slub: Store max number of objects in the page struct.
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
b9049e23 23#include <linux/memory.h>
81819f0f
CL
24
25/*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
672bba3a
CL
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 72 * freed then the slab will show up again on the partial lists.
672bba3a
CL
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
81819f0f
CL
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
4b6f0750
CL
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
dfb4f096 94 * freelist that allows lockless access to
894b8788
CL
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
81819f0f
CL
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
894b8788 100 * the fast path and disables lockless freelists.
81819f0f
CL
101 */
102
5577bd8a
CL
103#define FROZEN (1 << PG_active)
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG (1 << PG_error)
107#else
108#define SLABDEBUG 0
109#endif
110
4b6f0750
CL
111static inline int SlabFrozen(struct page *page)
112{
5577bd8a 113 return page->flags & FROZEN;
4b6f0750
CL
114}
115
116static inline void SetSlabFrozen(struct page *page)
117{
5577bd8a 118 page->flags |= FROZEN;
4b6f0750
CL
119}
120
121static inline void ClearSlabFrozen(struct page *page)
122{
5577bd8a 123 page->flags &= ~FROZEN;
4b6f0750
CL
124}
125
35e5d7ee
CL
126static inline int SlabDebug(struct page *page)
127{
5577bd8a 128 return page->flags & SLABDEBUG;
35e5d7ee
CL
129}
130
131static inline void SetSlabDebug(struct page *page)
132{
5577bd8a 133 page->flags |= SLABDEBUG;
35e5d7ee
CL
134}
135
136static inline void ClearSlabDebug(struct page *page)
137{
5577bd8a 138 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
139}
140
81819f0f
CL
141/*
142 * Issues still to be resolved:
143 *
81819f0f
CL
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
81819f0f
CL
146 * - Variable sizing of the per node arrays
147 */
148
149/* Enable to test recovery from slab corruption on boot */
150#undef SLUB_RESILIENCY_TEST
151
152#if PAGE_SHIFT <= 12
153
154/*
155 * Small page size. Make sure that we do not fragment memory
156 */
157#define DEFAULT_MAX_ORDER 1
158#define DEFAULT_MIN_OBJECTS 4
159
160#else
161
162/*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166#define DEFAULT_MAX_ORDER 2
167#define DEFAULT_MIN_OBJECTS 8
168
169#endif
170
2086d26a
CL
171/*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
76be8950 175#define MIN_PARTIAL 5
e95eed57 176
2086d26a
CL
177/*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182#define MAX_PARTIAL 10
183
81819f0f
CL
184#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
672bba3a 186
81819f0f
CL
187/*
188 * Set of flags that will prevent slab merging
189 */
190#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 197#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
198#endif
199
200#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 201#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
202#endif
203
204/* Internal SLUB flags */
1ceef402
CL
205#define __OBJECT_POISON 0x80000000 /* Poison object */
206#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
71c7a06f
CL
207#define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208#define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
81819f0f 209
65c02d4c
CL
210/* Not all arches define cache_line_size */
211#ifndef cache_line_size
212#define cache_line_size() L1_CACHE_BYTES
213#endif
214
81819f0f
CL
215static int kmem_size = sizeof(struct kmem_cache);
216
217#ifdef CONFIG_SMP
218static struct notifier_block slab_notifier;
219#endif
220
221static enum {
222 DOWN, /* No slab functionality available */
223 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 224 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
225 SYSFS /* Sysfs up */
226} slab_state = DOWN;
227
228/* A list of all slab caches on the system */
229static DECLARE_RWSEM(slub_lock);
5af328a5 230static LIST_HEAD(slab_caches);
81819f0f 231
02cbc874
CL
232/*
233 * Tracking user of a slab.
234 */
235struct track {
236 void *addr; /* Called from address */
237 int cpu; /* Was running on cpu */
238 int pid; /* Pid context */
239 unsigned long when; /* When did the operation occur */
240};
241
242enum track_item { TRACK_ALLOC, TRACK_FREE };
243
41ecc55b 244#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
245static int sysfs_slab_add(struct kmem_cache *);
246static int sysfs_slab_alias(struct kmem_cache *, const char *);
247static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 248
81819f0f 249#else
0c710013
CL
250static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
252 { return 0; }
151c602f
CL
253static inline void sysfs_slab_remove(struct kmem_cache *s)
254{
255 kfree(s);
256}
8ff12cfc 257
81819f0f
CL
258#endif
259
8ff12cfc
CL
260static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
261{
262#ifdef CONFIG_SLUB_STATS
263 c->stat[si]++;
264#endif
265}
266
81819f0f
CL
267/********************************************************************
268 * Core slab cache functions
269 *******************************************************************/
270
271int slab_is_available(void)
272{
273 return slab_state >= UP;
274}
275
276static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
277{
278#ifdef CONFIG_NUMA
279 return s->node[node];
280#else
281 return &s->local_node;
282#endif
283}
284
dfb4f096
CL
285static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
286{
4c93c355
CL
287#ifdef CONFIG_SMP
288 return s->cpu_slab[cpu];
289#else
290 return &s->cpu_slab;
291#endif
dfb4f096
CL
292}
293
6446faa2 294/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
295static inline int check_valid_pointer(struct kmem_cache *s,
296 struct page *page, const void *object)
297{
298 void *base;
299
a973e9dd 300 if (!object)
02cbc874
CL
301 return 1;
302
a973e9dd 303 base = page_address(page);
39b26464 304 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
305 (object - base) % s->size) {
306 return 0;
307 }
308
309 return 1;
310}
311
7656c72b
CL
312/*
313 * Slow version of get and set free pointer.
314 *
315 * This version requires touching the cache lines of kmem_cache which
316 * we avoid to do in the fast alloc free paths. There we obtain the offset
317 * from the page struct.
318 */
319static inline void *get_freepointer(struct kmem_cache *s, void *object)
320{
321 return *(void **)(object + s->offset);
322}
323
324static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
325{
326 *(void **)(object + s->offset) = fp;
327}
328
329/* Loop over all objects in a slab */
330#define for_each_object(__p, __s, __addr) \
331 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
332 __p += (__s)->size)
333
334/* Scan freelist */
335#define for_each_free_object(__p, __s, __free) \
a973e9dd 336 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
337
338/* Determine object index from a given position */
339static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
340{
341 return (p - addr) / s->size;
342}
343
41ecc55b
CL
344#ifdef CONFIG_SLUB_DEBUG
345/*
346 * Debug settings:
347 */
f0630fff
CL
348#ifdef CONFIG_SLUB_DEBUG_ON
349static int slub_debug = DEBUG_DEFAULT_FLAGS;
350#else
41ecc55b 351static int slub_debug;
f0630fff 352#endif
41ecc55b
CL
353
354static char *slub_debug_slabs;
355
81819f0f
CL
356/*
357 * Object debugging
358 */
359static void print_section(char *text, u8 *addr, unsigned int length)
360{
361 int i, offset;
362 int newline = 1;
363 char ascii[17];
364
365 ascii[16] = 0;
366
367 for (i = 0; i < length; i++) {
368 if (newline) {
24922684 369 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
370 newline = 0;
371 }
06428780 372 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
373 offset = i % 16;
374 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
375 if (offset == 15) {
06428780 376 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
377 newline = 1;
378 }
379 }
380 if (!newline) {
381 i %= 16;
382 while (i < 16) {
06428780 383 printk(KERN_CONT " ");
81819f0f
CL
384 ascii[i] = ' ';
385 i++;
386 }
06428780 387 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
388 }
389}
390
81819f0f
CL
391static struct track *get_track(struct kmem_cache *s, void *object,
392 enum track_item alloc)
393{
394 struct track *p;
395
396 if (s->offset)
397 p = object + s->offset + sizeof(void *);
398 else
399 p = object + s->inuse;
400
401 return p + alloc;
402}
403
404static void set_track(struct kmem_cache *s, void *object,
405 enum track_item alloc, void *addr)
406{
407 struct track *p;
408
409 if (s->offset)
410 p = object + s->offset + sizeof(void *);
411 else
412 p = object + s->inuse;
413
414 p += alloc;
415 if (addr) {
416 p->addr = addr;
417 p->cpu = smp_processor_id();
418 p->pid = current ? current->pid : -1;
419 p->when = jiffies;
420 } else
421 memset(p, 0, sizeof(struct track));
422}
423
81819f0f
CL
424static void init_tracking(struct kmem_cache *s, void *object)
425{
24922684
CL
426 if (!(s->flags & SLAB_STORE_USER))
427 return;
428
429 set_track(s, object, TRACK_FREE, NULL);
430 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
431}
432
433static void print_track(const char *s, struct track *t)
434{
435 if (!t->addr)
436 return;
437
24922684 438 printk(KERN_ERR "INFO: %s in ", s);
81819f0f 439 __print_symbol("%s", (unsigned long)t->addr);
24922684
CL
440 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
441}
442
443static void print_tracking(struct kmem_cache *s, void *object)
444{
445 if (!(s->flags & SLAB_STORE_USER))
446 return;
447
448 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
449 print_track("Freed", get_track(s, object, TRACK_FREE));
450}
451
452static void print_page_info(struct page *page)
453{
39b26464
CL
454 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
455 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
456
457}
458
459static void slab_bug(struct kmem_cache *s, char *fmt, ...)
460{
461 va_list args;
462 char buf[100];
463
464 va_start(args, fmt);
465 vsnprintf(buf, sizeof(buf), fmt, args);
466 va_end(args);
467 printk(KERN_ERR "========================================"
468 "=====================================\n");
469 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
470 printk(KERN_ERR "----------------------------------------"
471 "-------------------------------------\n\n");
81819f0f
CL
472}
473
24922684
CL
474static void slab_fix(struct kmem_cache *s, char *fmt, ...)
475{
476 va_list args;
477 char buf[100];
478
479 va_start(args, fmt);
480 vsnprintf(buf, sizeof(buf), fmt, args);
481 va_end(args);
482 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
483}
484
485static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
486{
487 unsigned int off; /* Offset of last byte */
a973e9dd 488 u8 *addr = page_address(page);
24922684
CL
489
490 print_tracking(s, p);
491
492 print_page_info(page);
493
494 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
495 p, p - addr, get_freepointer(s, p));
496
497 if (p > addr + 16)
498 print_section("Bytes b4", p - 16, 16);
499
500 print_section("Object", p, min(s->objsize, 128));
81819f0f
CL
501
502 if (s->flags & SLAB_RED_ZONE)
503 print_section("Redzone", p + s->objsize,
504 s->inuse - s->objsize);
505
81819f0f
CL
506 if (s->offset)
507 off = s->offset + sizeof(void *);
508 else
509 off = s->inuse;
510
24922684 511 if (s->flags & SLAB_STORE_USER)
81819f0f 512 off += 2 * sizeof(struct track);
81819f0f
CL
513
514 if (off != s->size)
515 /* Beginning of the filler is the free pointer */
24922684
CL
516 print_section("Padding", p + off, s->size - off);
517
518 dump_stack();
81819f0f
CL
519}
520
521static void object_err(struct kmem_cache *s, struct page *page,
522 u8 *object, char *reason)
523{
3dc50637 524 slab_bug(s, "%s", reason);
24922684 525 print_trailer(s, page, object);
81819f0f
CL
526}
527
24922684 528static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
529{
530 va_list args;
531 char buf[100];
532
24922684
CL
533 va_start(args, fmt);
534 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 535 va_end(args);
3dc50637 536 slab_bug(s, "%s", buf);
24922684 537 print_page_info(page);
81819f0f
CL
538 dump_stack();
539}
540
541static void init_object(struct kmem_cache *s, void *object, int active)
542{
543 u8 *p = object;
544
545 if (s->flags & __OBJECT_POISON) {
546 memset(p, POISON_FREE, s->objsize - 1);
06428780 547 p[s->objsize - 1] = POISON_END;
81819f0f
CL
548 }
549
550 if (s->flags & SLAB_RED_ZONE)
551 memset(p + s->objsize,
552 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
553 s->inuse - s->objsize);
554}
555
24922684 556static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
557{
558 while (bytes) {
559 if (*start != (u8)value)
24922684 560 return start;
81819f0f
CL
561 start++;
562 bytes--;
563 }
24922684
CL
564 return NULL;
565}
566
567static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
568 void *from, void *to)
569{
570 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
571 memset(from, data, to - from);
572}
573
574static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
575 u8 *object, char *what,
06428780 576 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
577{
578 u8 *fault;
579 u8 *end;
580
581 fault = check_bytes(start, value, bytes);
582 if (!fault)
583 return 1;
584
585 end = start + bytes;
586 while (end > fault && end[-1] == value)
587 end--;
588
589 slab_bug(s, "%s overwritten", what);
590 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
591 fault, end - 1, fault[0], value);
592 print_trailer(s, page, object);
593
594 restore_bytes(s, what, value, fault, end);
595 return 0;
81819f0f
CL
596}
597
81819f0f
CL
598/*
599 * Object layout:
600 *
601 * object address
602 * Bytes of the object to be managed.
603 * If the freepointer may overlay the object then the free
604 * pointer is the first word of the object.
672bba3a 605 *
81819f0f
CL
606 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
607 * 0xa5 (POISON_END)
608 *
609 * object + s->objsize
610 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
611 * Padding is extended by another word if Redzoning is enabled and
612 * objsize == inuse.
613 *
81819f0f
CL
614 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
615 * 0xcc (RED_ACTIVE) for objects in use.
616 *
617 * object + s->inuse
672bba3a
CL
618 * Meta data starts here.
619 *
81819f0f
CL
620 * A. Free pointer (if we cannot overwrite object on free)
621 * B. Tracking data for SLAB_STORE_USER
672bba3a 622 * C. Padding to reach required alignment boundary or at mininum
6446faa2 623 * one word if debugging is on to be able to detect writes
672bba3a
CL
624 * before the word boundary.
625 *
626 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
627 *
628 * object + s->size
672bba3a 629 * Nothing is used beyond s->size.
81819f0f 630 *
672bba3a
CL
631 * If slabcaches are merged then the objsize and inuse boundaries are mostly
632 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
633 * may be used with merged slabcaches.
634 */
635
81819f0f
CL
636static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
637{
638 unsigned long off = s->inuse; /* The end of info */
639
640 if (s->offset)
641 /* Freepointer is placed after the object. */
642 off += sizeof(void *);
643
644 if (s->flags & SLAB_STORE_USER)
645 /* We also have user information there */
646 off += 2 * sizeof(struct track);
647
648 if (s->size == off)
649 return 1;
650
24922684
CL
651 return check_bytes_and_report(s, page, p, "Object padding",
652 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
653}
654
39b26464 655/* Check the pad bytes at the end of a slab page */
81819f0f
CL
656static int slab_pad_check(struct kmem_cache *s, struct page *page)
657{
24922684
CL
658 u8 *start;
659 u8 *fault;
660 u8 *end;
661 int length;
662 int remainder;
81819f0f
CL
663
664 if (!(s->flags & SLAB_POISON))
665 return 1;
666
a973e9dd 667 start = page_address(page);
39b26464
CL
668 length = (PAGE_SIZE << s->order);
669 end = start + length;
670 remainder = length % s->size;
81819f0f
CL
671 if (!remainder)
672 return 1;
673
39b26464 674 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
675 if (!fault)
676 return 1;
677 while (end > fault && end[-1] == POISON_INUSE)
678 end--;
679
680 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 681 print_section("Padding", end - remainder, remainder);
24922684
CL
682
683 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
684 return 0;
81819f0f
CL
685}
686
687static int check_object(struct kmem_cache *s, struct page *page,
688 void *object, int active)
689{
690 u8 *p = object;
691 u8 *endobject = object + s->objsize;
692
693 if (s->flags & SLAB_RED_ZONE) {
694 unsigned int red =
695 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
696
24922684
CL
697 if (!check_bytes_and_report(s, page, object, "Redzone",
698 endobject, red, s->inuse - s->objsize))
81819f0f 699 return 0;
81819f0f 700 } else {
3adbefee
IM
701 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
702 check_bytes_and_report(s, page, p, "Alignment padding",
703 endobject, POISON_INUSE, s->inuse - s->objsize);
704 }
81819f0f
CL
705 }
706
707 if (s->flags & SLAB_POISON) {
708 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
709 (!check_bytes_and_report(s, page, p, "Poison", p,
710 POISON_FREE, s->objsize - 1) ||
711 !check_bytes_and_report(s, page, p, "Poison",
06428780 712 p + s->objsize - 1, POISON_END, 1)))
81819f0f 713 return 0;
81819f0f
CL
714 /*
715 * check_pad_bytes cleans up on its own.
