slub: Add missing irq restore for the OOM path
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
81819f0f 30
4a92379b
RK
31#include <trace/events/kmem.h>
32
81819f0f
CL
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
af537b0a
CL
111#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
112 SLAB_TRACE | SLAB_DEBUG_FREE)
113
114static inline int kmem_cache_debug(struct kmem_cache *s)
115{
5577bd8a 116#ifdef CONFIG_SLUB_DEBUG
af537b0a 117 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 118#else
af537b0a 119 return 0;
5577bd8a 120#endif
af537b0a 121}
5577bd8a 122
81819f0f
CL
123/*
124 * Issues still to be resolved:
125 *
81819f0f
CL
126 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
127 *
81819f0f
CL
128 * - Variable sizing of the per node arrays
129 */
130
131/* Enable to test recovery from slab corruption on boot */
132#undef SLUB_RESILIENCY_TEST
133
2086d26a
CL
134/*
135 * Mininum number of partial slabs. These will be left on the partial
136 * lists even if they are empty. kmem_cache_shrink may reclaim them.
137 */
76be8950 138#define MIN_PARTIAL 5
e95eed57 139
2086d26a
CL
140/*
141 * Maximum number of desirable partial slabs.
142 * The existence of more partial slabs makes kmem_cache_shrink
143 * sort the partial list by the number of objects in the.
144 */
145#define MAX_PARTIAL 10
146
81819f0f
CL
147#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
148 SLAB_POISON | SLAB_STORE_USER)
672bba3a 149
fa5ec8a1 150/*
3de47213
DR
151 * Debugging flags that require metadata to be stored in the slab. These get
152 * disabled when slub_debug=O is used and a cache's min order increases with
153 * metadata.
fa5ec8a1 154 */
3de47213 155#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 156
81819f0f
CL
157/*
158 * Set of flags that will prevent slab merging
159 */
160#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
161 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
162 SLAB_FAILSLAB)
81819f0f
CL
163
164#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 165 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 166
210b5c06
CG
167#define OO_SHIFT 16
168#define OO_MASK ((1 << OO_SHIFT) - 1)
169#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
170
81819f0f 171/* Internal SLUB flags */
f90ec390 172#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
173
174static int kmem_size = sizeof(struct kmem_cache);
175
176#ifdef CONFIG_SMP
177static struct notifier_block slab_notifier;
178#endif
179
180static enum {
181 DOWN, /* No slab functionality available */
51df1142 182 PARTIAL, /* Kmem_cache_node works */
672bba3a 183 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
184 SYSFS /* Sysfs up */
185} slab_state = DOWN;
186
187/* A list of all slab caches on the system */
188static DECLARE_RWSEM(slub_lock);
5af328a5 189static LIST_HEAD(slab_caches);
81819f0f 190
02cbc874
CL
191/*
192 * Tracking user of a slab.
193 */
194struct track {
ce71e27c 195 unsigned long addr; /* Called from address */
02cbc874
CL
196 int cpu; /* Was running on cpu */
197 int pid; /* Pid context */
198 unsigned long when; /* When did the operation occur */
199};
200
201enum track_item { TRACK_ALLOC, TRACK_FREE };
202
ab4d5ed5 203#ifdef CONFIG_SYSFS
81819f0f
CL
204static int sysfs_slab_add(struct kmem_cache *);
205static int sysfs_slab_alias(struct kmem_cache *, const char *);
206static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 207
81819f0f 208#else
0c710013
CL
209static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
210static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
211 { return 0; }
151c602f
CL
212static inline void sysfs_slab_remove(struct kmem_cache *s)
213{
84c1cf62 214 kfree(s->name);
151c602f
CL
215 kfree(s);
216}
8ff12cfc 217
81819f0f
CL
218#endif
219
84e554e6 220static inline void stat(struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
221{
222#ifdef CONFIG_SLUB_STATS
84e554e6 223 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
224#endif
225}
226
81819f0f
CL
227/********************************************************************
228 * Core slab cache functions
229 *******************************************************************/
230
231int slab_is_available(void)
232{
233 return slab_state >= UP;
234}
235
236static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
237{
81819f0f 238 return s->node[node];
81819f0f
CL
239}
240
6446faa2 241/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
242static inline int check_valid_pointer(struct kmem_cache *s,
243 struct page *page, const void *object)
244{
245 void *base;
246
a973e9dd 247 if (!object)
02cbc874
CL
248 return 1;
249
a973e9dd 250 base = page_address(page);
39b26464 251 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
252 (object - base) % s->size) {
253 return 0;
254 }
255
256 return 1;
257}
258
7656c72b
CL
259static inline void *get_freepointer(struct kmem_cache *s, void *object)
260{
261 return *(void **)(object + s->offset);
262}
263
264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265{
266 *(void **)(object + s->offset) = fp;
267}
268
269/* Loop over all objects in a slab */
224a88be
CL
270#define for_each_object(__p, __s, __addr, __objects) \
271 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
272 __p += (__s)->size)
273
274/* Scan freelist */
275#define for_each_free_object(__p, __s, __free) \
a973e9dd 276 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
277
278/* Determine object index from a given position */
279static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280{
281 return (p - addr) / s->size;
282}
283
d71f606f
MK
284static inline size_t slab_ksize(const struct kmem_cache *s)
285{
286#ifdef CONFIG_SLUB_DEBUG
287 /*
288 * Debugging requires use of the padding between object
289 * and whatever may come after it.
290 */
291 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
292 return s->objsize;
293
294#endif
295 /*
296 * If we have the need to store the freelist pointer
297 * back there or track user information then we can
298 * only use the space before that information.
299 */
300 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
301 return s->inuse;
302 /*
303 * Else we can use all the padding etc for the allocation
304 */
305 return s->size;
306}
307
ab9a0f19
LJ
308static inline int order_objects(int order, unsigned long size, int reserved)
309{
310 return ((PAGE_SIZE << order) - reserved) / size;
311}
312
834f3d11 313static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 314 unsigned long size, int reserved)
834f3d11
CL
315{
316 struct kmem_cache_order_objects x = {
ab9a0f19 317 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
318 };
319
320 return x;
321}
322
323static inline int oo_order(struct kmem_cache_order_objects x)
324{
210b5c06 325 return x.x >> OO_SHIFT;
834f3d11
CL
326}
327
328static inline int oo_objects(struct kmem_cache_order_objects x)
329{
210b5c06 330 return x.x & OO_MASK;
834f3d11
CL
331}
332
41ecc55b
CL
333#ifdef CONFIG_SLUB_DEBUG
334/*
335 * Debug settings:
336 */
f0630fff
CL
337#ifdef CONFIG_SLUB_DEBUG_ON
338static int slub_debug = DEBUG_DEFAULT_FLAGS;
339#else
41ecc55b 340static int slub_debug;
f0630fff 341#endif
41ecc55b
CL
342
343static char *slub_debug_slabs;
fa5ec8a1 344static int disable_higher_order_debug;
41ecc55b 345
81819f0f
CL
346/*
347 * Object debugging
348 */
349static void print_section(char *text, u8 *addr, unsigned int length)
350{
351 int i, offset;
352 int newline = 1;
353 char ascii[17];
354
355 ascii[16] = 0;
356
357 for (i = 0; i < length; i++) {
358 if (newline) {
24922684 359 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
360 newline = 0;
361 }
06428780 362 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
363 offset = i % 16;
364 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
365 if (offset == 15) {
06428780 366 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
367 newline = 1;
368 }
369 }
370 if (!newline) {
371 i %= 16;
372 while (i < 16) {
06428780 373 printk(KERN_CONT " ");
81819f0f
CL
374 ascii[i] = ' ';
375 i++;
376 }
06428780 377 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
378 }
379}
380
81819f0f
CL
381static struct track *get_track(struct kmem_cache *s, void *object,
382 enum track_item alloc)
383{
384 struct track *p;
385
386 if (s->offset)
387 p = object + s->offset + sizeof(void *);
388 else
389 p = object + s->inuse;
390
391 return p + alloc;
392}
393
394static void set_track(struct kmem_cache *s, void *object,
ce71e27c 395 enum track_item alloc, unsigned long addr)
81819f0f 396{
1a00df4a 397 struct track *p = get_track(s, object, alloc);
81819f0f 398
81819f0f
CL
399 if (addr) {
400 p->addr = addr;
401 p->cpu = smp_processor_id();
88e4ccf2 402 p->pid = current->pid;
81819f0f
CL
403 p->when = jiffies;
404 } else
405 memset(p, 0, sizeof(struct track));
406}
407
81819f0f
CL
408static void init_tracking(struct kmem_cache *s, void *object)
409{
24922684
CL
410 if (!(s->flags & SLAB_STORE_USER))
411 return;
412
ce71e27c
EGM
413 set_track(s, object, TRACK_FREE, 0UL);
414 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
415}
416
417static void print_track(const char *s, struct track *t)
418{
419 if (!t->addr)
420 return;
421
7daf705f 422 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 423 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
424}
425
426static void print_tracking(struct kmem_cache *s, void *object)
427{
428 if (!(s->flags & SLAB_STORE_USER))
429 return;
430
431 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
432 print_track("Freed", get_track(s, object, TRACK_FREE));
433}
434
435static void print_page_info(struct page *page)
436{
39b26464
CL
437 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
438 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
439
440}
441
442static void slab_bug(struct kmem_cache *s, char *fmt, ...)
443{
444 va_list args;
445 char buf[100];
446
447 va_start(args, fmt);
448 vsnprintf(buf, sizeof(buf), fmt, args);
449 va_end(args);
450 printk(KERN_ERR "========================================"
451 "=====================================\n");
452 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
453 printk(KERN_ERR "----------------------------------------"
454 "-------------------------------------\n\n");
81819f0f
CL
455}
456
24922684
CL
457static void slab_fix(struct kmem_cache *s, char *fmt, ...)
458{
459 va_list args;
460 char buf[100];
461
462 va_start(args, fmt);
463 vsnprintf(buf, sizeof(buf), fmt, args);
464 va_end(args);
465 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
466}
467
468static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
469{
470 unsigned int off; /* Offset of last byte */
a973e9dd 471 u8 *addr = page_address(page);
24922684
CL
472
473 print_tracking(s, p);
474
475 print_page_info(page);
476
477 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
478 p, p - addr, get_freepointer(s, p));
479
480 if (p > addr + 16)
481 print_section("Bytes b4", p - 16, 16);
482
0ebd652b 483 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
484
485 if (s->flags & SLAB_RED_ZONE)
486 print_section("Redzone", p + s->objsize,
487 s->inuse - s->objsize);
488
81819f0f
CL
489 if (s->offset)
490 off = s->offset + sizeof(void *);
491 else
492 off = s->inuse;
493
24922684 494 if (s->flags & SLAB_STORE_USER)
81819f0f 495 off += 2 * sizeof(struct track);
81819f0f
CL
496
497 if (off != s->size)
498 /* Beginning of the filler is the free pointer */
24922684
CL
499 print_section("Padding", p + off, s->size - off);
500
501 dump_stack();
81819f0f
CL
502}
503
504static void object_err(struct kmem_cache *s, struct page *page,
505 u8 *object, char *reason)
506{
3dc50637 507 slab_bug(s, "%s", reason);
24922684 508 print_trailer(s, page, object);
81819f0f
CL
509}
510
24922684 511static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
512{
513 va_list args;
514 char buf[100];
515
24922684
CL
516 va_start(args, fmt);
517 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 518 va_end(args);
3dc50637 519 slab_bug(s, "%s", buf);
24922684 520 print_page_info(page);
81819f0f
CL
521 dump_stack();
522}
523
f7cb1933 524static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
525{
526 u8 *p = object;
527
528 if (s->flags & __OBJECT_POISON) {
529 memset(p, POISON_FREE, s->objsize - 1);
06428780 530 p[s->objsize - 1] = POISON_END;
81819f0f
CL
531 }
532
533 if (s->flags & SLAB_RED_ZONE)
f7cb1933 534 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
535}
536
24922684 537static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
538{
539 while (bytes) {
540 if (*start != (u8)value)
24922684 541 return start;
81819f0f
CL
542 start++;
543 bytes--;
544 }
24922684
CL
545 return NULL;
546}
547
548static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
549 void *from, void *to)
550{
551 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
552 memset(from, data, to - from);
553}
554
555static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
556 u8 *object, char *what,
06428780 557 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
558{
559 u8 *fault;
560 u8 *end;
561
562 fault = check_bytes(start, value, bytes);
563 if (!fault)
564 return 1;
565
566 end = start + bytes;
567 while (end > fault && end[-1] == value)
568 end--;
569
570 slab_bug(s, "%s overwritten", what);
571 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
572 fault, end - 1, fault[0], value);
573 print_trailer(s, page, object);
574
575 restore_bytes(s, what, value, fault, end);
576 return 0;
81819f0f
CL
577}
578
81819f0f
CL
579/*
580 * Object layout:
581 *
582 * object address
583 * Bytes of the object to be managed.
584 * If the freepointer may overlay the object then the free
585 * pointer is the first word of the object.
672bba3a 586 *
81819f0f
CL
587 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
588 * 0xa5 (POISON_END)
589 *
590 * object + s->objsize
591 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
592 * Padding is extended by another word if Redzoning is enabled and
593 * objsize == inuse.
594 *
81819f0f
CL
595 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
596 * 0xcc (RED_ACTIVE) for objects in use.
597 *
598 * object + s->inuse
672bba3a
CL
599 * Meta data starts here.
600 *
81819f0f
CL
601 * A. Free pointer (if we cannot overwrite object on free)
602 * B. Tracking data for SLAB_STORE_USER
672bba3a 603 * C. Padding to reach required alignment boundary or at mininum
6446faa2 604 * one word if debugging is on to be able to detect writes
672bba3a
CL
605 * before the word boundary.
606 *
607 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
608 *
609 * object + s->size
672bba3a 610 * Nothing is used beyond s->size.
81819f0f 611 *
672bba3a
CL
612 * If slabcaches are merged then the objsize and inuse boundaries are mostly
613 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
614 * may be used with merged slabcaches.
615 */
616
81819f0f
CL
617static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
618{
619 unsigned long off = s->inuse; /* The end of info */
620
621 if (s->offset)
622 /* Freepointer is placed after the object. */
623 off += sizeof(void *);
624
625 if (s->flags & SLAB_STORE_USER)
626 /* We also have user information there */
627 off += 2 * sizeof(struct track);
628
629 if (s->size == off)
630 return 1;
631
24922684
CL
632 return check_bytes_and_report(s, page, p, "Object padding",
633 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
634}
635
39b26464 636/* Check the pad bytes at the end of a slab page */
81819f0f
CL
637static int slab_pad_check(struct kmem_cache *s, struct page *page)
638{
24922684
CL
639 u8 *start;
640 u8 *fault;
641 u8 *end;
642 int length;
643 int remainder;
81819f0f
CL
644
645 if (!(s->flags & SLAB_POISON))
646 return 1;
647
a973e9dd 648 start = page_address(page);
ab9a0f19 649 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
650 end = start + length;
651 remainder = length % s->size;
81819f0f
CL
652 if (!remainder)
653 return 1;
654
39b26464 655 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
656 if (!fault)
657 return 1;
658 while (end > fault && end[-1] == POISON_INUSE)
659 end--;
660
661 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 662 print_section("Padding", end - remainder, remainder);
24922684 663
8a3d271d 664 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 665 return 0;
81819f0f
CL
666}
667
668static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 669 void *object, u8 val)
81819f0f
CL
670{
671 u8 *p = object;
672 u8 *endobject = object + s->objsize;
673
674 if (s->flags & SLAB_RED_ZONE) {
24922684 675 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 676 endobject, val, s->inuse - s->objsize))
81819f0f 677 return 0;
81819f0f 678 } else {
3adbefee
IM
679 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
680 check_bytes_and_report(s, page, p, "Alignment padding",
681 endobject, POISON_INUSE, s->inuse - s->objsize);
682 }
81819f0f
CL
683 }
684
685 if (s->flags & SLAB_POISON) {
f7cb1933 686 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
687 (!check_bytes_and_report(s, page, p, "Poison", p,
688 POISON_FREE, s->objsize - 1) ||
689 !check_bytes_and_report(s, page, p, "Poison",
06428780 690 p + s->objsize - 1, POISON_END, 1)))
81819f0f 691 return 0;
81819f0f
CL
692 /*
693 * check_pad_bytes cleans up on its own.
694 */
695 check_pad_bytes(s, page, p);
696 }
697
f7cb1933 698 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
699 /*
700 * Object and freepointer overlap. Cannot check
701 * freepointer while object is allocated.
702 */
703 return 1;
704
705 /* Check free pointer validity */
706 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
707 object_err(s, page, p, "Freepointer corrupt");
708 /*
9f6c708e 709 * No choice but to zap it and thus lose the remainder
81819f0f 710 * of the free objects in this slab. May cause
672bba3a 711 * another error because the object count is now wrong.
81819f0f 712 */
a973e9dd 713 set_freepointer(s, p, NULL);
81819f0f
CL
714 return 0;
715 }
716 return 1;
717}
718
719static int check_slab(struct kmem_cache *s, struct page *page)
720{
39b26464
CL
721 int maxobj;
722
81819f0f
CL
723 VM_BUG_ON(!irqs_disabled());
724
725 if (!PageSlab(page)) {
24922684 726 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
727 return 0;
728 }
39b26464 729
ab9a0f19 730 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
731 if (page->objects > maxobj) {
732 slab_err(s, page, "objects %u > max %u",
733 s->name, page->objects, maxobj);
734 return 0;
735 }
736 if (page->inuse > page->objects) {
24922684 737 slab_err(s, page, "inuse %u > max %u",
39b26464 738 s->name, page->inuse, page->objects);
81819f0f
CL
739 return 0;
740 }
741 /* Slab_pad_check fixes things up after itself */
742 slab_pad_check(s, page);
743 return 1;
744}
745
746/*
672bba3a
CL
747 * Determine if a certain object on a page is on the freelist. Must hold the
748 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
749 */
750static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
751{
752 int nr = 0;
753 void *fp = page->freelist;
754 void *object = NULL;
224a88be 755 unsigned long max_objects;
81819f0f 756
39b26464 757 while (fp && nr <= page->objects) {
81819f0f
CL
758 if (fp == search)
759 return 1;
760 if (!check_valid_pointer(s, page, fp)) {
761 if (object) {
762 object_err(s, page, object,
763 "Freechain corrupt");
a973e9dd 764 set_freepointer(s, object, NULL);
81819f0f
CL
765 break;
766 } else {
24922684 767 slab_err(s, page, "Freepointer corrupt");
a973e9dd 768 page->freelist = NULL;
39b26464 769 page->inuse = page->objects;
24922684 770 slab_fix(s, "Freelist cleared");
81819f0f
CL
771 return 0;
772 }
773 break;
774 }
775 object = fp;
776 fp = get_freepointer(s, object);
777 nr++;
778 }
779
ab9a0f19 780 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
781 if (max_objects > MAX_OBJS_PER_PAGE)
782 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
783
784 if (page->objects != max_objects) {
785 slab_err(s, page, "Wrong number of objects. Found %d but "
786 "should be %d", page->objects, max_objects);
787 page->objects = max_objects;
788 slab_fix(s, "Number of objects adjusted.");
789 }
39b26464 790 if (page->inuse != page->objects - nr) {
70d71228 791 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
792 "counted were %d", page->inuse, page->objects - nr);
793 page->inuse = page->objects - nr;
24922684 794 slab_fix(s, "Object count adjusted.");
81819f0f
CL
795 }
796 return search == NULL;
797}
798
0121c619
CL
799static void trace(struct kmem_cache *s, struct page *page, void *object,
800 int alloc)
3ec09742
CL
801{
802 if (s->flags & SLAB_TRACE) {
803 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
804 s->name,
805 alloc ? "alloc" : "free",
806 object, page->inuse,
807 page->freelist);
808
809 if (!alloc)
810 print_section("Object", (void *)object, s->objsize);
811
812 dump_stack();
813 }
814}
815
c016b0bd
CL
816/*
817 * Hooks for other subsystems that check memory allocations. In a typical
818 * production configuration these hooks all should produce no code at all.
