slub: Take node lock during object free checks
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
81819f0f 21#include <linux/seq_file.h>
5a896d9e 22#include <linux/kmemcheck.h>
81819f0f
CL
23#include <linux/cpu.h>
24#include <linux/cpuset.h>
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
bfa71457 32#include <linux/stacktrace.h>
4de900b4 33#include <linux/prefetch.h>
81819f0f 34
4a92379b
RK
35#include <trace/events/kmem.h>
36
072bb0aa
MG
37#include "internal.h"
38
81819f0f
CL
39/*
40 * Lock order:
18004c5d 41 * 1. slab_mutex (Global Mutex)
881db7fb
CL
42 * 2. node->list_lock
43 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 44 *
18004c5d 45 * slab_mutex
881db7fb 46 *
18004c5d 47 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
48 * and to synchronize major metadata changes to slab cache structures.
49 *
50 * The slab_lock is only used for debugging and on arches that do not
51 * have the ability to do a cmpxchg_double. It only protects the second
52 * double word in the page struct. Meaning
53 * A. page->freelist -> List of object free in a page
54 * B. page->counters -> Counters of objects
55 * C. page->frozen -> frozen state
56 *
57 * If a slab is frozen then it is exempt from list management. It is not
58 * on any list. The processor that froze the slab is the one who can
59 * perform list operations on the page. Other processors may put objects
60 * onto the freelist but the processor that froze the slab is the only
61 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
62 *
63 * The list_lock protects the partial and full list on each node and
64 * the partial slab counter. If taken then no new slabs may be added or
65 * removed from the lists nor make the number of partial slabs be modified.
66 * (Note that the total number of slabs is an atomic value that may be
67 * modified without taking the list lock).
68 *
69 * The list_lock is a centralized lock and thus we avoid taking it as
70 * much as possible. As long as SLUB does not have to handle partial
71 * slabs, operations can continue without any centralized lock. F.e.
72 * allocating a long series of objects that fill up slabs does not require
73 * the list lock.
81819f0f
CL
74 * Interrupts are disabled during allocation and deallocation in order to
75 * make the slab allocator safe to use in the context of an irq. In addition
76 * interrupts are disabled to ensure that the processor does not change
77 * while handling per_cpu slabs, due to kernel preemption.
78 *
79 * SLUB assigns one slab for allocation to each processor.
80 * Allocations only occur from these slabs called cpu slabs.
81 *
672bba3a
CL
82 * Slabs with free elements are kept on a partial list and during regular
83 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 84 * freed then the slab will show up again on the partial lists.
672bba3a
CL
85 * We track full slabs for debugging purposes though because otherwise we
86 * cannot scan all objects.
81819f0f
CL
87 *
88 * Slabs are freed when they become empty. Teardown and setup is
89 * minimal so we rely on the page allocators per cpu caches for
90 * fast frees and allocs.
91 *
92 * Overloading of page flags that are otherwise used for LRU management.
93 *
4b6f0750
CL
94 * PageActive The slab is frozen and exempt from list processing.
95 * This means that the slab is dedicated to a purpose
96 * such as satisfying allocations for a specific
97 * processor. Objects may be freed in the slab while
98 * it is frozen but slab_free will then skip the usual
99 * list operations. It is up to the processor holding
100 * the slab to integrate the slab into the slab lists
101 * when the slab is no longer needed.
102 *
103 * One use of this flag is to mark slabs that are
104 * used for allocations. Then such a slab becomes a cpu
105 * slab. The cpu slab may be equipped with an additional
dfb4f096 106 * freelist that allows lockless access to
894b8788
CL
107 * free objects in addition to the regular freelist
108 * that requires the slab lock.
81819f0f
CL
109 *
110 * PageError Slab requires special handling due to debug
111 * options set. This moves slab handling out of
894b8788 112 * the fast path and disables lockless freelists.
81819f0f
CL
113 */
114
af537b0a
CL
115#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 SLAB_TRACE | SLAB_DEBUG_FREE)
117
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
81819f0f
CL
127/*
128 * Issues still to be resolved:
129 *
81819f0f
CL
130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131 *
81819f0f
CL
132 * - Variable sizing of the per node arrays
133 */
134
135/* Enable to test recovery from slab corruption on boot */
136#undef SLUB_RESILIENCY_TEST
137
b789ef51
CL
138/* Enable to log cmpxchg failures */
139#undef SLUB_DEBUG_CMPXCHG
140
2086d26a
CL
141/*
142 * Mininum number of partial slabs. These will be left on the partial
143 * lists even if they are empty. kmem_cache_shrink may reclaim them.
144 */
76be8950 145#define MIN_PARTIAL 5
e95eed57 146
2086d26a
CL
147/*
148 * Maximum number of desirable partial slabs.
149 * The existence of more partial slabs makes kmem_cache_shrink
150 * sort the partial list by the number of objects in the.
151 */
152#define MAX_PARTIAL 10
153
81819f0f
CL
154#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_STORE_USER)
672bba3a 156
fa5ec8a1 157/*
3de47213
DR
158 * Debugging flags that require metadata to be stored in the slab. These get
159 * disabled when slub_debug=O is used and a cache's min order increases with
160 * metadata.
fa5ec8a1 161 */
3de47213 162#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 163
81819f0f
CL
164/*
165 * Set of flags that will prevent slab merging
166 */
167#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
169 SLAB_FAILSLAB)
81819f0f
CL
170
171#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 172 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 173
210b5c06
CG
174#define OO_SHIFT 16
175#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 176#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 177
81819f0f 178/* Internal SLUB flags */
f90ec390 179#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 180#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
181
182static int kmem_size = sizeof(struct kmem_cache);
183
184#ifdef CONFIG_SMP
185static struct notifier_block slab_notifier;
186#endif
187
02cbc874
CL
188/*
189 * Tracking user of a slab.
190 */
d6543e39 191#define TRACK_ADDRS_COUNT 16
02cbc874 192struct track {
ce71e27c 193 unsigned long addr; /* Called from address */
d6543e39
BG
194#ifdef CONFIG_STACKTRACE
195 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
196#endif
02cbc874
CL
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200};
201
202enum track_item { TRACK_ALLOC, TRACK_FREE };
203
ab4d5ed5 204#ifdef CONFIG_SYSFS
81819f0f
CL
205static int sysfs_slab_add(struct kmem_cache *);
206static int sysfs_slab_alias(struct kmem_cache *, const char *);
207static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 208
81819f0f 209#else
0c710013
CL
210static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
151c602f
CL
213static inline void sysfs_slab_remove(struct kmem_cache *s)
214{
84c1cf62 215 kfree(s->name);
151c602f
CL
216 kfree(s);
217}
8ff12cfc 218
81819f0f
CL
219#endif
220
4fdccdfb 221static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
222{
223#ifdef CONFIG_SLUB_STATS
84e554e6 224 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
225#endif
226}
227
81819f0f
CL
228/********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
231
81819f0f
CL
232static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
233{
81819f0f 234 return s->node[node];
81819f0f
CL
235}
236
6446faa2 237/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
238static inline int check_valid_pointer(struct kmem_cache *s,
239 struct page *page, const void *object)
240{
241 void *base;
242
a973e9dd 243 if (!object)
02cbc874
CL
244 return 1;
245
a973e9dd 246 base = page_address(page);
39b26464 247 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
248 (object - base) % s->size) {
249 return 0;
250 }
251
252 return 1;
253}
254
7656c72b
CL
255static inline void *get_freepointer(struct kmem_cache *s, void *object)
256{
257 return *(void **)(object + s->offset);
258}
259
0ad9500e
ED
260static void prefetch_freepointer(const struct kmem_cache *s, void *object)
261{
262 prefetch(object + s->offset);
263}
264
1393d9a1
CL
265static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
266{
267 void *p;
268
269#ifdef CONFIG_DEBUG_PAGEALLOC
270 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
271#else
272 p = get_freepointer(s, object);
273#endif
274 return p;
275}
276
7656c72b
CL
277static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
278{
279 *(void **)(object + s->offset) = fp;
280}
281
282/* Loop over all objects in a slab */
224a88be
CL
283#define for_each_object(__p, __s, __addr, __objects) \
284 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
285 __p += (__s)->size)
286
7656c72b
CL
287/* Determine object index from a given position */
288static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
289{
290 return (p - addr) / s->size;
291}
292
d71f606f
MK
293static inline size_t slab_ksize(const struct kmem_cache *s)
294{
295#ifdef CONFIG_SLUB_DEBUG
296 /*
297 * Debugging requires use of the padding between object
298 * and whatever may come after it.
299 */
300 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 301 return s->object_size;
d71f606f
MK
302
303#endif
304 /*
305 * If we have the need to store the freelist pointer
306 * back there or track user information then we can
307 * only use the space before that information.
308 */
309 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
310 return s->inuse;
311 /*
312 * Else we can use all the padding etc for the allocation
313 */
314 return s->size;
315}
316
ab9a0f19
LJ
317static inline int order_objects(int order, unsigned long size, int reserved)
318{
319 return ((PAGE_SIZE << order) - reserved) / size;
320}
321
834f3d11 322static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 323 unsigned long size, int reserved)
834f3d11
CL
324{
325 struct kmem_cache_order_objects x = {
ab9a0f19 326 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
327 };
328
329 return x;
330}
331
332static inline int oo_order(struct kmem_cache_order_objects x)
333{
210b5c06 334 return x.x >> OO_SHIFT;
834f3d11
CL
335}
336
337static inline int oo_objects(struct kmem_cache_order_objects x)
338{
210b5c06 339 return x.x & OO_MASK;
834f3d11
CL
340}
341
881db7fb
CL
342/*
343 * Per slab locking using the pagelock
344 */
345static __always_inline void slab_lock(struct page *page)
346{
347 bit_spin_lock(PG_locked, &page->flags);
348}
349
350static __always_inline void slab_unlock(struct page *page)
351{
352 __bit_spin_unlock(PG_locked, &page->flags);
353}
354
1d07171c
CL
355/* Interrupts must be disabled (for the fallback code to work right) */
356static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
357 void *freelist_old, unsigned long counters_old,
358 void *freelist_new, unsigned long counters_new,
359 const char *n)
360{
361 VM_BUG_ON(!irqs_disabled());
2565409f
HC
362#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
363 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 364 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 365 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
366 freelist_old, counters_old,
367 freelist_new, counters_new))
368 return 1;
369 } else
370#endif
371 {
372 slab_lock(page);
373 if (page->freelist == freelist_old && page->counters == counters_old) {
374 page->freelist = freelist_new;
375 page->counters = counters_new;
376 slab_unlock(page);
377 return 1;
378 }
379 slab_unlock(page);
380 }
381
382 cpu_relax();
383 stat(s, CMPXCHG_DOUBLE_FAIL);
384
385#ifdef SLUB_DEBUG_CMPXCHG
386 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
387#endif
388
389 return 0;
390}
391
b789ef51
CL
392static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
393 void *freelist_old, unsigned long counters_old,
394 void *freelist_new, unsigned long counters_new,
395 const char *n)
396{
2565409f
HC
397#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
398 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 399 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 400 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
401 freelist_old, counters_old,
402 freelist_new, counters_new))
403 return 1;
404 } else
405#endif
406 {
1d07171c
CL
407 unsigned long flags;
408
409 local_irq_save(flags);
881db7fb 410 slab_lock(page);
b789ef51
CL
411 if (page->freelist == freelist_old && page->counters == counters_old) {
412 page->freelist = freelist_new;
413 page->counters = counters_new;
881db7fb 414 slab_unlock(page);
1d07171c 415 local_irq_restore(flags);
b789ef51
CL
416 return 1;
417 }
881db7fb 418 slab_unlock(page);
1d07171c 419 local_irq_restore(flags);
b789ef51
CL
420 }
421
422 cpu_relax();
423 stat(s, CMPXCHG_DOUBLE_FAIL);
424
425#ifdef SLUB_DEBUG_CMPXCHG
426 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
427#endif
428
429 return 0;
430}
431
41ecc55b 432#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
433/*
434 * Determine a map of object in use on a page.
435 *
881db7fb 436 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
437 * not vanish from under us.
438 */
439static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
440{
441 void *p;
442 void *addr = page_address(page);
443
444 for (p = page->freelist; p; p = get_freepointer(s, p))
445 set_bit(slab_index(p, s, addr), map);
446}
447
41ecc55b
CL
448/*
449 * Debug settings:
450 */
f0630fff
CL
451#ifdef CONFIG_SLUB_DEBUG_ON
452static int slub_debug = DEBUG_DEFAULT_FLAGS;
453#else
41ecc55b 454static int slub_debug;
f0630fff 455#endif
41ecc55b
CL
456
457static char *slub_debug_slabs;
fa5ec8a1 458static int disable_higher_order_debug;
41ecc55b 459
81819f0f
CL
460/*
461 * Object debugging
462 */
463static void print_section(char *text, u8 *addr, unsigned int length)
464{
ffc79d28
SAS
465 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
466 length, 1);
81819f0f
CL
467}
468
81819f0f
CL
469static struct track *get_track(struct kmem_cache *s, void *object,
470 enum track_item alloc)
471{
472 struct track *p;
473
474 if (s->offset)
475 p = object + s->offset + sizeof(void *);
476 else
477 p = object + s->inuse;
478
479 return p + alloc;
480}
481
482static void set_track(struct kmem_cache *s, void *object,
ce71e27c 483 enum track_item alloc, unsigned long addr)
81819f0f 484{
1a00df4a 485 struct track *p = get_track(s, object, alloc);
81819f0f 486
81819f0f 487 if (addr) {
d6543e39
BG
488#ifdef CONFIG_STACKTRACE
489 struct stack_trace trace;
490 int i;
491
492 trace.nr_entries = 0;
493 trace.max_entries = TRACK_ADDRS_COUNT;
494 trace.entries = p->addrs;
495 trace.skip = 3;
496 save_stack_trace(&trace);
497
498 /* See rant in lockdep.c */
499 if (trace.nr_entries != 0 &&
500 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
501 trace.nr_entries--;
502
503 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
504 p->addrs[i] = 0;
505#endif
81819f0f
CL
506 p->addr = addr;
507 p->cpu = smp_processor_id();
88e4ccf2 508 p->pid = current->pid;
81819f0f
CL
509 p->when = jiffies;
510 } else
511 memset(p, 0, sizeof(struct track));
512}
513
81819f0f
CL
514static void init_tracking(struct kmem_cache *s, void *object)
515{
24922684
CL
516 if (!(s->flags & SLAB_STORE_USER))
517 return;
518
ce71e27c
EGM
519 set_track(s, object, TRACK_FREE, 0UL);
520 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
521}
522
523static void print_track(const char *s, struct track *t)
524{
525 if (!t->addr)
526 return;
527
7daf705f 528 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 529 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
530#ifdef CONFIG_STACKTRACE
531 {
532 int i;
533 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
534 if (t->addrs[i])
535 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
536 else
537 break;
538 }
539#endif
24922684
CL
540}
541
542static void print_tracking(struct kmem_cache *s, void *object)
543{
544 if (!(s->flags & SLAB_STORE_USER))
545 return;
546
547 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
548 print_track("Freed", get_track(s, object, TRACK_FREE));
549}
550
551static void print_page_info(struct page *page)
552{
39b26464
CL
553 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
554 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
555
556}
557
558static void slab_bug(struct kmem_cache *s, char *fmt, ...)
559{
560 va_list args;
561 char buf[100];
562
563 va_start(args, fmt);
564 vsnprintf(buf, sizeof(buf), fmt, args);
565 va_end(args);
566 printk(KERN_ERR "========================================"
567 "=====================================\n");
265d47e7 568 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
569 printk(KERN_ERR "----------------------------------------"
570 "-------------------------------------\n\n");
81819f0f
CL
571}
572
24922684
CL
573static void slab_fix(struct kmem_cache *s, char *fmt, ...)
574{
575 va_list args;
576 char buf[100];
577
578 va_start(args, fmt);
579 vsnprintf(buf, sizeof(buf), fmt, args);
580 va_end(args);
581 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
582}
583
584static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
585{
586 unsigned int off; /* Offset of last byte */
a973e9dd 587 u8 *addr = page_address(page);
24922684
CL
588
589 print_tracking(s, p);
590
591 print_page_info(page);
592
593 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
594 p, p - addr, get_freepointer(s, p));
595
596 if (p > addr + 16)
ffc79d28 597 print_section("Bytes b4 ", p - 16, 16);
81819f0f 598
3b0efdfa 599 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 600 PAGE_SIZE));
81819f0f 601 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
602 print_section("Redzone ", p + s->object_size,
603 s->inuse - s->object_size);
81819f0f 604
81819f0f
CL
605 if (s->offset)
606 off = s->offset + sizeof(void *);
607 else
608 off = s->inuse;
609
24922684 610 if (s->flags & SLAB_STORE_USER)
81819f0f 611 off += 2 * sizeof(struct track);
81819f0f
CL
612
613 if (off != s->size)
614 /* Beginning of the filler is the free pointer */
ffc79d28 615 print_section("Padding ", p + off, s->size - off);
24922684
CL
616
617 dump_stack();
81819f0f
CL
618}
619
620static void object_err(struct kmem_cache *s, struct page *page,
621 u8 *object, char *reason)
622{
3dc50637 623 slab_bug(s, "%s", reason);
24922684 624 print_trailer(s, page, object);
81819f0f
CL
625}
626
24922684 627static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
628{
629 va_list args;
630 char buf[100];
631
24922684
CL
632 va_start(args, fmt);
633 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 634 va_end(args);
3dc50637 635 slab_bug(s, "%s", buf);
24922684 636 print_page_info(page);
81819f0f
CL
637 dump_stack();
638}
639
f7cb1933 640static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
641{
642 u8 *p = object;
643
644 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
645 memset(p, POISON_FREE, s->object_size - 1);
646 p[s->object_size - 1] = POISON_END;
81819f0f
CL
647 }
648
649 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 650 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
651}
652
24922684
CL
653static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
654 void *from, void *to)
655{
656 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
657 memset(from, data, to - from);
658}
659
660static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
661 u8 *object, char *what,
06428780 662 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
663{
664 u8 *fault;
665 u8 *end;
666
79824820 667 fault = memchr_inv(start, value, bytes);
24922684
CL
668 if (!fault)
669 return 1;
670
671 end = start + bytes;
672 while (end > fault && end[-1] == value)
673 end--;
674
675 slab_bug(s, "%s overwritten", what);
676 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
677 fault, end - 1, fault[0], value);
678 print_trailer(s, page, object);
679
680 restore_bytes(s, what, value, fault, end);
681 return 0;
81819f0f
CL
682}
683
81819f0f
CL
684/*
685 * Object layout:
686 *
687 * object address
688 * Bytes of the object to be managed.
689 * If the freepointer may overlay the object then the free
690 * pointer is the first word of the object.
672bba3a 691 *
81819f0f
CL
692 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
693 * 0xa5 (POISON_END)
694 *
3b0efdfa 695 * object + s->object_size
81819f0f 696 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 697 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 698 * object_size == inuse.
672bba3a 699 *
81819f0f
CL
700 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
701 * 0xcc (RED_ACTIVE) for objects in use.
702 *
703 * object + s->inuse
672bba3a
CL
704 * Meta data starts here.
705 *
81819f0f
CL
706 * A. Free pointer (if we cannot overwrite object on free)
707 * B. Tracking data for SLAB_STORE_USER
672bba3a 708 * C. Padding to reach required alignment boundary or at mininum
6446faa2 709 * one word if debugging is on to be able to detect writes
672bba3a
CL
710 * before the word boundary.
711 *
712 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
713 *
714 * object + s->size
672bba3a 715 * Nothing is used beyond s->size.
81819f0f 716 *
3b0efdfa 717 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 718 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
719 * may be used with merged slabcaches.
720 */
721
81819f0f
CL
722static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
723{
724 unsigned long off = s->inuse; /* The end of info */
725
726 if (s->offset)
727 /* Freepointer is placed after the object. */
728 off += sizeof(void *);
729
730 if (s->flags & SLAB_STORE_USER)
731 /* We also have user information there */
732 off += 2 * sizeof(struct track);
733
734 if (s->size == off)
735 return 1;
736
24922684
CL
737 return check_bytes_and_report(s, page, p, "Object padding",
738 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
739}
740
39b26464 741/* Check the pad bytes at the end of a slab page */
81819f0f
CL
742static int slab_pad_check(struct kmem_cache *s, struct page *page)
743{
24922684
CL
744 u8 *start;
745 u8 *fault;
746 u8 *end;
747 int length;
748 int remainder;
81819f0f
CL
749
750 if (!(s->flags & SLAB_POISON))
751 return 1;
752
a973e9dd 753 start = page_address(page);
ab9a0f19 754 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
755 end = start + length;
756 remainder = length % s->size;
81819f0f
CL
757 if (!remainder)
758 return 1;
759
79824820 760 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
761 if (!fault)
762 return 1;
763 while (end > fault && end[-1] == POISON_INUSE)
764 end--;
765
766 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 767 print_section("Padding ", end - remainder, remainder);
24922684 768
8a3d271d 769 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 770 return 0;
81819f0f
CL
771}
772
773static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 774 void *object, u8 val)
81819f0f
CL
775{
776 u8 *p = object;
3b0efdfa 777 u8 *endobject = object + s->object_size;
81819f0f
CL
778
779 if (s->flags & SLAB_RED_ZONE) {
24922684 780 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 781 endobject, val, s->inuse - s->object_size))
81819f0f 782 return 0;
81819f0f 783 } else {
3b0efdfa 784 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 785 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 786 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 787 }
81819f0f
CL
788 }
789
790 if (s->flags & SLAB_POISON) {
f7cb1933 791 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 792 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 793 POISON_FREE, s->object_size - 1) ||
24922684 794 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 795 p + s->object_size - 1, POISON_END, 1)))
81819f0f 796 return 0;
81819f0f
CL
797 /*
798 * check_pad_bytes cleans up on its own.
