mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
81819f0f 21#include <linux/seq_file.h>
5a896d9e 22#include <linux/kmemcheck.h>
81819f0f
CL
23#include <linux/cpu.h>
24#include <linux/cpuset.h>
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
bfa71457 32#include <linux/stacktrace.h>
4de900b4 33#include <linux/prefetch.h>
81819f0f 34
4a92379b
RK
35#include <trace/events/kmem.h>
36
072bb0aa
MG
37#include "internal.h"
38
81819f0f
CL
39/*
40 * Lock order:
18004c5d 41 * 1. slab_mutex (Global Mutex)
881db7fb
CL
42 * 2. node->list_lock
43 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 44 *
18004c5d 45 * slab_mutex
881db7fb 46 *
18004c5d 47 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
48 * and to synchronize major metadata changes to slab cache structures.
49 *
50 * The slab_lock is only used for debugging and on arches that do not
51 * have the ability to do a cmpxchg_double. It only protects the second
52 * double word in the page struct. Meaning
53 * A. page->freelist -> List of object free in a page
54 * B. page->counters -> Counters of objects
55 * C. page->frozen -> frozen state
56 *
57 * If a slab is frozen then it is exempt from list management. It is not
58 * on any list. The processor that froze the slab is the one who can
59 * perform list operations on the page. Other processors may put objects
60 * onto the freelist but the processor that froze the slab is the only
61 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
62 *
63 * The list_lock protects the partial and full list on each node and
64 * the partial slab counter. If taken then no new slabs may be added or
65 * removed from the lists nor make the number of partial slabs be modified.
66 * (Note that the total number of slabs is an atomic value that may be
67 * modified without taking the list lock).
68 *
69 * The list_lock is a centralized lock and thus we avoid taking it as
70 * much as possible. As long as SLUB does not have to handle partial
71 * slabs, operations can continue without any centralized lock. F.e.
72 * allocating a long series of objects that fill up slabs does not require
73 * the list lock.
81819f0f
CL
74 * Interrupts are disabled during allocation and deallocation in order to
75 * make the slab allocator safe to use in the context of an irq. In addition
76 * interrupts are disabled to ensure that the processor does not change
77 * while handling per_cpu slabs, due to kernel preemption.
78 *
79 * SLUB assigns one slab for allocation to each processor.
80 * Allocations only occur from these slabs called cpu slabs.
81 *
672bba3a
CL
82 * Slabs with free elements are kept on a partial list and during regular
83 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 84 * freed then the slab will show up again on the partial lists.
672bba3a
CL
85 * We track full slabs for debugging purposes though because otherwise we
86 * cannot scan all objects.
81819f0f
CL
87 *
88 * Slabs are freed when they become empty. Teardown and setup is
89 * minimal so we rely on the page allocators per cpu caches for
90 * fast frees and allocs.
91 *
92 * Overloading of page flags that are otherwise used for LRU management.
93 *
4b6f0750
CL
94 * PageActive The slab is frozen and exempt from list processing.
95 * This means that the slab is dedicated to a purpose
96 * such as satisfying allocations for a specific
97 * processor. Objects may be freed in the slab while
98 * it is frozen but slab_free will then skip the usual
99 * list operations. It is up to the processor holding
100 * the slab to integrate the slab into the slab lists
101 * when the slab is no longer needed.
102 *
103 * One use of this flag is to mark slabs that are
104 * used for allocations. Then such a slab becomes a cpu
105 * slab. The cpu slab may be equipped with an additional
dfb4f096 106 * freelist that allows lockless access to
894b8788
CL
107 * free objects in addition to the regular freelist
108 * that requires the slab lock.
81819f0f
CL
109 *
110 * PageError Slab requires special handling due to debug
111 * options set. This moves slab handling out of
894b8788 112 * the fast path and disables lockless freelists.