716 */
717 check_pad_bytes(s, page, p);
718 }
719
720 if (!s->offset && active)
721 /*
722 * Object and freepointer overlap. Cannot check
723 * freepointer while object is allocated.
724 */
725 return 1;
726
727 /* Check free pointer validity */
728 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
729 object_err(s, page, p, "Freepointer corrupt");
730 /*
731 * No choice but to zap it and thus loose the remainder
732 * of the free objects in this slab. May cause
672bba3a 733 * another error because the object count is now wrong.
81819f0f 734 */
a973e9dd 735 set_freepointer(s, p, NULL);
81819f0f
CL
736 return 0;
737 }
738 return 1;
739}
740
741static int check_slab(struct kmem_cache *s, struct page *page)
742{
39b26464
CL
743 int maxobj;
744
81819f0f
CL
745 VM_BUG_ON(!irqs_disabled());
746
747 if (!PageSlab(page)) {
24922684 748 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
749 return 0;
750 }
39b26464
CL
751
752 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
753 if (page->objects > maxobj) {
754 slab_err(s, page, "objects %u > max %u",
755 s->name, page->objects, maxobj);
756 return 0;
757 }
758 if (page->inuse > page->objects) {
24922684 759 slab_err(s, page, "inuse %u > max %u",
39b26464 760 s->name, page->inuse, page->objects);
81819f0f
CL
761 return 0;
762 }
763 /* Slab_pad_check fixes things up after itself */
764 slab_pad_check(s, page);
765 return 1;
766}
767
768/*
672bba3a
CL
769 * Determine if a certain object on a page is on the freelist. Must hold the
770 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
771 */
772static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
773{
774 int nr = 0;
775 void *fp = page->freelist;
776 void *object = NULL;
777
39b26464 778 while (fp && nr <= page->objects) {
81819f0f
CL
779 if (fp == search)
780 return 1;
781 if (!check_valid_pointer(s, page, fp)) {
782 if (object) {
783 object_err(s, page, object,
784 "Freechain corrupt");
a973e9dd 785 set_freepointer(s, object, NULL);
81819f0f
CL
786 break;
787 } else {
24922684 788 slab_err(s, page, "Freepointer corrupt");
a973e9dd 789 page->freelist = NULL;
39b26464 790 page->inuse = page->objects;
24922684 791 slab_fix(s, "Freelist cleared");
81819f0f
CL
792 return 0;
793 }
794 break;
795 }
796 object = fp;
797 fp = get_freepointer(s, object);
798 nr++;
799 }
800
39b26464 801 if (page->inuse != page->objects - nr) {
70d71228 802 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
803 "counted were %d", page->inuse, page->objects - nr);
804 page->inuse = page->objects - nr;
24922684 805 slab_fix(s, "Object count adjusted.");
81819f0f
CL
806 }
807 return search == NULL;
808}
809
3ec09742
CL
810static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
811{
812 if (s->flags & SLAB_TRACE) {
813 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
814 s->name,
815 alloc ? "alloc" : "free",
816 object, page->inuse,
817 page->freelist);
818
819 if (!alloc)
820 print_section("Object", (void *)object, s->objsize);
821
822 dump_stack();
823 }
824}
825
643b1138 826/*
672bba3a 827 * Tracking of fully allocated slabs for debugging purposes.
643b1138 828 */
e95eed57 829static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 830{
643b1138
CL
831 spin_lock(&n->list_lock);
832 list_add(&page->lru, &n->full);
833 spin_unlock(&n->list_lock);
834}
835
836static void remove_full(struct kmem_cache *s, struct page *page)
837{
838 struct kmem_cache_node *n;
839
840 if (!(s->flags & SLAB_STORE_USER))
841 return;
842
843 n = get_node(s, page_to_nid(page));
844
845 spin_lock(&n->list_lock);
846 list_del(&page->lru);
847 spin_unlock(&n->list_lock);
848}
849
0f389ec6
CL
850/* Tracking of the number of slabs for debugging purposes */
851static inline unsigned long slabs_node(struct kmem_cache *s, int node)
852{
853 struct kmem_cache_node *n = get_node(s, node);
854
855 return atomic_long_read(&n->nr_slabs);
856}
857
858static inline void inc_slabs_node(struct kmem_cache *s, int node)
859{
860 struct kmem_cache_node *n = get_node(s, node);
861
862 /*
863 * May be called early in order to allocate a slab for the
864 * kmem_cache_node structure. Solve the chicken-egg
865 * dilemma by deferring the increment of the count during
866 * bootstrap (see early_kmem_cache_node_alloc).
867 */
868 if (!NUMA_BUILD || n)
869 atomic_long_inc(&n->nr_slabs);
870}
871static inline void dec_slabs_node(struct kmem_cache *s, int node)
872{
873 struct kmem_cache_node *n = get_node(s, node);
874
875 atomic_long_dec(&n->nr_slabs);
876}
877
878/* Object debug checks for alloc/free paths */
3ec09742
CL
879static void setup_object_debug(struct kmem_cache *s, struct page *page,
880 void *object)
881{
882 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
883 return;
884
885 init_object(s, object, 0);
886 init_tracking(s, object);
887}
888
889static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
890 void *object, void *addr)
81819f0f
CL
891{
892 if (!check_slab(s, page))
893 goto bad;
894
d692ef6d 895 if (!on_freelist(s, page, object)) {
24922684 896 object_err(s, page, object, "Object already allocated");
70d71228 897 goto bad;
81819f0f
CL
898 }
899
900 if (!check_valid_pointer(s, page, object)) {
901 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 902 goto bad;
81819f0f
CL
903 }
904
d692ef6d 905 if (!check_object(s, page, object, 0))
81819f0f 906 goto bad;
81819f0f 907
3ec09742
CL
908 /* Success perform special debug activities for allocs */
909 if (s->flags & SLAB_STORE_USER)
910 set_track(s, object, TRACK_ALLOC, addr);
911 trace(s, page, object, 1);
912 init_object(s, object, 1);
81819f0f 913 return 1;
3ec09742 914
81819f0f
CL
915bad:
916 if (PageSlab(page)) {
917 /*
918 * If this is a slab page then lets do the best we can
919 * to avoid issues in the future. Marking all objects
672bba3a 920 * as used avoids touching the remaining objects.
81819f0f 921 */
24922684 922 slab_fix(s, "Marking all objects used");
39b26464 923 page->inuse = page->objects;
a973e9dd 924 page->freelist = NULL;
81819f0f
CL
925 }
926 return 0;
927}
928
3ec09742
CL
929static int free_debug_processing(struct kmem_cache *s, struct page *page,
930 void *object, void *addr)
81819f0f
CL
931{
932 if (!check_slab(s, page))
933 goto fail;
934
935 if (!check_valid_pointer(s, page, object)) {
70d71228 936 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
937 goto fail;
938 }
939
940 if (on_freelist(s, page, object)) {
24922684 941 object_err(s, page, object, "Object already free");
81819f0f
CL
942 goto fail;
943 }
944
945 if (!check_object(s, page, object, 1))
946 return 0;
947
948 if (unlikely(s != page->slab)) {
3adbefee 949 if (!PageSlab(page)) {
70d71228
CL
950 slab_err(s, page, "Attempt to free object(0x%p) "
951 "outside of slab", object);
3adbefee 952 } else if (!page->slab) {
81819f0f 953 printk(KERN_ERR
70d71228 954 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 955 object);
70d71228 956 dump_stack();
06428780 957 } else
24922684
CL
958 object_err(s, page, object,
959 "page slab pointer corrupt.");
81819f0f
CL
960 goto fail;
961 }
3ec09742
CL
962
963 /* Special debug activities for freeing objects */
a973e9dd 964 if (!SlabFrozen(page) && !page->freelist)
3ec09742
CL
965 remove_full(s, page);
966 if (s->flags & SLAB_STORE_USER)
967 set_track(s, object, TRACK_FREE, addr);
968 trace(s, page, object, 0);
969 init_object(s, object, 0);
81819f0f 970 return 1;
3ec09742 971
81819f0f 972fail:
24922684 973 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
974 return 0;
975}
976
41ecc55b
CL
977static int __init setup_slub_debug(char *str)
978{
f0630fff
CL
979 slub_debug = DEBUG_DEFAULT_FLAGS;
980 if (*str++ != '=' || !*str)
981 /*
982 * No options specified. Switch on full debugging.
983 */
984 goto out;
985
986 if (*str == ',')
987 /*
988 * No options but restriction on slabs. This means full
989 * debugging for slabs matching a pattern.
990 */
991 goto check_slabs;
992
993 slub_debug = 0;
994 if (*str == '-')
995 /*
996 * Switch off all debugging measures.
997 */
998 goto out;
999
1000 /*
1001 * Determine which debug features should be switched on
1002 */
06428780 1003 for (; *str && *str != ','; str++) {
f0630fff
CL
1004 switch (tolower(*str)) {
1005 case 'f':
1006 slub_debug |= SLAB_DEBUG_FREE;
1007 break;
1008 case 'z':
1009 slub_debug |= SLAB_RED_ZONE;
1010 break;
1011 case 'p':
1012 slub_debug |= SLAB_POISON;
1013 break;
1014 case 'u':
1015 slub_debug |= SLAB_STORE_USER;
1016 break;
1017 case 't':
1018 slub_debug |= SLAB_TRACE;
1019 break;
1020 default:
1021 printk(KERN_ERR "slub_debug option '%c' "
06428780 1022 "unknown. skipped\n", *str);
f0630fff 1023 }
41ecc55b
CL
1024 }
1025
f0630fff 1026check_slabs:
41ecc55b
CL
1027 if (*str == ',')
1028 slub_debug_slabs = str + 1;
f0630fff 1029out:
41ecc55b
CL
1030 return 1;
1031}
1032
1033__setup("slub_debug", setup_slub_debug);
1034
ba0268a8
CL
1035static unsigned long kmem_cache_flags(unsigned long objsize,
1036 unsigned long flags, const char *name,
4ba9b9d0 1037 void (*ctor)(struct kmem_cache *, void *))
41ecc55b
CL
1038{
1039 /*
e153362a 1040 * Enable debugging if selected on the kernel commandline.
41ecc55b 1041 */
e153362a
CL
1042 if (slub_debug && (!slub_debug_slabs ||
1043 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1044 flags |= slub_debug;
ba0268a8
CL
1045
1046 return flags;
41ecc55b
CL
1047}
1048#else
3ec09742
CL
1049static inline void setup_object_debug(struct kmem_cache *s,
1050 struct page *page, void *object) {}
41ecc55b 1051
3ec09742
CL
1052static inline int alloc_debug_processing(struct kmem_cache *s,
1053 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1054
3ec09742
CL
1055static inline int free_debug_processing(struct kmem_cache *s,
1056 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1057
41ecc55b
CL
1058static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1059 { return 1; }
1060static inline int check_object(struct kmem_cache *s, struct page *page,
1061 void *object, int active) { return 1; }
3ec09742 1062static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1063static inline unsigned long kmem_cache_flags(unsigned long objsize,
1064 unsigned long flags, const char *name,
4ba9b9d0 1065 void (*ctor)(struct kmem_cache *, void *))
ba0268a8
CL
1066{
1067 return flags;
1068}
41ecc55b 1069#define slub_debug 0
0f389ec6
CL
1070
1071static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1072 { return 0; }
1073static inline void inc_slabs_node(struct kmem_cache *s, int node) {}
1074static inline void dec_slabs_node(struct kmem_cache *s, int node) {}
41ecc55b 1075#endif
81819f0f
CL
1076/*
1077 * Slab allocation and freeing
1078 */
1079static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1080{
06428780 1081 struct page *page;
81819f0f
CL
1082 int pages = 1 << s->order;
1083
b7a49f0d 1084 flags |= s->allocflags;
e12ba74d 1085
81819f0f
CL
1086 if (node == -1)
1087 page = alloc_pages(flags, s->order);
1088 else
1089 page = alloc_pages_node(node, flags, s->order);
1090
1091 if (!page)
1092 return NULL;
1093
39b26464 1094 page->objects = s->objects;
81819f0f
CL
1095 mod_zone_page_state(page_zone(page),
1096 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1097 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1098 pages);
1099
1100 return page;
1101}
1102
1103static void setup_object(struct kmem_cache *s, struct page *page,
1104 void *object)
1105{
3ec09742 1106 setup_object_debug(s, page, object);
4f104934 1107 if (unlikely(s->ctor))
4ba9b9d0 1108 s->ctor(s, object);
81819f0f
CL
1109}
1110
1111static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1112{
1113 struct page *page;
81819f0f 1114 void *start;
81819f0f
CL
1115 void *last;
1116 void *p;
1117
6cb06229 1118 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1119
6cb06229
CL
1120 page = allocate_slab(s,
1121 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1122 if (!page)
1123 goto out;
1124
0f389ec6 1125 inc_slabs_node(s, page_to_nid(page));
81819f0f
CL
1126 page->slab = s;
1127 page->flags |= 1 << PG_slab;
1128 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1129 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1130 SetSlabDebug(page);
81819f0f
CL
1131
1132 start = page_address(page);
81819f0f
CL
1133
1134 if (unlikely(s->flags & SLAB_POISON))
1135 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1136
1137 last = start;
7656c72b 1138 for_each_object(p, s, start) {
81819f0f
CL
1139 setup_object(s, page, last);
1140 set_freepointer(s, last, p);
1141 last = p;
1142 }
1143 setup_object(s, page, last);
a973e9dd 1144 set_freepointer(s, last, NULL);
81819f0f
CL
1145
1146 page->freelist = start;
1147 page->inuse = 0;
1148out:
81819f0f
CL
1149 return page;
1150}
1151
1152static void __free_slab(struct kmem_cache *s, struct page *page)
1153{
1154 int pages = 1 << s->order;
1155
c59def9f 1156 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1157 void *p;
1158
1159 slab_pad_check(s, page);
a973e9dd 1160 for_each_object(p, s, page_address(page))
81819f0f 1161 check_object(s, page, p, 0);
2208b764 1162 ClearSlabDebug(page);
81819f0f
CL
1163 }
1164
1165 mod_zone_page_state(page_zone(page),
1166 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1167 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1168 -pages);
81819f0f 1169
49bd5221
CL
1170 __ClearPageSlab(page);
1171 reset_page_mapcount(page);
81819f0f
CL
1172 __free_pages(page, s->order);
1173}
1174
1175static void rcu_free_slab(struct rcu_head *h)
1176{
1177 struct page *page;
1178
1179 page = container_of((struct list_head *)h, struct page, lru);
1180 __free_slab(page->slab, page);
1181}
1182
1183static void free_slab(struct kmem_cache *s, struct page *page)
1184{
1185 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1186 /*
1187 * RCU free overloads the RCU head over the LRU
1188 */
1189 struct rcu_head *head = (void *)&page->lru;
1190
1191 call_rcu(head, rcu_free_slab);
1192 } else
1193 __free_slab(s, page);
1194}
1195
1196static void discard_slab(struct kmem_cache *s, struct page *page)
1197{
0f389ec6 1198 dec_slabs_node(s, page_to_nid(page));
81819f0f
CL
1199 free_slab(s, page);
1200}
1201
1202/*
1203 * Per slab locking using the pagelock
1204 */
1205static __always_inline void slab_lock(struct page *page)
1206{
1207 bit_spin_lock(PG_locked, &page->flags);
1208}
1209
1210static __always_inline void slab_unlock(struct page *page)
1211{
a76d3546 1212 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1213}
1214
1215static __always_inline int slab_trylock(struct page *page)
1216{
1217 int rc = 1;
1218
1219 rc = bit_spin_trylock(PG_locked, &page->flags);
1220 return rc;
1221}
1222
1223/*
1224 * Management of partially allocated slabs
1225 */
7c2e132c
CL
1226static void add_partial(struct kmem_cache_node *n,
1227 struct page *page, int tail)
81819f0f 1228{
e95eed57
CL
1229 spin_lock(&n->list_lock);
1230 n->nr_partial++;
7c2e132c
CL
1231 if (tail)
1232 list_add_tail(&page->lru, &n->partial);
1233 else
1234 list_add(&page->lru, &n->partial);
81819f0f
CL
1235 spin_unlock(&n->list_lock);
1236}
1237
1238static void remove_partial(struct kmem_cache *s,
1239 struct page *page)
1240{
1241 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1242
1243 spin_lock(&n->list_lock);
1244 list_del(&page->lru);
1245 n->nr_partial--;
1246 spin_unlock(&n->list_lock);
1247}
1248
1249/*
672bba3a 1250 * Lock slab and remove from the partial list.