799 */
800 check_pad_bytes(s, page, p);
801 }
802
f7cb1933 803 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
804 /*
805 * Object and freepointer overlap. Cannot check
806 * freepointer while object is allocated.
807 */
808 return 1;
809
810 /* Check free pointer validity */
811 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
812 object_err(s, page, p, "Freepointer corrupt");
813 /*
9f6c708e 814 * No choice but to zap it and thus lose the remainder
81819f0f 815 * of the free objects in this slab. May cause
672bba3a 816 * another error because the object count is now wrong.
81819f0f 817 */
a973e9dd 818 set_freepointer(s, p, NULL);
81819f0f
CL
819 return 0;
820 }
821 return 1;
822}
823
824static int check_slab(struct kmem_cache *s, struct page *page)
825{
39b26464
CL
826 int maxobj;
827
81819f0f
CL
828 VM_BUG_ON(!irqs_disabled());
829
830 if (!PageSlab(page)) {
24922684 831 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
832 return 0;
833 }
39b26464 834
ab9a0f19 835 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
836 if (page->objects > maxobj) {
837 slab_err(s, page, "objects %u > max %u",
838 s->name, page->objects, maxobj);
839 return 0;
840 }
841 if (page->inuse > page->objects) {
24922684 842 slab_err(s, page, "inuse %u > max %u",
39b26464 843 s->name, page->inuse, page->objects);
81819f0f
CL
844 return 0;
845 }
846 /* Slab_pad_check fixes things up after itself */
847 slab_pad_check(s, page);
848 return 1;
849}
850
851/*
672bba3a
CL
852 * Determine if a certain object on a page is on the freelist. Must hold the
853 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
854 */
855static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
856{
857 int nr = 0;
881db7fb 858 void *fp;
81819f0f 859 void *object = NULL;
224a88be 860 unsigned long max_objects;
81819f0f 861
881db7fb 862 fp = page->freelist;
39b26464 863 while (fp && nr <= page->objects) {
81819f0f
CL
864 if (fp == search)
865 return 1;
866 if (!check_valid_pointer(s, page, fp)) {
867 if (object) {
868 object_err(s, page, object,
869 "Freechain corrupt");
a973e9dd 870 set_freepointer(s, object, NULL);
81819f0f
CL
871 break;
872 } else {
24922684 873 slab_err(s, page, "Freepointer corrupt");
a973e9dd 874 page->freelist = NULL;
39b26464 875 page->inuse = page->objects;
24922684 876 slab_fix(s, "Freelist cleared");
81819f0f
CL
877 return 0;
878 }
879 break;
880 }
881 object = fp;
882 fp = get_freepointer(s, object);
883 nr++;
884 }
885
ab9a0f19 886 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
887 if (max_objects > MAX_OBJS_PER_PAGE)
888 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
889
890 if (page->objects != max_objects) {
891 slab_err(s, page, "Wrong number of objects. Found %d but "
892 "should be %d", page->objects, max_objects);
893 page->objects = max_objects;
894 slab_fix(s, "Number of objects adjusted.");
895 }
39b26464 896 if (page->inuse != page->objects - nr) {
70d71228 897 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
898 "counted were %d", page->inuse, page->objects - nr);
899 page->inuse = page->objects - nr;
24922684 900 slab_fix(s, "Object count adjusted.");
81819f0f
CL
901 }
902 return search == NULL;
903}
904
0121c619
CL
905static void trace(struct kmem_cache *s, struct page *page, void *object,
906 int alloc)
3ec09742
CL
907{
908 if (s->flags & SLAB_TRACE) {
909 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
910 s->name,
911 alloc ? "alloc" : "free",
912 object, page->inuse,
913 page->freelist);
914
915 if (!alloc)
3b0efdfa 916 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
917
918 dump_stack();
919 }
920}
921
c016b0bd
CL
922/*
923 * Hooks for other subsystems that check memory allocations. In a typical
924 * production configuration these hooks all should produce no code at all.
925 */
926static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
927{
c1d50836 928 flags &= gfp_allowed_mask;
c016b0bd
CL
929 lockdep_trace_alloc(flags);
930 might_sleep_if(flags & __GFP_WAIT);
931
3b0efdfa 932 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
933}
934
935static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
936{
c1d50836 937 flags &= gfp_allowed_mask;
b3d41885 938 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 939 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
940}
941
942static inline void slab_free_hook(struct kmem_cache *s, void *x)
943{
944 kmemleak_free_recursive(x, s->flags);
c016b0bd 945
d3f661d6
CL
946 /*
947 * Trouble is that we may no longer disable interupts in the fast path
948 * So in order to make the debug calls that expect irqs to be
949 * disabled we need to disable interrupts temporarily.
950 */
951#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
952 {
953 unsigned long flags;
954
955 local_irq_save(flags);
3b0efdfa
CL
956 kmemcheck_slab_free(s, x, s->object_size);
957 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
958 local_irq_restore(flags);
959 }
960#endif
f9b615de 961 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 962 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
963}
964
643b1138 965/*
672bba3a 966 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
967 *
968 * list_lock must be held.
643b1138 969 */
5cc6eee8
CL
970static void add_full(struct kmem_cache *s,
971 struct kmem_cache_node *n, struct page *page)
643b1138 972{
5cc6eee8
CL
973 if (!(s->flags & SLAB_STORE_USER))
974 return;
975
643b1138 976 list_add(&page->lru, &n->full);
643b1138
CL
977}
978
5cc6eee8
CL
979/*
980 * list_lock must be held.
981 */
643b1138
CL
982static void remove_full(struct kmem_cache *s, struct page *page)
983{
643b1138
CL
984 if (!(s->flags & SLAB_STORE_USER))
985 return;
986
643b1138 987 list_del(&page->lru);
643b1138
CL
988}
989
0f389ec6
CL
990/* Tracking of the number of slabs for debugging purposes */
991static inline unsigned long slabs_node(struct kmem_cache *s, int node)
992{
993 struct kmem_cache_node *n = get_node(s, node);
994
995 return atomic_long_read(&n->nr_slabs);
996}
997
26c02cf0
AB
998static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
999{
1000 return atomic_long_read(&n->nr_slabs);
1001}
1002
205ab99d 1003static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1004{
1005 struct kmem_cache_node *n = get_node(s, node);
1006
1007 /*
1008 * May be called early in order to allocate a slab for the
1009 * kmem_cache_node structure. Solve the chicken-egg
1010 * dilemma by deferring the increment of the count during
1011 * bootstrap (see early_kmem_cache_node_alloc).
1012 */
7340cc84 1013 if (n) {
0f389ec6 1014 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1015 atomic_long_add(objects, &n->total_objects);
1016 }
0f389ec6 1017}
205ab99d 1018static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1019{
1020 struct kmem_cache_node *n = get_node(s, node);
1021
1022 atomic_long_dec(&n->nr_slabs);
205ab99d 1023 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1024}
1025
1026/* Object debug checks for alloc/free paths */
3ec09742
CL
1027static void setup_object_debug(struct kmem_cache *s, struct page *page,
1028 void *object)
1029{
1030 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1031 return;
1032
f7cb1933 1033 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1034 init_tracking(s, object);
1035}
1036
1537066c 1037static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1038 void *object, unsigned long addr)
81819f0f
CL
1039{
1040 if (!check_slab(s, page))
1041 goto bad;
1042
81819f0f
CL
1043 if (!check_valid_pointer(s, page, object)) {
1044 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1045 goto bad;
81819f0f
CL
1046 }
1047
f7cb1933 1048 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1049 goto bad;
81819f0f 1050
3ec09742
CL
1051 /* Success perform special debug activities for allocs */
1052 if (s->flags & SLAB_STORE_USER)
1053 set_track(s, object, TRACK_ALLOC, addr);
1054 trace(s, page, object, 1);
f7cb1933 1055 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1056 return 1;
3ec09742 1057
81819f0f
CL
1058bad:
1059 if (PageSlab(page)) {
1060 /*
1061 * If this is a slab page then lets do the best we can
1062 * to avoid issues in the future. Marking all objects
672bba3a 1063 * as used avoids touching the remaining objects.
81819f0f 1064 */
24922684 1065 slab_fix(s, "Marking all objects used");
39b26464 1066 page->inuse = page->objects;
a973e9dd 1067 page->freelist = NULL;
81819f0f
CL
1068 }
1069 return 0;
1070}
1071
19c7ff9e
CL
1072static noinline struct kmem_cache_node *free_debug_processing(
1073 struct kmem_cache *s, struct page *page, void *object,
1074 unsigned long addr, unsigned long *flags)
81819f0f 1075{
19c7ff9e 1076 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1077
19c7ff9e 1078 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1079 slab_lock(page);
1080
81819f0f
CL
1081 if (!check_slab(s, page))
1082 goto fail;
1083
1084 if (!check_valid_pointer(s, page, object)) {
70d71228 1085 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1086 goto fail;
1087 }
1088
1089 if (on_freelist(s, page, object)) {
24922684 1090 object_err(s, page, object, "Object already free");
81819f0f
CL
1091 goto fail;
1092 }
1093
f7cb1933 1094 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1095 goto out;
81819f0f
CL
1096
1097 if (unlikely(s != page->slab)) {
3adbefee 1098 if (!PageSlab(page)) {
70d71228
CL
1099 slab_err(s, page, "Attempt to free object(0x%p) "
1100 "outside of slab", object);
3adbefee 1101 } else if (!page->slab) {
81819f0f 1102 printk(KERN_ERR
70d71228 1103 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1104 object);
70d71228 1105 dump_stack();
06428780 1106 } else
24922684
CL
1107 object_err(s, page, object,
1108 "page slab pointer corrupt.");
81819f0f
CL
1109 goto fail;
1110 }
3ec09742 1111
3ec09742
CL
1112 if (s->flags & SLAB_STORE_USER)
1113 set_track(s, object, TRACK_FREE, addr);
1114 trace(s, page, object, 0);
f7cb1933 1115 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1116out:
881db7fb 1117 slab_unlock(page);
19c7ff9e
CL
1118 /*
1119 * Keep node_lock to preserve integrity
1120 * until the object is actually freed
1121 */
1122 return n;
3ec09742 1123
81819f0f 1124fail:
19c7ff9e
CL
1125 slab_unlock(page);
1126 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1127 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1128 return NULL;
81819f0f
CL
1129}
1130
41ecc55b
CL
1131static int __init setup_slub_debug(char *str)
1132{
f0630fff
CL
1133 slub_debug = DEBUG_DEFAULT_FLAGS;
1134 if (*str++ != '=' || !*str)
1135 /*
1136 * No options specified. Switch on full debugging.
1137 */
1138 goto out;
1139
1140 if (*str == ',')
1141 /*
1142 * No options but restriction on slabs. This means full
1143 * debugging for slabs matching a pattern.
1144 */
1145 goto check_slabs;
1146
fa5ec8a1
DR
1147 if (tolower(*str) == 'o') {
1148 /*
1149 * Avoid enabling debugging on caches if its minimum order
1150 * would increase as a result.
1151 */
1152 disable_higher_order_debug = 1;
1153 goto out;
1154 }
1155
f0630fff
CL
1156 slub_debug = 0;
1157 if (*str == '-')
1158 /*
1159 * Switch off all debugging measures.
1160 */
1161 goto out;
1162
1163 /*
1164 * Determine which debug features should be switched on
1165 */
06428780 1166 for (; *str && *str != ','; str++) {
f0630fff
CL
1167 switch (tolower(*str)) {
1168 case 'f':
1169 slub_debug |= SLAB_DEBUG_FREE;
1170 break;
1171 case 'z':
1172 slub_debug |= SLAB_RED_ZONE;
1173 break;
1174 case 'p':
1175 slub_debug |= SLAB_POISON;
1176 break;
1177 case 'u':
1178 slub_debug |= SLAB_STORE_USER;
1179 break;
1180 case 't':
1181 slub_debug |= SLAB_TRACE;
1182 break;
4c13dd3b
DM
1183 case 'a':
1184 slub_debug |= SLAB_FAILSLAB;
1185 break;
f0630fff
CL
1186 default:
1187 printk(KERN_ERR "slub_debug option '%c' "
06428780 1188 "unknown. skipped\n", *str);
f0630fff 1189 }
41ecc55b
CL
1190 }
1191
f0630fff 1192check_slabs:
41ecc55b
CL
1193 if (*str == ',')
1194 slub_debug_slabs = str + 1;
f0630fff 1195out:
41ecc55b
CL
1196 return 1;
1197}
1198
1199__setup("slub_debug", setup_slub_debug);
1200
3b0efdfa 1201static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1202 unsigned long flags, const char *name,
51cc5068 1203 void (*ctor)(void *))
41ecc55b
CL
1204{
1205 /*
e153362a 1206 * Enable debugging if selected on the kernel commandline.
41ecc55b 1207 */
e153362a 1208 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1209 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1210 flags |= slub_debug;
ba0268a8
CL
1211
1212 return flags;
41ecc55b
CL
1213}
1214#else
3ec09742
CL
1215static inline void setup_object_debug(struct kmem_cache *s,
1216 struct page *page, void *object) {}
41ecc55b 1217
3ec09742 1218static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1219 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1220
19c7ff9e
CL
1221static inline struct kmem_cache_node *free_debug_processing(
1222 struct kmem_cache *s, struct page *page, void *object,
1223 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1224
41ecc55b
CL
1225static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1226 { return 1; }
1227static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1228 void *object, u8 val) { return 1; }
5cc6eee8
CL
1229static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1230 struct page *page) {}
2cfb7455 1231static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1232static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1233 unsigned long flags, const char *name,
51cc5068 1234 void (*ctor)(void *))
ba0268a8
CL
1235{
1236 return flags;
1237}
41ecc55b 1238#define slub_debug 0
0f389ec6 1239
fdaa45e9
IM
1240#define disable_higher_order_debug 0
1241
0f389ec6
CL
1242static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1243 { return 0; }
26c02cf0
AB
1244static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1245 { return 0; }
205ab99d
CL
1246static inline void inc_slabs_node(struct kmem_cache *s, int node,
1247 int objects) {}
1248static inline void dec_slabs_node(struct kmem_cache *s, int node,
1249 int objects) {}
7d550c56
CL
1250
1251static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1252 { return 0; }
1253
1254static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1255 void *object) {}
1256
1257static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1258
ab4d5ed5 1259#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1260
81819f0f
CL
1261/*
1262 * Slab allocation and freeing
1263 */
65c3376a
CL
1264static inline struct page *alloc_slab_page(gfp_t flags, int node,
1265 struct kmem_cache_order_objects oo)
1266{
1267 int order = oo_order(oo);
1268
b1eeab67
VN
1269 flags |= __GFP_NOTRACK;
1270
2154a336 1271 if (node == NUMA_NO_NODE)
65c3376a
CL
1272 return alloc_pages(flags, order);
1273 else
6b65aaf3 1274 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1275}
1276
81819f0f
CL
1277static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1278{
06428780 1279 struct page *page;
834f3d11 1280 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1281 gfp_t alloc_gfp;
81819f0f 1282
7e0528da
CL
1283 flags &= gfp_allowed_mask;
1284
1285 if (flags & __GFP_WAIT)
1286 local_irq_enable();
1287
b7a49f0d 1288 flags |= s->allocflags;
e12ba74d 1289
ba52270d
PE
1290 /*
1291 * Let the initial higher-order allocation fail under memory pressure
1292 * so we fall-back to the minimum order allocation.
1293 */
1294 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1295
1296 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1297 if (unlikely(!page)) {
1298 oo = s->min;
1299 /*
1300 * Allocation may have failed due to fragmentation.
1301 * Try a lower order alloc if possible
1302 */
1303 page = alloc_slab_page(flags, node, oo);
81819f0f 1304
7e0528da
CL
1305 if (page)
1306 stat(s, ORDER_FALLBACK);
65c3376a 1307 }
5a896d9e 1308
737b719e 1309 if (kmemcheck_enabled && page
5086c389 1310 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1311 int pages = 1 << oo_order(oo);
1312
1313 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1314
1315 /*
1316 * Objects from caches that have a constructor don't get
1317 * cleared when they're allocated, so we need to do it here.
1318 */
1319 if (s->ctor)
1320 kmemcheck_mark_uninitialized_pages(page, pages);
1321 else
1322 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1323 }
1324
737b719e
DR
1325 if (flags & __GFP_WAIT)
1326 local_irq_disable();
1327 if (!page)
1328 return NULL;
1329
834f3d11 1330 page->objects = oo_objects(oo);
81819f0f
CL
1331 mod_zone_page_state(page_zone(page),
1332 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1333 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1334 1 << oo_order(oo));
81819f0f
CL
1335
1336 return page;
1337}
1338
1339static void setup_object(struct kmem_cache *s, struct page *page,
1340 void *object)
1341{
3ec09742 1342 setup_object_debug(s, page, object);
4f104934 1343 if (unlikely(s->ctor))
51cc5068 1344 s->ctor(object);
81819f0f
CL
1345}
1346
1347static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1348{
1349 struct page *page;
81819f0f 1350 void *start;
81819f0f
CL
1351 void *last;
1352 void *p;
1353
6cb06229 1354 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1355
6cb06229
CL
1356 page = allocate_slab(s,
1357 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1358 if (!page)
1359 goto out;
1360
205ab99d 1361 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f 1362 page->slab = s;
c03f94cc 1363 __SetPageSlab(page);
072bb0aa
MG
1364 if (page->pfmemalloc)
1365 SetPageSlabPfmemalloc(page);
81819f0f
CL
1366
1367 start = page_address(page);
81819f0f
CL
1368
1369 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1370 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1371
1372 last = start;
224a88be 1373 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1374 setup_object(s, page, last);
1375 set_freepointer(s, last, p);
1376 last = p;
1377 }
1378 setup_object(s, page, last);
a973e9dd 1379 set_freepointer(s, last, NULL);
81819f0f
CL
1380
1381 page->freelist = start;
e6e82ea1 1382 page->inuse = page->objects;
8cb0a506 1383 page->frozen = 1;
81819f0f 1384out:
81819f0f
CL
1385 return page;
1386}
1387
1388static void __free_slab(struct kmem_cache *s, struct page *page)
1389{
834f3d11
CL
1390 int order = compound_order(page);
1391 int pages = 1 << order;
81819f0f 1392
af537b0a 1393 if (kmem_cache_debug(s)) {
81819f0f
CL
1394 void *p;
1395
1396 slab_pad_check(s, page);
224a88be
CL
1397 for_each_object(p, s, page_address(page),
1398 page->objects)
f7cb1933 1399 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1400 }
1401
b1eeab67 1402 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1403
81819f0f
CL
1404 mod_zone_page_state(page_zone(page),
1405 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1406 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1407 -pages);
81819f0f 1408
072bb0aa 1409 __ClearPageSlabPfmemalloc(page);
49bd5221
CL
1410 __ClearPageSlab(page);
1411 reset_page_mapcount(page);
1eb5ac64
NP
1412 if (current->reclaim_state)
1413 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1414 __free_pages(page, order);
81819f0f
CL
1415}
1416
da9a638c
LJ
1417#define need_reserve_slab_rcu \
1418 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1419
81819f0f
CL
1420static void rcu_free_slab(struct rcu_head *h)
1421{
1422 struct page *page;
1423
da9a638c
LJ
1424 if (need_reserve_slab_rcu)
1425 page = virt_to_head_page(h);
1426 else
1427 page = container_of((struct list_head *)h, struct page, lru);
1428
81819f0f
CL
1429 __free_slab(page->slab, page);
1430}
1431
1432static void free_slab(struct kmem_cache *s, struct page *page)
1433{
1434 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1435 struct rcu_head *head;
1436
1437 if (need_reserve_slab_rcu) {
1438 int order = compound_order(page);
1439 int offset = (PAGE_SIZE << order) - s->reserved;
1440
1441 VM_BUG_ON(s->reserved != sizeof(*head));
1442 head = page_address(page) + offset;
1443 } else {
1444 /*
1445 * RCU free overloads the RCU head over the LRU
1446 */
1447 head = (void *)&page->lru;
1448 }
81819f0f
CL
1449
1450 call_rcu(head, rcu_free_slab);
1451 } else
1452 __free_slab(s, page);
1453}
1454
1455static void discard_slab(struct kmem_cache *s, struct page *page)
1456{
205ab99d 1457 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1458 free_slab(s, page);
1459}
1460
1461/*
5cc6eee8
CL
1462 * Management of partially allocated slabs.