81819f0f
CL
113 */
114
af537b0a
CL
115#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 SLAB_TRACE | SLAB_DEBUG_FREE)
117
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
81819f0f
CL
127/*
128 * Issues still to be resolved:
129 *
81819f0f
CL
130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
131 *
81819f0f
CL
132 * - Variable sizing of the per node arrays
133 */
134
135/* Enable to test recovery from slab corruption on boot */
136#undef SLUB_RESILIENCY_TEST
137
b789ef51
CL
138/* Enable to log cmpxchg failures */
139#undef SLUB_DEBUG_CMPXCHG
140
2086d26a
CL
141/*
142 * Mininum number of partial slabs. These will be left on the partial
143 * lists even if they are empty. kmem_cache_shrink may reclaim them.
144 */
76be8950 145#define MIN_PARTIAL 5
e95eed57 146
2086d26a
CL
147/*
148 * Maximum number of desirable partial slabs.
149 * The existence of more partial slabs makes kmem_cache_shrink
150 * sort the partial list by the number of objects in the.
151 */
152#define MAX_PARTIAL 10
153
81819f0f
CL
154#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_STORE_USER)
672bba3a 156
fa5ec8a1 157/*
3de47213
DR
158 * Debugging flags that require metadata to be stored in the slab. These get
159 * disabled when slub_debug=O is used and a cache's min order increases with
160 * metadata.
fa5ec8a1 161 */
3de47213 162#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 163
81819f0f
CL
164/*
165 * Set of flags that will prevent slab merging
166 */
167#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
169 SLAB_FAILSLAB)
81819f0f
CL
170
171#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 172 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 173
210b5c06
CG
174#define OO_SHIFT 16
175#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 176#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 177
81819f0f 178/* Internal SLUB flags */
f90ec390 179#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 180#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f
CL
181
182static int kmem_size = sizeof(struct kmem_cache);
183
184#ifdef CONFIG_SMP
185static struct notifier_block slab_notifier;
186#endif
187
02cbc874
CL
188/*
189 * Tracking user of a slab.
190 */
d6543e39 191#define TRACK_ADDRS_COUNT 16
02cbc874 192struct track {
ce71e27c 193 unsigned long addr; /* Called from address */
d6543e39
BG
194#ifdef CONFIG_STACKTRACE
195 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
196#endif
02cbc874
CL
197 int cpu; /* Was running on cpu */
198 int pid; /* Pid context */
199 unsigned long when; /* When did the operation occur */
200};
201
202enum track_item { TRACK_ALLOC, TRACK_FREE };
203
ab4d5ed5 204#ifdef CONFIG_SYSFS
81819f0f
CL
205static int sysfs_slab_add(struct kmem_cache *);
206static int sysfs_slab_alias(struct kmem_cache *, const char *);
207static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 208
81819f0f 209#else
0c710013
CL
210static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
211static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
212 { return 0; }
151c602f
CL
213static inline void sysfs_slab_remove(struct kmem_cache *s)
214{
84c1cf62 215 kfree(s->name);
151c602f
CL
216 kfree(s);
217}
8ff12cfc 218
81819f0f
CL
219#endif
220
4fdccdfb 221static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
222{
223#ifdef CONFIG_SLUB_STATS
84e554e6 224 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
225#endif
226}
227
81819f0f
CL
228/********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
231
81819f0f
CL
232static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
233{
81819f0f 234 return s->node[node];
81819f0f
CL
235}
236
6446faa2 237/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
238static inline int check_valid_pointer(struct kmem_cache *s,
239 struct page *page, const void *object)
240{
241 void *base;
242
a973e9dd 243 if (!object)
02cbc874
CL
244 return 1;
245
a973e9dd 246 base = page_address(page);
39b26464 247 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
248 (object - base) % s->size) {
249 return 0;
250 }
251
252 return 1;
253}
254
7656c72b
CL
255static inline void *get_freepointer(struct kmem_cache *s, void *object)
256{
257 return *(void **)(object + s->offset);
258}
259
0ad9500e
ED
260static void prefetch_freepointer(const struct kmem_cache *s, void *object)
261{
262 prefetch(object + s->offset);
263}
264
1393d9a1
CL
265static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
266{
267 void *p;
268
269#ifdef CONFIG_DEBUG_PAGEALLOC
270 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
271#else
272 p = get_freepointer(s, object);
273#endif
274 return p;
275}
276
7656c72b
CL
277static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
278{
279 *(void **)(object + s->offset) = fp;
280}
281
282/* Loop over all objects in a slab */
224a88be
CL
283#define for_each_object(__p, __s, __addr, __objects) \
284 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
285 __p += (__s)->size)
286
7656c72b
CL
287/* Determine object index from a given position */
288static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
289{
290 return (p - addr) / s->size;
291}
292
d71f606f
MK
293static inline size_t slab_ksize(const struct kmem_cache *s)
294{
295#ifdef CONFIG_SLUB_DEBUG
296 /*
297 * Debugging requires use of the padding between object
298 * and whatever may come after it.