819 */
820static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
821{
c1d50836 822 flags &= gfp_allowed_mask;
c016b0bd
CL
823 lockdep_trace_alloc(flags);
824 might_sleep_if(flags & __GFP_WAIT);
825
826 return should_failslab(s->objsize, flags, s->flags);
827}
828
829static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
830{
c1d50836 831 flags &= gfp_allowed_mask;
b3d41885 832 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
833 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
834}
835
836static inline void slab_free_hook(struct kmem_cache *s, void *x)
837{
838 kmemleak_free_recursive(x, s->flags);
c016b0bd 839
d3f661d6
CL
840 /*
841 * Trouble is that we may no longer disable interupts in the fast path
842 * So in order to make the debug calls that expect irqs to be
843 * disabled we need to disable interrupts temporarily.
844 */
845#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
846 {
847 unsigned long flags;
848
849 local_irq_save(flags);
850 kmemcheck_slab_free(s, x, s->objsize);
851 debug_check_no_locks_freed(x, s->objsize);
852 if (!(s->flags & SLAB_DEBUG_OBJECTS))
853 debug_check_no_obj_freed(x, s->objsize);
854 local_irq_restore(flags);
855 }
856#endif
c016b0bd
CL
857}
858
643b1138 859/*
672bba3a 860 * Tracking of fully allocated slabs for debugging purposes.
643b1138 861 */
e95eed57 862static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 863{
643b1138
CL
864 spin_lock(&n->list_lock);
865 list_add(&page->lru, &n->full);
866 spin_unlock(&n->list_lock);
867}
868
869static void remove_full(struct kmem_cache *s, struct page *page)
870{
871 struct kmem_cache_node *n;
872
873 if (!(s->flags & SLAB_STORE_USER))
874 return;
875
876 n = get_node(s, page_to_nid(page));
877
878 spin_lock(&n->list_lock);
879 list_del(&page->lru);
880 spin_unlock(&n->list_lock);
881}
882
0f389ec6
CL
883/* Tracking of the number of slabs for debugging purposes */
884static inline unsigned long slabs_node(struct kmem_cache *s, int node)
885{
886 struct kmem_cache_node *n = get_node(s, node);
887
888 return atomic_long_read(&n->nr_slabs);
889}
890
26c02cf0
AB
891static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
892{
893 return atomic_long_read(&n->nr_slabs);
894}
895
205ab99d 896static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
897{
898 struct kmem_cache_node *n = get_node(s, node);
899
900 /*
901 * May be called early in order to allocate a slab for the
902 * kmem_cache_node structure. Solve the chicken-egg
903 * dilemma by deferring the increment of the count during
904 * bootstrap (see early_kmem_cache_node_alloc).
905 */
7340cc84 906 if (n) {
0f389ec6 907 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
908 atomic_long_add(objects, &n->total_objects);
909 }
0f389ec6 910}
205ab99d 911static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
912{
913 struct kmem_cache_node *n = get_node(s, node);
914
915 atomic_long_dec(&n->nr_slabs);
205ab99d 916 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
917}
918
919/* Object debug checks for alloc/free paths */
3ec09742
CL
920static void setup_object_debug(struct kmem_cache *s, struct page *page,
921 void *object)
922{
923 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
924 return;
925
f7cb1933 926 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
927 init_tracking(s, object);
928}
929
1537066c 930static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 931 void *object, unsigned long addr)
81819f0f
CL
932{
933 if (!check_slab(s, page))
934 goto bad;
935
d692ef6d 936 if (!on_freelist(s, page, object)) {
24922684 937 object_err(s, page, object, "Object already allocated");
70d71228 938 goto bad;
81819f0f
CL
939 }
940
941 if (!check_valid_pointer(s, page, object)) {
942 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 943 goto bad;
81819f0f
CL
944 }
945
f7cb1933 946 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 947 goto bad;
81819f0f 948
3ec09742
CL
949 /* Success perform special debug activities for allocs */
950 if (s->flags & SLAB_STORE_USER)
951 set_track(s, object, TRACK_ALLOC, addr);
952 trace(s, page, object, 1);
f7cb1933 953 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 954 return 1;
3ec09742 955
81819f0f
CL
956bad:
957 if (PageSlab(page)) {
958 /*
959 * If this is a slab page then lets do the best we can
960 * to avoid issues in the future. Marking all objects
672bba3a 961 * as used avoids touching the remaining objects.
81819f0f 962 */
24922684 963 slab_fix(s, "Marking all objects used");
39b26464 964 page->inuse = page->objects;
a973e9dd 965 page->freelist = NULL;
81819f0f
CL
966 }
967 return 0;
968}
969
1537066c
CL
970static noinline int free_debug_processing(struct kmem_cache *s,
971 struct page *page, void *object, unsigned long addr)
81819f0f
CL
972{
973 if (!check_slab(s, page))
974 goto fail;
975
976 if (!check_valid_pointer(s, page, object)) {
70d71228 977 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
978 goto fail;
979 }
980
981 if (on_freelist(s, page, object)) {
24922684 982 object_err(s, page, object, "Object already free");
81819f0f
CL
983 goto fail;
984 }
985
f7cb1933 986 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
81819f0f
CL
987 return 0;
988
989 if (unlikely(s != page->slab)) {
3adbefee 990 if (!PageSlab(page)) {
70d71228
CL
991 slab_err(s, page, "Attempt to free object(0x%p) "
992 "outside of slab", object);
3adbefee 993 } else if (!page->slab) {
81819f0f 994 printk(KERN_ERR
70d71228 995 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 996 object);
70d71228 997 dump_stack();
06428780 998 } else
24922684
CL
999 object_err(s, page, object,
1000 "page slab pointer corrupt.");
81819f0f
CL
1001 goto fail;
1002 }
3ec09742
CL
1003
1004 /* Special debug activities for freeing objects */
8a38082d 1005 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
1006 remove_full(s, page);
1007 if (s->flags & SLAB_STORE_USER)
1008 set_track(s, object, TRACK_FREE, addr);
1009 trace(s, page, object, 0);
f7cb1933 1010 init_object(s, object, SLUB_RED_INACTIVE);
81819f0f 1011 return 1;
3ec09742 1012
81819f0f 1013fail:
24922684 1014 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
1015 return 0;
1016}
1017
41ecc55b
CL
1018static int __init setup_slub_debug(char *str)
1019{
f0630fff
CL
1020 slub_debug = DEBUG_DEFAULT_FLAGS;
1021 if (*str++ != '=' || !*str)
1022 /*
1023 * No options specified. Switch on full debugging.
1024 */
1025 goto out;
1026
1027 if (*str == ',')
1028 /*
1029 * No options but restriction on slabs. This means full
1030 * debugging for slabs matching a pattern.
1031 */
1032 goto check_slabs;
1033
fa5ec8a1
DR
1034 if (tolower(*str) == 'o') {
1035 /*
1036 * Avoid enabling debugging on caches if its minimum order
1037 * would increase as a result.
1038 */
1039 disable_higher_order_debug = 1;
1040 goto out;
1041 }
1042
f0630fff
CL
1043 slub_debug = 0;
1044 if (*str == '-')
1045 /*
1046 * Switch off all debugging measures.
1047 */
1048 goto out;
1049
1050 /*
1051 * Determine which debug features should be switched on
1052 */
06428780 1053 for (; *str && *str != ','; str++) {
f0630fff
CL
1054 switch (tolower(*str)) {
1055 case 'f':
1056 slub_debug |= SLAB_DEBUG_FREE;
1057 break;
1058 case 'z':
1059 slub_debug |= SLAB_RED_ZONE;
1060 break;
1061 case 'p':
1062 slub_debug |= SLAB_POISON;
1063 break;
1064 case 'u':
1065 slub_debug |= SLAB_STORE_USER;
1066 break;
1067 case 't':
1068 slub_debug |= SLAB_TRACE;
1069 break;
4c13dd3b
DM
1070 case 'a':
1071 slub_debug |= SLAB_FAILSLAB;
1072 break;
f0630fff
CL
1073 default:
1074 printk(KERN_ERR "slub_debug option '%c' "
06428780 1075 "unknown. skipped\n", *str);
f0630fff 1076 }
41ecc55b
CL
1077 }
1078
f0630fff 1079check_slabs:
41ecc55b
CL
1080 if (*str == ',')
1081 slub_debug_slabs = str + 1;
f0630fff 1082out:
41ecc55b
CL
1083 return 1;
1084}
1085
1086__setup("slub_debug", setup_slub_debug);
1087
ba0268a8
CL
1088static unsigned long kmem_cache_flags(unsigned long objsize,
1089 unsigned long flags, const char *name,
51cc5068 1090 void (*ctor)(void *))
41ecc55b
CL
1091{
1092 /*
e153362a 1093 * Enable debugging if selected on the kernel commandline.
41ecc55b 1094 */
e153362a 1095 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1096 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1097 flags |= slub_debug;
ba0268a8
CL
1098
1099 return flags;
41ecc55b
CL
1100}
1101#else
3ec09742
CL
1102static inline void setup_object_debug(struct kmem_cache *s,
1103 struct page *page, void *object) {}
41ecc55b 1104
3ec09742 1105static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1106 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1107
3ec09742 1108static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1109 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1110
41ecc55b
CL
1111static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1112 { return 1; }
1113static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1114 void *object, u8 val) { return 1; }
3ec09742 1115static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1116static inline unsigned long kmem_cache_flags(unsigned long objsize,
1117 unsigned long flags, const char *name,
51cc5068 1118 void (*ctor)(void *))
ba0268a8
CL
1119{
1120 return flags;
1121}
41ecc55b 1122#define slub_debug 0
0f389ec6 1123
fdaa45e9
IM
1124#define disable_higher_order_debug 0
1125
0f389ec6
CL
1126static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1127 { return 0; }
26c02cf0
AB
1128static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1129 { return 0; }
205ab99d
CL
1130static inline void inc_slabs_node(struct kmem_cache *s, int node,
1131 int objects) {}
1132static inline void dec_slabs_node(struct kmem_cache *s, int node,
1133 int objects) {}
7d550c56
CL
1134
1135static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1136 { return 0; }
1137
1138static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1139 void *object) {}
1140
1141static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1142
ab4d5ed5 1143#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1144
81819f0f
CL
1145/*
1146 * Slab allocation and freeing
1147 */
65c3376a
CL
1148static inline struct page *alloc_slab_page(gfp_t flags, int node,
1149 struct kmem_cache_order_objects oo)
1150{
1151 int order = oo_order(oo);
1152
b1eeab67
VN
1153 flags |= __GFP_NOTRACK;
1154
2154a336 1155 if (node == NUMA_NO_NODE)
65c3376a
CL
1156 return alloc_pages(flags, order);
1157 else
6b65aaf3 1158 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1159}
1160
81819f0f
CL
1161static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1162{
06428780 1163 struct page *page;
834f3d11 1164 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1165 gfp_t alloc_gfp;
81819f0f 1166
b7a49f0d 1167 flags |= s->allocflags;
e12ba74d 1168
ba52270d
PE
1169 /*
1170 * Let the initial higher-order allocation fail under memory pressure
1171 * so we fall-back to the minimum order allocation.
1172 */
1173 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1174
1175 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1176 if (unlikely(!page)) {
1177 oo = s->min;
1178 /*
1179 * Allocation may have failed due to fragmentation.
1180 * Try a lower order alloc if possible
1181 */
1182 page = alloc_slab_page(flags, node, oo);
1183 if (!page)
1184 return NULL;
81819f0f 1185
84e554e6 1186 stat(s, ORDER_FALLBACK);
65c3376a 1187 }
5a896d9e
VN
1188
1189 if (kmemcheck_enabled
5086c389 1190 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1191 int pages = 1 << oo_order(oo);
1192
1193 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1194
1195 /*
1196 * Objects from caches that have a constructor don't get
1197 * cleared when they're allocated, so we need to do it here.
1198 */
1199 if (s->ctor)
1200 kmemcheck_mark_uninitialized_pages(page, pages);
1201 else
1202 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1203 }
1204
834f3d11 1205 page->objects = oo_objects(oo);
81819f0f
CL
1206 mod_zone_page_state(page_zone(page),
1207 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1208 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1209 1 << oo_order(oo));
81819f0f
CL
1210
1211 return page;
1212}
1213
1214static void setup_object(struct kmem_cache *s, struct page *page,
1215 void *object)
1216{
3ec09742 1217 setup_object_debug(s, page, object);
4f104934 1218 if (unlikely(s->ctor))
51cc5068 1219 s->ctor(object);
81819f0f
CL
1220}
1221
1222static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1223{
1224 struct page *page;
81819f0f 1225 void *start;
81819f0f
CL
1226 void *last;
1227 void *p;
1228
6cb06229 1229 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1230
6cb06229
CL
1231 page = allocate_slab(s,
1232 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1233 if (!page)
1234 goto out;
1235
205ab99d 1236 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1237 page->slab = s;
1238 page->flags |= 1 << PG_slab;
81819f0f
CL
1239
1240 start = page_address(page);
81819f0f
CL
1241
1242 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1243 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1244
1245 last = start;
224a88be 1246 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1247 setup_object(s, page, last);
1248 set_freepointer(s, last, p);
1249 last = p;
1250 }
1251 setup_object(s, page, last);
a973e9dd 1252 set_freepointer(s, last, NULL);
81819f0f
CL
1253
1254 page->freelist = start;
1255 page->inuse = 0;
1256out:
81819f0f
CL
1257 return page;
1258}
1259
1260static void __free_slab(struct kmem_cache *s, struct page *page)
1261{
834f3d11
CL
1262 int order = compound_order(page);
1263 int pages = 1 << order;
81819f0f 1264
af537b0a 1265 if (kmem_cache_debug(s)) {
81819f0f
CL
1266 void *p;
1267
1268 slab_pad_check(s, page);
224a88be
CL
1269 for_each_object(p, s, page_address(page),
1270 page->objects)
f7cb1933 1271 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1272 }
1273
b1eeab67 1274 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1275
81819f0f
CL
1276 mod_zone_page_state(page_zone(page),
1277 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1278 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1279 -pages);
81819f0f 1280
49bd5221
CL
1281 __ClearPageSlab(page);
1282 reset_page_mapcount(page);
1eb5ac64
NP
1283 if (current->reclaim_state)
1284 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1285 __free_pages(page, order);
81819f0f
CL
1286}
1287
da9a638c
LJ
1288#define need_reserve_slab_rcu \
1289 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1290
81819f0f
CL
1291static void rcu_free_slab(struct rcu_head *h)
1292{
1293 struct page *page;
1294
da9a638c
LJ
1295 if (need_reserve_slab_rcu)
1296 page = virt_to_head_page(h);
1297 else
1298 page = container_of((struct list_head *)h, struct page, lru);
1299
81819f0f
CL
1300 __free_slab(page->slab, page);
1301}
1302
1303static void free_slab(struct kmem_cache *s, struct page *page)
1304{
1305 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1306 struct rcu_head *head;
1307
1308 if (need_reserve_slab_rcu) {
1309 int order = compound_order(page);
1310 int offset = (PAGE_SIZE << order) - s->reserved;
1311
1312 VM_BUG_ON(s->reserved != sizeof(*head));
1313 head = page_address(page) + offset;
1314 } else {
1315 /*
1316 * RCU free overloads the RCU head over the LRU
1317 */
1318 head = (void *)&page->lru;
1319 }
81819f0f
CL
1320
1321 call_rcu(head, rcu_free_slab);
1322 } else
1323 __free_slab(s, page);
1324}
1325
1326static void discard_slab(struct kmem_cache *s, struct page *page)
1327{
205ab99d 1328 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1329 free_slab(s, page);
1330}
1331
1332/*
1333 * Per slab locking using the pagelock
1334 */
1335static __always_inline void slab_lock(struct page *page)
1336{
1337 bit_spin_lock(PG_locked, &page->flags);
1338}
1339
1340static __always_inline void slab_unlock(struct page *page)
1341{
a76d3546 1342 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1343}
1344
1345static __always_inline int slab_trylock(struct page *page)
1346{
1347 int rc = 1;
1348
1349 rc = bit_spin_trylock(PG_locked, &page->flags);
1350 return rc;
1351}
1352
1353/*
1354 * Management of partially allocated slabs
1355 */
7c2e132c
CL
1356static void add_partial(struct kmem_cache_node *n,
1357 struct page *page, int tail)
81819f0f 1358{
e95eed57
CL
1359 spin_lock(&n->list_lock);
1360 n->nr_partial++;
7c2e132c
CL
1361 if (tail)
1362 list_add_tail(&page->lru, &n->partial);
1363 else
1364 list_add(&page->lru, &n->partial);
81819f0f
CL
1365 spin_unlock(&n->list_lock);
1366}
1367
62e346a8
CL
1368static inline void __remove_partial(struct kmem_cache_node *n,
1369 struct page *page)
1370{
1371 list_del(&page->lru);
1372 n->nr_partial--;
1373}
1374
0121c619 1375static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1376{
1377 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1378
1379 spin_lock(&n->list_lock);
62e346a8 1380 __remove_partial(n, page);
81819f0f
CL
1381 spin_unlock(&n->list_lock);
1382}
1383
1384/*
672bba3a 1385 * Lock slab and remove from the partial list.