1463 *
1464 * list_lock must be held.
81819f0f 1465 */
5cc6eee8 1466static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1467 struct page *page, int tail)
81819f0f 1468{
e95eed57 1469 n->nr_partial++;
136333d1 1470 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1471 list_add_tail(&page->lru, &n->partial);
1472 else
1473 list_add(&page->lru, &n->partial);
81819f0f
CL
1474}
1475
5cc6eee8
CL
1476/*
1477 * list_lock must be held.
1478 */
1479static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1480 struct page *page)
1481{
1482 list_del(&page->lru);
1483 n->nr_partial--;
1484}
1485
81819f0f 1486/*
7ced3719
CL
1487 * Remove slab from the partial list, freeze it and
1488 * return the pointer to the freelist.
81819f0f 1489 *
497b66f2
CL
1490 * Returns a list of objects or NULL if it fails.
1491 *
7ced3719 1492 * Must hold list_lock since we modify the partial list.
81819f0f 1493 */
497b66f2 1494static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1495 struct kmem_cache_node *n, struct page *page,
49e22585 1496 int mode)
81819f0f 1497{
2cfb7455
CL
1498 void *freelist;
1499 unsigned long counters;
1500 struct page new;
1501
2cfb7455
CL
1502 /*
1503 * Zap the freelist and set the frozen bit.
1504 * The old freelist is the list of objects for the
1505 * per cpu allocation list.
1506 */
7ced3719
CL
1507 freelist = page->freelist;
1508 counters = page->counters;
1509 new.counters = counters;
23910c50 1510 if (mode) {
7ced3719 1511 new.inuse = page->objects;
23910c50
PE
1512 new.freelist = NULL;
1513 } else {
1514 new.freelist = freelist;
1515 }
2cfb7455 1516
7ced3719
CL
1517 VM_BUG_ON(new.frozen);
1518 new.frozen = 1;
2cfb7455 1519
7ced3719 1520 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1521 freelist, counters,
02d7633f 1522 new.freelist, new.counters,
7ced3719 1523 "acquire_slab"))
7ced3719 1524 return NULL;
2cfb7455
CL
1525
1526 remove_partial(n, page);
7ced3719 1527 WARN_ON(!freelist);
49e22585 1528 return freelist;
81819f0f
CL
1529}
1530
49e22585
CL
1531static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1532
81819f0f 1533/*
672bba3a 1534 * Try to allocate a partial slab from a specific node.
81819f0f 1535 */
497b66f2 1536static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1537 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1538{
49e22585
CL
1539 struct page *page, *page2;
1540 void *object = NULL;
81819f0f
CL
1541
1542 /*
1543 * Racy check. If we mistakenly see no partial slabs then we
1544 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1545 * partial slab and there is none available then get_partials()
1546 * will return NULL.
81819f0f
CL
1547 */
1548 if (!n || !n->nr_partial)
1549 return NULL;
1550
1551 spin_lock(&n->list_lock);
49e22585 1552 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1553 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1554 int available;
1555
1556 if (!t)
1557 break;
1558
12d79634 1559 if (!object) {
49e22585 1560 c->page = page;
49e22585 1561 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1562 object = t;
1563 available = page->objects - page->inuse;
1564 } else {
49e22585 1565 available = put_cpu_partial(s, page, 0);
8028dcea 1566 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1567 }
1568 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1569 break;
1570
497b66f2 1571 }
81819f0f 1572 spin_unlock(&n->list_lock);
497b66f2 1573 return object;
81819f0f
CL
1574}
1575
1576/*
672bba3a 1577 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1578 */
de3ec035 1579static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1580 struct kmem_cache_cpu *c)
81819f0f
CL
1581{
1582#ifdef CONFIG_NUMA
1583 struct zonelist *zonelist;
dd1a239f 1584 struct zoneref *z;
54a6eb5c
MG
1585 struct zone *zone;
1586 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1587 void *object;
cc9a6c87 1588 unsigned int cpuset_mems_cookie;
81819f0f
CL
1589
1590 /*
672bba3a
CL
1591 * The defrag ratio allows a configuration of the tradeoffs between
1592 * inter node defragmentation and node local allocations. A lower
1593 * defrag_ratio increases the tendency to do local allocations
1594 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1595 *
672bba3a
CL
1596 * If the defrag_ratio is set to 0 then kmalloc() always
1597 * returns node local objects. If the ratio is higher then kmalloc()
1598 * may return off node objects because partial slabs are obtained
1599 * from other nodes and filled up.
81819f0f 1600 *
6446faa2 1601 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1602 * defrag_ratio = 1000) then every (well almost) allocation will
1603 * first attempt to defrag slab caches on other nodes. This means
1604 * scanning over all nodes to look for partial slabs which may be
1605 * expensive if we do it every time we are trying to find a slab
1606 * with available objects.
81819f0f 1607 */
9824601e
CL
1608 if (!s->remote_node_defrag_ratio ||
1609 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1610 return NULL;
1611
cc9a6c87
MG
1612 do {
1613 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1614 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1615 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1616 struct kmem_cache_node *n;
1617
1618 n = get_node(s, zone_to_nid(zone));
1619
1620 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1621 n->nr_partial > s->min_partial) {
1622 object = get_partial_node(s, n, c);
1623 if (object) {
1624 /*
1625 * Return the object even if
1626 * put_mems_allowed indicated that
1627 * the cpuset mems_allowed was
1628 * updated in parallel. It's a
1629 * harmless race between the alloc
1630 * and the cpuset update.
1631 */
1632 put_mems_allowed(cpuset_mems_cookie);
1633 return object;
1634 }
c0ff7453 1635 }
81819f0f 1636 }
cc9a6c87 1637 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1638#endif
1639 return NULL;
1640}
1641
1642/*
1643 * Get a partial page, lock it and return it.
1644 */
497b66f2 1645static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1646 struct kmem_cache_cpu *c)
81819f0f 1647{
497b66f2 1648 void *object;
2154a336 1649 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1650
497b66f2
CL
1651 object = get_partial_node(s, get_node(s, searchnode), c);
1652 if (object || node != NUMA_NO_NODE)
1653 return object;
81819f0f 1654
acd19fd1 1655 return get_any_partial(s, flags, c);
81819f0f
CL
1656}
1657
8a5ec0ba
CL
1658#ifdef CONFIG_PREEMPT
1659/*
1660 * Calculate the next globally unique transaction for disambiguiation
1661 * during cmpxchg. The transactions start with the cpu number and are then
1662 * incremented by CONFIG_NR_CPUS.
1663 */
1664#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1665#else
1666/*
1667 * No preemption supported therefore also no need to check for
1668 * different cpus.
1669 */
1670#define TID_STEP 1
1671#endif
1672
1673static inline unsigned long next_tid(unsigned long tid)
1674{
1675 return tid + TID_STEP;
1676}
1677
1678static inline unsigned int tid_to_cpu(unsigned long tid)
1679{
1680 return tid % TID_STEP;
1681}
1682
1683static inline unsigned long tid_to_event(unsigned long tid)
1684{
1685 return tid / TID_STEP;
1686}
1687
1688static inline unsigned int init_tid(int cpu)
1689{
1690 return cpu;
1691}
1692
1693static inline void note_cmpxchg_failure(const char *n,
1694 const struct kmem_cache *s, unsigned long tid)
1695{
1696#ifdef SLUB_DEBUG_CMPXCHG
1697 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1698
1699 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1700
1701#ifdef CONFIG_PREEMPT
1702 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1703 printk("due to cpu change %d -> %d\n",
1704 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1705 else
1706#endif
1707 if (tid_to_event(tid) != tid_to_event(actual_tid))
1708 printk("due to cpu running other code. Event %ld->%ld\n",
1709 tid_to_event(tid), tid_to_event(actual_tid));
1710 else
1711 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1712 actual_tid, tid, next_tid(tid));
1713#endif
4fdccdfb 1714 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1715}
1716
8a5ec0ba
CL
1717void init_kmem_cache_cpus(struct kmem_cache *s)
1718{
8a5ec0ba
CL
1719 int cpu;
1720
1721 for_each_possible_cpu(cpu)
1722 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1723}
2cfb7455 1724
81819f0f
CL
1725/*
1726 * Remove the cpu slab
1727 */
c17dda40 1728static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1729{
2cfb7455 1730 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1731 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1732 int lock = 0;
1733 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1734 void *nextfree;
136333d1 1735 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1736 struct page new;
1737 struct page old;
1738
1739 if (page->freelist) {
84e554e6 1740 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1741 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1742 }
1743
894b8788 1744 /*
2cfb7455
CL
1745 * Stage one: Free all available per cpu objects back
1746 * to the page freelist while it is still frozen. Leave the
1747 * last one.
1748 *
1749 * There is no need to take the list->lock because the page
1750 * is still frozen.
1751 */
1752 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1753 void *prior;
1754 unsigned long counters;
1755
1756 do {
1757 prior = page->freelist;
1758 counters = page->counters;
1759 set_freepointer(s, freelist, prior);
1760 new.counters = counters;
1761 new.inuse--;
1762 VM_BUG_ON(!new.frozen);
1763
1d07171c 1764 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1765 prior, counters,
1766 freelist, new.counters,
1767 "drain percpu freelist"));
1768
1769 freelist = nextfree;
1770 }
1771
894b8788 1772 /*
2cfb7455
CL
1773 * Stage two: Ensure that the page is unfrozen while the
1774 * list presence reflects the actual number of objects
1775 * during unfreeze.
1776 *
1777 * We setup the list membership and then perform a cmpxchg
1778 * with the count. If there is a mismatch then the page
1779 * is not unfrozen but the page is on the wrong list.
1780 *
1781 * Then we restart the process which may have to remove
1782 * the page from the list that we just put it on again
1783 * because the number of objects in the slab may have
1784 * changed.
894b8788 1785 */
2cfb7455 1786redo:
894b8788 1787
2cfb7455
CL
1788 old.freelist = page->freelist;
1789 old.counters = page->counters;
1790 VM_BUG_ON(!old.frozen);
7c2e132c 1791
2cfb7455
CL
1792 /* Determine target state of the slab */
1793 new.counters = old.counters;
1794 if (freelist) {
1795 new.inuse--;
1796 set_freepointer(s, freelist, old.freelist);
1797 new.freelist = freelist;
1798 } else
1799 new.freelist = old.freelist;
1800
1801 new.frozen = 0;
1802
81107188 1803 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1804 m = M_FREE;
1805 else if (new.freelist) {
1806 m = M_PARTIAL;
1807 if (!lock) {
1808 lock = 1;
1809 /*
1810 * Taking the spinlock removes the possiblity
1811 * that acquire_slab() will see a slab page that
1812 * is frozen
1813 */
1814 spin_lock(&n->list_lock);
1815 }
1816 } else {
1817 m = M_FULL;
1818 if (kmem_cache_debug(s) && !lock) {
1819 lock = 1;
1820 /*
1821 * This also ensures that the scanning of full
1822 * slabs from diagnostic functions will not see
1823 * any frozen slabs.
1824 */
1825 spin_lock(&n->list_lock);
1826 }
1827 }
1828
1829 if (l != m) {
1830
1831 if (l == M_PARTIAL)
1832
1833 remove_partial(n, page);
1834
1835 else if (l == M_FULL)
894b8788 1836
2cfb7455
CL
1837 remove_full(s, page);
1838
1839 if (m == M_PARTIAL) {
1840
1841 add_partial(n, page, tail);
136333d1 1842 stat(s, tail);
2cfb7455
CL
1843
1844 } else if (m == M_FULL) {
894b8788 1845
2cfb7455
CL
1846 stat(s, DEACTIVATE_FULL);
1847 add_full(s, n, page);
1848
1849 }
1850 }
1851
1852 l = m;
1d07171c 1853 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1854 old.freelist, old.counters,
1855 new.freelist, new.counters,
1856 "unfreezing slab"))
1857 goto redo;
1858
2cfb7455
CL
1859 if (lock)
1860 spin_unlock(&n->list_lock);
1861
1862 if (m == M_FREE) {
1863 stat(s, DEACTIVATE_EMPTY);
1864 discard_slab(s, page);
1865 stat(s, FREE_SLAB);
894b8788 1866 }
81819f0f
CL
1867}
1868
d24ac77f
JK
1869/*
1870 * Unfreeze all the cpu partial slabs.
1871 *
1872 * This function must be called with interrupt disabled.
1873 */
49e22585
CL
1874static void unfreeze_partials(struct kmem_cache *s)
1875{
43d77867 1876 struct kmem_cache_node *n = NULL, *n2 = NULL;
49e22585 1877 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1878 struct page *page, *discard_page = NULL;
49e22585
CL
1879
1880 while ((page = c->partial)) {
49e22585
CL
1881 struct page new;
1882 struct page old;
1883
1884 c->partial = page->next;
43d77867
JK
1885
1886 n2 = get_node(s, page_to_nid(page));
1887 if (n != n2) {
1888 if (n)
1889 spin_unlock(&n->list_lock);
1890
1891 n = n2;
1892 spin_lock(&n->list_lock);
1893 }
49e22585
CL
1894
1895 do {
1896
1897 old.freelist = page->freelist;
1898 old.counters = page->counters;
1899 VM_BUG_ON(!old.frozen);
1900
1901 new.counters = old.counters;
1902 new.freelist = old.freelist;
1903
1904 new.frozen = 0;
1905
d24ac77f 1906 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1907 old.freelist, old.counters,
1908 new.freelist, new.counters,
1909 "unfreezing slab"));
1910
43d77867 1911 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1912 page->next = discard_page;
1913 discard_page = page;
43d77867
JK
1914 } else {
1915 add_partial(n, page, DEACTIVATE_TO_TAIL);
1916 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1917 }
1918 }
1919
1920 if (n)
1921 spin_unlock(&n->list_lock);
9ada1934
SL
1922
1923 while (discard_page) {
1924 page = discard_page;
1925 discard_page = discard_page->next;
1926
1927 stat(s, DEACTIVATE_EMPTY);
1928 discard_slab(s, page);
1929 stat(s, FREE_SLAB);
1930 }
49e22585
CL
1931}
1932
1933/*
1934 * Put a page that was just frozen (in __slab_free) into a partial page
1935 * slot if available. This is done without interrupts disabled and without
1936 * preemption disabled. The cmpxchg is racy and may put the partial page
1937 * onto a random cpus partial slot.
1938 *
1939 * If we did not find a slot then simply move all the partials to the
1940 * per node partial list.
1941 */
1942int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1943{
1944 struct page *oldpage;
1945 int pages;
1946 int pobjects;
1947
1948 do {
1949 pages = 0;
1950 pobjects = 0;
1951 oldpage = this_cpu_read(s->cpu_slab->partial);
1952
1953 if (oldpage) {
1954 pobjects = oldpage->pobjects;
1955 pages = oldpage->pages;
1956 if (drain && pobjects > s->cpu_partial) {
1957 unsigned long flags;
1958 /*
1959 * partial array is full. Move the existing
1960 * set to the per node partial list.
1961 */
1962 local_irq_save(flags);
1963 unfreeze_partials(s);
1964 local_irq_restore(flags);
1965 pobjects = 0;
1966 pages = 0;
8028dcea 1967 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1968 }
1969 }
1970
1971 pages++;
1972 pobjects += page->objects - page->inuse;
1973
1974 page->pages = pages;
1975 page->pobjects = pobjects;
1976 page->next = oldpage;
1977
933393f5 1978 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1979 return pobjects;
1980}
1981
dfb4f096 1982static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1983{
84e554e6 1984 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
1985 deactivate_slab(s, c->page, c->freelist);
1986
1987 c->tid = next_tid(c->tid);
1988 c->page = NULL;
1989 c->freelist = NULL;
81819f0f
CL
1990}
1991
1992/*
1993 * Flush cpu slab.
6446faa2 1994 *
81819f0f
CL
1995 * Called from IPI handler with interrupts disabled.
1996 */
0c710013 1997static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1998{
9dfc6e68 1999 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2000
49e22585
CL
2001 if (likely(c)) {
2002 if (c->page)
2003 flush_slab(s, c);
2004
2005 unfreeze_partials(s);
2006 }
81819f0f
CL
2007}
2008
2009static void flush_cpu_slab(void *d)
2010{
2011 struct kmem_cache *s = d;
81819f0f 2012
dfb4f096 2013 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2014}
2015
a8364d55
GBY
2016static bool has_cpu_slab(int cpu, void *info)
2017{
2018 struct kmem_cache *s = info;
2019 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2020
02e1a9cd 2021 return c->page || c->partial;
a8364d55
GBY
2022}
2023
81819f0f
CL
2024static void flush_all(struct kmem_cache *s)
2025{
a8364d55 2026 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2027}
2028
dfb4f096
CL
2029/*
2030 * Check if the objects in a per cpu structure fit numa
2031 * locality expectations.
2032 */
57d437d2 2033static inline int node_match(struct page *page, int node)
dfb4f096
CL
2034{
2035#ifdef CONFIG_NUMA
57d437d2 2036 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2037 return 0;
2038#endif
2039 return 1;
2040}
2041
781b2ba6
PE
2042static int count_free(struct page *page)
2043{
2044 return page->objects - page->inuse;
2045}
2046
2047static unsigned long count_partial(struct kmem_cache_node *n,
2048 int (*get_count)(struct page *))
2049{
2050 unsigned long flags;
2051 unsigned long x = 0;
2052 struct page *page;
2053
2054 spin_lock_irqsave(&n->list_lock, flags);
2055 list_for_each_entry(page, &n->partial, lru)
2056 x += get_count(page);
2057 spin_unlock_irqrestore(&n->list_lock, flags);
2058 return x;
2059}
2060
26c02cf0
AB
2061static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2062{
2063#ifdef CONFIG_SLUB_DEBUG
2064 return atomic_long_read(&n->total_objects);
2065#else
2066 return 0;
2067#endif
2068}
2069
781b2ba6
PE
2070static noinline void
2071slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2072{
2073 int node;
2074
2075 printk(KERN_WARNING
2076 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2077 nid, gfpflags);
2078 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2079 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2080 s->size, oo_order(s->oo), oo_order(s->min));
2081
3b0efdfa 2082 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2083 printk(KERN_WARNING " %s debugging increased min order, use "
2084 "slub_debug=O to disable.\n", s->name);
2085
781b2ba6
PE
2086 for_each_online_node(node) {
2087 struct kmem_cache_node *n = get_node(s, node);
2088 unsigned long nr_slabs;
2089 unsigned long nr_objs;
2090 unsigned long nr_free;
2091
2092 if (!n)
2093 continue;
2094
26c02cf0
AB
2095 nr_free = count_partial(n, count_free);
2096 nr_slabs = node_nr_slabs(n);
2097 nr_objs = node_nr_objs(n);
781b2ba6
PE
2098
2099 printk(KERN_WARNING
2100 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2101 node, nr_slabs, nr_objs, nr_free);
2102 }
2103}
2104
497b66f2
CL
2105static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2106 int node, struct kmem_cache_cpu **pc)
2107{
6faa6833 2108 void *freelist;
188fd063
CL
2109 struct kmem_cache_cpu *c = *pc;
2110 struct page *page;
497b66f2 2111
188fd063 2112 freelist = get_partial(s, flags, node, c);
497b66f2 2113
188fd063
CL
2114 if (freelist)
2115 return freelist;
2116
2117 page = new_slab(s, flags, node);
497b66f2
CL
2118 if (page) {
2119 c = __this_cpu_ptr(s->cpu_slab);
2120 if (c->page)
2121 flush_slab(s, c);
2122
2123 /*
2124 * No other reference to the page yet so we can
2125 * muck around with it freely without cmpxchg
2126 */
6faa6833 2127 freelist = page->freelist;
497b66f2
CL
2128 page->freelist = NULL;
2129
2130 stat(s, ALLOC_SLAB);
497b66f2
CL
2131 c->page = page;
2132 *pc = c;
2133 } else
6faa6833 2134 freelist = NULL;
497b66f2 2135
6faa6833 2136 return freelist;
497b66f2
CL
2137}
2138
072bb0aa
MG
2139static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2140{
2141 if (unlikely(PageSlabPfmemalloc(page)))
2142 return gfp_pfmemalloc_allowed(gfpflags);
2143
2144 return true;
2145}
2146
213eeb9f
CL
2147/*
2148 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2149 * or deactivate the page.
2150 *
2151 * The page is still frozen if the return value is not NULL.
2152 *
2153 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2154 *
2155 * This function must be called with interrupt disabled.
