slub: drop lock at the end of free_debug_processing
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
345c905d
JK
127static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128{
129#ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131#else
132 return false;
133#endif
134}
135
81819f0f
CL
136/*
137 * Issues still to be resolved:
138 *
81819f0f
CL
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
81819f0f
CL
141 * - Variable sizing of the per node arrays
142 */
143
144/* Enable to test recovery from slab corruption on boot */
145#undef SLUB_RESILIENCY_TEST
146
b789ef51
CL
147/* Enable to log cmpxchg failures */
148#undef SLUB_DEBUG_CMPXCHG
149
2086d26a
CL
150/*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
76be8950 154#define MIN_PARTIAL 5
e95eed57 155
2086d26a
CL
156/*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 159 * sort the partial list by the number of objects in use.
2086d26a
CL
160 */
161#define MAX_PARTIAL 10
162
81819f0f
CL
163#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
672bba3a 165
fa5ec8a1 166/*
3de47213
DR
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
fa5ec8a1 170 */
3de47213 171#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 172
210b5c06
CG
173#define OO_SHIFT 16
174#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 175#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 176
81819f0f 177/* Internal SLUB flags */
f90ec390 178#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 179#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 180
81819f0f
CL
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
d6543e39 188#define TRACK_ADDRS_COUNT 16
02cbc874 189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
d6543e39
BG
191#ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193#endif
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 204static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
107dab5c 209static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
210#endif
211
4fdccdfb 212static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
213{
214#ifdef CONFIG_SLUB_STATS
88da03a6
CL
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
220#endif
221}
222
81819f0f
CL
223/********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
6446faa2 227/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
228static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230{
231 void *base;
232
a973e9dd 233 if (!object)
02cbc874
CL
234 return 1;
235
a973e9dd 236 base = page_address(page);
39b26464 237 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243}
244
7656c72b
CL
245static inline void *get_freepointer(struct kmem_cache *s, void *object)
246{
247 return *(void **)(object + s->offset);
248}
249
0ad9500e
ED
250static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251{
252 prefetch(object + s->offset);
253}
254
1393d9a1
CL
255static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256{
257 void *p;
258
259#ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261#else
262 p = get_freepointer(s, object);
263#endif
264 return p;
265}
266
7656c72b
CL
267static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268{
269 *(void **)(object + s->offset) = fp;
270}
271
272/* Loop over all objects in a slab */
224a88be
CL
273#define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
275 __p += (__s)->size)
276
54266640
WY
277#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
ab9a0f19
LJ
287static inline int order_objects(int order, unsigned long size, int reserved)
288{
289 return ((PAGE_SIZE << order) - reserved) / size;
290}
291
834f3d11 292static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 293 unsigned long size, int reserved)
834f3d11
CL
294{
295 struct kmem_cache_order_objects x = {
ab9a0f19 296 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
297 };
298
299 return x;
300}
301
302static inline int oo_order(struct kmem_cache_order_objects x)
303{
210b5c06 304 return x.x >> OO_SHIFT;
834f3d11
CL
305}
306
307static inline int oo_objects(struct kmem_cache_order_objects x)
308{
210b5c06 309 return x.x & OO_MASK;
834f3d11
CL
310}
311
881db7fb
CL
312/*
313 * Per slab locking using the pagelock
314 */
315static __always_inline void slab_lock(struct page *page)
316{
48c935ad 317 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
318 bit_spin_lock(PG_locked, &page->flags);
319}
320
321static __always_inline void slab_unlock(struct page *page)
322{
48c935ad 323 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
324 __bit_spin_unlock(PG_locked, &page->flags);
325}
326
a0320865
DH
327static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
328{
329 struct page tmp;
330 tmp.counters = counters_new;
331 /*
332 * page->counters can cover frozen/inuse/objects as well
333 * as page->_count. If we assign to ->counters directly
334 * we run the risk of losing updates to page->_count, so
335 * be careful and only assign to the fields we need.
336 */
337 page->frozen = tmp.frozen;
338 page->inuse = tmp.inuse;
339 page->objects = tmp.objects;
340}
341
1d07171c
CL
342/* Interrupts must be disabled (for the fallback code to work right) */
343static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
344 void *freelist_old, unsigned long counters_old,
345 void *freelist_new, unsigned long counters_new,
346 const char *n)
347{
348 VM_BUG_ON(!irqs_disabled());
2565409f
HC
349#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
350 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 351 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 352 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
353 freelist_old, counters_old,
354 freelist_new, counters_new))
6f6528a1 355 return true;
1d07171c
CL
356 } else
357#endif
358 {
359 slab_lock(page);
d0e0ac97
CG
360 if (page->freelist == freelist_old &&
361 page->counters == counters_old) {
1d07171c 362 page->freelist = freelist_new;
a0320865 363 set_page_slub_counters(page, counters_new);
1d07171c 364 slab_unlock(page);
6f6528a1 365 return true;
1d07171c
CL
366 }
367 slab_unlock(page);
368 }
369
370 cpu_relax();
371 stat(s, CMPXCHG_DOUBLE_FAIL);
372
373#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 374 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
375#endif
376
6f6528a1 377 return false;
1d07171c
CL
378}
379
b789ef51
CL
380static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
381 void *freelist_old, unsigned long counters_old,
382 void *freelist_new, unsigned long counters_new,
383 const char *n)
384{
2565409f
HC
385#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
386 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 387 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 388 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
389 freelist_old, counters_old,
390 freelist_new, counters_new))
6f6528a1 391 return true;
b789ef51
CL
392 } else
393#endif
394 {
1d07171c
CL
395 unsigned long flags;
396
397 local_irq_save(flags);
881db7fb 398 slab_lock(page);
d0e0ac97
CG
399 if (page->freelist == freelist_old &&
400 page->counters == counters_old) {
b789ef51 401 page->freelist = freelist_new;
a0320865 402 set_page_slub_counters(page, counters_new);
881db7fb 403 slab_unlock(page);
1d07171c 404 local_irq_restore(flags);
6f6528a1 405 return true;
b789ef51 406 }
881db7fb 407 slab_unlock(page);
1d07171c 408 local_irq_restore(flags);
b789ef51
CL
409 }
410
411 cpu_relax();
412 stat(s, CMPXCHG_DOUBLE_FAIL);
413
414#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 415 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
416#endif
417
6f6528a1 418 return false;
b789ef51
CL
419}
420
41ecc55b 421#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
422/*
423 * Determine a map of object in use on a page.
424 *
881db7fb 425 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
426 * not vanish from under us.
427 */
428static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
429{
430 void *p;
431 void *addr = page_address(page);
432
433 for (p = page->freelist; p; p = get_freepointer(s, p))
434 set_bit(slab_index(p, s, addr), map);
435}
436
41ecc55b
CL
437/*
438 * Debug settings:
439 */
89d3c87e 440#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff 441static int slub_debug = DEBUG_DEFAULT_FLAGS;
89d3c87e
AR
442#elif defined(CONFIG_KASAN)
443static int slub_debug = SLAB_STORE_USER;
f0630fff 444#else
41ecc55b 445static int slub_debug;
f0630fff 446#endif
41ecc55b
CL
447
448static char *slub_debug_slabs;
fa5ec8a1 449static int disable_higher_order_debug;
41ecc55b 450
a79316c6
AR
451/*
452 * slub is about to manipulate internal object metadata. This memory lies
453 * outside the range of the allocated object, so accessing it would normally
454 * be reported by kasan as a bounds error. metadata_access_enable() is used
455 * to tell kasan that these accesses are OK.
456 */
457static inline void metadata_access_enable(void)
458{
459 kasan_disable_current();
460}
461
462static inline void metadata_access_disable(void)
463{
464 kasan_enable_current();
465}
466
81819f0f
CL
467/*
468 * Object debugging
469 */
470static void print_section(char *text, u8 *addr, unsigned int length)
471{
a79316c6 472 metadata_access_enable();
ffc79d28
SAS
473 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
474 length, 1);
a79316c6 475 metadata_access_disable();
81819f0f
CL
476}
477
81819f0f
CL
478static struct track *get_track(struct kmem_cache *s, void *object,
479 enum track_item alloc)
480{
481 struct track *p;
482
483 if (s->offset)
484 p = object + s->offset + sizeof(void *);
485 else
486 p = object + s->inuse;
487
488 return p + alloc;
489}
490
491static void set_track(struct kmem_cache *s, void *object,
ce71e27c 492 enum track_item alloc, unsigned long addr)
81819f0f 493{
1a00df4a 494 struct track *p = get_track(s, object, alloc);
81819f0f 495
81819f0f 496 if (addr) {
d6543e39
BG
497#ifdef CONFIG_STACKTRACE
498 struct stack_trace trace;
499 int i;
500
501 trace.nr_entries = 0;
502 trace.max_entries = TRACK_ADDRS_COUNT;
503 trace.entries = p->addrs;
504 trace.skip = 3;
a79316c6 505 metadata_access_enable();
d6543e39 506 save_stack_trace(&trace);
a79316c6 507 metadata_access_disable();
d6543e39
BG
508
509 /* See rant in lockdep.c */
510 if (trace.nr_entries != 0 &&
511 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
512 trace.nr_entries--;
513
514 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
515 p->addrs[i] = 0;
516#endif
81819f0f
CL
517 p->addr = addr;
518 p->cpu = smp_processor_id();
88e4ccf2 519 p->pid = current->pid;
81819f0f
CL
520 p->when = jiffies;
521 } else
522 memset(p, 0, sizeof(struct track));
523}
524
81819f0f
CL
525static void init_tracking(struct kmem_cache *s, void *object)
526{
24922684
CL
527 if (!(s->flags & SLAB_STORE_USER))
528 return;
529
ce71e27c
EGM
530 set_track(s, object, TRACK_FREE, 0UL);
531 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
532}
533
534static void print_track(const char *s, struct track *t)
535{
536 if (!t->addr)
537 return;
538
f9f58285
FF
539 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
540 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
541#ifdef CONFIG_STACKTRACE
542 {
543 int i;
544 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
545 if (t->addrs[i])
f9f58285 546 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
547 else
548 break;
549 }
550#endif
24922684
CL
551}
552
553static void print_tracking(struct kmem_cache *s, void *object)
554{
555 if (!(s->flags & SLAB_STORE_USER))
556 return;
557
558 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
559 print_track("Freed", get_track(s, object, TRACK_FREE));
560}
561
562static void print_page_info(struct page *page)
563{
f9f58285 564 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 565 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
566
567}
568
569static void slab_bug(struct kmem_cache *s, char *fmt, ...)
570{
ecc42fbe 571 struct va_format vaf;
24922684 572 va_list args;
24922684
CL
573
574 va_start(args, fmt);
ecc42fbe
FF
575 vaf.fmt = fmt;
576 vaf.va = &args;
f9f58285 577 pr_err("=============================================================================\n");
ecc42fbe 578 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 579 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 580
373d4d09 581 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 582 va_end(args);
81819f0f
CL
583}
584
24922684
CL
585static void slab_fix(struct kmem_cache *s, char *fmt, ...)
586{
ecc42fbe 587 struct va_format vaf;
24922684 588 va_list args;
24922684
CL
589
590 va_start(args, fmt);
ecc42fbe
FF
591 vaf.fmt = fmt;
592 vaf.va = &args;
593 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 594 va_end(args);
24922684
CL
595}
596
597static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
598{
599 unsigned int off; /* Offset of last byte */
a973e9dd 600 u8 *addr = page_address(page);
24922684
CL
601
602 print_tracking(s, p);
603
604 print_page_info(page);
605
f9f58285
FF
606 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
24922684
CL
608
609 if (p > addr + 16)
ffc79d28 610 print_section("Bytes b4 ", p - 16, 16);
81819f0f 611
3b0efdfa 612 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 613 PAGE_SIZE));
81819f0f 614 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
615 print_section("Redzone ", p + s->object_size,
616 s->inuse - s->object_size);
81819f0f 617
81819f0f
CL
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
622
24922684 623 if (s->flags & SLAB_STORE_USER)
81819f0f 624 off += 2 * sizeof(struct track);
81819f0f
CL
625
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
ffc79d28 628 print_section("Padding ", p + off, s->size - off);
24922684
CL
629
630 dump_stack();
81819f0f
CL
631}
632
75c66def 633void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
634 u8 *object, char *reason)
635{
3dc50637 636 slab_bug(s, "%s", reason);
24922684 637 print_trailer(s, page, object);
81819f0f
CL
638}
639
d0e0ac97
CG
640static void slab_err(struct kmem_cache *s, struct page *page,
641 const char *fmt, ...)
81819f0f
CL
642{
643 va_list args;
644 char buf[100];
645
24922684
CL
646 va_start(args, fmt);
647 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 648 va_end(args);
3dc50637 649 slab_bug(s, "%s", buf);
24922684 650 print_page_info(page);
81819f0f
CL
651 dump_stack();
652}
653
f7cb1933 654static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
655{
656 u8 *p = object;
657
658 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
659 memset(p, POISON_FREE, s->object_size - 1);
660 p[s->object_size - 1] = POISON_END;
81819f0f
CL
661 }
662
663 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 664 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
665}
666
24922684
CL
667static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
668 void *from, void *to)
669{
670 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
671 memset(from, data, to - from);
672}
673
674static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
675 u8 *object, char *what,
06428780 676 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
677{
678 u8 *fault;
679 u8 *end;
680
a79316c6 681 metadata_access_enable();
79824820 682 fault = memchr_inv(start, value, bytes);
a79316c6 683 metadata_access_disable();
24922684
CL
684 if (!fault)
685 return 1;
686
687 end = start + bytes;
688 while (end > fault && end[-1] == value)
689 end--;
690
691 slab_bug(s, "%s overwritten", what);
f9f58285 692 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
693 fault, end - 1, fault[0], value);
694 print_trailer(s, page, object);
695
696 restore_bytes(s, what, value, fault, end);
697 return 0;
81819f0f
CL
698}
699
81819f0f
CL
700/*
701 * Object layout:
702 *
703 * object address
704 * Bytes of the object to be managed.
705 * If the freepointer may overlay the object then the free
706 * pointer is the first word of the object.
672bba3a 707 *
81819f0f
CL
708 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
709 * 0xa5 (POISON_END)
710 *
3b0efdfa 711 * object + s->object_size
81819f0f 712 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 713 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 714 * object_size == inuse.
672bba3a 715 *
81819f0f
CL
716 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
717 * 0xcc (RED_ACTIVE) for objects in use.
718 *
719 * object + s->inuse
672bba3a
CL
720 * Meta data starts here.
721 *
81819f0f
CL
722 * A. Free pointer (if we cannot overwrite object on free)
723 * B. Tracking data for SLAB_STORE_USER
672bba3a 724 * C. Padding to reach required alignment boundary or at mininum
6446faa2 725 * one word if debugging is on to be able to detect writes
672bba3a
CL
726 * before the word boundary.
727 *
728 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
729 *
730 * object + s->size
672bba3a 731 * Nothing is used beyond s->size.
81819f0f 732 *
3b0efdfa 733 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 734 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
735 * may be used with merged slabcaches.
736 */
737
81819f0f
CL
738static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
739{
740 unsigned long off = s->inuse; /* The end of info */
741
742 if (s->offset)
743 /* Freepointer is placed after the object. */
744 off += sizeof(void *);
745
746 if (s->flags & SLAB_STORE_USER)
747 /* We also have user information there */
748 off += 2 * sizeof(struct track);
749
750 if (s->size == off)
751 return 1;
752
24922684
CL
753 return check_bytes_and_report(s, page, p, "Object padding",
754 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
755}
756
39b26464 757/* Check the pad bytes at the end of a slab page */
81819f0f
CL
758static int slab_pad_check(struct kmem_cache *s, struct page *page)
759{
24922684
CL
760 u8 *start;
761 u8 *fault;
762 u8 *end;
763 int length;
764 int remainder;
81819f0f
CL
765
766 if (!(s->flags & SLAB_POISON))
767 return 1;
768
a973e9dd 769 start = page_address(page);
ab9a0f19 770 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
771 end = start + length;
772 remainder = length % s->size;
81819f0f
CL
773 if (!remainder)
774 return 1;
775
a79316c6 776 metadata_access_enable();
79824820 777 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 778 metadata_access_disable();
24922684
CL
779 if (!fault)
780 return 1;
781 while (end > fault && end[-1] == POISON_INUSE)
782 end--;
783
784 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 785 print_section("Padding ", end - remainder, remainder);
24922684 786
8a3d271d 787 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 788 return 0;
81819f0f
CL
789}
790
791static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 792 void *object, u8 val)
81819f0f
CL
793{
794 u8 *p = object;
3b0efdfa 795 u8 *endobject = object + s->object_size;
81819f0f
CL
796
797 if (s->flags & SLAB_RED_ZONE) {
24922684 798 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 799 endobject, val, s->inuse - s->object_size))
81819f0f 800 return 0;
81819f0f 801 } else {
3b0efdfa 802 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 803 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
804 endobject, POISON_INUSE,
805 s->inuse - s->object_size);
3adbefee 806 }
81819f0f
CL
807 }
808
809 if (s->flags & SLAB_POISON) {
f7cb1933 810 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 811 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 812 POISON_FREE, s->object_size - 1) ||
24922684 813 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 814 p + s->object_size - 1, POISON_END, 1)))
81819f0f 815 return 0;
81819f0f
CL
816 /*
817 * check_pad_bytes cleans up on its own.
818 */
819 check_pad_bytes(s, page, p);
820 }
821
f7cb1933 822 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
823 /*
824 * Object and freepointer overlap. Cannot check
825 * freepointer while object is allocated.
826 */
827 return 1;
828
829 /* Check free pointer validity */
830 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
831 object_err(s, page, p, "Freepointer corrupt");
832 /*
9f6c708e 833 * No choice but to zap it and thus lose the remainder
81819f0f 834 * of the free objects in this slab. May cause
672bba3a 835 * another error because the object count is now wrong.
81819f0f 836 */
a973e9dd 837 set_freepointer(s, p, NULL);
81819f0f
CL
838 return 0;
839 }
840 return 1;
841}
842
843static int check_slab(struct kmem_cache *s, struct page *page)
844{
39b26464
CL
845 int maxobj;
846
81819f0f
CL
847 VM_BUG_ON(!irqs_disabled());
848
849 if (!PageSlab(page)) {
24922684 850 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
851 return 0;
852 }
39b26464 853
ab9a0f19 854 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
855 if (page->objects > maxobj) {
856 slab_err(s, page, "objects %u > max %u",
f6edde9c 857 page->objects, maxobj);
39b26464
CL
858 return 0;
859 }
860 if (page->inuse > page->objects) {
24922684 861 slab_err(s, page, "inuse %u > max %u",
f6edde9c 862 page->inuse, page->objects);
81819f0f
CL
863 return 0;
864 }
865 /* Slab_pad_check fixes things up after itself */
866 slab_pad_check(s, page);
867 return 1;
868}
869
870/*
672bba3a
CL
871 * Determine if a certain object on a page is on the freelist. Must hold the
872 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
873 */
874static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
875{
876 int nr = 0;
881db7fb 877 void *fp;
81819f0f 878 void *object = NULL;
f6edde9c 879 int max_objects;
81819f0f 880
881db7fb 881 fp = page->freelist;
39b26464 882 while (fp && nr <= page->objects) {
81819f0f
CL
883 if (fp == search)
884 return 1;
885 if (!check_valid_pointer(s, page, fp)) {
886 if (object) {
887 object_err(s, page, object,
888 "Freechain corrupt");
a973e9dd 889 set_freepointer(s, object, NULL);
81819f0f 890 } else {
24922684 891 slab_err(s, page, "Freepointer corrupt");
a973e9dd 892 page->freelist = NULL;
39b26464 893 page->inuse = page->objects;
24922684 894 slab_fix(s, "Freelist cleared");
81819f0f
CL
895 return 0;
896 }
897 break;
898 }
899 object = fp;
900 fp = get_freepointer(s, object);
901 nr++;
902 }
903
ab9a0f19 904 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
905 if (max_objects > MAX_OBJS_PER_PAGE)
906 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
907
908 if (page->objects != max_objects) {
909 slab_err(s, page, "Wrong number of objects. Found %d but "
910 "should be %d", page->objects, max_objects);
911 page->objects = max_objects;
912 slab_fix(s, "Number of objects adjusted.");
913 }
39b26464 914 if (page->inuse != page->objects - nr) {
70d71228 915 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
916 "counted were %d", page->inuse, page->objects - nr);
917 page->inuse = page->objects - nr;
24922684 918 slab_fix(s, "Object count adjusted.");
81819f0f
CL
919 }
920 return search == NULL;
921}
922
0121c619
CL
923static void trace(struct kmem_cache *s, struct page *page, void *object,
924 int alloc)
3ec09742
CL
925{
926 if (s->flags & SLAB_TRACE) {
f9f58285 927 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
928 s->name,
929 alloc ? "alloc" : "free",
930 object, page->inuse,
931 page->freelist);
932
933 if (!alloc)
d0e0ac97
CG
934 print_section("Object ", (void *)object,
935 s->object_size);
3ec09742
CL
936
937 dump_stack();
938 }
939}
940
643b1138 941/*
672bba3a 942 * Tracking of fully allocated slabs for debugging purposes.