81819f0f 1386 *
672bba3a 1387 * Must hold list_lock.
81819f0f 1388 */
0121c619
CL
1389static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1390 struct page *page)
81819f0f
CL
1391{
1392 if (slab_trylock(page)) {
62e346a8 1393 __remove_partial(n, page);
8a38082d 1394 __SetPageSlubFrozen(page);
81819f0f
CL
1395 return 1;
1396 }
1397 return 0;
1398}
1399
1400/*
672bba3a 1401 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1402 */
1403static struct page *get_partial_node(struct kmem_cache_node *n)
1404{
1405 struct page *page;
1406
1407 /*
1408 * Racy check. If we mistakenly see no partial slabs then we
1409 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1410 * partial slab and there is none available then get_partials()
1411 * will return NULL.
81819f0f
CL
1412 */
1413 if (!n || !n->nr_partial)
1414 return NULL;
1415
1416 spin_lock(&n->list_lock);
1417 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1418 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1419 goto out;
1420 page = NULL;
1421out:
1422 spin_unlock(&n->list_lock);
1423 return page;
1424}
1425
1426/*
672bba3a 1427 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1428 */
1429static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1430{
1431#ifdef CONFIG_NUMA
1432 struct zonelist *zonelist;
dd1a239f 1433 struct zoneref *z;
54a6eb5c
MG
1434 struct zone *zone;
1435 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1436 struct page *page;
1437
1438 /*
672bba3a
CL
1439 * The defrag ratio allows a configuration of the tradeoffs between
1440 * inter node defragmentation and node local allocations. A lower
1441 * defrag_ratio increases the tendency to do local allocations
1442 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1443 *
672bba3a
CL
1444 * If the defrag_ratio is set to 0 then kmalloc() always
1445 * returns node local objects. If the ratio is higher then kmalloc()
1446 * may return off node objects because partial slabs are obtained
1447 * from other nodes and filled up.
81819f0f 1448 *
6446faa2 1449 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1450 * defrag_ratio = 1000) then every (well almost) allocation will
1451 * first attempt to defrag slab caches on other nodes. This means
1452 * scanning over all nodes to look for partial slabs which may be
1453 * expensive if we do it every time we are trying to find a slab
1454 * with available objects.
81819f0f 1455 */
9824601e
CL
1456 if (!s->remote_node_defrag_ratio ||
1457 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1458 return NULL;
1459
c0ff7453 1460 get_mems_allowed();
0e88460d 1461 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1462 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1463 struct kmem_cache_node *n;
1464
54a6eb5c 1465 n = get_node(s, zone_to_nid(zone));
81819f0f 1466
54a6eb5c 1467 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1468 n->nr_partial > s->min_partial) {
81819f0f 1469 page = get_partial_node(n);
c0ff7453
MX
1470 if (page) {
1471 put_mems_allowed();
81819f0f 1472 return page;
c0ff7453 1473 }
81819f0f
CL
1474 }
1475 }
c0ff7453 1476 put_mems_allowed();
81819f0f
CL
1477#endif
1478 return NULL;
1479}
1480
1481/*
1482 * Get a partial page, lock it and return it.
1483 */
1484static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1485{
1486 struct page *page;
2154a336 1487 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1488
1489 page = get_partial_node(get_node(s, searchnode));
bc6488e9 1490 if (page || node != -1)
81819f0f
CL
1491 return page;
1492
1493 return get_any_partial(s, flags);
1494}
1495
1496/*
1497 * Move a page back to the lists.
1498 *
1499 * Must be called with the slab lock held.
1500 *
1501 * On exit the slab lock will have been dropped.
1502 */
7c2e132c 1503static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
3478973d 1504 __releases(bitlock)
81819f0f 1505{
e95eed57
CL
1506 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1507
8a38082d 1508 __ClearPageSlubFrozen(page);
81819f0f 1509 if (page->inuse) {
e95eed57 1510
a973e9dd 1511 if (page->freelist) {
7c2e132c 1512 add_partial(n, page, tail);
84e554e6 1513 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1514 } else {
84e554e6 1515 stat(s, DEACTIVATE_FULL);
af537b0a 1516 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1517 add_full(n, page);
1518 }
81819f0f
CL
1519 slab_unlock(page);
1520 } else {
84e554e6 1521 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1522 if (n->nr_partial < s->min_partial) {
e95eed57 1523 /*
672bba3a
CL
1524 * Adding an empty slab to the partial slabs in order
1525 * to avoid page allocator overhead. This slab needs
1526 * to come after the other slabs with objects in
6446faa2
CL
1527 * so that the others get filled first. That way the
1528 * size of the partial list stays small.
1529 *
0121c619
CL
1530 * kmem_cache_shrink can reclaim any empty slabs from
1531 * the partial list.
e95eed57 1532 */
7c2e132c 1533 add_partial(n, page, 1);
e95eed57
CL
1534 slab_unlock(page);
1535 } else {
1536 slab_unlock(page);
84e554e6 1537 stat(s, FREE_SLAB);
e95eed57
CL
1538 discard_slab(s, page);
1539 }
81819f0f
CL
1540 }
1541}
1542
8a5ec0ba
CL
1543#ifdef CONFIG_CMPXCHG_LOCAL
1544#ifdef CONFIG_PREEMPT
1545/*
1546 * Calculate the next globally unique transaction for disambiguiation
1547 * during cmpxchg. The transactions start with the cpu number and are then
1548 * incremented by CONFIG_NR_CPUS.
1549 */
1550#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1551#else
1552/*
1553 * No preemption supported therefore also no need to check for
1554 * different cpus.
1555 */
1556#define TID_STEP 1
1557#endif
1558
1559static inline unsigned long next_tid(unsigned long tid)
1560{
1561 return tid + TID_STEP;
1562}
1563
1564static inline unsigned int tid_to_cpu(unsigned long tid)
1565{
1566 return tid % TID_STEP;
1567}
1568
1569static inline unsigned long tid_to_event(unsigned long tid)
1570{
1571 return tid / TID_STEP;
1572}
1573
1574static inline unsigned int init_tid(int cpu)
1575{
1576 return cpu;
1577}
1578
1579static inline void note_cmpxchg_failure(const char *n,
1580 const struct kmem_cache *s, unsigned long tid)
1581{
1582#ifdef SLUB_DEBUG_CMPXCHG
1583 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1584
1585 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1586
1587#ifdef CONFIG_PREEMPT
1588 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1589 printk("due to cpu change %d -> %d\n",
1590 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1591 else
1592#endif
1593 if (tid_to_event(tid) != tid_to_event(actual_tid))
1594 printk("due to cpu running other code. Event %ld->%ld\n",
1595 tid_to_event(tid), tid_to_event(actual_tid));
1596 else
1597 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1598 actual_tid, tid, next_tid(tid));
1599#endif
1600}
1601
1602#endif
1603
1604void init_kmem_cache_cpus(struct kmem_cache *s)
1605{
1606#if defined(CONFIG_CMPXCHG_LOCAL) && defined(CONFIG_PREEMPT)
1607 int cpu;
1608
1609 for_each_possible_cpu(cpu)
1610 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1611#endif
1612
1613}
81819f0f
CL
1614/*
1615 * Remove the cpu slab
1616 */
dfb4f096 1617static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3478973d 1618 __releases(bitlock)
81819f0f 1619{
dfb4f096 1620 struct page *page = c->page;
7c2e132c 1621 int tail = 1;
8ff12cfc 1622
b773ad73 1623 if (page->freelist)
84e554e6 1624 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1625 /*
6446faa2 1626 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1627 * because both freelists are empty. So this is unlikely
1628 * to occur.
1629 */
a973e9dd 1630 while (unlikely(c->freelist)) {
894b8788
CL
1631 void **object;
1632
7c2e132c
CL
1633 tail = 0; /* Hot objects. Put the slab first */
1634
894b8788 1635 /* Retrieve object from cpu_freelist */
dfb4f096 1636 object = c->freelist;
ff12059e 1637 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1638
1639 /* And put onto the regular freelist */
ff12059e 1640 set_freepointer(s, object, page->freelist);
894b8788
CL
1641 page->freelist = object;
1642 page->inuse--;
1643 }
dfb4f096 1644 c->page = NULL;
8a5ec0ba
CL
1645#ifdef CONFIG_CMPXCHG_LOCAL
1646 c->tid = next_tid(c->tid);
1647#endif
7c2e132c 1648 unfreeze_slab(s, page, tail);
81819f0f
CL
1649}
1650
dfb4f096 1651static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1652{
84e554e6 1653 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1654 slab_lock(c->page);
1655 deactivate_slab(s, c);
81819f0f
CL
1656}
1657
1658/*
1659 * Flush cpu slab.
6446faa2 1660 *
81819f0f
CL
1661 * Called from IPI handler with interrupts disabled.
1662 */
0c710013 1663static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1664{
9dfc6e68 1665 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1666
dfb4f096
CL
1667 if (likely(c && c->page))
1668 flush_slab(s, c);
81819f0f
CL
1669}
1670
1671static void flush_cpu_slab(void *d)
1672{
1673 struct kmem_cache *s = d;
81819f0f 1674
dfb4f096 1675 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1676}
1677
1678static void flush_all(struct kmem_cache *s)
1679{
15c8b6c1 1680 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1681}
1682
dfb4f096
CL
1683/*
1684 * Check if the objects in a per cpu structure fit numa
1685 * locality expectations.
1686 */
1687static inline int node_match(struct kmem_cache_cpu *c, int node)
1688{
1689#ifdef CONFIG_NUMA
2154a336 1690 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1691 return 0;
1692#endif
1693 return 1;
1694}
1695
781b2ba6
PE
1696static int count_free(struct page *page)
1697{
1698 return page->objects - page->inuse;
1699}
1700
1701static unsigned long count_partial(struct kmem_cache_node *n,
1702 int (*get_count)(struct page *))
1703{
1704 unsigned long flags;
1705 unsigned long x = 0;
1706 struct page *page;
1707
1708 spin_lock_irqsave(&n->list_lock, flags);
1709 list_for_each_entry(page, &n->partial, lru)
1710 x += get_count(page);
1711 spin_unlock_irqrestore(&n->list_lock, flags);
1712 return x;
1713}
1714
26c02cf0
AB
1715static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1716{
1717#ifdef CONFIG_SLUB_DEBUG
1718 return atomic_long_read(&n->total_objects);
1719#else
1720 return 0;
1721#endif
1722}
1723
781b2ba6
PE
1724static noinline void
1725slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1726{
1727 int node;
1728
1729 printk(KERN_WARNING
1730 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1731 nid, gfpflags);
1732 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1733 "default order: %d, min order: %d\n", s->name, s->objsize,
1734 s->size, oo_order(s->oo), oo_order(s->min));
1735
fa5ec8a1
DR
1736 if (oo_order(s->min) > get_order(s->objsize))
1737 printk(KERN_WARNING " %s debugging increased min order, use "
1738 "slub_debug=O to disable.\n", s->name);
1739
781b2ba6
PE
1740 for_each_online_node(node) {
1741 struct kmem_cache_node *n = get_node(s, node);
1742 unsigned long nr_slabs;
1743 unsigned long nr_objs;
1744 unsigned long nr_free;
1745
1746 if (!n)
1747 continue;
1748
26c02cf0
AB
1749 nr_free = count_partial(n, count_free);
1750 nr_slabs = node_nr_slabs(n);
1751 nr_objs = node_nr_objs(n);
781b2ba6
PE
1752
1753 printk(KERN_WARNING
1754 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1755 node, nr_slabs, nr_objs, nr_free);
1756 }
1757}
1758
81819f0f 1759/*
894b8788
CL
1760 * Slow path. The lockless freelist is empty or we need to perform
1761 * debugging duties.
1762 *
1763 * Interrupts are disabled.
81819f0f 1764 *
894b8788
CL
1765 * Processing is still very fast if new objects have been freed to the
1766 * regular freelist. In that case we simply take over the regular freelist
1767 * as the lockless freelist and zap the regular freelist.
81819f0f 1768 *
894b8788
CL
1769 * If that is not working then we fall back to the partial lists. We take the
1770 * first element of the freelist as the object to allocate now and move the
1771 * rest of the freelist to the lockless freelist.
81819f0f 1772 *
894b8788 1773 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1774 * we need to allocate a new slab. This is the slowest path since it involves
1775 * a call to the page allocator and the setup of a new slab.
81819f0f 1776 */
ce71e27c
EGM
1777static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1778 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1779{
81819f0f 1780 void **object;
dfb4f096 1781 struct page *new;
8a5ec0ba
CL
1782#ifdef CONFIG_CMPXCHG_LOCAL
1783 unsigned long flags;
1784
1785 local_irq_save(flags);
1786#ifdef CONFIG_PREEMPT
1787 /*
1788 * We may have been preempted and rescheduled on a different
1789 * cpu before disabling interrupts. Need to reload cpu area
1790 * pointer.
1791 */
1792 c = this_cpu_ptr(s->cpu_slab);
1793#endif
1794#endif
81819f0f 1795
e72e9c23
LT
1796 /* We handle __GFP_ZERO in the caller */
1797 gfpflags &= ~__GFP_ZERO;
1798
dfb4f096 1799 if (!c->page)
81819f0f
CL
1800 goto new_slab;
1801
dfb4f096
CL
1802 slab_lock(c->page);
1803 if (unlikely(!node_match(c, node)))
81819f0f 1804 goto another_slab;
6446faa2 1805
84e554e6 1806 stat(s, ALLOC_REFILL);
6446faa2 1807
894b8788 1808load_freelist:
dfb4f096 1809 object = c->page->freelist;
a973e9dd 1810 if (unlikely(!object))
81819f0f 1811 goto another_slab;
af537b0a 1812 if (kmem_cache_debug(s))
81819f0f
CL
1813 goto debug;
1814
ff12059e 1815 c->freelist = get_freepointer(s, object);
39b26464 1816 c->page->inuse = c->page->objects;
a973e9dd 1817 c->page->freelist = NULL;
dfb4f096 1818 c->node = page_to_nid(c->page);
1f84260c 1819unlock_out:
dfb4f096 1820 slab_unlock(c->page);
8a5ec0ba
CL
1821#ifdef CONFIG_CMPXCHG_LOCAL
1822 c->tid = next_tid(c->tid);
1823 local_irq_restore(flags);
1824#endif
84e554e6 1825 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1826 return object;
1827
1828another_slab:
dfb4f096 1829 deactivate_slab(s, c);
81819f0f
CL
1830
1831new_slab:
dfb4f096
CL
1832 new = get_partial(s, gfpflags, node);
1833 if (new) {
1834 c->page = new;
84e554e6 1835 stat(s, ALLOC_FROM_PARTIAL);
894b8788 1836 goto load_freelist;
81819f0f
CL
1837 }
1838
c1d50836 1839 gfpflags &= gfp_allowed_mask;
b811c202
CL
1840 if (gfpflags & __GFP_WAIT)
1841 local_irq_enable();
1842
dfb4f096 1843 new = new_slab(s, gfpflags, node);
b811c202
CL
1844
1845 if (gfpflags & __GFP_WAIT)
1846 local_irq_disable();
1847
dfb4f096 1848 if (new) {
9dfc6e68 1849 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1850 stat(s, ALLOC_SLAB);
05aa3450 1851 if (c->page)
dfb4f096 1852 flush_slab(s, c);
dfb4f096 1853 slab_lock(new);
8a38082d 1854 __SetPageSlubFrozen(new);
dfb4f096 1855 c->page = new;
4b6f0750 1856 goto load_freelist;
81819f0f 1857 }
95f85989
PE
1858 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1859 slab_out_of_memory(s, gfpflags, node);
2fd66c51
CL
1860#ifdef CONFIG_CMPXCHG_LOCAL
1861 local_irq_restore(flags);
1862#endif
71c7a06f 1863 return NULL;
81819f0f 1864debug:
dfb4f096 1865 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1866 goto another_slab;
894b8788 1867
dfb4f096 1868 c->page->inuse++;
ff12059e 1869 c->page->freelist = get_freepointer(s, object);
15b7c514 1870 c->node = NUMA_NO_NODE;
1f84260c 1871 goto unlock_out;
894b8788
CL
1872}
1873
1874/*
1875 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1876 * have the fastpath folded into their functions. So no function call
1877 * overhead for requests that can be satisfied on the fastpath.
1878 *
1879 * The fastpath works by first checking if the lockless freelist can be used.
1880 * If not then __slab_alloc is called for slow processing.
1881 *
1882 * Otherwise we can simply pick the next object from the lockless free list.
1883 */
06428780 1884static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1885 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1886{
894b8788 1887 void **object;
dfb4f096 1888 struct kmem_cache_cpu *c;
8a5ec0ba
CL
1889#ifdef CONFIG_CMPXCHG_LOCAL
1890 unsigned long tid;
1891#else
1f84260c 1892 unsigned long flags;
8a5ec0ba 1893#endif
1f84260c 1894
c016b0bd 1895 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1896 return NULL;
1f84260c 1897
8a5ec0ba 1898#ifndef CONFIG_CMPXCHG_LOCAL
894b8788 1899 local_irq_save(flags);
8a5ec0ba
CL
1900#else
1901redo:
1902#endif
1903
1904 /*
1905 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1906 * enabled. We may switch back and forth between cpus while
1907 * reading from one cpu area. That does not matter as long
1908 * as we end up on the original cpu again when doing the cmpxchg.
1909 */
9dfc6e68 1910 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba
CL
1911
1912#ifdef CONFIG_CMPXCHG_LOCAL
1913 /*
1914 * The transaction ids are globally unique per cpu and per operation on
1915 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1916 * occurs on the right processor and that there was no operation on the
1917 * linked list in between.
1918 */
1919 tid = c->tid;
1920 barrier();
1921#endif
1922
9dfc6e68 1923 object = c->freelist;
9dfc6e68 1924 if (unlikely(!object || !node_match(c, node)))
894b8788 1925
dfb4f096 1926 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1927
1928 else {
8a5ec0ba
CL
1929#ifdef CONFIG_CMPXCHG_LOCAL
1930 /*
1931 * The cmpxchg will only match if there was no additonal
1932 * operation and if we are on the right processor.
1933 *
1934 * The cmpxchg does the following atomically (without lock semantics!)
1935 * 1. Relocate first pointer to the current per cpu area.
1936 * 2. Verify that tid and freelist have not been changed
1937 * 3. If they were not changed replace tid and freelist
1938 *
1939 * Since this is without lock semantics the protection is only against
1940 * code executing on this cpu *not* from access by other cpus.