213eeb9f
CL
2156 */
2157static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2158{
2159 struct page new;
2160 unsigned long counters;
2161 void *freelist;
2162
2163 do {
2164 freelist = page->freelist;
2165 counters = page->counters;
6faa6833 2166
213eeb9f
CL
2167 new.counters = counters;
2168 VM_BUG_ON(!new.frozen);
2169
2170 new.inuse = page->objects;
2171 new.frozen = freelist != NULL;
2172
d24ac77f 2173 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2174 freelist, counters,
2175 NULL, new.counters,
2176 "get_freelist"));
2177
2178 return freelist;
2179}
2180
81819f0f 2181/*
894b8788
CL
2182 * Slow path. The lockless freelist is empty or we need to perform
2183 * debugging duties.
2184 *
894b8788
CL
2185 * Processing is still very fast if new objects have been freed to the
2186 * regular freelist. In that case we simply take over the regular freelist
2187 * as the lockless freelist and zap the regular freelist.
81819f0f 2188 *
894b8788
CL
2189 * If that is not working then we fall back to the partial lists. We take the
2190 * first element of the freelist as the object to allocate now and move the
2191 * rest of the freelist to the lockless freelist.
81819f0f 2192 *
894b8788 2193 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2194 * we need to allocate a new slab. This is the slowest path since it involves
2195 * a call to the page allocator and the setup of a new slab.
81819f0f 2196 */
ce71e27c
EGM
2197static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2198 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2199{
6faa6833 2200 void *freelist;
f6e7def7 2201 struct page *page;
8a5ec0ba
CL
2202 unsigned long flags;
2203
2204 local_irq_save(flags);
2205#ifdef CONFIG_PREEMPT
2206 /*
2207 * We may have been preempted and rescheduled on a different
2208 * cpu before disabling interrupts. Need to reload cpu area
2209 * pointer.
2210 */
2211 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2212#endif
81819f0f 2213
f6e7def7
CL
2214 page = c->page;
2215 if (!page)
81819f0f 2216 goto new_slab;
49e22585 2217redo:
6faa6833 2218
57d437d2 2219 if (unlikely(!node_match(page, node))) {
e36a2652 2220 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2221 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2222 c->page = NULL;
2223 c->freelist = NULL;
fc59c053
CL
2224 goto new_slab;
2225 }
6446faa2 2226
072bb0aa
MG
2227 /*
2228 * By rights, we should be searching for a slab page that was
2229 * PFMEMALLOC but right now, we are losing the pfmemalloc
2230 * information when the page leaves the per-cpu allocator
2231 */
2232 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2233 deactivate_slab(s, page, c->freelist);
2234 c->page = NULL;
2235 c->freelist = NULL;
2236 goto new_slab;
2237 }
2238
73736e03 2239 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2240 freelist = c->freelist;
2241 if (freelist)
73736e03 2242 goto load_freelist;
03e404af 2243
2cfb7455 2244 stat(s, ALLOC_SLOWPATH);
03e404af 2245
f6e7def7 2246 freelist = get_freelist(s, page);
6446faa2 2247
6faa6833 2248 if (!freelist) {
03e404af
CL
2249 c->page = NULL;
2250 stat(s, DEACTIVATE_BYPASS);
fc59c053 2251 goto new_slab;
03e404af 2252 }
6446faa2 2253
84e554e6 2254 stat(s, ALLOC_REFILL);
6446faa2 2255
894b8788 2256load_freelist:
507effea
CL
2257 /*
2258 * freelist is pointing to the list of objects to be used.
2259 * page is pointing to the page from which the objects are obtained.
2260 * That page must be frozen for per cpu allocations to work.
2261 */
2262 VM_BUG_ON(!c->page->frozen);
6faa6833 2263 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2264 c->tid = next_tid(c->tid);
2265 local_irq_restore(flags);
6faa6833 2266 return freelist;
81819f0f 2267
81819f0f 2268new_slab:
2cfb7455 2269
49e22585 2270 if (c->partial) {
f6e7def7
CL
2271 page = c->page = c->partial;
2272 c->partial = page->next;
49e22585
CL
2273 stat(s, CPU_PARTIAL_ALLOC);
2274 c->freelist = NULL;
2275 goto redo;
81819f0f
CL
2276 }
2277
188fd063 2278 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2279
f4697436
CL
2280 if (unlikely(!freelist)) {
2281 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2282 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2283
f4697436
CL
2284 local_irq_restore(flags);
2285 return NULL;
81819f0f 2286 }
2cfb7455 2287
f6e7def7 2288 page = c->page;
5091b74a 2289 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2290 goto load_freelist;
2cfb7455 2291
497b66f2 2292 /* Only entered in the debug case */
5091b74a 2293 if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2294 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2295
f6e7def7 2296 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2297 c->page = NULL;
2298 c->freelist = NULL;
a71ae47a 2299 local_irq_restore(flags);
6faa6833 2300 return freelist;
894b8788
CL
2301}
2302
2303/*
2304 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2305 * have the fastpath folded into their functions. So no function call
2306 * overhead for requests that can be satisfied on the fastpath.
2307 *
2308 * The fastpath works by first checking if the lockless freelist can be used.
2309 * If not then __slab_alloc is called for slow processing.
2310 *
2311 * Otherwise we can simply pick the next object from the lockless free list.
2312 */
06428780 2313static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2314 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2315{
894b8788 2316 void **object;
dfb4f096 2317 struct kmem_cache_cpu *c;
57d437d2 2318 struct page *page;
8a5ec0ba 2319 unsigned long tid;
1f84260c 2320
c016b0bd 2321 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2322 return NULL;
1f84260c 2323
8a5ec0ba 2324redo:
8a5ec0ba
CL
2325
2326 /*
2327 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2328 * enabled. We may switch back and forth between cpus while
2329 * reading from one cpu area. That does not matter as long
2330 * as we end up on the original cpu again when doing the cmpxchg.
2331 */
9dfc6e68 2332 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2333
8a5ec0ba
CL
2334 /*
2335 * The transaction ids are globally unique per cpu and per operation on
2336 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2337 * occurs on the right processor and that there was no operation on the
2338 * linked list in between.
2339 */
2340 tid = c->tid;
2341 barrier();
8a5ec0ba 2342
9dfc6e68 2343 object = c->freelist;
57d437d2 2344 page = c->page;
5091b74a 2345 if (unlikely(!object || !node_match(page, node)))
dfb4f096 2346 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2347
2348 else {
0ad9500e
ED
2349 void *next_object = get_freepointer_safe(s, object);
2350
8a5ec0ba 2351 /*
25985edc 2352 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2353 * operation and if we are on the right processor.
2354 *
2355 * The cmpxchg does the following atomically (without lock semantics!)
2356 * 1. Relocate first pointer to the current per cpu area.
2357 * 2. Verify that tid and freelist have not been changed
2358 * 3. If they were not changed replace tid and freelist
2359 *
2360 * Since this is without lock semantics the protection is only against
2361 * code executing on this cpu *not* from access by other cpus.
2362 */
933393f5 2363 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2364 s->cpu_slab->freelist, s->cpu_slab->tid,
2365 object, tid,
0ad9500e 2366 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2367
2368 note_cmpxchg_failure("slab_alloc", s, tid);
2369 goto redo;
2370 }
0ad9500e 2371 prefetch_freepointer(s, next_object);
84e554e6 2372 stat(s, ALLOC_FASTPATH);
894b8788 2373 }
8a5ec0ba 2374
74e2134f 2375 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2376 memset(object, 0, s->object_size);
d07dbea4 2377
c016b0bd 2378 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2379
894b8788 2380 return object;
81819f0f
CL
2381}
2382
2383void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2384{
2154a336 2385 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2386
3b0efdfa 2387 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2388
2389 return ret;
81819f0f
CL
2390}
2391EXPORT_SYMBOL(kmem_cache_alloc);
2392
0f24f128 2393#ifdef CONFIG_TRACING
4a92379b
RK
2394void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2395{
2396 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2397 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2398 return ret;
2399}
2400EXPORT_SYMBOL(kmem_cache_alloc_trace);
2401
2402void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2403{
4a92379b
RK
2404 void *ret = kmalloc_order(size, flags, order);
2405 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2406 return ret;
5b882be4 2407}
4a92379b 2408EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2409#endif
2410
81819f0f
CL
2411#ifdef CONFIG_NUMA
2412void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2413{
5b882be4
EGM
2414 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2415
ca2b84cb 2416 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2417 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2418
2419 return ret;
81819f0f
CL
2420}
2421EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2422
0f24f128 2423#ifdef CONFIG_TRACING
4a92379b 2424void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2425 gfp_t gfpflags,
4a92379b 2426 int node, size_t size)
5b882be4 2427{
4a92379b
RK
2428 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2429
2430 trace_kmalloc_node(_RET_IP_, ret,
2431 size, s->size, gfpflags, node);
2432 return ret;
5b882be4 2433}
4a92379b 2434EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2435#endif
5d1f57e4 2436#endif
5b882be4 2437
81819f0f 2438/*
894b8788
CL
2439 * Slow patch handling. This may still be called frequently since objects
2440 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2441 *
894b8788
CL
2442 * So we still attempt to reduce cache line usage. Just take the slab
2443 * lock and free the item. If there is no additional partial page
2444 * handling required then we can return immediately.
81819f0f 2445 */
894b8788 2446static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2447 void *x, unsigned long addr)
81819f0f
CL
2448{
2449 void *prior;
2450 void **object = (void *)x;
2cfb7455
CL
2451 int was_frozen;
2452 int inuse;
2453 struct page new;
2454 unsigned long counters;
2455 struct kmem_cache_node *n = NULL;
61728d1e 2456 unsigned long uninitialized_var(flags);
81819f0f 2457
8a5ec0ba 2458 stat(s, FREE_SLOWPATH);
81819f0f 2459
19c7ff9e
CL
2460 if (kmem_cache_debug(s) &&
2461 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2462 return;
6446faa2 2463
2cfb7455
CL
2464 do {
2465 prior = page->freelist;
2466 counters = page->counters;
2467 set_freepointer(s, object, prior);
2468 new.counters = counters;
2469 was_frozen = new.frozen;
2470 new.inuse--;
2471 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2472
2473 if (!kmem_cache_debug(s) && !prior)
2474
2475 /*
2476 * Slab was on no list before and will be partially empty
2477 * We can defer the list move and instead freeze it.
2478 */
2479 new.frozen = 1;
2480
2481 else { /* Needs to be taken off a list */
2482
2483 n = get_node(s, page_to_nid(page));
2484 /*
2485 * Speculatively acquire the list_lock.
2486 * If the cmpxchg does not succeed then we may
2487 * drop the list_lock without any processing.
2488 *
2489 * Otherwise the list_lock will synchronize with
2490 * other processors updating the list of slabs.
2491 */
2492 spin_lock_irqsave(&n->list_lock, flags);
2493
2494 }
2cfb7455
CL
2495 }
2496 inuse = new.inuse;
81819f0f 2497
2cfb7455
CL
2498 } while (!cmpxchg_double_slab(s, page,
2499 prior, counters,
2500 object, new.counters,
2501 "__slab_free"));
81819f0f 2502
2cfb7455 2503 if (likely(!n)) {
49e22585
CL
2504
2505 /*
2506 * If we just froze the page then put it onto the
2507 * per cpu partial list.
2508 */
8028dcea 2509 if (new.frozen && !was_frozen) {
49e22585 2510 put_cpu_partial(s, page, 1);
8028dcea
AS
2511 stat(s, CPU_PARTIAL_FREE);
2512 }
49e22585 2513 /*
2cfb7455
CL
2514 * The list lock was not taken therefore no list
2515 * activity can be necessary.
2516 */
2517 if (was_frozen)
2518 stat(s, FREE_FROZEN);
80f08c19 2519 return;
2cfb7455 2520 }
81819f0f
CL
2521
2522 /*
2cfb7455
CL
2523 * was_frozen may have been set after we acquired the list_lock in
2524 * an earlier loop. So we need to check it here again.
81819f0f 2525 */
2cfb7455
CL
2526 if (was_frozen)
2527 stat(s, FREE_FROZEN);
2528 else {
2529 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2530 goto slab_empty;
81819f0f 2531
2cfb7455
CL
2532 /*
2533 * Objects left in the slab. If it was not on the partial list before
2534 * then add it.
2535 */
2536 if (unlikely(!prior)) {
2537 remove_full(s, page);
136333d1 2538 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2539 stat(s, FREE_ADD_PARTIAL);
2540 }
8ff12cfc 2541 }
80f08c19 2542 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2543 return;
2544
2545slab_empty:
a973e9dd 2546 if (prior) {
81819f0f 2547 /*
6fbabb20 2548 * Slab on the partial list.
81819f0f 2549 */
5cc6eee8 2550 remove_partial(n, page);
84e554e6 2551 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2552 } else
2553 /* Slab must be on the full list */
2554 remove_full(s, page);
2cfb7455 2555
80f08c19 2556 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2557 stat(s, FREE_SLAB);
81819f0f 2558 discard_slab(s, page);
81819f0f
CL
2559}
2560
894b8788
CL
2561/*
2562 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2563 * can perform fastpath freeing without additional function calls.
2564 *
2565 * The fastpath is only possible if we are freeing to the current cpu slab
2566 * of this processor. This typically the case if we have just allocated
2567 * the item before.
2568 *
2569 * If fastpath is not possible then fall back to __slab_free where we deal
2570 * with all sorts of special processing.
2571 */
06428780 2572static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2573 struct page *page, void *x, unsigned long addr)
894b8788
CL
2574{
2575 void **object = (void *)x;
dfb4f096 2576 struct kmem_cache_cpu *c;
8a5ec0ba 2577 unsigned long tid;
1f84260c 2578
c016b0bd
CL
2579 slab_free_hook(s, x);
2580
8a5ec0ba
CL
2581redo:
2582 /*
2583 * Determine the currently cpus per cpu slab.
2584 * The cpu may change afterward. However that does not matter since
2585 * data is retrieved via this pointer. If we are on the same cpu
2586 * during the cmpxchg then the free will succedd.
2587 */
9dfc6e68 2588 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2589
8a5ec0ba
CL
2590 tid = c->tid;
2591 barrier();
c016b0bd 2592
442b06bc 2593 if (likely(page == c->page)) {
ff12059e 2594 set_freepointer(s, object, c->freelist);
8a5ec0ba 2595
933393f5 2596 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2597 s->cpu_slab->freelist, s->cpu_slab->tid,
2598 c->freelist, tid,
2599 object, next_tid(tid)))) {
2600
2601 note_cmpxchg_failure("slab_free", s, tid);
2602 goto redo;
2603 }
84e554e6 2604 stat(s, FREE_FASTPATH);
894b8788 2605 } else
ff12059e 2606 __slab_free(s, page, x, addr);
894b8788 2607
894b8788
CL
2608}
2609
81819f0f
CL
2610void kmem_cache_free(struct kmem_cache *s, void *x)
2611{
77c5e2d0 2612 struct page *page;
81819f0f 2613
b49af68f 2614 page = virt_to_head_page(x);
81819f0f 2615
ce71e27c 2616 slab_free(s, page, x, _RET_IP_);
5b882be4 2617
ca2b84cb 2618 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2619}
2620EXPORT_SYMBOL(kmem_cache_free);
2621
81819f0f 2622/*
672bba3a
CL
2623 * Object placement in a slab is made very easy because we always start at
2624 * offset 0. If we tune the size of the object to the alignment then we can
2625 * get the required alignment by putting one properly sized object after
2626 * another.
81819f0f
CL
2627 *
2628 * Notice that the allocation order determines the sizes of the per cpu
2629 * caches. Each processor has always one slab available for allocations.
2630 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2631 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2632 * locking overhead.
81819f0f
CL
2633 */
2634
2635/*
2636 * Mininum / Maximum order of slab pages. This influences locking overhead
2637 * and slab fragmentation. A higher order reduces the number of partial slabs
2638 * and increases the number of allocations possible without having to
2639 * take the list_lock.
2640 */
2641static int slub_min_order;
114e9e89 2642static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2643static int slub_min_objects;
81819f0f
CL
2644
2645/*
2646 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2647 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2648 */
2649static int slub_nomerge;
2650
81819f0f
CL
2651/*
2652 * Calculate the order of allocation given an slab object size.
2653 *
672bba3a
CL
2654 * The order of allocation has significant impact on performance and other
2655 * system components. Generally order 0 allocations should be preferred since
2656 * order 0 does not cause fragmentation in the page allocator. Larger objects
2657 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2658 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2659 * would be wasted.
2660 *
2661 * In order to reach satisfactory performance we must ensure that a minimum
2662 * number of objects is in one slab. Otherwise we may generate too much
2663 * activity on the partial lists which requires taking the list_lock. This is
2664 * less a concern for large slabs though which are rarely used.
81819f0f 2665 *
672bba3a
CL
2666 * slub_max_order specifies the order where we begin to stop considering the
2667 * number of objects in a slab as critical. If we reach slub_max_order then
2668 * we try to keep the page order as low as possible. So we accept more waste
2669 * of space in favor of a small page order.
81819f0f 2670 *
672bba3a
CL
2671 * Higher order allocations also allow the placement of more objects in a
2672 * slab and thereby reduce object handling overhead. If the user has
2673 * requested a higher mininum order then we start with that one instead of
2674 * the smallest order which will fit the object.
81819f0f 2675 */
5e6d444e 2676static inline int slab_order(int size, int min_objects,
ab9a0f19 2677 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2678{
2679 int order;
2680 int rem;
6300ea75 2681 int min_order = slub_min_order;
81819f0f 2682
ab9a0f19 2683 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2684 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2685
6300ea75 2686 for (order = max(min_order,
5e6d444e
CL
2687 fls(min_objects * size - 1) - PAGE_SHIFT);
2688 order <= max_order; order++) {
81819f0f 2689
5e6d444e 2690 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2691
ab9a0f19 2692 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2693 continue;
2694
ab9a0f19 2695 rem = (slab_size - reserved) % size;
81819f0f 2696
5e6d444e 2697 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2698 break;
2699
2700 }
672bba3a 2701
81819f0f
CL
2702 return order;
2703}
2704
ab9a0f19 2705static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2706{
2707 int order;
2708 int min_objects;
2709 int fraction;
e8120ff1 2710 int max_objects;
5e6d444e
CL
2711
2712 /*
2713 * Attempt to find best configuration for a slab. This
2714 * works by first attempting to generate a layout with
2715 * the best configuration and backing off gradually.
2716 *
2717 * First we reduce the acceptable waste in a slab. Then
2718 * we reduce the minimum objects required in a slab.
2719 */
2720 min_objects = slub_min_objects;
9b2cd506
CL
2721 if (!min_objects)
2722 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2723 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2724 min_objects = min(min_objects, max_objects);
2725
5e6d444e 2726 while (min_objects > 1) {
c124f5b5 2727 fraction = 16;
5e6d444e
CL
2728 while (fraction >= 4) {
2729 order = slab_order(size, min_objects,
ab9a0f19 2730 slub_max_order, fraction, reserved);
5e6d444e
CL
2731 if (order <= slub_max_order)
2732 return order;
2733 fraction /= 2;
2734 }
5086c389 2735 min_objects--;
5e6d444e
CL
2736 }
2737
2738 /*
2739 * We were unable to place multiple objects in a slab. Now
2740 * lets see if we can place a single object there.
2741 */
ab9a0f19 2742 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2743 if (order <= slub_max_order)
2744 return order;
2745
2746 /*
2747 * Doh this slab cannot be placed using slub_max_order.
2748 */
ab9a0f19 2749 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2750 if (order < MAX_ORDER)
5e6d444e
CL
2751 return order;
2752 return -ENOSYS;
2753}
2754
81819f0f 2755/*
672bba3a 2756 * Figure out what the alignment of the objects will be.
81819f0f
CL
2757 */
2758static unsigned long calculate_alignment(unsigned long flags,
2759 unsigned long align, unsigned long size)
2760{
2761 /*
6446faa2
CL
2762 * If the user wants hardware cache aligned objects then follow that
2763 * suggestion if the object is sufficiently large.
81819f0f 2764 *
6446faa2
CL
2765 * The hardware cache alignment cannot override the specified
2766 * alignment though. If that is greater then use it.
