slub: new_slab_objects() can also get objects from partial list
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
7b3c3a50 19#include <linux/proc_fs.h>
81819f0f 20#include <linux/seq_file.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
bfa71457 31#include <linux/stacktrace.h>
4de900b4 32#include <linux/prefetch.h>
81819f0f 33
4a92379b
RK
34#include <trace/events/kmem.h>
35
81819f0f
CL
36/*
37 * Lock order:
881db7fb
CL
38 * 1. slub_lock (Global Semaphore)
39 * 2. node->list_lock
40 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 41 *
881db7fb
CL
42 * slub_lock
43 *
44 * The role of the slub_lock is to protect the list of all the slabs
45 * and to synchronize major metadata changes to slab cache structures.
46 *
47 * The slab_lock is only used for debugging and on arches that do not
48 * have the ability to do a cmpxchg_double. It only protects the second
49 * double word in the page struct. Meaning
50 * A. page->freelist -> List of object free in a page
51 * B. page->counters -> Counters of objects
52 * C. page->frozen -> frozen state
53 *
54 * If a slab is frozen then it is exempt from list management. It is not
55 * on any list. The processor that froze the slab is the one who can
56 * perform list operations on the page. Other processors may put objects
57 * onto the freelist but the processor that froze the slab is the only
58 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
59 *
60 * The list_lock protects the partial and full list on each node and
61 * the partial slab counter. If taken then no new slabs may be added or
62 * removed from the lists nor make the number of partial slabs be modified.
63 * (Note that the total number of slabs is an atomic value that may be
64 * modified without taking the list lock).
65 *
66 * The list_lock is a centralized lock and thus we avoid taking it as
67 * much as possible. As long as SLUB does not have to handle partial
68 * slabs, operations can continue without any centralized lock. F.e.
69 * allocating a long series of objects that fill up slabs does not require
70 * the list lock.
81819f0f
CL
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
75 *
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
78 *
672bba3a
CL
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 81 * freed then the slab will show up again on the partial lists.
672bba3a
CL
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
81819f0f
CL
84 *
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
88 *
89 * Overloading of page flags that are otherwise used for LRU management.
90 *
4b6f0750
CL
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
99 *
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
dfb4f096 103 * freelist that allows lockless access to
894b8788
CL
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
81819f0f
CL
106 *
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
894b8788 109 * the fast path and disables lockless freelists.
81819f0f
CL
110 */
111
af537b0a
CL
112#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 SLAB_TRACE | SLAB_DEBUG_FREE)
114
115static inline int kmem_cache_debug(struct kmem_cache *s)
116{
5577bd8a 117#ifdef CONFIG_SLUB_DEBUG
af537b0a 118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 119#else
af537b0a 120 return 0;
5577bd8a 121#endif
af537b0a 122}
5577bd8a 123
81819f0f
CL
124/*
125 * Issues still to be resolved:
126 *
81819f0f
CL
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
81819f0f
CL
129 * - Variable sizing of the per node arrays
130 */
131
132/* Enable to test recovery from slab corruption on boot */
133#undef SLUB_RESILIENCY_TEST
134
b789ef51
CL
135/* Enable to log cmpxchg failures */
136#undef SLUB_DEBUG_CMPXCHG
137
2086d26a
CL
138/*
139 * Mininum number of partial slabs. These will be left on the partial
140 * lists even if they are empty. kmem_cache_shrink may reclaim them.
141 */
76be8950 142#define MIN_PARTIAL 5
e95eed57 143
2086d26a
CL
144/*
145 * Maximum number of desirable partial slabs.
146 * The existence of more partial slabs makes kmem_cache_shrink
147 * sort the partial list by the number of objects in the.
148 */
149#define MAX_PARTIAL 10
150
81819f0f
CL
151#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
152 SLAB_POISON | SLAB_STORE_USER)
672bba3a 153
fa5ec8a1 154/*
3de47213
DR
155 * Debugging flags that require metadata to be stored in the slab. These get
156 * disabled when slub_debug=O is used and a cache's min order increases with
157 * metadata.
fa5ec8a1 158 */
3de47213 159#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 160
81819f0f
CL
161/*
162 * Set of flags that will prevent slab merging
163 */
164#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
165 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
166 SLAB_FAILSLAB)
81819f0f
CL
167
168#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 169 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 170
210b5c06
CG
171#define OO_SHIFT 16
172#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 173#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 174
81819f0f 175/* Internal SLUB flags */
f90ec390 176#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 177#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
178
179static int kmem_size = sizeof(struct kmem_cache);
180
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
185static enum {
186 DOWN, /* No slab functionality available */
51df1142 187 PARTIAL, /* Kmem_cache_node works */
672bba3a 188 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
189 SYSFS /* Sysfs up */
190} slab_state = DOWN;
191
192/* A list of all slab caches on the system */
193static DECLARE_RWSEM(slub_lock);
5af328a5 194static LIST_HEAD(slab_caches);
81819f0f 195
02cbc874
CL
196/*
197 * Tracking user of a slab.
198 */
d6543e39 199#define TRACK_ADDRS_COUNT 16
02cbc874 200struct track {
ce71e27c 201 unsigned long addr; /* Called from address */
d6543e39
BG
202#ifdef CONFIG_STACKTRACE
203 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
204#endif
02cbc874
CL
205 int cpu; /* Was running on cpu */
206 int pid; /* Pid context */
207 unsigned long when; /* When did the operation occur */
208};
209
210enum track_item { TRACK_ALLOC, TRACK_FREE };
211
ab4d5ed5 212#ifdef CONFIG_SYSFS
81819f0f
CL
213static int sysfs_slab_add(struct kmem_cache *);
214static int sysfs_slab_alias(struct kmem_cache *, const char *);
215static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 216
81819f0f 217#else
0c710013
CL
218static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
219static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
220 { return 0; }
151c602f
CL
221static inline void sysfs_slab_remove(struct kmem_cache *s)
222{
84c1cf62 223 kfree(s->name);
151c602f
CL
224 kfree(s);
225}
8ff12cfc 226
81819f0f
CL
227#endif
228
4fdccdfb 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
230{
231#ifdef CONFIG_SLUB_STATS
84e554e6 232 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
233#endif
234}
235
81819f0f
CL
236/********************************************************************
237 * Core slab cache functions
238 *******************************************************************/
239
240int slab_is_available(void)
241{
242 return slab_state >= UP;
243}
244
245static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
246{
81819f0f 247 return s->node[node];
81819f0f
CL
248}
249
6446faa2 250/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
251static inline int check_valid_pointer(struct kmem_cache *s,
252 struct page *page, const void *object)
253{
254 void *base;
255
a973e9dd 256 if (!object)
02cbc874
CL
257 return 1;
258
a973e9dd 259 base = page_address(page);
39b26464 260 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
261 (object - base) % s->size) {
262 return 0;
263 }
264
265 return 1;
266}
267
7656c72b
CL
268static inline void *get_freepointer(struct kmem_cache *s, void *object)
269{
270 return *(void **)(object + s->offset);
271}
272
0ad9500e
ED
273static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274{
275 prefetch(object + s->offset);
276}
277
1393d9a1
CL
278static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279{
280 void *p;
281
282#ifdef CONFIG_DEBUG_PAGEALLOC
283 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
284#else
285 p = get_freepointer(s, object);
286#endif
287 return p;
288}
289
7656c72b
CL
290static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
291{
292 *(void **)(object + s->offset) = fp;
293}
294
295/* Loop over all objects in a slab */
224a88be
CL
296#define for_each_object(__p, __s, __addr, __objects) \
297 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
298 __p += (__s)->size)
299
7656c72b
CL
300/* Determine object index from a given position */
301static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
302{
303 return (p - addr) / s->size;
304}
305
d71f606f
MK
306static inline size_t slab_ksize(const struct kmem_cache *s)
307{
308#ifdef CONFIG_SLUB_DEBUG
309 /*
310 * Debugging requires use of the padding between object
311 * and whatever may come after it.
312 */
313 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
314 return s->objsize;
315
316#endif
317 /*
318 * If we have the need to store the freelist pointer
319 * back there or track user information then we can
320 * only use the space before that information.
321 */
322 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
323 return s->inuse;
324 /*
325 * Else we can use all the padding etc for the allocation
326 */
327 return s->size;
328}
329
ab9a0f19
LJ
330static inline int order_objects(int order, unsigned long size, int reserved)
331{
332 return ((PAGE_SIZE << order) - reserved) / size;
333}
334
834f3d11 335static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 336 unsigned long size, int reserved)
834f3d11
CL
337{
338 struct kmem_cache_order_objects x = {
ab9a0f19 339 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
340 };
341
342 return x;
343}
344
345static inline int oo_order(struct kmem_cache_order_objects x)
346{
210b5c06 347 return x.x >> OO_SHIFT;
834f3d11
CL
348}
349
350static inline int oo_objects(struct kmem_cache_order_objects x)
351{
210b5c06 352 return x.x & OO_MASK;
834f3d11
CL
353}
354
881db7fb
CL
355/*
356 * Per slab locking using the pagelock
357 */
358static __always_inline void slab_lock(struct page *page)
359{
360 bit_spin_lock(PG_locked, &page->flags);
361}
362
363static __always_inline void slab_unlock(struct page *page)
364{
365 __bit_spin_unlock(PG_locked, &page->flags);
366}
367
1d07171c
CL
368/* Interrupts must be disabled (for the fallback code to work right) */
369static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
370 void *freelist_old, unsigned long counters_old,
371 void *freelist_new, unsigned long counters_new,
372 const char *n)
373{
374 VM_BUG_ON(!irqs_disabled());
2565409f
HC
375#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
376 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 377 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 378 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
379 freelist_old, counters_old,
380 freelist_new, counters_new))
381 return 1;
382 } else
383#endif
384 {
385 slab_lock(page);
386 if (page->freelist == freelist_old && page->counters == counters_old) {
387 page->freelist = freelist_new;
388 page->counters = counters_new;
389 slab_unlock(page);
390 return 1;
391 }
392 slab_unlock(page);
393 }
394
395 cpu_relax();
396 stat(s, CMPXCHG_DOUBLE_FAIL);
397
398#ifdef SLUB_DEBUG_CMPXCHG
399 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
400#endif
401
402 return 0;
403}
404
b789ef51
CL
405static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
406 void *freelist_old, unsigned long counters_old,
407 void *freelist_new, unsigned long counters_new,
408 const char *n)
409{
2565409f
HC
410#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
411 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 412 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 413 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
414 freelist_old, counters_old,
415 freelist_new, counters_new))
416 return 1;
417 } else
418#endif
419 {
1d07171c
CL
420 unsigned long flags;
421
422 local_irq_save(flags);
881db7fb 423 slab_lock(page);
b789ef51
CL
424 if (page->freelist == freelist_old && page->counters == counters_old) {
425 page->freelist = freelist_new;
426 page->counters = counters_new;
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
b789ef51
CL
429 return 1;
430 }
881db7fb 431 slab_unlock(page);
1d07171c 432 local_irq_restore(flags);
b789ef51
CL
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438#ifdef SLUB_DEBUG_CMPXCHG
439 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
440#endif
441
442 return 0;
443}
444
41ecc55b 445#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
446/*
447 * Determine a map of object in use on a page.
448 *
881db7fb 449 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
450 * not vanish from under us.
451 */
452static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453{
454 void *p;
455 void *addr = page_address(page);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
459}
460
41ecc55b
CL
461/*
462 * Debug settings:
463 */
f0630fff
CL
464#ifdef CONFIG_SLUB_DEBUG_ON
465static int slub_debug = DEBUG_DEFAULT_FLAGS;
466#else
41ecc55b 467static int slub_debug;
f0630fff 468#endif
41ecc55b
CL
469
470static char *slub_debug_slabs;
fa5ec8a1 471static int disable_higher_order_debug;
41ecc55b 472
81819f0f
CL
473/*
474 * Object debugging
475 */
476static void print_section(char *text, u8 *addr, unsigned int length)
477{
ffc79d28
SAS
478 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
479 length, 1);
81819f0f
CL
480}
481
81819f0f
CL
482static struct track *get_track(struct kmem_cache *s, void *object,
483 enum track_item alloc)
484{
485 struct track *p;
486
487 if (s->offset)
488 p = object + s->offset + sizeof(void *);
489 else
490 p = object + s->inuse;
491
492 return p + alloc;
493}
494
495static void set_track(struct kmem_cache *s, void *object,
ce71e27c 496 enum track_item alloc, unsigned long addr)
81819f0f 497{
1a00df4a 498 struct track *p = get_track(s, object, alloc);
81819f0f 499
81819f0f 500 if (addr) {
d6543e39
BG
501#ifdef CONFIG_STACKTRACE
502 struct stack_trace trace;
503 int i;
504
505 trace.nr_entries = 0;
506 trace.max_entries = TRACK_ADDRS_COUNT;
507 trace.entries = p->addrs;
508 trace.skip = 3;
509 save_stack_trace(&trace);
510
511 /* See rant in lockdep.c */
512 if (trace.nr_entries != 0 &&
513 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
514 trace.nr_entries--;
515
516 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
517 p->addrs[i] = 0;
518#endif
81819f0f
CL
519 p->addr = addr;
520 p->cpu = smp_processor_id();
88e4ccf2 521 p->pid = current->pid;
81819f0f
CL
522 p->when = jiffies;
523 } else
524 memset(p, 0, sizeof(struct track));
525}
526
81819f0f
CL
527static void init_tracking(struct kmem_cache *s, void *object)
528{
24922684
CL
529 if (!(s->flags & SLAB_STORE_USER))
530 return;
531
ce71e27c
EGM
532 set_track(s, object, TRACK_FREE, 0UL);
533 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
534}
535
536static void print_track(const char *s, struct track *t)
537{
538 if (!t->addr)
539 return;
540
7daf705f 541 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 542 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
543#ifdef CONFIG_STACKTRACE
544 {
545 int i;
546 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
547 if (t->addrs[i])
548 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
549 else
550 break;
551 }
552#endif
24922684
CL
553}
554
555static void print_tracking(struct kmem_cache *s, void *object)
556{
557 if (!(s->flags & SLAB_STORE_USER))
558 return;
559
560 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
561 print_track("Freed", get_track(s, object, TRACK_FREE));
562}
563
564static void print_page_info(struct page *page)
565{
39b26464
CL
566 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
567 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
568
569}
570
571static void slab_bug(struct kmem_cache *s, char *fmt, ...)
572{
573 va_list args;
574 char buf[100];
575
576 va_start(args, fmt);
577 vsnprintf(buf, sizeof(buf), fmt, args);
578 va_end(args);
579 printk(KERN_ERR "========================================"
580 "=====================================\n");
265d47e7 581 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
582 printk(KERN_ERR "----------------------------------------"
583 "-------------------------------------\n\n");
81819f0f
CL
584}
585
24922684
CL
586static void slab_fix(struct kmem_cache *s, char *fmt, ...)
587{
588 va_list args;
589 char buf[100];
590
591 va_start(args, fmt);
592 vsnprintf(buf, sizeof(buf), fmt, args);
593 va_end(args);
594 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
595}
596
597static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
598{
599 unsigned int off; /* Offset of last byte */
a973e9dd 600 u8 *addr = page_address(page);
24922684
CL
601
602 print_tracking(s, p);
603
604 print_page_info(page);
605
606 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
607 p, p - addr, get_freepointer(s, p));
608
609 if (p > addr + 16)
ffc79d28 610 print_section("Bytes b4 ", p - 16, 16);
81819f0f 611
ffc79d28
SAS
612 print_section("Object ", p, min_t(unsigned long, s->objsize,
613 PAGE_SIZE));
81819f0f 614 if (s->flags & SLAB_RED_ZONE)
ffc79d28 615 print_section("Redzone ", p + s->objsize,
81819f0f
CL
616 s->inuse - s->objsize);
617
81819f0f
CL
618 if (s->offset)
619 off = s->offset + sizeof(void *);
620 else
621 off = s->inuse;
622
24922684 623 if (s->flags & SLAB_STORE_USER)
81819f0f 624 off += 2 * sizeof(struct track);
81819f0f
CL
625
626 if (off != s->size)
627 /* Beginning of the filler is the free pointer */
ffc79d28 628 print_section("Padding ", p + off, s->size - off);
24922684
CL
629
630 dump_stack();
81819f0f
CL
631}
632
633static void object_err(struct kmem_cache *s, struct page *page,
634 u8 *object, char *reason)
635{
3dc50637 636 slab_bug(s, "%s", reason);
24922684 637 print_trailer(s, page, object);
81819f0f
CL
638}
639
24922684 640static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
641{
642 va_list args;
643 char buf[100];
644
24922684
CL
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 647 va_end(args);
3dc50637 648 slab_bug(s, "%s", buf);
24922684 649 print_page_info(page);
81819f0f
CL
650 dump_stack();
651}
652
f7cb1933 653static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
654{
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->objsize - 1);
06428780 659 p[s->objsize - 1] = POISON_END;
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
f7cb1933 663 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
664}
665
24922684
CL
666static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668{
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671}
672
673static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
06428780 675 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
676{
677 u8 *fault;
678 u8 *end;
679
79824820 680 fault = memchr_inv(start, value, bytes);
24922684
CL
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
81819f0f
CL
695}
696
81819f0f
CL
697/*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
672bba3a 704 *
81819f0f
CL
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->objsize
709 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
710 * Padding is extended by another word if Redzoning is enabled and
711 * objsize == inuse.
712 *
81819f0f
CL
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
672bba3a
CL
717 * Meta data starts here.
718 *
81819f0f
CL
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
672bba3a 721 * C. Padding to reach required alignment boundary or at mininum
6446faa2 722 * one word if debugging is on to be able to detect writes
672bba3a
CL
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
726 *
727 * object + s->size
672bba3a 728 * Nothing is used beyond s->size.
81819f0f 729 *
672bba3a
CL
730 * If slabcaches are merged then the objsize and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
732 * may be used with merged slabcaches.
733 */
734
81819f0f
CL
735static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736{
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
24922684
CL
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
752}
753
39b26464 754/* Check the pad bytes at the end of a slab page */
81819f0f
CL
755static int slab_pad_check(struct kmem_cache *s, struct page *page)
756{
24922684
CL
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
81819f0f
CL
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
a973e9dd 766 start = page_address(page);
ab9a0f19 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
768 end = start + length;
769 remainder = length % s->size;
81819f0f
CL
770 if (!remainder)
771 return 1;
772
79824820 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 780 print_section("Padding ", end - remainder, remainder);
24922684 781
8a3d271d 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 783 return 0;
81819f0f
CL
784}
785
786static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 787 void *object, u8 val)
81819f0f
CL
788{
789 u8 *p = object;
790 u8 *endobject = object + s->objsize;
791
792 if (s->flags & SLAB_RED_ZONE) {
24922684 793 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 794 endobject, val, s->inuse - s->objsize))
81819f0f 795 return 0;
81819f0f 796 } else {
3adbefee
IM
797 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE, s->inuse - s->objsize);
800 }
81819f0f
CL
801 }
802
803 if (s->flags & SLAB_POISON) {
f7cb1933 804 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
805 (!check_bytes_and_report(s, page, p, "Poison", p,
806 POISON_FREE, s->objsize - 1) ||
807 !check_bytes_and_report(s, page, p, "Poison",
06428780 808 p + s->objsize - 1, POISON_END, 1)))
81819f0f 809 return 0;
81819f0f
CL
810 /*
811 * check_pad_bytes cleans up on its own.
812 */
813 check_pad_bytes(s, page, p);
814 }
815
f7cb1933 816 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
817 /*
818 * Object and freepointer overlap. Cannot check
819 * freepointer while object is allocated.
820 */
821 return 1;
822
823 /* Check free pointer validity */
824 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
825 object_err(s, page, p, "Freepointer corrupt");
826 /*
9f6c708e 827 * No choice but to zap it and thus lose the remainder
81819f0f 828 * of the free objects in this slab. May cause
672bba3a 829 * another error because the object count is now wrong.