1941 */
1942 if (unlikely(!this_cpu_cmpxchg_double(
1943 s->cpu_slab->freelist, s->cpu_slab->tid,
1944 object, tid,
1945 get_freepointer(s, object), next_tid(tid)))) {
1946
1947 note_cmpxchg_failure("slab_alloc", s, tid);
1948 goto redo;
1949 }
1950#else
ff12059e 1951 c->freelist = get_freepointer(s, object);
8a5ec0ba 1952#endif
84e554e6 1953 stat(s, ALLOC_FASTPATH);
894b8788 1954 }
8a5ec0ba
CL
1955
1956#ifndef CONFIG_CMPXCHG_LOCAL
894b8788 1957 local_irq_restore(flags);
8a5ec0ba 1958#endif
d07dbea4 1959
74e2134f 1960 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 1961 memset(object, 0, s->objsize);
d07dbea4 1962
c016b0bd 1963 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 1964
894b8788 1965 return object;
81819f0f
CL
1966}
1967
1968void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1969{
2154a336 1970 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 1971
ca2b84cb 1972 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1973
1974 return ret;
81819f0f
CL
1975}
1976EXPORT_SYMBOL(kmem_cache_alloc);
1977
0f24f128 1978#ifdef CONFIG_TRACING
4a92379b
RK
1979void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1980{
1981 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1982 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
1983 return ret;
1984}
1985EXPORT_SYMBOL(kmem_cache_alloc_trace);
1986
1987void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 1988{
4a92379b
RK
1989 void *ret = kmalloc_order(size, flags, order);
1990 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1991 return ret;
5b882be4 1992}
4a92379b 1993EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
1994#endif
1995
81819f0f
CL
1996#ifdef CONFIG_NUMA
1997void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1998{
5b882be4
EGM
1999 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2000
ca2b84cb
EGM
2001 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2002 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2003
2004 return ret;
81819f0f
CL
2005}
2006EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2007
0f24f128 2008#ifdef CONFIG_TRACING
4a92379b 2009void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2010 gfp_t gfpflags,
4a92379b 2011 int node, size_t size)
5b882be4 2012{
4a92379b
RK
2013 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2014
2015 trace_kmalloc_node(_RET_IP_, ret,
2016 size, s->size, gfpflags, node);
2017 return ret;
5b882be4 2018}
4a92379b 2019EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2020#endif
5d1f57e4 2021#endif
5b882be4 2022
81819f0f 2023/*
894b8788
CL
2024 * Slow patch handling. This may still be called frequently since objects
2025 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2026 *
894b8788
CL
2027 * So we still attempt to reduce cache line usage. Just take the slab
2028 * lock and free the item. If there is no additional partial page
2029 * handling required then we can return immediately.
81819f0f 2030 */
894b8788 2031static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2032 void *x, unsigned long addr)
81819f0f
CL
2033{
2034 void *prior;
2035 void **object = (void *)x;
8a5ec0ba
CL
2036#ifdef CONFIG_CMPXCHG_LOCAL
2037 unsigned long flags;
81819f0f 2038
8a5ec0ba
CL
2039 local_irq_save(flags);
2040#endif
81819f0f 2041 slab_lock(page);
8a5ec0ba 2042 stat(s, FREE_SLOWPATH);
81819f0f 2043
af537b0a 2044 if (kmem_cache_debug(s))
81819f0f 2045 goto debug;
6446faa2 2046
81819f0f 2047checks_ok:
ff12059e
CL
2048 prior = page->freelist;
2049 set_freepointer(s, object, prior);
81819f0f
CL
2050 page->freelist = object;
2051 page->inuse--;
2052
8a38082d 2053 if (unlikely(PageSlubFrozen(page))) {
84e554e6 2054 stat(s, FREE_FROZEN);
81819f0f 2055 goto out_unlock;
8ff12cfc 2056 }
81819f0f
CL
2057
2058 if (unlikely(!page->inuse))
2059 goto slab_empty;
2060
2061 /*
6446faa2 2062 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
2063 * then add it.
2064 */
a973e9dd 2065 if (unlikely(!prior)) {
7c2e132c 2066 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 2067 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2068 }
81819f0f
CL
2069
2070out_unlock:
2071 slab_unlock(page);
8a5ec0ba
CL
2072#ifdef CONFIG_CMPXCHG_LOCAL
2073 local_irq_restore(flags);
2074#endif
81819f0f
CL
2075 return;
2076
2077slab_empty:
a973e9dd 2078 if (prior) {
81819f0f 2079 /*
672bba3a 2080 * Slab still on the partial list.
81819f0f
CL
2081 */
2082 remove_partial(s, page);
84e554e6 2083 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 2084 }
81819f0f 2085 slab_unlock(page);
8a5ec0ba
CL
2086#ifdef CONFIG_CMPXCHG_LOCAL
2087 local_irq_restore(flags);
2088#endif
84e554e6 2089 stat(s, FREE_SLAB);
81819f0f 2090 discard_slab(s, page);
81819f0f
CL
2091 return;
2092
2093debug:
3ec09742 2094 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 2095 goto out_unlock;
77c5e2d0 2096 goto checks_ok;
81819f0f
CL
2097}
2098
894b8788
CL
2099/*
2100 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2101 * can perform fastpath freeing without additional function calls.
2102 *
2103 * The fastpath is only possible if we are freeing to the current cpu slab
2104 * of this processor. This typically the case if we have just allocated
2105 * the item before.
2106 *
2107 * If fastpath is not possible then fall back to __slab_free where we deal
2108 * with all sorts of special processing.
2109 */
06428780 2110static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2111 struct page *page, void *x, unsigned long addr)
894b8788
CL
2112{
2113 void **object = (void *)x;
dfb4f096 2114 struct kmem_cache_cpu *c;
8a5ec0ba
CL
2115#ifdef CONFIG_CMPXCHG_LOCAL
2116 unsigned long tid;
2117#else
1f84260c 2118 unsigned long flags;
8a5ec0ba 2119#endif
1f84260c 2120
c016b0bd
CL
2121 slab_free_hook(s, x);
2122
8a5ec0ba 2123#ifndef CONFIG_CMPXCHG_LOCAL
894b8788 2124 local_irq_save(flags);
8a5ec0ba 2125
a24c5a0e 2126#else
8a5ec0ba 2127redo:
a24c5a0e
CL
2128#endif
2129
8a5ec0ba
CL
2130 /*
2131 * Determine the currently cpus per cpu slab.
2132 * The cpu may change afterward. However that does not matter since
2133 * data is retrieved via this pointer. If we are on the same cpu
2134 * during the cmpxchg then the free will succedd.
2135 */
9dfc6e68 2136 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2137
8a5ec0ba
CL
2138#ifdef CONFIG_CMPXCHG_LOCAL
2139 tid = c->tid;
2140 barrier();
2141#endif
c016b0bd 2142
15b7c514 2143 if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
ff12059e 2144 set_freepointer(s, object, c->freelist);
8a5ec0ba
CL
2145
2146#ifdef CONFIG_CMPXCHG_LOCAL
2147 if (unlikely(!this_cpu_cmpxchg_double(
2148 s->cpu_slab->freelist, s->cpu_slab->tid,
2149 c->freelist, tid,
2150 object, next_tid(tid)))) {
2151
2152 note_cmpxchg_failure("slab_free", s, tid);
2153 goto redo;
2154 }
2155#else
dfb4f096 2156 c->freelist = object;
8a5ec0ba 2157#endif
84e554e6 2158 stat(s, FREE_FASTPATH);
894b8788 2159 } else
ff12059e 2160 __slab_free(s, page, x, addr);
894b8788 2161
8a5ec0ba 2162#ifndef CONFIG_CMPXCHG_LOCAL
894b8788 2163 local_irq_restore(flags);
8a5ec0ba 2164#endif
894b8788
CL
2165}
2166
81819f0f
CL
2167void kmem_cache_free(struct kmem_cache *s, void *x)
2168{
77c5e2d0 2169 struct page *page;
81819f0f 2170
b49af68f 2171 page = virt_to_head_page(x);
81819f0f 2172
ce71e27c 2173 slab_free(s, page, x, _RET_IP_);
5b882be4 2174
ca2b84cb 2175 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2176}
2177EXPORT_SYMBOL(kmem_cache_free);
2178
81819f0f 2179/*
672bba3a
CL
2180 * Object placement in a slab is made very easy because we always start at
2181 * offset 0. If we tune the size of the object to the alignment then we can
2182 * get the required alignment by putting one properly sized object after
2183 * another.
81819f0f
CL
2184 *
2185 * Notice that the allocation order determines the sizes of the per cpu
2186 * caches. Each processor has always one slab available for allocations.
2187 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2188 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2189 * locking overhead.
81819f0f
CL
2190 */
2191
2192/*
2193 * Mininum / Maximum order of slab pages. This influences locking overhead
2194 * and slab fragmentation. A higher order reduces the number of partial slabs
2195 * and increases the number of allocations possible without having to
2196 * take the list_lock.
2197 */
2198static int slub_min_order;
114e9e89 2199static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2200static int slub_min_objects;
81819f0f
CL
2201
2202/*
2203 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2204 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2205 */
2206static int slub_nomerge;
2207
81819f0f
CL
2208/*
2209 * Calculate the order of allocation given an slab object size.
2210 *
672bba3a
CL
2211 * The order of allocation has significant impact on performance and other
2212 * system components. Generally order 0 allocations should be preferred since
2213 * order 0 does not cause fragmentation in the page allocator. Larger objects
2214 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2215 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2216 * would be wasted.
2217 *
2218 * In order to reach satisfactory performance we must ensure that a minimum
2219 * number of objects is in one slab. Otherwise we may generate too much
2220 * activity on the partial lists which requires taking the list_lock. This is
2221 * less a concern for large slabs though which are rarely used.
81819f0f 2222 *
672bba3a
CL
2223 * slub_max_order specifies the order where we begin to stop considering the
2224 * number of objects in a slab as critical. If we reach slub_max_order then
2225 * we try to keep the page order as low as possible. So we accept more waste
2226 * of space in favor of a small page order.
81819f0f 2227 *
672bba3a
CL
2228 * Higher order allocations also allow the placement of more objects in a
2229 * slab and thereby reduce object handling overhead. If the user has
2230 * requested a higher mininum order then we start with that one instead of
2231 * the smallest order which will fit the object.
81819f0f 2232 */
5e6d444e 2233static inline int slab_order(int size, int min_objects,
ab9a0f19 2234 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2235{
2236 int order;
2237 int rem;
6300ea75 2238 int min_order = slub_min_order;
81819f0f 2239
ab9a0f19 2240 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2241 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2242
6300ea75 2243 for (order = max(min_order,
5e6d444e
CL
2244 fls(min_objects * size - 1) - PAGE_SHIFT);
2245 order <= max_order; order++) {
81819f0f 2246
5e6d444e 2247 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2248
ab9a0f19 2249 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2250 continue;
2251
ab9a0f19 2252 rem = (slab_size - reserved) % size;
81819f0f 2253
5e6d444e 2254 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2255 break;
2256
2257 }
672bba3a 2258
81819f0f
CL
2259 return order;
2260}
2261
ab9a0f19 2262static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2263{
2264 int order;
2265 int min_objects;
2266 int fraction;
e8120ff1 2267 int max_objects;
5e6d444e
CL
2268
2269 /*
2270 * Attempt to find best configuration for a slab. This
2271 * works by first attempting to generate a layout with
2272 * the best configuration and backing off gradually.
2273 *
2274 * First we reduce the acceptable waste in a slab. Then
2275 * we reduce the minimum objects required in a slab.
2276 */
2277 min_objects = slub_min_objects;
9b2cd506
CL
2278 if (!min_objects)
2279 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2280 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2281 min_objects = min(min_objects, max_objects);
2282
5e6d444e 2283 while (min_objects > 1) {
c124f5b5 2284 fraction = 16;
5e6d444e
CL
2285 while (fraction >= 4) {
2286 order = slab_order(size, min_objects,
ab9a0f19 2287 slub_max_order, fraction, reserved);
5e6d444e
CL
2288 if (order <= slub_max_order)
2289 return order;
2290 fraction /= 2;
2291 }
5086c389 2292 min_objects--;
5e6d444e
CL
2293 }
2294
2295 /*
2296 * We were unable to place multiple objects in a slab. Now
2297 * lets see if we can place a single object there.
2298 */
ab9a0f19 2299 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2300 if (order <= slub_max_order)
2301 return order;
2302
2303 /*
2304 * Doh this slab cannot be placed using slub_max_order.
2305 */
ab9a0f19 2306 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2307 if (order < MAX_ORDER)
5e6d444e
CL
2308 return order;
2309 return -ENOSYS;
2310}
2311
81819f0f 2312/*
672bba3a 2313 * Figure out what the alignment of the objects will be.
81819f0f
CL
2314 */
2315static unsigned long calculate_alignment(unsigned long flags,
2316 unsigned long align, unsigned long size)
2317{
2318 /*
6446faa2
CL
2319 * If the user wants hardware cache aligned objects then follow that
2320 * suggestion if the object is sufficiently large.
81819f0f 2321 *
6446faa2
CL
2322 * The hardware cache alignment cannot override the specified
2323 * alignment though. If that is greater then use it.
81819f0f 2324 */
b6210386
NP
2325 if (flags & SLAB_HWCACHE_ALIGN) {
2326 unsigned long ralign = cache_line_size();
2327 while (size <= ralign / 2)
2328 ralign /= 2;
2329 align = max(align, ralign);
2330 }
81819f0f
CL
2331
2332 if (align < ARCH_SLAB_MINALIGN)
b6210386 2333 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2334
2335 return ALIGN(align, sizeof(void *));
2336}
2337
5595cffc
PE
2338static void
2339init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2340{
2341 n->nr_partial = 0;
81819f0f
CL
2342 spin_lock_init(&n->list_lock);
2343 INIT_LIST_HEAD(&n->partial);
8ab1372f 2344#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2345 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2346 atomic_long_set(&n->total_objects, 0);
643b1138 2347 INIT_LIST_HEAD(&n->full);
8ab1372f 2348#endif
81819f0f
CL
2349}
2350
55136592 2351static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2352{
6c182dc0
CL
2353 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2354 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2355
8a5ec0ba
CL
2356#ifdef CONFIG_CMPXCHG_LOCAL
2357 /*
2358 * Must align to double word boundary for the double cmpxchg instructions
2359 * to work.
2360 */
2361 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
2362#else
2363 /* Regular alignment is sufficient */
6c182dc0 2364 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
8a5ec0ba
CL
2365#endif
2366
2367 if (!s->cpu_slab)
2368 return 0;
2369
2370 init_kmem_cache_cpus(s);
4c93c355 2371
8a5ec0ba 2372 return 1;
4c93c355 2373}
4c93c355 2374
51df1142
CL
2375static struct kmem_cache *kmem_cache_node;
2376
81819f0f
CL
2377/*
2378 * No kmalloc_node yet so do it by hand. We know that this is the first
2379 * slab on the node for this slabcache. There are no concurrent accesses
2380 * possible.
2381 *
2382 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2383 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2384 * memory on a fresh node that has no slab structures yet.
81819f0f 2385 */
55136592 2386static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2387{
2388 struct page *page;
2389 struct kmem_cache_node *n;
ba84c73c 2390 unsigned long flags;
81819f0f 2391
51df1142 2392 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2393
51df1142 2394 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2395
2396 BUG_ON(!page);
a2f92ee7
CL
2397 if (page_to_nid(page) != node) {
2398 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2399 "node %d\n", node);
2400 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2401 "in order to be able to continue\n");
2402 }
2403
81819f0f
CL
2404 n = page->freelist;
2405 BUG_ON(!n);
51df1142 2406 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2407 page->inuse++;
51df1142 2408 kmem_cache_node->node[node] = n;
8ab1372f 2409#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2410 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2411 init_tracking(kmem_cache_node, n);
8ab1372f 2412#endif
51df1142
CL
2413 init_kmem_cache_node(n, kmem_cache_node);
2414 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2415
ba84c73c 2416 /*
2417 * lockdep requires consistent irq usage for each lock
2418 * so even though there cannot be a race this early in
2419 * the boot sequence, we still disable irqs.
2420 */
2421 local_irq_save(flags);
7c2e132c 2422 add_partial(n, page, 0);
ba84c73c 2423 local_irq_restore(flags);
81819f0f
CL
2424}
2425
2426static void free_kmem_cache_nodes(struct kmem_cache *s)
2427{
2428 int node;
2429
f64dc58c 2430 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2431 struct kmem_cache_node *n = s->node[node];
51df1142 2432
73367bd8 2433 if (n)
51df1142
CL
2434 kmem_cache_free(kmem_cache_node, n);
2435
81819f0f
CL
2436 s->node[node] = NULL;
2437 }
2438}
2439
55136592 2440static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2441{
2442 int node;
81819f0f 2443
f64dc58c 2444 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2445 struct kmem_cache_node *n;
2446
73367bd8 2447 if (slab_state == DOWN) {
55136592 2448 early_kmem_cache_node_alloc(node);
73367bd8
AD
2449 continue;
2450 }
51df1142 2451 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2452 GFP_KERNEL, node);
81819f0f 2453
73367bd8
AD
2454 if (!n) {
2455 free_kmem_cache_nodes(s);
2456 return 0;
81819f0f 2457 }
73367bd8 2458
81819f0f 2459 s->node[node] = n;
5595cffc 2460 init_kmem_cache_node(n, s);
81819f0f
CL
2461 }
2462 return 1;
2463}
81819f0f 2464
c0bdb232 2465static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2466{
2467 if (min < MIN_PARTIAL)
2468 min = MIN_PARTIAL;
2469 else if (min > MAX_PARTIAL)
2470 min = MAX_PARTIAL;
2471 s->min_partial = min;
2472}
2473
81819f0f
CL
2474/*
2475 * calculate_sizes() determines the order and the distribution of data within
2476 * a slab object.
2477 */
06b285dc 2478static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2479{
2480 unsigned long flags = s->flags;
2481 unsigned long size = s->objsize;
2482 unsigned long align = s->align;
834f3d11 2483 int order;
81819f0f 2484
d8b42bf5
CL
2485 /*
2486 * Round up object size to the next word boundary. We can only
2487 * place the free pointer at word boundaries and this determines
2488 * the possible location of the free pointer.
2489 */
2490 size = ALIGN(size, sizeof(void *));
2491
2492#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2493 /*
2494 * Determine if we can poison the object itself. If the user of
2495 * the slab may touch the object after free or before allocation
2496 * then we should never poison the object itself.