643b1138 943 */
5cc6eee8
CL
944static void add_full(struct kmem_cache *s,
945 struct kmem_cache_node *n, struct page *page)
643b1138 946{
5cc6eee8
CL
947 if (!(s->flags & SLAB_STORE_USER))
948 return;
949
255d0884 950 lockdep_assert_held(&n->list_lock);
643b1138 951 list_add(&page->lru, &n->full);
643b1138
CL
952}
953
c65c1877 954static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 955{
643b1138
CL
956 if (!(s->flags & SLAB_STORE_USER))
957 return;
958
255d0884 959 lockdep_assert_held(&n->list_lock);
643b1138 960 list_del(&page->lru);
643b1138
CL
961}
962
0f389ec6
CL
963/* Tracking of the number of slabs for debugging purposes */
964static inline unsigned long slabs_node(struct kmem_cache *s, int node)
965{
966 struct kmem_cache_node *n = get_node(s, node);
967
968 return atomic_long_read(&n->nr_slabs);
969}
970
26c02cf0
AB
971static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
972{
973 return atomic_long_read(&n->nr_slabs);
974}
975
205ab99d 976static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
977{
978 struct kmem_cache_node *n = get_node(s, node);
979
980 /*
981 * May be called early in order to allocate a slab for the
982 * kmem_cache_node structure. Solve the chicken-egg
983 * dilemma by deferring the increment of the count during
984 * bootstrap (see early_kmem_cache_node_alloc).
985 */
338b2642 986 if (likely(n)) {
0f389ec6 987 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
988 atomic_long_add(objects, &n->total_objects);
989 }
0f389ec6 990}
205ab99d 991static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
992{
993 struct kmem_cache_node *n = get_node(s, node);
994
995 atomic_long_dec(&n->nr_slabs);
205ab99d 996 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
997}
998
999/* Object debug checks for alloc/free paths */
3ec09742
CL
1000static void setup_object_debug(struct kmem_cache *s, struct page *page,
1001 void *object)
1002{
1003 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1004 return;
1005
f7cb1933 1006 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1007 init_tracking(s, object);
1008}
1009
d0e0ac97
CG
1010static noinline int alloc_debug_processing(struct kmem_cache *s,
1011 struct page *page,
ce71e27c 1012 void *object, unsigned long addr)
81819f0f
CL
1013{
1014 if (!check_slab(s, page))
1015 goto bad;
1016
81819f0f
CL
1017 if (!check_valid_pointer(s, page, object)) {
1018 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1019 goto bad;
81819f0f
CL
1020 }
1021
f7cb1933 1022 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1023 goto bad;
81819f0f 1024
3ec09742
CL
1025 /* Success perform special debug activities for allocs */
1026 if (s->flags & SLAB_STORE_USER)
1027 set_track(s, object, TRACK_ALLOC, addr);
1028 trace(s, page, object, 1);
f7cb1933 1029 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1030 return 1;
3ec09742 1031
81819f0f
CL
1032bad:
1033 if (PageSlab(page)) {
1034 /*
1035 * If this is a slab page then lets do the best we can
1036 * to avoid issues in the future. Marking all objects
672bba3a 1037 * as used avoids touching the remaining objects.
81819f0f 1038 */
24922684 1039 slab_fix(s, "Marking all objects used");
39b26464 1040 page->inuse = page->objects;
a973e9dd 1041 page->freelist = NULL;
81819f0f
CL
1042 }
1043 return 0;
1044}
1045
81084651 1046/* Supports checking bulk free of a constructed freelist */
282acb43 1047static noinline int free_debug_processing(
81084651
JDB
1048 struct kmem_cache *s, struct page *page,
1049 void *head, void *tail, int bulk_cnt,
282acb43 1050 unsigned long addr)
81819f0f 1051{
19c7ff9e 1052 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
81084651
JDB
1053 void *object = head;
1054 int cnt = 0;
282acb43 1055 unsigned long uninitialized_var(flags);
5c2e4bbb 1056
282acb43 1057 spin_lock_irqsave(&n->list_lock, flags);
881db7fb
CL
1058 slab_lock(page);
1059
81819f0f
CL
1060 if (!check_slab(s, page))
1061 goto fail;
1062
81084651
JDB
1063next_object:
1064 cnt++;
1065
81819f0f 1066 if (!check_valid_pointer(s, page, object)) {
70d71228 1067 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1068 goto fail;
1069 }
1070
1071 if (on_freelist(s, page, object)) {
24922684 1072 object_err(s, page, object, "Object already free");
81819f0f
CL
1073 goto fail;
1074 }
1075
f7cb1933 1076 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1077 goto out;
81819f0f 1078
1b4f59e3 1079 if (unlikely(s != page->slab_cache)) {
3adbefee 1080 if (!PageSlab(page)) {
70d71228
CL
1081 slab_err(s, page, "Attempt to free object(0x%p) "
1082 "outside of slab", object);
1b4f59e3 1083 } else if (!page->slab_cache) {
f9f58285
FF
1084 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1085 object);
70d71228 1086 dump_stack();
06428780 1087 } else
24922684
CL
1088 object_err(s, page, object,
1089 "page slab pointer corrupt.");
81819f0f
CL
1090 goto fail;
1091 }
3ec09742 1092
3ec09742
CL
1093 if (s->flags & SLAB_STORE_USER)
1094 set_track(s, object, TRACK_FREE, addr);
1095 trace(s, page, object, 0);
81084651 1096 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1097 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1098
1099 /* Reached end of constructed freelist yet? */
1100 if (object != tail) {
1101 object = get_freepointer(s, object);
1102 goto next_object;
1103 }
5c2e4bbb 1104out:
81084651
JDB
1105 if (cnt != bulk_cnt)
1106 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1107 bulk_cnt, cnt);
1108
881db7fb 1109 slab_unlock(page);
282acb43
LA
1110 spin_unlock_irqrestore(&n->list_lock, flags);
1111 return 1;
3ec09742 1112
81819f0f 1113fail:
19c7ff9e 1114 slab_unlock(page);
282acb43 1115 spin_unlock_irqrestore(&n->list_lock, flags);
24922684 1116 slab_fix(s, "Object at 0x%p not freed", object);
282acb43 1117 return 0;
81819f0f
CL
1118}
1119
41ecc55b
CL
1120static int __init setup_slub_debug(char *str)
1121{
f0630fff
CL
1122 slub_debug = DEBUG_DEFAULT_FLAGS;
1123 if (*str++ != '=' || !*str)
1124 /*
1125 * No options specified. Switch on full debugging.
1126 */
1127 goto out;
1128
1129 if (*str == ',')
1130 /*
1131 * No options but restriction on slabs. This means full
1132 * debugging for slabs matching a pattern.
1133 */
1134 goto check_slabs;
1135
1136 slub_debug = 0;
1137 if (*str == '-')
1138 /*
1139 * Switch off all debugging measures.
1140 */
1141 goto out;
1142
1143 /*
1144 * Determine which debug features should be switched on
1145 */
06428780 1146 for (; *str && *str != ','; str++) {
f0630fff
CL
1147 switch (tolower(*str)) {
1148 case 'f':
1149 slub_debug |= SLAB_DEBUG_FREE;
1150 break;
1151 case 'z':
1152 slub_debug |= SLAB_RED_ZONE;
1153 break;
1154 case 'p':
1155 slub_debug |= SLAB_POISON;
1156 break;
1157 case 'u':
1158 slub_debug |= SLAB_STORE_USER;
1159 break;
1160 case 't':
1161 slub_debug |= SLAB_TRACE;
1162 break;
4c13dd3b
DM
1163 case 'a':
1164 slub_debug |= SLAB_FAILSLAB;
1165 break;
08303a73
CA
1166 case 'o':
1167 /*
1168 * Avoid enabling debugging on caches if its minimum
1169 * order would increase as a result.
1170 */
1171 disable_higher_order_debug = 1;
1172 break;
f0630fff 1173 default:
f9f58285
FF
1174 pr_err("slub_debug option '%c' unknown. skipped\n",
1175 *str);
f0630fff 1176 }
41ecc55b
CL
1177 }
1178
f0630fff 1179check_slabs:
41ecc55b
CL
1180 if (*str == ',')
1181 slub_debug_slabs = str + 1;
f0630fff 1182out:
41ecc55b
CL
1183 return 1;
1184}
1185
1186__setup("slub_debug", setup_slub_debug);
1187
423c929c 1188unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1189 unsigned long flags, const char *name,
51cc5068 1190 void (*ctor)(void *))
41ecc55b
CL
1191{
1192 /*
e153362a 1193 * Enable debugging if selected on the kernel commandline.
41ecc55b 1194 */
c6f58d9b
CL
1195 if (slub_debug && (!slub_debug_slabs || (name &&
1196 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1197 flags |= slub_debug;
ba0268a8
CL
1198
1199 return flags;
41ecc55b 1200}
b4a64718 1201#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1202static inline void setup_object_debug(struct kmem_cache *s,
1203 struct page *page, void *object) {}
41ecc55b 1204
3ec09742 1205static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1206 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1207
282acb43 1208static inline int free_debug_processing(
81084651
JDB
1209 struct kmem_cache *s, struct page *page,
1210 void *head, void *tail, int bulk_cnt,
282acb43 1211 unsigned long addr) { return 0; }
41ecc55b 1212
41ecc55b
CL
1213static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1214 { return 1; }
1215static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1216 void *object, u8 val) { return 1; }
5cc6eee8
CL
1217static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1218 struct page *page) {}
c65c1877
PZ
1219static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1220 struct page *page) {}
423c929c 1221unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1222 unsigned long flags, const char *name,
51cc5068 1223 void (*ctor)(void *))
ba0268a8
CL
1224{
1225 return flags;
1226}
41ecc55b 1227#define slub_debug 0
0f389ec6 1228
fdaa45e9
IM
1229#define disable_higher_order_debug 0
1230
0f389ec6
CL
1231static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1232 { return 0; }
26c02cf0
AB
1233static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1234 { return 0; }
205ab99d
CL
1235static inline void inc_slabs_node(struct kmem_cache *s, int node,
1236 int objects) {}
1237static inline void dec_slabs_node(struct kmem_cache *s, int node,
1238 int objects) {}
7d550c56 1239
02e72cc6
AR
1240#endif /* CONFIG_SLUB_DEBUG */
1241
1242/*
1243 * Hooks for other subsystems that check memory allocations. In a typical
1244 * production configuration these hooks all should produce no code at all.
1245 */
d56791b3
RB
1246static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1247{
1248 kmemleak_alloc(ptr, size, 1, flags);
0316bec2 1249 kasan_kmalloc_large(ptr, size);
d56791b3
RB
1250}
1251
1252static inline void kfree_hook(const void *x)
1253{
1254 kmemleak_free(x);
0316bec2 1255 kasan_kfree_large(x);
d56791b3
RB
1256}
1257
d56791b3
RB
1258static inline void slab_free_hook(struct kmem_cache *s, void *x)
1259{
1260 kmemleak_free_recursive(x, s->flags);
7d550c56 1261
02e72cc6
AR
1262 /*
1263 * Trouble is that we may no longer disable interrupts in the fast path
1264 * So in order to make the debug calls that expect irqs to be
1265 * disabled we need to disable interrupts temporarily.
1266 */
1267#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1268 {
1269 unsigned long flags;
1270
1271 local_irq_save(flags);
1272 kmemcheck_slab_free(s, x, s->object_size);
1273 debug_check_no_locks_freed(x, s->object_size);
1274 local_irq_restore(flags);
1275 }
1276#endif
1277 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1278 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1279
1280 kasan_slab_free(s, x);
02e72cc6 1281}
205ab99d 1282
81084651
JDB
1283static inline void slab_free_freelist_hook(struct kmem_cache *s,
1284 void *head, void *tail)
1285{
1286/*
1287 * Compiler cannot detect this function can be removed if slab_free_hook()
1288 * evaluates to nothing. Thus, catch all relevant config debug options here.
1289 */
1290#if defined(CONFIG_KMEMCHECK) || \
1291 defined(CONFIG_LOCKDEP) || \
1292 defined(CONFIG_DEBUG_KMEMLEAK) || \
1293 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1294 defined(CONFIG_KASAN)
1295
1296 void *object = head;
1297 void *tail_obj = tail ? : head;
1298
1299 do {
1300 slab_free_hook(s, object);
1301 } while ((object != tail_obj) &&
1302 (object = get_freepointer(s, object)));
1303#endif
1304}
1305
588f8ba9
TG
1306static void setup_object(struct kmem_cache *s, struct page *page,
1307 void *object)
1308{
1309 setup_object_debug(s, page, object);
1310 if (unlikely(s->ctor)) {
1311 kasan_unpoison_object_data(s, object);
1312 s->ctor(object);
1313 kasan_poison_object_data(s, object);
1314 }
1315}
1316
81819f0f
CL
1317/*
1318 * Slab allocation and freeing
1319 */
5dfb4175
VD
1320static inline struct page *alloc_slab_page(struct kmem_cache *s,
1321 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1322{
5dfb4175 1323 struct page *page;
65c3376a
CL
1324 int order = oo_order(oo);
1325
b1eeab67
VN
1326 flags |= __GFP_NOTRACK;
1327
2154a336 1328 if (node == NUMA_NO_NODE)
5dfb4175 1329 page = alloc_pages(flags, order);
65c3376a 1330 else
96db800f 1331 page = __alloc_pages_node(node, flags, order);
5dfb4175 1332
f3ccb2c4
VD
1333 if (page && memcg_charge_slab(page, flags, order, s)) {
1334 __free_pages(page, order);
1335 page = NULL;
1336 }
5dfb4175
VD
1337
1338 return page;
65c3376a
CL
1339}
1340
81819f0f
CL
1341static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1342{
06428780 1343 struct page *page;
834f3d11 1344 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1345 gfp_t alloc_gfp;
588f8ba9
TG
1346 void *start, *p;
1347 int idx, order;
81819f0f 1348
7e0528da
CL
1349 flags &= gfp_allowed_mask;
1350
d0164adc 1351 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1352 local_irq_enable();
1353
b7a49f0d 1354 flags |= s->allocflags;
e12ba74d 1355
ba52270d
PE
1356 /*
1357 * Let the initial higher-order allocation fail under memory pressure
1358 * so we fall-back to the minimum order allocation.
1359 */
1360 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc
MG
1361 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1362 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
ba52270d 1363
5dfb4175 1364 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1365 if (unlikely(!page)) {
1366 oo = s->min;
80c3a998 1367 alloc_gfp = flags;
65c3376a
CL
1368 /*
1369 * Allocation may have failed due to fragmentation.
1370 * Try a lower order alloc if possible
1371 */
5dfb4175 1372 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1373 if (unlikely(!page))
1374 goto out;
1375 stat(s, ORDER_FALLBACK);
65c3376a 1376 }
5a896d9e 1377
588f8ba9
TG
1378 if (kmemcheck_enabled &&
1379 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1380 int pages = 1 << oo_order(oo);
1381
80c3a998 1382 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1383
1384 /*
1385 * Objects from caches that have a constructor don't get
1386 * cleared when they're allocated, so we need to do it here.
1387 */
1388 if (s->ctor)
1389 kmemcheck_mark_uninitialized_pages(page, pages);
1390 else
1391 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1392 }
1393
834f3d11 1394 page->objects = oo_objects(oo);
81819f0f 1395
1f458cbf 1396 order = compound_order(page);
1b4f59e3 1397 page->slab_cache = s;
c03f94cc 1398 __SetPageSlab(page);
2f064f34 1399 if (page_is_pfmemalloc(page))
072bb0aa 1400 SetPageSlabPfmemalloc(page);
81819f0f
CL
1401
1402 start = page_address(page);
81819f0f
CL
1403
1404 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1405 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1406
0316bec2
AR
1407 kasan_poison_slab(page);
1408
54266640
WY
1409 for_each_object_idx(p, idx, s, start, page->objects) {
1410 setup_object(s, page, p);
1411 if (likely(idx < page->objects))
1412 set_freepointer(s, p, p + s->size);
1413 else
1414 set_freepointer(s, p, NULL);
81819f0f 1415 }
81819f0f
CL
1416
1417 page->freelist = start;
e6e82ea1 1418 page->inuse = page->objects;
8cb0a506 1419 page->frozen = 1;
588f8ba9 1420
81819f0f 1421out:
d0164adc 1422 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1423 local_irq_disable();
1424 if (!page)
1425 return NULL;
1426
1427 mod_zone_page_state(page_zone(page),
1428 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1429 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1430 1 << oo_order(oo));
1431
1432 inc_slabs_node(s, page_to_nid(page), page->objects);
1433
81819f0f
CL
1434 return page;
1435}
1436
588f8ba9
TG
1437static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1438{
1439 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1440 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1441 BUG();
1442 }
1443
1444 return allocate_slab(s,
1445 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1446}
1447
81819f0f
CL
1448static void __free_slab(struct kmem_cache *s, struct page *page)
1449{
834f3d11
CL
1450 int order = compound_order(page);
1451 int pages = 1 << order;
81819f0f 1452
af537b0a 1453 if (kmem_cache_debug(s)) {
81819f0f
CL
1454 void *p;
1455
1456 slab_pad_check(s, page);
224a88be
CL
1457 for_each_object(p, s, page_address(page),
1458 page->objects)
f7cb1933 1459 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1460 }
1461
b1eeab67 1462 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1463
81819f0f
CL
1464 mod_zone_page_state(page_zone(page),
1465 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1466 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1467 -pages);
81819f0f 1468
072bb0aa 1469 __ClearPageSlabPfmemalloc(page);
49bd5221 1470 __ClearPageSlab(page);
1f458cbf 1471
22b751c3 1472 page_mapcount_reset(page);
1eb5ac64
NP
1473 if (current->reclaim_state)
1474 current->reclaim_state->reclaimed_slab += pages;
f3ccb2c4 1475 __free_kmem_pages(page, order);
81819f0f
CL
1476}
1477
da9a638c
LJ
1478#define need_reserve_slab_rcu \
1479 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1480
81819f0f
CL
1481static void rcu_free_slab(struct rcu_head *h)
1482{
1483 struct page *page;
1484
da9a638c
LJ
1485 if (need_reserve_slab_rcu)
1486 page = virt_to_head_page(h);
1487 else
1488 page = container_of((struct list_head *)h, struct page, lru);
1489
1b4f59e3 1490 __free_slab(page->slab_cache, page);
81819f0f
CL
1491}
1492
1493static void free_slab(struct kmem_cache *s, struct page *page)
1494{
1495 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1496 struct rcu_head *head;
1497
1498 if (need_reserve_slab_rcu) {
1499 int order = compound_order(page);
1500 int offset = (PAGE_SIZE << order) - s->reserved;
1501
1502 VM_BUG_ON(s->reserved != sizeof(*head));
1503 head = page_address(page) + offset;
1504 } else {
bc4f610d 1505 head = &page->rcu_head;
da9a638c 1506 }
81819f0f
CL
1507
1508 call_rcu(head, rcu_free_slab);
1509 } else
1510 __free_slab(s, page);
1511}
1512
1513static void discard_slab(struct kmem_cache *s, struct page *page)
1514{
205ab99d 1515 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1516 free_slab(s, page);
1517}
1518
1519/*
5cc6eee8 1520 * Management of partially allocated slabs.
81819f0f 1521 */
1e4dd946
SR
1522static inline void
1523__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1524{
e95eed57 1525 n->nr_partial++;
136333d1 1526 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1527 list_add_tail(&page->lru, &n->partial);
1528 else
1529 list_add(&page->lru, &n->partial);
81819f0f
CL
1530}
1531
1e4dd946
SR
1532static inline void add_partial(struct kmem_cache_node *n,
1533 struct page *page, int tail)
62e346a8 1534{
c65c1877 1535 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1536 __add_partial(n, page, tail);
1537}
c65c1877 1538
1e4dd946
SR
1539static inline void remove_partial(struct kmem_cache_node *n,
1540 struct page *page)
1541{
1542 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1543 list_del(&page->lru);
1544 n->nr_partial--;
1e4dd946
SR
1545}
1546
81819f0f 1547/*
7ced3719
CL
1548 * Remove slab from the partial list, freeze it and
1549 * return the pointer to the freelist.