81819f0f 830 */
a973e9dd 831 set_freepointer(s, p, NULL);
81819f0f
CL
832 return 0;
833 }
834 return 1;
835}
836
837static int check_slab(struct kmem_cache *s, struct page *page)
838{
39b26464
CL
839 int maxobj;
840
81819f0f
CL
841 VM_BUG_ON(!irqs_disabled());
842
843 if (!PageSlab(page)) {
24922684 844 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
845 return 0;
846 }
39b26464 847
ab9a0f19 848 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
849 if (page->objects > maxobj) {
850 slab_err(s, page, "objects %u > max %u",
851 s->name, page->objects, maxobj);
852 return 0;
853 }
854 if (page->inuse > page->objects) {
24922684 855 slab_err(s, page, "inuse %u > max %u",
39b26464 856 s->name, page->inuse, page->objects);
81819f0f
CL
857 return 0;
858 }
859 /* Slab_pad_check fixes things up after itself */
860 slab_pad_check(s, page);
861 return 1;
862}
863
864/*
672bba3a
CL
865 * Determine if a certain object on a page is on the freelist. Must hold the
866 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
867 */
868static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
869{
870 int nr = 0;
881db7fb 871 void *fp;
81819f0f 872 void *object = NULL;
224a88be 873 unsigned long max_objects;
81819f0f 874
881db7fb 875 fp = page->freelist;
39b26464 876 while (fp && nr <= page->objects) {
81819f0f
CL
877 if (fp == search)
878 return 1;
879 if (!check_valid_pointer(s, page, fp)) {
880 if (object) {
881 object_err(s, page, object,
882 "Freechain corrupt");
a973e9dd 883 set_freepointer(s, object, NULL);
81819f0f
CL
884 break;
885 } else {
24922684 886 slab_err(s, page, "Freepointer corrupt");
a973e9dd 887 page->freelist = NULL;
39b26464 888 page->inuse = page->objects;
24922684 889 slab_fix(s, "Freelist cleared");
81819f0f
CL
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
ab9a0f19 899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
39b26464 909 if (page->inuse != page->objects - nr) {
70d71228 910 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
24922684 913 slab_fix(s, "Object count adjusted.");
81819f0f
CL
914 }
915 return search == NULL;
916}
917
0121c619
CL
918static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
3ec09742
CL
920{
921 if (s->flags & SLAB_TRACE) {
922 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
ffc79d28 929 print_section("Object ", (void *)object, s->objsize);
3ec09742
CL
930
931 dump_stack();
932 }
933}
934
c016b0bd
CL
935/*
936 * Hooks for other subsystems that check memory allocations. In a typical
937 * production configuration these hooks all should produce no code at all.
938 */
939static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
940{
c1d50836 941 flags &= gfp_allowed_mask;
c016b0bd
CL
942 lockdep_trace_alloc(flags);
943 might_sleep_if(flags & __GFP_WAIT);
944
945 return should_failslab(s->objsize, flags, s->flags);
946}
947
948static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
949{
c1d50836 950 flags &= gfp_allowed_mask;
b3d41885 951 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
952 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
953}
954
955static inline void slab_free_hook(struct kmem_cache *s, void *x)
956{
957 kmemleak_free_recursive(x, s->flags);
c016b0bd 958
d3f661d6
CL
959 /*
960 * Trouble is that we may no longer disable interupts in the fast path
961 * So in order to make the debug calls that expect irqs to be
962 * disabled we need to disable interrupts temporarily.
963 */
964#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
965 {
966 unsigned long flags;
967
968 local_irq_save(flags);
969 kmemcheck_slab_free(s, x, s->objsize);
970 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
971 local_irq_restore(flags);
972 }
973#endif
f9b615de
TG
974 if (!(s->flags & SLAB_DEBUG_OBJECTS))
975 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
976}
977
643b1138 978/*
672bba3a 979 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
980 *
981 * list_lock must be held.
643b1138 982 */
5cc6eee8
CL
983static void add_full(struct kmem_cache *s,
984 struct kmem_cache_node *n, struct page *page)
643b1138 985{
5cc6eee8
CL
986 if (!(s->flags & SLAB_STORE_USER))
987 return;
988
643b1138 989 list_add(&page->lru, &n->full);
643b1138
CL
990}
991
5cc6eee8
CL
992/*
993 * list_lock must be held.
994 */
643b1138
CL
995static void remove_full(struct kmem_cache *s, struct page *page)
996{
643b1138
CL
997 if (!(s->flags & SLAB_STORE_USER))
998 return;
999
643b1138 1000 list_del(&page->lru);
643b1138
CL
1001}
1002
0f389ec6
CL
1003/* Tracking of the number of slabs for debugging purposes */
1004static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1005{
1006 struct kmem_cache_node *n = get_node(s, node);
1007
1008 return atomic_long_read(&n->nr_slabs);
1009}
1010
26c02cf0
AB
1011static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1012{
1013 return atomic_long_read(&n->nr_slabs);
1014}
1015
205ab99d 1016static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1017{
1018 struct kmem_cache_node *n = get_node(s, node);
1019
1020 /*
1021 * May be called early in order to allocate a slab for the
1022 * kmem_cache_node structure. Solve the chicken-egg
1023 * dilemma by deferring the increment of the count during
1024 * bootstrap (see early_kmem_cache_node_alloc).
1025 */
7340cc84 1026 if (n) {
0f389ec6 1027 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1028 atomic_long_add(objects, &n->total_objects);
1029 }
0f389ec6 1030}
205ab99d 1031static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1032{
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 atomic_long_dec(&n->nr_slabs);
205ab99d 1036 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1037}
1038
1039/* Object debug checks for alloc/free paths */
3ec09742
CL
1040static void setup_object_debug(struct kmem_cache *s, struct page *page,
1041 void *object)
1042{
1043 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1044 return;
1045
f7cb1933 1046 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1047 init_tracking(s, object);
1048}
1049
1537066c 1050static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1051 void *object, unsigned long addr)
81819f0f
CL
1052{
1053 if (!check_slab(s, page))
1054 goto bad;
1055
81819f0f
CL
1056 if (!check_valid_pointer(s, page, object)) {
1057 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1058 goto bad;
81819f0f
CL
1059 }
1060
f7cb1933 1061 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1062 goto bad;
81819f0f 1063
3ec09742
CL
1064 /* Success perform special debug activities for allocs */
1065 if (s->flags & SLAB_STORE_USER)
1066 set_track(s, object, TRACK_ALLOC, addr);
1067 trace(s, page, object, 1);
f7cb1933 1068 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1069 return 1;
3ec09742 1070
81819f0f
CL
1071bad:
1072 if (PageSlab(page)) {
1073 /*
1074 * If this is a slab page then lets do the best we can
1075 * to avoid issues in the future. Marking all objects
672bba3a 1076 * as used avoids touching the remaining objects.
81819f0f 1077 */
24922684 1078 slab_fix(s, "Marking all objects used");
39b26464 1079 page->inuse = page->objects;
a973e9dd 1080 page->freelist = NULL;
81819f0f
CL
1081 }
1082 return 0;
1083}
1084
1537066c
CL
1085static noinline int free_debug_processing(struct kmem_cache *s,
1086 struct page *page, void *object, unsigned long addr)
81819f0f 1087{
5c2e4bbb
CL
1088 unsigned long flags;
1089 int rc = 0;
1090
1091 local_irq_save(flags);
881db7fb
CL
1092 slab_lock(page);
1093
81819f0f
CL
1094 if (!check_slab(s, page))
1095 goto fail;
1096
1097 if (!check_valid_pointer(s, page, object)) {
70d71228 1098 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1099 goto fail;
1100 }
1101
1102 if (on_freelist(s, page, object)) {
24922684 1103 object_err(s, page, object, "Object already free");
81819f0f
CL
1104 goto fail;
1105 }
1106
f7cb1933 1107 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1108 goto out;
81819f0f
CL
1109
1110 if (unlikely(s != page->slab)) {
3adbefee 1111 if (!PageSlab(page)) {
70d71228
CL
1112 slab_err(s, page, "Attempt to free object(0x%p) "
1113 "outside of slab", object);
3adbefee 1114 } else if (!page->slab) {
81819f0f 1115 printk(KERN_ERR
70d71228 1116 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1117 object);
70d71228 1118 dump_stack();
06428780 1119 } else
24922684
CL
1120 object_err(s, page, object,
1121 "page slab pointer corrupt.");
81819f0f
CL
1122 goto fail;
1123 }
3ec09742 1124
3ec09742
CL
1125 if (s->flags & SLAB_STORE_USER)
1126 set_track(s, object, TRACK_FREE, addr);
1127 trace(s, page, object, 0);
f7cb1933 1128 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1129 rc = 1;
1130out:
881db7fb 1131 slab_unlock(page);
5c2e4bbb
CL
1132 local_irq_restore(flags);
1133 return rc;
3ec09742 1134
81819f0f 1135fail:
24922684 1136 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1137 goto out;
81819f0f
CL
1138}
1139
41ecc55b
CL
1140static int __init setup_slub_debug(char *str)
1141{
f0630fff
CL
1142 slub_debug = DEBUG_DEFAULT_FLAGS;
1143 if (*str++ != '=' || !*str)
1144 /*
1145 * No options specified. Switch on full debugging.
1146 */
1147 goto out;
1148
1149 if (*str == ',')
1150 /*
1151 * No options but restriction on slabs. This means full
1152 * debugging for slabs matching a pattern.
1153 */
1154 goto check_slabs;
1155
fa5ec8a1
DR
1156 if (tolower(*str) == 'o') {
1157 /*
1158 * Avoid enabling debugging on caches if its minimum order
1159 * would increase as a result.
1160 */
1161 disable_higher_order_debug = 1;
1162 goto out;
1163 }
1164
f0630fff
CL
1165 slub_debug = 0;
1166 if (*str == '-')
1167 /*
1168 * Switch off all debugging measures.
1169 */
1170 goto out;
1171
1172 /*
1173 * Determine which debug features should be switched on
1174 */
06428780 1175 for (; *str && *str != ','; str++) {
f0630fff
CL
1176 switch (tolower(*str)) {
1177 case 'f':
1178 slub_debug |= SLAB_DEBUG_FREE;
1179 break;
1180 case 'z':
1181 slub_debug |= SLAB_RED_ZONE;
1182 break;
1183 case 'p':
1184 slub_debug |= SLAB_POISON;
1185 break;
1186 case 'u':
1187 slub_debug |= SLAB_STORE_USER;
1188 break;
1189 case 't':
1190 slub_debug |= SLAB_TRACE;
1191 break;
4c13dd3b
DM
1192 case 'a':
1193 slub_debug |= SLAB_FAILSLAB;
1194 break;
f0630fff
CL
1195 default:
1196 printk(KERN_ERR "slub_debug option '%c' "
06428780 1197 "unknown. skipped\n", *str);
f0630fff 1198 }
41ecc55b
CL
1199 }
1200
f0630fff 1201check_slabs:
41ecc55b
CL
1202 if (*str == ',')
1203 slub_debug_slabs = str + 1;
f0630fff 1204out:
41ecc55b
CL
1205 return 1;
1206}
1207
1208__setup("slub_debug", setup_slub_debug);
1209
ba0268a8
CL
1210static unsigned long kmem_cache_flags(unsigned long objsize,
1211 unsigned long flags, const char *name,
51cc5068 1212 void (*ctor)(void *))
41ecc55b
CL
1213{
1214 /*
e153362a 1215 * Enable debugging if selected on the kernel commandline.
41ecc55b 1216 */
e153362a 1217 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1218 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1219 flags |= slub_debug;
ba0268a8
CL
1220
1221 return flags;
41ecc55b
CL
1222}
1223#else
3ec09742
CL
1224static inline void setup_object_debug(struct kmem_cache *s,
1225 struct page *page, void *object) {}
41ecc55b 1226
3ec09742 1227static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1228 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1229
3ec09742 1230static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1231 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1232
41ecc55b
CL
1233static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1234 { return 1; }
1235static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1236 void *object, u8 val) { return 1; }
5cc6eee8
CL
1237static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1238 struct page *page) {}
2cfb7455 1239static inline void remove_full(struct kmem_cache *s, struct page *page) {}
ba0268a8
CL
1240static inline unsigned long kmem_cache_flags(unsigned long objsize,
1241 unsigned long flags, const char *name,
51cc5068 1242 void (*ctor)(void *))
ba0268a8
CL
1243{
1244 return flags;
1245}
41ecc55b 1246#define slub_debug 0
0f389ec6 1247
fdaa45e9
IM
1248#define disable_higher_order_debug 0
1249
0f389ec6
CL
1250static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1251 { return 0; }
26c02cf0
AB
1252static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1253 { return 0; }
205ab99d
CL
1254static inline void inc_slabs_node(struct kmem_cache *s, int node,
1255 int objects) {}
1256static inline void dec_slabs_node(struct kmem_cache *s, int node,
1257 int objects) {}
7d550c56
CL
1258
1259static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1260 { return 0; }
1261
1262static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1263 void *object) {}
1264
1265static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1266
ab4d5ed5 1267#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1268
81819f0f
CL
1269/*
1270 * Slab allocation and freeing
1271 */
65c3376a
CL
1272static inline struct page *alloc_slab_page(gfp_t flags, int node,
1273 struct kmem_cache_order_objects oo)
1274{
1275 int order = oo_order(oo);
1276
b1eeab67
VN
1277 flags |= __GFP_NOTRACK;
1278
2154a336 1279 if (node == NUMA_NO_NODE)
65c3376a
CL
1280 return alloc_pages(flags, order);
1281 else
6b65aaf3 1282 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1283}
1284
81819f0f
CL
1285static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1286{
06428780 1287 struct page *page;
834f3d11 1288 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1289 gfp_t alloc_gfp;
81819f0f 1290
7e0528da
CL
1291 flags &= gfp_allowed_mask;
1292
1293 if (flags & __GFP_WAIT)
1294 local_irq_enable();
1295
b7a49f0d 1296 flags |= s->allocflags;
e12ba74d 1297
ba52270d
PE
1298 /*
1299 * Let the initial higher-order allocation fail under memory pressure
1300 * so we fall-back to the minimum order allocation.
1301 */
1302 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1303
1304 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1305 if (unlikely(!page)) {
1306 oo = s->min;
1307 /*
1308 * Allocation may have failed due to fragmentation.
1309 * Try a lower order alloc if possible
1310 */
1311 page = alloc_slab_page(flags, node, oo);
81819f0f 1312
7e0528da
CL
1313 if (page)
1314 stat(s, ORDER_FALLBACK);
65c3376a 1315 }
5a896d9e 1316
7e0528da
CL
1317 if (flags & __GFP_WAIT)
1318 local_irq_disable();
1319
1320 if (!page)
1321 return NULL;
1322
5a896d9e 1323 if (kmemcheck_enabled
5086c389 1324 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1325 int pages = 1 << oo_order(oo);
1326
1327 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1328
1329 /*
1330 * Objects from caches that have a constructor don't get
1331 * cleared when they're allocated, so we need to do it here.
1332 */
1333 if (s->ctor)
1334 kmemcheck_mark_uninitialized_pages(page, pages);
1335 else
1336 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1337 }
1338
834f3d11 1339 page->objects = oo_objects(oo);
81819f0f
CL
1340 mod_zone_page_state(page_zone(page),
1341 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1342 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1343 1 << oo_order(oo));
81819f0f
CL
1344
1345 return page;
1346}
1347
1348static void setup_object(struct kmem_cache *s, struct page *page,
1349 void *object)
1350{
3ec09742 1351 setup_object_debug(s, page, object);
4f104934 1352 if (unlikely(s->ctor))
51cc5068 1353 s->ctor(object);
81819f0f
CL
1354}
1355
1356static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1357{
1358 struct page *page;
81819f0f 1359 void *start;
81819f0f
CL
1360 void *last;
1361 void *p;
1362
6cb06229 1363 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1364
6cb06229
CL
1365 page = allocate_slab(s,
1366 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1367 if (!page)
1368 goto out;
1369
205ab99d 1370 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1371 page->slab = s;
1372 page->flags |= 1 << PG_slab;
81819f0f
CL
1373
1374 start = page_address(page);
81819f0f
CL
1375
1376 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1377 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1378
1379 last = start;
224a88be 1380 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1381 setup_object(s, page, last);
1382 set_freepointer(s, last, p);
1383 last = p;
1384 }
1385 setup_object(s, page, last);
a973e9dd 1386 set_freepointer(s, last, NULL);
81819f0f
CL
1387
1388 page->freelist = start;
e6e82ea1 1389 page->inuse = page->objects;
8cb0a506 1390 page->frozen = 1;
81819f0f 1391out:
81819f0f
CL
1392 return page;
1393}
1394
1395static void __free_slab(struct kmem_cache *s, struct page *page)
1396{
834f3d11
CL
1397 int order = compound_order(page);
1398 int pages = 1 << order;
81819f0f 1399
af537b0a 1400 if (kmem_cache_debug(s)) {
81819f0f
CL
1401 void *p;
1402
1403 slab_pad_check(s, page);
224a88be
CL
1404 for_each_object(p, s, page_address(page),
1405 page->objects)
f7cb1933 1406 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1407 }
1408
b1eeab67 1409 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1410
81819f0f
CL
1411 mod_zone_page_state(page_zone(page),
1412 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1413 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1414 -pages);
81819f0f 1415
49bd5221
CL
1416 __ClearPageSlab(page);
1417 reset_page_mapcount(page);
1eb5ac64
NP
1418 if (current->reclaim_state)
1419 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1420 __free_pages(page, order);
81819f0f
CL
1421}
1422
da9a638c
LJ
1423#define need_reserve_slab_rcu \
1424 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1425
81819f0f
CL
1426static void rcu_free_slab(struct rcu_head *h)
1427{
1428 struct page *page;
1429
da9a638c
LJ
1430 if (need_reserve_slab_rcu)
1431 page = virt_to_head_page(h);
1432 else
1433 page = container_of((struct list_head *)h, struct page, lru);
1434
81819f0f
CL
1435 __free_slab(page->slab, page);
1436}
1437
1438static void free_slab(struct kmem_cache *s, struct page *page)
1439{
1440 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1441 struct rcu_head *head;
1442
1443 if (need_reserve_slab_rcu) {
1444 int order = compound_order(page);
1445 int offset = (PAGE_SIZE << order) - s->reserved;
1446
1447 VM_BUG_ON(s->reserved != sizeof(*head));
1448 head = page_address(page) + offset;
1449 } else {
1450 /*
1451 * RCU free overloads the RCU head over the LRU
1452 */
1453 head = (void *)&page->lru;
1454 }
81819f0f
CL
1455
1456 call_rcu(head, rcu_free_slab);
1457 } else
1458 __free_slab(s, page);
1459}
1460
1461static void discard_slab(struct kmem_cache *s, struct page *page)
1462{
205ab99d 1463 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1464 free_slab(s, page);
1465}
1466
1467/*
5cc6eee8
CL
1468 * Management of partially allocated slabs.
1469 *
1470 * list_lock must be held.
81819f0f 1471 */
5cc6eee8 1472static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1473 struct page *page, int tail)
81819f0f 1474{
e95eed57 1475 n->nr_partial++;
136333d1 1476 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1477 list_add_tail(&page->lru, &n->partial);
1478 else
1479 list_add(&page->lru, &n->partial);
81819f0f
CL
1480}
1481
5cc6eee8
CL
1482/*
1483 * list_lock must be held.
1484 */
1485static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1486 struct page *page)
1487{
1488 list_del(&page->lru);
1489 n->nr_partial--;
1490}
1491
81819f0f 1492/*
7ced3719
CL
1493 * Remove slab from the partial list, freeze it and
1494 * return the pointer to the freelist.
81819f0f 1495 *
497b66f2
CL
1496 * Returns a list of objects or NULL if it fails.
1497 *
7ced3719 1498 * Must hold list_lock since we modify the partial list.
81819f0f 1499 */
497b66f2 1500static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1501 struct kmem_cache_node *n, struct page *page,
49e22585 1502 int mode)
81819f0f 1503{
2cfb7455
CL
1504 void *freelist;
1505 unsigned long counters;
1506 struct page new;
1507
2cfb7455
CL
1508 /*
1509 * Zap the freelist and set the frozen bit.
1510 * The old freelist is the list of objects for the
1511 * per cpu allocation list.
1512 */
7ced3719
CL
1513 freelist = page->freelist;
1514 counters = page->counters;
1515 new.counters = counters;
1516 if (mode)
1517 new.inuse = page->objects;
2cfb7455 1518
7ced3719
CL
1519 VM_BUG_ON(new.frozen);
1520 new.frozen = 1;
2cfb7455 1521
7ced3719 1522 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1523 freelist, counters,
1524 NULL, new.counters,
7ced3719
CL
1525 "acquire_slab"))
1526
1527 return NULL;
2cfb7455
CL
1528
1529 remove_partial(n, page);
7ced3719 1530 WARN_ON(!freelist);
49e22585 1531 return freelist;
81819f0f
CL
1532}
1533
49e22585
CL
1534static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1535
81819f0f 1536/*
672bba3a 1537 * Try to allocate a partial slab from a specific node.