299 */
300 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 301 return s->object_size;
d71f606f
MK
302
303#endif
304 /*
305 * If we have the need to store the freelist pointer
306 * back there or track user information then we can
307 * only use the space before that information.
308 */
309 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
310 return s->inuse;
311 /*
312 * Else we can use all the padding etc for the allocation
313 */
314 return s->size;
315}
316
ab9a0f19
LJ
317static inline int order_objects(int order, unsigned long size, int reserved)
318{
319 return ((PAGE_SIZE << order) - reserved) / size;
320}
321
834f3d11 322static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 323 unsigned long size, int reserved)
834f3d11
CL
324{
325 struct kmem_cache_order_objects x = {
ab9a0f19 326 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
327 };
328
329 return x;
330}
331
332static inline int oo_order(struct kmem_cache_order_objects x)
333{
210b5c06 334 return x.x >> OO_SHIFT;
834f3d11
CL
335}
336
337static inline int oo_objects(struct kmem_cache_order_objects x)
338{
210b5c06 339 return x.x & OO_MASK;
834f3d11
CL
340}
341
881db7fb
CL
342/*
343 * Per slab locking using the pagelock
344 */
345static __always_inline void slab_lock(struct page *page)
346{
347 bit_spin_lock(PG_locked, &page->flags);
348}
349
350static __always_inline void slab_unlock(struct page *page)
351{
352 __bit_spin_unlock(PG_locked, &page->flags);
353}
354
1d07171c
CL
355/* Interrupts must be disabled (for the fallback code to work right) */
356static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
357 void *freelist_old, unsigned long counters_old,
358 void *freelist_new, unsigned long counters_new,
359 const char *n)
360{
361 VM_BUG_ON(!irqs_disabled());
2565409f
HC
362#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
363 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 364 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 365 if (cmpxchg_double(&page->freelist, &page->counters,
1d07171c
CL
366 freelist_old, counters_old,
367 freelist_new, counters_new))
368 return 1;
369 } else
370#endif
371 {
372 slab_lock(page);
373 if (page->freelist == freelist_old && page->counters == counters_old) {
374 page->freelist = freelist_new;
375 page->counters = counters_new;
376 slab_unlock(page);
377 return 1;
378 }
379 slab_unlock(page);
380 }
381
382 cpu_relax();
383 stat(s, CMPXCHG_DOUBLE_FAIL);
384
385#ifdef SLUB_DEBUG_CMPXCHG
386 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
387#endif
388
389 return 0;
390}
391
b789ef51
CL
392static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
393 void *freelist_old, unsigned long counters_old,
394 void *freelist_new, unsigned long counters_new,
395 const char *n)
396{
2565409f
HC
397#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
398 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 399 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 400 if (cmpxchg_double(&page->freelist, &page->counters,
b789ef51
CL
401 freelist_old, counters_old,
402 freelist_new, counters_new))
403 return 1;
404 } else
405#endif
406 {
1d07171c
CL
407 unsigned long flags;
408
409 local_irq_save(flags);
881db7fb 410 slab_lock(page);
b789ef51
CL
411 if (page->freelist == freelist_old && page->counters == counters_old) {
412 page->freelist = freelist_new;
413 page->counters = counters_new;
881db7fb 414 slab_unlock(page);
1d07171c 415 local_irq_restore(flags);
b789ef51
CL
416 return 1;
417 }
881db7fb 418 slab_unlock(page);
1d07171c 419 local_irq_restore(flags);
b789ef51
CL
420 }
421
422 cpu_relax();
423 stat(s, CMPXCHG_DOUBLE_FAIL);
424
425#ifdef SLUB_DEBUG_CMPXCHG
426 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
427#endif
428
429 return 0;
430}
431
41ecc55b 432#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
433/*
434 * Determine a map of object in use on a page.
