3440 p += sprintf(p, "%07d", s->size);
3441 BUG_ON(p > name + ID_STR_LENGTH - 1);
3442 return name;
3443}
3444
3445static int sysfs_slab_add(struct kmem_cache *s)
3446{
3447 int err;
3448 const char *name;
3449 int unmergeable;
3450
3451 if (slab_state < SYSFS)
3452 /* Defer until later */
3453 return 0;
3454
3455 unmergeable = slab_unmergeable(s);
3456 if (unmergeable) {
3457 /*
3458 * Slabcache can never be merged so we can use the name proper.
3459 * This is typically the case for debug situations. In that
3460 * case we can catch duplicate names easily.
3461 */
0f9008ef 3462 sysfs_remove_link(&slab_subsys.kobj, s->name);
81819f0f
CL
3463 name = s->name;
3464 } else {
3465 /*
3466 * Create a unique name for the slab as a target
3467 * for the symlinks.
3468 */
3469 name = create_unique_id(s);
3470 }
3471
3472 kobj_set_kset_s(s, slab_subsys);
3473 kobject_set_name(&s->kobj, name);
3474 kobject_init(&s->kobj);
3475 err = kobject_add(&s->kobj);
3476 if (err)
3477 return err;
3478
3479 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3480 if (err)
3481 return err;
3482 kobject_uevent(&s->kobj, KOBJ_ADD);
3483 if (!unmergeable) {
3484 /* Setup first alias */
3485 sysfs_slab_alias(s, s->name);
3486 kfree(name);
3487 }
3488 return 0;
3489}
3490
3491static void sysfs_slab_remove(struct kmem_cache *s)
3492{
3493 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3494 kobject_del(&s->kobj);
3495}
3496
3497/*
3498 * Need to buffer aliases during bootup until sysfs becomes
3499 * available lest we loose that information.
3500 */
3501struct saved_alias {
3502 struct kmem_cache *s;
3503 const char *name;
3504 struct saved_alias *next;
3505};
3506
3507struct saved_alias *alias_list;
3508
3509static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3510{
3511 struct saved_alias *al;
3512
3513 if (slab_state == SYSFS) {
3514 /*
3515 * If we have a leftover link then remove it.
3516 */
0f9008ef
LT
3517 sysfs_remove_link(&slab_subsys.kobj, name);
3518 return sysfs_create_link(&slab_subsys.kobj,
81819f0f
CL
3519 &s->kobj, name);
3520 }
3521
3522 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3523 if (!al)
3524 return -ENOMEM;
3525
3526 al->s = s;
3527 al->name = name;
3528 al->next = alias_list;
3529 alias_list = al;
3530 return 0;
3531}
3532
3533static int __init slab_sysfs_init(void)
3534{
26a7bd03 3535 struct list_head *h;
81819f0f
CL
3536 int err;
3537
3538 err = subsystem_register(&slab_subsys);
3539 if (err) {
3540 printk(KERN_ERR "Cannot register slab subsystem.\n");
3541 return -ENOSYS;
3542 }
3543
26a7bd03
CL
3544 slab_state = SYSFS;
3545
3546 list_for_each(h, &slab_caches) {
3547 struct kmem_cache *s =
3548 container_of(h, struct kmem_cache, list);
3549
3550 err = sysfs_slab_add(s);
3551 BUG_ON(err);
3552 }
81819f0f
CL
3553
3554 while (alias_list) {
3555 struct saved_alias *al = alias_list;
3556
3557 alias_list = alias_list->next;
3558 err = sysfs_slab_alias(al->s, al->name);
3559 BUG_ON(err);
3560 kfree(al);
3561 }
3562
3563 resiliency_test();
3564 return 0;
3565}
3566
3567__initcall(slab_sysfs_init);
81819f0f 3568#endif