81819f0f 2767 */
b6210386
NP
2768 if (flags & SLAB_HWCACHE_ALIGN) {
2769 unsigned long ralign = cache_line_size();
2770 while (size <= ralign / 2)
2771 ralign /= 2;
2772 align = max(align, ralign);
2773 }
81819f0f
CL
2774
2775 if (align < ARCH_SLAB_MINALIGN)
b6210386 2776 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2777
2778 return ALIGN(align, sizeof(void *));
2779}
2780
5595cffc 2781static void
4053497d 2782init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2783{
2784 n->nr_partial = 0;
81819f0f
CL
2785 spin_lock_init(&n->list_lock);
2786 INIT_LIST_HEAD(&n->partial);
8ab1372f 2787#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2788 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2789 atomic_long_set(&n->total_objects, 0);
643b1138 2790 INIT_LIST_HEAD(&n->full);
8ab1372f 2791#endif
81819f0f
CL
2792}
2793
55136592 2794static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2795{
6c182dc0
CL
2796 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2797 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2798
8a5ec0ba 2799 /*
d4d84fef
CM
2800 * Must align to double word boundary for the double cmpxchg
2801 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2802 */
d4d84fef
CM
2803 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2804 2 * sizeof(void *));
8a5ec0ba
CL
2805
2806 if (!s->cpu_slab)
2807 return 0;
2808
2809 init_kmem_cache_cpus(s);
4c93c355 2810
8a5ec0ba 2811 return 1;
4c93c355 2812}
4c93c355 2813
51df1142
CL
2814static struct kmem_cache *kmem_cache_node;
2815
81819f0f
CL
2816/*
2817 * No kmalloc_node yet so do it by hand. We know that this is the first
2818 * slab on the node for this slabcache. There are no concurrent accesses
2819 * possible.
2820 *
2821 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2822 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2823 * memory on a fresh node that has no slab structures yet.
81819f0f 2824 */
55136592 2825static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2826{
2827 struct page *page;
2828 struct kmem_cache_node *n;
2829
51df1142 2830 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2831
51df1142 2832 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2833
2834 BUG_ON(!page);
a2f92ee7
CL
2835 if (page_to_nid(page) != node) {
2836 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2837 "node %d\n", node);
2838 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2839 "in order to be able to continue\n");
2840 }
2841
81819f0f
CL
2842 n = page->freelist;
2843 BUG_ON(!n);
51df1142 2844 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2845 page->inuse = 1;
8cb0a506 2846 page->frozen = 0;
51df1142 2847 kmem_cache_node->node[node] = n;
8ab1372f 2848#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2849 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2850 init_tracking(kmem_cache_node, n);
8ab1372f 2851#endif
4053497d 2852 init_kmem_cache_node(n);
51df1142 2853 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2854
136333d1 2855 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2856}
2857
2858static void free_kmem_cache_nodes(struct kmem_cache *s)
2859{
2860 int node;
2861
f64dc58c 2862 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2863 struct kmem_cache_node *n = s->node[node];
51df1142 2864
73367bd8 2865 if (n)
51df1142
CL
2866 kmem_cache_free(kmem_cache_node, n);
2867
81819f0f
CL
2868 s->node[node] = NULL;
2869 }
2870}
2871
55136592 2872static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2873{
2874 int node;
81819f0f 2875
f64dc58c 2876 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2877 struct kmem_cache_node *n;
2878
73367bd8 2879 if (slab_state == DOWN) {
55136592 2880 early_kmem_cache_node_alloc(node);
73367bd8
AD
2881 continue;
2882 }
51df1142 2883 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2884 GFP_KERNEL, node);
81819f0f 2885
73367bd8
AD
2886 if (!n) {
2887 free_kmem_cache_nodes(s);
2888 return 0;
81819f0f 2889 }
73367bd8 2890
81819f0f 2891 s->node[node] = n;
4053497d 2892 init_kmem_cache_node(n);
81819f0f
CL
2893 }
2894 return 1;
2895}
81819f0f 2896
c0bdb232 2897static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2898{
2899 if (min < MIN_PARTIAL)
2900 min = MIN_PARTIAL;
2901 else if (min > MAX_PARTIAL)
2902 min = MAX_PARTIAL;
2903 s->min_partial = min;
2904}
2905
81819f0f
CL
2906/*
2907 * calculate_sizes() determines the order and the distribution of data within
2908 * a slab object.
2909 */
06b285dc 2910static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2911{
2912 unsigned long flags = s->flags;
3b0efdfa 2913 unsigned long size = s->object_size;
81819f0f 2914 unsigned long align = s->align;
834f3d11 2915 int order;
81819f0f 2916
d8b42bf5
CL
2917 /*
2918 * Round up object size to the next word boundary. We can only
2919 * place the free pointer at word boundaries and this determines
2920 * the possible location of the free pointer.
2921 */
2922 size = ALIGN(size, sizeof(void *));
2923
2924#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2925 /*
2926 * Determine if we can poison the object itself. If the user of
2927 * the slab may touch the object after free or before allocation
2928 * then we should never poison the object itself.
2929 */
2930 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2931 !s->ctor)
81819f0f
CL
2932 s->flags |= __OBJECT_POISON;
2933 else
2934 s->flags &= ~__OBJECT_POISON;
2935
81819f0f
CL
2936
2937 /*
672bba3a 2938 * If we are Redzoning then check if there is some space between the
81819f0f 2939 * end of the object and the free pointer. If not then add an
672bba3a 2940 * additional word to have some bytes to store Redzone information.
81819f0f 2941 */
3b0efdfa 2942 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2943 size += sizeof(void *);
41ecc55b 2944#endif
81819f0f
CL
2945
2946 /*
672bba3a
CL
2947 * With that we have determined the number of bytes in actual use
2948 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2949 */
2950 s->inuse = size;
2951
2952 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2953 s->ctor)) {
81819f0f
CL
2954 /*
2955 * Relocate free pointer after the object if it is not
2956 * permitted to overwrite the first word of the object on
2957 * kmem_cache_free.
2958 *
2959 * This is the case if we do RCU, have a constructor or
2960 * destructor or are poisoning the objects.
2961 */
2962 s->offset = size;
2963 size += sizeof(void *);
2964 }
2965
c12b3c62 2966#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2967 if (flags & SLAB_STORE_USER)
2968 /*
2969 * Need to store information about allocs and frees after
2970 * the object.
2971 */
2972 size += 2 * sizeof(struct track);
2973
be7b3fbc 2974 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2975 /*
2976 * Add some empty padding so that we can catch
2977 * overwrites from earlier objects rather than let
2978 * tracking information or the free pointer be
0211a9c8 2979 * corrupted if a user writes before the start
81819f0f
CL
2980 * of the object.
2981 */
2982 size += sizeof(void *);
41ecc55b 2983#endif
672bba3a 2984
81819f0f
CL
2985 /*
2986 * Determine the alignment based on various parameters that the
65c02d4c
CL
2987 * user specified and the dynamic determination of cache line size
2988 * on bootup.
81819f0f 2989 */
3b0efdfa 2990 align = calculate_alignment(flags, align, s->object_size);
dcb0ce1b 2991 s->align = align;
81819f0f
CL
2992
2993 /*
2994 * SLUB stores one object immediately after another beginning from
2995 * offset 0. In order to align the objects we have to simply size
2996 * each object to conform to the alignment.
2997 */
2998 size = ALIGN(size, align);
2999 s->size = size;
06b285dc
CL
3000 if (forced_order >= 0)
3001 order = forced_order;
3002 else
ab9a0f19 3003 order = calculate_order(size, s->reserved);
81819f0f 3004
834f3d11 3005 if (order < 0)
81819f0f
CL
3006 return 0;
3007
b7a49f0d 3008 s->allocflags = 0;
834f3d11 3009 if (order)
b7a49f0d
CL
3010 s->allocflags |= __GFP_COMP;
3011
3012 if (s->flags & SLAB_CACHE_DMA)
3013 s->allocflags |= SLUB_DMA;
3014
3015 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3016 s->allocflags |= __GFP_RECLAIMABLE;
3017
81819f0f
CL
3018 /*
3019 * Determine the number of objects per slab
3020 */
ab9a0f19
LJ
3021 s->oo = oo_make(order, size, s->reserved);
3022 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3023 if (oo_objects(s->oo) > oo_objects(s->max))
3024 s->max = s->oo;
81819f0f 3025
834f3d11 3026 return !!oo_objects(s->oo);
81819f0f
CL
3027
3028}
3029
55136592 3030static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
3031 const char *name, size_t size,
3032 size_t align, unsigned long flags,
51cc5068 3033 void (*ctor)(void *))
81819f0f
CL
3034{
3035 memset(s, 0, kmem_size);
3036 s->name = name;
3037 s->ctor = ctor;
3b0efdfa 3038 s->object_size = size;
81819f0f 3039 s->align = align;
ba0268a8 3040 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3041 s->reserved = 0;
81819f0f 3042
da9a638c
LJ
3043 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3044 s->reserved = sizeof(struct rcu_head);
81819f0f 3045
06b285dc 3046 if (!calculate_sizes(s, -1))
81819f0f 3047 goto error;
3de47213
DR
3048 if (disable_higher_order_debug) {
3049 /*
3050 * Disable debugging flags that store metadata if the min slab
3051 * order increased.
3052 */
3b0efdfa 3053 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3054 s->flags &= ~DEBUG_METADATA_FLAGS;
3055 s->offset = 0;
3056 if (!calculate_sizes(s, -1))
3057 goto error;
3058 }
3059 }
81819f0f 3060
2565409f
HC
3061#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3062 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3063 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3064 /* Enable fast mode */
3065 s->flags |= __CMPXCHG_DOUBLE;
3066#endif
3067
3b89d7d8
DR
3068 /*
3069 * The larger the object size is, the more pages we want on the partial
3070 * list to avoid pounding the page allocator excessively.
3071 */
49e22585
CL
3072 set_min_partial(s, ilog2(s->size) / 2);
3073
3074 /*
3075 * cpu_partial determined the maximum number of objects kept in the
3076 * per cpu partial lists of a processor.
3077 *
3078 * Per cpu partial lists mainly contain slabs that just have one
3079 * object freed. If they are used for allocation then they can be
3080 * filled up again with minimal effort. The slab will never hit the
3081 * per node partial lists and therefore no locking will be required.
3082 *
3083 * This setting also determines
3084 *
3085 * A) The number of objects from per cpu partial slabs dumped to the
3086 * per node list when we reach the limit.
9f264904 3087 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3088 * per node list when we run out of per cpu objects. We only fetch 50%
3089 * to keep some capacity around for frees.
3090 */
8f1e33da
CL
3091 if (kmem_cache_debug(s))
3092 s->cpu_partial = 0;
3093 else if (s->size >= PAGE_SIZE)
49e22585
CL
3094 s->cpu_partial = 2;
3095 else if (s->size >= 1024)
3096 s->cpu_partial = 6;
3097 else if (s->size >= 256)
3098 s->cpu_partial = 13;
3099 else
3100 s->cpu_partial = 30;
3101
81819f0f
CL
3102 s->refcount = 1;
3103#ifdef CONFIG_NUMA
e2cb96b7 3104 s->remote_node_defrag_ratio = 1000;
81819f0f 3105#endif
55136592 3106 if (!init_kmem_cache_nodes(s))
dfb4f096 3107 goto error;
81819f0f 3108
55136592 3109 if (alloc_kmem_cache_cpus(s))
81819f0f 3110 return 1;
ff12059e 3111
4c93c355 3112 free_kmem_cache_nodes(s);
81819f0f
CL
3113error:
3114 if (flags & SLAB_PANIC)
3115 panic("Cannot create slab %s size=%lu realsize=%u "
3116 "order=%u offset=%u flags=%lx\n",
834f3d11 3117 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3118 s->offset, flags);
3119 return 0;
3120}
81819f0f 3121
81819f0f
CL
3122/*
3123 * Determine the size of a slab object
3124 */
3125unsigned int kmem_cache_size(struct kmem_cache *s)
3126{
3b0efdfa 3127 return s->object_size;
81819f0f
CL
3128}
3129EXPORT_SYMBOL(kmem_cache_size);
3130
33b12c38
CL
3131static void list_slab_objects(struct kmem_cache *s, struct page *page,
3132 const char *text)
3133{
3134#ifdef CONFIG_SLUB_DEBUG
3135 void *addr = page_address(page);
3136 void *p;
a5dd5c11
NK
3137 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3138 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3139 if (!map)
3140 return;
33b12c38
CL
3141 slab_err(s, page, "%s", text);
3142 slab_lock(page);
33b12c38 3143
5f80b13a 3144 get_map(s, page, map);
33b12c38
CL
3145 for_each_object(p, s, addr, page->objects) {
3146
3147 if (!test_bit(slab_index(p, s, addr), map)) {
3148 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3149 p, p - addr);
3150 print_tracking(s, p);
3151 }
3152 }
3153 slab_unlock(page);
bbd7d57b 3154 kfree(map);
33b12c38
CL
3155#endif
3156}
3157
81819f0f 3158/*
599870b1 3159 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3160 * This is called from kmem_cache_close(). We must be the last thread
3161 * using the cache and therefore we do not need to lock anymore.
81819f0f 3162 */
599870b1 3163static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3164{
81819f0f
CL
3165 struct page *page, *h;
3166
33b12c38 3167 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3168 if (!page->inuse) {
5cc6eee8 3169 remove_partial(n, page);
81819f0f 3170 discard_slab(s, page);
33b12c38
CL
3171 } else {
3172 list_slab_objects(s, page,
3173 "Objects remaining on kmem_cache_close()");
599870b1 3174 }
33b12c38 3175 }
81819f0f
CL
3176}
3177
3178/*
672bba3a 3179 * Release all resources used by a slab cache.
81819f0f 3180 */
0c710013 3181static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3182{
3183 int node;
3184
3185 flush_all(s);
9dfc6e68 3186 free_percpu(s->cpu_slab);
81819f0f 3187 /* Attempt to free all objects */
f64dc58c 3188 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3189 struct kmem_cache_node *n = get_node(s, node);
3190
599870b1
CL
3191 free_partial(s, n);
3192 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3193 return 1;
3194 }
3195 free_kmem_cache_nodes(s);
3196 return 0;
3197}
3198
3199/*
3200 * Close a cache and release the kmem_cache structure
3201 * (must be used for caches created using kmem_cache_create)
3202 */
3203void kmem_cache_destroy(struct kmem_cache *s)
3204{
18004c5d 3205 mutex_lock(&slab_mutex);
81819f0f
CL
3206 s->refcount--;
3207 if (!s->refcount) {
3208 list_del(&s->list);
18004c5d 3209 mutex_unlock(&slab_mutex);
d629d819
PE
3210 if (kmem_cache_close(s)) {
3211 printk(KERN_ERR "SLUB %s: %s called for cache that "
3212 "still has objects.\n", s->name, __func__);
3213 dump_stack();
3214 }
d76b1590
ED
3215 if (s->flags & SLAB_DESTROY_BY_RCU)
3216 rcu_barrier();
81819f0f 3217 sysfs_slab_remove(s);
69cb8e6b 3218 } else
18004c5d 3219 mutex_unlock(&slab_mutex);
81819f0f
CL
3220}
3221EXPORT_SYMBOL(kmem_cache_destroy);
3222
3223/********************************************************************
3224 * Kmalloc subsystem
3225 *******************************************************************/
3226
51df1142 3227struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3228EXPORT_SYMBOL(kmalloc_caches);
3229
51df1142
CL
3230static struct kmem_cache *kmem_cache;
3231
55136592 3232#ifdef CONFIG_ZONE_DMA
51df1142 3233static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3234#endif
3235
81819f0f
CL
3236static int __init setup_slub_min_order(char *str)
3237{
06428780 3238 get_option(&str, &slub_min_order);
81819f0f
CL
3239
3240 return 1;
3241}
3242
3243__setup("slub_min_order=", setup_slub_min_order);
3244
3245static int __init setup_slub_max_order(char *str)
3246{
06428780 3247 get_option(&str, &slub_max_order);
818cf590 3248 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3249
3250 return 1;
3251}
3252
3253__setup("slub_max_order=", setup_slub_max_order);
3254
3255static int __init setup_slub_min_objects(char *str)
3256{
06428780 3257 get_option(&str, &slub_min_objects);
81819f0f
CL
3258
3259 return 1;
3260}
3261
3262__setup("slub_min_objects=", setup_slub_min_objects);
3263
3264static int __init setup_slub_nomerge(char *str)
3265{
3266 slub_nomerge = 1;
3267 return 1;
3268}
3269
3270__setup("slub_nomerge", setup_slub_nomerge);
3271
51df1142
CL
3272static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3273 int size, unsigned int flags)
81819f0f 3274{
51df1142
CL
3275 struct kmem_cache *s;
3276
3277 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3278
83b519e8
PE
3279 /*
3280 * This function is called with IRQs disabled during early-boot on
18004c5d 3281 * single CPU so there's no need to take slab_mutex here.
83b519e8 3282 */
55136592 3283 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3284 flags, NULL))
81819f0f
CL
3285 goto panic;
3286
3287 list_add(&s->list, &slab_caches);
51df1142 3288 return s;
81819f0f
CL
3289
3290panic:
3291 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3292 return NULL;
81819f0f
CL
3293}
3294
f1b26339
CL
3295/*
3296 * Conversion table for small slabs sizes / 8 to the index in the
3297 * kmalloc array. This is necessary for slabs < 192 since we have non power
3298 * of two cache sizes there. The size of larger slabs can be determined using
3299 * fls.
3300 */
3301static s8 size_index[24] = {
3302 3, /* 8 */
3303 4, /* 16 */
3304 5, /* 24 */
3305 5, /* 32 */
3306 6, /* 40 */
3307 6, /* 48 */
3308 6, /* 56 */
3309 6, /* 64 */
3310 1, /* 72 */
3311 1, /* 80 */
3312 1, /* 88 */
3313 1, /* 96 */
3314 7, /* 104 */
3315 7, /* 112 */
3316 7, /* 120 */
3317 7, /* 128 */
3318 2, /* 136 */
3319 2, /* 144 */
3320 2, /* 152 */
3321 2, /* 160 */
3322 2, /* 168 */
3323 2, /* 176 */
3324 2, /* 184 */
3325 2 /* 192 */
3326};
3327
acdfcd04
AK
3328static inline int size_index_elem(size_t bytes)
3329{
3330 return (bytes - 1) / 8;
3331}
3332
81819f0f
CL
3333static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3334{
f1b26339 3335 int index;
81819f0f 3336
f1b26339
CL
3337 if (size <= 192) {
3338 if (!size)
3339 return ZERO_SIZE_PTR;
81819f0f 3340
acdfcd04 3341 index = size_index[size_index_elem(size)];
aadb4bc4 3342 } else
f1b26339 3343 index = fls(size - 1);
81819f0f
CL
3344
3345#ifdef CONFIG_ZONE_DMA
f1b26339 3346 if (unlikely((flags & SLUB_DMA)))
51df1142 3347 return kmalloc_dma_caches[index];
f1b26339 3348
81819f0f 3349#endif
51df1142 3350 return kmalloc_caches[index];
81819f0f
CL
3351}
3352
3353void *__kmalloc(size_t size, gfp_t flags)
3354{
aadb4bc4 3355 struct kmem_cache *s;
5b882be4 3356 void *ret;
81819f0f 3357
ffadd4d0 3358 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3359 return kmalloc_large(size, flags);
aadb4bc4
CL
3360
3361 s = get_slab(size, flags);
3362
3363 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3364 return s;
3365
2154a336 3366 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3367
ca2b84cb 3368 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3369
3370 return ret;
81819f0f
CL
3371}
3372EXPORT_SYMBOL(__kmalloc);
3373
5d1f57e4 3374#ifdef CONFIG_NUMA
f619cfe1
CL
3375static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3376{
b1eeab67 3377 struct page *page;
e4f7c0b4 3378 void *ptr = NULL;
f619cfe1 3379
b1eeab67
VN
3380 flags |= __GFP_COMP | __GFP_NOTRACK;
3381 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3382 if (page)
e4f7c0b4
CM
3383 ptr = page_address(page);
3384
3385 kmemleak_alloc(ptr, size, 1, flags);
3386 return ptr;
f619cfe1
CL
3387}
3388
81819f0f
CL
3389void *__kmalloc_node(size_t size, gfp_t flags, int node)
3390{
aadb4bc4 3391 struct kmem_cache *s;
5b882be4 3392 void *ret;
81819f0f 3393
057685cf 3394 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3395 ret = kmalloc_large_node(size, flags, node);
3396
ca2b84cb
EGM
3397 trace_kmalloc_node(_RET_IP_, ret,
3398 size, PAGE_SIZE << get_order(size),
3399 flags, node);
5b882be4
EGM
3400
3401 return ret;
3402 }
aadb4bc4
CL
3403
3404 s = get_slab(size, flags);
3405
3406 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3407 return s;
3408
5b882be4
EGM
3409 ret = slab_alloc(s, flags, node, _RET_IP_);
3410
ca2b84cb 3411 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3412
3413 return ret;
81819f0f
CL
3414}
3415EXPORT_SYMBOL(__kmalloc_node);
3416#endif
3417
3418size_t ksize(const void *object)
3419{
272c1d21 3420 struct page *page;
81819f0f 3421
ef8b4520 3422 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3423 return 0;
3424
294a80a8 3425 page = virt_to_head_page(object);
294a80a8 3426
76994412
PE
3427 if (unlikely(!PageSlab(page))) {
3428 WARN_ON(!PageCompound(page));
294a80a8 3429 return PAGE_SIZE << compound_order(page);
76994412 3430 }
81819f0f 3431
b3d41885 3432 return slab_ksize(page->slab);
81819f0f 3433}
b1aabecd 3434EXPORT_SYMBOL(ksize);
81819f0f 3435
d18a90dd
BG
3436#ifdef CONFIG_SLUB_DEBUG
3437bool verify_mem_not_deleted(const void *x)
3438{
3439 struct page *page;
3440 void *object = (void *)x;
3441 unsigned long flags;
3442 bool rv;
3443
3444 if (unlikely(ZERO_OR_NULL_PTR(x)))
3445 return false;
3446
3447 local_irq_save(flags);
3448
3449 page = virt_to_head_page(x);
3450 if (unlikely(!PageSlab(page))) {
3451 /* maybe it was from stack? */
3452 rv = true;
3453 goto out_unlock;
3454 }
3455
3456 slab_lock(page);
3457 if (on_freelist(page->slab, page, object)) {
3458 object_err(page->slab, page, object, "Object is on free-list");
3459 rv = false;
3460 } else {
3461 rv = true;
3462 }
3463 slab_unlock(page);
3464
3465out_unlock:
3466 local_irq_restore(flags);
3467 return rv;
3468}
3469EXPORT_SYMBOL(verify_mem_not_deleted);
3470#endif
3471
81819f0f
CL
3472void kfree(const void *x)
3473{
81819f0f 3474 struct page *page;
5bb983b0 3475 void *object = (void *)x;
81819f0f 3476
2121db74
PE
3477 trace_kfree(_RET_IP_, x);
3478
2408c550 3479 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3480 return;
3481
b49af68f 3482 page = virt_to_head_page(x);
aadb4bc4 3483 if (unlikely(!PageSlab(page))) {
0937502a 3484 BUG_ON(!PageCompound(page));
e4f7c0b4 3485 kmemleak_free(x);
d9b7f226 3486 __free_pages(page, compound_order(page));
aadb4bc4
CL
3487 return;
3488 }
ce71e27c 3489 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3490}
3491EXPORT_SYMBOL(kfree);
3492
2086d26a 3493/*
672bba3a
CL
3494 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3495 * the remaining slabs by the number of items in use. The slabs with the
3496 * most items in use come first. New allocations will then fill those up
3497 * and thus they can be removed from the partial lists.