435 *
881db7fb 436 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
437 * not vanish from under us.
438 */
439static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
440{
441 void *p;
442 void *addr = page_address(page);
443
444 for (p = page->freelist; p; p = get_freepointer(s, p))
445 set_bit(slab_index(p, s, addr), map);
446}
447
41ecc55b
CL
448/*
449 * Debug settings:
450 */
f0630fff
CL
451#ifdef CONFIG_SLUB_DEBUG_ON
452static int slub_debug = DEBUG_DEFAULT_FLAGS;
453#else
41ecc55b 454static int slub_debug;
f0630fff 455#endif
41ecc55b
CL
456
457static char *slub_debug_slabs;
fa5ec8a1 458static int disable_higher_order_debug;
41ecc55b 459
81819f0f
CL
460/*
461 * Object debugging
462 */
463static void print_section(char *text, u8 *addr, unsigned int length)
464{
ffc79d28
SAS
465 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
466 length, 1);
81819f0f
CL
467}
468
81819f0f
CL
469static struct track *get_track(struct kmem_cache *s, void *object,
470 enum track_item alloc)
471{
472 struct track *p;
473
474 if (s->offset)
475 p = object + s->offset + sizeof(void *);
476 else
477 p = object + s->inuse;
478
479 return p + alloc;
480}
481
482static void set_track(struct kmem_cache *s, void *object,
ce71e27c 483 enum track_item alloc, unsigned long addr)
81819f0f 484{
1a00df4a 485 struct track *p = get_track(s, object, alloc);
81819f0f 486
81819f0f 487 if (addr) {
d6543e39
BG
488#ifdef CONFIG_STACKTRACE
489 struct stack_trace trace;
490 int i;
491
492 trace.nr_entries = 0;
493 trace.max_entries = TRACK_ADDRS_COUNT;
494 trace.entries = p->addrs;
495 trace.skip = 3;
496 save_stack_trace(&trace);
497
498 /* See rant in lockdep.c */
499 if (trace.nr_entries != 0 &&
500 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
501 trace.nr_entries--;
502
503 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
504 p->addrs[i] = 0;
505#endif
81819f0f
CL
506 p->addr = addr;
507 p->cpu = smp_processor_id();
88e4ccf2 508 p->pid = current->pid;
81819f0f
CL
509 p->when = jiffies;
510 } else
511 memset(p, 0, sizeof(struct track));
512}
513
81819f0f
CL
514static void init_tracking(struct kmem_cache *s, void *object)
515{
24922684
CL
516 if (!(s->flags & SLAB_STORE_USER))
517 return;
518
ce71e27c
EGM
519 set_track(s, object, TRACK_FREE, 0UL);
520 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
521}
522
523static void print_track(const char *s, struct track *t)
524{
525 if (!t->addr)
526 return;
527
7daf705f 528 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 529 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
530#ifdef CONFIG_STACKTRACE
531 {
532 int i;
533 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
534 if (t->addrs[i])
535 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
536 else
537 break;
538 }
539#endif
24922684
CL
540}
541
542static void print_tracking(struct kmem_cache *s, void *object)
543{
544 if (!(s->flags & SLAB_STORE_USER))
545 return;
546
547 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
548 print_track("Freed", get_track(s, object, TRACK_FREE));
549}
550
551static void print_page_info(struct page *page)
552{
39b26464
CL
553 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
554 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
555
556}
557
558static void slab_bug(struct kmem_cache *s, char *fmt, ...)