81819f0f 1550 *
497b66f2 1551 * Returns a list of objects or NULL if it fails.
81819f0f 1552 */
497b66f2 1553static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1554 struct kmem_cache_node *n, struct page *page,
633b0764 1555 int mode, int *objects)
81819f0f 1556{
2cfb7455
CL
1557 void *freelist;
1558 unsigned long counters;
1559 struct page new;
1560
c65c1877
PZ
1561 lockdep_assert_held(&n->list_lock);
1562
2cfb7455
CL
1563 /*
1564 * Zap the freelist and set the frozen bit.
1565 * The old freelist is the list of objects for the
1566 * per cpu allocation list.
1567 */
7ced3719
CL
1568 freelist = page->freelist;
1569 counters = page->counters;
1570 new.counters = counters;
633b0764 1571 *objects = new.objects - new.inuse;
23910c50 1572 if (mode) {
7ced3719 1573 new.inuse = page->objects;
23910c50
PE
1574 new.freelist = NULL;
1575 } else {
1576 new.freelist = freelist;
1577 }
2cfb7455 1578
a0132ac0 1579 VM_BUG_ON(new.frozen);
7ced3719 1580 new.frozen = 1;
2cfb7455 1581
7ced3719 1582 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1583 freelist, counters,
02d7633f 1584 new.freelist, new.counters,
7ced3719 1585 "acquire_slab"))
7ced3719 1586 return NULL;
2cfb7455
CL
1587
1588 remove_partial(n, page);
7ced3719 1589 WARN_ON(!freelist);
49e22585 1590 return freelist;
81819f0f
CL
1591}
1592
633b0764 1593static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1594static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1595
81819f0f 1596/*
672bba3a 1597 * Try to allocate a partial slab from a specific node.
81819f0f 1598 */
8ba00bb6
JK
1599static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1600 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1601{
49e22585
CL
1602 struct page *page, *page2;
1603 void *object = NULL;
633b0764
JK
1604 int available = 0;
1605 int objects;
81819f0f
CL
1606
1607 /*
1608 * Racy check. If we mistakenly see no partial slabs then we
1609 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1610 * partial slab and there is none available then get_partials()
1611 * will return NULL.
81819f0f
CL
1612 */
1613 if (!n || !n->nr_partial)
1614 return NULL;
1615
1616 spin_lock(&n->list_lock);
49e22585 1617 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1618 void *t;
49e22585 1619
8ba00bb6
JK
1620 if (!pfmemalloc_match(page, flags))
1621 continue;
1622
633b0764 1623 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1624 if (!t)
1625 break;
1626
633b0764 1627 available += objects;
12d79634 1628 if (!object) {
49e22585 1629 c->page = page;
49e22585 1630 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1631 object = t;
49e22585 1632 } else {
633b0764 1633 put_cpu_partial(s, page, 0);
8028dcea 1634 stat(s, CPU_PARTIAL_NODE);
49e22585 1635 }
345c905d
JK
1636 if (!kmem_cache_has_cpu_partial(s)
1637 || available > s->cpu_partial / 2)
49e22585
CL
1638 break;
1639
497b66f2 1640 }
81819f0f 1641 spin_unlock(&n->list_lock);
497b66f2 1642 return object;
81819f0f
CL
1643}
1644
1645/*
672bba3a 1646 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1647 */
de3ec035 1648static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1649 struct kmem_cache_cpu *c)
81819f0f
CL
1650{
1651#ifdef CONFIG_NUMA
1652 struct zonelist *zonelist;
dd1a239f 1653 struct zoneref *z;
54a6eb5c
MG
1654 struct zone *zone;
1655 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1656 void *object;
cc9a6c87 1657 unsigned int cpuset_mems_cookie;
81819f0f
CL
1658
1659 /*
672bba3a
CL
1660 * The defrag ratio allows a configuration of the tradeoffs between
1661 * inter node defragmentation and node local allocations. A lower
1662 * defrag_ratio increases the tendency to do local allocations
1663 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1664 *
672bba3a
CL
1665 * If the defrag_ratio is set to 0 then kmalloc() always
1666 * returns node local objects. If the ratio is higher then kmalloc()
1667 * may return off node objects because partial slabs are obtained
1668 * from other nodes and filled up.
81819f0f 1669 *
6446faa2 1670 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1671 * defrag_ratio = 1000) then every (well almost) allocation will
1672 * first attempt to defrag slab caches on other nodes. This means
1673 * scanning over all nodes to look for partial slabs which may be
1674 * expensive if we do it every time we are trying to find a slab
1675 * with available objects.
81819f0f 1676 */
9824601e
CL
1677 if (!s->remote_node_defrag_ratio ||
1678 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1679 return NULL;
1680
cc9a6c87 1681 do {
d26914d1 1682 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1683 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1684 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1685 struct kmem_cache_node *n;
1686
1687 n = get_node(s, zone_to_nid(zone));
1688
dee2f8aa 1689 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1690 n->nr_partial > s->min_partial) {
8ba00bb6 1691 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1692 if (object) {
1693 /*
d26914d1
MG
1694 * Don't check read_mems_allowed_retry()
1695 * here - if mems_allowed was updated in
1696 * parallel, that was a harmless race
1697 * between allocation and the cpuset
1698 * update
cc9a6c87 1699 */
cc9a6c87
MG
1700 return object;
1701 }
c0ff7453 1702 }
81819f0f 1703 }
d26914d1 1704 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1705#endif
1706 return NULL;
1707}
1708
1709/*
1710 * Get a partial page, lock it and return it.
1711 */
497b66f2 1712static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1713 struct kmem_cache_cpu *c)
81819f0f 1714{
497b66f2 1715 void *object;
a561ce00
JK
1716 int searchnode = node;
1717
1718 if (node == NUMA_NO_NODE)
1719 searchnode = numa_mem_id();
1720 else if (!node_present_pages(node))
1721 searchnode = node_to_mem_node(node);
81819f0f 1722
8ba00bb6 1723 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1724 if (object || node != NUMA_NO_NODE)
1725 return object;
81819f0f 1726
acd19fd1 1727 return get_any_partial(s, flags, c);
81819f0f
CL
1728}
1729
8a5ec0ba
CL
1730#ifdef CONFIG_PREEMPT
1731/*
1732 * Calculate the next globally unique transaction for disambiguiation
1733 * during cmpxchg. The transactions start with the cpu number and are then
1734 * incremented by CONFIG_NR_CPUS.
1735 */
1736#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1737#else
1738/*
1739 * No preemption supported therefore also no need to check for
1740 * different cpus.
1741 */
1742#define TID_STEP 1
1743#endif
1744
1745static inline unsigned long next_tid(unsigned long tid)
1746{
1747 return tid + TID_STEP;
1748}
1749
1750static inline unsigned int tid_to_cpu(unsigned long tid)
1751{
1752 return tid % TID_STEP;
1753}
1754
1755static inline unsigned long tid_to_event(unsigned long tid)
1756{
1757 return tid / TID_STEP;
1758}
1759
1760static inline unsigned int init_tid(int cpu)
1761{
1762 return cpu;
1763}
1764
1765static inline void note_cmpxchg_failure(const char *n,
1766 const struct kmem_cache *s, unsigned long tid)
1767{
1768#ifdef SLUB_DEBUG_CMPXCHG
1769 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1770
f9f58285 1771 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1772
1773#ifdef CONFIG_PREEMPT
1774 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1775 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1776 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1777 else
1778#endif
1779 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1780 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1781 tid_to_event(tid), tid_to_event(actual_tid));
1782 else
f9f58285 1783 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1784 actual_tid, tid, next_tid(tid));
1785#endif
4fdccdfb 1786 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1787}
1788
788e1aad 1789static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1790{
8a5ec0ba
CL
1791 int cpu;
1792
1793 for_each_possible_cpu(cpu)
1794 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1795}
2cfb7455 1796
81819f0f
CL
1797/*
1798 * Remove the cpu slab
1799 */
d0e0ac97
CG
1800static void deactivate_slab(struct kmem_cache *s, struct page *page,
1801 void *freelist)
81819f0f 1802{
2cfb7455 1803 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1804 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1805 int lock = 0;
1806 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1807 void *nextfree;
136333d1 1808 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1809 struct page new;
1810 struct page old;
1811
1812 if (page->freelist) {
84e554e6 1813 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1814 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1815 }
1816
894b8788 1817 /*
2cfb7455
CL
1818 * Stage one: Free all available per cpu objects back
1819 * to the page freelist while it is still frozen. Leave the
1820 * last one.
1821 *
1822 * There is no need to take the list->lock because the page
1823 * is still frozen.
1824 */
1825 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1826 void *prior;
1827 unsigned long counters;
1828
1829 do {
1830 prior = page->freelist;
1831 counters = page->counters;
1832 set_freepointer(s, freelist, prior);
1833 new.counters = counters;
1834 new.inuse--;
a0132ac0 1835 VM_BUG_ON(!new.frozen);
2cfb7455 1836
1d07171c 1837 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1838 prior, counters,
1839 freelist, new.counters,
1840 "drain percpu freelist"));
1841
1842 freelist = nextfree;
1843 }
1844
894b8788 1845 /*
2cfb7455
CL
1846 * Stage two: Ensure that the page is unfrozen while the
1847 * list presence reflects the actual number of objects
1848 * during unfreeze.
1849 *
1850 * We setup the list membership and then perform a cmpxchg
1851 * with the count. If there is a mismatch then the page
1852 * is not unfrozen but the page is on the wrong list.
1853 *
1854 * Then we restart the process which may have to remove
1855 * the page from the list that we just put it on again
1856 * because the number of objects in the slab may have
1857 * changed.
894b8788 1858 */
2cfb7455 1859redo:
894b8788 1860
2cfb7455
CL
1861 old.freelist = page->freelist;
1862 old.counters = page->counters;
a0132ac0 1863 VM_BUG_ON(!old.frozen);
7c2e132c 1864
2cfb7455
CL
1865 /* Determine target state of the slab */
1866 new.counters = old.counters;
1867 if (freelist) {
1868 new.inuse--;
1869 set_freepointer(s, freelist, old.freelist);
1870 new.freelist = freelist;
1871 } else
1872 new.freelist = old.freelist;
1873
1874 new.frozen = 0;
1875
8a5b20ae 1876 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1877 m = M_FREE;
1878 else if (new.freelist) {
1879 m = M_PARTIAL;
1880 if (!lock) {
1881 lock = 1;
1882 /*
1883 * Taking the spinlock removes the possiblity
1884 * that acquire_slab() will see a slab page that
1885 * is frozen
1886 */
1887 spin_lock(&n->list_lock);
1888 }
1889 } else {
1890 m = M_FULL;
1891 if (kmem_cache_debug(s) && !lock) {
1892 lock = 1;
1893 /*
1894 * This also ensures that the scanning of full
1895 * slabs from diagnostic functions will not see
1896 * any frozen slabs.
1897 */
1898 spin_lock(&n->list_lock);
1899 }
1900 }
1901
1902 if (l != m) {
1903
1904 if (l == M_PARTIAL)
1905
1906 remove_partial(n, page);
1907
1908 else if (l == M_FULL)
894b8788 1909
c65c1877 1910 remove_full(s, n, page);
2cfb7455
CL
1911
1912 if (m == M_PARTIAL) {
1913
1914 add_partial(n, page, tail);
136333d1 1915 stat(s, tail);
2cfb7455
CL
1916
1917 } else if (m == M_FULL) {
894b8788 1918
2cfb7455
CL
1919 stat(s, DEACTIVATE_FULL);
1920 add_full(s, n, page);
1921
1922 }
1923 }
1924
1925 l = m;
1d07171c 1926 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1927 old.freelist, old.counters,
1928 new.freelist, new.counters,
1929 "unfreezing slab"))
1930 goto redo;
1931
2cfb7455
CL
1932 if (lock)
1933 spin_unlock(&n->list_lock);
1934
1935 if (m == M_FREE) {
1936 stat(s, DEACTIVATE_EMPTY);
1937 discard_slab(s, page);
1938 stat(s, FREE_SLAB);
894b8788 1939 }
81819f0f
CL
1940}
1941
d24ac77f
JK
1942/*
1943 * Unfreeze all the cpu partial slabs.
1944 *
59a09917
CL
1945 * This function must be called with interrupts disabled
1946 * for the cpu using c (or some other guarantee must be there
1947 * to guarantee no concurrent accesses).
d24ac77f 1948 */
59a09917
CL
1949static void unfreeze_partials(struct kmem_cache *s,
1950 struct kmem_cache_cpu *c)
49e22585 1951{
345c905d 1952#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1953 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1954 struct page *page, *discard_page = NULL;
49e22585
CL
1955
1956 while ((page = c->partial)) {
49e22585
CL
1957 struct page new;
1958 struct page old;
1959
1960 c->partial = page->next;
43d77867
JK
1961
1962 n2 = get_node(s, page_to_nid(page));
1963 if (n != n2) {
1964 if (n)
1965 spin_unlock(&n->list_lock);
1966
1967 n = n2;
1968 spin_lock(&n->list_lock);
1969 }
49e22585
CL
1970
1971 do {
1972
1973 old.freelist = page->freelist;
1974 old.counters = page->counters;
a0132ac0 1975 VM_BUG_ON(!old.frozen);
49e22585
CL
1976
1977 new.counters = old.counters;
1978 new.freelist = old.freelist;
1979
1980 new.frozen = 0;
1981
d24ac77f 1982 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1983 old.freelist, old.counters,
1984 new.freelist, new.counters,
1985 "unfreezing slab"));
1986
8a5b20ae 1987 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
1988 page->next = discard_page;
1989 discard_page = page;
43d77867
JK
1990 } else {
1991 add_partial(n, page, DEACTIVATE_TO_TAIL);
1992 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1993 }
1994 }
1995
1996 if (n)
1997 spin_unlock(&n->list_lock);
9ada1934
SL
1998
1999 while (discard_page) {
2000 page = discard_page;
2001 discard_page = discard_page->next;
2002
2003 stat(s, DEACTIVATE_EMPTY);
2004 discard_slab(s, page);
2005 stat(s, FREE_SLAB);
2006 }
345c905d 2007#endif
49e22585
CL
2008}
2009
2010/*
2011 * Put a page that was just frozen (in __slab_free) into a partial page
2012 * slot if available. This is done without interrupts disabled and without
2013 * preemption disabled. The cmpxchg is racy and may put the partial page
2014 * onto a random cpus partial slot.
2015 *
2016 * If we did not find a slot then simply move all the partials to the
2017 * per node partial list.
2018 */
633b0764 2019static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2020{
345c905d 2021#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2022 struct page *oldpage;
2023 int pages;
2024 int pobjects;
2025
d6e0b7fa 2026 preempt_disable();
49e22585
CL
2027 do {
2028 pages = 0;
2029 pobjects = 0;
2030 oldpage = this_cpu_read(s->cpu_slab->partial);
2031
2032 if (oldpage) {
2033 pobjects = oldpage->pobjects;
2034 pages = oldpage->pages;
2035 if (drain && pobjects > s->cpu_partial) {
2036 unsigned long flags;
2037 /*
2038 * partial array is full. Move the existing
2039 * set to the per node partial list.
2040 */
2041 local_irq_save(flags);
59a09917 2042 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2043 local_irq_restore(flags);
e24fc410 2044 oldpage = NULL;
49e22585
CL
2045 pobjects = 0;
2046 pages = 0;
8028dcea 2047 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2048 }
2049 }
2050
2051 pages++;
2052 pobjects += page->objects - page->inuse;
2053
2054 page->pages = pages;
2055 page->pobjects = pobjects;
2056 page->next = oldpage;
2057
d0e0ac97
CG
2058 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2059 != oldpage);
d6e0b7fa
VD
2060 if (unlikely(!s->cpu_partial)) {
2061 unsigned long flags;
2062
2063 local_irq_save(flags);
2064 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2065 local_irq_restore(flags);
2066 }
2067 preempt_enable();
345c905d 2068#endif
49e22585
CL
2069}
2070
dfb4f096 2071static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2072{
84e554e6 2073 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2074 deactivate_slab(s, c->page, c->freelist);
2075
2076 c->tid = next_tid(c->tid);
2077 c->page = NULL;
2078 c->freelist = NULL;
81819f0f
CL
2079}
2080
2081/*
2082 * Flush cpu slab.
6446faa2 2083 *
81819f0f
CL
2084 * Called from IPI handler with interrupts disabled.
2085 */
0c710013 2086static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2087{
9dfc6e68 2088 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2089
49e22585
CL
2090 if (likely(c)) {
2091 if (c->page)
2092 flush_slab(s, c);
2093
59a09917 2094 unfreeze_partials(s, c);
49e22585 2095 }
81819f0f
CL
2096}
2097
2098static void flush_cpu_slab(void *d)
2099{
2100 struct kmem_cache *s = d;
81819f0f 2101
dfb4f096 2102 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2103}
2104
a8364d55
GBY
2105static bool has_cpu_slab(int cpu, void *info)
2106{
2107 struct kmem_cache *s = info;
2108 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2109
02e1a9cd 2110 return c->page || c->partial;
a8364d55
GBY
2111}
2112
81819f0f
CL
2113static void flush_all(struct kmem_cache *s)
2114{
a8364d55 2115 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2116}
2117
dfb4f096
CL
2118/*
2119 * Check if the objects in a per cpu structure fit numa
2120 * locality expectations.
2121 */
57d437d2 2122static inline int node_match(struct page *page, int node)
dfb4f096
CL
2123{
2124#ifdef CONFIG_NUMA
4d7868e6 2125 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2126 return 0;
2127#endif
2128 return 1;
2129}
2130
9a02d699 2131#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2132static int count_free(struct page *page)
2133{
2134 return page->objects - page->inuse;
2135}
2136
9a02d699
DR
2137static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2138{
2139 return atomic_long_read(&n->total_objects);
2140}
2141#endif /* CONFIG_SLUB_DEBUG */
2142
2143#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2144static unsigned long count_partial(struct kmem_cache_node *n,
2145 int (*get_count)(struct page *))
2146{
2147 unsigned long flags;
2148 unsigned long x = 0;
2149 struct page *page;
2150
2151 spin_lock_irqsave(&n->list_lock, flags);
2152 list_for_each_entry(page, &n->partial, lru)
2153 x += get_count(page);
2154 spin_unlock_irqrestore(&n->list_lock, flags);
2155 return x;
2156}
9a02d699 2157#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2158
781b2ba6
PE
2159static noinline void
2160slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2161{
9a02d699
DR
2162#ifdef CONFIG_SLUB_DEBUG
2163 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2164 DEFAULT_RATELIMIT_BURST);
781b2ba6 2165 int node;
fa45dc25 2166 struct kmem_cache_node *n;
781b2ba6 2167
9a02d699
DR
2168 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2169 return;
2170
f9f58285 2171 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2172 nid, gfpflags);
f9f58285
FF
2173 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2174 s->name, s->object_size, s->size, oo_order(s->oo),
2175 oo_order(s->min));
781b2ba6 2176
3b0efdfa 2177 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2178 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2179 s->name);
fa5ec8a1 2180
fa45dc25 2181 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2182 unsigned long nr_slabs;
2183 unsigned long nr_objs;
2184 unsigned long nr_free;
2185
26c02cf0
AB
2186 nr_free = count_partial(n, count_free);
2187 nr_slabs = node_nr_slabs(n);
2188 nr_objs = node_nr_objs(n);
781b2ba6 2189
f9f58285 2190 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2191 node, nr_slabs, nr_objs, nr_free);
2192 }
9a02d699 2193#endif
781b2ba6
PE
2194}
2195
497b66f2
CL
2196static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2197 int node, struct kmem_cache_cpu **pc)
2198{
6faa6833 2199 void *freelist;
188fd063
CL
2200 struct kmem_cache_cpu *c = *pc;
2201 struct page *page;
497b66f2 2202
188fd063 2203 freelist = get_partial(s, flags, node, c);
497b66f2 2204
188fd063
CL
2205 if (freelist)
2206 return freelist;
2207
2208 page = new_slab(s, flags, node);
497b66f2 2209 if (page) {
7c8e0181 2210 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2211 if (c->page)
2212 flush_slab(s, c);
2213
2214 /*
2215 * No other reference to the page yet so we can
2216 * muck around with it freely without cmpxchg
2217 */
6faa6833 2218 freelist = page->freelist;
497b66f2
CL
2219 page->freelist = NULL;
2220
2221 stat(s, ALLOC_SLAB);
497b66f2
CL
2222 c->page = page;
2223 *pc = c;
2224 } else
6faa6833 2225 freelist = NULL;
497b66f2 2226
6faa6833 2227 return freelist;
497b66f2
CL
2228}
2229
072bb0aa
MG
2230static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2231{
2232 if (unlikely(PageSlabPfmemalloc(page)))
2233 return gfp_pfmemalloc_allowed(gfpflags);
2234
2235 return true;
2236}
2237
213eeb9f 2238/*
d0e0ac97
CG
2239 * Check the page->freelist of a page and either transfer the freelist to the
2240 * per cpu freelist or deactivate the page.