3498 *
3499 * The slabs with the least items are placed last. This results in them
3500 * being allocated from last increasing the chance that the last objects
3501 * are freed in them.
2086d26a
CL
3502 */
3503int kmem_cache_shrink(struct kmem_cache *s)
3504{
3505 int node;
3506 int i;
3507 struct kmem_cache_node *n;
3508 struct page *page;
3509 struct page *t;
205ab99d 3510 int objects = oo_objects(s->max);
2086d26a 3511 struct list_head *slabs_by_inuse =
834f3d11 3512 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3513 unsigned long flags;
3514
3515 if (!slabs_by_inuse)
3516 return -ENOMEM;
3517
3518 flush_all(s);
f64dc58c 3519 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3520 n = get_node(s, node);
3521
3522 if (!n->nr_partial)
3523 continue;
3524
834f3d11 3525 for (i = 0; i < objects; i++)
2086d26a
CL
3526 INIT_LIST_HEAD(slabs_by_inuse + i);
3527
3528 spin_lock_irqsave(&n->list_lock, flags);
3529
3530 /*
672bba3a 3531 * Build lists indexed by the items in use in each slab.
2086d26a 3532 *
672bba3a
CL
3533 * Note that concurrent frees may occur while we hold the
3534 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3535 */
3536 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3537 list_move(&page->lru, slabs_by_inuse + page->inuse);
3538 if (!page->inuse)
3539 n->nr_partial--;
2086d26a
CL
3540 }
3541
2086d26a 3542 /*
672bba3a
CL
3543 * Rebuild the partial list with the slabs filled up most
3544 * first and the least used slabs at the end.
2086d26a 3545 */
69cb8e6b 3546 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3547 list_splice(slabs_by_inuse + i, n->partial.prev);
3548
2086d26a 3549 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3550
3551 /* Release empty slabs */
3552 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3553 discard_slab(s, page);
2086d26a
CL
3554 }
3555
3556 kfree(slabs_by_inuse);
3557 return 0;
3558}
3559EXPORT_SYMBOL(kmem_cache_shrink);
3560
92a5bbc1 3561#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3562static int slab_mem_going_offline_callback(void *arg)
3563{
3564 struct kmem_cache *s;
3565
18004c5d 3566 mutex_lock(&slab_mutex);
b9049e23
YG
3567 list_for_each_entry(s, &slab_caches, list)
3568 kmem_cache_shrink(s);
18004c5d 3569 mutex_unlock(&slab_mutex);
b9049e23
YG
3570
3571 return 0;
3572}
3573
3574static void slab_mem_offline_callback(void *arg)
3575{
3576 struct kmem_cache_node *n;
3577 struct kmem_cache *s;
3578 struct memory_notify *marg = arg;
3579 int offline_node;
3580
3581 offline_node = marg->status_change_nid;
3582
3583 /*
3584 * If the node still has available memory. we need kmem_cache_node
3585 * for it yet.
3586 */
3587 if (offline_node < 0)
3588 return;
3589
18004c5d 3590 mutex_lock(&slab_mutex);
b9049e23
YG
3591 list_for_each_entry(s, &slab_caches, list) {
3592 n = get_node(s, offline_node);
3593 if (n) {
3594 /*
3595 * if n->nr_slabs > 0, slabs still exist on the node
3596 * that is going down. We were unable to free them,
c9404c9c 3597 * and offline_pages() function shouldn't call this
b9049e23
YG
3598 * callback. So, we must fail.
3599 */
0f389ec6 3600 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3601
3602 s->node[offline_node] = NULL;
8de66a0c 3603 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3604 }
3605 }
18004c5d 3606 mutex_unlock(&slab_mutex);
b9049e23
YG
3607}
3608
3609static int slab_mem_going_online_callback(void *arg)
3610{
3611 struct kmem_cache_node *n;
3612 struct kmem_cache *s;
3613 struct memory_notify *marg = arg;
3614 int nid = marg->status_change_nid;
3615 int ret = 0;
3616
3617 /*
3618 * If the node's memory is already available, then kmem_cache_node is
3619 * already created. Nothing to do.
3620 */
3621 if (nid < 0)
3622 return 0;
3623
3624 /*
0121c619 3625 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3626 * allocate a kmem_cache_node structure in order to bring the node
3627 * online.
3628 */
18004c5d 3629 mutex_lock(&slab_mutex);
b9049e23
YG
3630 list_for_each_entry(s, &slab_caches, list) {
3631 /*
3632 * XXX: kmem_cache_alloc_node will fallback to other nodes
3633 * since memory is not yet available from the node that
3634 * is brought up.
3635 */
8de66a0c 3636 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3637 if (!n) {
3638 ret = -ENOMEM;
3639 goto out;
3640 }
4053497d 3641 init_kmem_cache_node(n);
b9049e23
YG
3642 s->node[nid] = n;
3643 }
3644out:
18004c5d 3645 mutex_unlock(&slab_mutex);
b9049e23
YG
3646 return ret;
3647}
3648
3649static int slab_memory_callback(struct notifier_block *self,
3650 unsigned long action, void *arg)
3651{
3652 int ret = 0;
3653
3654 switch (action) {
3655 case MEM_GOING_ONLINE:
3656 ret = slab_mem_going_online_callback(arg);
3657 break;
3658 case MEM_GOING_OFFLINE:
3659 ret = slab_mem_going_offline_callback(arg);
3660 break;
3661 case MEM_OFFLINE:
3662 case MEM_CANCEL_ONLINE:
3663 slab_mem_offline_callback(arg);
3664 break;
3665 case MEM_ONLINE:
3666 case MEM_CANCEL_OFFLINE:
3667 break;
3668 }
dc19f9db
KH
3669 if (ret)
3670 ret = notifier_from_errno(ret);
3671 else
3672 ret = NOTIFY_OK;
b9049e23
YG
3673 return ret;
3674}
3675
3676#endif /* CONFIG_MEMORY_HOTPLUG */
3677
81819f0f
CL
3678/********************************************************************
3679 * Basic setup of slabs
3680 *******************************************************************/
3681
51df1142
CL
3682/*
3683 * Used for early kmem_cache structures that were allocated using
3684 * the page allocator
3685 */
3686
3687static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3688{
3689 int node;
3690
3691 list_add(&s->list, &slab_caches);
3692 s->refcount = -1;
3693
3694 for_each_node_state(node, N_NORMAL_MEMORY) {
3695 struct kmem_cache_node *n = get_node(s, node);
3696 struct page *p;
3697
3698 if (n) {
3699 list_for_each_entry(p, &n->partial, lru)
3700 p->slab = s;
3701
607bf324 3702#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3703 list_for_each_entry(p, &n->full, lru)
3704 p->slab = s;
3705#endif
3706 }
3707 }
3708}
3709
81819f0f
CL
3710void __init kmem_cache_init(void)
3711{
3712 int i;
4b356be0 3713 int caches = 0;
51df1142
CL
3714 struct kmem_cache *temp_kmem_cache;
3715 int order;
51df1142
CL
3716 struct kmem_cache *temp_kmem_cache_node;
3717 unsigned long kmalloc_size;
3718
fc8d8620
SG
3719 if (debug_guardpage_minorder())
3720 slub_max_order = 0;
3721
51df1142
CL
3722 kmem_size = offsetof(struct kmem_cache, node) +
3723 nr_node_ids * sizeof(struct kmem_cache_node *);
3724
3725 /* Allocate two kmem_caches from the page allocator */
3726 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3727 order = get_order(2 * kmalloc_size);
3728 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3729
81819f0f
CL
3730 /*
3731 * Must first have the slab cache available for the allocations of the
672bba3a 3732 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3733 * kmem_cache_open for slab_state == DOWN.
3734 */
51df1142
CL
3735 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3736
3737 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3738 sizeof(struct kmem_cache_node),
3739 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3740
0c40ba4f 3741 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3742
3743 /* Able to allocate the per node structures */
3744 slab_state = PARTIAL;
3745
51df1142
CL
3746 temp_kmem_cache = kmem_cache;
3747 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3748 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3749 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3750 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3751
51df1142
CL
3752 /*
3753 * Allocate kmem_cache_node properly from the kmem_cache slab.
3754 * kmem_cache_node is separately allocated so no need to
3755 * update any list pointers.
3756 */
3757 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3758
51df1142
CL
3759 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3760 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3761
3762 kmem_cache_bootstrap_fixup(kmem_cache_node);
3763
3764 caches++;
51df1142
CL
3765 kmem_cache_bootstrap_fixup(kmem_cache);
3766 caches++;
3767 /* Free temporary boot structure */
3768 free_pages((unsigned long)temp_kmem_cache, order);
3769
3770 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3771
3772 /*
3773 * Patch up the size_index table if we have strange large alignment
3774 * requirements for the kmalloc array. This is only the case for
6446faa2 3775 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3776 *
3777 * Largest permitted alignment is 256 bytes due to the way we
3778 * handle the index determination for the smaller caches.
3779 *
3780 * Make sure that nothing crazy happens if someone starts tinkering
3781 * around with ARCH_KMALLOC_MINALIGN
3782 */
3783 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3784 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3785
acdfcd04
AK
3786 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3787 int elem = size_index_elem(i);
3788 if (elem >= ARRAY_SIZE(size_index))
3789 break;
3790 size_index[elem] = KMALLOC_SHIFT_LOW;
3791 }
f1b26339 3792
acdfcd04
AK
3793 if (KMALLOC_MIN_SIZE == 64) {
3794 /*
3795 * The 96 byte size cache is not used if the alignment
3796 * is 64 byte.
3797 */
3798 for (i = 64 + 8; i <= 96; i += 8)
3799 size_index[size_index_elem(i)] = 7;
3800 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3801 /*
3802 * The 192 byte sized cache is not used if the alignment
3803 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3804 * instead.
3805 */
3806 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3807 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3808 }
3809
51df1142
CL
3810 /* Caches that are not of the two-to-the-power-of size */
3811 if (KMALLOC_MIN_SIZE <= 32) {
3812 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3813 caches++;
3814 }
3815
3816 if (KMALLOC_MIN_SIZE <= 64) {
3817 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3818 caches++;
3819 }
3820
3821 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3822 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3823 caches++;
3824 }
3825
81819f0f
CL
3826 slab_state = UP;
3827
3828 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3829 if (KMALLOC_MIN_SIZE <= 32) {
3830 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3831 BUG_ON(!kmalloc_caches[1]->name);
3832 }
3833
3834 if (KMALLOC_MIN_SIZE <= 64) {
3835 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3836 BUG_ON(!kmalloc_caches[2]->name);
3837 }
3838
d7278bd7
CL
3839 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3840 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3841
3842 BUG_ON(!s);
51df1142 3843 kmalloc_caches[i]->name = s;
d7278bd7 3844 }
81819f0f
CL
3845
3846#ifdef CONFIG_SMP
3847 register_cpu_notifier(&slab_notifier);
9dfc6e68 3848#endif
81819f0f 3849
55136592 3850#ifdef CONFIG_ZONE_DMA
51df1142
CL
3851 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3852 struct kmem_cache *s = kmalloc_caches[i];
55136592 3853
51df1142 3854 if (s && s->size) {
55136592 3855 char *name = kasprintf(GFP_NOWAIT,
3b0efdfa 3856 "dma-kmalloc-%d", s->object_size);
55136592
CL
3857
3858 BUG_ON(!name);
51df1142 3859 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3b0efdfa 3860 s->object_size, SLAB_CACHE_DMA);
55136592
CL
3861 }
3862 }
3863#endif
3adbefee
IM
3864 printk(KERN_INFO
3865 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3866 " CPUs=%d, Nodes=%d\n",
3867 caches, cache_line_size(),
81819f0f
CL
3868 slub_min_order, slub_max_order, slub_min_objects,
3869 nr_cpu_ids, nr_node_ids);
3870}
3871
7e85ee0c
PE
3872void __init kmem_cache_init_late(void)
3873{
7e85ee0c
PE
3874}
3875
81819f0f
CL
3876/*
3877 * Find a mergeable slab cache
3878 */
3879static int slab_unmergeable(struct kmem_cache *s)
3880{
3881 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3882 return 1;
3883
c59def9f 3884 if (s->ctor)
81819f0f
CL
3885 return 1;
3886
8ffa6875
CL
3887 /*
3888 * We may have set a slab to be unmergeable during bootstrap.
3889 */
3890 if (s->refcount < 0)
3891 return 1;
3892
81819f0f
CL
3893 return 0;
3894}
3895
3896static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3897 size_t align, unsigned long flags, const char *name,
51cc5068 3898 void (*ctor)(void *))
81819f0f 3899{
5b95a4ac 3900 struct kmem_cache *s;
81819f0f
CL
3901
3902 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3903 return NULL;
3904
c59def9f 3905 if (ctor)
81819f0f
CL
3906 return NULL;
3907
3908 size = ALIGN(size, sizeof(void *));
3909 align = calculate_alignment(flags, align, size);
3910 size = ALIGN(size, align);
ba0268a8 3911 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3912
5b95a4ac 3913 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3914 if (slab_unmergeable(s))
3915 continue;
3916
3917 if (size > s->size)
3918 continue;
3919
ba0268a8 3920 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3921 continue;
3922 /*
3923 * Check if alignment is compatible.
3924 * Courtesy of Adrian Drzewiecki
3925 */
06428780 3926 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3927 continue;
3928
3929 if (s->size - size >= sizeof(void *))
3930 continue;
3931
3932 return s;
3933 }
3934 return NULL;
3935}
3936
039363f3 3937struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
51cc5068 3938 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3939{
3940 struct kmem_cache *s;
84c1cf62 3941 char *n;
81819f0f 3942
ba0268a8 3943 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3944 if (s) {
3945 s->refcount++;
3946 /*
3947 * Adjust the object sizes so that we clear
3948 * the complete object on kzalloc.
3949 */
3b0efdfa 3950 s->object_size = max(s->object_size, (int)size);
81819f0f 3951 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3952
7b8f3b66 3953 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3954 s->refcount--;
20cea968 3955 return NULL;
7b8f3b66 3956 }
a0e1d1be
CL
3957 return s;
3958 }
6446faa2 3959
84c1cf62
PE
3960 n = kstrdup(name, GFP_KERNEL);
3961 if (!n)
20cea968 3962 return NULL;
84c1cf62 3963
a0e1d1be
CL
3964 s = kmalloc(kmem_size, GFP_KERNEL);
3965 if (s) {
84c1cf62 3966 if (kmem_cache_open(s, n,
c59def9f 3967 size, align, flags, ctor)) {
20cea968
CL
3968 int r;
3969
81819f0f 3970 list_add(&s->list, &slab_caches);
18004c5d 3971 mutex_unlock(&slab_mutex);
20cea968
CL
3972 r = sysfs_slab_add(s);
3973 mutex_lock(&slab_mutex);
3974
3975 if (!r)
3976 return s;
3977
3978 list_del(&s->list);
3979 kmem_cache_close(s);
a0e1d1be
CL
3980 }
3981 kfree(s);
81819f0f 3982 }
601d39d0 3983 kfree(n);
20cea968 3984 return NULL;
81819f0f 3985}
81819f0f 3986
81819f0f 3987#ifdef CONFIG_SMP
81819f0f 3988/*
672bba3a
CL
3989 * Use the cpu notifier to insure that the cpu slabs are flushed when
3990 * necessary.
81819f0f
CL
3991 */
3992static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3993 unsigned long action, void *hcpu)
3994{
3995 long cpu = (long)hcpu;
5b95a4ac
CL
3996 struct kmem_cache *s;
3997 unsigned long flags;
81819f0f
CL
3998
3999 switch (action) {
4000 case CPU_UP_CANCELED:
8bb78442 4001 case CPU_UP_CANCELED_FROZEN:
81819f0f 4002 case CPU_DEAD:
8bb78442 4003 case CPU_DEAD_FROZEN:
18004c5d 4004 mutex_lock(&slab_mutex);
5b95a4ac
CL
4005 list_for_each_entry(s, &slab_caches, list) {
4006 local_irq_save(flags);
4007 __flush_cpu_slab(s, cpu);
4008 local_irq_restore(flags);
4009 }
18004c5d 4010 mutex_unlock(&slab_mutex);
81819f0f
CL
4011 break;
4012 default:
4013 break;
4014 }
4015 return NOTIFY_OK;
4016}
4017
06428780 4018static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 4019 .notifier_call = slab_cpuup_callback
06428780 4020};
81819f0f
CL
4021
4022#endif
4023
ce71e27c 4024void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4025{
aadb4bc4 4026 struct kmem_cache *s;
94b528d0 4027 void *ret;
aadb4bc4 4028
ffadd4d0 4029 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4030 return kmalloc_large(size, gfpflags);
4031
aadb4bc4 4032 s = get_slab(size, gfpflags);
81819f0f 4033
2408c550 4034 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4035 return s;
81819f0f 4036
2154a336 4037 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4038
25985edc 4039 /* Honor the call site pointer we received. */
ca2b84cb 4040 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4041
4042 return ret;
81819f0f
CL
4043}
4044
5d1f57e4 4045#ifdef CONFIG_NUMA
81819f0f 4046void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4047 int node, unsigned long caller)
81819f0f 4048{
aadb4bc4 4049 struct kmem_cache *s;
94b528d0 4050 void *ret;
aadb4bc4 4051
d3e14aa3
XF
4052 if (unlikely(size > SLUB_MAX_SIZE)) {
4053 ret = kmalloc_large_node(size, gfpflags, node);
4054
4055 trace_kmalloc_node(caller, ret,
4056 size, PAGE_SIZE << get_order(size),
4057 gfpflags, node);
4058
4059 return ret;
4060 }
eada35ef 4061
aadb4bc4 4062 s = get_slab(size, gfpflags);
81819f0f 4063
2408c550 4064 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4065 return s;
81819f0f 4066
94b528d0
EGM
4067 ret = slab_alloc(s, gfpflags, node, caller);
4068
25985edc 4069 /* Honor the call site pointer we received. */
ca2b84cb 4070 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4071
4072 return ret;
81819f0f 4073}
5d1f57e4 4074#endif
81819f0f 4075
ab4d5ed5 4076#ifdef CONFIG_SYSFS
205ab99d
CL
4077static int count_inuse(struct page *page)
4078{
4079 return page->inuse;
4080}
4081
4082static int count_total(struct page *page)
4083{
4084 return page->objects;
4085}
ab4d5ed5 4086#endif
205ab99d 4087
ab4d5ed5 4088#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4089static int validate_slab(struct kmem_cache *s, struct page *page,
4090 unsigned long *map)
53e15af0
CL
4091{
4092 void *p;
a973e9dd 4093 void *addr = page_address(page);
53e15af0
CL
4094
4095 if (!check_slab(s, page) ||
4096 !on_freelist(s, page, NULL))
4097 return 0;
4098
4099 /* Now we know that a valid freelist exists */
39b26464 4100 bitmap_zero(map, page->objects);
53e15af0 4101
5f80b13a
CL
4102 get_map(s, page, map);
4103 for_each_object(p, s, addr, page->objects) {
4104 if (test_bit(slab_index(p, s, addr), map))
4105 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4106 return 0;
53e15af0
CL
4107 }
4108
224a88be 4109 for_each_object(p, s, addr, page->objects)
7656c72b 4110 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4111 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4112 return 0;
4113 return 1;
4114}
4115
434e245d
CL
4116static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4117 unsigned long *map)
53e15af0 4118{
881db7fb
CL
4119 slab_lock(page);
4120 validate_slab(s, page, map);
4121 slab_unlock(page);
53e15af0
CL
4122}
4123
434e245d
CL
4124static int validate_slab_node(struct kmem_cache *s,
4125 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4126{
4127 unsigned long count = 0;
4128 struct page *page;
4129 unsigned long flags;
4130
4131 spin_lock_irqsave(&n->list_lock, flags);
4132
4133 list_for_each_entry(page, &n->partial, lru) {
434e245d 4134 validate_slab_slab(s, page, map);
53e15af0
CL
4135 count++;
4136 }
4137 if (count != n->nr_partial)
4138 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4139 "counter=%ld\n", s->name, count, n->nr_partial);
4140
4141 if (!(s->flags & SLAB_STORE_USER))
4142 goto out;
4143
4144 list_for_each_entry(page, &n->full, lru) {
434e245d 4145 validate_slab_slab(s, page, map);
53e15af0
CL
4146 count++;
4147 }
4148 if (count != atomic_long_read(&n->nr_slabs))
4149 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4150 "counter=%ld\n", s->name, count,
4151 atomic_long_read(&n->nr_slabs));
4152
4153out:
4154 spin_unlock_irqrestore(&n->list_lock, flags);
4155 return count;
4156}
4157
434e245d 4158static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4159{
4160 int node;
4161 unsigned long count = 0;
205ab99d 4162 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4163 sizeof(unsigned long), GFP_KERNEL);
4164
4165 if (!map)
4166 return -ENOMEM;
53e15af0
CL
4167
4168 flush_all(s);
f64dc58c 4169 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4170 struct kmem_cache_node *n = get_node(s, node);
4171
434e245d 4172 count += validate_slab_node(s, n, map);
53e15af0 4173 }
434e245d 4174 kfree(map);
53e15af0
CL
4175 return count;
4176}
88a420e4 4177/*
672bba3a 4178 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4179 * and freed.