559{
560 va_list args;
561 char buf[100];
562
563 va_start(args, fmt);
564 vsnprintf(buf, sizeof(buf), fmt, args);
565 va_end(args);
566 printk(KERN_ERR "========================================"
567 "=====================================\n");
265d47e7 568 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
24922684
CL
569 printk(KERN_ERR "----------------------------------------"
570 "-------------------------------------\n\n");
81819f0f
CL
571}
572
24922684
CL
573static void slab_fix(struct kmem_cache *s, char *fmt, ...)
574{
575 va_list args;
576 char buf[100];
577
578 va_start(args, fmt);
579 vsnprintf(buf, sizeof(buf), fmt, args);
580 va_end(args);
581 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
582}
583
584static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
585{
586 unsigned int off; /* Offset of last byte */
a973e9dd 587 u8 *addr = page_address(page);
24922684
CL
588
589 print_tracking(s, p);
590
591 print_page_info(page);
592
593 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
594 p, p - addr, get_freepointer(s, p));
595
596 if (p > addr + 16)
ffc79d28 597 print_section("Bytes b4 ", p - 16, 16);
81819f0f 598
3b0efdfa 599 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 600 PAGE_SIZE));
81819f0f 601 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
602 print_section("Redzone ", p + s->object_size,
603 s->inuse - s->object_size);
81819f0f 604
81819f0f
CL
605 if (s->offset)
606 off = s->offset + sizeof(void *);
607 else
608 off = s->inuse;
609
24922684 610 if (s->flags & SLAB_STORE_USER)
81819f0f 611 off += 2 * sizeof(struct track);
81819f0f
CL
612
613 if (off != s->size)
614 /* Beginning of the filler is the free pointer */
ffc79d28 615 print_section("Padding ", p + off, s->size - off);
24922684
CL
616
617 dump_stack();
81819f0f
CL
618}
619
620static void object_err(struct kmem_cache *s, struct page *page,
621 u8 *object, char *reason)
622{
3dc50637 623 slab_bug(s, "%s", reason);
24922684 624 print_trailer(s, page, object);
81819f0f
CL
625}
626
24922684 627static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
628{
629 va_list args;
630 char buf[100];
631
24922684
CL
632 va_start(args, fmt);
633 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 634 va_end(args);
3dc50637 635 slab_bug(s, "%s", buf);
24922684 636 print_page_info(page);
81819f0f
CL
637 dump_stack();
638}
639
f7cb1933 640static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
641{
642 u8 *p = object;
643
644 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
645 memset(p, POISON_FREE, s->object_size - 1);
646 p[s->object_size - 1] = POISON_END;
81819f0f
CL
647 }
648
649 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 650 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
651}
652
24922684
CL
653static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
654 void *from, void *to)
655{
656 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
657 memset(from, data, to - from);
658}
659
660static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
661 u8 *object, char *what,
06428780 662 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
663{
664 u8 *fault;
665 u8 *end;
666
79824820 667 fault = memchr_inv(start, value, bytes);
24922684
CL
668 if (!fault)
669 return 1;
670
671 end = start + bytes;
672 while (end > fault && end[-1] == value)
673 end--;
674
675 slab_bug(s, "%s overwritten", what);
676 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
677 fault, end - 1, fault[0], value);
678 print_trailer(s, page, object);
679
680 restore_bytes(s, what, value, fault, end);
681 return 0;
81819f0f
CL
682}
683
81819f0f
CL
684/*
685 * Object layout:
686 *
687 * object address
688 * Bytes of the object to be managed.
689 * If the freepointer may overlay the object then the free
690 * pointer is the first word of the object.
672bba3a 691 *
81819f0f
CL
692 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
693 * 0xa5 (POISON_END)
694 *
3b0efdfa 695 * object + s->object_size
81819f0f 696 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 697 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 698 * object_size == inuse.
672bba3a 699 *
81819f0f
CL
700 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
701 * 0xcc (RED_ACTIVE) for objects in use.