213eeb9f
CL
2241 *
2242 * The page is still frozen if the return value is not NULL.
2243 *
2244 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2245 *
2246 * This function must be called with interrupt disabled.
213eeb9f
CL
2247 */
2248static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2249{
2250 struct page new;
2251 unsigned long counters;
2252 void *freelist;
2253
2254 do {
2255 freelist = page->freelist;
2256 counters = page->counters;
6faa6833 2257
213eeb9f 2258 new.counters = counters;
a0132ac0 2259 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2260
2261 new.inuse = page->objects;
2262 new.frozen = freelist != NULL;
2263
d24ac77f 2264 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2265 freelist, counters,
2266 NULL, new.counters,
2267 "get_freelist"));
2268
2269 return freelist;
2270}
2271
81819f0f 2272/*
894b8788
CL
2273 * Slow path. The lockless freelist is empty or we need to perform
2274 * debugging duties.
2275 *
894b8788
CL
2276 * Processing is still very fast if new objects have been freed to the
2277 * regular freelist. In that case we simply take over the regular freelist
2278 * as the lockless freelist and zap the regular freelist.
81819f0f 2279 *
894b8788
CL
2280 * If that is not working then we fall back to the partial lists. We take the
2281 * first element of the freelist as the object to allocate now and move the
2282 * rest of the freelist to the lockless freelist.
81819f0f 2283 *
894b8788 2284 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2285 * we need to allocate a new slab. This is the slowest path since it involves
2286 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2287 *
2288 * Version of __slab_alloc to use when we know that interrupts are
2289 * already disabled (which is the case for bulk allocation).
81819f0f 2290 */
a380a3c7 2291static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2292 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2293{
6faa6833 2294 void *freelist;
f6e7def7 2295 struct page *page;
81819f0f 2296
f6e7def7
CL
2297 page = c->page;
2298 if (!page)
81819f0f 2299 goto new_slab;
49e22585 2300redo:
6faa6833 2301
57d437d2 2302 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2303 int searchnode = node;
2304
2305 if (node != NUMA_NO_NODE && !node_present_pages(node))
2306 searchnode = node_to_mem_node(node);
2307
2308 if (unlikely(!node_match(page, searchnode))) {
2309 stat(s, ALLOC_NODE_MISMATCH);
2310 deactivate_slab(s, page, c->freelist);
2311 c->page = NULL;
2312 c->freelist = NULL;
2313 goto new_slab;
2314 }
fc59c053 2315 }
6446faa2 2316
072bb0aa
MG
2317 /*
2318 * By rights, we should be searching for a slab page that was
2319 * PFMEMALLOC but right now, we are losing the pfmemalloc
2320 * information when the page leaves the per-cpu allocator
2321 */
2322 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2323 deactivate_slab(s, page, c->freelist);
2324 c->page = NULL;
2325 c->freelist = NULL;
2326 goto new_slab;
2327 }
2328
73736e03 2329 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2330 freelist = c->freelist;
2331 if (freelist)
73736e03 2332 goto load_freelist;
03e404af 2333
f6e7def7 2334 freelist = get_freelist(s, page);
6446faa2 2335
6faa6833 2336 if (!freelist) {
03e404af
CL
2337 c->page = NULL;
2338 stat(s, DEACTIVATE_BYPASS);
fc59c053 2339 goto new_slab;
03e404af 2340 }
6446faa2 2341
84e554e6 2342 stat(s, ALLOC_REFILL);
6446faa2 2343
894b8788 2344load_freelist:
507effea
CL
2345 /*
2346 * freelist is pointing to the list of objects to be used.
2347 * page is pointing to the page from which the objects are obtained.
2348 * That page must be frozen for per cpu allocations to work.
2349 */
a0132ac0 2350 VM_BUG_ON(!c->page->frozen);
6faa6833 2351 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2352 c->tid = next_tid(c->tid);
6faa6833 2353 return freelist;
81819f0f 2354
81819f0f 2355new_slab:
2cfb7455 2356
49e22585 2357 if (c->partial) {
f6e7def7
CL
2358 page = c->page = c->partial;
2359 c->partial = page->next;
49e22585
CL
2360 stat(s, CPU_PARTIAL_ALLOC);
2361 c->freelist = NULL;
2362 goto redo;
81819f0f
CL
2363 }
2364
188fd063 2365 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2366
f4697436 2367 if (unlikely(!freelist)) {
9a02d699 2368 slab_out_of_memory(s, gfpflags, node);
f4697436 2369 return NULL;
81819f0f 2370 }
2cfb7455 2371
f6e7def7 2372 page = c->page;
5091b74a 2373 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2374 goto load_freelist;
2cfb7455 2375
497b66f2 2376 /* Only entered in the debug case */
d0e0ac97
CG
2377 if (kmem_cache_debug(s) &&
2378 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2379 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2380
f6e7def7 2381 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2382 c->page = NULL;
2383 c->freelist = NULL;
6faa6833 2384 return freelist;
894b8788
CL
2385}
2386
a380a3c7
CL
2387/*
2388 * Another one that disabled interrupt and compensates for possible
2389 * cpu changes by refetching the per cpu area pointer.
2390 */
2391static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2392 unsigned long addr, struct kmem_cache_cpu *c)
2393{
2394 void *p;
2395 unsigned long flags;
2396
2397 local_irq_save(flags);
2398#ifdef CONFIG_PREEMPT
2399 /*
2400 * We may have been preempted and rescheduled on a different
2401 * cpu before disabling interrupts. Need to reload cpu area
2402 * pointer.
2403 */
2404 c = this_cpu_ptr(s->cpu_slab);
2405#endif
2406
2407 p = ___slab_alloc(s, gfpflags, node, addr, c);
2408 local_irq_restore(flags);
2409 return p;
2410}
2411
894b8788
CL
2412/*
2413 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2414 * have the fastpath folded into their functions. So no function call
2415 * overhead for requests that can be satisfied on the fastpath.
2416 *
2417 * The fastpath works by first checking if the lockless freelist can be used.
2418 * If not then __slab_alloc is called for slow processing.
2419 *
2420 * Otherwise we can simply pick the next object from the lockless free list.
2421 */
2b847c3c 2422static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2423 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2424{
03ec0ed5 2425 void *object;
dfb4f096 2426 struct kmem_cache_cpu *c;
57d437d2 2427 struct page *page;
8a5ec0ba 2428 unsigned long tid;
1f84260c 2429
8135be5a
VD
2430 s = slab_pre_alloc_hook(s, gfpflags);
2431 if (!s)
773ff60e 2432 return NULL;
8a5ec0ba 2433redo:
8a5ec0ba
CL
2434 /*
2435 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2436 * enabled. We may switch back and forth between cpus while
2437 * reading from one cpu area. That does not matter as long
2438 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2439 *
9aabf810
JK
2440 * We should guarantee that tid and kmem_cache are retrieved on
2441 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2442 * to check if it is matched or not.
8a5ec0ba 2443 */
9aabf810
JK
2444 do {
2445 tid = this_cpu_read(s->cpu_slab->tid);
2446 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2447 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2448 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2449
2450 /*
2451 * Irqless object alloc/free algorithm used here depends on sequence
2452 * of fetching cpu_slab's data. tid should be fetched before anything
2453 * on c to guarantee that object and page associated with previous tid
2454 * won't be used with current tid. If we fetch tid first, object and
2455 * page could be one associated with next tid and our alloc/free
2456 * request will be failed. In this case, we will retry. So, no problem.
2457 */
2458 barrier();
8a5ec0ba 2459
8a5ec0ba
CL
2460 /*
2461 * The transaction ids are globally unique per cpu and per operation on
2462 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2463 * occurs on the right processor and that there was no operation on the
2464 * linked list in between.
2465 */
8a5ec0ba 2466
9dfc6e68 2467 object = c->freelist;
57d437d2 2468 page = c->page;
8eae1492 2469 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2470 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2471 stat(s, ALLOC_SLOWPATH);
2472 } else {
0ad9500e
ED
2473 void *next_object = get_freepointer_safe(s, object);
2474
8a5ec0ba 2475 /*
25985edc 2476 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2477 * operation and if we are on the right processor.
2478 *
d0e0ac97
CG
2479 * The cmpxchg does the following atomically (without lock
2480 * semantics!)
8a5ec0ba
CL
2481 * 1. Relocate first pointer to the current per cpu area.
2482 * 2. Verify that tid and freelist have not been changed
2483 * 3. If they were not changed replace tid and freelist
2484 *
d0e0ac97
CG
2485 * Since this is without lock semantics the protection is only
2486 * against code executing on this cpu *not* from access by
2487 * other cpus.
8a5ec0ba 2488 */
933393f5 2489 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2490 s->cpu_slab->freelist, s->cpu_slab->tid,
2491 object, tid,
0ad9500e 2492 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2493
2494 note_cmpxchg_failure("slab_alloc", s, tid);
2495 goto redo;
2496 }
0ad9500e 2497 prefetch_freepointer(s, next_object);
84e554e6 2498 stat(s, ALLOC_FASTPATH);
894b8788 2499 }
8a5ec0ba 2500
74e2134f 2501 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2502 memset(object, 0, s->object_size);
d07dbea4 2503
03ec0ed5 2504 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2505
894b8788 2506 return object;
81819f0f
CL
2507}
2508
2b847c3c
EG
2509static __always_inline void *slab_alloc(struct kmem_cache *s,
2510 gfp_t gfpflags, unsigned long addr)
2511{
2512 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2513}
2514
81819f0f
CL
2515void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2516{
2b847c3c 2517 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2518
d0e0ac97
CG
2519 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2520 s->size, gfpflags);
5b882be4
EGM
2521
2522 return ret;
81819f0f
CL
2523}
2524EXPORT_SYMBOL(kmem_cache_alloc);
2525
0f24f128 2526#ifdef CONFIG_TRACING
4a92379b
RK
2527void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2528{
2b847c3c 2529 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2530 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0316bec2 2531 kasan_kmalloc(s, ret, size);
4a92379b
RK
2532 return ret;
2533}
2534EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2535#endif
2536
81819f0f
CL
2537#ifdef CONFIG_NUMA
2538void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2539{
2b847c3c 2540 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2541
ca2b84cb 2542 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2543 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2544
2545 return ret;
81819f0f
CL
2546}
2547EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2548
0f24f128 2549#ifdef CONFIG_TRACING
4a92379b 2550void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2551 gfp_t gfpflags,
4a92379b 2552 int node, size_t size)
5b882be4 2553{
2b847c3c 2554 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2555
2556 trace_kmalloc_node(_RET_IP_, ret,
2557 size, s->size, gfpflags, node);
0316bec2
AR
2558
2559 kasan_kmalloc(s, ret, size);
4a92379b 2560 return ret;
5b882be4 2561}
4a92379b 2562EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2563#endif
5d1f57e4 2564#endif
5b882be4 2565
81819f0f 2566/*
94e4d712 2567 * Slow path handling. This may still be called frequently since objects
894b8788 2568 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2569 *
894b8788
CL
2570 * So we still attempt to reduce cache line usage. Just take the slab
2571 * lock and free the item. If there is no additional partial page
2572 * handling required then we can return immediately.
81819f0f 2573 */
894b8788 2574static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2575 void *head, void *tail, int cnt,
2576 unsigned long addr)
2577
81819f0f
CL
2578{
2579 void *prior;
2cfb7455 2580 int was_frozen;
2cfb7455
CL
2581 struct page new;
2582 unsigned long counters;
2583 struct kmem_cache_node *n = NULL;
61728d1e 2584 unsigned long uninitialized_var(flags);
81819f0f 2585
8a5ec0ba 2586 stat(s, FREE_SLOWPATH);
81819f0f 2587
19c7ff9e 2588 if (kmem_cache_debug(s) &&
282acb43 2589 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2590 return;
6446faa2 2591
2cfb7455 2592 do {
837d678d
JK
2593 if (unlikely(n)) {
2594 spin_unlock_irqrestore(&n->list_lock, flags);
2595 n = NULL;
2596 }
2cfb7455
CL
2597 prior = page->freelist;
2598 counters = page->counters;
81084651 2599 set_freepointer(s, tail, prior);
2cfb7455
CL
2600 new.counters = counters;
2601 was_frozen = new.frozen;
81084651 2602 new.inuse -= cnt;
837d678d 2603 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2604
c65c1877 2605 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2606
2607 /*
d0e0ac97
CG
2608 * Slab was on no list before and will be
2609 * partially empty
2610 * We can defer the list move and instead
2611 * freeze it.
49e22585
CL
2612 */
2613 new.frozen = 1;
2614
c65c1877 2615 } else { /* Needs to be taken off a list */
49e22585 2616
b455def2 2617 n = get_node(s, page_to_nid(page));
49e22585
CL
2618 /*
2619 * Speculatively acquire the list_lock.
2620 * If the cmpxchg does not succeed then we may
2621 * drop the list_lock without any processing.
2622 *
2623 * Otherwise the list_lock will synchronize with
2624 * other processors updating the list of slabs.
2625 */
2626 spin_lock_irqsave(&n->list_lock, flags);
2627
2628 }
2cfb7455 2629 }
81819f0f 2630
2cfb7455
CL
2631 } while (!cmpxchg_double_slab(s, page,
2632 prior, counters,
81084651 2633 head, new.counters,
2cfb7455 2634 "__slab_free"));
81819f0f 2635
2cfb7455 2636 if (likely(!n)) {
49e22585
CL
2637
2638 /*
2639 * If we just froze the page then put it onto the
2640 * per cpu partial list.
2641 */
8028dcea 2642 if (new.frozen && !was_frozen) {
49e22585 2643 put_cpu_partial(s, page, 1);
8028dcea
AS
2644 stat(s, CPU_PARTIAL_FREE);
2645 }
49e22585 2646 /*
2cfb7455
CL
2647 * The list lock was not taken therefore no list
2648 * activity can be necessary.
2649 */
b455def2
L
2650 if (was_frozen)
2651 stat(s, FREE_FROZEN);
2652 return;
2653 }
81819f0f 2654
8a5b20ae 2655 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2656 goto slab_empty;
2657
81819f0f 2658 /*
837d678d
JK
2659 * Objects left in the slab. If it was not on the partial list before
2660 * then add it.
81819f0f 2661 */
345c905d
JK
2662 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2663 if (kmem_cache_debug(s))
c65c1877 2664 remove_full(s, n, page);
837d678d
JK
2665 add_partial(n, page, DEACTIVATE_TO_TAIL);
2666 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2667 }
80f08c19 2668 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2669 return;
2670
2671slab_empty:
a973e9dd 2672 if (prior) {
81819f0f 2673 /*
6fbabb20 2674 * Slab on the partial list.
81819f0f 2675 */
5cc6eee8 2676 remove_partial(n, page);
84e554e6 2677 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2678 } else {
6fbabb20 2679 /* Slab must be on the full list */
c65c1877
PZ
2680 remove_full(s, n, page);
2681 }
2cfb7455 2682
80f08c19 2683 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2684 stat(s, FREE_SLAB);
81819f0f 2685 discard_slab(s, page);
81819f0f
CL
2686}
2687
894b8788
CL
2688/*
2689 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2690 * can perform fastpath freeing without additional function calls.
2691 *
2692 * The fastpath is only possible if we are freeing to the current cpu slab
2693 * of this processor. This typically the case if we have just allocated
2694 * the item before.
2695 *
2696 * If fastpath is not possible then fall back to __slab_free where we deal
2697 * with all sorts of special processing.
81084651
JDB
2698 *
2699 * Bulk free of a freelist with several objects (all pointing to the
2700 * same page) possible by specifying head and tail ptr, plus objects
2701 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2702 */
81084651
JDB
2703static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2704 void *head, void *tail, int cnt,
2705 unsigned long addr)
894b8788 2706{
81084651 2707 void *tail_obj = tail ? : head;
dfb4f096 2708 struct kmem_cache_cpu *c;
8a5ec0ba 2709 unsigned long tid;
1f84260c 2710
81084651 2711 slab_free_freelist_hook(s, head, tail);
c016b0bd 2712
8a5ec0ba
CL
2713redo:
2714 /*
2715 * Determine the currently cpus per cpu slab.
2716 * The cpu may change afterward. However that does not matter since
2717 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2718 * during the cmpxchg then the free will succeed.
8a5ec0ba 2719 */
9aabf810
JK
2720 do {
2721 tid = this_cpu_read(s->cpu_slab->tid);
2722 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2723 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2724 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2725
9aabf810
JK
2726 /* Same with comment on barrier() in slab_alloc_node() */
2727 barrier();
c016b0bd 2728
442b06bc 2729 if (likely(page == c->page)) {
81084651 2730 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2731
933393f5 2732 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2733 s->cpu_slab->freelist, s->cpu_slab->tid,
2734 c->freelist, tid,
81084651 2735 head, next_tid(tid)))) {
8a5ec0ba
CL
2736
2737 note_cmpxchg_failure("slab_free", s, tid);
2738 goto redo;
2739 }
84e554e6 2740 stat(s, FREE_FASTPATH);
894b8788 2741 } else
81084651 2742 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2743
894b8788
CL
2744}
2745
81819f0f
CL
2746void kmem_cache_free(struct kmem_cache *s, void *x)
2747{
b9ce5ef4
GC
2748 s = cache_from_obj(s, x);
2749 if (!s)
79576102 2750 return;
81084651 2751 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2752 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2753}
2754EXPORT_SYMBOL(kmem_cache_free);
2755
d0ecd894 2756struct detached_freelist {
fbd02630 2757 struct page *page;
d0ecd894
JDB
2758 void *tail;
2759 void *freelist;
2760 int cnt;
376bf125 2761 struct kmem_cache *s;
d0ecd894 2762};
fbd02630 2763
d0ecd894
JDB
2764/*
2765 * This function progressively scans the array with free objects (with
2766 * a limited look ahead) and extract objects belonging to the same
2767 * page. It builds a detached freelist directly within the given
2768 * page/objects. This can happen without any need for
2769 * synchronization, because the objects are owned by running process.
2770 * The freelist is build up as a single linked list in the objects.
2771 * The idea is, that this detached freelist can then be bulk
2772 * transferred to the real freelist(s), but only requiring a single
2773 * synchronization primitive. Look ahead in the array is limited due
2774 * to performance reasons.
2775 */
376bf125
JDB
2776static inline
2777int build_detached_freelist(struct kmem_cache *s, size_t size,
2778 void **p, struct detached_freelist *df)
d0ecd894
JDB
2779{
2780 size_t first_skipped_index = 0;
2781 int lookahead = 3;
2782 void *object;
ca257195 2783 struct page *page;
fbd02630 2784
d0ecd894
JDB
2785 /* Always re-init detached_freelist */
2786 df->page = NULL;
fbd02630 2787
d0ecd894
JDB
2788 do {
2789 object = p[--size];
ca257195 2790 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 2791 } while (!object && size);
3eed034d 2792
d0ecd894
JDB
2793 if (!object)
2794 return 0;
fbd02630 2795
ca257195
JDB
2796 page = virt_to_head_page(object);
2797 if (!s) {
2798 /* Handle kalloc'ed objects */
2799 if (unlikely(!PageSlab(page))) {
2800 BUG_ON(!PageCompound(page));
2801 kfree_hook(object);
2802 __free_kmem_pages(page, compound_order(page));
2803 p[size] = NULL; /* mark object processed */
2804 return size;
2805 }
2806 /* Derive kmem_cache from object */
2807 df->s = page->slab_cache;
2808 } else {
2809 df->s = cache_from_obj(s, object); /* Support for memcg */
2810 }
376bf125 2811
d0ecd894 2812 /* Start new detached freelist */
ca257195 2813 df->page = page;
376bf125 2814 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
2815 df->tail = object;
2816 df->freelist = object;
2817 p[size] = NULL; /* mark object processed */
2818 df->cnt = 1;
2819
2820 while (size) {
2821 object = p[--size];
2822 if (!object)
2823 continue; /* Skip processed objects */
2824
2825 /* df->page is always set at this point */
2826 if (df->page == virt_to_head_page(object)) {
2827 /* Opportunity build freelist */
376bf125 2828 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
2829 df->freelist = object;
2830 df->cnt++;
2831 p[size] = NULL; /* mark object processed */
2832
2833 continue;
fbd02630 2834 }
d0ecd894
JDB
2835
2836 /* Limit look ahead search */
2837 if (!--lookahead)
2838 break;
2839
2840 if (!first_skipped_index)
2841 first_skipped_index = size + 1;
fbd02630 2842 }
d0ecd894
JDB
2843
2844 return first_skipped_index;
2845}
2846
d0ecd894 2847/* Note that interrupts must be enabled when calling this function. */
376bf125 2848void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
2849{
2850 if (WARN_ON(!size))
2851 return;
2852
2853 do {
2854 struct detached_freelist df;
2855
2856 size = build_detached_freelist(s, size, p, &df);
2857 if (unlikely(!df.page))
2858 continue;
2859
376bf125 2860 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 2861 } while (likely(size));
484748f0
CL
2862}
2863EXPORT_SYMBOL(kmem_cache_free_bulk);
2864
994eb764 2865/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
2866int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2867 void **p)
484748f0 2868{
994eb764
JDB
2869 struct kmem_cache_cpu *c;
2870 int i;
2871
03ec0ed5
JDB
2872 /* memcg and kmem_cache debug support */
2873 s = slab_pre_alloc_hook(s, flags);
2874 if (unlikely(!s))
2875 return false;
994eb764
JDB
2876 /*
2877 * Drain objects in the per cpu slab, while disabling local
2878 * IRQs, which protects against PREEMPT and interrupts
2879 * handlers invoking normal fastpath.