2497 */
2498 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2499 !s->ctor)
81819f0f
CL
2500 s->flags |= __OBJECT_POISON;
2501 else
2502 s->flags &= ~__OBJECT_POISON;
2503
81819f0f
CL
2504
2505 /*
672bba3a 2506 * If we are Redzoning then check if there is some space between the
81819f0f 2507 * end of the object and the free pointer. If not then add an
672bba3a 2508 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2509 */
2510 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2511 size += sizeof(void *);
41ecc55b 2512#endif
81819f0f
CL
2513
2514 /*
672bba3a
CL
2515 * With that we have determined the number of bytes in actual use
2516 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2517 */
2518 s->inuse = size;
2519
2520 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2521 s->ctor)) {
81819f0f
CL
2522 /*
2523 * Relocate free pointer after the object if it is not
2524 * permitted to overwrite the first word of the object on
2525 * kmem_cache_free.
2526 *
2527 * This is the case if we do RCU, have a constructor or
2528 * destructor or are poisoning the objects.
2529 */
2530 s->offset = size;
2531 size += sizeof(void *);
2532 }
2533
c12b3c62 2534#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2535 if (flags & SLAB_STORE_USER)
2536 /*
2537 * Need to store information about allocs and frees after
2538 * the object.
2539 */
2540 size += 2 * sizeof(struct track);
2541
be7b3fbc 2542 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2543 /*
2544 * Add some empty padding so that we can catch
2545 * overwrites from earlier objects rather than let
2546 * tracking information or the free pointer be
0211a9c8 2547 * corrupted if a user writes before the start
81819f0f
CL
2548 * of the object.
2549 */
2550 size += sizeof(void *);
41ecc55b 2551#endif
672bba3a 2552
81819f0f
CL
2553 /*
2554 * Determine the alignment based on various parameters that the
65c02d4c
CL
2555 * user specified and the dynamic determination of cache line size
2556 * on bootup.
81819f0f
CL
2557 */
2558 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2559 s->align = align;
81819f0f
CL
2560
2561 /*
2562 * SLUB stores one object immediately after another beginning from
2563 * offset 0. In order to align the objects we have to simply size
2564 * each object to conform to the alignment.
2565 */
2566 size = ALIGN(size, align);
2567 s->size = size;
06b285dc
CL
2568 if (forced_order >= 0)
2569 order = forced_order;
2570 else
ab9a0f19 2571 order = calculate_order(size, s->reserved);
81819f0f 2572
834f3d11 2573 if (order < 0)
81819f0f
CL
2574 return 0;
2575
b7a49f0d 2576 s->allocflags = 0;
834f3d11 2577 if (order)
b7a49f0d
CL
2578 s->allocflags |= __GFP_COMP;
2579
2580 if (s->flags & SLAB_CACHE_DMA)
2581 s->allocflags |= SLUB_DMA;
2582
2583 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2584 s->allocflags |= __GFP_RECLAIMABLE;
2585
81819f0f
CL
2586 /*
2587 * Determine the number of objects per slab
2588 */
ab9a0f19
LJ
2589 s->oo = oo_make(order, size, s->reserved);
2590 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2591 if (oo_objects(s->oo) > oo_objects(s->max))
2592 s->max = s->oo;
81819f0f 2593
834f3d11 2594 return !!oo_objects(s->oo);
81819f0f
CL
2595
2596}
2597
55136592 2598static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2599 const char *name, size_t size,
2600 size_t align, unsigned long flags,
51cc5068 2601 void (*ctor)(void *))
81819f0f
CL
2602{
2603 memset(s, 0, kmem_size);
2604 s->name = name;
2605 s->ctor = ctor;
81819f0f 2606 s->objsize = size;
81819f0f 2607 s->align = align;
ba0268a8 2608 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2609 s->reserved = 0;
81819f0f 2610
da9a638c
LJ
2611 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2612 s->reserved = sizeof(struct rcu_head);
81819f0f 2613
06b285dc 2614 if (!calculate_sizes(s, -1))
81819f0f 2615 goto error;
3de47213
DR
2616 if (disable_higher_order_debug) {
2617 /*
2618 * Disable debugging flags that store metadata if the min slab
2619 * order increased.
2620 */
2621 if (get_order(s->size) > get_order(s->objsize)) {
2622 s->flags &= ~DEBUG_METADATA_FLAGS;
2623 s->offset = 0;
2624 if (!calculate_sizes(s, -1))
2625 goto error;
2626 }
2627 }
81819f0f 2628
3b89d7d8
DR
2629 /*
2630 * The larger the object size is, the more pages we want on the partial
2631 * list to avoid pounding the page allocator excessively.
2632 */
c0bdb232 2633 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2634 s->refcount = 1;
2635#ifdef CONFIG_NUMA
e2cb96b7 2636 s->remote_node_defrag_ratio = 1000;
81819f0f 2637#endif
55136592 2638 if (!init_kmem_cache_nodes(s))
dfb4f096 2639 goto error;
81819f0f 2640
55136592 2641 if (alloc_kmem_cache_cpus(s))
81819f0f 2642 return 1;
ff12059e 2643
4c93c355 2644 free_kmem_cache_nodes(s);
81819f0f
CL
2645error:
2646 if (flags & SLAB_PANIC)
2647 panic("Cannot create slab %s size=%lu realsize=%u "
2648 "order=%u offset=%u flags=%lx\n",
834f3d11 2649 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2650 s->offset, flags);
2651 return 0;
2652}
81819f0f 2653
81819f0f
CL
2654/*
2655 * Determine the size of a slab object
2656 */
2657unsigned int kmem_cache_size(struct kmem_cache *s)
2658{
2659 return s->objsize;
2660}
2661EXPORT_SYMBOL(kmem_cache_size);
2662
33b12c38
CL
2663static void list_slab_objects(struct kmem_cache *s, struct page *page,
2664 const char *text)
2665{
2666#ifdef CONFIG_SLUB_DEBUG
2667 void *addr = page_address(page);
2668 void *p;
a5dd5c11
NK
2669 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2670 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2671 if (!map)
2672 return;
33b12c38
CL
2673 slab_err(s, page, "%s", text);
2674 slab_lock(page);
2675 for_each_free_object(p, s, page->freelist)
2676 set_bit(slab_index(p, s, addr), map);
2677
2678 for_each_object(p, s, addr, page->objects) {
2679
2680 if (!test_bit(slab_index(p, s, addr), map)) {
2681 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2682 p, p - addr);
2683 print_tracking(s, p);
2684 }
2685 }
2686 slab_unlock(page);
bbd7d57b 2687 kfree(map);
33b12c38
CL
2688#endif
2689}
2690
81819f0f 2691/*
599870b1 2692 * Attempt to free all partial slabs on a node.
81819f0f 2693 */
599870b1 2694static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2695{
81819f0f
CL
2696 unsigned long flags;
2697 struct page *page, *h;
2698
2699 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2700 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2701 if (!page->inuse) {
62e346a8 2702 __remove_partial(n, page);
81819f0f 2703 discard_slab(s, page);
33b12c38
CL
2704 } else {
2705 list_slab_objects(s, page,
2706 "Objects remaining on kmem_cache_close()");
599870b1 2707 }
33b12c38 2708 }
81819f0f 2709 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2710}
2711
2712/*
672bba3a 2713 * Release all resources used by a slab cache.
81819f0f 2714 */
0c710013 2715static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2716{
2717 int node;
2718
2719 flush_all(s);
9dfc6e68 2720 free_percpu(s->cpu_slab);
81819f0f 2721 /* Attempt to free all objects */
f64dc58c 2722 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2723 struct kmem_cache_node *n = get_node(s, node);
2724
599870b1
CL
2725 free_partial(s, n);
2726 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2727 return 1;
2728 }
2729 free_kmem_cache_nodes(s);
2730 return 0;
2731}
2732
2733/*
2734 * Close a cache and release the kmem_cache structure
2735 * (must be used for caches created using kmem_cache_create)
2736 */
2737void kmem_cache_destroy(struct kmem_cache *s)
2738{
2739 down_write(&slub_lock);
2740 s->refcount--;
2741 if (!s->refcount) {
2742 list_del(&s->list);
d629d819
PE
2743 if (kmem_cache_close(s)) {
2744 printk(KERN_ERR "SLUB %s: %s called for cache that "
2745 "still has objects.\n", s->name, __func__);
2746 dump_stack();
2747 }
d76b1590
ED
2748 if (s->flags & SLAB_DESTROY_BY_RCU)
2749 rcu_barrier();
81819f0f 2750 sysfs_slab_remove(s);
2bce6485
CL
2751 }
2752 up_write(&slub_lock);
81819f0f
CL
2753}
2754EXPORT_SYMBOL(kmem_cache_destroy);
2755
2756/********************************************************************
2757 * Kmalloc subsystem
2758 *******************************************************************/
2759
51df1142 2760struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2761EXPORT_SYMBOL(kmalloc_caches);
2762
51df1142
CL
2763static struct kmem_cache *kmem_cache;
2764
55136592 2765#ifdef CONFIG_ZONE_DMA
51df1142 2766static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2767#endif
2768
81819f0f
CL
2769static int __init setup_slub_min_order(char *str)
2770{
06428780 2771 get_option(&str, &slub_min_order);
81819f0f
CL
2772
2773 return 1;
2774}
2775
2776__setup("slub_min_order=", setup_slub_min_order);
2777
2778static int __init setup_slub_max_order(char *str)
2779{
06428780 2780 get_option(&str, &slub_max_order);
818cf590 2781 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2782
2783 return 1;
2784}
2785
2786__setup("slub_max_order=", setup_slub_max_order);
2787
2788static int __init setup_slub_min_objects(char *str)
2789{
06428780 2790 get_option(&str, &slub_min_objects);
81819f0f
CL
2791
2792 return 1;
2793}
2794
2795__setup("slub_min_objects=", setup_slub_min_objects);
2796
2797static int __init setup_slub_nomerge(char *str)
2798{
2799 slub_nomerge = 1;
2800 return 1;
2801}
2802
2803__setup("slub_nomerge", setup_slub_nomerge);
2804
51df1142
CL
2805static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2806 int size, unsigned int flags)
81819f0f 2807{
51df1142
CL
2808 struct kmem_cache *s;
2809
2810 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2811
83b519e8
PE
2812 /*
2813 * This function is called with IRQs disabled during early-boot on
2814 * single CPU so there's no need to take slub_lock here.
2815 */
55136592 2816 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2817 flags, NULL))
81819f0f
CL
2818 goto panic;
2819
2820 list_add(&s->list, &slab_caches);
51df1142 2821 return s;
81819f0f
CL
2822
2823panic:
2824 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2825 return NULL;
81819f0f
CL
2826}
2827
f1b26339
CL
2828/*
2829 * Conversion table for small slabs sizes / 8 to the index in the
2830 * kmalloc array. This is necessary for slabs < 192 since we have non power
2831 * of two cache sizes there. The size of larger slabs can be determined using
2832 * fls.
2833 */
2834static s8 size_index[24] = {
2835 3, /* 8 */
2836 4, /* 16 */
2837 5, /* 24 */
2838 5, /* 32 */
2839 6, /* 40 */
2840 6, /* 48 */
2841 6, /* 56 */
2842 6, /* 64 */
2843 1, /* 72 */
2844 1, /* 80 */
2845 1, /* 88 */
2846 1, /* 96 */
2847 7, /* 104 */
2848 7, /* 112 */
2849 7, /* 120 */
2850 7, /* 128 */
2851 2, /* 136 */
2852 2, /* 144 */
2853 2, /* 152 */
2854 2, /* 160 */
2855 2, /* 168 */
2856 2, /* 176 */
2857 2, /* 184 */
2858 2 /* 192 */
2859};
2860
acdfcd04
AK
2861static inline int size_index_elem(size_t bytes)
2862{
2863 return (bytes - 1) / 8;
2864}
2865
81819f0f
CL
2866static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2867{
f1b26339 2868 int index;
81819f0f 2869
f1b26339
CL
2870 if (size <= 192) {
2871 if (!size)
2872 return ZERO_SIZE_PTR;
81819f0f 2873
acdfcd04 2874 index = size_index[size_index_elem(size)];
aadb4bc4 2875 } else
f1b26339 2876 index = fls(size - 1);
81819f0f
CL
2877
2878#ifdef CONFIG_ZONE_DMA
f1b26339 2879 if (unlikely((flags & SLUB_DMA)))
51df1142 2880 return kmalloc_dma_caches[index];
f1b26339 2881
81819f0f 2882#endif
51df1142 2883 return kmalloc_caches[index];
81819f0f
CL
2884}
2885
2886void *__kmalloc(size_t size, gfp_t flags)
2887{
aadb4bc4 2888 struct kmem_cache *s;
5b882be4 2889 void *ret;
81819f0f 2890
ffadd4d0 2891 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2892 return kmalloc_large(size, flags);
aadb4bc4
CL
2893
2894 s = get_slab(size, flags);
2895
2896 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2897 return s;
2898
2154a336 2899 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2900
ca2b84cb 2901 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2902
2903 return ret;
81819f0f
CL
2904}
2905EXPORT_SYMBOL(__kmalloc);
2906
5d1f57e4 2907#ifdef CONFIG_NUMA
f619cfe1
CL
2908static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2909{
b1eeab67 2910 struct page *page;
e4f7c0b4 2911 void *ptr = NULL;
f619cfe1 2912
b1eeab67
VN
2913 flags |= __GFP_COMP | __GFP_NOTRACK;
2914 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2915 if (page)
e4f7c0b4
CM
2916 ptr = page_address(page);
2917
2918 kmemleak_alloc(ptr, size, 1, flags);
2919 return ptr;
f619cfe1
CL
2920}
2921
81819f0f
CL
2922void *__kmalloc_node(size_t size, gfp_t flags, int node)
2923{
aadb4bc4 2924 struct kmem_cache *s;
5b882be4 2925 void *ret;
81819f0f 2926
057685cf 2927 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2928 ret = kmalloc_large_node(size, flags, node);
2929
ca2b84cb
EGM
2930 trace_kmalloc_node(_RET_IP_, ret,
2931 size, PAGE_SIZE << get_order(size),
2932 flags, node);
5b882be4
EGM
2933
2934 return ret;
2935 }
aadb4bc4
CL
2936
2937 s = get_slab(size, flags);
2938
2939 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2940 return s;
2941
5b882be4
EGM
2942 ret = slab_alloc(s, flags, node, _RET_IP_);
2943
ca2b84cb 2944 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2945
2946 return ret;
81819f0f
CL
2947}
2948EXPORT_SYMBOL(__kmalloc_node);
2949#endif
2950
2951size_t ksize(const void *object)
2952{
272c1d21 2953 struct page *page;
81819f0f 2954
ef8b4520 2955 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2956 return 0;
2957
294a80a8 2958 page = virt_to_head_page(object);
294a80a8 2959
76994412
PE
2960 if (unlikely(!PageSlab(page))) {
2961 WARN_ON(!PageCompound(page));
294a80a8 2962 return PAGE_SIZE << compound_order(page);
76994412 2963 }
81819f0f 2964
b3d41885 2965 return slab_ksize(page->slab);
81819f0f 2966}
b1aabecd 2967EXPORT_SYMBOL(ksize);
81819f0f
CL
2968
2969void kfree(const void *x)
2970{
81819f0f 2971 struct page *page;
5bb983b0 2972 void *object = (void *)x;
81819f0f 2973
2121db74
PE
2974 trace_kfree(_RET_IP_, x);
2975
2408c550 2976 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2977 return;
2978
b49af68f 2979 page = virt_to_head_page(x);
aadb4bc4 2980 if (unlikely(!PageSlab(page))) {
0937502a 2981 BUG_ON(!PageCompound(page));
e4f7c0b4 2982 kmemleak_free(x);
aadb4bc4
CL
2983 put_page(page);
2984 return;
2985 }
ce71e27c 2986 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2987}
2988EXPORT_SYMBOL(kfree);
2989
2086d26a 2990/*
672bba3a
CL
2991 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2992 * the remaining slabs by the number of items in use. The slabs with the
2993 * most items in use come first. New allocations will then fill those up
2994 * and thus they can be removed from the partial lists.
2995 *
2996 * The slabs with the least items are placed last. This results in them
2997 * being allocated from last increasing the chance that the last objects
2998 * are freed in them.
2086d26a
CL
2999 */
3000int kmem_cache_shrink(struct kmem_cache *s)
3001{
3002 int node;
3003 int i;
3004 struct kmem_cache_node *n;
3005 struct page *page;
3006 struct page *t;
205ab99d 3007 int objects = oo_objects(s->max);
2086d26a 3008 struct list_head *slabs_by_inuse =
834f3d11 3009 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3010 unsigned long flags;
3011
3012 if (!slabs_by_inuse)
3013 return -ENOMEM;
3014
3015 flush_all(s);
f64dc58c 3016 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3017 n = get_node(s, node);
3018
3019 if (!n->nr_partial)
3020 continue;
3021
834f3d11 3022 for (i = 0; i < objects; i++)
2086d26a
CL
3023 INIT_LIST_HEAD(slabs_by_inuse + i);
3024
3025 spin_lock_irqsave(&n->list_lock, flags);
3026
3027 /*
672bba3a 3028 * Build lists indexed by the items in use in each slab.
2086d26a 3029 *
672bba3a
CL
3030 * Note that concurrent frees may occur while we hold the
3031 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3032 */
3033 list_for_each_entry_safe(page, t, &n->partial, lru) {
3034 if (!page->inuse && slab_trylock(page)) {
3035 /*
3036 * Must hold slab lock here because slab_free
3037 * may have freed the last object and be
3038 * waiting to release the slab.
3039 */
62e346a8 3040 __remove_partial(n, page);
2086d26a
CL
3041 slab_unlock(page);
3042 discard_slab(s, page);
3043 } else {
fcda3d89
CL
3044 list_move(&page->lru,
3045 slabs_by_inuse + page->inuse);
2086d26a
CL
3046 }
3047 }
3048
2086d26a 3049 /*
672bba3a
CL
3050 * Rebuild the partial list with the slabs filled up most
3051 * first and the least used slabs at the end.
2086d26a 3052 */
834f3d11 3053 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3054 list_splice(slabs_by_inuse + i, n->partial.prev);
3055
2086d26a
CL
3056 spin_unlock_irqrestore(&n->list_lock, flags);
3057 }
3058
3059 kfree(slabs_by_inuse);
3060 return 0;
3061}
3062EXPORT_SYMBOL(kmem_cache_shrink);
3063
92a5bbc1 3064#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3065static int slab_mem_going_offline_callback(void *arg)
3066{
3067 struct kmem_cache *s;
3068
3069 down_read(&slub_lock);
3070 list_for_each_entry(s, &slab_caches, list)
3071 kmem_cache_shrink(s);
3072 up_read(&slub_lock);
3073
3074 return 0;
3075}
3076
3077static void slab_mem_offline_callback(void *arg)
3078{
3079 struct kmem_cache_node *n;
3080 struct kmem_cache *s;
3081 struct memory_notify *marg = arg;
3082 int offline_node;
3083
3084 offline_node = marg->status_change_nid;
3085
3086 /*
3087 * If the node still has available memory. we need kmem_cache_node
3088 * for it yet.