702 *
703 * object + s->inuse
672bba3a
CL
704 * Meta data starts here.
705 *
81819f0f
CL
706 * A. Free pointer (if we cannot overwrite object on free)
707 * B. Tracking data for SLAB_STORE_USER
672bba3a 708 * C. Padding to reach required alignment boundary or at mininum
6446faa2 709 * one word if debugging is on to be able to detect writes
672bba3a
CL
710 * before the word boundary.
711 *
712 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
713 *
714 * object + s->size
672bba3a 715 * Nothing is used beyond s->size.
81819f0f 716 *
3b0efdfa 717 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 718 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
719 * may be used with merged slabcaches.
720 */
721
81819f0f
CL
722static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
723{
724 unsigned long off = s->inuse; /* The end of info */
725
726 if (s->offset)
727 /* Freepointer is placed after the object. */
728 off += sizeof(void *);
729
730 if (s->flags & SLAB_STORE_USER)
731 /* We also have user information there */
732 off += 2 * sizeof(struct track);
733
734 if (s->size == off)
735 return 1;
736
24922684
CL
737 return check_bytes_and_report(s, page, p, "Object padding",
738 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
739}
740
39b26464 741/* Check the pad bytes at the end of a slab page */
81819f0f
CL
742static int slab_pad_check(struct kmem_cache *s, struct page *page)
743{
24922684
CL
744 u8 *start;
745 u8 *fault;
746 u8 *end;
747 int length;
748 int remainder;
81819f0f
CL
749
750 if (!(s->flags & SLAB_POISON))
751 return 1;
752
a973e9dd 753 start = page_address(page);
ab9a0f19 754 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
755 end = start + length;
756 remainder = length % s->size;
81819f0f
CL
757 if (!remainder)
758 return 1;
759
79824820 760 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
761 if (!fault)
762 return 1;
763 while (end > fault && end[-1] == POISON_INUSE)
764 end--;
765
766 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 767 print_section("Padding ", end - remainder, remainder);
24922684 768
8a3d271d 769 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 770 return 0;
81819f0f
CL
771}
772
773static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 774 void *object, u8 val)
81819f0f
CL
775{
776 u8 *p = object;
3b0efdfa 777 u8 *endobject = object + s->object_size;
81819f0f
CL
778
779 if (s->flags & SLAB_RED_ZONE) {
24922684 780 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 781 endobject, val, s->inuse - s->object_size))
81819f0f 782 return 0;
81819f0f 783 } else {
3b0efdfa 784 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 785 check_bytes_and_report(s, page, p, "Alignment padding",
3b0efdfa 786 endobject, POISON_INUSE, s->inuse - s->object_size);
3adbefee 787 }
81819f0f
CL
788 }
789
790 if (s->flags & SLAB_POISON) {
f7cb1933 791 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 792 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 793 POISON_FREE, s->object_size - 1) ||
24922684 794 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 795 p + s->object_size - 1, POISON_END, 1)))
81819f0f 796 return 0;
81819f0f
CL
797 /*
798 * check_pad_bytes cleans up on its own.
799 */
800 check_pad_bytes(s, page, p);
801 }
802
f7cb1933 803 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
804 /*
805 * Object and freepointer overlap. Cannot check
806 * freepointer while object is allocated.
807 */
808 return 1;
809
810 /* Check free pointer validity */
811 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
812 object_err(s, page, p, "Freepointer corrupt");
813 /*
9f6c708e 814 * No choice but to zap it and thus lose the remainder
81819f0f 815 * of the free objects in this slab. May cause
672bba3a 816 * another error because the object count is now wrong.