81819f0f 1251 *
672bba3a 1252 * Must hold list_lock.
81819f0f 1253 */
4b6f0750 1254static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
81819f0f
CL
1255{
1256 if (slab_trylock(page)) {
1257 list_del(&page->lru);
1258 n->nr_partial--;
4b6f0750 1259 SetSlabFrozen(page);
81819f0f
CL
1260 return 1;
1261 }
1262 return 0;
1263}
1264
1265/*
672bba3a 1266 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1267 */
1268static struct page *get_partial_node(struct kmem_cache_node *n)
1269{
1270 struct page *page;
1271
1272 /*
1273 * Racy check. If we mistakenly see no partial slabs then we
1274 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1275 * partial slab and there is none available then get_partials()
1276 * will return NULL.
81819f0f
CL
1277 */
1278 if (!n || !n->nr_partial)
1279 return NULL;
1280
1281 spin_lock(&n->list_lock);
1282 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1283 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1284 goto out;
1285 page = NULL;
1286out:
1287 spin_unlock(&n->list_lock);
1288 return page;
1289}
1290
1291/*
672bba3a 1292 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1293 */
1294static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1295{
1296#ifdef CONFIG_NUMA
1297 struct zonelist *zonelist;
1298 struct zone **z;
1299 struct page *page;
1300
1301 /*
672bba3a
CL
1302 * The defrag ratio allows a configuration of the tradeoffs between
1303 * inter node defragmentation and node local allocations. A lower
1304 * defrag_ratio increases the tendency to do local allocations
1305 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1306 *
672bba3a
CL
1307 * If the defrag_ratio is set to 0 then kmalloc() always
1308 * returns node local objects. If the ratio is higher then kmalloc()
1309 * may return off node objects because partial slabs are obtained
1310 * from other nodes and filled up.
81819f0f 1311 *
6446faa2 1312 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1313 * defrag_ratio = 1000) then every (well almost) allocation will
1314 * first attempt to defrag slab caches on other nodes. This means
1315 * scanning over all nodes to look for partial slabs which may be
1316 * expensive if we do it every time we are trying to find a slab
1317 * with available objects.
81819f0f 1318 */
9824601e
CL
1319 if (!s->remote_node_defrag_ratio ||
1320 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1321 return NULL;
1322
3adbefee
IM
1323 zonelist = &NODE_DATA(
1324 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
81819f0f
CL
1325 for (z = zonelist->zones; *z; z++) {
1326 struct kmem_cache_node *n;
1327
1328 n = get_node(s, zone_to_nid(*z));
1329
1330 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1331 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1332 page = get_partial_node(n);
1333 if (page)
1334 return page;
1335 }
1336 }
1337#endif
1338 return NULL;
1339}
1340
1341/*
1342 * Get a partial page, lock it and return it.
1343 */
1344static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1345{
1346 struct page *page;
1347 int searchnode = (node == -1) ? numa_node_id() : node;
1348
1349 page = get_partial_node(get_node(s, searchnode));
1350 if (page || (flags & __GFP_THISNODE))
1351 return page;
1352
1353 return get_any_partial(s, flags);
1354}
1355
1356/*
1357 * Move a page back to the lists.
1358 *
1359 * Must be called with the slab lock held.
1360 *
1361 * On exit the slab lock will have been dropped.
1362 */
7c2e132c 1363static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1364{
e95eed57 1365 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1366 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1367
4b6f0750 1368 ClearSlabFrozen(page);
81819f0f 1369 if (page->inuse) {
e95eed57 1370
a973e9dd 1371 if (page->freelist) {
7c2e132c 1372 add_partial(n, page, tail);
8ff12cfc
CL
1373 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1374 } else {
1375 stat(c, DEACTIVATE_FULL);
1376 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1377 add_full(n, page);
1378 }
81819f0f
CL
1379 slab_unlock(page);
1380 } else {
8ff12cfc 1381 stat(c, DEACTIVATE_EMPTY);
e95eed57
CL
1382 if (n->nr_partial < MIN_PARTIAL) {
1383 /*
672bba3a
CL
1384 * Adding an empty slab to the partial slabs in order
1385 * to avoid page allocator overhead. This slab needs
1386 * to come after the other slabs with objects in
6446faa2
CL
1387 * so that the others get filled first. That way the
1388 * size of the partial list stays small.
1389 *
1390 * kmem_cache_shrink can reclaim any empty slabs from the
1391 * partial list.
e95eed57 1392 */
7c2e132c 1393 add_partial(n, page, 1);
e95eed57
CL
1394 slab_unlock(page);
1395 } else {
1396 slab_unlock(page);
8ff12cfc 1397 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1398 discard_slab(s, page);
1399 }
81819f0f
CL
1400 }
1401}
1402
1403/*
1404 * Remove the cpu slab
1405 */
dfb4f096 1406static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1407{
dfb4f096 1408 struct page *page = c->page;
7c2e132c 1409 int tail = 1;
8ff12cfc 1410
b773ad73 1411 if (page->freelist)
8ff12cfc 1412 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1413 /*
6446faa2 1414 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1415 * because both freelists are empty. So this is unlikely
1416 * to occur.
1417 */
a973e9dd 1418 while (unlikely(c->freelist)) {
894b8788
CL
1419 void **object;
1420
7c2e132c
CL
1421 tail = 0; /* Hot objects. Put the slab first */
1422
894b8788 1423 /* Retrieve object from cpu_freelist */
dfb4f096 1424 object = c->freelist;
b3fba8da 1425 c->freelist = c->freelist[c->offset];
894b8788
CL
1426
1427 /* And put onto the regular freelist */
b3fba8da 1428 object[c->offset] = page->freelist;
894b8788
CL
1429 page->freelist = object;
1430 page->inuse--;
1431 }
dfb4f096 1432 c->page = NULL;
7c2e132c 1433 unfreeze_slab(s, page, tail);
81819f0f
CL
1434}
1435
dfb4f096 1436static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1437{
8ff12cfc 1438 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1439 slab_lock(c->page);
1440 deactivate_slab(s, c);
81819f0f
CL
1441}
1442
1443/*
1444 * Flush cpu slab.
6446faa2 1445 *
81819f0f
CL
1446 * Called from IPI handler with interrupts disabled.
1447 */
0c710013 1448static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1449{
dfb4f096 1450 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1451
dfb4f096
CL
1452 if (likely(c && c->page))
1453 flush_slab(s, c);
81819f0f
CL
1454}
1455
1456static void flush_cpu_slab(void *d)
1457{
1458 struct kmem_cache *s = d;
81819f0f 1459
dfb4f096 1460 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1461}
1462
1463static void flush_all(struct kmem_cache *s)
1464{
1465#ifdef CONFIG_SMP
1466 on_each_cpu(flush_cpu_slab, s, 1, 1);
1467#else
1468 unsigned long flags;
1469
1470 local_irq_save(flags);
1471 flush_cpu_slab(s);
1472 local_irq_restore(flags);
1473#endif
1474}
1475
dfb4f096
CL
1476/*
1477 * Check if the objects in a per cpu structure fit numa
1478 * locality expectations.
1479 */
1480static inline int node_match(struct kmem_cache_cpu *c, int node)
1481{
1482#ifdef CONFIG_NUMA
1483 if (node != -1 && c->node != node)
1484 return 0;
1485#endif
1486 return 1;
1487}
1488
81819f0f 1489/*
894b8788
CL
1490 * Slow path. The lockless freelist is empty or we need to perform
1491 * debugging duties.
1492 *
1493 * Interrupts are disabled.
81819f0f 1494 *
894b8788
CL
1495 * Processing is still very fast if new objects have been freed to the
1496 * regular freelist. In that case we simply take over the regular freelist
1497 * as the lockless freelist and zap the regular freelist.
81819f0f 1498 *
894b8788
CL
1499 * If that is not working then we fall back to the partial lists. We take the
1500 * first element of the freelist as the object to allocate now and move the
1501 * rest of the freelist to the lockless freelist.
81819f0f 1502 *
894b8788 1503 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1504 * we need to allocate a new slab. This is the slowest path since it involves
1505 * a call to the page allocator and the setup of a new slab.
81819f0f 1506 */
894b8788 1507static void *__slab_alloc(struct kmem_cache *s,
dfb4f096 1508 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
81819f0f 1509{
81819f0f 1510 void **object;
dfb4f096 1511 struct page *new;
81819f0f 1512
e72e9c23
LT
1513 /* We handle __GFP_ZERO in the caller */
1514 gfpflags &= ~__GFP_ZERO;
1515
dfb4f096 1516 if (!c->page)
81819f0f
CL
1517 goto new_slab;
1518
dfb4f096
CL
1519 slab_lock(c->page);
1520 if (unlikely(!node_match(c, node)))
81819f0f 1521 goto another_slab;
6446faa2 1522
8ff12cfc 1523 stat(c, ALLOC_REFILL);
6446faa2 1524
894b8788 1525load_freelist:
dfb4f096 1526 object = c->page->freelist;
a973e9dd 1527 if (unlikely(!object))
81819f0f 1528 goto another_slab;
dfb4f096 1529 if (unlikely(SlabDebug(c->page)))
81819f0f
CL
1530 goto debug;
1531
b3fba8da 1532 c->freelist = object[c->offset];
39b26464 1533 c->page->inuse = c->page->objects;
a973e9dd 1534 c->page->freelist = NULL;
dfb4f096 1535 c->node = page_to_nid(c->page);
1f84260c 1536unlock_out:
dfb4f096 1537 slab_unlock(c->page);
8ff12cfc 1538 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1539 return object;
1540
1541another_slab:
dfb4f096 1542 deactivate_slab(s, c);
81819f0f
CL
1543
1544new_slab:
dfb4f096
CL
1545 new = get_partial(s, gfpflags, node);
1546 if (new) {
1547 c->page = new;
8ff12cfc 1548 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1549 goto load_freelist;
81819f0f
CL
1550 }
1551
b811c202
CL
1552 if (gfpflags & __GFP_WAIT)
1553 local_irq_enable();
1554
dfb4f096 1555 new = new_slab(s, gfpflags, node);
b811c202
CL
1556
1557 if (gfpflags & __GFP_WAIT)
1558 local_irq_disable();
1559
dfb4f096
CL
1560 if (new) {
1561 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1562 stat(c, ALLOC_SLAB);
05aa3450 1563 if (c->page)
dfb4f096 1564 flush_slab(s, c);
dfb4f096
CL
1565 slab_lock(new);
1566 SetSlabFrozen(new);
1567 c->page = new;
4b6f0750 1568 goto load_freelist;
81819f0f 1569 }
00e962c5 1570
71c7a06f
CL
1571 /*
1572 * No memory available.
1573 *
1574 * If the slab uses higher order allocs but the object is
1575 * smaller than a page size then we can fallback in emergencies
1576 * to the page allocator via kmalloc_large. The page allocator may
1577 * have failed to obtain a higher order page and we can try to
1578 * allocate a single page if the object fits into a single page.
1579 * That is only possible if certain conditions are met that are being
1580 * checked when a slab is created.
1581 */
caeab084
CL
1582 if (!(gfpflags & __GFP_NORETRY) &&
1583 (s->flags & __PAGE_ALLOC_FALLBACK)) {
1584 if (gfpflags & __GFP_WAIT)
1585 local_irq_enable();
1586 object = kmalloc_large(s->objsize, gfpflags);
1587 if (gfpflags & __GFP_WAIT)
1588 local_irq_disable();
1589 return object;
1590 }
71c7a06f 1591 return NULL;
81819f0f 1592debug:
dfb4f096 1593 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1594 goto another_slab;
894b8788 1595
dfb4f096 1596 c->page->inuse++;
b3fba8da 1597 c->page->freelist = object[c->offset];
ee3c72a1 1598 c->node = -1;
1f84260c 1599 goto unlock_out;
894b8788
CL
1600}
1601
1602/*
1603 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1604 * have the fastpath folded into their functions. So no function call
1605 * overhead for requests that can be satisfied on the fastpath.
1606 *
1607 * The fastpath works by first checking if the lockless freelist can be used.
1608 * If not then __slab_alloc is called for slow processing.
1609 *
1610 * Otherwise we can simply pick the next object from the lockless free list.
1611 */
06428780 1612static __always_inline void *slab_alloc(struct kmem_cache *s,
ce15fea8 1613 gfp_t gfpflags, int node, void *addr)
894b8788 1614{
894b8788 1615 void **object;
dfb4f096 1616 struct kmem_cache_cpu *c;
1f84260c
CL
1617 unsigned long flags;
1618
894b8788 1619 local_irq_save(flags);
dfb4f096 1620 c = get_cpu_slab(s, smp_processor_id());
a973e9dd 1621 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1622
dfb4f096 1623 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1624
1625 else {
dfb4f096 1626 object = c->freelist;
b3fba8da 1627 c->freelist = object[c->offset];
8ff12cfc 1628 stat(c, ALLOC_FASTPATH);
894b8788
CL
1629 }
1630 local_irq_restore(flags);
d07dbea4
CL
1631
1632 if (unlikely((gfpflags & __GFP_ZERO) && object))
42a9fdbb 1633 memset(object, 0, c->objsize);
d07dbea4 1634
894b8788 1635 return object;
81819f0f
CL
1636}
1637
1638void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1639{
ce15fea8 1640 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1641}
1642EXPORT_SYMBOL(kmem_cache_alloc);
1643
1644#ifdef CONFIG_NUMA
1645void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1646{
ce15fea8 1647 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1648}
1649EXPORT_SYMBOL(kmem_cache_alloc_node);
1650#endif
1651
1652/*
894b8788
CL
1653 * Slow patch handling. This may still be called frequently since objects
1654 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1655 *
894b8788
CL
1656 * So we still attempt to reduce cache line usage. Just take the slab
1657 * lock and free the item. If there is no additional partial page
1658 * handling required then we can return immediately.
81819f0f 1659 */
894b8788 1660static void __slab_free(struct kmem_cache *s, struct page *page,
b3fba8da 1661 void *x, void *addr, unsigned int offset)
81819f0f
CL
1662{
1663 void *prior;
1664 void **object = (void *)x;
8ff12cfc 1665 struct kmem_cache_cpu *c;
81819f0f 1666
8ff12cfc
CL
1667 c = get_cpu_slab(s, raw_smp_processor_id());
1668 stat(c, FREE_SLOWPATH);
81819f0f
CL
1669 slab_lock(page);
1670
35e5d7ee 1671 if (unlikely(SlabDebug(page)))
81819f0f 1672 goto debug;
6446faa2 1673
81819f0f 1674checks_ok:
b3fba8da 1675 prior = object[offset] = page->freelist;
81819f0f
CL
1676 page->freelist = object;
1677 page->inuse--;
1678
8ff12cfc
CL
1679 if (unlikely(SlabFrozen(page))) {
1680 stat(c, FREE_FROZEN);
81819f0f 1681 goto out_unlock;
8ff12cfc 1682 }
81819f0f
CL
1683
1684 if (unlikely(!page->inuse))
1685 goto slab_empty;
1686
1687 /*
6446faa2 1688 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1689 * then add it.
1690 */
a973e9dd 1691 if (unlikely(!prior)) {
7c2e132c 1692 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1693 stat(c, FREE_ADD_PARTIAL);
1694 }
81819f0f
CL
1695
1696out_unlock:
1697 slab_unlock(page);
81819f0f
CL
1698 return;
1699
1700slab_empty:
a973e9dd 1701 if (prior) {
81819f0f 1702 /*
672bba3a 1703 * Slab still on the partial list.
81819f0f
CL
1704 */
1705 remove_partial(s, page);
8ff12cfc
CL
1706 stat(c, FREE_REMOVE_PARTIAL);
1707 }
81819f0f 1708 slab_unlock(page);
8ff12cfc 1709 stat(c, FREE_SLAB);
81819f0f 1710 discard_slab(s, page);
81819f0f
CL
1711 return;
1712
1713debug:
3ec09742 1714 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1715 goto out_unlock;
77c5e2d0 1716 goto checks_ok;
81819f0f
CL
1717}
1718
894b8788
CL
1719/*
1720 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1721 * can perform fastpath freeing without additional function calls.