2880 */
2881 local_irq_disable();
2882 c = this_cpu_ptr(s->cpu_slab);
2883
2884 for (i = 0; i < size; i++) {
2885 void *object = c->freelist;
2886
ebe909e0 2887 if (unlikely(!object)) {
ebe909e0
JDB
2888 /*
2889 * Invoking slow path likely have side-effect
2890 * of re-populating per CPU c->freelist
2891 */
87098373 2892 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 2893 _RET_IP_, c);
87098373
CL
2894 if (unlikely(!p[i]))
2895 goto error;
2896
ebe909e0
JDB
2897 c = this_cpu_ptr(s->cpu_slab);
2898 continue; /* goto for-loop */
2899 }
994eb764
JDB
2900 c->freelist = get_freepointer(s, object);
2901 p[i] = object;
2902 }
2903 c->tid = next_tid(c->tid);
2904 local_irq_enable();
2905
2906 /* Clear memory outside IRQ disabled fastpath loop */
2907 if (unlikely(flags & __GFP_ZERO)) {
2908 int j;
2909
2910 for (j = 0; j < i; j++)
2911 memset(p[j], 0, s->object_size);
2912 }
2913
03ec0ed5
JDB
2914 /* memcg and kmem_cache debug support */
2915 slab_post_alloc_hook(s, flags, size, p);
865762a8 2916 return i;
87098373 2917error:
87098373 2918 local_irq_enable();
03ec0ed5
JDB
2919 slab_post_alloc_hook(s, flags, i, p);
2920 __kmem_cache_free_bulk(s, i, p);
865762a8 2921 return 0;
484748f0
CL
2922}
2923EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2924
2925
81819f0f 2926/*
672bba3a
CL
2927 * Object placement in a slab is made very easy because we always start at
2928 * offset 0. If we tune the size of the object to the alignment then we can
2929 * get the required alignment by putting one properly sized object after
2930 * another.
81819f0f
CL
2931 *
2932 * Notice that the allocation order determines the sizes of the per cpu
2933 * caches. Each processor has always one slab available for allocations.
2934 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2935 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2936 * locking overhead.
81819f0f
CL
2937 */
2938
2939/*
2940 * Mininum / Maximum order of slab pages. This influences locking overhead
2941 * and slab fragmentation. A higher order reduces the number of partial slabs
2942 * and increases the number of allocations possible without having to
2943 * take the list_lock.
2944 */
2945static int slub_min_order;
114e9e89 2946static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2947static int slub_min_objects;
81819f0f 2948
81819f0f
CL
2949/*
2950 * Calculate the order of allocation given an slab object size.
2951 *
672bba3a
CL
2952 * The order of allocation has significant impact on performance and other
2953 * system components. Generally order 0 allocations should be preferred since
2954 * order 0 does not cause fragmentation in the page allocator. Larger objects
2955 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2956 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2957 * would be wasted.
2958 *
2959 * In order to reach satisfactory performance we must ensure that a minimum
2960 * number of objects is in one slab. Otherwise we may generate too much
2961 * activity on the partial lists which requires taking the list_lock. This is
2962 * less a concern for large slabs though which are rarely used.
81819f0f 2963 *
672bba3a
CL
2964 * slub_max_order specifies the order where we begin to stop considering the
2965 * number of objects in a slab as critical. If we reach slub_max_order then
2966 * we try to keep the page order as low as possible. So we accept more waste
2967 * of space in favor of a small page order.
81819f0f 2968 *
672bba3a
CL
2969 * Higher order allocations also allow the placement of more objects in a
2970 * slab and thereby reduce object handling overhead. If the user has
2971 * requested a higher mininum order then we start with that one instead of
2972 * the smallest order which will fit the object.
81819f0f 2973 */
5e6d444e 2974static inline int slab_order(int size, int min_objects,
ab9a0f19 2975 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2976{
2977 int order;
2978 int rem;
6300ea75 2979 int min_order = slub_min_order;
81819f0f 2980
ab9a0f19 2981 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2982 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2983
9f835703 2984 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 2985 order <= max_order; order++) {
81819f0f 2986
5e6d444e 2987 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2988
ab9a0f19 2989 rem = (slab_size - reserved) % size;
81819f0f 2990
5e6d444e 2991 if (rem <= slab_size / fract_leftover)
81819f0f 2992 break;
81819f0f 2993 }
672bba3a 2994
81819f0f
CL
2995 return order;
2996}
2997
ab9a0f19 2998static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2999{
3000 int order;
3001 int min_objects;
3002 int fraction;
e8120ff1 3003 int max_objects;
5e6d444e
CL
3004
3005 /*
3006 * Attempt to find best configuration for a slab. This
3007 * works by first attempting to generate a layout with
3008 * the best configuration and backing off gradually.
3009 *
422ff4d7 3010 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3011 * we reduce the minimum objects required in a slab.
3012 */
3013 min_objects = slub_min_objects;
9b2cd506
CL
3014 if (!min_objects)
3015 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3016 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3017 min_objects = min(min_objects, max_objects);
3018
5e6d444e 3019 while (min_objects > 1) {
c124f5b5 3020 fraction = 16;
5e6d444e
CL
3021 while (fraction >= 4) {
3022 order = slab_order(size, min_objects,
ab9a0f19 3023 slub_max_order, fraction, reserved);
5e6d444e
CL
3024 if (order <= slub_max_order)
3025 return order;
3026 fraction /= 2;
3027 }
5086c389 3028 min_objects--;
5e6d444e
CL
3029 }
3030
3031 /*
3032 * We were unable to place multiple objects in a slab. Now
3033 * lets see if we can place a single object there.
3034 */
ab9a0f19 3035 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3036 if (order <= slub_max_order)
3037 return order;
3038
3039 /*
3040 * Doh this slab cannot be placed using slub_max_order.
3041 */
ab9a0f19 3042 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3043 if (order < MAX_ORDER)
5e6d444e
CL
3044 return order;
3045 return -ENOSYS;
3046}
3047
5595cffc 3048static void
4053497d 3049init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3050{
3051 n->nr_partial = 0;
81819f0f
CL
3052 spin_lock_init(&n->list_lock);
3053 INIT_LIST_HEAD(&n->partial);
8ab1372f 3054#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3055 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3056 atomic_long_set(&n->total_objects, 0);
643b1138 3057 INIT_LIST_HEAD(&n->full);
8ab1372f 3058#endif
81819f0f
CL
3059}
3060
55136592 3061static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3062{
6c182dc0 3063 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3064 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3065
8a5ec0ba 3066 /*
d4d84fef
CM
3067 * Must align to double word boundary for the double cmpxchg
3068 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3069 */
d4d84fef
CM
3070 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3071 2 * sizeof(void *));
8a5ec0ba
CL
3072
3073 if (!s->cpu_slab)
3074 return 0;
3075
3076 init_kmem_cache_cpus(s);
4c93c355 3077
8a5ec0ba 3078 return 1;
4c93c355 3079}
4c93c355 3080
51df1142
CL
3081static struct kmem_cache *kmem_cache_node;
3082
81819f0f
CL
3083/*
3084 * No kmalloc_node yet so do it by hand. We know that this is the first
3085 * slab on the node for this slabcache. There are no concurrent accesses
3086 * possible.
3087 *
721ae22a
ZYW
3088 * Note that this function only works on the kmem_cache_node
3089 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3090 * memory on a fresh node that has no slab structures yet.
81819f0f 3091 */
55136592 3092static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3093{
3094 struct page *page;
3095 struct kmem_cache_node *n;
3096
51df1142 3097 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3098
51df1142 3099 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3100
3101 BUG_ON(!page);
a2f92ee7 3102 if (page_to_nid(page) != node) {
f9f58285
FF
3103 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3104 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3105 }
3106
81819f0f
CL
3107 n = page->freelist;
3108 BUG_ON(!n);
51df1142 3109 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3110 page->inuse = 1;
8cb0a506 3111 page->frozen = 0;
51df1142 3112 kmem_cache_node->node[node] = n;
8ab1372f 3113#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3114 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3115 init_tracking(kmem_cache_node, n);
8ab1372f 3116#endif
0316bec2 3117 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
4053497d 3118 init_kmem_cache_node(n);
51df1142 3119 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3120
67b6c900 3121 /*
1e4dd946
SR
3122 * No locks need to be taken here as it has just been
3123 * initialized and there is no concurrent access.
67b6c900 3124 */
1e4dd946 3125 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3126}
3127
3128static void free_kmem_cache_nodes(struct kmem_cache *s)
3129{
3130 int node;
fa45dc25 3131 struct kmem_cache_node *n;
81819f0f 3132
fa45dc25
CL
3133 for_each_kmem_cache_node(s, node, n) {
3134 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3135 s->node[node] = NULL;
3136 }
3137}
3138
52b4b950
DS
3139void __kmem_cache_release(struct kmem_cache *s)
3140{
3141 free_percpu(s->cpu_slab);
3142 free_kmem_cache_nodes(s);
3143}
3144
55136592 3145static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3146{
3147 int node;
81819f0f 3148
f64dc58c 3149 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3150 struct kmem_cache_node *n;
3151
73367bd8 3152 if (slab_state == DOWN) {
55136592 3153 early_kmem_cache_node_alloc(node);
73367bd8
AD
3154 continue;
3155 }
51df1142 3156 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3157 GFP_KERNEL, node);
81819f0f 3158
73367bd8
AD
3159 if (!n) {
3160 free_kmem_cache_nodes(s);
3161 return 0;
81819f0f 3162 }
73367bd8 3163
81819f0f 3164 s->node[node] = n;
4053497d 3165 init_kmem_cache_node(n);
81819f0f
CL
3166 }
3167 return 1;
3168}
81819f0f 3169
c0bdb232 3170static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3171{
3172 if (min < MIN_PARTIAL)
3173 min = MIN_PARTIAL;
3174 else if (min > MAX_PARTIAL)
3175 min = MAX_PARTIAL;
3176 s->min_partial = min;
3177}
3178
81819f0f
CL
3179/*
3180 * calculate_sizes() determines the order and the distribution of data within
3181 * a slab object.
3182 */
06b285dc 3183static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3184{
3185 unsigned long flags = s->flags;
3b0efdfa 3186 unsigned long size = s->object_size;
834f3d11 3187 int order;
81819f0f 3188
d8b42bf5
CL
3189 /*
3190 * Round up object size to the next word boundary. We can only
3191 * place the free pointer at word boundaries and this determines
3192 * the possible location of the free pointer.
3193 */
3194 size = ALIGN(size, sizeof(void *));
3195
3196#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3197 /*
3198 * Determine if we can poison the object itself. If the user of
3199 * the slab may touch the object after free or before allocation
3200 * then we should never poison the object itself.
3201 */
3202 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3203 !s->ctor)
81819f0f
CL
3204 s->flags |= __OBJECT_POISON;
3205 else
3206 s->flags &= ~__OBJECT_POISON;
3207
81819f0f
CL
3208
3209 /*
672bba3a 3210 * If we are Redzoning then check if there is some space between the
81819f0f 3211 * end of the object and the free pointer. If not then add an
672bba3a 3212 * additional word to have some bytes to store Redzone information.
81819f0f 3213 */
3b0efdfa 3214 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3215 size += sizeof(void *);
41ecc55b 3216#endif
81819f0f
CL
3217
3218 /*
672bba3a
CL
3219 * With that we have determined the number of bytes in actual use
3220 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3221 */
3222 s->inuse = size;
3223
3224 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3225 s->ctor)) {
81819f0f
CL
3226 /*
3227 * Relocate free pointer after the object if it is not
3228 * permitted to overwrite the first word of the object on
3229 * kmem_cache_free.
3230 *
3231 * This is the case if we do RCU, have a constructor or
3232 * destructor or are poisoning the objects.
3233 */
3234 s->offset = size;
3235 size += sizeof(void *);
3236 }
3237
c12b3c62 3238#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3239 if (flags & SLAB_STORE_USER)
3240 /*
3241 * Need to store information about allocs and frees after
3242 * the object.
3243 */
3244 size += 2 * sizeof(struct track);
3245
be7b3fbc 3246 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3247 /*
3248 * Add some empty padding so that we can catch
3249 * overwrites from earlier objects rather than let
3250 * tracking information or the free pointer be
0211a9c8 3251 * corrupted if a user writes before the start
81819f0f
CL
3252 * of the object.
3253 */
3254 size += sizeof(void *);
41ecc55b 3255#endif
672bba3a 3256
81819f0f
CL
3257 /*
3258 * SLUB stores one object immediately after another beginning from
3259 * offset 0. In order to align the objects we have to simply size
3260 * each object to conform to the alignment.
3261 */
45906855 3262 size = ALIGN(size, s->align);
81819f0f 3263 s->size = size;
06b285dc
CL
3264 if (forced_order >= 0)
3265 order = forced_order;
3266 else
ab9a0f19 3267 order = calculate_order(size, s->reserved);
81819f0f 3268
834f3d11 3269 if (order < 0)
81819f0f
CL
3270 return 0;
3271
b7a49f0d 3272 s->allocflags = 0;
834f3d11 3273 if (order)
b7a49f0d
CL
3274 s->allocflags |= __GFP_COMP;
3275
3276 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3277 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3278
3279 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3280 s->allocflags |= __GFP_RECLAIMABLE;
3281
81819f0f
CL
3282 /*
3283 * Determine the number of objects per slab
3284 */
ab9a0f19
LJ
3285 s->oo = oo_make(order, size, s->reserved);
3286 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3287 if (oo_objects(s->oo) > oo_objects(s->max))
3288 s->max = s->oo;
81819f0f 3289
834f3d11 3290 return !!oo_objects(s->oo);
81819f0f
CL
3291}
3292
8a13a4cc 3293static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3294{
8a13a4cc 3295 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3296 s->reserved = 0;
81819f0f 3297
da9a638c
LJ
3298 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3299 s->reserved = sizeof(struct rcu_head);
81819f0f 3300
06b285dc 3301 if (!calculate_sizes(s, -1))
81819f0f 3302 goto error;
3de47213
DR
3303 if (disable_higher_order_debug) {
3304 /*
3305 * Disable debugging flags that store metadata if the min slab
3306 * order increased.
3307 */
3b0efdfa 3308 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3309 s->flags &= ~DEBUG_METADATA_FLAGS;
3310 s->offset = 0;
3311 if (!calculate_sizes(s, -1))
3312 goto error;
3313 }
3314 }
81819f0f 3315
2565409f
HC
3316#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3317 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3318 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3319 /* Enable fast mode */
3320 s->flags |= __CMPXCHG_DOUBLE;
3321#endif
3322
3b89d7d8
DR
3323 /*
3324 * The larger the object size is, the more pages we want on the partial
3325 * list to avoid pounding the page allocator excessively.
3326 */
49e22585
CL
3327 set_min_partial(s, ilog2(s->size) / 2);
3328
3329 /*
3330 * cpu_partial determined the maximum number of objects kept in the
3331 * per cpu partial lists of a processor.
3332 *
3333 * Per cpu partial lists mainly contain slabs that just have one
3334 * object freed. If they are used for allocation then they can be
3335 * filled up again with minimal effort. The slab will never hit the
3336 * per node partial lists and therefore no locking will be required.
3337 *
3338 * This setting also determines
3339 *
3340 * A) The number of objects from per cpu partial slabs dumped to the
3341 * per node list when we reach the limit.
9f264904 3342 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3343 * per node list when we run out of per cpu objects. We only fetch
3344 * 50% to keep some capacity around for frees.
49e22585 3345 */
345c905d 3346 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3347 s->cpu_partial = 0;
3348 else if (s->size >= PAGE_SIZE)
49e22585
CL
3349 s->cpu_partial = 2;
3350 else if (s->size >= 1024)
3351 s->cpu_partial = 6;
3352 else if (s->size >= 256)
3353 s->cpu_partial = 13;
3354 else
3355 s->cpu_partial = 30;
3356
81819f0f 3357#ifdef CONFIG_NUMA
e2cb96b7 3358 s->remote_node_defrag_ratio = 1000;
81819f0f 3359#endif
55136592 3360 if (!init_kmem_cache_nodes(s))
dfb4f096 3361 goto error;
81819f0f 3362
55136592 3363 if (alloc_kmem_cache_cpus(s))
278b1bb1 3364 return 0;
ff12059e 3365
4c93c355 3366 free_kmem_cache_nodes(s);
81819f0f
CL
3367error:
3368 if (flags & SLAB_PANIC)
3369 panic("Cannot create slab %s size=%lu realsize=%u "
3370 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3371 s->name, (unsigned long)s->size, s->size,
3372 oo_order(s->oo), s->offset, flags);
278b1bb1 3373 return -EINVAL;
81819f0f 3374}
81819f0f 3375
33b12c38
CL
3376static void list_slab_objects(struct kmem_cache *s, struct page *page,
3377 const char *text)
3378{
3379#ifdef CONFIG_SLUB_DEBUG
3380 void *addr = page_address(page);
3381 void *p;
a5dd5c11
NK
3382 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3383 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3384 if (!map)
3385 return;
945cf2b6 3386 slab_err(s, page, text, s->name);
33b12c38 3387 slab_lock(page);
33b12c38 3388
5f80b13a 3389 get_map(s, page, map);
33b12c38
CL
3390 for_each_object(p, s, addr, page->objects) {
3391
3392 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3393 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3394 print_tracking(s, p);
3395 }
3396 }
3397 slab_unlock(page);
bbd7d57b 3398 kfree(map);
33b12c38
CL
3399#endif
3400}
3401
81819f0f 3402/*
599870b1 3403 * Attempt to free all partial slabs on a node.
52b4b950
DS
3404 * This is called from __kmem_cache_shutdown(). We must take list_lock
3405 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3406 */
599870b1 3407static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3408{
81819f0f
CL
3409 struct page *page, *h;
3410
52b4b950
DS
3411 BUG_ON(irqs_disabled());
3412 spin_lock_irq(&n->list_lock);
33b12c38 3413 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3414 if (!page->inuse) {
52b4b950 3415 remove_partial(n, page);
81819f0f 3416 discard_slab(s, page);
33b12c38
CL
3417 } else {
3418 list_slab_objects(s, page,
52b4b950 3419 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3420 }
33b12c38 3421 }
52b4b950 3422 spin_unlock_irq(&n->list_lock);
81819f0f
CL
3423}
3424
3425/*
672bba3a 3426 * Release all resources used by a slab cache.