81819f0f 1538 */
497b66f2 1539static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1540 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1541{
49e22585
CL
1542 struct page *page, *page2;
1543 void *object = NULL;
81819f0f
CL
1544
1545 /*
1546 * Racy check. If we mistakenly see no partial slabs then we
1547 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1548 * partial slab and there is none available then get_partials()
1549 * will return NULL.
81819f0f
CL
1550 */
1551 if (!n || !n->nr_partial)
1552 return NULL;
1553
1554 spin_lock(&n->list_lock);
49e22585 1555 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1556 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1557 int available;
1558
1559 if (!t)
1560 break;
1561
12d79634 1562 if (!object) {
49e22585
CL
1563 c->page = page;
1564 c->node = page_to_nid(page);
1565 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1566 object = t;
1567 available = page->objects - page->inuse;
1568 } else {
1569 page->freelist = t;
1570 available = put_cpu_partial(s, page, 0);
8028dcea 1571 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1572 }
1573 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1574 break;
1575
497b66f2 1576 }
81819f0f 1577 spin_unlock(&n->list_lock);
497b66f2 1578 return object;
81819f0f
CL
1579}
1580
1581/*
672bba3a 1582 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1583 */
acd19fd1
CL
1584static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
1585 struct kmem_cache_cpu *c)
81819f0f
CL
1586{
1587#ifdef CONFIG_NUMA
1588 struct zonelist *zonelist;
dd1a239f 1589 struct zoneref *z;
54a6eb5c
MG
1590 struct zone *zone;
1591 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1592 void *object;
cc9a6c87 1593 unsigned int cpuset_mems_cookie;
81819f0f
CL
1594
1595 /*
672bba3a
CL
1596 * The defrag ratio allows a configuration of the tradeoffs between
1597 * inter node defragmentation and node local allocations. A lower
1598 * defrag_ratio increases the tendency to do local allocations
1599 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1600 *
672bba3a
CL
1601 * If the defrag_ratio is set to 0 then kmalloc() always
1602 * returns node local objects. If the ratio is higher then kmalloc()
1603 * may return off node objects because partial slabs are obtained
1604 * from other nodes and filled up.
81819f0f 1605 *
6446faa2 1606 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1607 * defrag_ratio = 1000) then every (well almost) allocation will
1608 * first attempt to defrag slab caches on other nodes. This means
1609 * scanning over all nodes to look for partial slabs which may be
1610 * expensive if we do it every time we are trying to find a slab
1611 * with available objects.
81819f0f 1612 */
9824601e
CL
1613 if (!s->remote_node_defrag_ratio ||
1614 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1615 return NULL;
1616
cc9a6c87
MG
1617 do {
1618 cpuset_mems_cookie = get_mems_allowed();
1619 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1620 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1621 struct kmem_cache_node *n;
1622
1623 n = get_node(s, zone_to_nid(zone));
1624
1625 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1626 n->nr_partial > s->min_partial) {
1627 object = get_partial_node(s, n, c);
1628 if (object) {
1629 /*
1630 * Return the object even if
1631 * put_mems_allowed indicated that
1632 * the cpuset mems_allowed was
1633 * updated in parallel. It's a
1634 * harmless race between the alloc
1635 * and the cpuset update.
1636 */
1637 put_mems_allowed(cpuset_mems_cookie);
1638 return object;
1639 }
c0ff7453 1640 }
81819f0f 1641 }
cc9a6c87 1642 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1643#endif
1644 return NULL;
1645}
1646
1647/*
1648 * Get a partial page, lock it and return it.
1649 */
497b66f2 1650static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1651 struct kmem_cache_cpu *c)
81819f0f 1652{
497b66f2 1653 void *object;
2154a336 1654 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1655
497b66f2
CL
1656 object = get_partial_node(s, get_node(s, searchnode), c);
1657 if (object || node != NUMA_NO_NODE)
1658 return object;
81819f0f 1659
acd19fd1 1660 return get_any_partial(s, flags, c);
81819f0f
CL
1661}
1662
8a5ec0ba
CL
1663#ifdef CONFIG_PREEMPT
1664/*
1665 * Calculate the next globally unique transaction for disambiguiation
1666 * during cmpxchg. The transactions start with the cpu number and are then
1667 * incremented by CONFIG_NR_CPUS.
1668 */
1669#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1670#else
1671/*
1672 * No preemption supported therefore also no need to check for
1673 * different cpus.
1674 */
1675#define TID_STEP 1
1676#endif
1677
1678static inline unsigned long next_tid(unsigned long tid)
1679{
1680 return tid + TID_STEP;
1681}
1682
1683static inline unsigned int tid_to_cpu(unsigned long tid)
1684{
1685 return tid % TID_STEP;
1686}
1687
1688static inline unsigned long tid_to_event(unsigned long tid)
1689{
1690 return tid / TID_STEP;
1691}
1692
1693static inline unsigned int init_tid(int cpu)
1694{
1695 return cpu;
1696}
1697
1698static inline void note_cmpxchg_failure(const char *n,
1699 const struct kmem_cache *s, unsigned long tid)
1700{
1701#ifdef SLUB_DEBUG_CMPXCHG
1702 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1703
1704 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1705
1706#ifdef CONFIG_PREEMPT
1707 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1708 printk("due to cpu change %d -> %d\n",
1709 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1710 else
1711#endif
1712 if (tid_to_event(tid) != tid_to_event(actual_tid))
1713 printk("due to cpu running other code. Event %ld->%ld\n",
1714 tid_to_event(tid), tid_to_event(actual_tid));
1715 else
1716 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1717 actual_tid, tid, next_tid(tid));
1718#endif
4fdccdfb 1719 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1720}
1721
8a5ec0ba
CL
1722void init_kmem_cache_cpus(struct kmem_cache *s)
1723{
8a5ec0ba
CL
1724 int cpu;
1725
1726 for_each_possible_cpu(cpu)
1727 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1728}
2cfb7455 1729
81819f0f
CL
1730/*
1731 * Remove the cpu slab
1732 */
dfb4f096 1733static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1734{
2cfb7455 1735 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
dfb4f096 1736 struct page *page = c->page;
2cfb7455
CL
1737 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1738 int lock = 0;
1739 enum slab_modes l = M_NONE, m = M_NONE;
1740 void *freelist;
1741 void *nextfree;
136333d1 1742 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1743 struct page new;
1744 struct page old;
1745
1746 if (page->freelist) {
84e554e6 1747 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1748 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1749 }
1750
1751 c->tid = next_tid(c->tid);
1752 c->page = NULL;
1753 freelist = c->freelist;
1754 c->freelist = NULL;
1755
894b8788 1756 /*
2cfb7455
CL
1757 * Stage one: Free all available per cpu objects back
1758 * to the page freelist while it is still frozen. Leave the
1759 * last one.
1760 *
1761 * There is no need to take the list->lock because the page
1762 * is still frozen.
1763 */
1764 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1765 void *prior;
1766 unsigned long counters;
1767
1768 do {
1769 prior = page->freelist;
1770 counters = page->counters;
1771 set_freepointer(s, freelist, prior);
1772 new.counters = counters;
1773 new.inuse--;
1774 VM_BUG_ON(!new.frozen);
1775
1d07171c 1776 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1777 prior, counters,
1778 freelist, new.counters,
1779 "drain percpu freelist"));
1780
1781 freelist = nextfree;
1782 }
1783
894b8788 1784 /*
2cfb7455
CL
1785 * Stage two: Ensure that the page is unfrozen while the
1786 * list presence reflects the actual number of objects
1787 * during unfreeze.
1788 *
1789 * We setup the list membership and then perform a cmpxchg
1790 * with the count. If there is a mismatch then the page
1791 * is not unfrozen but the page is on the wrong list.
1792 *
1793 * Then we restart the process which may have to remove
1794 * the page from the list that we just put it on again
1795 * because the number of objects in the slab may have
1796 * changed.
894b8788 1797 */
2cfb7455 1798redo:
894b8788 1799
2cfb7455
CL
1800 old.freelist = page->freelist;
1801 old.counters = page->counters;
1802 VM_BUG_ON(!old.frozen);
7c2e132c 1803
2cfb7455
CL
1804 /* Determine target state of the slab */
1805 new.counters = old.counters;
1806 if (freelist) {
1807 new.inuse--;
1808 set_freepointer(s, freelist, old.freelist);
1809 new.freelist = freelist;
1810 } else
1811 new.freelist = old.freelist;
1812
1813 new.frozen = 0;
1814
81107188 1815 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1816 m = M_FREE;
1817 else if (new.freelist) {
1818 m = M_PARTIAL;
1819 if (!lock) {
1820 lock = 1;
1821 /*
1822 * Taking the spinlock removes the possiblity
1823 * that acquire_slab() will see a slab page that
1824 * is frozen
1825 */
1826 spin_lock(&n->list_lock);
1827 }
1828 } else {
1829 m = M_FULL;
1830 if (kmem_cache_debug(s) && !lock) {
1831 lock = 1;
1832 /*
1833 * This also ensures that the scanning of full
1834 * slabs from diagnostic functions will not see
1835 * any frozen slabs.
1836 */
1837 spin_lock(&n->list_lock);
1838 }
1839 }
1840
1841 if (l != m) {
1842
1843 if (l == M_PARTIAL)
1844
1845 remove_partial(n, page);
1846
1847 else if (l == M_FULL)
894b8788 1848
2cfb7455
CL
1849 remove_full(s, page);
1850
1851 if (m == M_PARTIAL) {
1852
1853 add_partial(n, page, tail);
136333d1 1854 stat(s, tail);
2cfb7455
CL
1855
1856 } else if (m == M_FULL) {
894b8788 1857
2cfb7455
CL
1858 stat(s, DEACTIVATE_FULL);
1859 add_full(s, n, page);
1860
1861 }
1862 }
1863
1864 l = m;
1d07171c 1865 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1866 old.freelist, old.counters,
1867 new.freelist, new.counters,
1868 "unfreezing slab"))
1869 goto redo;
1870
2cfb7455
CL
1871 if (lock)
1872 spin_unlock(&n->list_lock);
1873
1874 if (m == M_FREE) {
1875 stat(s, DEACTIVATE_EMPTY);
1876 discard_slab(s, page);
1877 stat(s, FREE_SLAB);
894b8788 1878 }
81819f0f
CL
1879}
1880
49e22585
CL
1881/* Unfreeze all the cpu partial slabs */
1882static void unfreeze_partials(struct kmem_cache *s)
1883{
1884 struct kmem_cache_node *n = NULL;
1885 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1886 struct page *page, *discard_page = NULL;
49e22585
CL
1887
1888 while ((page = c->partial)) {
1889 enum slab_modes { M_PARTIAL, M_FREE };
1890 enum slab_modes l, m;
1891 struct page new;
1892 struct page old;
1893
1894 c->partial = page->next;
1895 l = M_FREE;
1896
1897 do {
1898
1899 old.freelist = page->freelist;
1900 old.counters = page->counters;
1901 VM_BUG_ON(!old.frozen);
1902
1903 new.counters = old.counters;
1904 new.freelist = old.freelist;
1905
1906 new.frozen = 0;
1907
dcc3be6a 1908 if (!new.inuse && (!n || n->nr_partial > s->min_partial))
49e22585
CL
1909 m = M_FREE;
1910 else {
1911 struct kmem_cache_node *n2 = get_node(s,
1912 page_to_nid(page));
1913
1914 m = M_PARTIAL;
1915 if (n != n2) {
1916 if (n)
1917 spin_unlock(&n->list_lock);
1918
1919 n = n2;
1920 spin_lock(&n->list_lock);
1921 }
1922 }
1923
1924 if (l != m) {
4c493a5a 1925 if (l == M_PARTIAL) {
49e22585 1926 remove_partial(n, page);
4c493a5a
SL
1927 stat(s, FREE_REMOVE_PARTIAL);
1928 } else {
f64ae042
SL
1929 add_partial(n, page,
1930 DEACTIVATE_TO_TAIL);
4c493a5a
SL
1931 stat(s, FREE_ADD_PARTIAL);
1932 }
49e22585
CL
1933
1934 l = m;
1935 }
1936
1937 } while (!cmpxchg_double_slab(s, page,
1938 old.freelist, old.counters,
1939 new.freelist, new.counters,
1940 "unfreezing slab"));
1941
1942 if (m == M_FREE) {
9ada1934
SL
1943 page->next = discard_page;
1944 discard_page = page;
49e22585
CL
1945 }
1946 }
1947
1948 if (n)
1949 spin_unlock(&n->list_lock);
9ada1934
SL
1950
1951 while (discard_page) {
1952 page = discard_page;
1953 discard_page = discard_page->next;
1954
1955 stat(s, DEACTIVATE_EMPTY);
1956 discard_slab(s, page);
1957 stat(s, FREE_SLAB);
1958 }
49e22585
CL
1959}
1960
1961/*
1962 * Put a page that was just frozen (in __slab_free) into a partial page
1963 * slot if available. This is done without interrupts disabled and without
1964 * preemption disabled. The cmpxchg is racy and may put the partial page
1965 * onto a random cpus partial slot.
1966 *
1967 * If we did not find a slot then simply move all the partials to the
1968 * per node partial list.
1969 */
1970int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1971{
1972 struct page *oldpage;
1973 int pages;
1974 int pobjects;
1975
1976 do {
1977 pages = 0;
1978 pobjects = 0;
1979 oldpage = this_cpu_read(s->cpu_slab->partial);
1980
1981 if (oldpage) {
1982 pobjects = oldpage->pobjects;
1983 pages = oldpage->pages;
1984 if (drain && pobjects > s->cpu_partial) {
1985 unsigned long flags;
1986 /*
1987 * partial array is full. Move the existing
1988 * set to the per node partial list.
1989 */
1990 local_irq_save(flags);
1991 unfreeze_partials(s);
1992 local_irq_restore(flags);
1993 pobjects = 0;
1994 pages = 0;
8028dcea 1995 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1996 }
1997 }
1998
1999 pages++;
2000 pobjects += page->objects - page->inuse;
2001
2002 page->pages = pages;
2003 page->pobjects = pobjects;
2004 page->next = oldpage;
2005
933393f5 2006 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
2007 return pobjects;
2008}
2009
dfb4f096 2010static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2011{
84e554e6 2012 stat(s, CPUSLAB_FLUSH);
dfb4f096 2013 deactivate_slab(s, c);
81819f0f
CL
2014}
2015
2016/*
2017 * Flush cpu slab.
6446faa2 2018 *
81819f0f
CL
2019 * Called from IPI handler with interrupts disabled.
2020 */
0c710013 2021static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2022{
9dfc6e68 2023 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2024
49e22585
CL
2025 if (likely(c)) {
2026 if (c->page)
2027 flush_slab(s, c);
2028
2029 unfreeze_partials(s);
2030 }
81819f0f
CL
2031}
2032
2033static void flush_cpu_slab(void *d)
2034{
2035 struct kmem_cache *s = d;
81819f0f 2036
dfb4f096 2037 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2038}
2039
a8364d55
GBY
2040static bool has_cpu_slab(int cpu, void *info)
2041{
2042 struct kmem_cache *s = info;
2043 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2044
02e1a9cd 2045 return c->page || c->partial;
a8364d55
GBY
2046}
2047
81819f0f
CL
2048static void flush_all(struct kmem_cache *s)
2049{
a8364d55 2050 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2051}
2052
dfb4f096
CL
2053/*
2054 * Check if the objects in a per cpu structure fit numa
2055 * locality expectations.
2056 */
2057static inline int node_match(struct kmem_cache_cpu *c, int node)
2058{
2059#ifdef CONFIG_NUMA
2154a336 2060 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
2061 return 0;
2062#endif
2063 return 1;
2064}
2065
781b2ba6
PE
2066static int count_free(struct page *page)
2067{
2068 return page->objects - page->inuse;
2069}
2070
2071static unsigned long count_partial(struct kmem_cache_node *n,
2072 int (*get_count)(struct page *))
2073{
2074 unsigned long flags;
2075 unsigned long x = 0;
2076 struct page *page;
2077
2078 spin_lock_irqsave(&n->list_lock, flags);
2079 list_for_each_entry(page, &n->partial, lru)
2080 x += get_count(page);
2081 spin_unlock_irqrestore(&n->list_lock, flags);
2082 return x;
2083}
2084
26c02cf0
AB
2085static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2086{
2087#ifdef CONFIG_SLUB_DEBUG
2088 return atomic_long_read(&n->total_objects);
2089#else
2090 return 0;
2091#endif
2092}
2093
781b2ba6
PE
2094static noinline void
2095slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2096{
2097 int node;
2098
2099 printk(KERN_WARNING
2100 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2101 nid, gfpflags);
2102 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2103 "default order: %d, min order: %d\n", s->name, s->objsize,
2104 s->size, oo_order(s->oo), oo_order(s->min));
2105
fa5ec8a1
DR
2106 if (oo_order(s->min) > get_order(s->objsize))
2107 printk(KERN_WARNING " %s debugging increased min order, use "
2108 "slub_debug=O to disable.\n", s->name);
2109
781b2ba6
PE
2110 for_each_online_node(node) {
2111 struct kmem_cache_node *n = get_node(s, node);
2112 unsigned long nr_slabs;
2113 unsigned long nr_objs;
2114 unsigned long nr_free;
2115
2116 if (!n)
2117 continue;
2118
26c02cf0
AB
2119 nr_free = count_partial(n, count_free);
2120 nr_slabs = node_nr_slabs(n);
2121 nr_objs = node_nr_objs(n);
781b2ba6
PE
2122
2123 printk(KERN_WARNING
2124 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2125 node, nr_slabs, nr_objs, nr_free);
2126 }
2127}
2128
497b66f2
CL
2129static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2130 int node, struct kmem_cache_cpu **pc)
2131{
6faa6833 2132 void *freelist;
188fd063
CL
2133 struct kmem_cache_cpu *c = *pc;
2134 struct page *page;
2135
2136 freelist = get_partial(s, flags, node, c);
497b66f2 2137
188fd063
CL
2138 if (freelist)
2139 return freelist;
2140
2141 page = new_slab(s, flags, node);
497b66f2
CL
2142 if (page) {
2143 c = __this_cpu_ptr(s->cpu_slab);
2144 if (c->page)
2145 flush_slab(s, c);
2146
2147 /*
2148 * No other reference to the page yet so we can
2149 * muck around with it freely without cmpxchg
2150 */
6faa6833 2151 freelist = page->freelist;
497b66f2
CL
2152 page->freelist = NULL;
2153
2154 stat(s, ALLOC_SLAB);
2155 c->node = page_to_nid(page);
2156 c->page = page;
2157 *pc = c;
2158 } else
6faa6833 2159 freelist = NULL;
497b66f2 2160
6faa6833 2161 return freelist;
497b66f2
CL
2162}
2163
213eeb9f
CL
2164/*
2165 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2166 * or deactivate the page.
2167 *
2168 * The page is still frozen if the return value is not NULL.
2169 *
2170 * If this function returns NULL then the page has been unfrozen.
2171 */
2172static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2173{
2174 struct page new;
2175 unsigned long counters;
2176 void *freelist;
2177
2178 do {
2179 freelist = page->freelist;
2180 counters = page->counters;
6faa6833 2181
213eeb9f
CL
2182 new.counters = counters;
2183 VM_BUG_ON(!new.frozen);
2184
2185 new.inuse = page->objects;
2186 new.frozen = freelist != NULL;
2187
2188 } while (!cmpxchg_double_slab(s, page,
2189 freelist, counters,
2190 NULL, new.counters,
2191 "get_freelist"));
2192
2193 return freelist;
2194}
2195
81819f0f 2196/*
894b8788
CL
2197 * Slow path. The lockless freelist is empty or we need to perform
2198 * debugging duties.
2199 *
894b8788
CL
2200 * Processing is still very fast if new objects have been freed to the
2201 * regular freelist. In that case we simply take over the regular freelist
2202 * as the lockless freelist and zap the regular freelist.
81819f0f 2203 *
894b8788
CL
2204 * If that is not working then we fall back to the partial lists. We take the
2205 * first element of the freelist as the object to allocate now and move the
2206 * rest of the freelist to the lockless freelist.
81819f0f 2207 *
894b8788 2208 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2209 * we need to allocate a new slab. This is the slowest path since it involves
2210 * a call to the page allocator and the setup of a new slab.