1722 *
1723 * The fastpath is only possible if we are freeing to the current cpu slab
1724 * of this processor. This typically the case if we have just allocated
1725 * the item before.
1726 *
1727 * If fastpath is not possible then fall back to __slab_free where we deal
1728 * with all sorts of special processing.
1729 */
06428780 1730static __always_inline void slab_free(struct kmem_cache *s,
894b8788
CL
1731 struct page *page, void *x, void *addr)
1732{
1733 void **object = (void *)x;
dfb4f096 1734 struct kmem_cache_cpu *c;
1f84260c
CL
1735 unsigned long flags;
1736
894b8788 1737 local_irq_save(flags);
dfb4f096 1738 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1739 debug_check_no_locks_freed(object, c->objsize);
ee3c72a1 1740 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1741 object[c->offset] = c->freelist;
dfb4f096 1742 c->freelist = object;
8ff12cfc 1743 stat(c, FREE_FASTPATH);
894b8788 1744 } else
b3fba8da 1745 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1746
1747 local_irq_restore(flags);
1748}
1749
81819f0f
CL
1750void kmem_cache_free(struct kmem_cache *s, void *x)
1751{
77c5e2d0 1752 struct page *page;
81819f0f 1753
b49af68f 1754 page = virt_to_head_page(x);
81819f0f 1755
77c5e2d0 1756 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1757}
1758EXPORT_SYMBOL(kmem_cache_free);
1759
1760/* Figure out on which slab object the object resides */
1761static struct page *get_object_page(const void *x)
1762{
b49af68f 1763 struct page *page = virt_to_head_page(x);
81819f0f
CL
1764
1765 if (!PageSlab(page))
1766 return NULL;
1767
1768 return page;
1769}
1770
1771/*
672bba3a
CL
1772 * Object placement in a slab is made very easy because we always start at
1773 * offset 0. If we tune the size of the object to the alignment then we can
1774 * get the required alignment by putting one properly sized object after
1775 * another.
81819f0f
CL
1776 *
1777 * Notice that the allocation order determines the sizes of the per cpu
1778 * caches. Each processor has always one slab available for allocations.
1779 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1780 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1781 * locking overhead.
81819f0f
CL
1782 */
1783
1784/*
1785 * Mininum / Maximum order of slab pages. This influences locking overhead
1786 * and slab fragmentation. A higher order reduces the number of partial slabs
1787 * and increases the number of allocations possible without having to
1788 * take the list_lock.
1789 */
1790static int slub_min_order;
1791static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1792static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1793
1794/*
1795 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1796 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1797 */
1798static int slub_nomerge;
1799
81819f0f
CL
1800/*
1801 * Calculate the order of allocation given an slab object size.
1802 *
672bba3a
CL
1803 * The order of allocation has significant impact on performance and other
1804 * system components. Generally order 0 allocations should be preferred since
1805 * order 0 does not cause fragmentation in the page allocator. Larger objects
1806 * be problematic to put into order 0 slabs because there may be too much
1807 * unused space left. We go to a higher order if more than 1/8th of the slab
1808 * would be wasted.
1809 *
1810 * In order to reach satisfactory performance we must ensure that a minimum
1811 * number of objects is in one slab. Otherwise we may generate too much
1812 * activity on the partial lists which requires taking the list_lock. This is
1813 * less a concern for large slabs though which are rarely used.
81819f0f 1814 *
672bba3a
CL
1815 * slub_max_order specifies the order where we begin to stop considering the
1816 * number of objects in a slab as critical. If we reach slub_max_order then
1817 * we try to keep the page order as low as possible. So we accept more waste
1818 * of space in favor of a small page order.
81819f0f 1819 *
672bba3a
CL
1820 * Higher order allocations also allow the placement of more objects in a
1821 * slab and thereby reduce object handling overhead. If the user has
1822 * requested a higher mininum order then we start with that one instead of
1823 * the smallest order which will fit the object.
81819f0f 1824 */
5e6d444e
CL
1825static inline int slab_order(int size, int min_objects,
1826 int max_order, int fract_leftover)
81819f0f
CL
1827{
1828 int order;
1829 int rem;
6300ea75 1830 int min_order = slub_min_order;
81819f0f 1831
39b26464
CL
1832 if ((PAGE_SIZE << min_order) / size > 65535)
1833 return get_order(size * 65535) - 1;
1834
6300ea75 1835 for (order = max(min_order,
5e6d444e
CL
1836 fls(min_objects * size - 1) - PAGE_SHIFT);
1837 order <= max_order; order++) {
81819f0f 1838
5e6d444e 1839 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1840
5e6d444e 1841 if (slab_size < min_objects * size)
81819f0f
CL
1842 continue;
1843
1844 rem = slab_size % size;
1845
5e6d444e 1846 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1847 break;
1848
1849 }
672bba3a 1850
81819f0f
CL
1851 return order;
1852}
1853
5e6d444e
CL
1854static inline int calculate_order(int size)
1855{
1856 int order;
1857 int min_objects;
1858 int fraction;
1859
1860 /*
1861 * Attempt to find best configuration for a slab. This
1862 * works by first attempting to generate a layout with
1863 * the best configuration and backing off gradually.
1864 *
1865 * First we reduce the acceptable waste in a slab. Then
1866 * we reduce the minimum objects required in a slab.
1867 */
1868 min_objects = slub_min_objects;
1869 while (min_objects > 1) {
1870 fraction = 8;
1871 while (fraction >= 4) {
1872 order = slab_order(size, min_objects,
1873 slub_max_order, fraction);
1874 if (order <= slub_max_order)
1875 return order;
1876 fraction /= 2;
1877 }
1878 min_objects /= 2;
1879 }
1880
1881 /*
1882 * We were unable to place multiple objects in a slab. Now
1883 * lets see if we can place a single object there.
1884 */
1885 order = slab_order(size, 1, slub_max_order, 1);
1886 if (order <= slub_max_order)
1887 return order;
1888
1889 /*
1890 * Doh this slab cannot be placed using slub_max_order.
1891 */
1892 order = slab_order(size, 1, MAX_ORDER, 1);
1893 if (order <= MAX_ORDER)
1894 return order;
1895 return -ENOSYS;
1896}
1897
81819f0f 1898/*
672bba3a 1899 * Figure out what the alignment of the objects will be.
81819f0f
CL
1900 */
1901static unsigned long calculate_alignment(unsigned long flags,
1902 unsigned long align, unsigned long size)
1903{
1904 /*
6446faa2
CL
1905 * If the user wants hardware cache aligned objects then follow that
1906 * suggestion if the object is sufficiently large.
81819f0f 1907 *
6446faa2
CL
1908 * The hardware cache alignment cannot override the specified
1909 * alignment though. If that is greater then use it.
81819f0f 1910 */
b6210386
NP
1911 if (flags & SLAB_HWCACHE_ALIGN) {
1912 unsigned long ralign = cache_line_size();
1913 while (size <= ralign / 2)
1914 ralign /= 2;
1915 align = max(align, ralign);
1916 }
81819f0f
CL
1917
1918 if (align < ARCH_SLAB_MINALIGN)
b6210386 1919 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1920
1921 return ALIGN(align, sizeof(void *));
1922}
1923
dfb4f096
CL
1924static void init_kmem_cache_cpu(struct kmem_cache *s,
1925 struct kmem_cache_cpu *c)
1926{
1927 c->page = NULL;
a973e9dd 1928 c->freelist = NULL;
dfb4f096 1929 c->node = 0;
42a9fdbb
CL
1930 c->offset = s->offset / sizeof(void *);
1931 c->objsize = s->objsize;
62f75532
PE
1932#ifdef CONFIG_SLUB_STATS
1933 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1934#endif
dfb4f096
CL
1935}
1936
81819f0f
CL
1937static void init_kmem_cache_node(struct kmem_cache_node *n)
1938{
1939 n->nr_partial = 0;
81819f0f
CL
1940 spin_lock_init(&n->list_lock);
1941 INIT_LIST_HEAD(&n->partial);
8ab1372f 1942#ifdef CONFIG_SLUB_DEBUG
0f389ec6 1943 atomic_long_set(&n->nr_slabs, 0);
643b1138 1944 INIT_LIST_HEAD(&n->full);
8ab1372f 1945#endif
81819f0f
CL
1946}
1947
4c93c355
CL
1948#ifdef CONFIG_SMP
1949/*
1950 * Per cpu array for per cpu structures.
1951 *
1952 * The per cpu array places all kmem_cache_cpu structures from one processor
1953 * close together meaning that it becomes possible that multiple per cpu
1954 * structures are contained in one cacheline. This may be particularly
1955 * beneficial for the kmalloc caches.
1956 *
1957 * A desktop system typically has around 60-80 slabs. With 100 here we are
1958 * likely able to get per cpu structures for all caches from the array defined
1959 * here. We must be able to cover all kmalloc caches during bootstrap.
1960 *
1961 * If the per cpu array is exhausted then fall back to kmalloc
1962 * of individual cachelines. No sharing is possible then.
1963 */
1964#define NR_KMEM_CACHE_CPU 100
1965
1966static DEFINE_PER_CPU(struct kmem_cache_cpu,
1967 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1968
1969static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1970static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1971
1972static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1973 int cpu, gfp_t flags)
1974{
1975 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1976
1977 if (c)
1978 per_cpu(kmem_cache_cpu_free, cpu) =
1979 (void *)c->freelist;
1980 else {
1981 /* Table overflow: So allocate ourselves */
1982 c = kmalloc_node(
1983 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1984 flags, cpu_to_node(cpu));
1985 if (!c)
1986 return NULL;
1987 }
1988
1989 init_kmem_cache_cpu(s, c);
1990 return c;
1991}
1992
1993static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1994{
1995 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1996 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1997 kfree(c);
1998 return;
1999 }
2000 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2001 per_cpu(kmem_cache_cpu_free, cpu) = c;
2002}
2003
2004static void free_kmem_cache_cpus(struct kmem_cache *s)
2005{
2006 int cpu;
2007
2008 for_each_online_cpu(cpu) {
2009 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2010
2011 if (c) {
2012 s->cpu_slab[cpu] = NULL;
2013 free_kmem_cache_cpu(c, cpu);
2014 }
2015 }
2016}
2017
2018static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2019{
2020 int cpu;
2021
2022 for_each_online_cpu(cpu) {
2023 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2024
2025 if (c)
2026 continue;
2027
2028 c = alloc_kmem_cache_cpu(s, cpu, flags);
2029 if (!c) {
2030 free_kmem_cache_cpus(s);
2031 return 0;
2032 }
2033 s->cpu_slab[cpu] = c;
2034 }
2035 return 1;
2036}
2037
2038/*
2039 * Initialize the per cpu array.
2040 */
2041static void init_alloc_cpu_cpu(int cpu)
2042{
2043 int i;
2044
2045 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2046 return;
2047
2048 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2049 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2050
2051 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2052}
2053
2054static void __init init_alloc_cpu(void)
2055{
2056 int cpu;
2057
2058 for_each_online_cpu(cpu)
2059 init_alloc_cpu_cpu(cpu);
2060 }
2061
2062#else
2063static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2064static inline void init_alloc_cpu(void) {}
2065
2066static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2067{
2068 init_kmem_cache_cpu(s, &s->cpu_slab);
2069 return 1;
2070}
2071#endif
2072
81819f0f
CL
2073#ifdef CONFIG_NUMA
2074/*
2075 * No kmalloc_node yet so do it by hand. We know that this is the first
2076 * slab on the node for this slabcache. There are no concurrent accesses
2077 * possible.
2078 *
2079 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2080 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2081 * memory on a fresh node that has no slab structures yet.
81819f0f 2082 */
1cd7daa5
AB
2083static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2084 int node)
81819f0f
CL
2085{
2086 struct page *page;
2087 struct kmem_cache_node *n;
ba84c73c 2088 unsigned long flags;
81819f0f
CL
2089
2090 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2091
a2f92ee7 2092 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2093
2094 BUG_ON(!page);
a2f92ee7
CL
2095 if (page_to_nid(page) != node) {
2096 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2097 "node %d\n", node);
2098 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2099 "in order to be able to continue\n");
2100 }
2101
81819f0f
CL
2102 n = page->freelist;
2103 BUG_ON(!n);
2104 page->freelist = get_freepointer(kmalloc_caches, n);
2105 page->inuse++;
2106 kmalloc_caches->node[node] = n;
8ab1372f 2107#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2108 init_object(kmalloc_caches, n, 1);
2109 init_tracking(kmalloc_caches, n);
8ab1372f 2110#endif
81819f0f 2111 init_kmem_cache_node(n);
0f389ec6 2112 inc_slabs_node(kmalloc_caches, node);
6446faa2 2113
ba84c73c 2114 /*
2115 * lockdep requires consistent irq usage for each lock
2116 * so even though there cannot be a race this early in
2117 * the boot sequence, we still disable irqs.
2118 */
2119 local_irq_save(flags);
7c2e132c 2120 add_partial(n, page, 0);
ba84c73c 2121 local_irq_restore(flags);
81819f0f
CL
2122 return n;
2123}
2124
2125static void free_kmem_cache_nodes(struct kmem_cache *s)
2126{
2127 int node;
2128
f64dc58c 2129 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2130 struct kmem_cache_node *n = s->node[node];
2131 if (n && n != &s->local_node)
2132 kmem_cache_free(kmalloc_caches, n);
2133 s->node[node] = NULL;
2134 }
2135}
2136
2137static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2138{
2139 int node;
2140 int local_node;
2141
2142 if (slab_state >= UP)
2143 local_node = page_to_nid(virt_to_page(s));
2144 else
2145 local_node = 0;
2146
f64dc58c 2147 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2148 struct kmem_cache_node *n;
2149
2150 if (local_node == node)
2151 n = &s->local_node;
2152 else {
2153 if (slab_state == DOWN) {
2154 n = early_kmem_cache_node_alloc(gfpflags,
2155 node);
2156 continue;
2157 }
2158 n = kmem_cache_alloc_node(kmalloc_caches,
2159 gfpflags, node);
2160
2161 if (!n) {
2162 free_kmem_cache_nodes(s);
2163 return 0;
2164 }
2165
2166 }
2167 s->node[node] = n;
2168 init_kmem_cache_node(n);
2169 }
2170 return 1;
2171}
2172#else
2173static void free_kmem_cache_nodes(struct kmem_cache *s)
2174{
2175}
2176
2177static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2178{
2179 init_kmem_cache_node(&s->local_node);
2180 return 1;
2181}
2182#endif
2183
2184/*
2185 * calculate_sizes() determines the order and the distribution of data within
2186 * a slab object.
2187 */
2188static int calculate_sizes(struct kmem_cache *s)
2189{
2190 unsigned long flags = s->flags;
2191 unsigned long size = s->objsize;
2192 unsigned long align = s->align;
2193
d8b42bf5
CL
2194 /*
2195 * Round up object size to the next word boundary. We can only
2196 * place the free pointer at word boundaries and this determines
2197 * the possible location of the free pointer.
2198 */
2199 size = ALIGN(size, sizeof(void *));
2200
2201#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2202 /*
2203 * Determine if we can poison the object itself. If the user of
2204 * the slab may touch the object after free or before allocation
2205 * then we should never poison the object itself.
2206 */
2207 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2208 !s->ctor)
81819f0f
CL
2209 s->flags |= __OBJECT_POISON;
2210 else
2211 s->flags &= ~__OBJECT_POISON;
2212
81819f0f
CL
2213
2214 /*
672bba3a 2215 * If we are Redzoning then check if there is some space between the
81819f0f 2216 * end of the object and the free pointer. If not then add an
672bba3a 2217 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2218 */
2219 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2220 size += sizeof(void *);
41ecc55b 2221#endif
81819f0f
CL
2222
2223 /*
672bba3a
CL
2224 * With that we have determined the number of bytes in actual use
2225 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2226 */
2227 s->inuse = size;
2228
2229 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2230 s->ctor)) {
81819f0f
CL
2231 /*
2232 * Relocate free pointer after the object if it is not
2233 * permitted to overwrite the first word of the object on
2234 * kmem_cache_free.
2235 *
2236 * This is the case if we do RCU, have a constructor or
2237 * destructor or are poisoning the objects.
2238 */
2239 s->offset = size;
2240 size += sizeof(void *);
2241 }
2242
c12b3c62 2243#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2244 if (flags & SLAB_STORE_USER)
2245 /*
2246 * Need to store information about allocs and frees after
2247 * the object.