81819f0f 3427 */
52b4b950 3428int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3429{
3430 int node;
fa45dc25 3431 struct kmem_cache_node *n;
81819f0f
CL
3432
3433 flush_all(s);
81819f0f 3434 /* Attempt to free all objects */
fa45dc25 3435 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3436 free_partial(s, n);
3437 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3438 return 1;
3439 }
81819f0f
CL
3440 return 0;
3441}
3442
81819f0f
CL
3443/********************************************************************
3444 * Kmalloc subsystem
3445 *******************************************************************/
3446
81819f0f
CL
3447static int __init setup_slub_min_order(char *str)
3448{
06428780 3449 get_option(&str, &slub_min_order);
81819f0f
CL
3450
3451 return 1;
3452}
3453
3454__setup("slub_min_order=", setup_slub_min_order);
3455
3456static int __init setup_slub_max_order(char *str)
3457{
06428780 3458 get_option(&str, &slub_max_order);
818cf590 3459 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3460
3461 return 1;
3462}
3463
3464__setup("slub_max_order=", setup_slub_max_order);
3465
3466static int __init setup_slub_min_objects(char *str)
3467{
06428780 3468 get_option(&str, &slub_min_objects);
81819f0f
CL
3469
3470 return 1;
3471}
3472
3473__setup("slub_min_objects=", setup_slub_min_objects);
3474
81819f0f
CL
3475void *__kmalloc(size_t size, gfp_t flags)
3476{
aadb4bc4 3477 struct kmem_cache *s;
5b882be4 3478 void *ret;
81819f0f 3479
95a05b42 3480 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3481 return kmalloc_large(size, flags);
aadb4bc4 3482
2c59dd65 3483 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3484
3485 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3486 return s;
3487
2b847c3c 3488 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3489
ca2b84cb 3490 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3491
0316bec2
AR
3492 kasan_kmalloc(s, ret, size);
3493
5b882be4 3494 return ret;
81819f0f
CL
3495}
3496EXPORT_SYMBOL(__kmalloc);
3497
5d1f57e4 3498#ifdef CONFIG_NUMA
f619cfe1
CL
3499static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3500{
b1eeab67 3501 struct page *page;
e4f7c0b4 3502 void *ptr = NULL;
f619cfe1 3503
52383431
VD
3504 flags |= __GFP_COMP | __GFP_NOTRACK;
3505 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3506 if (page)
e4f7c0b4
CM
3507 ptr = page_address(page);
3508
d56791b3 3509 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3510 return ptr;
f619cfe1
CL
3511}
3512
81819f0f
CL
3513void *__kmalloc_node(size_t size, gfp_t flags, int node)
3514{
aadb4bc4 3515 struct kmem_cache *s;
5b882be4 3516 void *ret;
81819f0f 3517
95a05b42 3518 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3519 ret = kmalloc_large_node(size, flags, node);
3520
ca2b84cb
EGM
3521 trace_kmalloc_node(_RET_IP_, ret,
3522 size, PAGE_SIZE << get_order(size),
3523 flags, node);
5b882be4
EGM
3524
3525 return ret;
3526 }
aadb4bc4 3527
2c59dd65 3528 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3529
3530 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3531 return s;
3532
2b847c3c 3533 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3534
ca2b84cb 3535 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3536
0316bec2
AR
3537 kasan_kmalloc(s, ret, size);
3538
5b882be4 3539 return ret;
81819f0f
CL
3540}
3541EXPORT_SYMBOL(__kmalloc_node);
3542#endif
3543
0316bec2 3544static size_t __ksize(const void *object)
81819f0f 3545{
272c1d21 3546 struct page *page;
81819f0f 3547
ef8b4520 3548 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3549 return 0;
3550
294a80a8 3551 page = virt_to_head_page(object);
294a80a8 3552
76994412
PE
3553 if (unlikely(!PageSlab(page))) {
3554 WARN_ON(!PageCompound(page));
294a80a8 3555 return PAGE_SIZE << compound_order(page);
76994412 3556 }
81819f0f 3557
1b4f59e3 3558 return slab_ksize(page->slab_cache);
81819f0f 3559}
0316bec2
AR
3560
3561size_t ksize(const void *object)
3562{
3563 size_t size = __ksize(object);
3564 /* We assume that ksize callers could use whole allocated area,
3565 so we need unpoison this area. */
3566 kasan_krealloc(object, size);
3567 return size;
3568}
b1aabecd 3569EXPORT_SYMBOL(ksize);
81819f0f
CL
3570
3571void kfree(const void *x)
3572{
81819f0f 3573 struct page *page;
5bb983b0 3574 void *object = (void *)x;
81819f0f 3575
2121db74
PE
3576 trace_kfree(_RET_IP_, x);
3577
2408c550 3578 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3579 return;
3580
b49af68f 3581 page = virt_to_head_page(x);
aadb4bc4 3582 if (unlikely(!PageSlab(page))) {
0937502a 3583 BUG_ON(!PageCompound(page));
d56791b3 3584 kfree_hook(x);
52383431 3585 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3586 return;
3587 }
81084651 3588 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3589}
3590EXPORT_SYMBOL(kfree);
3591
832f37f5
VD
3592#define SHRINK_PROMOTE_MAX 32
3593
2086d26a 3594/*
832f37f5
VD
3595 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3596 * up most to the head of the partial lists. New allocations will then
3597 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3598 *
3599 * The slabs with the least items are placed last. This results in them
3600 * being allocated from last increasing the chance that the last objects
3601 * are freed in them.
2086d26a 3602 */
d6e0b7fa 3603int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3604{
3605 int node;
3606 int i;
3607 struct kmem_cache_node *n;
3608 struct page *page;
3609 struct page *t;
832f37f5
VD
3610 struct list_head discard;
3611 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3612 unsigned long flags;
ce3712d7 3613 int ret = 0;
2086d26a 3614
d6e0b7fa
VD
3615 if (deactivate) {
3616 /*
3617 * Disable empty slabs caching. Used to avoid pinning offline
3618 * memory cgroups by kmem pages that can be freed.
3619 */
3620 s->cpu_partial = 0;
3621 s->min_partial = 0;
3622
3623 /*
3624 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3625 * so we have to make sure the change is visible.
3626 */
3627 kick_all_cpus_sync();
3628 }
3629
2086d26a 3630 flush_all(s);
fa45dc25 3631 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3632 INIT_LIST_HEAD(&discard);
3633 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3634 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3635
3636 spin_lock_irqsave(&n->list_lock, flags);
3637
3638 /*
832f37f5 3639 * Build lists of slabs to discard or promote.
2086d26a 3640 *
672bba3a
CL
3641 * Note that concurrent frees may occur while we hold the
3642 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3643 */
3644 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3645 int free = page->objects - page->inuse;
3646
3647 /* Do not reread page->inuse */
3648 barrier();
3649
3650 /* We do not keep full slabs on the list */
3651 BUG_ON(free <= 0);
3652
3653 if (free == page->objects) {
3654 list_move(&page->lru, &discard);
69cb8e6b 3655 n->nr_partial--;
832f37f5
VD
3656 } else if (free <= SHRINK_PROMOTE_MAX)
3657 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3658 }
3659
2086d26a 3660 /*
832f37f5
VD
3661 * Promote the slabs filled up most to the head of the
3662 * partial list.
2086d26a 3663 */
832f37f5
VD
3664 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3665 list_splice(promote + i, &n->partial);
2086d26a 3666
2086d26a 3667 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3668
3669 /* Release empty slabs */
832f37f5 3670 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3671 discard_slab(s, page);
ce3712d7
VD
3672
3673 if (slabs_node(s, node))
3674 ret = 1;
2086d26a
CL
3675 }
3676
ce3712d7 3677 return ret;
2086d26a 3678}
2086d26a 3679
b9049e23
YG
3680static int slab_mem_going_offline_callback(void *arg)
3681{
3682 struct kmem_cache *s;
3683
18004c5d 3684 mutex_lock(&slab_mutex);
b9049e23 3685 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3686 __kmem_cache_shrink(s, false);
18004c5d 3687 mutex_unlock(&slab_mutex);
b9049e23
YG
3688
3689 return 0;
3690}
3691
3692static void slab_mem_offline_callback(void *arg)
3693{
3694 struct kmem_cache_node *n;
3695 struct kmem_cache *s;
3696 struct memory_notify *marg = arg;
3697 int offline_node;
3698
b9d5ab25 3699 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3700
3701 /*
3702 * If the node still has available memory. we need kmem_cache_node
3703 * for it yet.
3704 */
3705 if (offline_node < 0)
3706 return;
3707
18004c5d 3708 mutex_lock(&slab_mutex);
b9049e23
YG
3709 list_for_each_entry(s, &slab_caches, list) {
3710 n = get_node(s, offline_node);
3711 if (n) {
3712 /*
3713 * if n->nr_slabs > 0, slabs still exist on the node
3714 * that is going down. We were unable to free them,
c9404c9c 3715 * and offline_pages() function shouldn't call this
b9049e23
YG
3716 * callback. So, we must fail.
3717 */
0f389ec6 3718 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3719
3720 s->node[offline_node] = NULL;
8de66a0c 3721 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3722 }
3723 }
18004c5d 3724 mutex_unlock(&slab_mutex);
b9049e23
YG
3725}
3726
3727static int slab_mem_going_online_callback(void *arg)
3728{
3729 struct kmem_cache_node *n;
3730 struct kmem_cache *s;
3731 struct memory_notify *marg = arg;
b9d5ab25 3732 int nid = marg->status_change_nid_normal;
b9049e23
YG
3733 int ret = 0;
3734
3735 /*
3736 * If the node's memory is already available, then kmem_cache_node is
3737 * already created. Nothing to do.
3738 */
3739 if (nid < 0)
3740 return 0;
3741
3742 /*
0121c619 3743 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3744 * allocate a kmem_cache_node structure in order to bring the node
3745 * online.
3746 */
18004c5d 3747 mutex_lock(&slab_mutex);
b9049e23
YG
3748 list_for_each_entry(s, &slab_caches, list) {
3749 /*
3750 * XXX: kmem_cache_alloc_node will fallback to other nodes
3751 * since memory is not yet available from the node that
3752 * is brought up.
3753 */
8de66a0c 3754 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3755 if (!n) {
3756 ret = -ENOMEM;
3757 goto out;
3758 }
4053497d 3759 init_kmem_cache_node(n);
b9049e23
YG
3760 s->node[nid] = n;
3761 }
3762out:
18004c5d 3763 mutex_unlock(&slab_mutex);
b9049e23
YG
3764 return ret;
3765}
3766
3767static int slab_memory_callback(struct notifier_block *self,
3768 unsigned long action, void *arg)
3769{
3770 int ret = 0;
3771
3772 switch (action) {
3773 case MEM_GOING_ONLINE:
3774 ret = slab_mem_going_online_callback(arg);
3775 break;
3776 case MEM_GOING_OFFLINE:
3777 ret = slab_mem_going_offline_callback(arg);
3778 break;
3779 case MEM_OFFLINE:
3780 case MEM_CANCEL_ONLINE:
3781 slab_mem_offline_callback(arg);
3782 break;
3783 case MEM_ONLINE:
3784 case MEM_CANCEL_OFFLINE:
3785 break;
3786 }
dc19f9db
KH
3787 if (ret)
3788 ret = notifier_from_errno(ret);
3789 else
3790 ret = NOTIFY_OK;
b9049e23
YG
3791 return ret;
3792}
3793
3ac38faa
AM
3794static struct notifier_block slab_memory_callback_nb = {
3795 .notifier_call = slab_memory_callback,
3796 .priority = SLAB_CALLBACK_PRI,
3797};
b9049e23 3798
81819f0f
CL
3799/********************************************************************
3800 * Basic setup of slabs
3801 *******************************************************************/
3802
51df1142
CL
3803/*
3804 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3805 * the page allocator. Allocate them properly then fix up the pointers
3806 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3807 */
3808
dffb4d60 3809static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3810{
3811 int node;
dffb4d60 3812 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3813 struct kmem_cache_node *n;
51df1142 3814
dffb4d60 3815 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3816
7d557b3c
GC
3817 /*
3818 * This runs very early, and only the boot processor is supposed to be
3819 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3820 * IPIs around.
3821 */
3822 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3823 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3824 struct page *p;
3825
fa45dc25
CL
3826 list_for_each_entry(p, &n->partial, lru)
3827 p->slab_cache = s;
51df1142 3828
607bf324 3829#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3830 list_for_each_entry(p, &n->full, lru)
3831 p->slab_cache = s;
51df1142 3832#endif
51df1142 3833 }
f7ce3190 3834 slab_init_memcg_params(s);
dffb4d60
CL
3835 list_add(&s->list, &slab_caches);
3836 return s;
51df1142
CL
3837}
3838
81819f0f
CL
3839void __init kmem_cache_init(void)
3840{
dffb4d60
CL
3841 static __initdata struct kmem_cache boot_kmem_cache,
3842 boot_kmem_cache_node;
51df1142 3843
fc8d8620
SG
3844 if (debug_guardpage_minorder())
3845 slub_max_order = 0;
3846
dffb4d60
CL
3847 kmem_cache_node = &boot_kmem_cache_node;
3848 kmem_cache = &boot_kmem_cache;
51df1142 3849
dffb4d60
CL
3850 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3851 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3852
3ac38faa 3853 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3854
3855 /* Able to allocate the per node structures */
3856 slab_state = PARTIAL;
3857
dffb4d60
CL
3858 create_boot_cache(kmem_cache, "kmem_cache",
3859 offsetof(struct kmem_cache, node) +
3860 nr_node_ids * sizeof(struct kmem_cache_node *),
3861 SLAB_HWCACHE_ALIGN);
8a13a4cc 3862
dffb4d60 3863 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3864
51df1142
CL
3865 /*
3866 * Allocate kmem_cache_node properly from the kmem_cache slab.
3867 * kmem_cache_node is separately allocated so no need to
3868 * update any list pointers.
3869 */
dffb4d60 3870 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3871
3872 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 3873 setup_kmalloc_cache_index_table();
f97d5f63 3874 create_kmalloc_caches(0);
81819f0f
CL
3875
3876#ifdef CONFIG_SMP
3877 register_cpu_notifier(&slab_notifier);
9dfc6e68 3878#endif
81819f0f 3879
f9f58285 3880 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3881 cache_line_size(),
81819f0f
CL
3882 slub_min_order, slub_max_order, slub_min_objects,
3883 nr_cpu_ids, nr_node_ids);
3884}
3885
7e85ee0c
PE
3886void __init kmem_cache_init_late(void)
3887{
7e85ee0c
PE
3888}
3889
2633d7a0 3890struct kmem_cache *
a44cb944
VD
3891__kmem_cache_alias(const char *name, size_t size, size_t align,
3892 unsigned long flags, void (*ctor)(void *))
81819f0f 3893{
426589f5 3894 struct kmem_cache *s, *c;
81819f0f 3895
a44cb944 3896 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3897 if (s) {
3898 s->refcount++;
84d0ddd6 3899
81819f0f
CL
3900 /*
3901 * Adjust the object sizes so that we clear
3902 * the complete object on kzalloc.
3903 */
3b0efdfa 3904 s->object_size = max(s->object_size, (int)size);
81819f0f 3905 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3906
426589f5 3907 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3908 c->object_size = s->object_size;
3909 c->inuse = max_t(int, c->inuse,
3910 ALIGN(size, sizeof(void *)));
3911 }
3912
7b8f3b66 3913 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3914 s->refcount--;
cbb79694 3915 s = NULL;
7b8f3b66 3916 }
a0e1d1be 3917 }
6446faa2 3918
cbb79694
CL
3919 return s;
3920}
84c1cf62 3921
8a13a4cc 3922int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3923{
aac3a166
PE
3924 int err;
3925
3926 err = kmem_cache_open(s, flags);
3927 if (err)
3928 return err;
20cea968 3929
45530c44
CL
3930 /* Mutex is not taken during early boot */
3931 if (slab_state <= UP)
3932 return 0;
3933
107dab5c 3934 memcg_propagate_slab_attrs(s);
aac3a166 3935 err = sysfs_slab_add(s);
aac3a166 3936 if (err)
52b4b950 3937 __kmem_cache_release(s);
20cea968 3938
aac3a166 3939 return err;
81819f0f 3940}
81819f0f 3941
81819f0f 3942#ifdef CONFIG_SMP
81819f0f 3943/*
672bba3a
CL
3944 * Use the cpu notifier to insure that the cpu slabs are flushed when
3945 * necessary.
81819f0f 3946 */
0db0628d 3947static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3948 unsigned long action, void *hcpu)
3949{
3950 long cpu = (long)hcpu;
5b95a4ac
CL
3951 struct kmem_cache *s;
3952 unsigned long flags;
81819f0f
CL
3953
3954 switch (action) {
3955 case CPU_UP_CANCELED:
8bb78442 3956 case CPU_UP_CANCELED_FROZEN:
81819f0f 3957 case CPU_DEAD:
8bb78442 3958 case CPU_DEAD_FROZEN:
18004c5d 3959 mutex_lock(&slab_mutex);
5b95a4ac
CL
3960 list_for_each_entry(s, &slab_caches, list) {
3961 local_irq_save(flags);
3962 __flush_cpu_slab(s, cpu);
3963 local_irq_restore(flags);
3964 }
18004c5d 3965 mutex_unlock(&slab_mutex);
81819f0f
CL
3966 break;
3967 default:
3968 break;
3969 }
3970 return NOTIFY_OK;
3971}
3972
0db0628d 3973static struct notifier_block slab_notifier = {
3adbefee 3974 .notifier_call = slab_cpuup_callback
06428780 3975};
81819f0f
CL
3976
3977#endif
3978
ce71e27c 3979void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3980{
aadb4bc4 3981 struct kmem_cache *s;
94b528d0 3982 void *ret;
aadb4bc4 3983
95a05b42 3984 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3985 return kmalloc_large(size, gfpflags);
3986
2c59dd65 3987 s = kmalloc_slab(size, gfpflags);
81819f0f 3988
2408c550 3989 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3990 return s;
81819f0f 3991
2b847c3c 3992 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3993
25985edc 3994 /* Honor the call site pointer we received. */
ca2b84cb 3995 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3996
3997 return ret;
81819f0f
CL
3998}
3999
5d1f57e4 4000#ifdef CONFIG_NUMA
81819f0f 4001void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4002 int node, unsigned long caller)
81819f0f 4003{
aadb4bc4 4004 struct kmem_cache *s;
94b528d0 4005 void *ret;
aadb4bc4 4006
95a05b42 4007 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4008 ret = kmalloc_large_node(size, gfpflags, node);
4009
4010 trace_kmalloc_node(caller, ret,
4011 size, PAGE_SIZE << get_order(size),
4012 gfpflags, node);
4013
4014 return ret;
4015 }
eada35ef 4016
2c59dd65 4017 s = kmalloc_slab(size, gfpflags);
81819f0f 4018
2408c550 4019 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4020 return s;
81819f0f 4021
2b847c3c 4022 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4023
25985edc 4024 /* Honor the call site pointer we received. */
ca2b84cb 4025 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4026
4027 return ret;
81819f0f 4028}
5d1f57e4 4029#endif
81819f0f 4030
ab4d5ed5 4031#ifdef CONFIG_SYSFS
205ab99d
CL
4032static int count_inuse(struct page *page)
4033{
4034 return page->inuse;
4035}
4036
4037static int count_total(struct page *page)
4038{
4039 return page->objects;
4040}
ab4d5ed5 4041#endif
205ab99d 4042
ab4d5ed5 4043#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4044static int validate_slab(struct kmem_cache *s, struct page *page,
4045 unsigned long *map)
53e15af0
CL
4046{
4047 void *p;
a973e9dd 4048 void *addr = page_address(page);
53e15af0
CL
4049
4050 if (!check_slab(s, page) ||
4051 !on_freelist(s, page, NULL))
4052 return 0;
4053
4054 /* Now we know that a valid freelist exists */
39b26464 4055 bitmap_zero(map, page->objects);
53e15af0 4056
5f80b13a
CL
4057 get_map(s, page, map);
4058 for_each_object(p, s, addr, page->objects) {
4059 if (test_bit(slab_index(p, s, addr), map))
4060 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4061 return 0;
53e15af0
CL
4062 }
4063
224a88be 4064 for_each_object(p, s, addr, page->objects)
7656c72b 4065 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4066 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4067 return 0;
4068 return 1;
4069}
4070
434e245d
CL
4071static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4072 unsigned long *map)
53e15af0 4073{
881db7fb
CL
4074 slab_lock(page);
4075 validate_slab(s, page, map);
4076 slab_unlock(page);
53e15af0
CL
4077}
4078
434e245d
CL
4079static int validate_slab_node(struct kmem_cache *s,
4080 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4081{
4082 unsigned long count = 0;
4083 struct page *page;
4084 unsigned long flags;
4085
4086 spin_lock_irqsave(&n->list_lock, flags);
4087
4088 list_for_each_entry(page, &n->partial, lru) {
434e245d 4089 validate_slab_slab(s, page, map);
53e15af0
CL
4090 count++;
4091 }
4092 if (count != n->nr_partial)
f9f58285
FF
4093 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4094 s->name, count, n->nr_partial);
53e15af0
CL
4095
4096 if (!(s->flags & SLAB_STORE_USER))
4097 goto out;
4098
4099 list_for_each_entry(page, &n->full, lru) {
434e245d 4100 validate_slab_slab(s, page, map);
53e15af0
CL
4101 count++;
4102 }
4103 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4104 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4105 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4106
4107out:
4108 spin_unlock_irqrestore(&n->list_lock, flags);
4109 return count;
4110}
4111
434e245d 4112static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4113{
4114 int node;
4115 unsigned long count = 0;
205ab99d 4116 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4117 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4118 struct kmem_cache_node *n;
434e245d
CL
4119
4120 if (!map)
4121 return -ENOMEM;
53e15af0
CL
4122
4123 flush_all(s);
fa45dc25 4124 for_each_kmem_cache_node(s, node, n)
434e245d 4125 count += validate_slab_node(s, n, map);
434e245d 4126 kfree(map);
53e15af0
CL
4127 return count;
4128}
88a420e4 4129/*
672bba3a 4130 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4131 * and freed.