81819f0f 2211 */
ce71e27c
EGM
2212static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2213 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2214{
6faa6833 2215 void *freelist;
8a5ec0ba
CL
2216 unsigned long flags;
2217
2218 local_irq_save(flags);
2219#ifdef CONFIG_PREEMPT
2220 /*
2221 * We may have been preempted and rescheduled on a different
2222 * cpu before disabling interrupts. Need to reload cpu area
2223 * pointer.
2224 */
2225 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2226#endif
81819f0f 2227
497b66f2 2228 if (!c->page)
81819f0f 2229 goto new_slab;
49e22585 2230redo:
6faa6833 2231
fc59c053 2232 if (unlikely(!node_match(c, node))) {
e36a2652 2233 stat(s, ALLOC_NODE_MISMATCH);
fc59c053
CL
2234 deactivate_slab(s, c);
2235 goto new_slab;
2236 }
6446faa2 2237
73736e03 2238 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2239 freelist = c->freelist;
2240 if (freelist)
73736e03 2241 goto load_freelist;
03e404af 2242
2cfb7455 2243 stat(s, ALLOC_SLOWPATH);
03e404af 2244
6faa6833 2245 freelist = get_freelist(s, c->page);
6446faa2 2246
6faa6833 2247 if (!freelist) {
03e404af
CL
2248 c->page = NULL;
2249 stat(s, DEACTIVATE_BYPASS);
fc59c053 2250 goto new_slab;
03e404af 2251 }
6446faa2 2252
84e554e6 2253 stat(s, ALLOC_REFILL);
6446faa2 2254
894b8788 2255load_freelist:
507effea
CL
2256 /*
2257 * freelist is pointing to the list of objects to be used.
2258 * page is pointing to the page from which the objects are obtained.
2259 * That page must be frozen for per cpu allocations to work.
2260 */
2261 VM_BUG_ON(!c->page->frozen);
6faa6833 2262 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2263 c->tid = next_tid(c->tid);
2264 local_irq_restore(flags);
6faa6833 2265 return freelist;
81819f0f 2266
81819f0f 2267new_slab:
2cfb7455 2268
49e22585
CL
2269 if (c->partial) {
2270 c->page = c->partial;
2271 c->partial = c->page->next;
2272 c->node = page_to_nid(c->page);
2273 stat(s, CPU_PARTIAL_ALLOC);
2274 c->freelist = NULL;
2275 goto redo;
81819f0f
CL
2276 }
2277
188fd063 2278 freelist = new_slab_objects(s, gfpflags, node, &c);
2cfb7455 2279
f4697436
CL
2280 if (unlikely(!freelist)) {
2281 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2282 slab_out_of_memory(s, gfpflags, node);
9e577e8b 2283
f4697436
CL
2284 local_irq_restore(flags);
2285 return NULL;
81819f0f 2286 }
2cfb7455 2287
497b66f2 2288 if (likely(!kmem_cache_debug(s)))
4b6f0750 2289 goto load_freelist;
2cfb7455 2290
497b66f2 2291 /* Only entered in the debug case */
6faa6833 2292 if (!alloc_debug_processing(s, c->page, freelist, addr))
497b66f2 2293 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2294
6faa6833 2295 c->freelist = get_freepointer(s, freelist);
442b06bc 2296 deactivate_slab(s, c);
15b7c514 2297 c->node = NUMA_NO_NODE;
a71ae47a 2298 local_irq_restore(flags);
6faa6833 2299 return freelist;
894b8788
CL
2300}
2301
2302/*
2303 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2304 * have the fastpath folded into their functions. So no function call
2305 * overhead for requests that can be satisfied on the fastpath.
2306 *
2307 * The fastpath works by first checking if the lockless freelist can be used.
2308 * If not then __slab_alloc is called for slow processing.
2309 *
2310 * Otherwise we can simply pick the next object from the lockless free list.
2311 */
06428780 2312static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2313 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2314{
894b8788 2315 void **object;
dfb4f096 2316 struct kmem_cache_cpu *c;
8a5ec0ba 2317 unsigned long tid;
1f84260c 2318
c016b0bd 2319 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2320 return NULL;
1f84260c 2321
8a5ec0ba 2322redo:
8a5ec0ba
CL
2323
2324 /*
2325 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2326 * enabled. We may switch back and forth between cpus while
2327 * reading from one cpu area. That does not matter as long
2328 * as we end up on the original cpu again when doing the cmpxchg.
2329 */
9dfc6e68 2330 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2331
8a5ec0ba
CL
2332 /*
2333 * The transaction ids are globally unique per cpu and per operation on
2334 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2335 * occurs on the right processor and that there was no operation on the
2336 * linked list in between.
2337 */
2338 tid = c->tid;
2339 barrier();
8a5ec0ba 2340
9dfc6e68 2341 object = c->freelist;
9dfc6e68 2342 if (unlikely(!object || !node_match(c, node)))
894b8788 2343
dfb4f096 2344 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2345
2346 else {
0ad9500e
ED
2347 void *next_object = get_freepointer_safe(s, object);
2348
8a5ec0ba 2349 /*
25985edc 2350 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2351 * operation and if we are on the right processor.
2352 *
2353 * The cmpxchg does the following atomically (without lock semantics!)
2354 * 1. Relocate first pointer to the current per cpu area.
2355 * 2. Verify that tid and freelist have not been changed
2356 * 3. If they were not changed replace tid and freelist
2357 *
2358 * Since this is without lock semantics the protection is only against
2359 * code executing on this cpu *not* from access by other cpus.
2360 */
933393f5 2361 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2362 s->cpu_slab->freelist, s->cpu_slab->tid,
2363 object, tid,
0ad9500e 2364 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2365
2366 note_cmpxchg_failure("slab_alloc", s, tid);
2367 goto redo;
2368 }
0ad9500e 2369 prefetch_freepointer(s, next_object);
84e554e6 2370 stat(s, ALLOC_FASTPATH);
894b8788 2371 }
8a5ec0ba 2372
74e2134f 2373 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2374 memset(object, 0, s->objsize);
d07dbea4 2375
c016b0bd 2376 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2377
894b8788 2378 return object;
81819f0f
CL
2379}
2380
2381void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2382{
2154a336 2383 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2384
ca2b84cb 2385 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2386
2387 return ret;
81819f0f
CL
2388}
2389EXPORT_SYMBOL(kmem_cache_alloc);
2390
0f24f128 2391#ifdef CONFIG_TRACING
4a92379b
RK
2392void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2393{
2394 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2395 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2396 return ret;
2397}
2398EXPORT_SYMBOL(kmem_cache_alloc_trace);
2399
2400void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2401{
4a92379b
RK
2402 void *ret = kmalloc_order(size, flags, order);
2403 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2404 return ret;
5b882be4 2405}
4a92379b 2406EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2407#endif
2408
81819f0f
CL
2409#ifdef CONFIG_NUMA
2410void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2411{
5b882be4
EGM
2412 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2413
ca2b84cb
EGM
2414 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2415 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2416
2417 return ret;
81819f0f
CL
2418}
2419EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2420
0f24f128 2421#ifdef CONFIG_TRACING
4a92379b 2422void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2423 gfp_t gfpflags,
4a92379b 2424 int node, size_t size)
5b882be4 2425{
4a92379b
RK
2426 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2427
2428 trace_kmalloc_node(_RET_IP_, ret,
2429 size, s->size, gfpflags, node);
2430 return ret;
5b882be4 2431}
4a92379b 2432EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2433#endif
5d1f57e4 2434#endif
5b882be4 2435
81819f0f 2436/*
894b8788
CL
2437 * Slow patch handling. This may still be called frequently since objects
2438 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2439 *
894b8788
CL
2440 * So we still attempt to reduce cache line usage. Just take the slab
2441 * lock and free the item. If there is no additional partial page
2442 * handling required then we can return immediately.
81819f0f 2443 */
894b8788 2444static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2445 void *x, unsigned long addr)
81819f0f
CL
2446{
2447 void *prior;
2448 void **object = (void *)x;
2cfb7455
CL
2449 int was_frozen;
2450 int inuse;
2451 struct page new;
2452 unsigned long counters;
2453 struct kmem_cache_node *n = NULL;
61728d1e 2454 unsigned long uninitialized_var(flags);
81819f0f 2455
8a5ec0ba 2456 stat(s, FREE_SLOWPATH);
81819f0f 2457
8dc16c6c 2458 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2459 return;
6446faa2 2460
2cfb7455
CL
2461 do {
2462 prior = page->freelist;
2463 counters = page->counters;
2464 set_freepointer(s, object, prior);
2465 new.counters = counters;
2466 was_frozen = new.frozen;
2467 new.inuse--;
2468 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2469
2470 if (!kmem_cache_debug(s) && !prior)
2471
2472 /*
2473 * Slab was on no list before and will be partially empty
2474 * We can defer the list move and instead freeze it.
2475 */
2476 new.frozen = 1;
2477
2478 else { /* Needs to be taken off a list */
2479
2480 n = get_node(s, page_to_nid(page));
2481 /*
2482 * Speculatively acquire the list_lock.
2483 * If the cmpxchg does not succeed then we may
2484 * drop the list_lock without any processing.
2485 *
2486 * Otherwise the list_lock will synchronize with
2487 * other processors updating the list of slabs.
2488 */
2489 spin_lock_irqsave(&n->list_lock, flags);
2490
2491 }
2cfb7455
CL
2492 }
2493 inuse = new.inuse;
81819f0f 2494
2cfb7455
CL
2495 } while (!cmpxchg_double_slab(s, page,
2496 prior, counters,
2497 object, new.counters,
2498 "__slab_free"));
81819f0f 2499
2cfb7455 2500 if (likely(!n)) {
49e22585
CL
2501
2502 /*
2503 * If we just froze the page then put it onto the
2504 * per cpu partial list.
2505 */
8028dcea 2506 if (new.frozen && !was_frozen) {
49e22585 2507 put_cpu_partial(s, page, 1);
8028dcea
AS
2508 stat(s, CPU_PARTIAL_FREE);
2509 }
49e22585 2510 /*
2cfb7455
CL
2511 * The list lock was not taken therefore no list
2512 * activity can be necessary.
2513 */
2514 if (was_frozen)
2515 stat(s, FREE_FROZEN);
80f08c19 2516 return;
2cfb7455 2517 }
81819f0f
CL
2518
2519 /*
2cfb7455
CL
2520 * was_frozen may have been set after we acquired the list_lock in
2521 * an earlier loop. So we need to check it here again.
81819f0f 2522 */
2cfb7455
CL
2523 if (was_frozen)
2524 stat(s, FREE_FROZEN);
2525 else {
2526 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2527 goto slab_empty;
81819f0f 2528
2cfb7455
CL
2529 /*
2530 * Objects left in the slab. If it was not on the partial list before
2531 * then add it.
2532 */
2533 if (unlikely(!prior)) {
2534 remove_full(s, page);
136333d1 2535 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2536 stat(s, FREE_ADD_PARTIAL);
2537 }
8ff12cfc 2538 }
80f08c19 2539 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2540 return;
2541
2542slab_empty:
a973e9dd 2543 if (prior) {
81819f0f 2544 /*
6fbabb20 2545 * Slab on the partial list.
81819f0f 2546 */
5cc6eee8 2547 remove_partial(n, page);
84e554e6 2548 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2549 } else
2550 /* Slab must be on the full list */
2551 remove_full(s, page);
2cfb7455 2552
80f08c19 2553 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2554 stat(s, FREE_SLAB);
81819f0f 2555 discard_slab(s, page);
81819f0f
CL
2556}
2557
894b8788
CL
2558/*
2559 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2560 * can perform fastpath freeing without additional function calls.
2561 *
2562 * The fastpath is only possible if we are freeing to the current cpu slab
2563 * of this processor. This typically the case if we have just allocated
2564 * the item before.
2565 *
2566 * If fastpath is not possible then fall back to __slab_free where we deal
2567 * with all sorts of special processing.
2568 */
06428780 2569static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2570 struct page *page, void *x, unsigned long addr)
894b8788
CL
2571{
2572 void **object = (void *)x;
dfb4f096 2573 struct kmem_cache_cpu *c;
8a5ec0ba 2574 unsigned long tid;
1f84260c 2575
c016b0bd
CL
2576 slab_free_hook(s, x);
2577
8a5ec0ba
CL
2578redo:
2579 /*
2580 * Determine the currently cpus per cpu slab.
2581 * The cpu may change afterward. However that does not matter since
2582 * data is retrieved via this pointer. If we are on the same cpu
2583 * during the cmpxchg then the free will succedd.
2584 */
9dfc6e68 2585 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2586
8a5ec0ba
CL
2587 tid = c->tid;
2588 barrier();
c016b0bd 2589
442b06bc 2590 if (likely(page == c->page)) {
ff12059e 2591 set_freepointer(s, object, c->freelist);
8a5ec0ba 2592
933393f5 2593 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2594 s->cpu_slab->freelist, s->cpu_slab->tid,
2595 c->freelist, tid,
2596 object, next_tid(tid)))) {
2597
2598 note_cmpxchg_failure("slab_free", s, tid);
2599 goto redo;
2600 }
84e554e6 2601 stat(s, FREE_FASTPATH);
894b8788 2602 } else
ff12059e 2603 __slab_free(s, page, x, addr);
894b8788 2604
894b8788
CL
2605}
2606
81819f0f
CL
2607void kmem_cache_free(struct kmem_cache *s, void *x)
2608{
77c5e2d0 2609 struct page *page;
81819f0f 2610
b49af68f 2611 page = virt_to_head_page(x);
81819f0f 2612
ce71e27c 2613 slab_free(s, page, x, _RET_IP_);
5b882be4 2614
ca2b84cb 2615 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2616}
2617EXPORT_SYMBOL(kmem_cache_free);
2618
81819f0f 2619/*
672bba3a
CL
2620 * Object placement in a slab is made very easy because we always start at
2621 * offset 0. If we tune the size of the object to the alignment then we can
2622 * get the required alignment by putting one properly sized object after
2623 * another.
81819f0f
CL
2624 *
2625 * Notice that the allocation order determines the sizes of the per cpu
2626 * caches. Each processor has always one slab available for allocations.
2627 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2628 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2629 * locking overhead.
81819f0f
CL
2630 */
2631
2632/*
2633 * Mininum / Maximum order of slab pages. This influences locking overhead
2634 * and slab fragmentation. A higher order reduces the number of partial slabs
2635 * and increases the number of allocations possible without having to
2636 * take the list_lock.
2637 */
2638static int slub_min_order;
114e9e89 2639static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2640static int slub_min_objects;
81819f0f
CL
2641
2642/*
2643 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2644 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2645 */
2646static int slub_nomerge;
2647
81819f0f
CL
2648/*
2649 * Calculate the order of allocation given an slab object size.
2650 *
672bba3a
CL
2651 * The order of allocation has significant impact on performance and other
2652 * system components. Generally order 0 allocations should be preferred since
2653 * order 0 does not cause fragmentation in the page allocator. Larger objects
2654 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2655 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2656 * would be wasted.
2657 *
2658 * In order to reach satisfactory performance we must ensure that a minimum
2659 * number of objects is in one slab. Otherwise we may generate too much
2660 * activity on the partial lists which requires taking the list_lock. This is
2661 * less a concern for large slabs though which are rarely used.
81819f0f 2662 *
672bba3a
CL
2663 * slub_max_order specifies the order where we begin to stop considering the
2664 * number of objects in a slab as critical. If we reach slub_max_order then
2665 * we try to keep the page order as low as possible. So we accept more waste
2666 * of space in favor of a small page order.
81819f0f 2667 *
672bba3a
CL
2668 * Higher order allocations also allow the placement of more objects in a
2669 * slab and thereby reduce object handling overhead. If the user has
2670 * requested a higher mininum order then we start with that one instead of
2671 * the smallest order which will fit the object.
81819f0f 2672 */
5e6d444e 2673static inline int slab_order(int size, int min_objects,
ab9a0f19 2674 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2675{
2676 int order;
2677 int rem;
6300ea75 2678 int min_order = slub_min_order;
81819f0f 2679
ab9a0f19 2680 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2681 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2682
6300ea75 2683 for (order = max(min_order,
5e6d444e
CL
2684 fls(min_objects * size - 1) - PAGE_SHIFT);
2685 order <= max_order; order++) {
81819f0f 2686
5e6d444e 2687 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2688
ab9a0f19 2689 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2690 continue;
2691
ab9a0f19 2692 rem = (slab_size - reserved) % size;
81819f0f 2693
5e6d444e 2694 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2695 break;
2696
2697 }
672bba3a 2698
81819f0f
CL
2699 return order;
2700}
2701
ab9a0f19 2702static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2703{
2704 int order;
2705 int min_objects;
2706 int fraction;
e8120ff1 2707 int max_objects;
5e6d444e
CL
2708
2709 /*
2710 * Attempt to find best configuration for a slab. This
2711 * works by first attempting to generate a layout with
2712 * the best configuration and backing off gradually.
2713 *
2714 * First we reduce the acceptable waste in a slab. Then
2715 * we reduce the minimum objects required in a slab.
2716 */
2717 min_objects = slub_min_objects;
9b2cd506
CL
2718 if (!min_objects)
2719 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2720 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2721 min_objects = min(min_objects, max_objects);
2722
5e6d444e 2723 while (min_objects > 1) {
c124f5b5 2724 fraction = 16;
5e6d444e
CL
2725 while (fraction >= 4) {
2726 order = slab_order(size, min_objects,
ab9a0f19 2727 slub_max_order, fraction, reserved);
5e6d444e
CL
2728 if (order <= slub_max_order)
2729 return order;
2730 fraction /= 2;
2731 }
5086c389 2732 min_objects--;
5e6d444e
CL
2733 }
2734
2735 /*
2736 * We were unable to place multiple objects in a slab. Now
2737 * lets see if we can place a single object there.
2738 */
ab9a0f19 2739 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2740 if (order <= slub_max_order)
2741 return order;
2742
2743 /*
2744 * Doh this slab cannot be placed using slub_max_order.
2745 */
ab9a0f19 2746 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2747 if (order < MAX_ORDER)
5e6d444e
CL
2748 return order;
2749 return -ENOSYS;
2750}
2751
81819f0f 2752/*
672bba3a 2753 * Figure out what the alignment of the objects will be.
81819f0f
CL
2754 */
2755static unsigned long calculate_alignment(unsigned long flags,
2756 unsigned long align, unsigned long size)
2757{
2758 /*
6446faa2
CL
2759 * If the user wants hardware cache aligned objects then follow that
2760 * suggestion if the object is sufficiently large.
81819f0f 2761 *
6446faa2
CL
2762 * The hardware cache alignment cannot override the specified
2763 * alignment though. If that is greater then use it.
81819f0f 2764 */
b6210386
NP
2765 if (flags & SLAB_HWCACHE_ALIGN) {
2766 unsigned long ralign = cache_line_size();
2767 while (size <= ralign / 2)
2768 ralign /= 2;
2769 align = max(align, ralign);
2770 }
81819f0f
CL
2771
2772 if (align < ARCH_SLAB_MINALIGN)
b6210386 2773 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2774
2775 return ALIGN(align, sizeof(void *));
2776}
2777
5595cffc
PE
2778static void
2779init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2780{
2781 n->nr_partial = 0;
81819f0f
CL
2782 spin_lock_init(&n->list_lock);
2783 INIT_LIST_HEAD(&n->partial);
8ab1372f 2784#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2785 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2786 atomic_long_set(&n->total_objects, 0);
643b1138 2787 INIT_LIST_HEAD(&n->full);
8ab1372f 2788#endif
81819f0f
CL
2789}
2790
55136592 2791static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2792{
6c182dc0
CL
2793 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2794 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2795
8a5ec0ba 2796 /*
d4d84fef
CM
2797 * Must align to double word boundary for the double cmpxchg
2798 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2799 */
d4d84fef
CM
2800 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2801 2 * sizeof(void *));
8a5ec0ba
CL
2802
2803 if (!s->cpu_slab)
2804 return 0;
2805
2806 init_kmem_cache_cpus(s);
4c93c355 2807
8a5ec0ba 2808 return 1;
4c93c355 2809}
4c93c355 2810
51df1142
CL
2811static struct kmem_cache *kmem_cache_node;
2812
81819f0f
CL
2813/*
2814 * No kmalloc_node yet so do it by hand. We know that this is the first
2815 * slab on the node for this slabcache. There are no concurrent accesses
2816 * possible.
2817 *
2818 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2819 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2820 * memory on a fresh node that has no slab structures yet.