2248 */
2249 size += 2 * sizeof(struct track);
2250
be7b3fbc 2251 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2252 /*
2253 * Add some empty padding so that we can catch
2254 * overwrites from earlier objects rather than let
2255 * tracking information or the free pointer be
2256 * corrupted if an user writes before the start
2257 * of the object.
2258 */
2259 size += sizeof(void *);
41ecc55b 2260#endif
672bba3a 2261
81819f0f
CL
2262 /*
2263 * Determine the alignment based on various parameters that the
65c02d4c
CL
2264 * user specified and the dynamic determination of cache line size
2265 * on bootup.
81819f0f
CL
2266 */
2267 align = calculate_alignment(flags, align, s->objsize);
2268
2269 /*
2270 * SLUB stores one object immediately after another beginning from
2271 * offset 0. In order to align the objects we have to simply size
2272 * each object to conform to the alignment.
2273 */
2274 size = ALIGN(size, align);
2275 s->size = size;
2276
71c7a06f
CL
2277 if ((flags & __KMALLOC_CACHE) &&
2278 PAGE_SIZE / size < slub_min_objects) {
2279 /*
2280 * Kmalloc cache that would not have enough objects in
2281 * an order 0 page. Kmalloc slabs can fallback to
2282 * page allocator order 0 allocs so take a reasonably large
2283 * order that will allows us a good number of objects.
2284 */
2285 s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
2286 s->flags |= __PAGE_ALLOC_FALLBACK;
2287 s->allocflags |= __GFP_NOWARN;
2288 } else
2289 s->order = calculate_order(size);
2290
81819f0f
CL
2291 if (s->order < 0)
2292 return 0;
2293
b7a49f0d
CL
2294 s->allocflags = 0;
2295 if (s->order)
2296 s->allocflags |= __GFP_COMP;
2297
2298 if (s->flags & SLAB_CACHE_DMA)
2299 s->allocflags |= SLUB_DMA;
2300
2301 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2302 s->allocflags |= __GFP_RECLAIMABLE;
2303
81819f0f
CL
2304 /*
2305 * Determine the number of objects per slab
2306 */
2307 s->objects = (PAGE_SIZE << s->order) / size;
2308
b3fba8da 2309 return !!s->objects;
81819f0f
CL
2310
2311}
2312
81819f0f
CL
2313static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2314 const char *name, size_t size,
2315 size_t align, unsigned long flags,
4ba9b9d0 2316 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
2317{
2318 memset(s, 0, kmem_size);
2319 s->name = name;
2320 s->ctor = ctor;
81819f0f 2321 s->objsize = size;
81819f0f 2322 s->align = align;
ba0268a8 2323 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f
CL
2324
2325 if (!calculate_sizes(s))
2326 goto error;
2327
2328 s->refcount = 1;
2329#ifdef CONFIG_NUMA
9824601e 2330 s->remote_node_defrag_ratio = 100;
81819f0f 2331#endif
dfb4f096
CL
2332 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2333 goto error;
81819f0f 2334
dfb4f096 2335 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2336 return 1;
4c93c355 2337 free_kmem_cache_nodes(s);
81819f0f
CL
2338error:
2339 if (flags & SLAB_PANIC)
2340 panic("Cannot create slab %s size=%lu realsize=%u "
2341 "order=%u offset=%u flags=%lx\n",
2342 s->name, (unsigned long)size, s->size, s->order,
2343 s->offset, flags);
2344 return 0;
2345}
81819f0f
CL
2346
2347/*
2348 * Check if a given pointer is valid
2349 */
2350int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2351{
06428780 2352 struct page *page;
81819f0f
CL
2353
2354 page = get_object_page(object);
2355
2356 if (!page || s != page->slab)
2357 /* No slab or wrong slab */
2358 return 0;
2359
abcd08a6 2360 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2361 return 0;
2362
2363 /*
2364 * We could also check if the object is on the slabs freelist.
2365 * But this would be too expensive and it seems that the main
6446faa2 2366 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2367 * to a certain slab.
2368 */
2369 return 1;
2370}
2371EXPORT_SYMBOL(kmem_ptr_validate);
2372
2373/*
2374 * Determine the size of a slab object
2375 */
2376unsigned int kmem_cache_size(struct kmem_cache *s)
2377{
2378 return s->objsize;
2379}
2380EXPORT_SYMBOL(kmem_cache_size);
2381
2382const char *kmem_cache_name(struct kmem_cache *s)
2383{
2384 return s->name;
2385}
2386EXPORT_SYMBOL(kmem_cache_name);
2387
33b12c38
CL
2388static void list_slab_objects(struct kmem_cache *s, struct page *page,
2389 const char *text)
2390{
2391#ifdef CONFIG_SLUB_DEBUG
2392 void *addr = page_address(page);
2393 void *p;
2394 DECLARE_BITMAP(map, page->objects);
2395
2396 bitmap_zero(map, page->objects);
2397 slab_err(s, page, "%s", text);
2398 slab_lock(page);
2399 for_each_free_object(p, s, page->freelist)
2400 set_bit(slab_index(p, s, addr), map);
2401
2402 for_each_object(p, s, addr, page->objects) {
2403
2404 if (!test_bit(slab_index(p, s, addr), map)) {
2405 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2406 p, p - addr);
2407 print_tracking(s, p);
2408 }
2409 }
2410 slab_unlock(page);
2411#endif
2412}
2413
81819f0f 2414/*
599870b1 2415 * Attempt to free all partial slabs on a node.
81819f0f 2416 */
599870b1 2417static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2418{
81819f0f
CL
2419 unsigned long flags;
2420 struct page *page, *h;
2421
2422 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2423 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2424 if (!page->inuse) {
2425 list_del(&page->lru);
2426 discard_slab(s, page);
599870b1 2427 n->nr_partial--;
33b12c38
CL
2428 } else {
2429 list_slab_objects(s, page,
2430 "Objects remaining on kmem_cache_close()");
599870b1 2431 }
33b12c38 2432 }
81819f0f 2433 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2434}
2435
2436/*
672bba3a 2437 * Release all resources used by a slab cache.
81819f0f 2438 */
0c710013 2439static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2440{
2441 int node;
2442
2443 flush_all(s);
2444
2445 /* Attempt to free all objects */
4c93c355 2446 free_kmem_cache_cpus(s);
f64dc58c 2447 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2448 struct kmem_cache_node *n = get_node(s, node);
2449
599870b1
CL
2450 free_partial(s, n);
2451 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2452 return 1;
2453 }
2454 free_kmem_cache_nodes(s);
2455 return 0;
2456}
2457
2458/*
2459 * Close a cache and release the kmem_cache structure
2460 * (must be used for caches created using kmem_cache_create)
2461 */
2462void kmem_cache_destroy(struct kmem_cache *s)
2463{
2464 down_write(&slub_lock);
2465 s->refcount--;
2466 if (!s->refcount) {
2467 list_del(&s->list);
a0e1d1be 2468 up_write(&slub_lock);
d629d819
PE
2469 if (kmem_cache_close(s)) {
2470 printk(KERN_ERR "SLUB %s: %s called for cache that "
2471 "still has objects.\n", s->name, __func__);
2472 dump_stack();
2473 }
81819f0f 2474 sysfs_slab_remove(s);
a0e1d1be
CL
2475 } else
2476 up_write(&slub_lock);
81819f0f
CL
2477}
2478EXPORT_SYMBOL(kmem_cache_destroy);
2479
2480/********************************************************************
2481 * Kmalloc subsystem
2482 *******************************************************************/
2483
331dc558 2484struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
81819f0f
CL
2485EXPORT_SYMBOL(kmalloc_caches);
2486
81819f0f
CL
2487static int __init setup_slub_min_order(char *str)
2488{
06428780 2489 get_option(&str, &slub_min_order);
81819f0f
CL
2490
2491 return 1;
2492}
2493
2494__setup("slub_min_order=", setup_slub_min_order);
2495
2496static int __init setup_slub_max_order(char *str)
2497{
06428780 2498 get_option(&str, &slub_max_order);
81819f0f
CL
2499
2500 return 1;
2501}
2502
2503__setup("slub_max_order=", setup_slub_max_order);
2504
2505static int __init setup_slub_min_objects(char *str)
2506{
06428780 2507 get_option(&str, &slub_min_objects);
81819f0f
CL
2508
2509 return 1;
2510}
2511
2512__setup("slub_min_objects=", setup_slub_min_objects);
2513
2514static int __init setup_slub_nomerge(char *str)
2515{
2516 slub_nomerge = 1;
2517 return 1;
2518}
2519
2520__setup("slub_nomerge", setup_slub_nomerge);
2521
81819f0f
CL
2522static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2523 const char *name, int size, gfp_t gfp_flags)
2524{
2525 unsigned int flags = 0;
2526
2527 if (gfp_flags & SLUB_DMA)
2528 flags = SLAB_CACHE_DMA;
2529
2530 down_write(&slub_lock);
2531 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
71c7a06f 2532 flags | __KMALLOC_CACHE, NULL))
81819f0f
CL
2533 goto panic;
2534
2535 list_add(&s->list, &slab_caches);
2536 up_write(&slub_lock);
2537 if (sysfs_slab_add(s))
2538 goto panic;
2539 return s;
2540
2541panic:
2542 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2543}
2544
2e443fd0 2545#ifdef CONFIG_ZONE_DMA
4097d601 2546static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
1ceef402
CL
2547
2548static void sysfs_add_func(struct work_struct *w)
2549{
2550 struct kmem_cache *s;
2551
2552 down_write(&slub_lock);
2553 list_for_each_entry(s, &slab_caches, list) {
2554 if (s->flags & __SYSFS_ADD_DEFERRED) {
2555 s->flags &= ~__SYSFS_ADD_DEFERRED;
2556 sysfs_slab_add(s);
2557 }
2558 }
2559 up_write(&slub_lock);
2560}
2561
2562static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2563
2e443fd0
CL
2564static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2565{
2566 struct kmem_cache *s;
2e443fd0
CL
2567 char *text;
2568 size_t realsize;
2569
2570 s = kmalloc_caches_dma[index];
2571 if (s)
2572 return s;
2573
2574 /* Dynamically create dma cache */
1ceef402
CL
2575 if (flags & __GFP_WAIT)
2576 down_write(&slub_lock);
2577 else {
2578 if (!down_write_trylock(&slub_lock))
2579 goto out;
2580 }
2581
2582 if (kmalloc_caches_dma[index])
2583 goto unlock_out;
2e443fd0 2584
7b55f620 2585 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2586 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2587 (unsigned int)realsize);
1ceef402
CL
2588 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2589
2590 if (!s || !text || !kmem_cache_open(s, flags, text,
2591 realsize, ARCH_KMALLOC_MINALIGN,
2592 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2593 kfree(s);
2594 kfree(text);
2595 goto unlock_out;
dfce8648 2596 }
1ceef402
CL
2597
2598 list_add(&s->list, &slab_caches);
2599 kmalloc_caches_dma[index] = s;
2600
2601 schedule_work(&sysfs_add_work);
2602
2603unlock_out:
dfce8648 2604 up_write(&slub_lock);
1ceef402 2605out:
dfce8648 2606 return kmalloc_caches_dma[index];
2e443fd0
CL
2607}
2608#endif
2609
f1b26339
CL
2610/*
2611 * Conversion table for small slabs sizes / 8 to the index in the
2612 * kmalloc array. This is necessary for slabs < 192 since we have non power
2613 * of two cache sizes there. The size of larger slabs can be determined using
2614 * fls.
2615 */
2616static s8 size_index[24] = {
2617 3, /* 8 */
2618 4, /* 16 */
2619 5, /* 24 */
2620 5, /* 32 */
2621 6, /* 40 */
2622 6, /* 48 */
2623 6, /* 56 */
2624 6, /* 64 */
2625 1, /* 72 */
2626 1, /* 80 */
2627 1, /* 88 */
2628 1, /* 96 */
2629 7, /* 104 */
2630 7, /* 112 */
2631 7, /* 120 */
2632 7, /* 128 */
2633 2, /* 136 */
2634 2, /* 144 */
2635 2, /* 152 */
2636 2, /* 160 */
2637 2, /* 168 */
2638 2, /* 176 */
2639 2, /* 184 */
2640 2 /* 192 */
2641};
2642
81819f0f
CL
2643static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2644{
f1b26339 2645 int index;
81819f0f 2646
f1b26339
CL
2647 if (size <= 192) {
2648 if (!size)
2649 return ZERO_SIZE_PTR;
81819f0f 2650
f1b26339 2651 index = size_index[(size - 1) / 8];
aadb4bc4 2652 } else
f1b26339 2653 index = fls(size - 1);
81819f0f
CL
2654
2655#ifdef CONFIG_ZONE_DMA
f1b26339 2656 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2657 return dma_kmalloc_cache(index, flags);
f1b26339 2658
81819f0f
CL
2659#endif
2660 return &kmalloc_caches[index];
2661}
2662
2663void *__kmalloc(size_t size, gfp_t flags)
2664{
aadb4bc4 2665 struct kmem_cache *s;
81819f0f 2666
331dc558 2667 if (unlikely(size > PAGE_SIZE))
eada35ef 2668 return kmalloc_large(size, flags);
aadb4bc4
CL
2669
2670 s = get_slab(size, flags);
2671
2672 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2673 return s;
2674
ce15fea8 2675 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2676}
2677EXPORT_SYMBOL(__kmalloc);
2678
f619cfe1
CL
2679static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2680{
2681 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2682 get_order(size));
2683
2684 if (page)
2685 return page_address(page);
2686 else
2687 return NULL;
2688}
2689
81819f0f
CL
2690#ifdef CONFIG_NUMA
2691void *__kmalloc_node(size_t size, gfp_t flags, int node)
2692{
aadb4bc4 2693 struct kmem_cache *s;
81819f0f 2694
331dc558 2695 if (unlikely(size > PAGE_SIZE))
f619cfe1 2696 return kmalloc_large_node(size, flags, node);
aadb4bc4
CL
2697
2698 s = get_slab(size, flags);
2699
2700 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2701 return s;
2702
ce15fea8 2703 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2704}
2705EXPORT_SYMBOL(__kmalloc_node);
2706#endif
2707
2708size_t ksize(const void *object)
2709{
272c1d21 2710 struct page *page;
81819f0f
CL
2711 struct kmem_cache *s;
2712
ef8b4520 2713 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2714 return 0;
2715
294a80a8 2716 page = virt_to_head_page(object);
294a80a8
VN
2717
2718 if (unlikely(!PageSlab(page)))
2719 return PAGE_SIZE << compound_order(page);
2720
81819f0f 2721 s = page->slab;
81819f0f 2722
ae20bfda 2723#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2724 /*
2725 * Debugging requires use of the padding between object
2726 * and whatever may come after it.
2727 */
2728 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2729 return s->objsize;
2730
ae20bfda 2731#endif
81819f0f
CL
2732 /*
2733 * If we have the need to store the freelist pointer
2734 * back there or track user information then we can
2735 * only use the space before that information.
2736 */
2737 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2738 return s->inuse;
81819f0f
CL
2739 /*
2740 * Else we can use all the padding etc for the allocation
2741 */
2742 return s->size;
2743}
2744EXPORT_SYMBOL(ksize);
2745
2746void kfree(const void *x)
2747{
81819f0f 2748 struct page *page;
5bb983b0 2749 void *object = (void *)x;
81819f0f 2750
2408c550 2751 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2752 return;
2753
b49af68f 2754 page = virt_to_head_page(x);
aadb4bc4
CL
2755 if (unlikely(!PageSlab(page))) {
2756 put_page(page);
2757 return;
2758 }
5bb983b0 2759 slab_free(page->slab, page, object, __builtin_return_address(0));
81819f0f
CL
2760}
2761EXPORT_SYMBOL(kfree);
2762
2086d26a 2763/*
672bba3a
CL
2764 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2765 * the remaining slabs by the number of items in use. The slabs with the
2766 * most items in use come first. New allocations will then fill those up
2767 * and thus they can be removed from the partial lists.
2768 *
2769 * The slabs with the least items are placed last. This results in them
2770 * being allocated from last increasing the chance that the last objects
2771 * are freed in them.