4132 */
4133
4134struct location {
4135 unsigned long count;
ce71e27c 4136 unsigned long addr;
45edfa58
CL
4137 long long sum_time;
4138 long min_time;
4139 long max_time;
4140 long min_pid;
4141 long max_pid;
174596a0 4142 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4143 nodemask_t nodes;
88a420e4
CL
4144};
4145
4146struct loc_track {
4147 unsigned long max;
4148 unsigned long count;
4149 struct location *loc;
4150};
4151
4152static void free_loc_track(struct loc_track *t)
4153{
4154 if (t->max)
4155 free_pages((unsigned long)t->loc,
4156 get_order(sizeof(struct location) * t->max));
4157}
4158
68dff6a9 4159static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4160{
4161 struct location *l;
4162 int order;
4163
88a420e4
CL
4164 order = get_order(sizeof(struct location) * max);
4165
68dff6a9 4166 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4167 if (!l)
4168 return 0;
4169
4170 if (t->count) {
4171 memcpy(l, t->loc, sizeof(struct location) * t->count);
4172 free_loc_track(t);
4173 }
4174 t->max = max;
4175 t->loc = l;
4176 return 1;
4177}
4178
4179static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4180 const struct track *track)
88a420e4
CL
4181{
4182 long start, end, pos;
4183 struct location *l;
ce71e27c 4184 unsigned long caddr;
45edfa58 4185 unsigned long age = jiffies - track->when;
88a420e4
CL
4186
4187 start = -1;
4188 end = t->count;
4189
4190 for ( ; ; ) {
4191 pos = start + (end - start + 1) / 2;
4192
4193 /*
4194 * There is nothing at "end". If we end up there
4195 * we need to add something to before end.
4196 */
4197 if (pos == end)
4198 break;
4199
4200 caddr = t->loc[pos].addr;
45edfa58
CL
4201 if (track->addr == caddr) {
4202
4203 l = &t->loc[pos];
4204 l->count++;
4205 if (track->when) {
4206 l->sum_time += age;
4207 if (age < l->min_time)
4208 l->min_time = age;
4209 if (age > l->max_time)
4210 l->max_time = age;
4211
4212 if (track->pid < l->min_pid)
4213 l->min_pid = track->pid;
4214 if (track->pid > l->max_pid)
4215 l->max_pid = track->pid;
4216
174596a0
RR
4217 cpumask_set_cpu(track->cpu,
4218 to_cpumask(l->cpus));
45edfa58
CL
4219 }
4220 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4221 return 1;
4222 }
4223
45edfa58 4224 if (track->addr < caddr)
88a420e4
CL
4225 end = pos;
4226 else
4227 start = pos;
4228 }
4229
4230 /*
672bba3a 4231 * Not found. Insert new tracking element.
88a420e4 4232 */
68dff6a9 4233 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4234 return 0;
4235
4236 l = t->loc + pos;
4237 if (pos < t->count)
4238 memmove(l + 1, l,
4239 (t->count - pos) * sizeof(struct location));
4240 t->count++;
4241 l->count = 1;
45edfa58
CL
4242 l->addr = track->addr;
4243 l->sum_time = age;
4244 l->min_time = age;
4245 l->max_time = age;
4246 l->min_pid = track->pid;
4247 l->max_pid = track->pid;
174596a0
RR
4248 cpumask_clear(to_cpumask(l->cpus));
4249 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4250 nodes_clear(l->nodes);
4251 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4252 return 1;
4253}
4254
4255static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4256 struct page *page, enum track_item alloc,
a5dd5c11 4257 unsigned long *map)
88a420e4 4258{
a973e9dd 4259 void *addr = page_address(page);
88a420e4
CL
4260 void *p;
4261
39b26464 4262 bitmap_zero(map, page->objects);
5f80b13a 4263 get_map(s, page, map);
88a420e4 4264
224a88be 4265 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4266 if (!test_bit(slab_index(p, s, addr), map))
4267 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4268}
4269
4270static int list_locations(struct kmem_cache *s, char *buf,
4271 enum track_item alloc)
4272{
e374d483 4273 int len = 0;
88a420e4 4274 unsigned long i;
68dff6a9 4275 struct loc_track t = { 0, 0, NULL };
88a420e4 4276 int node;
bbd7d57b
ED
4277 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4278 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4279 struct kmem_cache_node *n;
88a420e4 4280
bbd7d57b
ED
4281 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4282 GFP_TEMPORARY)) {
4283 kfree(map);
68dff6a9 4284 return sprintf(buf, "Out of memory\n");
bbd7d57b 4285 }
88a420e4
CL
4286 /* Push back cpu slabs */
4287 flush_all(s);
4288
fa45dc25 4289 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4290 unsigned long flags;
4291 struct page *page;
4292
9e86943b 4293 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4294 continue;
4295
4296 spin_lock_irqsave(&n->list_lock, flags);
4297 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4298 process_slab(&t, s, page, alloc, map);
88a420e4 4299 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4300 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4301 spin_unlock_irqrestore(&n->list_lock, flags);
4302 }
4303
4304 for (i = 0; i < t.count; i++) {
45edfa58 4305 struct location *l = &t.loc[i];
88a420e4 4306
9c246247 4307 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4308 break;
e374d483 4309 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4310
4311 if (l->addr)
62c70bce 4312 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4313 else
e374d483 4314 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4315
4316 if (l->sum_time != l->min_time) {
e374d483 4317 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4318 l->min_time,
4319 (long)div_u64(l->sum_time, l->count),
4320 l->max_time);
45edfa58 4321 } else
e374d483 4322 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4323 l->min_time);
4324
4325 if (l->min_pid != l->max_pid)
e374d483 4326 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4327 l->min_pid, l->max_pid);
4328 else
e374d483 4329 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4330 l->min_pid);
4331
174596a0
RR
4332 if (num_online_cpus() > 1 &&
4333 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4334 len < PAGE_SIZE - 60)
4335 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4336 " cpus=%*pbl",
4337 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4338
62bc62a8 4339 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4340 len < PAGE_SIZE - 60)
4341 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4342 " nodes=%*pbl",
4343 nodemask_pr_args(&l->nodes));
45edfa58 4344
e374d483 4345 len += sprintf(buf + len, "\n");
88a420e4
CL
4346 }
4347
4348 free_loc_track(&t);
bbd7d57b 4349 kfree(map);
88a420e4 4350 if (!t.count)
e374d483
HH
4351 len += sprintf(buf, "No data\n");
4352 return len;
88a420e4 4353}
ab4d5ed5 4354#endif
88a420e4 4355
a5a84755 4356#ifdef SLUB_RESILIENCY_TEST
c07b8183 4357static void __init resiliency_test(void)
a5a84755
CL
4358{
4359 u8 *p;
4360
95a05b42 4361 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4362
f9f58285
FF
4363 pr_err("SLUB resiliency testing\n");
4364 pr_err("-----------------------\n");
4365 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4366
4367 p = kzalloc(16, GFP_KERNEL);
4368 p[16] = 0x12;
f9f58285
FF
4369 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4370 p + 16);
a5a84755
CL
4371
4372 validate_slab_cache(kmalloc_caches[4]);
4373
4374 /* Hmmm... The next two are dangerous */
4375 p = kzalloc(32, GFP_KERNEL);
4376 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4377 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4378 p);
4379 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4380
4381 validate_slab_cache(kmalloc_caches[5]);
4382 p = kzalloc(64, GFP_KERNEL);
4383 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4384 *p = 0x56;
f9f58285
FF
4385 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4386 p);
4387 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4388 validate_slab_cache(kmalloc_caches[6]);
4389
f9f58285 4390 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4391 p = kzalloc(128, GFP_KERNEL);
4392 kfree(p);
4393 *p = 0x78;
f9f58285 4394 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4395 validate_slab_cache(kmalloc_caches[7]);
4396
4397 p = kzalloc(256, GFP_KERNEL);
4398 kfree(p);
4399 p[50] = 0x9a;
f9f58285 4400 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4401 validate_slab_cache(kmalloc_caches[8]);
4402
4403 p = kzalloc(512, GFP_KERNEL);
4404 kfree(p);
4405 p[512] = 0xab;
f9f58285 4406 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4407 validate_slab_cache(kmalloc_caches[9]);
4408}
4409#else
4410#ifdef CONFIG_SYSFS
4411static void resiliency_test(void) {};
4412#endif
4413#endif
4414
ab4d5ed5 4415#ifdef CONFIG_SYSFS
81819f0f 4416enum slab_stat_type {
205ab99d
CL
4417 SL_ALL, /* All slabs */
4418 SL_PARTIAL, /* Only partially allocated slabs */
4419 SL_CPU, /* Only slabs used for cpu caches */
4420 SL_OBJECTS, /* Determine allocated objects not slabs */
4421 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4422};
4423
205ab99d 4424#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4425#define SO_PARTIAL (1 << SL_PARTIAL)
4426#define SO_CPU (1 << SL_CPU)
4427#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4428#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4429
62e5c4b4
CG
4430static ssize_t show_slab_objects(struct kmem_cache *s,
4431 char *buf, unsigned long flags)
81819f0f
CL
4432{
4433 unsigned long total = 0;
81819f0f
CL
4434 int node;
4435 int x;
4436 unsigned long *nodes;
81819f0f 4437
e35e1a97 4438 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4439 if (!nodes)
4440 return -ENOMEM;
81819f0f 4441
205ab99d
CL
4442 if (flags & SO_CPU) {
4443 int cpu;
81819f0f 4444
205ab99d 4445 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4446 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4447 cpu);
ec3ab083 4448 int node;
49e22585 4449 struct page *page;
dfb4f096 4450
4db0c3c2 4451 page = READ_ONCE(c->page);
ec3ab083
CL
4452 if (!page)
4453 continue;
205ab99d 4454
ec3ab083
CL
4455 node = page_to_nid(page);
4456 if (flags & SO_TOTAL)
4457 x = page->objects;
4458 else if (flags & SO_OBJECTS)
4459 x = page->inuse;
4460 else
4461 x = 1;
49e22585 4462
ec3ab083
CL
4463 total += x;
4464 nodes[node] += x;
4465
4db0c3c2 4466 page = READ_ONCE(c->partial);
49e22585 4467 if (page) {
8afb1474
LZ
4468 node = page_to_nid(page);
4469 if (flags & SO_TOTAL)
4470 WARN_ON_ONCE(1);
4471 else if (flags & SO_OBJECTS)
4472 WARN_ON_ONCE(1);
4473 else
4474 x = page->pages;
bc6697d8
ED
4475 total += x;
4476 nodes[node] += x;
49e22585 4477 }
81819f0f
CL
4478 }
4479 }
4480
bfc8c901 4481 get_online_mems();
ab4d5ed5 4482#ifdef CONFIG_SLUB_DEBUG
205ab99d 4483 if (flags & SO_ALL) {
fa45dc25
CL
4484 struct kmem_cache_node *n;
4485
4486 for_each_kmem_cache_node(s, node, n) {
205ab99d 4487
d0e0ac97
CG
4488 if (flags & SO_TOTAL)
4489 x = atomic_long_read(&n->total_objects);
4490 else if (flags & SO_OBJECTS)
4491 x = atomic_long_read(&n->total_objects) -
4492 count_partial(n, count_free);
81819f0f 4493 else
205ab99d 4494 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4495 total += x;
4496 nodes[node] += x;
4497 }
4498
ab4d5ed5
CL
4499 } else
4500#endif
4501 if (flags & SO_PARTIAL) {
fa45dc25 4502 struct kmem_cache_node *n;
81819f0f 4503
fa45dc25 4504 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4505 if (flags & SO_TOTAL)
4506 x = count_partial(n, count_total);
4507 else if (flags & SO_OBJECTS)
4508 x = count_partial(n, count_inuse);
81819f0f 4509 else
205ab99d 4510 x = n->nr_partial;
81819f0f
CL
4511 total += x;
4512 nodes[node] += x;
4513 }
4514 }
81819f0f
CL
4515 x = sprintf(buf, "%lu", total);
4516#ifdef CONFIG_NUMA
fa45dc25 4517 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4518 if (nodes[node])
4519 x += sprintf(buf + x, " N%d=%lu",
4520 node, nodes[node]);
4521#endif
bfc8c901 4522 put_online_mems();
81819f0f
CL
4523 kfree(nodes);
4524 return x + sprintf(buf + x, "\n");
4525}
4526
ab4d5ed5 4527#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4528static int any_slab_objects(struct kmem_cache *s)
4529{
4530 int node;
fa45dc25 4531 struct kmem_cache_node *n;
81819f0f 4532
fa45dc25 4533 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4534 if (atomic_long_read(&n->total_objects))
81819f0f 4535 return 1;
fa45dc25 4536
81819f0f
CL
4537 return 0;
4538}
ab4d5ed5 4539#endif
81819f0f
CL
4540
4541#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4542#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4543
4544struct slab_attribute {
4545 struct attribute attr;
4546 ssize_t (*show)(struct kmem_cache *s, char *buf);
4547 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4548};
4549
4550#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4551 static struct slab_attribute _name##_attr = \
4552 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4553
4554#define SLAB_ATTR(_name) \
4555 static struct slab_attribute _name##_attr = \
ab067e99 4556 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4557
81819f0f
CL
4558static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4559{
4560 return sprintf(buf, "%d\n", s->size);
4561}
4562SLAB_ATTR_RO(slab_size);
4563
4564static ssize_t align_show(struct kmem_cache *s, char *buf)
4565{
4566 return sprintf(buf, "%d\n", s->align);
4567}
4568SLAB_ATTR_RO(align);
4569
4570static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4571{
3b0efdfa 4572 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4573}
4574SLAB_ATTR_RO(object_size);
4575
4576static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4577{
834f3d11 4578 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4579}
4580SLAB_ATTR_RO(objs_per_slab);
4581
06b285dc
CL
4582static ssize_t order_store(struct kmem_cache *s,
4583 const char *buf, size_t length)
4584{
0121c619
CL
4585 unsigned long order;
4586 int err;
4587
3dbb95f7 4588 err = kstrtoul(buf, 10, &order);
0121c619
CL
4589 if (err)
4590 return err;
06b285dc
CL
4591
4592 if (order > slub_max_order || order < slub_min_order)
4593 return -EINVAL;
4594
4595 calculate_sizes(s, order);
4596 return length;
4597}
4598
81819f0f
CL
4599static ssize_t order_show(struct kmem_cache *s, char *buf)
4600{
834f3d11 4601 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4602}
06b285dc 4603SLAB_ATTR(order);
81819f0f 4604
73d342b1
DR
4605static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4606{
4607 return sprintf(buf, "%lu\n", s->min_partial);
4608}
4609
4610static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4611 size_t length)
4612{
4613 unsigned long min;
4614 int err;
4615
3dbb95f7 4616 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4617 if (err)
4618 return err;
4619
c0bdb232 4620 set_min_partial(s, min);
73d342b1
DR
4621 return length;
4622}
4623SLAB_ATTR(min_partial);
4624
49e22585
CL
4625static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4626{
4627 return sprintf(buf, "%u\n", s->cpu_partial);
4628}
4629
4630static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4631 size_t length)
4632{
4633 unsigned long objects;
4634 int err;
4635
3dbb95f7 4636 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4637 if (err)
4638 return err;
345c905d 4639 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4640 return -EINVAL;
49e22585
CL
4641
4642 s->cpu_partial = objects;
4643 flush_all(s);
4644 return length;
4645}
4646SLAB_ATTR(cpu_partial);
4647
81819f0f
CL
4648static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4649{
62c70bce
JP
4650 if (!s->ctor)
4651 return 0;
4652 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4653}
4654SLAB_ATTR_RO(ctor);
4655
81819f0f
CL
4656static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4657{
4307c14f 4658 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4659}
4660SLAB_ATTR_RO(aliases);
4661
81819f0f
CL
4662static ssize_t partial_show(struct kmem_cache *s, char *buf)
4663{
d9acf4b7 4664 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4665}
4666SLAB_ATTR_RO(partial);
4667
4668static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4669{
d9acf4b7 4670 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4671}
4672SLAB_ATTR_RO(cpu_slabs);
4673
4674static ssize_t objects_show(struct kmem_cache *s, char *buf)
4675{
205ab99d 4676 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4677}
4678SLAB_ATTR_RO(objects);
4679
205ab99d
CL
4680static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4681{
4682 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4683}
4684SLAB_ATTR_RO(objects_partial);
4685
49e22585
CL
4686static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4687{
4688 int objects = 0;
4689 int pages = 0;
4690 int cpu;
4691 int len;
4692
4693 for_each_online_cpu(cpu) {
4694 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4695
4696 if (page) {
4697 pages += page->pages;
4698 objects += page->pobjects;
4699 }
4700 }
4701
4702 len = sprintf(buf, "%d(%d)", objects, pages);
4703
4704#ifdef CONFIG_SMP
4705 for_each_online_cpu(cpu) {
4706 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4707
4708 if (page && len < PAGE_SIZE - 20)
4709 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4710 page->pobjects, page->pages);
4711 }
4712#endif
4713 return len + sprintf(buf + len, "\n");
4714}
4715SLAB_ATTR_RO(slabs_cpu_partial);
4716
a5a84755
CL
4717static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4718{
4719 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4720}
4721
4722static ssize_t reclaim_account_store(struct kmem_cache *s,
4723 const char *buf, size_t length)
4724{
4725 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4726 if (buf[0] == '1')
4727 s->flags |= SLAB_RECLAIM_ACCOUNT;
4728 return length;
4729}
4730SLAB_ATTR(reclaim_account);
4731
4732static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4733{
4734 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4735}
4736SLAB_ATTR_RO(hwcache_align);
4737
4738#ifdef CONFIG_ZONE_DMA
4739static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4740{
4741 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4742}
4743SLAB_ATTR_RO(cache_dma);
4744#endif
4745
4746static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4747{
4748 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4749}
4750SLAB_ATTR_RO(destroy_by_rcu);
4751
ab9a0f19
LJ
4752static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4753{
4754 return sprintf(buf, "%d\n", s->reserved);
4755}
4756SLAB_ATTR_RO(reserved);
4757
ab4d5ed5 4758#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4759static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4760{
4761 return show_slab_objects(s, buf, SO_ALL);
4762}
4763SLAB_ATTR_RO(slabs);
4764
205ab99d
CL
4765static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4766{
4767 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4768}
4769SLAB_ATTR_RO(total_objects);
4770
81819f0f
CL
4771static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4772{
4773 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4774}
4775
4776static ssize_t sanity_checks_store(struct kmem_cache *s,
4777 const char *buf, size_t length)
4778{
4779 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4780 if (buf[0] == '1') {
4781 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4782 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4783 }
81819f0f
CL
4784 return length;
4785}
4786SLAB_ATTR(sanity_checks);
4787
4788static ssize_t trace_show(struct kmem_cache *s, char *buf)
4789{
4790 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4791}
4792
4793static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4794 size_t length)
4795{
c9e16131
CL
4796 /*
4797 * Tracing a merged cache is going to give confusing results
4798 * as well as cause other issues like converting a mergeable
4799 * cache into an umergeable one.