81819f0f 2821 */
55136592 2822static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2823{
2824 struct page *page;
2825 struct kmem_cache_node *n;
2826
51df1142 2827 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2828
51df1142 2829 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2830
2831 BUG_ON(!page);
a2f92ee7
CL
2832 if (page_to_nid(page) != node) {
2833 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2834 "node %d\n", node);
2835 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2836 "in order to be able to continue\n");
2837 }
2838
81819f0f
CL
2839 n = page->freelist;
2840 BUG_ON(!n);
51df1142 2841 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2842 page->inuse = 1;
8cb0a506 2843 page->frozen = 0;
51df1142 2844 kmem_cache_node->node[node] = n;
8ab1372f 2845#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2846 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2847 init_tracking(kmem_cache_node, n);
8ab1372f 2848#endif
51df1142
CL
2849 init_kmem_cache_node(n, kmem_cache_node);
2850 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2851
136333d1 2852 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2853}
2854
2855static void free_kmem_cache_nodes(struct kmem_cache *s)
2856{
2857 int node;
2858
f64dc58c 2859 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2860 struct kmem_cache_node *n = s->node[node];
51df1142 2861
73367bd8 2862 if (n)
51df1142
CL
2863 kmem_cache_free(kmem_cache_node, n);
2864
81819f0f
CL
2865 s->node[node] = NULL;
2866 }
2867}
2868
55136592 2869static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2870{
2871 int node;
81819f0f 2872
f64dc58c 2873 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2874 struct kmem_cache_node *n;
2875
73367bd8 2876 if (slab_state == DOWN) {
55136592 2877 early_kmem_cache_node_alloc(node);
73367bd8
AD
2878 continue;
2879 }
51df1142 2880 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2881 GFP_KERNEL, node);
81819f0f 2882
73367bd8
AD
2883 if (!n) {
2884 free_kmem_cache_nodes(s);
2885 return 0;
81819f0f 2886 }
73367bd8 2887
81819f0f 2888 s->node[node] = n;
5595cffc 2889 init_kmem_cache_node(n, s);
81819f0f
CL
2890 }
2891 return 1;
2892}
81819f0f 2893
c0bdb232 2894static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2895{
2896 if (min < MIN_PARTIAL)
2897 min = MIN_PARTIAL;
2898 else if (min > MAX_PARTIAL)
2899 min = MAX_PARTIAL;
2900 s->min_partial = min;
2901}
2902
81819f0f
CL
2903/*
2904 * calculate_sizes() determines the order and the distribution of data within
2905 * a slab object.
2906 */
06b285dc 2907static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2908{
2909 unsigned long flags = s->flags;
2910 unsigned long size = s->objsize;
2911 unsigned long align = s->align;
834f3d11 2912 int order;
81819f0f 2913
d8b42bf5
CL
2914 /*
2915 * Round up object size to the next word boundary. We can only
2916 * place the free pointer at word boundaries and this determines
2917 * the possible location of the free pointer.
2918 */
2919 size = ALIGN(size, sizeof(void *));
2920
2921#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2922 /*
2923 * Determine if we can poison the object itself. If the user of
2924 * the slab may touch the object after free or before allocation
2925 * then we should never poison the object itself.
2926 */
2927 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2928 !s->ctor)
81819f0f
CL
2929 s->flags |= __OBJECT_POISON;
2930 else
2931 s->flags &= ~__OBJECT_POISON;
2932
81819f0f
CL
2933
2934 /*
672bba3a 2935 * If we are Redzoning then check if there is some space between the
81819f0f 2936 * end of the object and the free pointer. If not then add an
672bba3a 2937 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2938 */
2939 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2940 size += sizeof(void *);
41ecc55b 2941#endif
81819f0f
CL
2942
2943 /*
672bba3a
CL
2944 * With that we have determined the number of bytes in actual use
2945 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2946 */
2947 s->inuse = size;
2948
2949 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2950 s->ctor)) {
81819f0f
CL
2951 /*
2952 * Relocate free pointer after the object if it is not
2953 * permitted to overwrite the first word of the object on
2954 * kmem_cache_free.
2955 *
2956 * This is the case if we do RCU, have a constructor or
2957 * destructor or are poisoning the objects.
2958 */
2959 s->offset = size;
2960 size += sizeof(void *);
2961 }
2962
c12b3c62 2963#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2964 if (flags & SLAB_STORE_USER)
2965 /*
2966 * Need to store information about allocs and frees after
2967 * the object.
2968 */
2969 size += 2 * sizeof(struct track);
2970
be7b3fbc 2971 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2972 /*
2973 * Add some empty padding so that we can catch
2974 * overwrites from earlier objects rather than let
2975 * tracking information or the free pointer be
0211a9c8 2976 * corrupted if a user writes before the start
81819f0f
CL
2977 * of the object.
2978 */
2979 size += sizeof(void *);
41ecc55b 2980#endif
672bba3a 2981
81819f0f
CL
2982 /*
2983 * Determine the alignment based on various parameters that the
65c02d4c
CL
2984 * user specified and the dynamic determination of cache line size
2985 * on bootup.
81819f0f
CL
2986 */
2987 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2988 s->align = align;
81819f0f
CL
2989
2990 /*
2991 * SLUB stores one object immediately after another beginning from
2992 * offset 0. In order to align the objects we have to simply size
2993 * each object to conform to the alignment.
2994 */
2995 size = ALIGN(size, align);
2996 s->size = size;
06b285dc
CL
2997 if (forced_order >= 0)
2998 order = forced_order;
2999 else
ab9a0f19 3000 order = calculate_order(size, s->reserved);
81819f0f 3001
834f3d11 3002 if (order < 0)
81819f0f
CL
3003 return 0;
3004
b7a49f0d 3005 s->allocflags = 0;
834f3d11 3006 if (order)
b7a49f0d
CL
3007 s->allocflags |= __GFP_COMP;
3008
3009 if (s->flags & SLAB_CACHE_DMA)
3010 s->allocflags |= SLUB_DMA;
3011
3012 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3013 s->allocflags |= __GFP_RECLAIMABLE;
3014
81819f0f
CL
3015 /*
3016 * Determine the number of objects per slab
3017 */
ab9a0f19
LJ
3018 s->oo = oo_make(order, size, s->reserved);
3019 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3020 if (oo_objects(s->oo) > oo_objects(s->max))
3021 s->max = s->oo;
81819f0f 3022
834f3d11 3023 return !!oo_objects(s->oo);
81819f0f
CL
3024
3025}
3026
55136592 3027static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
3028 const char *name, size_t size,
3029 size_t align, unsigned long flags,
51cc5068 3030 void (*ctor)(void *))
81819f0f
CL
3031{
3032 memset(s, 0, kmem_size);
3033 s->name = name;
3034 s->ctor = ctor;
81819f0f 3035 s->objsize = size;
81819f0f 3036 s->align = align;
ba0268a8 3037 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3038 s->reserved = 0;
81819f0f 3039
da9a638c
LJ
3040 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3041 s->reserved = sizeof(struct rcu_head);
81819f0f 3042
06b285dc 3043 if (!calculate_sizes(s, -1))
81819f0f 3044 goto error;
3de47213
DR
3045 if (disable_higher_order_debug) {
3046 /*
3047 * Disable debugging flags that store metadata if the min slab
3048 * order increased.
3049 */
3050 if (get_order(s->size) > get_order(s->objsize)) {
3051 s->flags &= ~DEBUG_METADATA_FLAGS;
3052 s->offset = 0;
3053 if (!calculate_sizes(s, -1))
3054 goto error;
3055 }
3056 }
81819f0f 3057
2565409f
HC
3058#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3059 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3060 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3061 /* Enable fast mode */
3062 s->flags |= __CMPXCHG_DOUBLE;
3063#endif
3064
3b89d7d8
DR
3065 /*
3066 * The larger the object size is, the more pages we want on the partial
3067 * list to avoid pounding the page allocator excessively.
3068 */
49e22585
CL
3069 set_min_partial(s, ilog2(s->size) / 2);
3070
3071 /*
3072 * cpu_partial determined the maximum number of objects kept in the
3073 * per cpu partial lists of a processor.
3074 *
3075 * Per cpu partial lists mainly contain slabs that just have one
3076 * object freed. If they are used for allocation then they can be
3077 * filled up again with minimal effort. The slab will never hit the
3078 * per node partial lists and therefore no locking will be required.
3079 *
3080 * This setting also determines
3081 *
3082 * A) The number of objects from per cpu partial slabs dumped to the
3083 * per node list when we reach the limit.
9f264904 3084 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3085 * per node list when we run out of per cpu objects. We only fetch 50%
3086 * to keep some capacity around for frees.
3087 */
8f1e33da
CL
3088 if (kmem_cache_debug(s))
3089 s->cpu_partial = 0;
3090 else if (s->size >= PAGE_SIZE)
49e22585
CL
3091 s->cpu_partial = 2;
3092 else if (s->size >= 1024)
3093 s->cpu_partial = 6;
3094 else if (s->size >= 256)
3095 s->cpu_partial = 13;
3096 else
3097 s->cpu_partial = 30;
3098
81819f0f
CL
3099 s->refcount = 1;
3100#ifdef CONFIG_NUMA
e2cb96b7 3101 s->remote_node_defrag_ratio = 1000;
81819f0f 3102#endif
55136592 3103 if (!init_kmem_cache_nodes(s))
dfb4f096 3104 goto error;
81819f0f 3105
55136592 3106 if (alloc_kmem_cache_cpus(s))
81819f0f 3107 return 1;
ff12059e 3108
4c93c355 3109 free_kmem_cache_nodes(s);
81819f0f
CL
3110error:
3111 if (flags & SLAB_PANIC)
3112 panic("Cannot create slab %s size=%lu realsize=%u "
3113 "order=%u offset=%u flags=%lx\n",
834f3d11 3114 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3115 s->offset, flags);
3116 return 0;
3117}
81819f0f 3118
81819f0f
CL
3119/*
3120 * Determine the size of a slab object
3121 */
3122unsigned int kmem_cache_size(struct kmem_cache *s)
3123{
3124 return s->objsize;
3125}
3126EXPORT_SYMBOL(kmem_cache_size);
3127
33b12c38
CL
3128static void list_slab_objects(struct kmem_cache *s, struct page *page,
3129 const char *text)
3130{
3131#ifdef CONFIG_SLUB_DEBUG
3132 void *addr = page_address(page);
3133 void *p;
a5dd5c11
NK
3134 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3135 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3136 if (!map)
3137 return;
33b12c38
CL
3138 slab_err(s, page, "%s", text);
3139 slab_lock(page);
33b12c38 3140
5f80b13a 3141 get_map(s, page, map);
33b12c38
CL
3142 for_each_object(p, s, addr, page->objects) {
3143
3144 if (!test_bit(slab_index(p, s, addr), map)) {
3145 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3146 p, p - addr);
3147 print_tracking(s, p);
3148 }
3149 }
3150 slab_unlock(page);
bbd7d57b 3151 kfree(map);
33b12c38
CL
3152#endif
3153}
3154
81819f0f 3155/*
599870b1 3156 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3157 * This is called from kmem_cache_close(). We must be the last thread
3158 * using the cache and therefore we do not need to lock anymore.
81819f0f 3159 */
599870b1 3160static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3161{
81819f0f
CL
3162 struct page *page, *h;
3163
33b12c38 3164 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3165 if (!page->inuse) {
5cc6eee8 3166 remove_partial(n, page);
81819f0f 3167 discard_slab(s, page);
33b12c38
CL
3168 } else {
3169 list_slab_objects(s, page,
3170 "Objects remaining on kmem_cache_close()");
599870b1 3171 }
33b12c38 3172 }
81819f0f
CL
3173}
3174
3175/*
672bba3a 3176 * Release all resources used by a slab cache.
81819f0f 3177 */
0c710013 3178static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3179{
3180 int node;
3181
3182 flush_all(s);
9dfc6e68 3183 free_percpu(s->cpu_slab);
81819f0f 3184 /* Attempt to free all objects */
f64dc58c 3185 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3186 struct kmem_cache_node *n = get_node(s, node);
3187
599870b1
CL
3188 free_partial(s, n);
3189 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3190 return 1;
3191 }
3192 free_kmem_cache_nodes(s);
3193 return 0;
3194}
3195
3196/*
3197 * Close a cache and release the kmem_cache structure
3198 * (must be used for caches created using kmem_cache_create)
3199 */
3200void kmem_cache_destroy(struct kmem_cache *s)
3201{
3202 down_write(&slub_lock);
3203 s->refcount--;
3204 if (!s->refcount) {
3205 list_del(&s->list);
69cb8e6b 3206 up_write(&slub_lock);
d629d819
PE
3207 if (kmem_cache_close(s)) {
3208 printk(KERN_ERR "SLUB %s: %s called for cache that "
3209 "still has objects.\n", s->name, __func__);
3210 dump_stack();
3211 }
d76b1590
ED
3212 if (s->flags & SLAB_DESTROY_BY_RCU)
3213 rcu_barrier();
81819f0f 3214 sysfs_slab_remove(s);
69cb8e6b
CL
3215 } else
3216 up_write(&slub_lock);
81819f0f
CL
3217}
3218EXPORT_SYMBOL(kmem_cache_destroy);
3219
3220/********************************************************************
3221 * Kmalloc subsystem
3222 *******************************************************************/
3223
51df1142 3224struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3225EXPORT_SYMBOL(kmalloc_caches);
3226
51df1142
CL
3227static struct kmem_cache *kmem_cache;
3228
55136592 3229#ifdef CONFIG_ZONE_DMA
51df1142 3230static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3231#endif
3232
81819f0f
CL
3233static int __init setup_slub_min_order(char *str)
3234{
06428780 3235 get_option(&str, &slub_min_order);
81819f0f
CL
3236
3237 return 1;
3238}
3239
3240__setup("slub_min_order=", setup_slub_min_order);
3241
3242static int __init setup_slub_max_order(char *str)
3243{
06428780 3244 get_option(&str, &slub_max_order);
818cf590 3245 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3246
3247 return 1;
3248}
3249
3250__setup("slub_max_order=", setup_slub_max_order);
3251
3252static int __init setup_slub_min_objects(char *str)
3253{
06428780 3254 get_option(&str, &slub_min_objects);
81819f0f
CL
3255
3256 return 1;
3257}
3258
3259__setup("slub_min_objects=", setup_slub_min_objects);
3260
3261static int __init setup_slub_nomerge(char *str)
3262{
3263 slub_nomerge = 1;
3264 return 1;
3265}
3266
3267__setup("slub_nomerge", setup_slub_nomerge);
3268
51df1142
CL
3269static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3270 int size, unsigned int flags)
81819f0f 3271{
51df1142
CL
3272 struct kmem_cache *s;
3273
3274 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3275
83b519e8
PE
3276 /*
3277 * This function is called with IRQs disabled during early-boot on
3278 * single CPU so there's no need to take slub_lock here.
3279 */
55136592 3280 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3281 flags, NULL))
81819f0f
CL
3282 goto panic;
3283
3284 list_add(&s->list, &slab_caches);
51df1142 3285 return s;
81819f0f
CL
3286
3287panic:
3288 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3289 return NULL;
81819f0f
CL
3290}
3291
f1b26339
CL
3292/*
3293 * Conversion table for small slabs sizes / 8 to the index in the
3294 * kmalloc array. This is necessary for slabs < 192 since we have non power
3295 * of two cache sizes there. The size of larger slabs can be determined using
3296 * fls.
3297 */
3298static s8 size_index[24] = {
3299 3, /* 8 */
3300 4, /* 16 */
3301 5, /* 24 */
3302 5, /* 32 */
3303 6, /* 40 */
3304 6, /* 48 */
3305 6, /* 56 */
3306 6, /* 64 */
3307 1, /* 72 */
3308 1, /* 80 */
3309 1, /* 88 */
3310 1, /* 96 */
3311 7, /* 104 */
3312 7, /* 112 */
3313 7, /* 120 */
3314 7, /* 128 */
3315 2, /* 136 */
3316 2, /* 144 */
3317 2, /* 152 */
3318 2, /* 160 */
3319 2, /* 168 */
3320 2, /* 176 */
3321 2, /* 184 */
3322 2 /* 192 */
3323};
3324
acdfcd04
AK
3325static inline int size_index_elem(size_t bytes)
3326{
3327 return (bytes - 1) / 8;
3328}
3329
81819f0f
CL
3330static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3331{
f1b26339 3332 int index;
81819f0f 3333
f1b26339
CL
3334 if (size <= 192) {
3335 if (!size)
3336 return ZERO_SIZE_PTR;
81819f0f 3337
acdfcd04 3338 index = size_index[size_index_elem(size)];
aadb4bc4 3339 } else
f1b26339 3340 index = fls(size - 1);
81819f0f
CL
3341
3342#ifdef CONFIG_ZONE_DMA
f1b26339 3343 if (unlikely((flags & SLUB_DMA)))
51df1142 3344 return kmalloc_dma_caches[index];
f1b26339 3345
81819f0f 3346#endif
51df1142 3347 return kmalloc_caches[index];
81819f0f
CL
3348}
3349
3350void *__kmalloc(size_t size, gfp_t flags)
3351{
aadb4bc4 3352 struct kmem_cache *s;
5b882be4 3353 void *ret;
81819f0f 3354
ffadd4d0 3355 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3356 return kmalloc_large(size, flags);
aadb4bc4
CL
3357
3358 s = get_slab(size, flags);
3359
3360 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3361 return s;
3362
2154a336 3363 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3364
ca2b84cb 3365 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3366
3367 return ret;
81819f0f
CL
3368}
3369EXPORT_SYMBOL(__kmalloc);
3370
5d1f57e4 3371#ifdef CONFIG_NUMA
f619cfe1
CL
3372static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3373{
b1eeab67 3374 struct page *page;
e4f7c0b4 3375 void *ptr = NULL;
f619cfe1 3376
b1eeab67
VN
3377 flags |= __GFP_COMP | __GFP_NOTRACK;
3378 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3379 if (page)
e4f7c0b4
CM
3380 ptr = page_address(page);
3381
3382 kmemleak_alloc(ptr, size, 1, flags);
3383 return ptr;
f619cfe1
CL
3384}
3385
81819f0f
CL
3386void *__kmalloc_node(size_t size, gfp_t flags, int node)
3387{
aadb4bc4 3388 struct kmem_cache *s;
5b882be4 3389 void *ret;
81819f0f 3390
057685cf 3391 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3392 ret = kmalloc_large_node(size, flags, node);
3393
ca2b84cb
EGM
3394 trace_kmalloc_node(_RET_IP_, ret,
3395 size, PAGE_SIZE << get_order(size),
3396 flags, node);
5b882be4
EGM
3397
3398 return ret;
3399 }
aadb4bc4
CL
3400
3401 s = get_slab(size, flags);
3402
3403 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3404 return s;
3405
5b882be4
EGM
3406 ret = slab_alloc(s, flags, node, _RET_IP_);
3407
ca2b84cb 3408 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3409
3410 return ret;
81819f0f
CL
3411}
3412EXPORT_SYMBOL(__kmalloc_node);
3413#endif
3414
3415size_t ksize(const void *object)
3416{
272c1d21 3417 struct page *page;
81819f0f 3418
ef8b4520 3419 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3420 return 0;
3421
294a80a8 3422 page = virt_to_head_page(object);
294a80a8 3423
76994412
PE
3424 if (unlikely(!PageSlab(page))) {
3425 WARN_ON(!PageCompound(page));
294a80a8 3426 return PAGE_SIZE << compound_order(page);
76994412 3427 }
81819f0f 3428
b3d41885 3429 return slab_ksize(page->slab);
81819f0f 3430}
b1aabecd 3431EXPORT_SYMBOL(ksize);
81819f0f 3432
d18a90dd
BG
3433#ifdef CONFIG_SLUB_DEBUG
3434bool verify_mem_not_deleted(const void *x)
3435{
3436 struct page *page;
3437 void *object = (void *)x;
3438 unsigned long flags;
3439 bool rv;
3440
3441 if (unlikely(ZERO_OR_NULL_PTR(x)))
3442 return false;
3443
3444 local_irq_save(flags);
3445
3446 page = virt_to_head_page(x);
3447 if (unlikely(!PageSlab(page))) {
3448 /* maybe it was from stack? */
3449 rv = true;
3450 goto out_unlock;
3451 }
3452
3453 slab_lock(page);
3454 if (on_freelist(page->slab, page, object)) {
3455 object_err(page->slab, page, object, "Object is on free-list");
3456 rv = false;
3457 } else {
3458 rv = true;
3459 }
3460 slab_unlock(page);
3461
3462out_unlock:
3463 local_irq_restore(flags);
3464 return rv;
3465}
3466EXPORT_SYMBOL(verify_mem_not_deleted);
3467#endif
3468
81819f0f
CL
3469void kfree(const void *x)
3470{
81819f0f 3471 struct page *page;
5bb983b0 3472 void *object = (void *)x;
81819f0f 3473
2121db74
PE
3474 trace_kfree(_RET_IP_, x);
3475
2408c550 3476 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3477 return;
3478
b49af68f 3479 page = virt_to_head_page(x);
aadb4bc4 3480 if (unlikely(!PageSlab(page))) {
0937502a 3481 BUG_ON(!PageCompound(page));
e4f7c0b4 3482 kmemleak_free(x);
aadb4bc4
CL
3483 put_page(page);
3484 return;
3485 }
ce71e27c 3486 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3487}
3488EXPORT_SYMBOL(kfree);
3489
2086d26a 3490/*
672bba3a
CL
3491 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3492 * the remaining slabs by the number of items in use. The slabs with the
3493 * most items in use come first. New allocations will then fill those up
3494 * and thus they can be removed from the partial lists.