2086d26a
CL
2772 */
2773int kmem_cache_shrink(struct kmem_cache *s)
2774{
2775 int node;
2776 int i;
2777 struct kmem_cache_node *n;
2778 struct page *page;
2779 struct page *t;
2780 struct list_head *slabs_by_inuse =
2781 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2782 unsigned long flags;
2783
2784 if (!slabs_by_inuse)
2785 return -ENOMEM;
2786
2787 flush_all(s);
f64dc58c 2788 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2789 n = get_node(s, node);
2790
2791 if (!n->nr_partial)
2792 continue;
2793
2794 for (i = 0; i < s->objects; i++)
2795 INIT_LIST_HEAD(slabs_by_inuse + i);
2796
2797 spin_lock_irqsave(&n->list_lock, flags);
2798
2799 /*
672bba3a 2800 * Build lists indexed by the items in use in each slab.
2086d26a 2801 *
672bba3a
CL
2802 * Note that concurrent frees may occur while we hold the
2803 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2804 */
2805 list_for_each_entry_safe(page, t, &n->partial, lru) {
2806 if (!page->inuse && slab_trylock(page)) {
2807 /*
2808 * Must hold slab lock here because slab_free
2809 * may have freed the last object and be
2810 * waiting to release the slab.
2811 */
2812 list_del(&page->lru);
2813 n->nr_partial--;
2814 slab_unlock(page);
2815 discard_slab(s, page);
2816 } else {
fcda3d89
CL
2817 list_move(&page->lru,
2818 slabs_by_inuse + page->inuse);
2086d26a
CL
2819 }
2820 }
2821
2086d26a 2822 /*
672bba3a
CL
2823 * Rebuild the partial list with the slabs filled up most
2824 * first and the least used slabs at the end.
2086d26a
CL
2825 */
2826 for (i = s->objects - 1; i >= 0; i--)
2827 list_splice(slabs_by_inuse + i, n->partial.prev);
2828
2086d26a
CL
2829 spin_unlock_irqrestore(&n->list_lock, flags);
2830 }
2831
2832 kfree(slabs_by_inuse);
2833 return 0;
2834}
2835EXPORT_SYMBOL(kmem_cache_shrink);
2836
b9049e23
YG
2837#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2838static int slab_mem_going_offline_callback(void *arg)
2839{
2840 struct kmem_cache *s;
2841
2842 down_read(&slub_lock);
2843 list_for_each_entry(s, &slab_caches, list)
2844 kmem_cache_shrink(s);
2845 up_read(&slub_lock);
2846
2847 return 0;
2848}
2849
2850static void slab_mem_offline_callback(void *arg)
2851{
2852 struct kmem_cache_node *n;
2853 struct kmem_cache *s;
2854 struct memory_notify *marg = arg;
2855 int offline_node;
2856
2857 offline_node = marg->status_change_nid;
2858
2859 /*
2860 * If the node still has available memory. we need kmem_cache_node
2861 * for it yet.
2862 */
2863 if (offline_node < 0)
2864 return;
2865
2866 down_read(&slub_lock);
2867 list_for_each_entry(s, &slab_caches, list) {
2868 n = get_node(s, offline_node);
2869 if (n) {
2870 /*
2871 * if n->nr_slabs > 0, slabs still exist on the node
2872 * that is going down. We were unable to free them,
2873 * and offline_pages() function shoudn't call this
2874 * callback. So, we must fail.
2875 */
0f389ec6 2876 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2877
2878 s->node[offline_node] = NULL;
2879 kmem_cache_free(kmalloc_caches, n);
2880 }
2881 }
2882 up_read(&slub_lock);
2883}
2884
2885static int slab_mem_going_online_callback(void *arg)
2886{
2887 struct kmem_cache_node *n;
2888 struct kmem_cache *s;
2889 struct memory_notify *marg = arg;
2890 int nid = marg->status_change_nid;
2891 int ret = 0;
2892
2893 /*
2894 * If the node's memory is already available, then kmem_cache_node is
2895 * already created. Nothing to do.
2896 */
2897 if (nid < 0)
2898 return 0;
2899
2900 /*
2901 * We are bringing a node online. No memory is availabe yet. We must
2902 * allocate a kmem_cache_node structure in order to bring the node
2903 * online.
2904 */
2905 down_read(&slub_lock);
2906 list_for_each_entry(s, &slab_caches, list) {
2907 /*
2908 * XXX: kmem_cache_alloc_node will fallback to other nodes
2909 * since memory is not yet available from the node that
2910 * is brought up.
2911 */
2912 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2913 if (!n) {
2914 ret = -ENOMEM;
2915 goto out;
2916 }
2917 init_kmem_cache_node(n);
2918 s->node[nid] = n;
2919 }
2920out:
2921 up_read(&slub_lock);
2922 return ret;
2923}
2924
2925static int slab_memory_callback(struct notifier_block *self,
2926 unsigned long action, void *arg)
2927{
2928 int ret = 0;
2929
2930 switch (action) {
2931 case MEM_GOING_ONLINE:
2932 ret = slab_mem_going_online_callback(arg);
2933 break;
2934 case MEM_GOING_OFFLINE:
2935 ret = slab_mem_going_offline_callback(arg);
2936 break;
2937 case MEM_OFFLINE:
2938 case MEM_CANCEL_ONLINE:
2939 slab_mem_offline_callback(arg);
2940 break;
2941 case MEM_ONLINE:
2942 case MEM_CANCEL_OFFLINE:
2943 break;
2944 }
2945
2946 ret = notifier_from_errno(ret);
2947 return ret;
2948}
2949
2950#endif /* CONFIG_MEMORY_HOTPLUG */
2951
81819f0f
CL
2952/********************************************************************
2953 * Basic setup of slabs
2954 *******************************************************************/
2955
2956void __init kmem_cache_init(void)
2957{
2958 int i;
4b356be0 2959 int caches = 0;
81819f0f 2960
4c93c355
CL
2961 init_alloc_cpu();
2962
81819f0f
CL
2963#ifdef CONFIG_NUMA
2964 /*
2965 * Must first have the slab cache available for the allocations of the
672bba3a 2966 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2967 * kmem_cache_open for slab_state == DOWN.
2968 */
2969 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2970 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2971 kmalloc_caches[0].refcount = -1;
4b356be0 2972 caches++;
b9049e23
YG
2973
2974 hotplug_memory_notifier(slab_memory_callback, 1);
81819f0f
CL
2975#endif
2976
2977 /* Able to allocate the per node structures */
2978 slab_state = PARTIAL;
2979
2980 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2981 if (KMALLOC_MIN_SIZE <= 64) {
2982 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2983 "kmalloc-96", 96, GFP_KERNEL);
4b356be0
CL
2984 caches++;
2985 }
2986 if (KMALLOC_MIN_SIZE <= 128) {
2987 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2988 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
2989 caches++;
2990 }
81819f0f 2991
331dc558 2992 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
81819f0f
CL
2993 create_kmalloc_cache(&kmalloc_caches[i],
2994 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
2995 caches++;
2996 }
81819f0f 2997
f1b26339
CL
2998
2999 /*
3000 * Patch up the size_index table if we have strange large alignment
3001 * requirements for the kmalloc array. This is only the case for
6446faa2 3002 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3003 *
3004 * Largest permitted alignment is 256 bytes due to the way we
3005 * handle the index determination for the smaller caches.
3006 *
3007 * Make sure that nothing crazy happens if someone starts tinkering
3008 * around with ARCH_KMALLOC_MINALIGN
3009 */
3010 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3011 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3012
12ad6843 3013 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3014 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3015
81819f0f
CL
3016 slab_state = UP;
3017
3018 /* Provide the correct kmalloc names now that the caches are up */
331dc558 3019 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
81819f0f
CL
3020 kmalloc_caches[i]. name =
3021 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3022
3023#ifdef CONFIG_SMP
3024 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3025 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3026 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3027#else
3028 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3029#endif
3030
3adbefee
IM
3031 printk(KERN_INFO
3032 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3033 " CPUs=%d, Nodes=%d\n",
3034 caches, cache_line_size(),
81819f0f
CL
3035 slub_min_order, slub_max_order, slub_min_objects,
3036 nr_cpu_ids, nr_node_ids);
3037}
3038
3039/*
3040 * Find a mergeable slab cache
3041 */
3042static int slab_unmergeable(struct kmem_cache *s)
3043{
3044 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3045 return 1;
3046
331dc558 3047 if ((s->flags & __PAGE_ALLOC_FALLBACK))
71c7a06f
CL
3048 return 1;
3049
c59def9f 3050 if (s->ctor)
81819f0f
CL
3051 return 1;
3052
8ffa6875
CL
3053 /*
3054 * We may have set a slab to be unmergeable during bootstrap.
3055 */
3056 if (s->refcount < 0)
3057 return 1;
3058
81819f0f
CL
3059 return 0;
3060}
3061
3062static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3063 size_t align, unsigned long flags, const char *name,
4ba9b9d0 3064 void (*ctor)(struct kmem_cache *, void *))
81819f0f 3065{
5b95a4ac 3066 struct kmem_cache *s;
81819f0f
CL
3067
3068 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3069 return NULL;
3070
c59def9f 3071 if (ctor)
81819f0f
CL
3072 return NULL;
3073
3074 size = ALIGN(size, sizeof(void *));
3075 align = calculate_alignment(flags, align, size);
3076 size = ALIGN(size, align);
ba0268a8 3077 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3078
5b95a4ac 3079 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3080 if (slab_unmergeable(s))
3081 continue;
3082
3083 if (size > s->size)
3084 continue;
3085
ba0268a8 3086 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3087 continue;
3088 /*
3089 * Check if alignment is compatible.
3090 * Courtesy of Adrian Drzewiecki
3091 */
06428780 3092 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3093 continue;
3094
3095 if (s->size - size >= sizeof(void *))
3096 continue;
3097
3098 return s;
3099 }
3100 return NULL;
3101}
3102
3103struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3104 size_t align, unsigned long flags,
4ba9b9d0 3105 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
3106{
3107 struct kmem_cache *s;
3108
3109 down_write(&slub_lock);
ba0268a8 3110 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3111 if (s) {
42a9fdbb
CL
3112 int cpu;
3113
81819f0f
CL
3114 s->refcount++;
3115 /*
3116 * Adjust the object sizes so that we clear
3117 * the complete object on kzalloc.
3118 */
3119 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3120
3121 /*
3122 * And then we need to update the object size in the
3123 * per cpu structures
3124 */
3125 for_each_online_cpu(cpu)
3126 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3127
81819f0f 3128 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3129 up_write(&slub_lock);
6446faa2 3130
81819f0f
CL
3131 if (sysfs_slab_alias(s, name))
3132 goto err;
a0e1d1be
CL
3133 return s;
3134 }
6446faa2 3135
a0e1d1be
CL
3136 s = kmalloc(kmem_size, GFP_KERNEL);
3137 if (s) {
3138 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3139 size, align, flags, ctor)) {
81819f0f 3140 list_add(&s->list, &slab_caches);
a0e1d1be
CL
3141 up_write(&slub_lock);
3142 if (sysfs_slab_add(s))
3143 goto err;
3144 return s;
3145 }
3146 kfree(s);
81819f0f
CL
3147 }
3148 up_write(&slub_lock);
81819f0f
CL
3149
3150err:
81819f0f
CL
3151 if (flags & SLAB_PANIC)
3152 panic("Cannot create slabcache %s\n", name);
3153 else
3154 s = NULL;
3155 return s;
3156}
3157EXPORT_SYMBOL(kmem_cache_create);
3158
81819f0f 3159#ifdef CONFIG_SMP
81819f0f 3160/*
672bba3a
CL
3161 * Use the cpu notifier to insure that the cpu slabs are flushed when
3162 * necessary.
81819f0f
CL
3163 */
3164static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3165 unsigned long action, void *hcpu)
3166{
3167 long cpu = (long)hcpu;
5b95a4ac
CL
3168 struct kmem_cache *s;
3169 unsigned long flags;
81819f0f
CL
3170
3171 switch (action) {
4c93c355
CL
3172 case CPU_UP_PREPARE:
3173 case CPU_UP_PREPARE_FROZEN:
3174 init_alloc_cpu_cpu(cpu);
3175 down_read(&slub_lock);
3176 list_for_each_entry(s, &slab_caches, list)
3177 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3178 GFP_KERNEL);
3179 up_read(&slub_lock);
3180 break;
3181
81819f0f 3182 case CPU_UP_CANCELED:
8bb78442 3183 case CPU_UP_CANCELED_FROZEN:
81819f0f 3184 case CPU_DEAD:
8bb78442 3185 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3186 down_read(&slub_lock);
3187 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3188 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3189
5b95a4ac
CL
3190 local_irq_save(flags);
3191 __flush_cpu_slab(s, cpu);
3192 local_irq_restore(flags);
4c93c355
CL
3193 free_kmem_cache_cpu(c, cpu);
3194 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3195 }
3196 up_read(&slub_lock);
81819f0f
CL
3197 break;
3198 default:
3199 break;
3200 }
3201 return NOTIFY_OK;
3202}
3203
06428780 3204static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3205 .notifier_call = slab_cpuup_callback
06428780 3206};
81819f0f
CL
3207
3208#endif
3209
81819f0f
CL
3210void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3211{
aadb4bc4
CL
3212 struct kmem_cache *s;
3213
331dc558 3214 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3215 return kmalloc_large(size, gfpflags);
3216
aadb4bc4 3217 s = get_slab(size, gfpflags);
81819f0f 3218
2408c550 3219 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3220 return s;
81819f0f 3221
ce15fea8 3222 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
3223}
3224
3225void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3226 int node, void *caller)
3227{
aadb4bc4
CL
3228 struct kmem_cache *s;
3229
331dc558 3230 if (unlikely(size > PAGE_SIZE))
f619cfe1 3231 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3232
aadb4bc4 3233 s = get_slab(size, gfpflags);
81819f0f 3234
2408c550 3235 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3236 return s;
81819f0f 3237
ce15fea8 3238 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
3239}
3240
5b06c853
CL
3241#if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
3242static unsigned long count_partial(struct kmem_cache_node *n)
3243{
3244 unsigned long flags;
3245 unsigned long x = 0;
3246 struct page *page;
3247
3248 spin_lock_irqsave(&n->list_lock, flags);
3249 list_for_each_entry(page, &n->partial, lru)
3250 x += page->inuse;
3251 spin_unlock_irqrestore(&n->list_lock, flags);
3252 return x;
3253}
3254#endif
3255
41ecc55b 3256#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
434e245d
CL
3257static int validate_slab(struct kmem_cache *s, struct page *page,
3258 unsigned long *map)
53e15af0
CL
3259{
3260 void *p;
a973e9dd 3261 void *addr = page_address(page);
53e15af0
CL
3262
3263 if (!check_slab(s, page) ||
3264 !on_freelist(s, page, NULL))
3265 return 0;
3266
3267 /* Now we know that a valid freelist exists */
39b26464 3268 bitmap_zero(map, page->objects);
53e15af0 3269
7656c72b
CL
3270 for_each_free_object(p, s, page->freelist) {
3271 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3272 if (!check_object(s, page, p, 0))
3273 return 0;
3274 }
3275
7656c72b
CL
3276 for_each_object(p, s, addr)
3277 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3278 if (!check_object(s, page, p, 1))
3279 return 0;
3280 return 1;
3281}
3282
434e245d
CL
3283static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3284 unsigned long *map)
53e15af0
CL
3285{
3286 if (slab_trylock(page)) {
434e245d 3287 validate_slab(s, page, map);
53e15af0
CL
3288 slab_unlock(page);
3289 } else
3290 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3291 s->name, page);
3292
3293 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
3294 if (!SlabDebug(page))
3295 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
3296 "on slab 0x%p\n", s->name, page);
3297 } else {
35e5d7ee
CL
3298 if (SlabDebug(page))
3299 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
3300 "slab 0x%p\n", s->name, page);
3301 }
3302}
3303
434e245d
CL
3304static int validate_slab_node(struct kmem_cache *s,
3305 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3306{
3307 unsigned long count = 0;
3308 struct page *page;
3309 unsigned long flags;
3310
3311 spin_lock_irqsave(&n->list_lock, flags);
3312
3313 list_for_each_entry(page, &n->partial, lru) {
434e245d 3314 validate_slab_slab(s, page, map);
53e15af0
CL
3315 count++;
3316 }
3317 if (count != n->nr_partial)
3318 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3319 "counter=%ld\n", s->name, count, n->nr_partial);
3320
3321 if (!(s->flags & SLAB_STORE_USER))
3322 goto out;
3323
3324 list_for_each_entry(page, &n->full, lru) {
434e245d 3325 validate_slab_slab(s, page, map);
53e15af0
CL
3326 count++;
3327 }
3328 if (count != atomic_long_read(&n->nr_slabs))
3329 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3330 "counter=%ld\n", s->name, count,
3331 atomic_long_read(&n->nr_slabs));
3332
3333out:
3334 spin_unlock_irqrestore(&n->list_lock, flags);
3335 return count;
3336}
3337
434e245d 3338static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3339{
3340 int node;
3341 unsigned long count = 0;
434e245d
CL
3342 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3343 sizeof(unsigned long), GFP_KERNEL);
3344
3345 if (!map)
3346 return -ENOMEM;
53e15af0
CL
3347
3348 flush_all(s);
f64dc58c 3349 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3350 struct kmem_cache_node *n = get_node(s, node);
3351
434e245d 3352 count += validate_slab_node(s, n, map);
53e15af0 3353 }
434e245d 3354 kfree(map);
53e15af0
CL
3355 return count;
3356}
3357
b3459709
CL
3358#ifdef SLUB_RESILIENCY_TEST
3359static void resiliency_test(void)
3360{
3361 u8 *p;
3362
3363 printk(KERN_ERR "SLUB resiliency testing\n");
3364 printk(KERN_ERR "-----------------------\n");
3365 printk(KERN_ERR "A. Corruption after allocation\n");
3366
3367 p = kzalloc(16, GFP_KERNEL);
3368 p[16] = 0x12;
3369 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3370 " 0x12->0x%p\n\n", p + 16);
3371
3372 validate_slab_cache(kmalloc_caches + 4);
3373
3374 /* Hmmm... The next two are dangerous */
3375 p = kzalloc(32, GFP_KERNEL);
3376 p[32 + sizeof(void *)] = 0x34;
3377 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3378 " 0x34 -> -0x%p\n", p);
3379 printk(KERN_ERR
3380 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3381
3382 validate_slab_cache(kmalloc_caches + 5);
3383 p = kzalloc(64, GFP_KERNEL);
3384 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3385 *p = 0x56;
3386 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3387 p);
3adbefee
IM
3388 printk(KERN_ERR
3389 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3390 validate_slab_cache(kmalloc_caches + 6);
3391
3392 printk(KERN_ERR "\nB. Corruption after free\n");
3393 p = kzalloc(128, GFP_KERNEL);
3394 kfree(p);
3395 *p = 0x78;
3396 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3397 validate_slab_cache(kmalloc_caches + 7);
3398
3399 p = kzalloc(256, GFP_KERNEL);
3400 kfree(p);
3401 p[50] = 0x9a;
3adbefee
IM
3402 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3403 p);
b3459709
CL
3404 validate_slab_cache(kmalloc_caches + 8);
3405
3406 p = kzalloc(512, GFP_KERNEL);
3407 kfree(p);
3408 p[512] = 0xab;
3409 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3410 validate_slab_cache(kmalloc_caches + 9);
3411}
3412#else
3413static void resiliency_test(void) {};
3414#endif
3415
88a420e4 3416/*
672bba3a 3417 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3418 * and freed.