4180 */
4181
4182struct location {
4183 unsigned long count;
ce71e27c 4184 unsigned long addr;
45edfa58
CL
4185 long long sum_time;
4186 long min_time;
4187 long max_time;
4188 long min_pid;
4189 long max_pid;
174596a0 4190 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4191 nodemask_t nodes;
88a420e4
CL
4192};
4193
4194struct loc_track {
4195 unsigned long max;
4196 unsigned long count;
4197 struct location *loc;
4198};
4199
4200static void free_loc_track(struct loc_track *t)
4201{
4202 if (t->max)
4203 free_pages((unsigned long)t->loc,
4204 get_order(sizeof(struct location) * t->max));
4205}
4206
68dff6a9 4207static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4208{
4209 struct location *l;
4210 int order;
4211
88a420e4
CL
4212 order = get_order(sizeof(struct location) * max);
4213
68dff6a9 4214 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4215 if (!l)
4216 return 0;
4217
4218 if (t->count) {
4219 memcpy(l, t->loc, sizeof(struct location) * t->count);
4220 free_loc_track(t);
4221 }
4222 t->max = max;
4223 t->loc = l;
4224 return 1;
4225}
4226
4227static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4228 const struct track *track)
88a420e4
CL
4229{
4230 long start, end, pos;
4231 struct location *l;
ce71e27c 4232 unsigned long caddr;
45edfa58 4233 unsigned long age = jiffies - track->when;
88a420e4
CL
4234
4235 start = -1;
4236 end = t->count;
4237
4238 for ( ; ; ) {
4239 pos = start + (end - start + 1) / 2;
4240
4241 /*
4242 * There is nothing at "end". If we end up there
4243 * we need to add something to before end.
4244 */
4245 if (pos == end)
4246 break;
4247
4248 caddr = t->loc[pos].addr;
45edfa58
CL
4249 if (track->addr == caddr) {
4250
4251 l = &t->loc[pos];
4252 l->count++;
4253 if (track->when) {
4254 l->sum_time += age;
4255 if (age < l->min_time)
4256 l->min_time = age;
4257 if (age > l->max_time)
4258 l->max_time = age;
4259
4260 if (track->pid < l->min_pid)
4261 l->min_pid = track->pid;
4262 if (track->pid > l->max_pid)
4263 l->max_pid = track->pid;
4264
174596a0
RR
4265 cpumask_set_cpu(track->cpu,
4266 to_cpumask(l->cpus));
45edfa58
CL
4267 }
4268 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4269 return 1;
4270 }
4271
45edfa58 4272 if (track->addr < caddr)
88a420e4
CL
4273 end = pos;
4274 else
4275 start = pos;
4276 }
4277
4278 /*
672bba3a 4279 * Not found. Insert new tracking element.
88a420e4 4280 */
68dff6a9 4281 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4282 return 0;
4283
4284 l = t->loc + pos;
4285 if (pos < t->count)
4286 memmove(l + 1, l,
4287 (t->count - pos) * sizeof(struct location));
4288 t->count++;
4289 l->count = 1;
45edfa58
CL
4290 l->addr = track->addr;
4291 l->sum_time = age;
4292 l->min_time = age;
4293 l->max_time = age;
4294 l->min_pid = track->pid;
4295 l->max_pid = track->pid;
174596a0
RR
4296 cpumask_clear(to_cpumask(l->cpus));
4297 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4298 nodes_clear(l->nodes);
4299 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4300 return 1;
4301}
4302
4303static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4304 struct page *page, enum track_item alloc,
a5dd5c11 4305 unsigned long *map)
88a420e4 4306{
a973e9dd 4307 void *addr = page_address(page);
88a420e4
CL
4308 void *p;
4309
39b26464 4310 bitmap_zero(map, page->objects);
5f80b13a 4311 get_map(s, page, map);
88a420e4 4312
224a88be 4313 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4314 if (!test_bit(slab_index(p, s, addr), map))
4315 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4316}
4317
4318static int list_locations(struct kmem_cache *s, char *buf,
4319 enum track_item alloc)
4320{
e374d483 4321 int len = 0;
88a420e4 4322 unsigned long i;
68dff6a9 4323 struct loc_track t = { 0, 0, NULL };
88a420e4 4324 int node;
bbd7d57b
ED
4325 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4326 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4327
bbd7d57b
ED
4328 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4329 GFP_TEMPORARY)) {
4330 kfree(map);
68dff6a9 4331 return sprintf(buf, "Out of memory\n");
bbd7d57b 4332 }
88a420e4
CL
4333 /* Push back cpu slabs */
4334 flush_all(s);
4335
f64dc58c 4336 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4337 struct kmem_cache_node *n = get_node(s, node);
4338 unsigned long flags;
4339 struct page *page;
4340
9e86943b 4341 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4342 continue;
4343
4344 spin_lock_irqsave(&n->list_lock, flags);
4345 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4346 process_slab(&t, s, page, alloc, map);
88a420e4 4347 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4348 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4349 spin_unlock_irqrestore(&n->list_lock, flags);
4350 }
4351
4352 for (i = 0; i < t.count; i++) {
45edfa58 4353 struct location *l = &t.loc[i];
88a420e4 4354
9c246247 4355 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4356 break;
e374d483 4357 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4358
4359 if (l->addr)
62c70bce 4360 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4361 else
e374d483 4362 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4363
4364 if (l->sum_time != l->min_time) {
e374d483 4365 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4366 l->min_time,
4367 (long)div_u64(l->sum_time, l->count),
4368 l->max_time);
45edfa58 4369 } else
e374d483 4370 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4371 l->min_time);
4372
4373 if (l->min_pid != l->max_pid)
e374d483 4374 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4375 l->min_pid, l->max_pid);
4376 else
e374d483 4377 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4378 l->min_pid);
4379
174596a0
RR
4380 if (num_online_cpus() > 1 &&
4381 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4382 len < PAGE_SIZE - 60) {
4383 len += sprintf(buf + len, " cpus=");
4384 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4385 to_cpumask(l->cpus));
45edfa58
CL
4386 }
4387
62bc62a8 4388 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4389 len < PAGE_SIZE - 60) {
4390 len += sprintf(buf + len, " nodes=");
4391 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4392 l->nodes);
4393 }
4394
e374d483 4395 len += sprintf(buf + len, "\n");
88a420e4
CL
4396 }
4397
4398 free_loc_track(&t);
bbd7d57b 4399 kfree(map);
88a420e4 4400 if (!t.count)
e374d483
HH
4401 len += sprintf(buf, "No data\n");
4402 return len;
88a420e4 4403}
ab4d5ed5 4404#endif
88a420e4 4405
a5a84755
CL
4406#ifdef SLUB_RESILIENCY_TEST
4407static void resiliency_test(void)
4408{
4409 u8 *p;
4410
4411 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4412
4413 printk(KERN_ERR "SLUB resiliency testing\n");
4414 printk(KERN_ERR "-----------------------\n");
4415 printk(KERN_ERR "A. Corruption after allocation\n");
4416
4417 p = kzalloc(16, GFP_KERNEL);
4418 p[16] = 0x12;
4419 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4420 " 0x12->0x%p\n\n", p + 16);
4421
4422 validate_slab_cache(kmalloc_caches[4]);
4423
4424 /* Hmmm... The next two are dangerous */
4425 p = kzalloc(32, GFP_KERNEL);
4426 p[32 + sizeof(void *)] = 0x34;
4427 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4428 " 0x34 -> -0x%p\n", p);
4429 printk(KERN_ERR
4430 "If allocated object is overwritten then not detectable\n\n");
4431
4432 validate_slab_cache(kmalloc_caches[5]);
4433 p = kzalloc(64, GFP_KERNEL);
4434 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4435 *p = 0x56;
4436 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4437 p);
4438 printk(KERN_ERR
4439 "If allocated object is overwritten then not detectable\n\n");
4440 validate_slab_cache(kmalloc_caches[6]);
4441
4442 printk(KERN_ERR "\nB. Corruption after free\n");
4443 p = kzalloc(128, GFP_KERNEL);
4444 kfree(p);
4445 *p = 0x78;
4446 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4447 validate_slab_cache(kmalloc_caches[7]);
4448
4449 p = kzalloc(256, GFP_KERNEL);
4450 kfree(p);
4451 p[50] = 0x9a;
4452 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4453 p);
4454 validate_slab_cache(kmalloc_caches[8]);
4455
4456 p = kzalloc(512, GFP_KERNEL);
4457 kfree(p);
4458 p[512] = 0xab;
4459 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4460 validate_slab_cache(kmalloc_caches[9]);
4461}
4462#else
4463#ifdef CONFIG_SYSFS
4464static void resiliency_test(void) {};
4465#endif
4466#endif
4467
ab4d5ed5 4468#ifdef CONFIG_SYSFS
81819f0f 4469enum slab_stat_type {
205ab99d
CL
4470 SL_ALL, /* All slabs */
4471 SL_PARTIAL, /* Only partially allocated slabs */
4472 SL_CPU, /* Only slabs used for cpu caches */
4473 SL_OBJECTS, /* Determine allocated objects not slabs */
4474 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4475};
4476
205ab99d 4477#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4478#define SO_PARTIAL (1 << SL_PARTIAL)
4479#define SO_CPU (1 << SL_CPU)
4480#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4481#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4482
62e5c4b4
CG
4483static ssize_t show_slab_objects(struct kmem_cache *s,
4484 char *buf, unsigned long flags)
81819f0f
CL
4485{
4486 unsigned long total = 0;
81819f0f
CL
4487 int node;
4488 int x;
4489 unsigned long *nodes;
4490 unsigned long *per_cpu;
4491
4492 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4493 if (!nodes)
4494 return -ENOMEM;
81819f0f
CL
4495 per_cpu = nodes + nr_node_ids;
4496
205ab99d
CL
4497 if (flags & SO_CPU) {
4498 int cpu;
81819f0f 4499
205ab99d 4500 for_each_possible_cpu(cpu) {
9dfc6e68 4501 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4502 int node;
49e22585 4503 struct page *page;
dfb4f096 4504
bc6697d8 4505 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4506 if (!page)
4507 continue;
205ab99d 4508
ec3ab083
CL
4509 node = page_to_nid(page);
4510 if (flags & SO_TOTAL)
4511 x = page->objects;
4512 else if (flags & SO_OBJECTS)
4513 x = page->inuse;
4514 else
4515 x = 1;
49e22585 4516
ec3ab083
CL
4517 total += x;
4518 nodes[node] += x;
4519
4520 page = ACCESS_ONCE(c->partial);
49e22585
CL
4521 if (page) {
4522 x = page->pobjects;
bc6697d8
ED
4523 total += x;
4524 nodes[node] += x;
49e22585 4525 }
ec3ab083 4526
bc6697d8 4527 per_cpu[node]++;
81819f0f
CL
4528 }
4529 }
4530
04d94879 4531 lock_memory_hotplug();
ab4d5ed5 4532#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4533 if (flags & SO_ALL) {
4534 for_each_node_state(node, N_NORMAL_MEMORY) {
4535 struct kmem_cache_node *n = get_node(s, node);
4536
4537 if (flags & SO_TOTAL)
4538 x = atomic_long_read(&n->total_objects);
4539 else if (flags & SO_OBJECTS)
4540 x = atomic_long_read(&n->total_objects) -
4541 count_partial(n, count_free);
81819f0f 4542
81819f0f 4543 else
205ab99d 4544 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4545 total += x;
4546 nodes[node] += x;
4547 }
4548
ab4d5ed5
CL
4549 } else
4550#endif
4551 if (flags & SO_PARTIAL) {
205ab99d
CL
4552 for_each_node_state(node, N_NORMAL_MEMORY) {
4553 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4554
205ab99d
CL
4555 if (flags & SO_TOTAL)
4556 x = count_partial(n, count_total);
4557 else if (flags & SO_OBJECTS)
4558 x = count_partial(n, count_inuse);
81819f0f 4559 else
205ab99d 4560 x = n->nr_partial;
81819f0f
CL
4561 total += x;
4562 nodes[node] += x;
4563 }
4564 }
81819f0f
CL
4565 x = sprintf(buf, "%lu", total);
4566#ifdef CONFIG_NUMA
f64dc58c 4567 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4568 if (nodes[node])
4569 x += sprintf(buf + x, " N%d=%lu",
4570 node, nodes[node]);
4571#endif
04d94879 4572 unlock_memory_hotplug();
81819f0f
CL
4573 kfree(nodes);
4574 return x + sprintf(buf + x, "\n");
4575}
4576
ab4d5ed5 4577#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4578static int any_slab_objects(struct kmem_cache *s)
4579{
4580 int node;
81819f0f 4581
dfb4f096 4582 for_each_online_node(node) {
81819f0f
CL
4583 struct kmem_cache_node *n = get_node(s, node);
4584
dfb4f096
CL
4585 if (!n)
4586 continue;
4587
4ea33e2d 4588 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4589 return 1;
4590 }
4591 return 0;
4592}
ab4d5ed5 4593#endif
81819f0f
CL
4594
4595#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4596#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4597
4598struct slab_attribute {
4599 struct attribute attr;
4600 ssize_t (*show)(struct kmem_cache *s, char *buf);
4601 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4602};
4603
4604#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4605 static struct slab_attribute _name##_attr = \
4606 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4607
4608#define SLAB_ATTR(_name) \
4609 static struct slab_attribute _name##_attr = \
ab067e99 4610 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4611
81819f0f
CL
4612static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4613{
4614 return sprintf(buf, "%d\n", s->size);
4615}
4616SLAB_ATTR_RO(slab_size);
4617
4618static ssize_t align_show(struct kmem_cache *s, char *buf)
4619{
4620 return sprintf(buf, "%d\n", s->align);
4621}
4622SLAB_ATTR_RO(align);
4623
4624static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4625{
3b0efdfa 4626 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4627}
4628SLAB_ATTR_RO(object_size);
4629
4630static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4631{
834f3d11 4632 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4633}
4634SLAB_ATTR_RO(objs_per_slab);
4635
06b285dc
CL
4636static ssize_t order_store(struct kmem_cache *s,
4637 const char *buf, size_t length)
4638{
0121c619
CL
4639 unsigned long order;
4640 int err;
4641
4642 err = strict_strtoul(buf, 10, &order);
4643 if (err)
4644 return err;
06b285dc
CL
4645
4646 if (order > slub_max_order || order < slub_min_order)
4647 return -EINVAL;
4648
4649 calculate_sizes(s, order);
4650 return length;
4651}
4652
81819f0f
CL
4653static ssize_t order_show(struct kmem_cache *s, char *buf)
4654{
834f3d11 4655 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4656}
06b285dc 4657SLAB_ATTR(order);
81819f0f 4658
73d342b1
DR
4659static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4660{
4661 return sprintf(buf, "%lu\n", s->min_partial);
4662}
4663
4664static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4665 size_t length)
4666{
4667 unsigned long min;
4668 int err;
4669
4670 err = strict_strtoul(buf, 10, &min);
4671 if (err)
4672 return err;
4673
c0bdb232 4674 set_min_partial(s, min);
73d342b1
DR
4675 return length;
4676}
4677SLAB_ATTR(min_partial);
4678
49e22585
CL
4679static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4680{
4681 return sprintf(buf, "%u\n", s->cpu_partial);
4682}
4683
4684static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4685 size_t length)
4686{
4687 unsigned long objects;
4688 int err;
4689
4690 err = strict_strtoul(buf, 10, &objects);
4691 if (err)
4692 return err;
74ee4ef1
DR
4693 if (objects && kmem_cache_debug(s))
4694 return -EINVAL;
49e22585
CL
4695
4696 s->cpu_partial = objects;
4697 flush_all(s);
4698 return length;
4699}
4700SLAB_ATTR(cpu_partial);
4701
81819f0f
CL
4702static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4703{
62c70bce
JP
4704 if (!s->ctor)
4705 return 0;
4706 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4707}
4708SLAB_ATTR_RO(ctor);
4709
81819f0f
CL
4710static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4711{
4712 return sprintf(buf, "%d\n", s->refcount - 1);
4713}
4714SLAB_ATTR_RO(aliases);
4715
81819f0f
CL
4716static ssize_t partial_show(struct kmem_cache *s, char *buf)
4717{
d9acf4b7 4718 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4719}
4720SLAB_ATTR_RO(partial);
4721
4722static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4723{
d9acf4b7 4724 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4725}
4726SLAB_ATTR_RO(cpu_slabs);
4727
4728static ssize_t objects_show(struct kmem_cache *s, char *buf)
4729{
205ab99d 4730 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4731}
4732SLAB_ATTR_RO(objects);
4733
205ab99d
CL
4734static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4735{
4736 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4737}
4738SLAB_ATTR_RO(objects_partial);
4739
49e22585
CL
4740static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4741{
4742 int objects = 0;
4743 int pages = 0;
4744 int cpu;
4745 int len;
4746
4747 for_each_online_cpu(cpu) {
4748 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4749
4750 if (page) {
4751 pages += page->pages;
4752 objects += page->pobjects;
4753 }
4754 }
4755
4756 len = sprintf(buf, "%d(%d)", objects, pages);
4757
4758#ifdef CONFIG_SMP
4759 for_each_online_cpu(cpu) {
4760 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4761
4762 if (page && len < PAGE_SIZE - 20)
4763 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4764 page->pobjects, page->pages);
4765 }
4766#endif
4767 return len + sprintf(buf + len, "\n");
4768}
4769SLAB_ATTR_RO(slabs_cpu_partial);
4770
a5a84755
CL
4771static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4772{
4773 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4774}
4775
4776static ssize_t reclaim_account_store(struct kmem_cache *s,
4777 const char *buf, size_t length)
4778{
4779 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4780 if (buf[0] == '1')
4781 s->flags |= SLAB_RECLAIM_ACCOUNT;
4782 return length;
4783}
4784SLAB_ATTR(reclaim_account);
4785
4786static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4787{
4788 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4789}
4790SLAB_ATTR_RO(hwcache_align);
4791
4792#ifdef CONFIG_ZONE_DMA
4793static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4794{
4795 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4796}
4797SLAB_ATTR_RO(cache_dma);
4798#endif
4799
4800static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4801{
4802 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4803}
4804SLAB_ATTR_RO(destroy_by_rcu);
4805
ab9a0f19
LJ
4806static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4807{
4808 return sprintf(buf, "%d\n", s->reserved);
4809}
4810SLAB_ATTR_RO(reserved);
4811
ab4d5ed5 4812#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4813static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4814{
4815 return show_slab_objects(s, buf, SO_ALL);
4816}
4817SLAB_ATTR_RO(slabs);
4818
205ab99d
CL
4819static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4820{
4821 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4822}
4823SLAB_ATTR_RO(total_objects);
4824
81819f0f
CL
4825static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4826{
4827 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4828}
4829
4830static ssize_t sanity_checks_store(struct kmem_cache *s,
4831 const char *buf, size_t length)
4832{
4833 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4834 if (buf[0] == '1') {
4835 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4836 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4837 }
81819f0f
CL
4838 return length;
4839}
4840SLAB_ATTR(sanity_checks);
4841
4842static ssize_t trace_show(struct kmem_cache *s, char *buf)
4843{
4844 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4845}
4846