3495 *
3496 * The slabs with the least items are placed last. This results in them
3497 * being allocated from last increasing the chance that the last objects
3498 * are freed in them.
2086d26a
CL
3499 */
3500int kmem_cache_shrink(struct kmem_cache *s)
3501{
3502 int node;
3503 int i;
3504 struct kmem_cache_node *n;
3505 struct page *page;
3506 struct page *t;
205ab99d 3507 int objects = oo_objects(s->max);
2086d26a 3508 struct list_head *slabs_by_inuse =
834f3d11 3509 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3510 unsigned long flags;
3511
3512 if (!slabs_by_inuse)
3513 return -ENOMEM;
3514
3515 flush_all(s);
f64dc58c 3516 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3517 n = get_node(s, node);
3518
3519 if (!n->nr_partial)
3520 continue;
3521
834f3d11 3522 for (i = 0; i < objects; i++)
2086d26a
CL
3523 INIT_LIST_HEAD(slabs_by_inuse + i);
3524
3525 spin_lock_irqsave(&n->list_lock, flags);
3526
3527 /*
672bba3a 3528 * Build lists indexed by the items in use in each slab.
2086d26a 3529 *
672bba3a
CL
3530 * Note that concurrent frees may occur while we hold the
3531 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3532 */
3533 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3534 list_move(&page->lru, slabs_by_inuse + page->inuse);
3535 if (!page->inuse)
3536 n->nr_partial--;
2086d26a
CL
3537 }
3538
2086d26a 3539 /*
672bba3a
CL
3540 * Rebuild the partial list with the slabs filled up most
3541 * first and the least used slabs at the end.
2086d26a 3542 */
69cb8e6b 3543 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3544 list_splice(slabs_by_inuse + i, n->partial.prev);
3545
2086d26a 3546 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3547
3548 /* Release empty slabs */
3549 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3550 discard_slab(s, page);
2086d26a
CL
3551 }
3552
3553 kfree(slabs_by_inuse);
3554 return 0;
3555}
3556EXPORT_SYMBOL(kmem_cache_shrink);
3557
92a5bbc1 3558#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3559static int slab_mem_going_offline_callback(void *arg)
3560{
3561 struct kmem_cache *s;
3562
3563 down_read(&slub_lock);
3564 list_for_each_entry(s, &slab_caches, list)
3565 kmem_cache_shrink(s);
3566 up_read(&slub_lock);
3567
3568 return 0;
3569}
3570
3571static void slab_mem_offline_callback(void *arg)
3572{
3573 struct kmem_cache_node *n;
3574 struct kmem_cache *s;
3575 struct memory_notify *marg = arg;
3576 int offline_node;
3577
3578 offline_node = marg->status_change_nid;
3579
3580 /*
3581 * If the node still has available memory. we need kmem_cache_node
3582 * for it yet.
3583 */
3584 if (offline_node < 0)
3585 return;
3586
3587 down_read(&slub_lock);
3588 list_for_each_entry(s, &slab_caches, list) {
3589 n = get_node(s, offline_node);
3590 if (n) {
3591 /*
3592 * if n->nr_slabs > 0, slabs still exist on the node
3593 * that is going down. We were unable to free them,
c9404c9c 3594 * and offline_pages() function shouldn't call this
b9049e23
YG
3595 * callback. So, we must fail.
3596 */
0f389ec6 3597 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3598
3599 s->node[offline_node] = NULL;
8de66a0c 3600 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3601 }
3602 }
3603 up_read(&slub_lock);
3604}
3605
3606static int slab_mem_going_online_callback(void *arg)
3607{
3608 struct kmem_cache_node *n;
3609 struct kmem_cache *s;
3610 struct memory_notify *marg = arg;
3611 int nid = marg->status_change_nid;
3612 int ret = 0;
3613
3614 /*
3615 * If the node's memory is already available, then kmem_cache_node is
3616 * already created. Nothing to do.
3617 */
3618 if (nid < 0)
3619 return 0;
3620
3621 /*
0121c619 3622 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3623 * allocate a kmem_cache_node structure in order to bring the node
3624 * online.
3625 */
3626 down_read(&slub_lock);
3627 list_for_each_entry(s, &slab_caches, list) {
3628 /*
3629 * XXX: kmem_cache_alloc_node will fallback to other nodes
3630 * since memory is not yet available from the node that
3631 * is brought up.
3632 */
8de66a0c 3633 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3634 if (!n) {
3635 ret = -ENOMEM;
3636 goto out;
3637 }
5595cffc 3638 init_kmem_cache_node(n, s);
b9049e23
YG
3639 s->node[nid] = n;
3640 }
3641out:
3642 up_read(&slub_lock);
3643 return ret;
3644}
3645
3646static int slab_memory_callback(struct notifier_block *self,
3647 unsigned long action, void *arg)
3648{
3649 int ret = 0;
3650
3651 switch (action) {
3652 case MEM_GOING_ONLINE:
3653 ret = slab_mem_going_online_callback(arg);
3654 break;
3655 case MEM_GOING_OFFLINE:
3656 ret = slab_mem_going_offline_callback(arg);
3657 break;
3658 case MEM_OFFLINE:
3659 case MEM_CANCEL_ONLINE:
3660 slab_mem_offline_callback(arg);
3661 break;
3662 case MEM_ONLINE:
3663 case MEM_CANCEL_OFFLINE:
3664 break;
3665 }
dc19f9db
KH
3666 if (ret)
3667 ret = notifier_from_errno(ret);
3668 else
3669 ret = NOTIFY_OK;
b9049e23
YG
3670 return ret;
3671}
3672
3673#endif /* CONFIG_MEMORY_HOTPLUG */
3674
81819f0f
CL
3675/********************************************************************
3676 * Basic setup of slabs
3677 *******************************************************************/
3678
51df1142
CL
3679/*
3680 * Used for early kmem_cache structures that were allocated using
3681 * the page allocator
3682 */
3683
3684static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3685{
3686 int node;
3687
3688 list_add(&s->list, &slab_caches);
3689 s->refcount = -1;
3690
3691 for_each_node_state(node, N_NORMAL_MEMORY) {
3692 struct kmem_cache_node *n = get_node(s, node);
3693 struct page *p;
3694
3695 if (n) {
3696 list_for_each_entry(p, &n->partial, lru)
3697 p->slab = s;
3698
607bf324 3699#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3700 list_for_each_entry(p, &n->full, lru)
3701 p->slab = s;
3702#endif
3703 }
3704 }
3705}
3706
81819f0f
CL
3707void __init kmem_cache_init(void)
3708{
3709 int i;
4b356be0 3710 int caches = 0;
51df1142
CL
3711 struct kmem_cache *temp_kmem_cache;
3712 int order;
51df1142
CL
3713 struct kmem_cache *temp_kmem_cache_node;
3714 unsigned long kmalloc_size;
3715
fc8d8620
SG
3716 if (debug_guardpage_minorder())
3717 slub_max_order = 0;
3718
51df1142
CL
3719 kmem_size = offsetof(struct kmem_cache, node) +
3720 nr_node_ids * sizeof(struct kmem_cache_node *);
3721
3722 /* Allocate two kmem_caches from the page allocator */
3723 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3724 order = get_order(2 * kmalloc_size);
3725 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3726
81819f0f
CL
3727 /*
3728 * Must first have the slab cache available for the allocations of the
672bba3a 3729 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3730 * kmem_cache_open for slab_state == DOWN.
3731 */
51df1142
CL
3732 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3733
3734 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3735 sizeof(struct kmem_cache_node),
3736 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3737
0c40ba4f 3738 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3739
3740 /* Able to allocate the per node structures */
3741 slab_state = PARTIAL;
3742
51df1142
CL
3743 temp_kmem_cache = kmem_cache;
3744 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3745 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3746 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3747 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3748
51df1142
CL
3749 /*
3750 * Allocate kmem_cache_node properly from the kmem_cache slab.
3751 * kmem_cache_node is separately allocated so no need to
3752 * update any list pointers.
3753 */
3754 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3755
51df1142
CL
3756 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3757 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3758
3759 kmem_cache_bootstrap_fixup(kmem_cache_node);
3760
3761 caches++;
51df1142
CL
3762 kmem_cache_bootstrap_fixup(kmem_cache);
3763 caches++;
3764 /* Free temporary boot structure */
3765 free_pages((unsigned long)temp_kmem_cache, order);
3766
3767 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3768
3769 /*
3770 * Patch up the size_index table if we have strange large alignment
3771 * requirements for the kmalloc array. This is only the case for
6446faa2 3772 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3773 *
3774 * Largest permitted alignment is 256 bytes due to the way we
3775 * handle the index determination for the smaller caches.
3776 *
3777 * Make sure that nothing crazy happens if someone starts tinkering
3778 * around with ARCH_KMALLOC_MINALIGN
3779 */
3780 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3781 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3782
acdfcd04
AK
3783 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3784 int elem = size_index_elem(i);
3785 if (elem >= ARRAY_SIZE(size_index))
3786 break;
3787 size_index[elem] = KMALLOC_SHIFT_LOW;
3788 }
f1b26339 3789
acdfcd04
AK
3790 if (KMALLOC_MIN_SIZE == 64) {
3791 /*
3792 * The 96 byte size cache is not used if the alignment
3793 * is 64 byte.
3794 */
3795 for (i = 64 + 8; i <= 96; i += 8)
3796 size_index[size_index_elem(i)] = 7;
3797 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3798 /*
3799 * The 192 byte sized cache is not used if the alignment
3800 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3801 * instead.
3802 */
3803 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3804 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3805 }
3806
51df1142
CL
3807 /* Caches that are not of the two-to-the-power-of size */
3808 if (KMALLOC_MIN_SIZE <= 32) {
3809 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3810 caches++;
3811 }
3812
3813 if (KMALLOC_MIN_SIZE <= 64) {
3814 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3815 caches++;
3816 }
3817
3818 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3819 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3820 caches++;
3821 }
3822
81819f0f
CL
3823 slab_state = UP;
3824
3825 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3826 if (KMALLOC_MIN_SIZE <= 32) {
3827 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3828 BUG_ON(!kmalloc_caches[1]->name);
3829 }
3830
3831 if (KMALLOC_MIN_SIZE <= 64) {
3832 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3833 BUG_ON(!kmalloc_caches[2]->name);
3834 }
3835
d7278bd7
CL
3836 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3837 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3838
3839 BUG_ON(!s);
51df1142 3840 kmalloc_caches[i]->name = s;
d7278bd7 3841 }
81819f0f
CL
3842
3843#ifdef CONFIG_SMP
3844 register_cpu_notifier(&slab_notifier);
9dfc6e68 3845#endif
81819f0f 3846
55136592 3847#ifdef CONFIG_ZONE_DMA
51df1142
CL
3848 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3849 struct kmem_cache *s = kmalloc_caches[i];
55136592 3850
51df1142 3851 if (s && s->size) {
55136592
CL
3852 char *name = kasprintf(GFP_NOWAIT,
3853 "dma-kmalloc-%d", s->objsize);
3854
3855 BUG_ON(!name);
51df1142
CL
3856 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3857 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3858 }
3859 }
3860#endif
3adbefee
IM
3861 printk(KERN_INFO
3862 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3863 " CPUs=%d, Nodes=%d\n",
3864 caches, cache_line_size(),
81819f0f
CL
3865 slub_min_order, slub_max_order, slub_min_objects,
3866 nr_cpu_ids, nr_node_ids);
3867}
3868
7e85ee0c
PE
3869void __init kmem_cache_init_late(void)
3870{
7e85ee0c
PE
3871}
3872
81819f0f
CL
3873/*
3874 * Find a mergeable slab cache
3875 */
3876static int slab_unmergeable(struct kmem_cache *s)
3877{
3878 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3879 return 1;
3880
c59def9f 3881 if (s->ctor)
81819f0f
CL
3882 return 1;
3883
8ffa6875
CL
3884 /*
3885 * We may have set a slab to be unmergeable during bootstrap.
3886 */
3887 if (s->refcount < 0)
3888 return 1;
3889
81819f0f
CL
3890 return 0;
3891}
3892
3893static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3894 size_t align, unsigned long flags, const char *name,
51cc5068 3895 void (*ctor)(void *))
81819f0f 3896{
5b95a4ac 3897 struct kmem_cache *s;
81819f0f
CL
3898
3899 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3900 return NULL;
3901
c59def9f 3902 if (ctor)
81819f0f
CL
3903 return NULL;
3904
3905 size = ALIGN(size, sizeof(void *));
3906 align = calculate_alignment(flags, align, size);
3907 size = ALIGN(size, align);
ba0268a8 3908 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3909
5b95a4ac 3910 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3911 if (slab_unmergeable(s))
3912 continue;
3913
3914 if (size > s->size)
3915 continue;
3916
ba0268a8 3917 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3918 continue;
3919 /*
3920 * Check if alignment is compatible.
3921 * Courtesy of Adrian Drzewiecki
3922 */
06428780 3923 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3924 continue;
3925
3926 if (s->size - size >= sizeof(void *))
3927 continue;
3928
3929 return s;
3930 }
3931 return NULL;
3932}
3933
3934struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3935 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3936{
3937 struct kmem_cache *s;
84c1cf62 3938 char *n;
81819f0f 3939
fe1ff49d
BH
3940 if (WARN_ON(!name))
3941 return NULL;
3942
81819f0f 3943 down_write(&slub_lock);
ba0268a8 3944 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3945 if (s) {
3946 s->refcount++;
3947 /*
3948 * Adjust the object sizes so that we clear
3949 * the complete object on kzalloc.
3950 */
3951 s->objsize = max(s->objsize, (int)size);
3952 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3953
7b8f3b66 3954 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3955 s->refcount--;
81819f0f 3956 goto err;
7b8f3b66 3957 }
2bce6485 3958 up_write(&slub_lock);
a0e1d1be
CL
3959 return s;
3960 }
6446faa2 3961
84c1cf62
PE
3962 n = kstrdup(name, GFP_KERNEL);
3963 if (!n)
3964 goto err;
3965
a0e1d1be
CL
3966 s = kmalloc(kmem_size, GFP_KERNEL);
3967 if (s) {
84c1cf62 3968 if (kmem_cache_open(s, n,
c59def9f 3969 size, align, flags, ctor)) {
81819f0f 3970 list_add(&s->list, &slab_caches);
66c4c35c 3971 up_write(&slub_lock);
7b8f3b66 3972 if (sysfs_slab_add(s)) {
66c4c35c 3973 down_write(&slub_lock);
7b8f3b66 3974 list_del(&s->list);
84c1cf62 3975 kfree(n);
7b8f3b66 3976 kfree(s);
a0e1d1be 3977 goto err;
7b8f3b66 3978 }
a0e1d1be
CL
3979 return s;
3980 }
84c1cf62 3981 kfree(n);
a0e1d1be 3982 kfree(s);
81819f0f 3983 }
68cee4f1 3984err:
81819f0f 3985 up_write(&slub_lock);
81819f0f 3986
81819f0f
CL
3987 if (flags & SLAB_PANIC)
3988 panic("Cannot create slabcache %s\n", name);
3989 else
3990 s = NULL;
3991 return s;
3992}
3993EXPORT_SYMBOL(kmem_cache_create);
3994
81819f0f 3995#ifdef CONFIG_SMP
81819f0f 3996/*
672bba3a
CL
3997 * Use the cpu notifier to insure that the cpu slabs are flushed when
3998 * necessary.
81819f0f
CL
3999 */
4000static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
4001 unsigned long action, void *hcpu)
4002{
4003 long cpu = (long)hcpu;
5b95a4ac
CL
4004 struct kmem_cache *s;
4005 unsigned long flags;
81819f0f
CL
4006
4007 switch (action) {
4008 case CPU_UP_CANCELED:
8bb78442 4009 case CPU_UP_CANCELED_FROZEN:
81819f0f 4010 case CPU_DEAD:
8bb78442 4011 case CPU_DEAD_FROZEN:
5b95a4ac
CL
4012 down_read(&slub_lock);
4013 list_for_each_entry(s, &slab_caches, list) {
4014 local_irq_save(flags);
4015 __flush_cpu_slab(s, cpu);
4016 local_irq_restore(flags);
4017 }
4018 up_read(&slub_lock);
81819f0f
CL
4019 break;
4020 default:
4021 break;
4022 }
4023 return NOTIFY_OK;
4024}
4025
06428780 4026static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 4027 .notifier_call = slab_cpuup_callback
06428780 4028};
81819f0f
CL
4029
4030#endif
4031
ce71e27c 4032void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4033{
aadb4bc4 4034 struct kmem_cache *s;
94b528d0 4035 void *ret;
aadb4bc4 4036
ffadd4d0 4037 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4038 return kmalloc_large(size, gfpflags);
4039
aadb4bc4 4040 s = get_slab(size, gfpflags);
81819f0f 4041
2408c550 4042 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4043 return s;
81819f0f 4044
2154a336 4045 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4046
25985edc 4047 /* Honor the call site pointer we received. */
ca2b84cb 4048 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4049
4050 return ret;
81819f0f
CL
4051}
4052
5d1f57e4 4053#ifdef CONFIG_NUMA
81819f0f 4054void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4055 int node, unsigned long caller)
81819f0f 4056{
aadb4bc4 4057 struct kmem_cache *s;
94b528d0 4058 void *ret;
aadb4bc4 4059
d3e14aa3
XF
4060 if (unlikely(size > SLUB_MAX_SIZE)) {
4061 ret = kmalloc_large_node(size, gfpflags, node);
4062
4063 trace_kmalloc_node(caller, ret,
4064 size, PAGE_SIZE << get_order(size),
4065 gfpflags, node);
4066
4067 return ret;
4068 }
eada35ef 4069
aadb4bc4 4070 s = get_slab(size, gfpflags);
81819f0f 4071
2408c550 4072 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4073 return s;
81819f0f 4074
94b528d0
EGM
4075 ret = slab_alloc(s, gfpflags, node, caller);
4076
25985edc 4077 /* Honor the call site pointer we received. */
ca2b84cb 4078 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4079
4080 return ret;
81819f0f 4081}
5d1f57e4 4082#endif
81819f0f 4083
ab4d5ed5 4084#ifdef CONFIG_SYSFS
205ab99d
CL
4085static int count_inuse(struct page *page)
4086{
4087 return page->inuse;
4088}
4089
4090static int count_total(struct page *page)
4091{
4092 return page->objects;
4093}
ab4d5ed5 4094#endif
205ab99d 4095
ab4d5ed5 4096#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4097static int validate_slab(struct kmem_cache *s, struct page *page,
4098 unsigned long *map)
53e15af0
CL
4099{
4100 void *p;
a973e9dd 4101 void *addr = page_address(page);
53e15af0
CL
4102
4103 if (!check_slab(s, page) ||
4104 !on_freelist(s, page, NULL))
4105 return 0;
4106
4107 /* Now we know that a valid freelist exists */
39b26464 4108 bitmap_zero(map, page->objects);
53e15af0 4109
5f80b13a
CL
4110 get_map(s, page, map);
4111 for_each_object(p, s, addr, page->objects) {
4112 if (test_bit(slab_index(p, s, addr), map))
4113 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4114 return 0;
53e15af0
CL
4115 }
4116
224a88be 4117 for_each_object(p, s, addr, page->objects)
7656c72b 4118 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4119 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4120 return 0;
4121 return 1;
4122}
4123
434e245d
CL
4124static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4125 unsigned long *map)
53e15af0 4126{
881db7fb
CL
4127 slab_lock(page);
4128 validate_slab(s, page, map);
4129 slab_unlock(page);
53e15af0
CL
4130}
4131
434e245d
CL
4132static int validate_slab_node(struct kmem_cache *s,
4133 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4134{
4135 unsigned long count = 0;
4136 struct page *page;
4137 unsigned long flags;
4138
4139 spin_lock_irqsave(&n->list_lock, flags);
4140
4141 list_for_each_entry(page, &n->partial, lru) {
434e245d 4142 validate_slab_slab(s, page, map);
53e15af0
CL
4143 count++;
4144 }
4145 if (count != n->nr_partial)
4146 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4147 "counter=%ld\n", s->name, count, n->nr_partial);
4148
4149 if (!(s->flags & SLAB_STORE_USER))
4150 goto out;
4151
4152 list_for_each_entry(page, &n->full, lru) {
434e245d 4153 validate_slab_slab(s, page, map);
53e15af0
CL
4154 count++;
4155 }
4156 if (count != atomic_long_read(&n->nr_slabs))
4157 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4158 "counter=%ld\n", s->name, count,
4159 atomic_long_read(&n->nr_slabs));
4160
4161out:
4162 spin_unlock_irqrestore(&n->list_lock, flags);
4163 return count;
4164}
4165
434e245d 4166static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4167{
4168 int node;
4169 unsigned long count = 0;
205ab99d 4170 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4171 sizeof(unsigned long), GFP_KERNEL);
4172
4173 if (!map)
4174 return -ENOMEM;
53e15af0
CL
4175
4176 flush_all(s);
f64dc58c 4177 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4178 struct kmem_cache_node *n = get_node(s, node);
4179
434e245d 4180 count += validate_slab_node(s, n, map);
53e15af0 4181 }
434e245d 4182 kfree(map);
53e15af0
CL
4183 return count;
4184}
88a420e4 4185/*
672bba3a 4186 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4187 * and freed.