81819f0f 817 */
a973e9dd 818 set_freepointer(s, p, NULL);
81819f0f
CL
819 return 0;
820 }
821 return 1;
822}
823
824static int check_slab(struct kmem_cache *s, struct page *page)
825{
39b26464
CL
826 int maxobj;
827
81819f0f
CL
828 VM_BUG_ON(!irqs_disabled());
829
830 if (!PageSlab(page)) {
24922684 831 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
832 return 0;
833 }
39b26464 834
ab9a0f19 835 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
836 if (page->objects > maxobj) {
837 slab_err(s, page, "objects %u > max %u",
838 s->name, page->objects, maxobj);
839 return 0;
840 }
841 if (page->inuse > page->objects) {
24922684 842 slab_err(s, page, "inuse %u > max %u",
39b26464 843 s->name, page->inuse, page->objects);
81819f0f
CL
844 return 0;
845 }
846 /* Slab_pad_check fixes things up after itself */
847 slab_pad_check(s, page);
848 return 1;
849}
850
851/*
672bba3a
CL
852 * Determine if a certain object on a page is on the freelist. Must hold the
853 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
854 */
855static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
856{
857 int nr = 0;
881db7fb 858 void *fp;
81819f0f 859 void *object = NULL;
224a88be 860 unsigned long max_objects;
81819f0f 861
881db7fb 862 fp = page->freelist;
39b26464 863 while (fp && nr <= page->objects) {
81819f0f
CL
864 if (fp == search)
865 return 1;
866 if (!check_valid_pointer(s, page, fp)) {
867 if (object) {
868 object_err(s, page, object,
869 "Freechain corrupt");
a973e9dd 870 set_freepointer(s, object, NULL);
81819f0f
CL
871 break;
872 } else {
24922684 873 slab_err(s, page, "Freepointer corrupt");
a973e9dd 874 page->freelist = NULL;
39b26464 875 page->inuse = page->objects;
24922684 876 slab_fix(s, "Freelist cleared");
81819f0f
CL
877 return 0;
878 }
879 break;
880 }
881 object = fp;
882 fp = get_freepointer(s, object);
883 nr++;
884 }
885
ab9a0f19 886 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
887 if (max_objects > MAX_OBJS_PER_PAGE)
888 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
889
890 if (page->objects != max_objects) {
891 slab_err(s, page, "Wrong number of objects. Found %d but "
892 "should be %d", page->objects, max_objects);
893 page->objects = max_objects;
894 slab_fix(s, "Number of objects adjusted.");
895 }
39b26464 896 if (page->inuse != page->objects - nr) {
70d71228 897 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
898 "counted were %d", page->inuse, page->objects - nr);
899 page->inuse = page->objects - nr;
24922684 900 slab_fix(s, "Object count adjusted.");
81819f0f
CL
901 }
902 return search == NULL;
903}
904
0121c619
CL
905static void trace(struct kmem_cache *s, struct page *page, void *object,
906 int alloc)
3ec09742
CL
907{
908 if (s->flags & SLAB_TRACE) {
909 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
910 s->name,
911 alloc ? "alloc" : "free",
912 object, page->inuse,
913 page->freelist);
914
915 if (!alloc)
3b0efdfa 916 print_section("Object ", (void *)object, s->object_size);
3ec09742
CL
917
918 dump_stack();
919 }
920}
921
c016b0bd
CL
922/*
923 * Hooks for other subsystems that check memory allocations. In a typical
924 * production configuration these hooks all should produce no code at all.
925 */
926static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
927{
c1d50836 928 flags &= gfp_allowed_mask;
c016b0bd
CL
929 lockdep_trace_alloc(flags);
930 might_sleep_if(flags & __GFP_WAIT);
931
3b0efdfa 932 return should_failslab(s->object_size, flags, s->flags);
c016b0bd
CL
933}
934
935static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
936{
c1d50836 937 flags &= gfp_allowed_mask;
b3d41885 938 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
3b0efdfa 939 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
c016b0bd
CL
940}
941
942static inline void slab_free_hook(struct kmem_cache *s, void *x)
943{
944 kmemleak_free_recursive(x, s->flags);
c016b0bd 945
d3f661d6
CL
946 /*
947 * Trouble is that we may no longer disable interupts in the fast path
948 * So in order to make the debug calls that expect irqs to be
949 * disabled we need to disable interrupts temporarily.