3089 */
3090 if (offline_node < 0)
3091 return;
3092
3093 down_read(&slub_lock);
3094 list_for_each_entry(s, &slab_caches, list) {
3095 n = get_node(s, offline_node);
3096 if (n) {
3097 /*
3098 * if n->nr_slabs > 0, slabs still exist on the node
3099 * that is going down. We were unable to free them,
c9404c9c 3100 * and offline_pages() function shouldn't call this
b9049e23
YG
3101 * callback. So, we must fail.
3102 */
0f389ec6 3103 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3104
3105 s->node[offline_node] = NULL;
8de66a0c 3106 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3107 }
3108 }
3109 up_read(&slub_lock);
3110}
3111
3112static int slab_mem_going_online_callback(void *arg)
3113{
3114 struct kmem_cache_node *n;
3115 struct kmem_cache *s;
3116 struct memory_notify *marg = arg;
3117 int nid = marg->status_change_nid;
3118 int ret = 0;
3119
3120 /*
3121 * If the node's memory is already available, then kmem_cache_node is
3122 * already created. Nothing to do.
3123 */
3124 if (nid < 0)
3125 return 0;
3126
3127 /*
0121c619 3128 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3129 * allocate a kmem_cache_node structure in order to bring the node
3130 * online.
3131 */
3132 down_read(&slub_lock);
3133 list_for_each_entry(s, &slab_caches, list) {
3134 /*
3135 * XXX: kmem_cache_alloc_node will fallback to other nodes
3136 * since memory is not yet available from the node that
3137 * is brought up.
3138 */
8de66a0c 3139 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3140 if (!n) {
3141 ret = -ENOMEM;
3142 goto out;
3143 }
5595cffc 3144 init_kmem_cache_node(n, s);
b9049e23
YG
3145 s->node[nid] = n;
3146 }
3147out:
3148 up_read(&slub_lock);
3149 return ret;
3150}
3151
3152static int slab_memory_callback(struct notifier_block *self,
3153 unsigned long action, void *arg)
3154{
3155 int ret = 0;
3156
3157 switch (action) {
3158 case MEM_GOING_ONLINE:
3159 ret = slab_mem_going_online_callback(arg);
3160 break;
3161 case MEM_GOING_OFFLINE:
3162 ret = slab_mem_going_offline_callback(arg);
3163 break;
3164 case MEM_OFFLINE:
3165 case MEM_CANCEL_ONLINE:
3166 slab_mem_offline_callback(arg);
3167 break;
3168 case MEM_ONLINE:
3169 case MEM_CANCEL_OFFLINE:
3170 break;
3171 }
dc19f9db
KH
3172 if (ret)
3173 ret = notifier_from_errno(ret);
3174 else
3175 ret = NOTIFY_OK;
b9049e23
YG
3176 return ret;
3177}
3178
3179#endif /* CONFIG_MEMORY_HOTPLUG */
3180
81819f0f
CL
3181/********************************************************************
3182 * Basic setup of slabs
3183 *******************************************************************/
3184
51df1142
CL
3185/*
3186 * Used for early kmem_cache structures that were allocated using
3187 * the page allocator
3188 */
3189
3190static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3191{
3192 int node;
3193
3194 list_add(&s->list, &slab_caches);
3195 s->refcount = -1;
3196
3197 for_each_node_state(node, N_NORMAL_MEMORY) {
3198 struct kmem_cache_node *n = get_node(s, node);
3199 struct page *p;
3200
3201 if (n) {
3202 list_for_each_entry(p, &n->partial, lru)
3203 p->slab = s;
3204
3205#ifdef CONFIG_SLAB_DEBUG
3206 list_for_each_entry(p, &n->full, lru)
3207 p->slab = s;
3208#endif
3209 }
3210 }
3211}
3212
81819f0f
CL
3213void __init kmem_cache_init(void)
3214{
3215 int i;
4b356be0 3216 int caches = 0;
51df1142
CL
3217 struct kmem_cache *temp_kmem_cache;
3218 int order;
51df1142
CL
3219 struct kmem_cache *temp_kmem_cache_node;
3220 unsigned long kmalloc_size;
3221
3222 kmem_size = offsetof(struct kmem_cache, node) +
3223 nr_node_ids * sizeof(struct kmem_cache_node *);
3224
3225 /* Allocate two kmem_caches from the page allocator */
3226 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3227 order = get_order(2 * kmalloc_size);
3228 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3229
81819f0f
CL
3230 /*
3231 * Must first have the slab cache available for the allocations of the
672bba3a 3232 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3233 * kmem_cache_open for slab_state == DOWN.
3234 */
51df1142
CL
3235 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3236
3237 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3238 sizeof(struct kmem_cache_node),
3239 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3240
0c40ba4f 3241 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3242
3243 /* Able to allocate the per node structures */
3244 slab_state = PARTIAL;
3245
51df1142
CL
3246 temp_kmem_cache = kmem_cache;
3247 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3248 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3249 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3250 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3251
51df1142
CL
3252 /*
3253 * Allocate kmem_cache_node properly from the kmem_cache slab.
3254 * kmem_cache_node is separately allocated so no need to
3255 * update any list pointers.
3256 */
3257 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3258
51df1142
CL
3259 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3260 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3261
3262 kmem_cache_bootstrap_fixup(kmem_cache_node);
3263
3264 caches++;
51df1142
CL
3265 kmem_cache_bootstrap_fixup(kmem_cache);
3266 caches++;
3267 /* Free temporary boot structure */
3268 free_pages((unsigned long)temp_kmem_cache, order);
3269
3270 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3271
3272 /*
3273 * Patch up the size_index table if we have strange large alignment
3274 * requirements for the kmalloc array. This is only the case for
6446faa2 3275 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3276 *
3277 * Largest permitted alignment is 256 bytes due to the way we
3278 * handle the index determination for the smaller caches.
3279 *
3280 * Make sure that nothing crazy happens if someone starts tinkering
3281 * around with ARCH_KMALLOC_MINALIGN
3282 */
3283 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3284 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3285
acdfcd04
AK
3286 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3287 int elem = size_index_elem(i);
3288 if (elem >= ARRAY_SIZE(size_index))
3289 break;
3290 size_index[elem] = KMALLOC_SHIFT_LOW;
3291 }
f1b26339 3292
acdfcd04
AK
3293 if (KMALLOC_MIN_SIZE == 64) {
3294 /*
3295 * The 96 byte size cache is not used if the alignment
3296 * is 64 byte.
3297 */
3298 for (i = 64 + 8; i <= 96; i += 8)
3299 size_index[size_index_elem(i)] = 7;
3300 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3301 /*
3302 * The 192 byte sized cache is not used if the alignment
3303 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3304 * instead.
3305 */
3306 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3307 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3308 }
3309
51df1142
CL
3310 /* Caches that are not of the two-to-the-power-of size */
3311 if (KMALLOC_MIN_SIZE <= 32) {
3312 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3313 caches++;
3314 }
3315
3316 if (KMALLOC_MIN_SIZE <= 64) {
3317 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3318 caches++;
3319 }
3320
3321 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3322 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3323 caches++;
3324 }
3325
81819f0f
CL
3326 slab_state = UP;
3327
3328 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3329 if (KMALLOC_MIN_SIZE <= 32) {
3330 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3331 BUG_ON(!kmalloc_caches[1]->name);
3332 }
3333
3334 if (KMALLOC_MIN_SIZE <= 64) {
3335 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3336 BUG_ON(!kmalloc_caches[2]->name);
3337 }
3338
d7278bd7
CL
3339 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3340 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3341
3342 BUG_ON(!s);
51df1142 3343 kmalloc_caches[i]->name = s;
d7278bd7 3344 }
81819f0f
CL
3345
3346#ifdef CONFIG_SMP
3347 register_cpu_notifier(&slab_notifier);
9dfc6e68 3348#endif
81819f0f 3349
55136592 3350#ifdef CONFIG_ZONE_DMA
51df1142
CL
3351 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3352 struct kmem_cache *s = kmalloc_caches[i];
55136592 3353
51df1142 3354 if (s && s->size) {
55136592
CL
3355 char *name = kasprintf(GFP_NOWAIT,
3356 "dma-kmalloc-%d", s->objsize);
3357
3358 BUG_ON(!name);
51df1142
CL
3359 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3360 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3361 }
3362 }
3363#endif
3adbefee
IM
3364 printk(KERN_INFO
3365 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3366 " CPUs=%d, Nodes=%d\n",
3367 caches, cache_line_size(),
81819f0f
CL
3368 slub_min_order, slub_max_order, slub_min_objects,
3369 nr_cpu_ids, nr_node_ids);
3370}
3371
7e85ee0c
PE
3372void __init kmem_cache_init_late(void)
3373{
7e85ee0c
PE
3374}
3375
81819f0f
CL
3376/*
3377 * Find a mergeable slab cache
3378 */
3379static int slab_unmergeable(struct kmem_cache *s)
3380{
3381 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3382 return 1;
3383
c59def9f 3384 if (s->ctor)
81819f0f
CL
3385 return 1;
3386
8ffa6875
CL
3387 /*
3388 * We may have set a slab to be unmergeable during bootstrap.
3389 */
3390 if (s->refcount < 0)
3391 return 1;
3392
81819f0f
CL
3393 return 0;
3394}
3395
3396static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3397 size_t align, unsigned long flags, const char *name,
51cc5068 3398 void (*ctor)(void *))
81819f0f 3399{
5b95a4ac 3400 struct kmem_cache *s;
81819f0f
CL
3401
3402 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3403 return NULL;
3404
c59def9f 3405 if (ctor)
81819f0f
CL
3406 return NULL;
3407
3408 size = ALIGN(size, sizeof(void *));
3409 align = calculate_alignment(flags, align, size);
3410 size = ALIGN(size, align);
ba0268a8 3411 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3412
5b95a4ac 3413 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3414 if (slab_unmergeable(s))
3415 continue;
3416
3417 if (size > s->size)
3418 continue;
3419
ba0268a8 3420 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3421 continue;
3422 /*
3423 * Check if alignment is compatible.
3424 * Courtesy of Adrian Drzewiecki
3425 */
06428780 3426 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3427 continue;
3428
3429 if (s->size - size >= sizeof(void *))
3430 continue;
3431
3432 return s;
3433 }
3434 return NULL;
3435}
3436
3437struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3438 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3439{
3440 struct kmem_cache *s;
84c1cf62 3441 char *n;
81819f0f 3442
fe1ff49d
BH
3443 if (WARN_ON(!name))
3444 return NULL;
3445
81819f0f 3446 down_write(&slub_lock);
ba0268a8 3447 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3448 if (s) {
3449 s->refcount++;
3450 /*
3451 * Adjust the object sizes so that we clear
3452 * the complete object on kzalloc.
3453 */
3454 s->objsize = max(s->objsize, (int)size);
3455 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3456
7b8f3b66 3457 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3458 s->refcount--;
81819f0f 3459 goto err;
7b8f3b66 3460 }
2bce6485 3461 up_write(&slub_lock);
a0e1d1be
CL
3462 return s;
3463 }
6446faa2 3464
84c1cf62
PE
3465 n = kstrdup(name, GFP_KERNEL);
3466 if (!n)
3467 goto err;
3468
a0e1d1be
CL
3469 s = kmalloc(kmem_size, GFP_KERNEL);
3470 if (s) {
84c1cf62 3471 if (kmem_cache_open(s, n,
c59def9f 3472 size, align, flags, ctor)) {
81819f0f 3473 list_add(&s->list, &slab_caches);
7b8f3b66 3474 if (sysfs_slab_add(s)) {
7b8f3b66 3475 list_del(&s->list);
84c1cf62 3476 kfree(n);
7b8f3b66 3477 kfree(s);
a0e1d1be 3478 goto err;
7b8f3b66 3479 }
2bce6485 3480 up_write(&slub_lock);
a0e1d1be
CL
3481 return s;
3482 }
84c1cf62 3483 kfree(n);
a0e1d1be 3484 kfree(s);
81819f0f 3485 }
68cee4f1 3486err:
81819f0f 3487 up_write(&slub_lock);
81819f0f 3488
81819f0f
CL
3489 if (flags & SLAB_PANIC)
3490 panic("Cannot create slabcache %s\n", name);
3491 else
3492 s = NULL;
3493 return s;
3494}
3495EXPORT_SYMBOL(kmem_cache_create);
3496
81819f0f 3497#ifdef CONFIG_SMP
81819f0f 3498/*
672bba3a
CL
3499 * Use the cpu notifier to insure that the cpu slabs are flushed when
3500 * necessary.
81819f0f
CL
3501 */
3502static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3503 unsigned long action, void *hcpu)
3504{
3505 long cpu = (long)hcpu;
5b95a4ac
CL
3506 struct kmem_cache *s;
3507 unsigned long flags;
81819f0f
CL
3508
3509 switch (action) {
3510 case CPU_UP_CANCELED:
8bb78442 3511 case CPU_UP_CANCELED_FROZEN:
81819f0f 3512 case CPU_DEAD:
8bb78442 3513 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3514 down_read(&slub_lock);
3515 list_for_each_entry(s, &slab_caches, list) {
3516 local_irq_save(flags);
3517 __flush_cpu_slab(s, cpu);
3518 local_irq_restore(flags);
3519 }
3520 up_read(&slub_lock);
81819f0f
CL
3521 break;
3522 default:
3523 break;
3524 }
3525 return NOTIFY_OK;
3526}
3527
06428780 3528static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3529 .notifier_call = slab_cpuup_callback
06428780 3530};
81819f0f
CL
3531
3532#endif
3533
ce71e27c 3534void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3535{
aadb4bc4 3536 struct kmem_cache *s;
94b528d0 3537 void *ret;
aadb4bc4 3538
ffadd4d0 3539 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3540 return kmalloc_large(size, gfpflags);
3541
aadb4bc4 3542 s = get_slab(size, gfpflags);
81819f0f 3543
2408c550 3544 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3545 return s;
81819f0f 3546
2154a336 3547 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0
EGM
3548
3549 /* Honor the call site pointer we recieved. */
ca2b84cb 3550 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3551
3552 return ret;
81819f0f
CL
3553}
3554
5d1f57e4 3555#ifdef CONFIG_NUMA
81819f0f 3556void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3557 int node, unsigned long caller)
81819f0f 3558{
aadb4bc4 3559 struct kmem_cache *s;
94b528d0 3560 void *ret;
aadb4bc4 3561
d3e14aa3
XF
3562 if (unlikely(size > SLUB_MAX_SIZE)) {
3563 ret = kmalloc_large_node(size, gfpflags, node);
3564
3565 trace_kmalloc_node(caller, ret,
3566 size, PAGE_SIZE << get_order(size),
3567 gfpflags, node);
3568
3569 return ret;
3570 }
eada35ef 3571
aadb4bc4 3572 s = get_slab(size, gfpflags);
81819f0f 3573
2408c550 3574 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3575 return s;
81819f0f 3576
94b528d0
EGM
3577 ret = slab_alloc(s, gfpflags, node, caller);
3578
3579 /* Honor the call site pointer we recieved. */
ca2b84cb 3580 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3581
3582 return ret;
81819f0f 3583}
5d1f57e4 3584#endif
81819f0f 3585
ab4d5ed5 3586#ifdef CONFIG_SYSFS
205ab99d
CL
3587static int count_inuse(struct page *page)
3588{
3589 return page->inuse;
3590}
3591
3592static int count_total(struct page *page)
3593{
3594 return page->objects;
3595}
ab4d5ed5 3596#endif
205ab99d 3597
ab4d5ed5 3598#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3599static int validate_slab(struct kmem_cache *s, struct page *page,
3600 unsigned long *map)
53e15af0
CL
3601{
3602 void *p;
a973e9dd 3603 void *addr = page_address(page);
53e15af0
CL
3604
3605 if (!check_slab(s, page) ||
3606 !on_freelist(s, page, NULL))
3607 return 0;
3608
3609 /* Now we know that a valid freelist exists */
39b26464 3610 bitmap_zero(map, page->objects);
53e15af0 3611
7656c72b
CL
3612 for_each_free_object(p, s, page->freelist) {
3613 set_bit(slab_index(p, s, addr), map);
37d57443 3614 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
53e15af0
CL
3615 return 0;
3616 }
3617
224a88be 3618 for_each_object(p, s, addr, page->objects)
7656c72b 3619 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3620 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3621 return 0;
3622 return 1;
3623}
3624
434e245d
CL
3625static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3626 unsigned long *map)
53e15af0
CL
3627{
3628 if (slab_trylock(page)) {
434e245d 3629 validate_slab(s, page, map);
53e15af0
CL
3630 slab_unlock(page);
3631 } else
3632 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3633 s->name, page);
53e15af0
CL
3634}
3635
434e245d
CL
3636static int validate_slab_node(struct kmem_cache *s,
3637 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3638{
3639 unsigned long count = 0;
3640 struct page *page;
3641 unsigned long flags;
3642
3643 spin_lock_irqsave(&n->list_lock, flags);
3644
3645 list_for_each_entry(page, &n->partial, lru) {
434e245d 3646 validate_slab_slab(s, page, map);
53e15af0
CL
3647 count++;
3648 }
3649 if (count != n->nr_partial)
3650 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3651 "counter=%ld\n", s->name, count, n->nr_partial);
3652
3653 if (!(s->flags & SLAB_STORE_USER))
3654 goto out;
3655
3656 list_for_each_entry(page, &n->full, lru) {
434e245d 3657 validate_slab_slab(s, page, map);
53e15af0
CL
3658 count++;
3659 }
3660 if (count != atomic_long_read(&n->nr_slabs))
3661 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3662 "counter=%ld\n", s->name, count,
3663 atomic_long_read(&n->nr_slabs));
3664
3665out:
3666 spin_unlock_irqrestore(&n->list_lock, flags);
3667 return count;
3668}
3669
434e245d 3670static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3671{
3672 int node;
3673 unsigned long count = 0;
205ab99d 3674 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3675 sizeof(unsigned long), GFP_KERNEL);
3676
3677 if (!map)
3678 return -ENOMEM;
53e15af0
CL
3679
3680 flush_all(s);
f64dc58c 3681 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3682 struct kmem_cache_node *n = get_node(s, node);
3683
434e245d 3684 count += validate_slab_node(s, n, map);
53e15af0 3685 }
434e245d 3686 kfree(map);
53e15af0
CL
3687 return count;
3688}
88a420e4 3689/*
672bba3a 3690 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3691 * and freed.