4188 */
4189
4190struct location {
4191 unsigned long count;
ce71e27c 4192 unsigned long addr;
45edfa58
CL
4193 long long sum_time;
4194 long min_time;
4195 long max_time;
4196 long min_pid;
4197 long max_pid;
174596a0 4198 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4199 nodemask_t nodes;
88a420e4
CL
4200};
4201
4202struct loc_track {
4203 unsigned long max;
4204 unsigned long count;
4205 struct location *loc;
4206};
4207
4208static void free_loc_track(struct loc_track *t)
4209{
4210 if (t->max)
4211 free_pages((unsigned long)t->loc,
4212 get_order(sizeof(struct location) * t->max));
4213}
4214
68dff6a9 4215static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4216{
4217 struct location *l;
4218 int order;
4219
88a420e4
CL
4220 order = get_order(sizeof(struct location) * max);
4221
68dff6a9 4222 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4223 if (!l)
4224 return 0;
4225
4226 if (t->count) {
4227 memcpy(l, t->loc, sizeof(struct location) * t->count);
4228 free_loc_track(t);
4229 }
4230 t->max = max;
4231 t->loc = l;
4232 return 1;
4233}
4234
4235static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4236 const struct track *track)
88a420e4
CL
4237{
4238 long start, end, pos;
4239 struct location *l;
ce71e27c 4240 unsigned long caddr;
45edfa58 4241 unsigned long age = jiffies - track->when;
88a420e4
CL
4242
4243 start = -1;
4244 end = t->count;
4245
4246 for ( ; ; ) {
4247 pos = start + (end - start + 1) / 2;
4248
4249 /*
4250 * There is nothing at "end". If we end up there
4251 * we need to add something to before end.
4252 */
4253 if (pos == end)
4254 break;
4255
4256 caddr = t->loc[pos].addr;
45edfa58
CL
4257 if (track->addr == caddr) {
4258
4259 l = &t->loc[pos];
4260 l->count++;
4261 if (track->when) {
4262 l->sum_time += age;
4263 if (age < l->min_time)
4264 l->min_time = age;
4265 if (age > l->max_time)
4266 l->max_time = age;
4267
4268 if (track->pid < l->min_pid)
4269 l->min_pid = track->pid;
4270 if (track->pid > l->max_pid)
4271 l->max_pid = track->pid;
4272
174596a0
RR
4273 cpumask_set_cpu(track->cpu,
4274 to_cpumask(l->cpus));
45edfa58
CL
4275 }
4276 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4277 return 1;
4278 }
4279
45edfa58 4280 if (track->addr < caddr)
88a420e4
CL
4281 end = pos;
4282 else
4283 start = pos;
4284 }
4285
4286 /*
672bba3a 4287 * Not found. Insert new tracking element.
88a420e4 4288 */
68dff6a9 4289 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4290 return 0;
4291
4292 l = t->loc + pos;
4293 if (pos < t->count)
4294 memmove(l + 1, l,
4295 (t->count - pos) * sizeof(struct location));
4296 t->count++;
4297 l->count = 1;
45edfa58
CL
4298 l->addr = track->addr;
4299 l->sum_time = age;
4300 l->min_time = age;
4301 l->max_time = age;
4302 l->min_pid = track->pid;
4303 l->max_pid = track->pid;
174596a0
RR
4304 cpumask_clear(to_cpumask(l->cpus));
4305 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4306 nodes_clear(l->nodes);
4307 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4308 return 1;
4309}
4310
4311static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4312 struct page *page, enum track_item alloc,
a5dd5c11 4313 unsigned long *map)
88a420e4 4314{
a973e9dd 4315 void *addr = page_address(page);
88a420e4
CL
4316 void *p;
4317
39b26464 4318 bitmap_zero(map, page->objects);
5f80b13a 4319 get_map(s, page, map);
88a420e4 4320
224a88be 4321 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4322 if (!test_bit(slab_index(p, s, addr), map))
4323 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4324}
4325
4326static int list_locations(struct kmem_cache *s, char *buf,
4327 enum track_item alloc)
4328{
e374d483 4329 int len = 0;
88a420e4 4330 unsigned long i;
68dff6a9 4331 struct loc_track t = { 0, 0, NULL };
88a420e4 4332 int node;
bbd7d57b
ED
4333 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4334 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4335
bbd7d57b
ED
4336 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4337 GFP_TEMPORARY)) {
4338 kfree(map);
68dff6a9 4339 return sprintf(buf, "Out of memory\n");
bbd7d57b 4340 }
88a420e4
CL
4341 /* Push back cpu slabs */
4342 flush_all(s);
4343
f64dc58c 4344 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4345 struct kmem_cache_node *n = get_node(s, node);
4346 unsigned long flags;
4347 struct page *page;
4348
9e86943b 4349 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4350 continue;
4351
4352 spin_lock_irqsave(&n->list_lock, flags);
4353 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4354 process_slab(&t, s, page, alloc, map);
88a420e4 4355 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4356 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4357 spin_unlock_irqrestore(&n->list_lock, flags);
4358 }
4359
4360 for (i = 0; i < t.count; i++) {
45edfa58 4361 struct location *l = &t.loc[i];
88a420e4 4362
9c246247 4363 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4364 break;
e374d483 4365 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4366
4367 if (l->addr)
62c70bce 4368 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4369 else
e374d483 4370 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4371
4372 if (l->sum_time != l->min_time) {
e374d483 4373 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4374 l->min_time,
4375 (long)div_u64(l->sum_time, l->count),
4376 l->max_time);
45edfa58 4377 } else
e374d483 4378 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4379 l->min_time);
4380
4381 if (l->min_pid != l->max_pid)
e374d483 4382 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4383 l->min_pid, l->max_pid);
4384 else
e374d483 4385 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4386 l->min_pid);
4387
174596a0
RR
4388 if (num_online_cpus() > 1 &&
4389 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4390 len < PAGE_SIZE - 60) {
4391 len += sprintf(buf + len, " cpus=");
4392 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4393 to_cpumask(l->cpus));
45edfa58
CL
4394 }
4395
62bc62a8 4396 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4397 len < PAGE_SIZE - 60) {
4398 len += sprintf(buf + len, " nodes=");
4399 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4400 l->nodes);
4401 }
4402
e374d483 4403 len += sprintf(buf + len, "\n");
88a420e4
CL
4404 }
4405
4406 free_loc_track(&t);
bbd7d57b 4407 kfree(map);
88a420e4 4408 if (!t.count)
e374d483
HH
4409 len += sprintf(buf, "No data\n");
4410 return len;
88a420e4 4411}
ab4d5ed5 4412#endif
88a420e4 4413
a5a84755
CL
4414#ifdef SLUB_RESILIENCY_TEST
4415static void resiliency_test(void)
4416{
4417 u8 *p;
4418
4419 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4420
4421 printk(KERN_ERR "SLUB resiliency testing\n");
4422 printk(KERN_ERR "-----------------------\n");
4423 printk(KERN_ERR "A. Corruption after allocation\n");
4424
4425 p = kzalloc(16, GFP_KERNEL);
4426 p[16] = 0x12;
4427 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4428 " 0x12->0x%p\n\n", p + 16);
4429
4430 validate_slab_cache(kmalloc_caches[4]);
4431
4432 /* Hmmm... The next two are dangerous */
4433 p = kzalloc(32, GFP_KERNEL);
4434 p[32 + sizeof(void *)] = 0x34;
4435 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4436 " 0x34 -> -0x%p\n", p);
4437 printk(KERN_ERR
4438 "If allocated object is overwritten then not detectable\n\n");
4439
4440 validate_slab_cache(kmalloc_caches[5]);
4441 p = kzalloc(64, GFP_KERNEL);
4442 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4443 *p = 0x56;
4444 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4445 p);
4446 printk(KERN_ERR
4447 "If allocated object is overwritten then not detectable\n\n");
4448 validate_slab_cache(kmalloc_caches[6]);
4449
4450 printk(KERN_ERR "\nB. Corruption after free\n");
4451 p = kzalloc(128, GFP_KERNEL);
4452 kfree(p);
4453 *p = 0x78;
4454 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4455 validate_slab_cache(kmalloc_caches[7]);
4456
4457 p = kzalloc(256, GFP_KERNEL);
4458 kfree(p);
4459 p[50] = 0x9a;
4460 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4461 p);
4462 validate_slab_cache(kmalloc_caches[8]);
4463
4464 p = kzalloc(512, GFP_KERNEL);
4465 kfree(p);
4466 p[512] = 0xab;
4467 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4468 validate_slab_cache(kmalloc_caches[9]);
4469}
4470#else
4471#ifdef CONFIG_SYSFS
4472static void resiliency_test(void) {};
4473#endif
4474#endif
4475
ab4d5ed5 4476#ifdef CONFIG_SYSFS
81819f0f 4477enum slab_stat_type {
205ab99d
CL
4478 SL_ALL, /* All slabs */
4479 SL_PARTIAL, /* Only partially allocated slabs */
4480 SL_CPU, /* Only slabs used for cpu caches */
4481 SL_OBJECTS, /* Determine allocated objects not slabs */
4482 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4483};
4484
205ab99d 4485#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4486#define SO_PARTIAL (1 << SL_PARTIAL)
4487#define SO_CPU (1 << SL_CPU)
4488#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4489#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4490
62e5c4b4
CG
4491static ssize_t show_slab_objects(struct kmem_cache *s,
4492 char *buf, unsigned long flags)
81819f0f
CL
4493{
4494 unsigned long total = 0;
81819f0f
CL
4495 int node;
4496 int x;
4497 unsigned long *nodes;
4498 unsigned long *per_cpu;
4499
4500 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4501 if (!nodes)
4502 return -ENOMEM;
81819f0f
CL
4503 per_cpu = nodes + nr_node_ids;
4504
205ab99d
CL
4505 if (flags & SO_CPU) {
4506 int cpu;
81819f0f 4507
205ab99d 4508 for_each_possible_cpu(cpu) {
9dfc6e68 4509 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
bc6697d8 4510 int node = ACCESS_ONCE(c->node);
49e22585 4511 struct page *page;
dfb4f096 4512
bc6697d8 4513 if (node < 0)
205ab99d 4514 continue;
bc6697d8
ED
4515 page = ACCESS_ONCE(c->page);
4516 if (page) {
4517 if (flags & SO_TOTAL)
4518 x = page->objects;
205ab99d 4519 else if (flags & SO_OBJECTS)
bc6697d8 4520 x = page->inuse;
81819f0f
CL
4521 else
4522 x = 1;
205ab99d 4523
81819f0f 4524 total += x;
bc6697d8 4525 nodes[node] += x;
81819f0f 4526 }
49e22585
CL
4527 page = c->partial;
4528
4529 if (page) {
4530 x = page->pobjects;
bc6697d8
ED
4531 total += x;
4532 nodes[node] += x;
49e22585 4533 }
bc6697d8 4534 per_cpu[node]++;
81819f0f
CL
4535 }
4536 }
4537
04d94879 4538 lock_memory_hotplug();
ab4d5ed5 4539#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4540 if (flags & SO_ALL) {
4541 for_each_node_state(node, N_NORMAL_MEMORY) {
4542 struct kmem_cache_node *n = get_node(s, node);
4543
4544 if (flags & SO_TOTAL)
4545 x = atomic_long_read(&n->total_objects);
4546 else if (flags & SO_OBJECTS)
4547 x = atomic_long_read(&n->total_objects) -
4548 count_partial(n, count_free);
81819f0f 4549
81819f0f 4550 else
205ab99d 4551 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4552 total += x;
4553 nodes[node] += x;
4554 }
4555
ab4d5ed5
CL
4556 } else
4557#endif
4558 if (flags & SO_PARTIAL) {
205ab99d
CL
4559 for_each_node_state(node, N_NORMAL_MEMORY) {
4560 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4561
205ab99d
CL
4562 if (flags & SO_TOTAL)
4563 x = count_partial(n, count_total);
4564 else if (flags & SO_OBJECTS)
4565 x = count_partial(n, count_inuse);
81819f0f 4566 else
205ab99d 4567 x = n->nr_partial;
81819f0f
CL
4568 total += x;
4569 nodes[node] += x;
4570 }
4571 }
81819f0f
CL
4572 x = sprintf(buf, "%lu", total);
4573#ifdef CONFIG_NUMA
f64dc58c 4574 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4575 if (nodes[node])
4576 x += sprintf(buf + x, " N%d=%lu",
4577 node, nodes[node]);
4578#endif
04d94879 4579 unlock_memory_hotplug();
81819f0f
CL
4580 kfree(nodes);
4581 return x + sprintf(buf + x, "\n");
4582}
4583
ab4d5ed5 4584#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4585static int any_slab_objects(struct kmem_cache *s)
4586{
4587 int node;
81819f0f 4588
dfb4f096 4589 for_each_online_node(node) {
81819f0f
CL
4590 struct kmem_cache_node *n = get_node(s, node);
4591
dfb4f096
CL
4592 if (!n)
4593 continue;
4594
4ea33e2d 4595 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4596 return 1;
4597 }
4598 return 0;
4599}
ab4d5ed5 4600#endif
81819f0f
CL
4601
4602#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4603#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4604
4605struct slab_attribute {
4606 struct attribute attr;
4607 ssize_t (*show)(struct kmem_cache *s, char *buf);
4608 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4609};
4610
4611#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4612 static struct slab_attribute _name##_attr = \
4613 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4614
4615#define SLAB_ATTR(_name) \
4616 static struct slab_attribute _name##_attr = \
ab067e99 4617 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4618
81819f0f
CL
4619static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4620{
4621 return sprintf(buf, "%d\n", s->size);
4622}
4623SLAB_ATTR_RO(slab_size);
4624
4625static ssize_t align_show(struct kmem_cache *s, char *buf)
4626{
4627 return sprintf(buf, "%d\n", s->align);
4628}
4629SLAB_ATTR_RO(align);
4630
4631static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4632{
4633 return sprintf(buf, "%d\n", s->objsize);
4634}
4635SLAB_ATTR_RO(object_size);
4636
4637static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4638{
834f3d11 4639 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4640}
4641SLAB_ATTR_RO(objs_per_slab);
4642
06b285dc
CL
4643static ssize_t order_store(struct kmem_cache *s,
4644 const char *buf, size_t length)
4645{
0121c619
CL
4646 unsigned long order;
4647 int err;
4648
4649 err = strict_strtoul(buf, 10, &order);
4650 if (err)
4651 return err;
06b285dc
CL
4652
4653 if (order > slub_max_order || order < slub_min_order)
4654 return -EINVAL;
4655
4656 calculate_sizes(s, order);
4657 return length;
4658}
4659
81819f0f
CL
4660static ssize_t order_show(struct kmem_cache *s, char *buf)
4661{
834f3d11 4662 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4663}
06b285dc 4664SLAB_ATTR(order);
81819f0f 4665
73d342b1
DR
4666static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4667{
4668 return sprintf(buf, "%lu\n", s->min_partial);
4669}
4670
4671static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4672 size_t length)
4673{
4674 unsigned long min;
4675 int err;
4676
4677 err = strict_strtoul(buf, 10, &min);
4678 if (err)
4679 return err;
4680
c0bdb232 4681 set_min_partial(s, min);
73d342b1
DR
4682 return length;
4683}
4684SLAB_ATTR(min_partial);
4685
49e22585
CL
4686static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4687{
4688 return sprintf(buf, "%u\n", s->cpu_partial);
4689}
4690
4691static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4692 size_t length)
4693{
4694 unsigned long objects;
4695 int err;
4696
4697 err = strict_strtoul(buf, 10, &objects);
4698 if (err)
4699 return err;
74ee4ef1
DR
4700 if (objects && kmem_cache_debug(s))
4701 return -EINVAL;
49e22585
CL
4702
4703 s->cpu_partial = objects;
4704 flush_all(s);
4705 return length;
4706}
4707SLAB_ATTR(cpu_partial);
4708
81819f0f
CL
4709static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4710{
62c70bce
JP
4711 if (!s->ctor)
4712 return 0;
4713 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4714}
4715SLAB_ATTR_RO(ctor);
4716
81819f0f
CL
4717static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4718{
4719 return sprintf(buf, "%d\n", s->refcount - 1);
4720}
4721SLAB_ATTR_RO(aliases);
4722
81819f0f
CL
4723static ssize_t partial_show(struct kmem_cache *s, char *buf)
4724{
d9acf4b7 4725 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4726}
4727SLAB_ATTR_RO(partial);
4728
4729static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4730{
d9acf4b7 4731 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4732}
4733SLAB_ATTR_RO(cpu_slabs);
4734
4735static ssize_t objects_show(struct kmem_cache *s, char *buf)
4736{
205ab99d 4737 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4738}
4739SLAB_ATTR_RO(objects);
4740
205ab99d
CL
4741static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4742{
4743 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4744}
4745SLAB_ATTR_RO(objects_partial);
4746
49e22585
CL
4747static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4748{
4749 int objects = 0;
4750 int pages = 0;
4751 int cpu;
4752 int len;
4753
4754 for_each_online_cpu(cpu) {
4755 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4756
4757 if (page) {
4758 pages += page->pages;
4759 objects += page->pobjects;
4760 }
4761 }
4762
4763 len = sprintf(buf, "%d(%d)", objects, pages);
4764
4765#ifdef CONFIG_SMP
4766 for_each_online_cpu(cpu) {
4767 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4768
4769 if (page && len < PAGE_SIZE - 20)
4770 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4771 page->pobjects, page->pages);
4772 }
4773#endif
4774 return len + sprintf(buf + len, "\n");
4775}
4776SLAB_ATTR_RO(slabs_cpu_partial);
4777
a5a84755
CL
4778static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4779{
4780 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4781}
4782
4783static ssize_t reclaim_account_store(struct kmem_cache *s,
4784 const char *buf, size_t length)
4785{
4786 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4787 if (buf[0] == '1')
4788 s->flags |= SLAB_RECLAIM_ACCOUNT;
4789 return length;
4790}
4791SLAB_ATTR(reclaim_account);
4792
4793static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4794{
4795 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4796}
4797SLAB_ATTR_RO(hwcache_align);
4798
4799#ifdef CONFIG_ZONE_DMA
4800static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4801{
4802 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4803}
4804SLAB_ATTR_RO(cache_dma);
4805#endif
4806
4807static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4808{
4809 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4810}
4811SLAB_ATTR_RO(destroy_by_rcu);
4812
ab9a0f19
LJ
4813static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4814{
4815 return sprintf(buf, "%d\n", s->reserved);
4816}
4817SLAB_ATTR_RO(reserved);
4818
ab4d5ed5 4819#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4820static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4821{
4822 return show_slab_objects(s, buf, SO_ALL);
4823}
4824SLAB_ATTR_RO(slabs);
4825
205ab99d
CL
4826static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4827{
4828 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4829}
4830SLAB_ATTR_RO(total_objects);
4831
81819f0f
CL
4832static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4833{
4834 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4835}
4836
4837static ssize_t sanity_checks_store(struct kmem_cache *s,
4838 const char *buf, size_t length)
4839{
4840 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4841 if (buf[0] == '1') {
4842 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4843 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4844 }
81819f0f
CL
4845 return length;
4846}
4847SLAB_ATTR(sanity_checks);
4848
4849static ssize_t trace_show(struct kmem_cache *s, char *buf)
4850{