4847static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4848 size_t length)
4849{
4850 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4851 if (buf[0] == '1') {
4852 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4853 s->flags |= SLAB_TRACE;
b789ef51 4854 }
81819f0f
CL
4855 return length;
4856}
4857SLAB_ATTR(trace);
4858
81819f0f
CL
4859static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4860{
4861 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4862}
4863
4864static ssize_t red_zone_store(struct kmem_cache *s,
4865 const char *buf, size_t length)
4866{
4867 if (any_slab_objects(s))
4868 return -EBUSY;
4869
4870 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4871 if (buf[0] == '1') {
4872 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4873 s->flags |= SLAB_RED_ZONE;
b789ef51 4874 }
06b285dc 4875 calculate_sizes(s, -1);
81819f0f
CL
4876 return length;
4877}
4878SLAB_ATTR(red_zone);
4879
4880static ssize_t poison_show(struct kmem_cache *s, char *buf)
4881{
4882 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4883}
4884
4885static ssize_t poison_store(struct kmem_cache *s,
4886 const char *buf, size_t length)
4887{
4888 if (any_slab_objects(s))
4889 return -EBUSY;
4890
4891 s->flags &= ~SLAB_POISON;
b789ef51
CL
4892 if (buf[0] == '1') {
4893 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4894 s->flags |= SLAB_POISON;
b789ef51 4895 }
06b285dc 4896 calculate_sizes(s, -1);
81819f0f
CL
4897 return length;
4898}
4899SLAB_ATTR(poison);
4900
4901static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4902{
4903 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4904}
4905
4906static ssize_t store_user_store(struct kmem_cache *s,
4907 const char *buf, size_t length)
4908{
4909 if (any_slab_objects(s))
4910 return -EBUSY;
4911
4912 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4913 if (buf[0] == '1') {
4914 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4915 s->flags |= SLAB_STORE_USER;
b789ef51 4916 }
06b285dc 4917 calculate_sizes(s, -1);
81819f0f
CL
4918 return length;
4919}
4920SLAB_ATTR(store_user);
4921
53e15af0
CL
4922static ssize_t validate_show(struct kmem_cache *s, char *buf)
4923{
4924 return 0;
4925}
4926
4927static ssize_t validate_store(struct kmem_cache *s,
4928 const char *buf, size_t length)
4929{
434e245d
CL
4930 int ret = -EINVAL;
4931
4932 if (buf[0] == '1') {
4933 ret = validate_slab_cache(s);
4934 if (ret >= 0)
4935 ret = length;
4936 }
4937 return ret;
53e15af0
CL
4938}
4939SLAB_ATTR(validate);
a5a84755
CL
4940
4941static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4942{
4943 if (!(s->flags & SLAB_STORE_USER))
4944 return -ENOSYS;
4945 return list_locations(s, buf, TRACK_ALLOC);
4946}
4947SLAB_ATTR_RO(alloc_calls);
4948
4949static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4950{
4951 if (!(s->flags & SLAB_STORE_USER))
4952 return -ENOSYS;
4953 return list_locations(s, buf, TRACK_FREE);
4954}
4955SLAB_ATTR_RO(free_calls);
4956#endif /* CONFIG_SLUB_DEBUG */
4957
4958#ifdef CONFIG_FAILSLAB
4959static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4960{
4961 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4962}
4963
4964static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4965 size_t length)
4966{
4967 s->flags &= ~SLAB_FAILSLAB;
4968 if (buf[0] == '1')
4969 s->flags |= SLAB_FAILSLAB;
4970 return length;
4971}
4972SLAB_ATTR(failslab);
ab4d5ed5 4973#endif
53e15af0 4974
2086d26a
CL
4975static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4976{
4977 return 0;
4978}
4979
4980static ssize_t shrink_store(struct kmem_cache *s,
4981 const char *buf, size_t length)
4982{
4983 if (buf[0] == '1') {
4984 int rc = kmem_cache_shrink(s);
4985
4986 if (rc)
4987 return rc;
4988 } else
4989 return -EINVAL;
4990 return length;
4991}
4992SLAB_ATTR(shrink);
4993
81819f0f 4994#ifdef CONFIG_NUMA
9824601e 4995static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4996{
9824601e 4997 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4998}
4999
9824601e 5000static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5001 const char *buf, size_t length)
5002{
0121c619
CL
5003 unsigned long ratio;
5004 int err;
5005
5006 err = strict_strtoul(buf, 10, &ratio);
5007 if (err)
5008 return err;
5009
e2cb96b7 5010 if (ratio <= 100)
0121c619 5011 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5012
81819f0f
CL
5013 return length;
5014}
9824601e 5015SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5016#endif
5017
8ff12cfc 5018#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5019static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5020{
5021 unsigned long sum = 0;
5022 int cpu;
5023 int len;
5024 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5025
5026 if (!data)
5027 return -ENOMEM;
5028
5029 for_each_online_cpu(cpu) {
9dfc6e68 5030 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5031
5032 data[cpu] = x;
5033 sum += x;
5034 }
5035
5036 len = sprintf(buf, "%lu", sum);
5037
50ef37b9 5038#ifdef CONFIG_SMP
8ff12cfc
CL
5039 for_each_online_cpu(cpu) {
5040 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5041 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5042 }
50ef37b9 5043#endif
8ff12cfc
CL
5044 kfree(data);
5045 return len + sprintf(buf + len, "\n");
5046}
5047
78eb00cc
DR
5048static void clear_stat(struct kmem_cache *s, enum stat_item si)
5049{
5050 int cpu;
5051
5052 for_each_online_cpu(cpu)
9dfc6e68 5053 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5054}
5055
8ff12cfc
CL
5056#define STAT_ATTR(si, text) \
5057static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5058{ \
5059 return show_stat(s, buf, si); \
5060} \
78eb00cc
DR
5061static ssize_t text##_store(struct kmem_cache *s, \
5062 const char *buf, size_t length) \
5063{ \
5064 if (buf[0] != '0') \
5065 return -EINVAL; \
5066 clear_stat(s, si); \
5067 return length; \
5068} \
5069SLAB_ATTR(text); \
8ff12cfc
CL
5070
5071STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5072STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5073STAT_ATTR(FREE_FASTPATH, free_fastpath);
5074STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5075STAT_ATTR(FREE_FROZEN, free_frozen);
5076STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5077STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5078STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5079STAT_ATTR(ALLOC_SLAB, alloc_slab);
5080STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5081STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5082STAT_ATTR(FREE_SLAB, free_slab);
5083STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5084STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5085STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5086STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5087STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5088STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5089STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5090STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5091STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5092STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5093STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5094STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5095STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5096STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5097#endif
5098
06428780 5099static struct attribute *slab_attrs[] = {
81819f0f
CL
5100 &slab_size_attr.attr,
5101 &object_size_attr.attr,
5102 &objs_per_slab_attr.attr,
5103 &order_attr.attr,
73d342b1 5104 &min_partial_attr.attr,
49e22585 5105 &cpu_partial_attr.attr,
81819f0f 5106 &objects_attr.attr,
205ab99d 5107 &objects_partial_attr.attr,
81819f0f
CL
5108 &partial_attr.attr,
5109 &cpu_slabs_attr.attr,
5110 &ctor_attr.attr,
81819f0f
CL
5111 &aliases_attr.attr,
5112 &align_attr.attr,
81819f0f
CL
5113 &hwcache_align_attr.attr,
5114 &reclaim_account_attr.attr,
5115 &destroy_by_rcu_attr.attr,
a5a84755 5116 &shrink_attr.attr,
ab9a0f19 5117 &reserved_attr.attr,
49e22585 5118 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5119#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5120 &total_objects_attr.attr,
5121 &slabs_attr.attr,
5122 &sanity_checks_attr.attr,
5123 &trace_attr.attr,
81819f0f
CL
5124 &red_zone_attr.attr,
5125 &poison_attr.attr,
5126 &store_user_attr.attr,
53e15af0 5127 &validate_attr.attr,
88a420e4
CL
5128 &alloc_calls_attr.attr,
5129 &free_calls_attr.attr,
ab4d5ed5 5130#endif
81819f0f
CL
5131#ifdef CONFIG_ZONE_DMA
5132 &cache_dma_attr.attr,
5133#endif
5134#ifdef CONFIG_NUMA
9824601e 5135 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5136#endif
5137#ifdef CONFIG_SLUB_STATS
5138 &alloc_fastpath_attr.attr,
5139 &alloc_slowpath_attr.attr,
5140 &free_fastpath_attr.attr,
5141 &free_slowpath_attr.attr,
5142 &free_frozen_attr.attr,
5143 &free_add_partial_attr.attr,
5144 &free_remove_partial_attr.attr,
5145 &alloc_from_partial_attr.attr,
5146 &alloc_slab_attr.attr,
5147 &alloc_refill_attr.attr,
e36a2652 5148 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5149 &free_slab_attr.attr,
5150 &cpuslab_flush_attr.attr,
5151 &deactivate_full_attr.attr,
5152 &deactivate_empty_attr.attr,
5153 &deactivate_to_head_attr.attr,
5154 &deactivate_to_tail_attr.attr,
5155 &deactivate_remote_frees_attr.attr,
03e404af 5156 &deactivate_bypass_attr.attr,
65c3376a 5157 &order_fallback_attr.attr,
b789ef51
CL
5158 &cmpxchg_double_fail_attr.attr,
5159 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5160 &cpu_partial_alloc_attr.attr,
5161 &cpu_partial_free_attr.attr,
8028dcea
AS
5162 &cpu_partial_node_attr.attr,
5163 &cpu_partial_drain_attr.attr,
81819f0f 5164#endif
4c13dd3b
DM
5165#ifdef CONFIG_FAILSLAB
5166 &failslab_attr.attr,
5167#endif
5168
81819f0f
CL
5169 NULL
5170};
5171
5172static struct attribute_group slab_attr_group = {
5173 .attrs = slab_attrs,
5174};
5175
5176static ssize_t slab_attr_show(struct kobject *kobj,
5177 struct attribute *attr,
5178 char *buf)
5179{
5180 struct slab_attribute *attribute;
5181 struct kmem_cache *s;
5182 int err;
5183
5184 attribute = to_slab_attr(attr);
5185 s = to_slab(kobj);
5186
5187 if (!attribute->show)
5188 return -EIO;
5189
5190 err = attribute->show(s, buf);
5191
5192 return err;
5193}
5194
5195static ssize_t slab_attr_store(struct kobject *kobj,
5196 struct attribute *attr,
5197 const char *buf, size_t len)
5198{
5199 struct slab_attribute *attribute;
5200 struct kmem_cache *s;
5201 int err;
5202
5203 attribute = to_slab_attr(attr);
5204 s = to_slab(kobj);
5205
5206 if (!attribute->store)
5207 return -EIO;
5208
5209 err = attribute->store(s, buf, len);
5210
5211 return err;
5212}
5213
151c602f
CL
5214static void kmem_cache_release(struct kobject *kobj)
5215{
5216 struct kmem_cache *s = to_slab(kobj);
5217
84c1cf62 5218 kfree(s->name);
151c602f
CL
5219 kfree(s);
5220}
5221
52cf25d0 5222static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5223 .show = slab_attr_show,
5224 .store = slab_attr_store,
5225};
5226
5227static struct kobj_type slab_ktype = {
5228 .sysfs_ops = &slab_sysfs_ops,
151c602f 5229 .release = kmem_cache_release
81819f0f
CL
5230};
5231
5232static int uevent_filter(struct kset *kset, struct kobject *kobj)
5233{
5234 struct kobj_type *ktype = get_ktype(kobj);
5235
5236 if (ktype == &slab_ktype)
5237 return 1;
5238 return 0;
5239}
5240
9cd43611 5241static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5242 .filter = uevent_filter,
5243};
5244
27c3a314 5245static struct kset *slab_kset;
81819f0f
CL
5246
5247#define ID_STR_LENGTH 64
5248
5249/* Create a unique string id for a slab cache:
6446faa2
CL
5250 *
5251 * Format :[flags-]size
81819f0f
CL
5252 */
5253static char *create_unique_id(struct kmem_cache *s)
5254{
5255 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5256 char *p = name;
5257
5258 BUG_ON(!name);
5259
5260 *p++ = ':';
5261 /*
5262 * First flags affecting slabcache operations. We will only
5263 * get here for aliasable slabs so we do not need to support
5264 * too many flags. The flags here must cover all flags that
5265 * are matched during merging to guarantee that the id is
5266 * unique.
5267 */
5268 if (s->flags & SLAB_CACHE_DMA)
5269 *p++ = 'd';
5270 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5271 *p++ = 'a';
5272 if (s->flags & SLAB_DEBUG_FREE)
5273 *p++ = 'F';
5a896d9e
VN
5274 if (!(s->flags & SLAB_NOTRACK))
5275 *p++ = 't';
81819f0f
CL
5276 if (p != name + 1)
5277 *p++ = '-';
5278 p += sprintf(p, "%07d", s->size);
5279 BUG_ON(p > name + ID_STR_LENGTH - 1);
5280 return name;
5281}
5282
5283static int sysfs_slab_add(struct kmem_cache *s)
5284{
5285 int err;
5286 const char *name;
5287 int unmergeable;
5288
97d06609 5289 if (slab_state < FULL)
81819f0f
CL
5290 /* Defer until later */
5291 return 0;
5292
5293 unmergeable = slab_unmergeable(s);
5294 if (unmergeable) {
5295 /*
5296 * Slabcache can never be merged so we can use the name proper.
5297 * This is typically the case for debug situations. In that
5298 * case we can catch duplicate names easily.
5299 */
27c3a314 5300 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5301 name = s->name;
5302 } else {
5303 /*
5304 * Create a unique name for the slab as a target
5305 * for the symlinks.
5306 */
5307 name = create_unique_id(s);
5308 }
5309
27c3a314 5310 s->kobj.kset = slab_kset;
1eada11c
GKH
5311 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5312 if (err) {
5313 kobject_put(&s->kobj);
81819f0f 5314 return err;
1eada11c 5315 }
81819f0f
CL
5316
5317 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5318 if (err) {
5319 kobject_del(&s->kobj);
5320 kobject_put(&s->kobj);
81819f0f 5321 return err;
5788d8ad 5322 }
81819f0f
CL
5323 kobject_uevent(&s->kobj, KOBJ_ADD);
5324 if (!unmergeable) {
5325 /* Setup first alias */
5326 sysfs_slab_alias(s, s->name);
5327 kfree(name);
5328 }
5329 return 0;
5330}
5331
5332static void sysfs_slab_remove(struct kmem_cache *s)
5333{
97d06609 5334 if (slab_state < FULL)
2bce6485
CL
5335 /*
5336 * Sysfs has not been setup yet so no need to remove the
5337 * cache from sysfs.
5338 */
5339 return;
5340
81819f0f
CL
5341 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5342 kobject_del(&s->kobj);
151c602f 5343 kobject_put(&s->kobj);
81819f0f
CL
5344}
5345
5346/*
5347 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5348 * available lest we lose that information.
81819f0f
CL
5349 */
5350struct saved_alias {
5351 struct kmem_cache *s;
5352 const char *name;
5353 struct saved_alias *next;
5354};
5355
5af328a5 5356static struct saved_alias *alias_list;
81819f0f
CL
5357
5358static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5359{
5360 struct saved_alias *al;
5361
97d06609 5362 if (slab_state == FULL) {
81819f0f
CL
5363 /*
5364 * If we have a leftover link then remove it.
5365 */
27c3a314
GKH
5366 sysfs_remove_link(&slab_kset->kobj, name);
5367 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5368 }
5369
5370 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5371 if (!al)
5372 return -ENOMEM;
5373
5374 al->s = s;
5375 al->name = name;
5376 al->next = alias_list;
5377 alias_list = al;
5378 return 0;
5379}
5380
5381static int __init slab_sysfs_init(void)
5382{
5b95a4ac 5383 struct kmem_cache *s;
81819f0f
CL
5384 int err;
5385
18004c5d 5386 mutex_lock(&slab_mutex);
2bce6485 5387
0ff21e46 5388 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5389 if (!slab_kset) {
18004c5d 5390 mutex_unlock(&slab_mutex);
81819f0f
CL
5391 printk(KERN_ERR "Cannot register slab subsystem.\n");
5392 return -ENOSYS;
5393 }
5394
97d06609 5395 slab_state = FULL;
26a7bd03 5396
5b95a4ac 5397 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5398 err = sysfs_slab_add(s);
5d540fb7
CL
5399 if (err)
5400 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5401 " to sysfs\n", s->name);
26a7bd03 5402 }
81819f0f
CL
5403
5404 while (alias_list) {
5405 struct saved_alias *al = alias_list;
5406
5407 alias_list = alias_list->next;
5408 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5409 if (err)
5410 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5411 " %s to sysfs\n", al->name);
81819f0f
CL
5412 kfree(al);
5413 }
5414
18004c5d 5415 mutex_unlock(&slab_mutex);
81819f0f
CL
5416 resiliency_test();
5417 return 0;
5418}
5419
5420__initcall(slab_sysfs_init);
ab4d5ed5 5421#endif /* CONFIG_SYSFS */
57ed3eda
PE
5422
5423/*
5424 * The /proc/slabinfo ABI
5425 */
158a9624 5426#ifdef CONFIG_SLABINFO
57ed3eda
PE
5427static void print_slabinfo_header(struct seq_file *m)
5428{
5429 seq_puts(m, "slabinfo - version: 2.1\n");
3b0efdfa 5430 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
57ed3eda
PE
5431 "<objperslab> <pagesperslab>");
5432 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5433 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5434 seq_putc(m, '\n');
5435}
5436
5437static void *s_start(struct seq_file *m, loff_t *pos)
5438{
5439 loff_t n = *pos;
5440
18004c5d 5441 mutex_lock(&slab_mutex);
57ed3eda
PE
5442 if (!n)
5443 print_slabinfo_header(m);
5444
5445 return seq_list_start(&slab_caches, *pos);
5446}
5447
5448static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5449{
5450 return seq_list_next(p, &slab_caches, pos);
5451}
5452
5453static void s_stop(struct seq_file *m, void *p)
5454{
18004c5d 5455 mutex_unlock(&slab_mutex);
57ed3eda
PE
5456}
5457
5458static int s_show(struct seq_file *m, void *p)
5459{
5460 unsigned long nr_partials = 0;
5461 unsigned long nr_slabs = 0;
5462 unsigned long nr_inuse = 0;
205ab99d
CL
5463 unsigned long nr_objs = 0;
5464 unsigned long nr_free = 0;
57ed3eda
PE
5465 struct kmem_cache *s;
5466 int node;
5467
5468 s = list_entry(p, struct kmem_cache, list);
5469
5470 for_each_online_node(node) {
5471 struct kmem_cache_node *n = get_node(s, node);
5472
5473 if (!n)
5474 continue;
5475
5476 nr_partials += n->nr_partial;
5477 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5478 nr_objs += atomic_long_read(&n->total_objects);
5479 nr_free += count_partial(n, count_free);
57ed3eda
PE
5480 }
5481
205ab99d 5482 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5483
5484 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5485 nr_objs, s->size, oo_objects(s->oo),
5486 (1 << oo_order(s->oo)));
57ed3eda
PE
5487 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5488 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5489 0UL);
5490 seq_putc(m, '\n');
5491 return 0;
5492}
5493
7b3c3a50 5494static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5495 .start = s_start,
5496 .next = s_next,
5497 .stop = s_stop,
5498 .show = s_show,
5499};
5500
7b3c3a50
AD
5501static int slabinfo_open(struct inode *inode, struct file *file)
5502{
5503 return seq_open(file, &slabinfo_op);
5504}
5505
5506static const struct file_operations proc_slabinfo_operations = {
5507 .open = slabinfo_open,
5508 .read = seq_read,
5509 .llseek = seq_lseek,
5510 .release = seq_release,
5511};
5512
5513static int __init slab_proc_init(void)
5514{
ab067e99 5515 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5516 return 0;
5517}
5518module_init(slab_proc_init);
158a9624 5519#endif /* CONFIG_SLABINFO */