3419 */
3420
3421struct location {
3422 unsigned long count;
3423 void *addr;
45edfa58
CL
3424 long long sum_time;
3425 long min_time;
3426 long max_time;
3427 long min_pid;
3428 long max_pid;
3429 cpumask_t cpus;
3430 nodemask_t nodes;
88a420e4
CL
3431};
3432
3433struct loc_track {
3434 unsigned long max;
3435 unsigned long count;
3436 struct location *loc;
3437};
3438
3439static void free_loc_track(struct loc_track *t)
3440{
3441 if (t->max)
3442 free_pages((unsigned long)t->loc,
3443 get_order(sizeof(struct location) * t->max));
3444}
3445
68dff6a9 3446static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3447{
3448 struct location *l;
3449 int order;
3450
88a420e4
CL
3451 order = get_order(sizeof(struct location) * max);
3452
68dff6a9 3453 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3454 if (!l)
3455 return 0;
3456
3457 if (t->count) {
3458 memcpy(l, t->loc, sizeof(struct location) * t->count);
3459 free_loc_track(t);
3460 }
3461 t->max = max;
3462 t->loc = l;
3463 return 1;
3464}
3465
3466static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3467 const struct track *track)
88a420e4
CL
3468{
3469 long start, end, pos;
3470 struct location *l;
3471 void *caddr;
45edfa58 3472 unsigned long age = jiffies - track->when;
88a420e4
CL
3473
3474 start = -1;
3475 end = t->count;
3476
3477 for ( ; ; ) {
3478 pos = start + (end - start + 1) / 2;
3479
3480 /*
3481 * There is nothing at "end". If we end up there
3482 * we need to add something to before end.
3483 */
3484 if (pos == end)
3485 break;
3486
3487 caddr = t->loc[pos].addr;
45edfa58
CL
3488 if (track->addr == caddr) {
3489
3490 l = &t->loc[pos];
3491 l->count++;
3492 if (track->when) {
3493 l->sum_time += age;
3494 if (age < l->min_time)
3495 l->min_time = age;
3496 if (age > l->max_time)
3497 l->max_time = age;
3498
3499 if (track->pid < l->min_pid)
3500 l->min_pid = track->pid;
3501 if (track->pid > l->max_pid)
3502 l->max_pid = track->pid;
3503
3504 cpu_set(track->cpu, l->cpus);
3505 }
3506 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3507 return 1;
3508 }
3509
45edfa58 3510 if (track->addr < caddr)
88a420e4
CL
3511 end = pos;
3512 else
3513 start = pos;
3514 }
3515
3516 /*
672bba3a 3517 * Not found. Insert new tracking element.
88a420e4 3518 */
68dff6a9 3519 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3520 return 0;
3521
3522 l = t->loc + pos;
3523 if (pos < t->count)
3524 memmove(l + 1, l,
3525 (t->count - pos) * sizeof(struct location));
3526 t->count++;
3527 l->count = 1;
45edfa58
CL
3528 l->addr = track->addr;
3529 l->sum_time = age;
3530 l->min_time = age;
3531 l->max_time = age;
3532 l->min_pid = track->pid;
3533 l->max_pid = track->pid;
3534 cpus_clear(l->cpus);
3535 cpu_set(track->cpu, l->cpus);
3536 nodes_clear(l->nodes);
3537 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3538 return 1;
3539}
3540
3541static void process_slab(struct loc_track *t, struct kmem_cache *s,
3542 struct page *page, enum track_item alloc)
3543{
a973e9dd 3544 void *addr = page_address(page);
39b26464 3545 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3546 void *p;
3547
39b26464 3548 bitmap_zero(map, page->objects);
7656c72b
CL
3549 for_each_free_object(p, s, page->freelist)
3550 set_bit(slab_index(p, s, addr), map);
88a420e4 3551
7656c72b 3552 for_each_object(p, s, addr)
45edfa58
CL
3553 if (!test_bit(slab_index(p, s, addr), map))
3554 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3555}
3556
3557static int list_locations(struct kmem_cache *s, char *buf,
3558 enum track_item alloc)
3559{
e374d483 3560 int len = 0;
88a420e4 3561 unsigned long i;
68dff6a9 3562 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3563 int node;
3564
68dff6a9 3565 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3566 GFP_TEMPORARY))
68dff6a9 3567 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3568
3569 /* Push back cpu slabs */
3570 flush_all(s);
3571
f64dc58c 3572 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3573 struct kmem_cache_node *n = get_node(s, node);
3574 unsigned long flags;
3575 struct page *page;
3576
9e86943b 3577 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3578 continue;
3579
3580 spin_lock_irqsave(&n->list_lock, flags);
3581 list_for_each_entry(page, &n->partial, lru)
3582 process_slab(&t, s, page, alloc);
3583 list_for_each_entry(page, &n->full, lru)
3584 process_slab(&t, s, page, alloc);
3585 spin_unlock_irqrestore(&n->list_lock, flags);
3586 }
3587
3588 for (i = 0; i < t.count; i++) {
45edfa58 3589 struct location *l = &t.loc[i];
88a420e4 3590
e374d483 3591 if (len > PAGE_SIZE - 100)
88a420e4 3592 break;
e374d483 3593 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3594
3595 if (l->addr)
e374d483 3596 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3597 else
e374d483 3598 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3599
3600 if (l->sum_time != l->min_time) {
3601 unsigned long remainder;
3602
e374d483 3603 len += sprintf(buf + len, " age=%ld/%ld/%ld",
45edfa58
CL
3604 l->min_time,
3605 div_long_long_rem(l->sum_time, l->count, &remainder),
3606 l->max_time);
3607 } else
e374d483 3608 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3609 l->min_time);
3610
3611 if (l->min_pid != l->max_pid)
e374d483 3612 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3613 l->min_pid, l->max_pid);
3614 else
e374d483 3615 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3616 l->min_pid);
3617
84966343 3618 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
e374d483
HH
3619 len < PAGE_SIZE - 60) {
3620 len += sprintf(buf + len, " cpus=");
3621 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3622 l->cpus);
3623 }
3624
84966343 3625 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3626 len < PAGE_SIZE - 60) {
3627 len += sprintf(buf + len, " nodes=");
3628 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3629 l->nodes);
3630 }
3631
e374d483 3632 len += sprintf(buf + len, "\n");
88a420e4
CL
3633 }
3634
3635 free_loc_track(&t);
3636 if (!t.count)
e374d483
HH
3637 len += sprintf(buf, "No data\n");
3638 return len;
88a420e4
CL
3639}
3640
81819f0f
CL
3641enum slab_stat_type {
3642 SL_FULL,
3643 SL_PARTIAL,
3644 SL_CPU,
3645 SL_OBJECTS
3646};
3647
3648#define SO_FULL (1 << SL_FULL)
3649#define SO_PARTIAL (1 << SL_PARTIAL)
3650#define SO_CPU (1 << SL_CPU)
3651#define SO_OBJECTS (1 << SL_OBJECTS)
3652
62e5c4b4
CG
3653static ssize_t show_slab_objects(struct kmem_cache *s,
3654 char *buf, unsigned long flags)
81819f0f
CL
3655{
3656 unsigned long total = 0;
3657 int cpu;
3658 int node;
3659 int x;
3660 unsigned long *nodes;
3661 unsigned long *per_cpu;
3662
3663 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3664 if (!nodes)
3665 return -ENOMEM;
81819f0f
CL
3666 per_cpu = nodes + nr_node_ids;
3667
3668 for_each_possible_cpu(cpu) {
dfb4f096
CL
3669 struct page *page;
3670 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 3671
dfb4f096
CL
3672 if (!c)
3673 continue;
3674
3675 page = c->page;
ee3c72a1
CL
3676 node = c->node;
3677 if (node < 0)
3678 continue;
81819f0f 3679 if (page) {
81819f0f 3680 if (flags & SO_CPU) {
81819f0f
CL
3681 if (flags & SO_OBJECTS)
3682 x = page->inuse;
3683 else
3684 x = 1;
3685 total += x;
ee3c72a1 3686 nodes[node] += x;
81819f0f 3687 }
ee3c72a1 3688 per_cpu[node]++;
81819f0f
CL
3689 }
3690 }
3691
f64dc58c 3692 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3693 struct kmem_cache_node *n = get_node(s, node);
3694
3695 if (flags & SO_PARTIAL) {
3696 if (flags & SO_OBJECTS)
3697 x = count_partial(n);
3698 else
3699 x = n->nr_partial;
3700 total += x;
3701 nodes[node] += x;
3702 }
3703
3704 if (flags & SO_FULL) {
9e86943b 3705 int full_slabs = atomic_long_read(&n->nr_slabs)
81819f0f
CL
3706 - per_cpu[node]
3707 - n->nr_partial;
3708
3709 if (flags & SO_OBJECTS)
3710 x = full_slabs * s->objects;
3711 else
3712 x = full_slabs;
3713 total += x;
3714 nodes[node] += x;
3715 }
3716 }
3717
3718 x = sprintf(buf, "%lu", total);
3719#ifdef CONFIG_NUMA
f64dc58c 3720 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3721 if (nodes[node])
3722 x += sprintf(buf + x, " N%d=%lu",
3723 node, nodes[node]);
3724#endif
3725 kfree(nodes);
3726 return x + sprintf(buf + x, "\n");
3727}
3728
3729static int any_slab_objects(struct kmem_cache *s)
3730{
3731 int node;
3732 int cpu;
3733
dfb4f096
CL
3734 for_each_possible_cpu(cpu) {
3735 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3736
3737 if (c && c->page)
81819f0f 3738 return 1;
dfb4f096 3739 }
81819f0f 3740
dfb4f096 3741 for_each_online_node(node) {
81819f0f
CL
3742 struct kmem_cache_node *n = get_node(s, node);
3743
dfb4f096
CL
3744 if (!n)
3745 continue;
3746
9e86943b 3747 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
81819f0f
CL
3748 return 1;
3749 }
3750 return 0;
3751}
3752
3753#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3754#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3755
3756struct slab_attribute {
3757 struct attribute attr;
3758 ssize_t (*show)(struct kmem_cache *s, char *buf);
3759 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3760};
3761
3762#define SLAB_ATTR_RO(_name) \
3763 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3764
3765#define SLAB_ATTR(_name) \
3766 static struct slab_attribute _name##_attr = \
3767 __ATTR(_name, 0644, _name##_show, _name##_store)
3768
81819f0f
CL
3769static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3770{
3771 return sprintf(buf, "%d\n", s->size);
3772}
3773SLAB_ATTR_RO(slab_size);
3774
3775static ssize_t align_show(struct kmem_cache *s, char *buf)
3776{
3777 return sprintf(buf, "%d\n", s->align);
3778}
3779SLAB_ATTR_RO(align);
3780
3781static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3782{
3783 return sprintf(buf, "%d\n", s->objsize);
3784}
3785SLAB_ATTR_RO(object_size);
3786
3787static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3788{
3789 return sprintf(buf, "%d\n", s->objects);
3790}
3791SLAB_ATTR_RO(objs_per_slab);
3792
3793static ssize_t order_show(struct kmem_cache *s, char *buf)
3794{
3795 return sprintf(buf, "%d\n", s->order);
3796}
3797SLAB_ATTR_RO(order);
3798
3799static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3800{
3801 if (s->ctor) {
3802 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3803
3804 return n + sprintf(buf + n, "\n");
3805 }
3806 return 0;
3807}
3808SLAB_ATTR_RO(ctor);
3809
81819f0f
CL
3810static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3811{
3812 return sprintf(buf, "%d\n", s->refcount - 1);
3813}
3814SLAB_ATTR_RO(aliases);
3815
3816static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3817{
d9acf4b7 3818 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
81819f0f
CL
3819}
3820SLAB_ATTR_RO(slabs);
3821
3822static ssize_t partial_show(struct kmem_cache *s, char *buf)
3823{
d9acf4b7 3824 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3825}
3826SLAB_ATTR_RO(partial);
3827
3828static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3829{
d9acf4b7 3830 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3831}
3832SLAB_ATTR_RO(cpu_slabs);
3833
3834static ssize_t objects_show(struct kmem_cache *s, char *buf)
3835{
d9acf4b7 3836 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
81819f0f
CL
3837}
3838SLAB_ATTR_RO(objects);
3839
3840static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3841{
3842 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3843}
3844
3845static ssize_t sanity_checks_store(struct kmem_cache *s,
3846 const char *buf, size_t length)
3847{
3848 s->flags &= ~SLAB_DEBUG_FREE;
3849 if (buf[0] == '1')
3850 s->flags |= SLAB_DEBUG_FREE;
3851 return length;
3852}
3853SLAB_ATTR(sanity_checks);
3854
3855static ssize_t trace_show(struct kmem_cache *s, char *buf)
3856{
3857 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3858}
3859
3860static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3861 size_t length)
3862{
3863 s->flags &= ~SLAB_TRACE;
3864 if (buf[0] == '1')
3865 s->flags |= SLAB_TRACE;
3866 return length;
3867}
3868SLAB_ATTR(trace);
3869
3870static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3871{
3872 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3873}
3874
3875static ssize_t reclaim_account_store(struct kmem_cache *s,
3876 const char *buf, size_t length)
3877{
3878 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3879 if (buf[0] == '1')
3880 s->flags |= SLAB_RECLAIM_ACCOUNT;
3881 return length;
3882}
3883SLAB_ATTR(reclaim_account);
3884
3885static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3886{
5af60839 3887 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3888}
3889SLAB_ATTR_RO(hwcache_align);
3890
3891#ifdef CONFIG_ZONE_DMA
3892static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3893{
3894 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3895}
3896SLAB_ATTR_RO(cache_dma);
3897#endif
3898
3899static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3900{
3901 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3902}
3903SLAB_ATTR_RO(destroy_by_rcu);
3904
3905static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3906{
3907 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3908}
3909
3910static ssize_t red_zone_store(struct kmem_cache *s,
3911 const char *buf, size_t length)
3912{
3913 if (any_slab_objects(s))
3914 return -EBUSY;
3915
3916 s->flags &= ~SLAB_RED_ZONE;
3917 if (buf[0] == '1')
3918 s->flags |= SLAB_RED_ZONE;
3919 calculate_sizes(s);
3920 return length;
3921}
3922SLAB_ATTR(red_zone);
3923
3924static ssize_t poison_show(struct kmem_cache *s, char *buf)
3925{
3926 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3927}
3928
3929static ssize_t poison_store(struct kmem_cache *s,
3930 const char *buf, size_t length)
3931{
3932 if (any_slab_objects(s))
3933 return -EBUSY;
3934
3935 s->flags &= ~SLAB_POISON;
3936 if (buf[0] == '1')
3937 s->flags |= SLAB_POISON;
3938 calculate_sizes(s);