4851 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4852}
4853
4854static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4855 size_t length)
4856{
4857 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4858 if (buf[0] == '1') {
4859 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4860 s->flags |= SLAB_TRACE;
b789ef51 4861 }
81819f0f
CL
4862 return length;
4863}
4864SLAB_ATTR(trace);
4865
81819f0f
CL
4866static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4867{
4868 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4869}
4870
4871static ssize_t red_zone_store(struct kmem_cache *s,
4872 const char *buf, size_t length)
4873{
4874 if (any_slab_objects(s))
4875 return -EBUSY;
4876
4877 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4878 if (buf[0] == '1') {
4879 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4880 s->flags |= SLAB_RED_ZONE;
b789ef51 4881 }
06b285dc 4882 calculate_sizes(s, -1);
81819f0f
CL
4883 return length;
4884}
4885SLAB_ATTR(red_zone);
4886
4887static ssize_t poison_show(struct kmem_cache *s, char *buf)
4888{
4889 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4890}
4891
4892static ssize_t poison_store(struct kmem_cache *s,
4893 const char *buf, size_t length)
4894{
4895 if (any_slab_objects(s))
4896 return -EBUSY;
4897
4898 s->flags &= ~SLAB_POISON;
b789ef51
CL
4899 if (buf[0] == '1') {
4900 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4901 s->flags |= SLAB_POISON;
b789ef51 4902 }
06b285dc 4903 calculate_sizes(s, -1);
81819f0f
CL
4904 return length;
4905}
4906SLAB_ATTR(poison);
4907
4908static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4909{
4910 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4911}
4912
4913static ssize_t store_user_store(struct kmem_cache *s,
4914 const char *buf, size_t length)
4915{
4916 if (any_slab_objects(s))
4917 return -EBUSY;
4918
4919 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4920 if (buf[0] == '1') {
4921 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4922 s->flags |= SLAB_STORE_USER;
b789ef51 4923 }
06b285dc 4924 calculate_sizes(s, -1);
81819f0f
CL
4925 return length;
4926}
4927SLAB_ATTR(store_user);
4928
53e15af0
CL
4929static ssize_t validate_show(struct kmem_cache *s, char *buf)
4930{
4931 return 0;
4932}
4933
4934static ssize_t validate_store(struct kmem_cache *s,
4935 const char *buf, size_t length)
4936{
434e245d
CL
4937 int ret = -EINVAL;
4938
4939 if (buf[0] == '1') {
4940 ret = validate_slab_cache(s);
4941 if (ret >= 0)
4942 ret = length;
4943 }
4944 return ret;
53e15af0
CL
4945}
4946SLAB_ATTR(validate);
a5a84755
CL
4947
4948static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4949{
4950 if (!(s->flags & SLAB_STORE_USER))
4951 return -ENOSYS;
4952 return list_locations(s, buf, TRACK_ALLOC);
4953}
4954SLAB_ATTR_RO(alloc_calls);
4955
4956static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4957{
4958 if (!(s->flags & SLAB_STORE_USER))
4959 return -ENOSYS;
4960 return list_locations(s, buf, TRACK_FREE);
4961}
4962SLAB_ATTR_RO(free_calls);
4963#endif /* CONFIG_SLUB_DEBUG */
4964
4965#ifdef CONFIG_FAILSLAB
4966static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4967{
4968 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4969}
4970
4971static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4972 size_t length)
4973{
4974 s->flags &= ~SLAB_FAILSLAB;
4975 if (buf[0] == '1')
4976 s->flags |= SLAB_FAILSLAB;
4977 return length;
4978}
4979SLAB_ATTR(failslab);
ab4d5ed5 4980#endif
53e15af0 4981
2086d26a
CL
4982static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4983{
4984 return 0;
4985}
4986
4987static ssize_t shrink_store(struct kmem_cache *s,
4988 const char *buf, size_t length)
4989{
4990 if (buf[0] == '1') {
4991 int rc = kmem_cache_shrink(s);
4992
4993 if (rc)
4994 return rc;
4995 } else
4996 return -EINVAL;
4997 return length;
4998}
4999SLAB_ATTR(shrink);
5000
81819f0f 5001#ifdef CONFIG_NUMA
9824601e 5002static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5003{
9824601e 5004 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5005}
5006
9824601e 5007static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5008 const char *buf, size_t length)
5009{
0121c619
CL
5010 unsigned long ratio;
5011 int err;
5012
5013 err = strict_strtoul(buf, 10, &ratio);
5014 if (err)
5015 return err;
5016
e2cb96b7 5017 if (ratio <= 100)
0121c619 5018 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5019
81819f0f
CL
5020 return length;
5021}
9824601e 5022SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5023#endif
5024
8ff12cfc 5025#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5026static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5027{
5028 unsigned long sum = 0;
5029 int cpu;
5030 int len;
5031 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5032
5033 if (!data)
5034 return -ENOMEM;
5035
5036 for_each_online_cpu(cpu) {
9dfc6e68 5037 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5038
5039 data[cpu] = x;
5040 sum += x;
5041 }
5042
5043 len = sprintf(buf, "%lu", sum);
5044
50ef37b9 5045#ifdef CONFIG_SMP
8ff12cfc
CL
5046 for_each_online_cpu(cpu) {
5047 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5048 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5049 }
50ef37b9 5050#endif
8ff12cfc
CL
5051 kfree(data);
5052 return len + sprintf(buf + len, "\n");
5053}
5054
78eb00cc
DR
5055static void clear_stat(struct kmem_cache *s, enum stat_item si)
5056{
5057 int cpu;
5058
5059 for_each_online_cpu(cpu)
9dfc6e68 5060 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5061}
5062
8ff12cfc
CL
5063#define STAT_ATTR(si, text) \
5064static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5065{ \
5066 return show_stat(s, buf, si); \
5067} \
78eb00cc
DR
5068static ssize_t text##_store(struct kmem_cache *s, \
5069 const char *buf, size_t length) \
5070{ \
5071 if (buf[0] != '0') \
5072 return -EINVAL; \
5073 clear_stat(s, si); \
5074 return length; \
5075} \
5076SLAB_ATTR(text); \
8ff12cfc
CL
5077
5078STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5079STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5080STAT_ATTR(FREE_FASTPATH, free_fastpath);
5081STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5082STAT_ATTR(FREE_FROZEN, free_frozen);
5083STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5084STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5085STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5086STAT_ATTR(ALLOC_SLAB, alloc_slab);
5087STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5088STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5089STAT_ATTR(FREE_SLAB, free_slab);
5090STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5091STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5092STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5093STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5094STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5095STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5096STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5097STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5098STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5099STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5100STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5101STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5102STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5103STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5104#endif
5105
06428780 5106static struct attribute *slab_attrs[] = {
81819f0f
CL
5107 &slab_size_attr.attr,
5108 &object_size_attr.attr,
5109 &objs_per_slab_attr.attr,
5110 &order_attr.attr,
73d342b1 5111 &min_partial_attr.attr,
49e22585 5112 &cpu_partial_attr.attr,
81819f0f 5113 &objects_attr.attr,
205ab99d 5114 &objects_partial_attr.attr,
81819f0f
CL
5115 &partial_attr.attr,
5116 &cpu_slabs_attr.attr,
5117 &ctor_attr.attr,
81819f0f
CL
5118 &aliases_attr.attr,
5119 &align_attr.attr,
81819f0f
CL
5120 &hwcache_align_attr.attr,
5121 &reclaim_account_attr.attr,
5122 &destroy_by_rcu_attr.attr,
a5a84755 5123 &shrink_attr.attr,
ab9a0f19 5124 &reserved_attr.attr,
49e22585 5125 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5126#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5127 &total_objects_attr.attr,
5128 &slabs_attr.attr,
5129 &sanity_checks_attr.attr,
5130 &trace_attr.attr,
81819f0f
CL
5131 &red_zone_attr.attr,
5132 &poison_attr.attr,
5133 &store_user_attr.attr,
53e15af0 5134 &validate_attr.attr,
88a420e4
CL
5135 &alloc_calls_attr.attr,
5136 &free_calls_attr.attr,
ab4d5ed5 5137#endif
81819f0f
CL
5138#ifdef CONFIG_ZONE_DMA
5139 &cache_dma_attr.attr,
5140#endif
5141#ifdef CONFIG_NUMA
9824601e 5142 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5143#endif
5144#ifdef CONFIG_SLUB_STATS
5145 &alloc_fastpath_attr.attr,
5146 &alloc_slowpath_attr.attr,
5147 &free_fastpath_attr.attr,
5148 &free_slowpath_attr.attr,
5149 &free_frozen_attr.attr,
5150 &free_add_partial_attr.attr,
5151 &free_remove_partial_attr.attr,
5152 &alloc_from_partial_attr.attr,
5153 &alloc_slab_attr.attr,
5154 &alloc_refill_attr.attr,
e36a2652 5155 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5156 &free_slab_attr.attr,
5157 &cpuslab_flush_attr.attr,
5158 &deactivate_full_attr.attr,
5159 &deactivate_empty_attr.attr,
5160 &deactivate_to_head_attr.attr,
5161 &deactivate_to_tail_attr.attr,
5162 &deactivate_remote_frees_attr.attr,
03e404af 5163 &deactivate_bypass_attr.attr,
65c3376a 5164 &order_fallback_attr.attr,
b789ef51
CL
5165 &cmpxchg_double_fail_attr.attr,
5166 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5167 &cpu_partial_alloc_attr.attr,
5168 &cpu_partial_free_attr.attr,
8028dcea
AS
5169 &cpu_partial_node_attr.attr,
5170 &cpu_partial_drain_attr.attr,
81819f0f 5171#endif
4c13dd3b
DM
5172#ifdef CONFIG_FAILSLAB
5173 &failslab_attr.attr,
5174#endif
5175
81819f0f
CL
5176 NULL
5177};
5178
5179static struct attribute_group slab_attr_group = {
5180 .attrs = slab_attrs,
5181};
5182
5183static ssize_t slab_attr_show(struct kobject *kobj,
5184 struct attribute *attr,
5185 char *buf)
5186{
5187 struct slab_attribute *attribute;
5188 struct kmem_cache *s;
5189 int err;
5190
5191 attribute = to_slab_attr(attr);
5192 s = to_slab(kobj);
5193
5194 if (!attribute->show)
5195 return -EIO;
5196
5197 err = attribute->show(s, buf);
5198
5199 return err;
5200}
5201
5202static ssize_t slab_attr_store(struct kobject *kobj,
5203 struct attribute *attr,
5204 const char *buf, size_t len)
5205{
5206 struct slab_attribute *attribute;
5207 struct kmem_cache *s;
5208 int err;
5209
5210 attribute = to_slab_attr(attr);
5211 s = to_slab(kobj);
5212
5213 if (!attribute->store)
5214 return -EIO;
5215
5216 err = attribute->store(s, buf, len);
5217
5218 return err;
5219}
5220
151c602f
CL
5221static void kmem_cache_release(struct kobject *kobj)
5222{
5223 struct kmem_cache *s = to_slab(kobj);
5224
84c1cf62 5225 kfree(s->name);
151c602f
CL
5226 kfree(s);
5227}
5228
52cf25d0 5229static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5230 .show = slab_attr_show,
5231 .store = slab_attr_store,
5232};
5233
5234static struct kobj_type slab_ktype = {
5235 .sysfs_ops = &slab_sysfs_ops,
151c602f 5236 .release = kmem_cache_release
81819f0f
CL
5237};
5238
5239static int uevent_filter(struct kset *kset, struct kobject *kobj)
5240{
5241 struct kobj_type *ktype = get_ktype(kobj);
5242
5243 if (ktype == &slab_ktype)
5244 return 1;
5245 return 0;
5246}
5247
9cd43611 5248static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5249 .filter = uevent_filter,
5250};
5251
27c3a314 5252static struct kset *slab_kset;
81819f0f
CL
5253
5254#define ID_STR_LENGTH 64
5255
5256/* Create a unique string id for a slab cache:
6446faa2
CL
5257 *
5258 * Format :[flags-]size
81819f0f
CL
5259 */
5260static char *create_unique_id(struct kmem_cache *s)
5261{
5262 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5263 char *p = name;
5264
5265 BUG_ON(!name);
5266
5267 *p++ = ':';
5268 /*
5269 * First flags affecting slabcache operations. We will only
5270 * get here for aliasable slabs so we do not need to support
5271 * too many flags. The flags here must cover all flags that
5272 * are matched during merging to guarantee that the id is
5273 * unique.
5274 */
5275 if (s->flags & SLAB_CACHE_DMA)
5276 *p++ = 'd';
5277 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5278 *p++ = 'a';
5279 if (s->flags & SLAB_DEBUG_FREE)
5280 *p++ = 'F';
5a896d9e
VN
5281 if (!(s->flags & SLAB_NOTRACK))
5282 *p++ = 't';
81819f0f
CL
5283 if (p != name + 1)
5284 *p++ = '-';
5285 p += sprintf(p, "%07d", s->size);
5286 BUG_ON(p > name + ID_STR_LENGTH - 1);
5287 return name;
5288}
5289
5290static int sysfs_slab_add(struct kmem_cache *s)
5291{
5292 int err;
5293 const char *name;
5294 int unmergeable;
5295
5296 if (slab_state < SYSFS)
5297 /* Defer until later */
5298 return 0;
5299
5300 unmergeable = slab_unmergeable(s);
5301 if (unmergeable) {
5302 /*
5303 * Slabcache can never be merged so we can use the name proper.
5304 * This is typically the case for debug situations. In that
5305 * case we can catch duplicate names easily.
5306 */
27c3a314 5307 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5308 name = s->name;
5309 } else {
5310 /*
5311 * Create a unique name for the slab as a target
5312 * for the symlinks.
5313 */
5314 name = create_unique_id(s);
5315 }
5316
27c3a314 5317 s->kobj.kset = slab_kset;
1eada11c
GKH
5318 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5319 if (err) {
5320 kobject_put(&s->kobj);
81819f0f 5321 return err;
1eada11c 5322 }
81819f0f
CL
5323
5324 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5325 if (err) {
5326 kobject_del(&s->kobj);
5327 kobject_put(&s->kobj);
81819f0f 5328 return err;
5788d8ad 5329 }
81819f0f
CL
5330 kobject_uevent(&s->kobj, KOBJ_ADD);
5331 if (!unmergeable) {
5332 /* Setup first alias */
5333 sysfs_slab_alias(s, s->name);
5334 kfree(name);
5335 }
5336 return 0;
5337}
5338
5339static void sysfs_slab_remove(struct kmem_cache *s)
5340{
2bce6485
CL
5341 if (slab_state < SYSFS)
5342 /*
5343 * Sysfs has not been setup yet so no need to remove the
5344 * cache from sysfs.
5345 */
5346 return;
5347
81819f0f
CL
5348 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5349 kobject_del(&s->kobj);
151c602f 5350 kobject_put(&s->kobj);
81819f0f
CL
5351}
5352
5353/*
5354 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5355 * available lest we lose that information.
81819f0f
CL
5356 */
5357struct saved_alias {
5358 struct kmem_cache *s;
5359 const char *name;
5360 struct saved_alias *next;
5361};
5362
5af328a5 5363static struct saved_alias *alias_list;
81819f0f
CL
5364
5365static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5366{
5367 struct saved_alias *al;
5368
5369 if (slab_state == SYSFS) {
5370 /*
5371 * If we have a leftover link then remove it.
5372 */
27c3a314
GKH
5373 sysfs_remove_link(&slab_kset->kobj, name);
5374 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5375 }
5376
5377 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5378 if (!al)
5379 return -ENOMEM;
5380
5381 al->s = s;
5382 al->name = name;
5383 al->next = alias_list;
5384 alias_list = al;
5385 return 0;
5386}
5387
5388static int __init slab_sysfs_init(void)
5389{
5b95a4ac 5390 struct kmem_cache *s;
81819f0f
CL
5391 int err;
5392
2bce6485
CL
5393 down_write(&slub_lock);
5394
0ff21e46 5395 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5396 if (!slab_kset) {
2bce6485 5397 up_write(&slub_lock);
81819f0f
CL
5398 printk(KERN_ERR "Cannot register slab subsystem.\n");
5399 return -ENOSYS;
5400 }
5401
26a7bd03
CL
5402 slab_state = SYSFS;
5403
5b95a4ac 5404 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5405 err = sysfs_slab_add(s);
5d540fb7
CL
5406 if (err)
5407 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5408 " to sysfs\n", s->name);
26a7bd03 5409 }
81819f0f
CL
5410
5411 while (alias_list) {
5412 struct saved_alias *al = alias_list;
5413
5414 alias_list = alias_list->next;
5415 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5416 if (err)
5417 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5418 " %s to sysfs\n", s->name);
81819f0f
CL
5419 kfree(al);
5420 }
5421
2bce6485 5422 up_write(&slub_lock);
81819f0f
CL
5423 resiliency_test();
5424 return 0;
5425}
5426
5427__initcall(slab_sysfs_init);
ab4d5ed5 5428#endif /* CONFIG_SYSFS */
57ed3eda
PE
5429
5430/*
5431 * The /proc/slabinfo ABI
5432 */
158a9624 5433#ifdef CONFIG_SLABINFO
57ed3eda
PE
5434static void print_slabinfo_header(struct seq_file *m)
5435{
5436 seq_puts(m, "slabinfo - version: 2.1\n");
5437 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
5438 "<objperslab> <pagesperslab>");
5439 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5440 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5441 seq_putc(m, '\n');
5442}
5443
5444static void *s_start(struct seq_file *m, loff_t *pos)
5445{
5446 loff_t n = *pos;
5447
5448 down_read(&slub_lock);
5449 if (!n)
5450 print_slabinfo_header(m);
5451
5452 return seq_list_start(&slab_caches, *pos);
5453}
5454
5455static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5456{
5457 return seq_list_next(p, &slab_caches, pos);
5458}
5459
5460static void s_stop(struct seq_file *m, void *p)
5461{
5462 up_read(&slub_lock);
5463}
5464
5465static int s_show(struct seq_file *m, void *p)
5466{
5467 unsigned long nr_partials = 0;
5468 unsigned long nr_slabs = 0;
5469 unsigned long nr_inuse = 0;
205ab99d
CL
5470 unsigned long nr_objs = 0;
5471 unsigned long nr_free = 0;
57ed3eda
PE
5472 struct kmem_cache *s;
5473 int node;
5474
5475 s = list_entry(p, struct kmem_cache, list);
5476
5477 for_each_online_node(node) {
5478 struct kmem_cache_node *n = get_node(s, node);
5479
5480 if (!n)
5481 continue;
5482
5483 nr_partials += n->nr_partial;
5484 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5485 nr_objs += atomic_long_read(&n->total_objects);
5486 nr_free += count_partial(n, count_free);
57ed3eda
PE
5487 }
5488
205ab99d 5489 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5490
5491 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5492 nr_objs, s->size, oo_objects(s->oo),
5493 (1 << oo_order(s->oo)));
57ed3eda
PE
5494 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5495 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5496 0UL);
5497 seq_putc(m, '\n');
5498 return 0;
5499}
5500
7b3c3a50 5501static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5502 .start = s_start,
5503 .next = s_next,
5504 .stop = s_stop,
5505 .show = s_show,
5506};
5507
7b3c3a50
AD
5508static int slabinfo_open(struct inode *inode, struct file *file)
5509{
5510 return seq_open(file, &slabinfo_op);
5511}
5512
5513static const struct file_operations proc_slabinfo_operations = {
5514 .open = slabinfo_open,
5515 .read = seq_read,
5516 .llseek = seq_lseek,
5517 .release = seq_release,
5518};
5519
5520static int __init slab_proc_init(void)
5521{
ab067e99 5522 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5523 return 0;
5524}
5525module_init(slab_proc_init);
158a9624 5526#endif /* CONFIG_SLABINFO */