4800 */
4801 if (s->refcount > 1)
4802 return -EINVAL;
4803
81819f0f 4804 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4805 if (buf[0] == '1') {
4806 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4807 s->flags |= SLAB_TRACE;
b789ef51 4808 }
81819f0f
CL
4809 return length;
4810}
4811SLAB_ATTR(trace);
4812
81819f0f
CL
4813static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4814{
4815 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4816}
4817
4818static ssize_t red_zone_store(struct kmem_cache *s,
4819 const char *buf, size_t length)
4820{
4821 if (any_slab_objects(s))
4822 return -EBUSY;
4823
4824 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4825 if (buf[0] == '1') {
4826 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4827 s->flags |= SLAB_RED_ZONE;
b789ef51 4828 }
06b285dc 4829 calculate_sizes(s, -1);
81819f0f
CL
4830 return length;
4831}
4832SLAB_ATTR(red_zone);
4833
4834static ssize_t poison_show(struct kmem_cache *s, char *buf)
4835{
4836 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4837}
4838
4839static ssize_t poison_store(struct kmem_cache *s,
4840 const char *buf, size_t length)
4841{
4842 if (any_slab_objects(s))
4843 return -EBUSY;
4844
4845 s->flags &= ~SLAB_POISON;
b789ef51
CL
4846 if (buf[0] == '1') {
4847 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4848 s->flags |= SLAB_POISON;
b789ef51 4849 }
06b285dc 4850 calculate_sizes(s, -1);
81819f0f
CL
4851 return length;
4852}
4853SLAB_ATTR(poison);
4854
4855static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4856{
4857 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4858}
4859
4860static ssize_t store_user_store(struct kmem_cache *s,
4861 const char *buf, size_t length)
4862{
4863 if (any_slab_objects(s))
4864 return -EBUSY;
4865
4866 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4867 if (buf[0] == '1') {
4868 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4869 s->flags |= SLAB_STORE_USER;
b789ef51 4870 }
06b285dc 4871 calculate_sizes(s, -1);
81819f0f
CL
4872 return length;
4873}
4874SLAB_ATTR(store_user);
4875
53e15af0
CL
4876static ssize_t validate_show(struct kmem_cache *s, char *buf)
4877{
4878 return 0;
4879}
4880
4881static ssize_t validate_store(struct kmem_cache *s,
4882 const char *buf, size_t length)
4883{
434e245d
CL
4884 int ret = -EINVAL;
4885
4886 if (buf[0] == '1') {
4887 ret = validate_slab_cache(s);
4888 if (ret >= 0)
4889 ret = length;
4890 }
4891 return ret;
53e15af0
CL
4892}
4893SLAB_ATTR(validate);
a5a84755
CL
4894
4895static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4896{
4897 if (!(s->flags & SLAB_STORE_USER))
4898 return -ENOSYS;
4899 return list_locations(s, buf, TRACK_ALLOC);
4900}
4901SLAB_ATTR_RO(alloc_calls);
4902
4903static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4904{
4905 if (!(s->flags & SLAB_STORE_USER))
4906 return -ENOSYS;
4907 return list_locations(s, buf, TRACK_FREE);
4908}
4909SLAB_ATTR_RO(free_calls);
4910#endif /* CONFIG_SLUB_DEBUG */
4911
4912#ifdef CONFIG_FAILSLAB
4913static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4914{
4915 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4916}
4917
4918static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4919 size_t length)
4920{
c9e16131
CL
4921 if (s->refcount > 1)
4922 return -EINVAL;
4923
a5a84755
CL
4924 s->flags &= ~SLAB_FAILSLAB;
4925 if (buf[0] == '1')
4926 s->flags |= SLAB_FAILSLAB;
4927 return length;
4928}
4929SLAB_ATTR(failslab);
ab4d5ed5 4930#endif
53e15af0 4931
2086d26a
CL
4932static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4933{
4934 return 0;
4935}
4936
4937static ssize_t shrink_store(struct kmem_cache *s,
4938 const char *buf, size_t length)
4939{
832f37f5
VD
4940 if (buf[0] == '1')
4941 kmem_cache_shrink(s);
4942 else
2086d26a
CL
4943 return -EINVAL;
4944 return length;
4945}
4946SLAB_ATTR(shrink);
4947
81819f0f 4948#ifdef CONFIG_NUMA
9824601e 4949static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4950{
9824601e 4951 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4952}
4953
9824601e 4954static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4955 const char *buf, size_t length)
4956{
0121c619
CL
4957 unsigned long ratio;
4958 int err;
4959
3dbb95f7 4960 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4961 if (err)
4962 return err;
4963
e2cb96b7 4964 if (ratio <= 100)
0121c619 4965 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4966
81819f0f
CL
4967 return length;
4968}
9824601e 4969SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4970#endif
4971
8ff12cfc 4972#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4973static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4974{
4975 unsigned long sum = 0;
4976 int cpu;
4977 int len;
4978 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4979
4980 if (!data)
4981 return -ENOMEM;
4982
4983 for_each_online_cpu(cpu) {
9dfc6e68 4984 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4985
4986 data[cpu] = x;
4987 sum += x;
4988 }
4989
4990 len = sprintf(buf, "%lu", sum);
4991
50ef37b9 4992#ifdef CONFIG_SMP
8ff12cfc
CL
4993 for_each_online_cpu(cpu) {
4994 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4995 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4996 }
50ef37b9 4997#endif
8ff12cfc
CL
4998 kfree(data);
4999 return len + sprintf(buf + len, "\n");
5000}
5001
78eb00cc
DR
5002static void clear_stat(struct kmem_cache *s, enum stat_item si)
5003{
5004 int cpu;
5005
5006 for_each_online_cpu(cpu)
9dfc6e68 5007 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5008}
5009
8ff12cfc
CL
5010#define STAT_ATTR(si, text) \
5011static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5012{ \
5013 return show_stat(s, buf, si); \
5014} \
78eb00cc
DR
5015static ssize_t text##_store(struct kmem_cache *s, \
5016 const char *buf, size_t length) \
5017{ \
5018 if (buf[0] != '0') \
5019 return -EINVAL; \
5020 clear_stat(s, si); \
5021 return length; \
5022} \
5023SLAB_ATTR(text); \
8ff12cfc
CL
5024
5025STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5026STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5027STAT_ATTR(FREE_FASTPATH, free_fastpath);
5028STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5029STAT_ATTR(FREE_FROZEN, free_frozen);
5030STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5031STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5032STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5033STAT_ATTR(ALLOC_SLAB, alloc_slab);
5034STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5035STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5036STAT_ATTR(FREE_SLAB, free_slab);
5037STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5038STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5039STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5040STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5041STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5042STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5043STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5044STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5045STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5046STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5047STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5048STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5049STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5050STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5051#endif
5052
06428780 5053static struct attribute *slab_attrs[] = {
81819f0f
CL
5054 &slab_size_attr.attr,
5055 &object_size_attr.attr,
5056 &objs_per_slab_attr.attr,
5057 &order_attr.attr,
73d342b1 5058 &min_partial_attr.attr,
49e22585 5059 &cpu_partial_attr.attr,
81819f0f 5060 &objects_attr.attr,
205ab99d 5061 &objects_partial_attr.attr,
81819f0f
CL
5062 &partial_attr.attr,
5063 &cpu_slabs_attr.attr,
5064 &ctor_attr.attr,
81819f0f
CL
5065 &aliases_attr.attr,
5066 &align_attr.attr,
81819f0f
CL
5067 &hwcache_align_attr.attr,
5068 &reclaim_account_attr.attr,
5069 &destroy_by_rcu_attr.attr,
a5a84755 5070 &shrink_attr.attr,
ab9a0f19 5071 &reserved_attr.attr,
49e22585 5072 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5073#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5074 &total_objects_attr.attr,
5075 &slabs_attr.attr,
5076 &sanity_checks_attr.attr,
5077 &trace_attr.attr,
81819f0f
CL
5078 &red_zone_attr.attr,
5079 &poison_attr.attr,
5080 &store_user_attr.attr,
53e15af0 5081 &validate_attr.attr,
88a420e4
CL
5082 &alloc_calls_attr.attr,
5083 &free_calls_attr.attr,
ab4d5ed5 5084#endif
81819f0f
CL
5085#ifdef CONFIG_ZONE_DMA
5086 &cache_dma_attr.attr,
5087#endif
5088#ifdef CONFIG_NUMA
9824601e 5089 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5090#endif
5091#ifdef CONFIG_SLUB_STATS
5092 &alloc_fastpath_attr.attr,
5093 &alloc_slowpath_attr.attr,
5094 &free_fastpath_attr.attr,
5095 &free_slowpath_attr.attr,
5096 &free_frozen_attr.attr,
5097 &free_add_partial_attr.attr,
5098 &free_remove_partial_attr.attr,
5099 &alloc_from_partial_attr.attr,
5100 &alloc_slab_attr.attr,
5101 &alloc_refill_attr.attr,
e36a2652 5102 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5103 &free_slab_attr.attr,
5104 &cpuslab_flush_attr.attr,
5105 &deactivate_full_attr.attr,
5106 &deactivate_empty_attr.attr,
5107 &deactivate_to_head_attr.attr,
5108 &deactivate_to_tail_attr.attr,
5109 &deactivate_remote_frees_attr.attr,
03e404af 5110 &deactivate_bypass_attr.attr,
65c3376a 5111 &order_fallback_attr.attr,
b789ef51
CL
5112 &cmpxchg_double_fail_attr.attr,
5113 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5114 &cpu_partial_alloc_attr.attr,
5115 &cpu_partial_free_attr.attr,
8028dcea
AS
5116 &cpu_partial_node_attr.attr,
5117 &cpu_partial_drain_attr.attr,
81819f0f 5118#endif
4c13dd3b
DM
5119#ifdef CONFIG_FAILSLAB
5120 &failslab_attr.attr,
5121#endif
5122
81819f0f
CL
5123 NULL
5124};
5125
5126static struct attribute_group slab_attr_group = {
5127 .attrs = slab_attrs,
5128};
5129
5130static ssize_t slab_attr_show(struct kobject *kobj,
5131 struct attribute *attr,
5132 char *buf)
5133{
5134 struct slab_attribute *attribute;
5135 struct kmem_cache *s;
5136 int err;
5137
5138 attribute = to_slab_attr(attr);
5139 s = to_slab(kobj);
5140
5141 if (!attribute->show)
5142 return -EIO;
5143
5144 err = attribute->show(s, buf);
5145
5146 return err;
5147}
5148
5149static ssize_t slab_attr_store(struct kobject *kobj,
5150 struct attribute *attr,
5151 const char *buf, size_t len)
5152{
5153 struct slab_attribute *attribute;
5154 struct kmem_cache *s;
5155 int err;
5156
5157 attribute = to_slab_attr(attr);
5158 s = to_slab(kobj);
5159
5160 if (!attribute->store)
5161 return -EIO;
5162
5163 err = attribute->store(s, buf, len);
127424c8 5164#ifdef CONFIG_MEMCG
107dab5c 5165 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5166 struct kmem_cache *c;
81819f0f 5167
107dab5c
GC
5168 mutex_lock(&slab_mutex);
5169 if (s->max_attr_size < len)
5170 s->max_attr_size = len;
5171
ebe945c2
GC
5172 /*
5173 * This is a best effort propagation, so this function's return
5174 * value will be determined by the parent cache only. This is
5175 * basically because not all attributes will have a well
5176 * defined semantics for rollbacks - most of the actions will
5177 * have permanent effects.
5178 *
5179 * Returning the error value of any of the children that fail
5180 * is not 100 % defined, in the sense that users seeing the
5181 * error code won't be able to know anything about the state of
5182 * the cache.
5183 *
5184 * Only returning the error code for the parent cache at least
5185 * has well defined semantics. The cache being written to
5186 * directly either failed or succeeded, in which case we loop
5187 * through the descendants with best-effort propagation.
5188 */
426589f5
VD
5189 for_each_memcg_cache(c, s)
5190 attribute->store(c, buf, len);
107dab5c
GC
5191 mutex_unlock(&slab_mutex);
5192 }
5193#endif
81819f0f
CL
5194 return err;
5195}
5196
107dab5c
GC
5197static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5198{
127424c8 5199#ifdef CONFIG_MEMCG
107dab5c
GC
5200 int i;
5201 char *buffer = NULL;
93030d83 5202 struct kmem_cache *root_cache;
107dab5c 5203
93030d83 5204 if (is_root_cache(s))
107dab5c
GC
5205 return;
5206
f7ce3190 5207 root_cache = s->memcg_params.root_cache;
93030d83 5208
107dab5c
GC
5209 /*
5210 * This mean this cache had no attribute written. Therefore, no point
5211 * in copying default values around
5212 */
93030d83 5213 if (!root_cache->max_attr_size)
107dab5c
GC
5214 return;
5215
5216 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5217 char mbuf[64];
5218 char *buf;
5219 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5220
5221 if (!attr || !attr->store || !attr->show)
5222 continue;
5223
5224 /*
5225 * It is really bad that we have to allocate here, so we will
5226 * do it only as a fallback. If we actually allocate, though,
5227 * we can just use the allocated buffer until the end.
5228 *
5229 * Most of the slub attributes will tend to be very small in
5230 * size, but sysfs allows buffers up to a page, so they can
5231 * theoretically happen.
5232 */
5233 if (buffer)
5234 buf = buffer;
93030d83 5235 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5236 buf = mbuf;
5237 else {
5238 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5239 if (WARN_ON(!buffer))
5240 continue;
5241 buf = buffer;
5242 }
5243
93030d83 5244 attr->show(root_cache, buf);
107dab5c
GC
5245 attr->store(s, buf, strlen(buf));
5246 }
5247
5248 if (buffer)
5249 free_page((unsigned long)buffer);
5250#endif
5251}
5252
41a21285
CL
5253static void kmem_cache_release(struct kobject *k)
5254{
5255 slab_kmem_cache_release(to_slab(k));
5256}
5257
52cf25d0 5258static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5259 .show = slab_attr_show,
5260 .store = slab_attr_store,
5261};
5262
5263static struct kobj_type slab_ktype = {
5264 .sysfs_ops = &slab_sysfs_ops,
41a21285 5265 .release = kmem_cache_release,
81819f0f
CL
5266};
5267
5268static int uevent_filter(struct kset *kset, struct kobject *kobj)
5269{
5270 struct kobj_type *ktype = get_ktype(kobj);
5271
5272 if (ktype == &slab_ktype)
5273 return 1;
5274 return 0;
5275}
5276
9cd43611 5277static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5278 .filter = uevent_filter,
5279};
5280
27c3a314 5281static struct kset *slab_kset;
81819f0f 5282
9a41707b
VD
5283static inline struct kset *cache_kset(struct kmem_cache *s)
5284{
127424c8 5285#ifdef CONFIG_MEMCG
9a41707b 5286 if (!is_root_cache(s))
f7ce3190 5287 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5288#endif
5289 return slab_kset;
5290}
5291
81819f0f
CL
5292#define ID_STR_LENGTH 64
5293
5294/* Create a unique string id for a slab cache:
6446faa2
CL
5295 *
5296 * Format :[flags-]size
81819f0f
CL
5297 */
5298static char *create_unique_id(struct kmem_cache *s)
5299{
5300 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5301 char *p = name;
5302
5303 BUG_ON(!name);
5304
5305 *p++ = ':';
5306 /*
5307 * First flags affecting slabcache operations. We will only
5308 * get here for aliasable slabs so we do not need to support
5309 * too many flags. The flags here must cover all flags that
5310 * are matched during merging to guarantee that the id is
5311 * unique.
5312 */
5313 if (s->flags & SLAB_CACHE_DMA)
5314 *p++ = 'd';
5315 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5316 *p++ = 'a';
5317 if (s->flags & SLAB_DEBUG_FREE)
5318 *p++ = 'F';
5a896d9e
VN
5319 if (!(s->flags & SLAB_NOTRACK))
5320 *p++ = 't';
230e9fc2
VD
5321 if (s->flags & SLAB_ACCOUNT)
5322 *p++ = 'A';
81819f0f
CL
5323 if (p != name + 1)
5324 *p++ = '-';
5325 p += sprintf(p, "%07d", s->size);
2633d7a0 5326
81819f0f
CL
5327 BUG_ON(p > name + ID_STR_LENGTH - 1);
5328 return name;
5329}
5330
5331static int sysfs_slab_add(struct kmem_cache *s)
5332{
5333 int err;
5334 const char *name;
45530c44 5335 int unmergeable = slab_unmergeable(s);
81819f0f 5336
81819f0f
CL
5337 if (unmergeable) {
5338 /*
5339 * Slabcache can never be merged so we can use the name proper.
5340 * This is typically the case for debug situations. In that
5341 * case we can catch duplicate names easily.
5342 */
27c3a314 5343 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5344 name = s->name;
5345 } else {
5346 /*
5347 * Create a unique name for the slab as a target
5348 * for the symlinks.
5349 */
5350 name = create_unique_id(s);
5351 }
5352
9a41707b 5353 s->kobj.kset = cache_kset(s);
26e4f205 5354 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5355 if (err)
80da026a 5356 goto out;
81819f0f
CL
5357
5358 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5359 if (err)
5360 goto out_del_kobj;
9a41707b 5361
127424c8 5362#ifdef CONFIG_MEMCG
9a41707b
VD
5363 if (is_root_cache(s)) {
5364 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5365 if (!s->memcg_kset) {
54b6a731
DJ
5366 err = -ENOMEM;
5367 goto out_del_kobj;
9a41707b
VD
5368 }
5369 }
5370#endif
5371
81819f0f
CL
5372 kobject_uevent(&s->kobj, KOBJ_ADD);
5373 if (!unmergeable) {
5374 /* Setup first alias */
5375 sysfs_slab_alias(s, s->name);
81819f0f 5376 }
54b6a731
DJ
5377out:
5378 if (!unmergeable)
5379 kfree(name);
5380 return err;
5381out_del_kobj:
5382 kobject_del(&s->kobj);
54b6a731 5383 goto out;
81819f0f
CL
5384}
5385
41a21285 5386void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5387{
97d06609 5388 if (slab_state < FULL)
2bce6485
CL
5389 /*
5390 * Sysfs has not been setup yet so no need to remove the
5391 * cache from sysfs.
5392 */
5393 return;
5394
127424c8 5395#ifdef CONFIG_MEMCG
9a41707b
VD
5396 kset_unregister(s->memcg_kset);
5397#endif
81819f0f
CL
5398 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5399 kobject_del(&s->kobj);
151c602f 5400 kobject_put(&s->kobj);
81819f0f
CL
5401}
5402
5403/*
5404 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5405 * available lest we lose that information.
81819f0f
CL
5406 */
5407struct saved_alias {
5408 struct kmem_cache *s;
5409 const char *name;
5410 struct saved_alias *next;
5411};
5412
5af328a5 5413static struct saved_alias *alias_list;
81819f0f
CL
5414
5415static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5416{
5417 struct saved_alias *al;
5418
97d06609 5419 if (slab_state == FULL) {
81819f0f
CL
5420 /*
5421 * If we have a leftover link then remove it.
5422 */
27c3a314
GKH
5423 sysfs_remove_link(&slab_kset->kobj, name);
5424 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5425 }
5426
5427 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5428 if (!al)
5429 return -ENOMEM;
5430
5431 al->s = s;
5432 al->name = name;
5433 al->next = alias_list;
5434 alias_list = al;
5435 return 0;
5436}
5437
5438static int __init slab_sysfs_init(void)
5439{
5b95a4ac 5440 struct kmem_cache *s;
81819f0f
CL
5441 int err;
5442
18004c5d 5443 mutex_lock(&slab_mutex);
2bce6485 5444
0ff21e46 5445 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5446 if (!slab_kset) {
18004c5d 5447 mutex_unlock(&slab_mutex);
f9f58285 5448 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5449 return -ENOSYS;
5450 }
5451
97d06609 5452 slab_state = FULL;
26a7bd03 5453
5b95a4ac 5454 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5455 err = sysfs_slab_add(s);
5d540fb7 5456 if (err)
f9f58285
FF
5457 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5458 s->name);
26a7bd03 5459 }
81819f0f
CL
5460
5461 while (alias_list) {
5462 struct saved_alias *al = alias_list;
5463
5464 alias_list = alias_list->next;
5465 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5466 if (err)
f9f58285
FF
5467 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5468 al->name);
81819f0f
CL
5469 kfree(al);
5470 }
5471
18004c5d 5472 mutex_unlock(&slab_mutex);
81819f0f
CL
5473 resiliency_test();
5474 return 0;
5475}
5476
5477__initcall(slab_sysfs_init);
ab4d5ed5 5478#endif /* CONFIG_SYSFS */
57ed3eda
PE
5479
5480/*
5481 * The /proc/slabinfo ABI
5482 */
158a9624 5483#ifdef CONFIG_SLABINFO
0d7561c6 5484void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5485{
57ed3eda 5486 unsigned long nr_slabs = 0;
205ab99d
CL
5487 unsigned long nr_objs = 0;
5488 unsigned long nr_free = 0;
57ed3eda 5489 int node;
fa45dc25 5490 struct kmem_cache_node *n;
57ed3eda 5491
fa45dc25 5492 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5493 nr_slabs += node_nr_slabs(n);
5494 nr_objs += node_nr_objs(n);
205ab99d 5495 nr_free += count_partial(n, count_free);
57ed3eda
PE
5496 }
5497
0d7561c6
GC
5498 sinfo->active_objs = nr_objs - nr_free;
5499 sinfo->num_objs = nr_objs;
5500 sinfo->active_slabs = nr_slabs;
5501 sinfo->num_slabs = nr_slabs;
5502 sinfo->objects_per_slab = oo_objects(s->oo);
5503 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5504}
5505
0d7561c6 5506void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5507{
7b3c3a50
AD
5508}
5509
b7454ad3
GC
5510ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5511 size_t count, loff_t *ppos)
7b3c3a50 5512{
b7454ad3 5513 return -EIO;
7b3c3a50 5514}
158a9624 5515#endif /* CONFIG_SLABINFO */