3692 */
3693
3694struct location {
3695 unsigned long count;
ce71e27c 3696 unsigned long addr;
45edfa58
CL
3697 long long sum_time;
3698 long min_time;
3699 long max_time;
3700 long min_pid;
3701 long max_pid;
174596a0 3702 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3703 nodemask_t nodes;
88a420e4
CL
3704};
3705
3706struct loc_track {
3707 unsigned long max;
3708 unsigned long count;
3709 struct location *loc;
3710};
3711
3712static void free_loc_track(struct loc_track *t)
3713{
3714 if (t->max)
3715 free_pages((unsigned long)t->loc,
3716 get_order(sizeof(struct location) * t->max));
3717}
3718
68dff6a9 3719static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3720{
3721 struct location *l;
3722 int order;
3723
88a420e4
CL
3724 order = get_order(sizeof(struct location) * max);
3725
68dff6a9 3726 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3727 if (!l)
3728 return 0;
3729
3730 if (t->count) {
3731 memcpy(l, t->loc, sizeof(struct location) * t->count);
3732 free_loc_track(t);
3733 }
3734 t->max = max;
3735 t->loc = l;
3736 return 1;
3737}
3738
3739static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3740 const struct track *track)
88a420e4
CL
3741{
3742 long start, end, pos;
3743 struct location *l;
ce71e27c 3744 unsigned long caddr;
45edfa58 3745 unsigned long age = jiffies - track->when;
88a420e4
CL
3746
3747 start = -1;
3748 end = t->count;
3749
3750 for ( ; ; ) {
3751 pos = start + (end - start + 1) / 2;
3752
3753 /*
3754 * There is nothing at "end". If we end up there
3755 * we need to add something to before end.
3756 */
3757 if (pos == end)
3758 break;
3759
3760 caddr = t->loc[pos].addr;
45edfa58
CL
3761 if (track->addr == caddr) {
3762
3763 l = &t->loc[pos];
3764 l->count++;
3765 if (track->when) {
3766 l->sum_time += age;
3767 if (age < l->min_time)
3768 l->min_time = age;
3769 if (age > l->max_time)
3770 l->max_time = age;
3771
3772 if (track->pid < l->min_pid)
3773 l->min_pid = track->pid;
3774 if (track->pid > l->max_pid)
3775 l->max_pid = track->pid;
3776
174596a0
RR
3777 cpumask_set_cpu(track->cpu,
3778 to_cpumask(l->cpus));
45edfa58
CL
3779 }
3780 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3781 return 1;
3782 }
3783
45edfa58 3784 if (track->addr < caddr)
88a420e4
CL
3785 end = pos;
3786 else
3787 start = pos;
3788 }
3789
3790 /*
672bba3a 3791 * Not found. Insert new tracking element.
88a420e4 3792 */
68dff6a9 3793 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3794 return 0;
3795
3796 l = t->loc + pos;
3797 if (pos < t->count)
3798 memmove(l + 1, l,
3799 (t->count - pos) * sizeof(struct location));
3800 t->count++;
3801 l->count = 1;
45edfa58
CL
3802 l->addr = track->addr;
3803 l->sum_time = age;
3804 l->min_time = age;
3805 l->max_time = age;
3806 l->min_pid = track->pid;
3807 l->max_pid = track->pid;
174596a0
RR
3808 cpumask_clear(to_cpumask(l->cpus));
3809 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3810 nodes_clear(l->nodes);
3811 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3812 return 1;
3813}
3814
3815static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3816 struct page *page, enum track_item alloc,
a5dd5c11 3817 unsigned long *map)
88a420e4 3818{
a973e9dd 3819 void *addr = page_address(page);
88a420e4
CL
3820 void *p;
3821
39b26464 3822 bitmap_zero(map, page->objects);
7656c72b
CL
3823 for_each_free_object(p, s, page->freelist)
3824 set_bit(slab_index(p, s, addr), map);
88a420e4 3825
224a88be 3826 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3827 if (!test_bit(slab_index(p, s, addr), map))
3828 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3829}
3830
3831static int list_locations(struct kmem_cache *s, char *buf,
3832 enum track_item alloc)
3833{
e374d483 3834 int len = 0;
88a420e4 3835 unsigned long i;
68dff6a9 3836 struct loc_track t = { 0, 0, NULL };
88a420e4 3837 int node;
bbd7d57b
ED
3838 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3839 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3840
bbd7d57b
ED
3841 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3842 GFP_TEMPORARY)) {
3843 kfree(map);
68dff6a9 3844 return sprintf(buf, "Out of memory\n");
bbd7d57b 3845 }
88a420e4
CL
3846 /* Push back cpu slabs */
3847 flush_all(s);
3848
f64dc58c 3849 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3850 struct kmem_cache_node *n = get_node(s, node);
3851 unsigned long flags;
3852 struct page *page;
3853
9e86943b 3854 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3855 continue;
3856
3857 spin_lock_irqsave(&n->list_lock, flags);
3858 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3859 process_slab(&t, s, page, alloc, map);
88a420e4 3860 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3861 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3862 spin_unlock_irqrestore(&n->list_lock, flags);
3863 }
3864
3865 for (i = 0; i < t.count; i++) {
45edfa58 3866 struct location *l = &t.loc[i];
88a420e4 3867
9c246247 3868 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3869 break;
e374d483 3870 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3871
3872 if (l->addr)
62c70bce 3873 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 3874 else
e374d483 3875 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3876
3877 if (l->sum_time != l->min_time) {
e374d483 3878 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3879 l->min_time,
3880 (long)div_u64(l->sum_time, l->count),
3881 l->max_time);
45edfa58 3882 } else
e374d483 3883 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3884 l->min_time);
3885
3886 if (l->min_pid != l->max_pid)
e374d483 3887 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3888 l->min_pid, l->max_pid);
3889 else
e374d483 3890 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3891 l->min_pid);
3892
174596a0
RR
3893 if (num_online_cpus() > 1 &&
3894 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3895 len < PAGE_SIZE - 60) {
3896 len += sprintf(buf + len, " cpus=");
3897 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3898 to_cpumask(l->cpus));
45edfa58
CL
3899 }
3900
62bc62a8 3901 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3902 len < PAGE_SIZE - 60) {
3903 len += sprintf(buf + len, " nodes=");
3904 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3905 l->nodes);
3906 }
3907
e374d483 3908 len += sprintf(buf + len, "\n");
88a420e4
CL
3909 }
3910
3911 free_loc_track(&t);
bbd7d57b 3912 kfree(map);
88a420e4 3913 if (!t.count)
e374d483
HH
3914 len += sprintf(buf, "No data\n");
3915 return len;
88a420e4 3916}
ab4d5ed5 3917#endif
88a420e4 3918
a5a84755
CL
3919#ifdef SLUB_RESILIENCY_TEST
3920static void resiliency_test(void)
3921{
3922 u8 *p;
3923
3924 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3925
3926 printk(KERN_ERR "SLUB resiliency testing\n");
3927 printk(KERN_ERR "-----------------------\n");
3928 printk(KERN_ERR "A. Corruption after allocation\n");
3929
3930 p = kzalloc(16, GFP_KERNEL);
3931 p[16] = 0x12;
3932 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3933 " 0x12->0x%p\n\n", p + 16);
3934
3935 validate_slab_cache(kmalloc_caches[4]);
3936
3937 /* Hmmm... The next two are dangerous */
3938 p = kzalloc(32, GFP_KERNEL);
3939 p[32 + sizeof(void *)] = 0x34;
3940 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3941 " 0x34 -> -0x%p\n", p);
3942 printk(KERN_ERR
3943 "If allocated object is overwritten then not detectable\n\n");
3944
3945 validate_slab_cache(kmalloc_caches[5]);
3946 p = kzalloc(64, GFP_KERNEL);
3947 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3948 *p = 0x56;
3949 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3950 p);
3951 printk(KERN_ERR
3952 "If allocated object is overwritten then not detectable\n\n");
3953 validate_slab_cache(kmalloc_caches[6]);
3954
3955 printk(KERN_ERR "\nB. Corruption after free\n");
3956 p = kzalloc(128, GFP_KERNEL);
3957 kfree(p);
3958 *p = 0x78;
3959 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3960 validate_slab_cache(kmalloc_caches[7]);
3961
3962 p = kzalloc(256, GFP_KERNEL);
3963 kfree(p);
3964 p[50] = 0x9a;
3965 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3966 p);
3967 validate_slab_cache(kmalloc_caches[8]);
3968
3969 p = kzalloc(512, GFP_KERNEL);
3970 kfree(p);
3971 p[512] = 0xab;
3972 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3973 validate_slab_cache(kmalloc_caches[9]);
3974}
3975#else
3976#ifdef CONFIG_SYSFS
3977static void resiliency_test(void) {};
3978#endif
3979#endif
3980
ab4d5ed5 3981#ifdef CONFIG_SYSFS
81819f0f 3982enum slab_stat_type {
205ab99d
CL
3983 SL_ALL, /* All slabs */
3984 SL_PARTIAL, /* Only partially allocated slabs */
3985 SL_CPU, /* Only slabs used for cpu caches */
3986 SL_OBJECTS, /* Determine allocated objects not slabs */
3987 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3988};
3989
205ab99d 3990#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3991#define SO_PARTIAL (1 << SL_PARTIAL)
3992#define SO_CPU (1 << SL_CPU)
3993#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3994#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3995
62e5c4b4
CG
3996static ssize_t show_slab_objects(struct kmem_cache *s,
3997 char *buf, unsigned long flags)
81819f0f
CL
3998{
3999 unsigned long total = 0;
81819f0f
CL
4000 int node;
4001 int x;
4002 unsigned long *nodes;
4003 unsigned long *per_cpu;
4004
4005 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4006 if (!nodes)
4007 return -ENOMEM;
81819f0f
CL
4008 per_cpu = nodes + nr_node_ids;
4009
205ab99d
CL
4010 if (flags & SO_CPU) {
4011 int cpu;
81819f0f 4012
205ab99d 4013 for_each_possible_cpu(cpu) {
9dfc6e68 4014 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 4015
205ab99d
CL
4016 if (!c || c->node < 0)
4017 continue;
4018
4019 if (c->page) {
4020 if (flags & SO_TOTAL)
4021 x = c->page->objects;
4022 else if (flags & SO_OBJECTS)
4023 x = c->page->inuse;
81819f0f
CL
4024 else
4025 x = 1;
205ab99d 4026
81819f0f 4027 total += x;
205ab99d 4028 nodes[c->node] += x;
81819f0f 4029 }
205ab99d 4030 per_cpu[c->node]++;
81819f0f
CL
4031 }
4032 }
4033
04d94879 4034 lock_memory_hotplug();
ab4d5ed5 4035#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4036 if (flags & SO_ALL) {
4037 for_each_node_state(node, N_NORMAL_MEMORY) {
4038 struct kmem_cache_node *n = get_node(s, node);
4039
4040 if (flags & SO_TOTAL)
4041 x = atomic_long_read(&n->total_objects);
4042 else if (flags & SO_OBJECTS)
4043 x = atomic_long_read(&n->total_objects) -
4044 count_partial(n, count_free);
81819f0f 4045
81819f0f 4046 else
205ab99d 4047 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4048 total += x;
4049 nodes[node] += x;
4050 }
4051
ab4d5ed5
CL
4052 } else
4053#endif
4054 if (flags & SO_PARTIAL) {
205ab99d
CL
4055 for_each_node_state(node, N_NORMAL_MEMORY) {
4056 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4057
205ab99d
CL
4058 if (flags & SO_TOTAL)
4059 x = count_partial(n, count_total);
4060 else if (flags & SO_OBJECTS)
4061 x = count_partial(n, count_inuse);
81819f0f 4062 else
205ab99d 4063 x = n->nr_partial;
81819f0f
CL
4064 total += x;
4065 nodes[node] += x;
4066 }
4067 }
81819f0f
CL
4068 x = sprintf(buf, "%lu", total);
4069#ifdef CONFIG_NUMA
f64dc58c 4070 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4071 if (nodes[node])
4072 x += sprintf(buf + x, " N%d=%lu",
4073 node, nodes[node]);
4074#endif
04d94879 4075 unlock_memory_hotplug();
81819f0f
CL
4076 kfree(nodes);
4077 return x + sprintf(buf + x, "\n");
4078}
4079
ab4d5ed5 4080#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4081static int any_slab_objects(struct kmem_cache *s)
4082{
4083 int node;
81819f0f 4084
dfb4f096 4085 for_each_online_node(node) {
81819f0f
CL
4086 struct kmem_cache_node *n = get_node(s, node);
4087
dfb4f096
CL
4088 if (!n)
4089 continue;
4090
4ea33e2d 4091 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4092 return 1;
4093 }
4094 return 0;
4095}
ab4d5ed5 4096#endif
81819f0f
CL
4097
4098#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4099#define to_slab(n) container_of(n, struct kmem_cache, kobj);
4100
4101struct slab_attribute {
4102 struct attribute attr;
4103 ssize_t (*show)(struct kmem_cache *s, char *buf);
4104 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4105};
4106
4107#define SLAB_ATTR_RO(_name) \
4108 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4109
4110#define SLAB_ATTR(_name) \
4111 static struct slab_attribute _name##_attr = \
4112 __ATTR(_name, 0644, _name##_show, _name##_store)
4113
81819f0f
CL
4114static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4115{
4116 return sprintf(buf, "%d\n", s->size);
4117}
4118SLAB_ATTR_RO(slab_size);
4119
4120static ssize_t align_show(struct kmem_cache *s, char *buf)
4121{
4122 return sprintf(buf, "%d\n", s->align);
4123}
4124SLAB_ATTR_RO(align);
4125
4126static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4127{
4128 return sprintf(buf, "%d\n", s->objsize);
4129}
4130SLAB_ATTR_RO(object_size);
4131
4132static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4133{
834f3d11 4134 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4135}
4136SLAB_ATTR_RO(objs_per_slab);
4137
06b285dc
CL
4138static ssize_t order_store(struct kmem_cache *s,
4139 const char *buf, size_t length)
4140{
0121c619
CL
4141 unsigned long order;
4142 int err;
4143
4144 err = strict_strtoul(buf, 10, &order);
4145 if (err)
4146 return err;
06b285dc
CL
4147
4148 if (order > slub_max_order || order < slub_min_order)
4149 return -EINVAL;
4150
4151 calculate_sizes(s, order);
4152 return length;
4153}
4154
81819f0f
CL
4155static ssize_t order_show(struct kmem_cache *s, char *buf)
4156{
834f3d11 4157 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4158}
06b285dc 4159SLAB_ATTR(order);
81819f0f 4160
73d342b1
DR
4161static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4162{
4163 return sprintf(buf, "%lu\n", s->min_partial);
4164}
4165
4166static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4167 size_t length)
4168{
4169 unsigned long min;
4170 int err;
4171
4172 err = strict_strtoul(buf, 10, &min);
4173 if (err)
4174 return err;
4175
c0bdb232 4176 set_min_partial(s, min);
73d342b1
DR
4177 return length;
4178}
4179SLAB_ATTR(min_partial);
4180
81819f0f
CL
4181static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4182{
62c70bce
JP
4183 if (!s->ctor)
4184 return 0;
4185 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4186}
4187SLAB_ATTR_RO(ctor);
4188
81819f0f
CL
4189static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4190{
4191 return sprintf(buf, "%d\n", s->refcount - 1);
4192}
4193SLAB_ATTR_RO(aliases);
4194
81819f0f
CL
4195static ssize_t partial_show(struct kmem_cache *s, char *buf)
4196{
d9acf4b7 4197 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4198}
4199SLAB_ATTR_RO(partial);
4200
4201static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4202{
d9acf4b7 4203 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4204}
4205SLAB_ATTR_RO(cpu_slabs);
4206
4207static ssize_t objects_show(struct kmem_cache *s, char *buf)
4208{
205ab99d 4209 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4210}
4211SLAB_ATTR_RO(objects);
4212
205ab99d
CL
4213static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4214{
4215 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4216}
4217SLAB_ATTR_RO(objects_partial);
4218
a5a84755
CL
4219static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4220{
4221 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4222}
4223
4224static ssize_t reclaim_account_store(struct kmem_cache *s,
4225 const char *buf, size_t length)
4226{
4227 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4228 if (buf[0] == '1')
4229 s->flags |= SLAB_RECLAIM_ACCOUNT;
4230 return length;
4231}
4232SLAB_ATTR(reclaim_account);
4233
4234static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4235{
4236 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4237}
4238SLAB_ATTR_RO(hwcache_align);
4239
4240#ifdef CONFIG_ZONE_DMA
4241static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4242{
4243 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4244}
4245SLAB_ATTR_RO(cache_dma);
4246#endif
4247
4248static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4249{
4250 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4251}
4252SLAB_ATTR_RO(destroy_by_rcu);
4253
ab9a0f19
LJ
4254static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4255{
4256 return sprintf(buf, "%d\n", s->reserved);
4257}
4258SLAB_ATTR_RO(reserved);
4259
ab4d5ed5 4260#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4261static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4262{
4263 return show_slab_objects(s, buf, SO_ALL);
4264}
4265SLAB_ATTR_RO(slabs);
4266
205ab99d
CL
4267static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4268{
4269 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4270}
4271SLAB_ATTR_RO(total_objects);
4272
81819f0f
CL
4273static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4274{
4275 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4276}
4277
4278static ssize_t sanity_checks_store(struct kmem_cache *s,
4279 const char *buf, size_t length)
4280{
4281 s->flags &= ~SLAB_DEBUG_FREE;
4282 if (buf[0] == '1')
4283 s->flags |= SLAB_DEBUG_FREE;
4284 return length;
4285}
4286SLAB_ATTR(sanity_checks);
4287
4288static ssize_t trace_show(struct kmem_cache *s, char *buf)
4289{
4290 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4291}
4292
4293static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4294 size_t length)
4295{
4296 s->flags &= ~SLAB_TRACE;