3939 return length;
3940}
3941SLAB_ATTR(poison);
3942
3943static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3944{
3945 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3946}
3947
3948static ssize_t store_user_store(struct kmem_cache *s,
3949 const char *buf, size_t length)
3950{
3951 if (any_slab_objects(s))
3952 return -EBUSY;
3953
3954 s->flags &= ~SLAB_STORE_USER;
3955 if (buf[0] == '1')
3956 s->flags |= SLAB_STORE_USER;
3957 calculate_sizes(s);
3958 return length;
3959}
3960SLAB_ATTR(store_user);
3961
53e15af0
CL
3962static ssize_t validate_show(struct kmem_cache *s, char *buf)
3963{
3964 return 0;
3965}
3966
3967static ssize_t validate_store(struct kmem_cache *s,
3968 const char *buf, size_t length)
3969{
434e245d
CL
3970 int ret = -EINVAL;
3971
3972 if (buf[0] == '1') {
3973 ret = validate_slab_cache(s);
3974 if (ret >= 0)
3975 ret = length;
3976 }
3977 return ret;
53e15af0
CL
3978}
3979SLAB_ATTR(validate);
3980
2086d26a
CL
3981static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3982{
3983 return 0;
3984}
3985
3986static ssize_t shrink_store(struct kmem_cache *s,
3987 const char *buf, size_t length)
3988{
3989 if (buf[0] == '1') {
3990 int rc = kmem_cache_shrink(s);
3991
3992 if (rc)
3993 return rc;
3994 } else
3995 return -EINVAL;
3996 return length;
3997}
3998SLAB_ATTR(shrink);
3999
88a420e4
CL
4000static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4001{
4002 if (!(s->flags & SLAB_STORE_USER))
4003 return -ENOSYS;
4004 return list_locations(s, buf, TRACK_ALLOC);
4005}
4006SLAB_ATTR_RO(alloc_calls);
4007
4008static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4009{
4010 if (!(s->flags & SLAB_STORE_USER))
4011 return -ENOSYS;
4012 return list_locations(s, buf, TRACK_FREE);
4013}
4014SLAB_ATTR_RO(free_calls);
4015
81819f0f 4016#ifdef CONFIG_NUMA
9824601e 4017static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4018{
9824601e 4019 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4020}
4021
9824601e 4022static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4023 const char *buf, size_t length)
4024{
4025 int n = simple_strtoul(buf, NULL, 10);
4026
4027 if (n < 100)
9824601e 4028 s->remote_node_defrag_ratio = n * 10;
81819f0f
CL
4029 return length;
4030}
9824601e 4031SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4032#endif
4033
8ff12cfc 4034#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4035static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4036{
4037 unsigned long sum = 0;
4038 int cpu;
4039 int len;
4040 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4041
4042 if (!data)
4043 return -ENOMEM;
4044
4045 for_each_online_cpu(cpu) {
4046 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4047
4048 data[cpu] = x;
4049 sum += x;
4050 }
4051
4052 len = sprintf(buf, "%lu", sum);
4053
50ef37b9 4054#ifdef CONFIG_SMP
8ff12cfc
CL
4055 for_each_online_cpu(cpu) {
4056 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4057 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4058 }
50ef37b9 4059#endif
8ff12cfc
CL
4060 kfree(data);
4061 return len + sprintf(buf + len, "\n");
4062}
4063
4064#define STAT_ATTR(si, text) \
4065static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4066{ \
4067 return show_stat(s, buf, si); \
4068} \
4069SLAB_ATTR_RO(text); \
4070
4071STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4072STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4073STAT_ATTR(FREE_FASTPATH, free_fastpath);
4074STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4075STAT_ATTR(FREE_FROZEN, free_frozen);
4076STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4077STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4078STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4079STAT_ATTR(ALLOC_SLAB, alloc_slab);
4080STAT_ATTR(ALLOC_REFILL, alloc_refill);
4081STAT_ATTR(FREE_SLAB, free_slab);
4082STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4083STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4084STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4085STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4086STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4087STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4088
4089#endif
4090
06428780 4091static struct attribute *slab_attrs[] = {
81819f0f
CL
4092 &slab_size_attr.attr,
4093 &object_size_attr.attr,
4094 &objs_per_slab_attr.attr,
4095 &order_attr.attr,
4096 &objects_attr.attr,
4097 &slabs_attr.attr,
4098 &partial_attr.attr,
4099 &cpu_slabs_attr.attr,
4100 &ctor_attr.attr,
81819f0f
CL
4101 &aliases_attr.attr,
4102 &align_attr.attr,
4103 &sanity_checks_attr.attr,
4104 &trace_attr.attr,
4105 &hwcache_align_attr.attr,
4106 &reclaim_account_attr.attr,
4107 &destroy_by_rcu_attr.attr,
4108 &red_zone_attr.attr,
4109 &poison_attr.attr,
4110 &store_user_attr.attr,
53e15af0 4111 &validate_attr.attr,
2086d26a 4112 &shrink_attr.attr,
88a420e4
CL
4113 &alloc_calls_attr.attr,
4114 &free_calls_attr.attr,
81819f0f
CL
4115#ifdef CONFIG_ZONE_DMA
4116 &cache_dma_attr.attr,
4117#endif
4118#ifdef CONFIG_NUMA
9824601e 4119 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4120#endif
4121#ifdef CONFIG_SLUB_STATS
4122 &alloc_fastpath_attr.attr,
4123 &alloc_slowpath_attr.attr,
4124 &free_fastpath_attr.attr,
4125 &free_slowpath_attr.attr,
4126 &free_frozen_attr.attr,
4127 &free_add_partial_attr.attr,
4128 &free_remove_partial_attr.attr,
4129 &alloc_from_partial_attr.attr,
4130 &alloc_slab_attr.attr,
4131 &alloc_refill_attr.attr,
4132 &free_slab_attr.attr,
4133 &cpuslab_flush_attr.attr,
4134 &deactivate_full_attr.attr,
4135 &deactivate_empty_attr.attr,
4136 &deactivate_to_head_attr.attr,
4137 &deactivate_to_tail_attr.attr,
4138 &deactivate_remote_frees_attr.attr,
81819f0f
CL
4139#endif
4140 NULL
4141};
4142
4143static struct attribute_group slab_attr_group = {
4144 .attrs = slab_attrs,
4145};
4146
4147static ssize_t slab_attr_show(struct kobject *kobj,
4148 struct attribute *attr,
4149 char *buf)
4150{
4151 struct slab_attribute *attribute;
4152 struct kmem_cache *s;
4153 int err;
4154
4155 attribute = to_slab_attr(attr);
4156 s = to_slab(kobj);
4157
4158 if (!attribute->show)
4159 return -EIO;
4160
4161 err = attribute->show(s, buf);
4162
4163 return err;
4164}
4165
4166static ssize_t slab_attr_store(struct kobject *kobj,
4167 struct attribute *attr,
4168 const char *buf, size_t len)
4169{
4170 struct slab_attribute *attribute;
4171 struct kmem_cache *s;
4172 int err;
4173
4174 attribute = to_slab_attr(attr);
4175 s = to_slab(kobj);
4176
4177 if (!attribute->store)
4178 return -EIO;
4179
4180 err = attribute->store(s, buf, len);
4181
4182 return err;
4183}
4184
151c602f
CL
4185static void kmem_cache_release(struct kobject *kobj)
4186{
4187 struct kmem_cache *s = to_slab(kobj);
4188
4189 kfree(s);
4190}
4191
81819f0f
CL
4192static struct sysfs_ops slab_sysfs_ops = {
4193 .show = slab_attr_show,
4194 .store = slab_attr_store,
4195};
4196
4197static struct kobj_type slab_ktype = {
4198 .sysfs_ops = &slab_sysfs_ops,
151c602f 4199 .release = kmem_cache_release
81819f0f
CL
4200};
4201
4202static int uevent_filter(struct kset *kset, struct kobject *kobj)
4203{
4204 struct kobj_type *ktype = get_ktype(kobj);
4205
4206 if (ktype == &slab_ktype)
4207 return 1;
4208 return 0;
4209}
4210
4211static struct kset_uevent_ops slab_uevent_ops = {
4212 .filter = uevent_filter,
4213};
4214
27c3a314 4215static struct kset *slab_kset;
81819f0f
CL
4216
4217#define ID_STR_LENGTH 64
4218
4219/* Create a unique string id for a slab cache:
6446faa2
CL
4220 *
4221 * Format :[flags-]size
81819f0f
CL
4222 */
4223static char *create_unique_id(struct kmem_cache *s)
4224{
4225 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4226 char *p = name;
4227
4228 BUG_ON(!name);
4229
4230 *p++ = ':';
4231 /*
4232 * First flags affecting slabcache operations. We will only
4233 * get here for aliasable slabs so we do not need to support
4234 * too many flags. The flags here must cover all flags that
4235 * are matched during merging to guarantee that the id is
4236 * unique.
4237 */
4238 if (s->flags & SLAB_CACHE_DMA)
4239 *p++ = 'd';
4240 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4241 *p++ = 'a';
4242 if (s->flags & SLAB_DEBUG_FREE)
4243 *p++ = 'F';
4244 if (p != name + 1)
4245 *p++ = '-';
4246 p += sprintf(p, "%07d", s->size);
4247 BUG_ON(p > name + ID_STR_LENGTH - 1);
4248 return name;
4249}
4250
4251static int sysfs_slab_add(struct kmem_cache *s)
4252{
4253 int err;
4254 const char *name;
4255 int unmergeable;
4256
4257 if (slab_state < SYSFS)
4258 /* Defer until later */
4259 return 0;
4260
4261 unmergeable = slab_unmergeable(s);
4262 if (unmergeable) {
4263 /*
4264 * Slabcache can never be merged so we can use the name proper.
4265 * This is typically the case for debug situations. In that
4266 * case we can catch duplicate names easily.
4267 */
27c3a314 4268 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4269 name = s->name;
4270 } else {
4271 /*
4272 * Create a unique name for the slab as a target
4273 * for the symlinks.
4274 */
4275 name = create_unique_id(s);
4276 }
4277
27c3a314 4278 s->kobj.kset = slab_kset;
1eada11c
GKH
4279 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4280 if (err) {
4281 kobject_put(&s->kobj);
81819f0f 4282 return err;
1eada11c 4283 }
81819f0f
CL
4284
4285 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4286 if (err)
4287 return err;
4288 kobject_uevent(&s->kobj, KOBJ_ADD);
4289 if (!unmergeable) {
4290 /* Setup first alias */
4291 sysfs_slab_alias(s, s->name);
4292 kfree(name);
4293 }
4294 return 0;
4295}
4296
4297static void sysfs_slab_remove(struct kmem_cache *s)
4298{
4299 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4300 kobject_del(&s->kobj);
151c602f 4301 kobject_put(&s->kobj);
81819f0f
CL
4302}
4303
4304/*
4305 * Need to buffer aliases during bootup until sysfs becomes
4306 * available lest we loose that information.
4307 */
4308struct saved_alias {
4309 struct kmem_cache *s;
4310 const char *name;
4311 struct saved_alias *next;
4312};
4313
5af328a5 4314static struct saved_alias *alias_list;
81819f0f
CL
4315
4316static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4317{
4318 struct saved_alias *al;
4319
4320 if (slab_state == SYSFS) {
4321 /*
4322 * If we have a leftover link then remove it.
4323 */
27c3a314
GKH
4324 sysfs_remove_link(&slab_kset->kobj, name);
4325 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4326 }
4327
4328 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4329 if (!al)
4330 return -ENOMEM;
4331
4332 al->s = s;
4333 al->name = name;
4334 al->next = alias_list;
4335 alias_list = al;
4336 return 0;
4337}
4338
4339static int __init slab_sysfs_init(void)
4340{
5b95a4ac 4341 struct kmem_cache *s;
81819f0f
CL
4342 int err;
4343
0ff21e46 4344 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4345 if (!slab_kset) {
81819f0f
CL
4346 printk(KERN_ERR "Cannot register slab subsystem.\n");
4347 return -ENOSYS;
4348 }
4349
26a7bd03
CL
4350 slab_state = SYSFS;
4351
5b95a4ac 4352 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4353 err = sysfs_slab_add(s);
5d540fb7
CL
4354 if (err)
4355 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4356 " to sysfs\n", s->name);
26a7bd03 4357 }
81819f0f
CL
4358
4359 while (alias_list) {
4360 struct saved_alias *al = alias_list;
4361
4362 alias_list = alias_list->next;
4363 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4364 if (err)
4365 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4366 " %s to sysfs\n", s->name);
81819f0f
CL
4367 kfree(al);
4368 }
4369
4370 resiliency_test();
4371 return 0;
4372}
4373
4374__initcall(slab_sysfs_init);
81819f0f 4375#endif
57ed3eda
PE
4376
4377/*
4378 * The /proc/slabinfo ABI
4379 */
158a9624
LT
4380#ifdef CONFIG_SLABINFO
4381
4382ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4383 size_t count, loff_t *ppos)
4384{
4385 return -EINVAL;
4386}
4387
57ed3eda
PE
4388
4389static void print_slabinfo_header(struct seq_file *m)
4390{
4391 seq_puts(m, "slabinfo - version: 2.1\n");
4392 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4393 "<objperslab> <pagesperslab>");
4394 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4395 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4396 seq_putc(m, '\n');
4397}
4398
4399static void *s_start(struct seq_file *m, loff_t *pos)
4400{
4401 loff_t n = *pos;
4402
4403 down_read(&slub_lock);
4404 if (!n)
4405 print_slabinfo_header(m);
4406
4407 return seq_list_start(&slab_caches, *pos);
4408}
4409
4410static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4411{
4412 return seq_list_next(p, &slab_caches, pos);
4413}
4414
4415static void s_stop(struct seq_file *m, void *p)
4416{
4417 up_read(&slub_lock);
4418}
4419
4420static int s_show(struct seq_file *m, void *p)
4421{
4422 unsigned long nr_partials = 0;
4423 unsigned long nr_slabs = 0;
4424 unsigned long nr_inuse = 0;
4425 unsigned long nr_objs;
4426 struct kmem_cache *s;
4427 int node;
4428
4429 s = list_entry(p, struct kmem_cache, list);
4430
4431 for_each_online_node(node) {
4432 struct kmem_cache_node *n = get_node(s, node);
4433
4434 if (!n)
4435 continue;
4436
4437 nr_partials += n->nr_partial;
4438 nr_slabs += atomic_long_read(&n->nr_slabs);
4439 nr_inuse += count_partial(n);
4440 }
4441
4442 nr_objs = nr_slabs * s->objects;
4443 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4444
4445 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4446 nr_objs, s->size, s->objects, (1 << s->order));
4447 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4448 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4449 0UL);
4450 seq_putc(m, '\n');
4451 return 0;
4452}
4453
4454const struct seq_operations slabinfo_op = {
4455 .start = s_start,
4456 .next = s_next,
4457 .stop = s_stop,
4458 .show = s_show,
4459};
4460
158a9624 4461#endif /* CONFIG_SLABINFO */