4297 if (buf[0] == '1')
4298 s->flags |= SLAB_TRACE;
4299 return length;
4300}
4301SLAB_ATTR(trace);
4302
81819f0f
CL
4303static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4304{
4305 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4306}
4307
4308static ssize_t red_zone_store(struct kmem_cache *s,
4309 const char *buf, size_t length)
4310{
4311 if (any_slab_objects(s))
4312 return -EBUSY;
4313
4314 s->flags &= ~SLAB_RED_ZONE;
4315 if (buf[0] == '1')
4316 s->flags |= SLAB_RED_ZONE;
06b285dc 4317 calculate_sizes(s, -1);
81819f0f
CL
4318 return length;
4319}
4320SLAB_ATTR(red_zone);
4321
4322static ssize_t poison_show(struct kmem_cache *s, char *buf)
4323{
4324 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4325}
4326
4327static ssize_t poison_store(struct kmem_cache *s,
4328 const char *buf, size_t length)
4329{
4330 if (any_slab_objects(s))
4331 return -EBUSY;
4332
4333 s->flags &= ~SLAB_POISON;
4334 if (buf[0] == '1')
4335 s->flags |= SLAB_POISON;
06b285dc 4336 calculate_sizes(s, -1);
81819f0f
CL
4337 return length;
4338}
4339SLAB_ATTR(poison);
4340
4341static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4342{
4343 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4344}
4345
4346static ssize_t store_user_store(struct kmem_cache *s,
4347 const char *buf, size_t length)
4348{
4349 if (any_slab_objects(s))
4350 return -EBUSY;
4351
4352 s->flags &= ~SLAB_STORE_USER;
4353 if (buf[0] == '1')
4354 s->flags |= SLAB_STORE_USER;
06b285dc 4355 calculate_sizes(s, -1);
81819f0f
CL
4356 return length;
4357}
4358SLAB_ATTR(store_user);
4359
53e15af0
CL
4360static ssize_t validate_show(struct kmem_cache *s, char *buf)
4361{
4362 return 0;
4363}
4364
4365static ssize_t validate_store(struct kmem_cache *s,
4366 const char *buf, size_t length)
4367{
434e245d
CL
4368 int ret = -EINVAL;
4369
4370 if (buf[0] == '1') {
4371 ret = validate_slab_cache(s);
4372 if (ret >= 0)
4373 ret = length;
4374 }
4375 return ret;
53e15af0
CL
4376}
4377SLAB_ATTR(validate);
a5a84755
CL
4378
4379static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4380{
4381 if (!(s->flags & SLAB_STORE_USER))
4382 return -ENOSYS;
4383 return list_locations(s, buf, TRACK_ALLOC);
4384}
4385SLAB_ATTR_RO(alloc_calls);
4386
4387static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4388{
4389 if (!(s->flags & SLAB_STORE_USER))
4390 return -ENOSYS;
4391 return list_locations(s, buf, TRACK_FREE);
4392}
4393SLAB_ATTR_RO(free_calls);
4394#endif /* CONFIG_SLUB_DEBUG */
4395
4396#ifdef CONFIG_FAILSLAB
4397static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4398{
4399 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4400}
4401
4402static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4403 size_t length)
4404{
4405 s->flags &= ~SLAB_FAILSLAB;
4406 if (buf[0] == '1')
4407 s->flags |= SLAB_FAILSLAB;
4408 return length;
4409}
4410SLAB_ATTR(failslab);
ab4d5ed5 4411#endif
53e15af0 4412
2086d26a
CL
4413static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4414{
4415 return 0;
4416}
4417
4418static ssize_t shrink_store(struct kmem_cache *s,
4419 const char *buf, size_t length)
4420{
4421 if (buf[0] == '1') {
4422 int rc = kmem_cache_shrink(s);
4423
4424 if (rc)
4425 return rc;
4426 } else
4427 return -EINVAL;
4428 return length;
4429}
4430SLAB_ATTR(shrink);
4431
81819f0f 4432#ifdef CONFIG_NUMA
9824601e 4433static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4434{
9824601e 4435 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4436}
4437
9824601e 4438static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4439 const char *buf, size_t length)
4440{
0121c619
CL
4441 unsigned long ratio;
4442 int err;
4443
4444 err = strict_strtoul(buf, 10, &ratio);
4445 if (err)
4446 return err;
4447
e2cb96b7 4448 if (ratio <= 100)
0121c619 4449 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4450
81819f0f
CL
4451 return length;
4452}
9824601e 4453SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4454#endif
4455
8ff12cfc 4456#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4457static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4458{
4459 unsigned long sum = 0;
4460 int cpu;
4461 int len;
4462 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4463
4464 if (!data)
4465 return -ENOMEM;
4466
4467 for_each_online_cpu(cpu) {
9dfc6e68 4468 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4469
4470 data[cpu] = x;
4471 sum += x;
4472 }
4473
4474 len = sprintf(buf, "%lu", sum);
4475
50ef37b9 4476#ifdef CONFIG_SMP
8ff12cfc
CL
4477 for_each_online_cpu(cpu) {
4478 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4479 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4480 }
50ef37b9 4481#endif
8ff12cfc
CL
4482 kfree(data);
4483 return len + sprintf(buf + len, "\n");
4484}
4485
78eb00cc
DR
4486static void clear_stat(struct kmem_cache *s, enum stat_item si)
4487{
4488 int cpu;
4489
4490 for_each_online_cpu(cpu)
9dfc6e68 4491 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4492}
4493
8ff12cfc
CL
4494#define STAT_ATTR(si, text) \
4495static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4496{ \
4497 return show_stat(s, buf, si); \
4498} \
78eb00cc
DR
4499static ssize_t text##_store(struct kmem_cache *s, \
4500 const char *buf, size_t length) \
4501{ \
4502 if (buf[0] != '0') \
4503 return -EINVAL; \
4504 clear_stat(s, si); \
4505 return length; \
4506} \
4507SLAB_ATTR(text); \
8ff12cfc
CL
4508
4509STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4510STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4511STAT_ATTR(FREE_FASTPATH, free_fastpath);
4512STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4513STAT_ATTR(FREE_FROZEN, free_frozen);
4514STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4515STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4516STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4517STAT_ATTR(ALLOC_SLAB, alloc_slab);
4518STAT_ATTR(ALLOC_REFILL, alloc_refill);
4519STAT_ATTR(FREE_SLAB, free_slab);
4520STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4521STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4522STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4523STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4524STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4525STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4526STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4527#endif
4528
06428780 4529static struct attribute *slab_attrs[] = {
81819f0f
CL
4530 &slab_size_attr.attr,
4531 &object_size_attr.attr,
4532 &objs_per_slab_attr.attr,
4533 &order_attr.attr,
73d342b1 4534 &min_partial_attr.attr,
81819f0f 4535 &objects_attr.attr,
205ab99d 4536 &objects_partial_attr.attr,
81819f0f
CL
4537 &partial_attr.attr,
4538 &cpu_slabs_attr.attr,
4539 &ctor_attr.attr,
81819f0f
CL
4540 &aliases_attr.attr,
4541 &align_attr.attr,
81819f0f
CL
4542 &hwcache_align_attr.attr,
4543 &reclaim_account_attr.attr,
4544 &destroy_by_rcu_attr.attr,
a5a84755 4545 &shrink_attr.attr,
ab9a0f19 4546 &reserved_attr.attr,
ab4d5ed5 4547#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4548 &total_objects_attr.attr,
4549 &slabs_attr.attr,
4550 &sanity_checks_attr.attr,
4551 &trace_attr.attr,
81819f0f
CL
4552 &red_zone_attr.attr,
4553 &poison_attr.attr,
4554 &store_user_attr.attr,
53e15af0 4555 &validate_attr.attr,
88a420e4
CL
4556 &alloc_calls_attr.attr,
4557 &free_calls_attr.attr,
ab4d5ed5 4558#endif
81819f0f
CL
4559#ifdef CONFIG_ZONE_DMA
4560 &cache_dma_attr.attr,
4561#endif
4562#ifdef CONFIG_NUMA
9824601e 4563 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4564#endif
4565#ifdef CONFIG_SLUB_STATS
4566 &alloc_fastpath_attr.attr,
4567 &alloc_slowpath_attr.attr,
4568 &free_fastpath_attr.attr,
4569 &free_slowpath_attr.attr,
4570 &free_frozen_attr.attr,
4571 &free_add_partial_attr.attr,
4572 &free_remove_partial_attr.attr,
4573 &alloc_from_partial_attr.attr,
4574 &alloc_slab_attr.attr,
4575 &alloc_refill_attr.attr,
4576 &free_slab_attr.attr,
4577 &cpuslab_flush_attr.attr,
4578 &deactivate_full_attr.attr,
4579 &deactivate_empty_attr.attr,
4580 &deactivate_to_head_attr.attr,
4581 &deactivate_to_tail_attr.attr,
4582 &deactivate_remote_frees_attr.attr,
65c3376a 4583 &order_fallback_attr.attr,
81819f0f 4584#endif
4c13dd3b
DM
4585#ifdef CONFIG_FAILSLAB
4586 &failslab_attr.attr,
4587#endif
4588
81819f0f
CL
4589 NULL
4590};
4591
4592static struct attribute_group slab_attr_group = {
4593 .attrs = slab_attrs,
4594};
4595
4596static ssize_t slab_attr_show(struct kobject *kobj,
4597 struct attribute *attr,
4598 char *buf)
4599{
4600 struct slab_attribute *attribute;
4601 struct kmem_cache *s;
4602 int err;
4603
4604 attribute = to_slab_attr(attr);
4605 s = to_slab(kobj);
4606
4607 if (!attribute->show)
4608 return -EIO;
4609
4610 err = attribute->show(s, buf);
4611
4612 return err;
4613}
4614
4615static ssize_t slab_attr_store(struct kobject *kobj,
4616 struct attribute *attr,
4617 const char *buf, size_t len)
4618{
4619 struct slab_attribute *attribute;
4620 struct kmem_cache *s;
4621 int err;
4622
4623 attribute = to_slab_attr(attr);
4624 s = to_slab(kobj);
4625
4626 if (!attribute->store)
4627 return -EIO;
4628
4629 err = attribute->store(s, buf, len);
4630
4631 return err;
4632}
4633
151c602f
CL
4634static void kmem_cache_release(struct kobject *kobj)
4635{
4636 struct kmem_cache *s = to_slab(kobj);
4637
84c1cf62 4638 kfree(s->name);
151c602f
CL
4639 kfree(s);
4640}
4641
52cf25d0 4642static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4643 .show = slab_attr_show,
4644 .store = slab_attr_store,
4645};
4646
4647static struct kobj_type slab_ktype = {
4648 .sysfs_ops = &slab_sysfs_ops,
151c602f 4649 .release = kmem_cache_release
81819f0f
CL
4650};
4651
4652static int uevent_filter(struct kset *kset, struct kobject *kobj)
4653{
4654 struct kobj_type *ktype = get_ktype(kobj);
4655
4656 if (ktype == &slab_ktype)
4657 return 1;
4658 return 0;
4659}
4660
9cd43611 4661static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4662 .filter = uevent_filter,
4663};
4664
27c3a314 4665static struct kset *slab_kset;
81819f0f
CL
4666
4667#define ID_STR_LENGTH 64
4668
4669/* Create a unique string id for a slab cache:
6446faa2
CL
4670 *
4671 * Format :[flags-]size
81819f0f
CL
4672 */
4673static char *create_unique_id(struct kmem_cache *s)
4674{
4675 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4676 char *p = name;
4677
4678 BUG_ON(!name);
4679
4680 *p++ = ':';
4681 /*
4682 * First flags affecting slabcache operations. We will only
4683 * get here for aliasable slabs so we do not need to support
4684 * too many flags. The flags here must cover all flags that
4685 * are matched during merging to guarantee that the id is
4686 * unique.
4687 */
4688 if (s->flags & SLAB_CACHE_DMA)
4689 *p++ = 'd';
4690 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4691 *p++ = 'a';
4692 if (s->flags & SLAB_DEBUG_FREE)
4693 *p++ = 'F';
5a896d9e
VN
4694 if (!(s->flags & SLAB_NOTRACK))
4695 *p++ = 't';
81819f0f
CL
4696 if (p != name + 1)
4697 *p++ = '-';
4698 p += sprintf(p, "%07d", s->size);
4699 BUG_ON(p > name + ID_STR_LENGTH - 1);
4700 return name;
4701}
4702
4703static int sysfs_slab_add(struct kmem_cache *s)
4704{
4705 int err;
4706 const char *name;
4707 int unmergeable;
4708
4709 if (slab_state < SYSFS)
4710 /* Defer until later */
4711 return 0;
4712
4713 unmergeable = slab_unmergeable(s);
4714 if (unmergeable) {
4715 /*
4716 * Slabcache can never be merged so we can use the name proper.
4717 * This is typically the case for debug situations. In that
4718 * case we can catch duplicate names easily.
4719 */
27c3a314 4720 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4721 name = s->name;
4722 } else {
4723 /*
4724 * Create a unique name for the slab as a target
4725 * for the symlinks.
4726 */
4727 name = create_unique_id(s);
4728 }
4729
27c3a314 4730 s->kobj.kset = slab_kset;
1eada11c
GKH
4731 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4732 if (err) {
4733 kobject_put(&s->kobj);
81819f0f 4734 return err;
1eada11c 4735 }
81819f0f
CL
4736
4737 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4738 if (err) {
4739 kobject_del(&s->kobj);
4740 kobject_put(&s->kobj);
81819f0f 4741 return err;
5788d8ad 4742 }
81819f0f
CL
4743 kobject_uevent(&s->kobj, KOBJ_ADD);
4744 if (!unmergeable) {
4745 /* Setup first alias */
4746 sysfs_slab_alias(s, s->name);
4747 kfree(name);
4748 }
4749 return 0;
4750}
4751
4752static void sysfs_slab_remove(struct kmem_cache *s)
4753{
2bce6485
CL
4754 if (slab_state < SYSFS)
4755 /*
4756 * Sysfs has not been setup yet so no need to remove the
4757 * cache from sysfs.
4758 */
4759 return;
4760
81819f0f
CL
4761 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4762 kobject_del(&s->kobj);
151c602f 4763 kobject_put(&s->kobj);
81819f0f
CL
4764}
4765
4766/*
4767 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4768 * available lest we lose that information.
81819f0f
CL
4769 */
4770struct saved_alias {
4771 struct kmem_cache *s;
4772 const char *name;
4773 struct saved_alias *next;
4774};
4775
5af328a5 4776static struct saved_alias *alias_list;
81819f0f
CL
4777
4778static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4779{
4780 struct saved_alias *al;
4781
4782 if (slab_state == SYSFS) {
4783 /*
4784 * If we have a leftover link then remove it.
4785 */
27c3a314
GKH
4786 sysfs_remove_link(&slab_kset->kobj, name);
4787 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4788 }
4789
4790 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4791 if (!al)
4792 return -ENOMEM;
4793
4794 al->s = s;
4795 al->name = name;
4796 al->next = alias_list;
4797 alias_list = al;
4798 return 0;
4799}
4800
4801static int __init slab_sysfs_init(void)
4802{
5b95a4ac 4803 struct kmem_cache *s;
81819f0f
CL
4804 int err;
4805
2bce6485
CL
4806 down_write(&slub_lock);
4807
0ff21e46 4808 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4809 if (!slab_kset) {
2bce6485 4810 up_write(&slub_lock);
81819f0f
CL
4811 printk(KERN_ERR "Cannot register slab subsystem.\n");
4812 return -ENOSYS;
4813 }
4814
26a7bd03
CL
4815 slab_state = SYSFS;
4816
5b95a4ac 4817 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4818 err = sysfs_slab_add(s);
5d540fb7
CL
4819 if (err)
4820 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4821 " to sysfs\n", s->name);
26a7bd03 4822 }
81819f0f
CL
4823
4824 while (alias_list) {
4825 struct saved_alias *al = alias_list;
4826
4827 alias_list = alias_list->next;
4828 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4829 if (err)
4830 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4831 " %s to sysfs\n", s->name);
81819f0f
CL
4832 kfree(al);
4833 }
4834
2bce6485 4835 up_write(&slub_lock);
81819f0f
CL
4836 resiliency_test();
4837 return 0;
4838}
4839
4840__initcall(slab_sysfs_init);
ab4d5ed5 4841#endif /* CONFIG_SYSFS */
57ed3eda
PE
4842
4843/*
4844 * The /proc/slabinfo ABI
4845 */
158a9624 4846#ifdef CONFIG_SLABINFO
57ed3eda
PE
4847static void print_slabinfo_header(struct seq_file *m)
4848{
4849 seq_puts(m, "slabinfo - version: 2.1\n");
4850 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4851 "<objperslab> <pagesperslab>");
4852 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4853 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4854 seq_putc(m, '\n');
4855}
4856
4857static void *s_start(struct seq_file *m, loff_t *pos)
4858{
4859 loff_t n = *pos;
4860
4861 down_read(&slub_lock);
4862 if (!n)
4863 print_slabinfo_header(m);
4864
4865 return seq_list_start(&slab_caches, *pos);
4866}
4867
4868static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4869{
4870 return seq_list_next(p, &slab_caches, pos);
4871}
4872
4873static void s_stop(struct seq_file *m, void *p)
4874{
4875 up_read(&slub_lock);
4876}
4877
4878static int s_show(struct seq_file *m, void *p)
4879{
4880 unsigned long nr_partials = 0;
4881 unsigned long nr_slabs = 0;
4882 unsigned long nr_inuse = 0;
205ab99d
CL
4883 unsigned long nr_objs = 0;
4884 unsigned long nr_free = 0;
57ed3eda
PE
4885 struct kmem_cache *s;
4886 int node;
4887
4888 s = list_entry(p, struct kmem_cache, list);
4889
4890 for_each_online_node(node) {
4891 struct kmem_cache_node *n = get_node(s, node);
4892
4893 if (!n)
4894 continue;
4895
4896 nr_partials += n->nr_partial;
4897 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4898 nr_objs += atomic_long_read(&n->total_objects);
4899 nr_free += count_partial(n, count_free);
57ed3eda
PE
4900 }
4901
205ab99d 4902 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4903
4904 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4905 nr_objs, s->size, oo_objects(s->oo),
4906 (1 << oo_order(s->oo)));
57ed3eda
PE
4907 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4908 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4909 0UL);
4910 seq_putc(m, '\n');
4911 return 0;
4912}
4913
7b3c3a50 4914static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4915 .start = s_start,
4916 .next = s_next,
4917 .stop = s_stop,
4918 .show = s_show,
4919};
4920
7b3c3a50
AD
4921static int slabinfo_open(struct inode *inode, struct file *file)
4922{
4923 return seq_open(file, &slabinfo_op);
4924}
4925
4926static const struct file_operations proc_slabinfo_operations = {
4927 .open = slabinfo_open,
4928 .read = seq_read,
4929 .llseek = seq_lseek,
4930 .release = seq_release,
4931};
4932
4933static int __init slab_proc_init(void)
4934{
cf5d1131 4935 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4936 return 0;
4937}
4938module_init(slab_proc_init);
158a9624 4939#endif /* CONFIG_SLABINFO */