950 */
951#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
952 {
953 unsigned long flags;
954
955 local_irq_save(flags);
3b0efdfa
CL
956 kmemcheck_slab_free(s, x, s->object_size);
957 debug_check_no_locks_freed(x, s->object_size);
d3f661d6
CL
958 local_irq_restore(flags);
959 }
960#endif
f9b615de 961 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3b0efdfa 962 debug_check_no_obj_freed(x, s->object_size);
c016b0bd
CL
963}
964
643b1138 965/*
672bba3a 966 * Tracking of fully allocated slabs for debugging purposes.
5cc6eee8
CL
967 *
968 * list_lock must be held.
643b1138 969 */
5cc6eee8
CL
970static void add_full(struct kmem_cache *s,
971 struct kmem_cache_node *n, struct page *page)
643b1138 972{
5cc6eee8
CL
973 if (!(s->flags & SLAB_STORE_USER))
974 return;
975
643b1138 976 list_add(&page->lru, &n->full);
643b1138
CL
977}
978
5cc6eee8
CL
979/*
980 * list_lock must be held.
981 */
643b1138
CL
982static void remove_full(struct kmem_cache *s, struct page *page)
983{
643b1138
CL
984 if (!(s->flags & SLAB_STORE_USER))
985 return;
986
643b1138 987 list_del(&page->lru);
643b1138
CL
988}
989
0f389ec6
CL
990/* Tracking of the number of slabs for debugging purposes */
991static inline unsigned long slabs_node(struct kmem_cache *s, int node)
992{
993 struct kmem_cache_node *n = get_node(s, node);
994
995 return atomic_long_read(&n->nr_slabs);
996}
997
26c02cf0
AB
998static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
999{
1000 return atomic_long_read(&n->nr_slabs);
1001}
1002
205ab99d 1003static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1004{
1005 struct kmem_cache_node *n = get_node(s, node);
1006
1007 /*
1008 * May be called early in order to allocate a slab for the
1009 * kmem_cache_node structure. Solve the chicken-egg
1010 * dilemma by deferring the increment of the count during
1011 * bootstrap (see early_kmem_cache_node_alloc).
1012 */
7340cc84 1013 if (n) {
0f389ec6 1014 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1015 atomic_long_add(objects, &n->total_objects);
1016 }
0f389ec6 1017}
205ab99d 1018static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1019{
1020 struct kmem_cache_node *n = get_node(s, node);
1021
1022 atomic_long_dec(&n->nr_slabs);
205ab99d 1023 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1024}
1025
1026/* Object debug checks for alloc/free paths */
3ec09742
CL
1027static void setup_object_debug(struct kmem_cache *s, struct page *page,
1028 void *object)
1029{
1030 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1031 return;
1032
f7cb1933 1033 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1034 init_tracking(s, object);
1035}
1036
1537066c 1037static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1038 void *object, unsigned long addr)
81819f0f
CL
1039{
1040 if (!check_slab(s, page))
1041 goto bad;
1042
81819f0f
CL
1043 if (!check_valid_pointer(s, page, object)) {
1044 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1045 goto bad;
81819f0f
CL
1046 }
1047
f7cb1933 1048 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1049 goto bad;
81819f0f 1050
3ec09742
CL
1051 /* Success perform special debug activities for allocs */
1052 if (s->flags & SLAB_STORE_USER)
1053 set_track(s, object, TRACK_ALLOC, addr);
1054 trace(s, page, object, 1);
f7cb1933 1055 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1056 return 1;
3ec09742 1057
81819f0f
CL
1058bad:
1059 if (PageSlab(page)) {
1060 /*
1061 * If this is a slab page then lets do the best we can
1062 * to avoid issues in the future. Marking all objects
672bba3a 1063 * as used avoids touching the remaining objects.
81819f0f 1064 */
24922684 1065 slab_fix(s, "Marking all objects used");
39b26464 1066 page->inuse = page->objects;
a973e9dd 1067 page->freelist = NULL;
81819f0f
CL
1068 }
1069 return 0;
1070}
1071
1537066c
CL
1072static noinline int free_debug_processing(struct kmem_cache *s,
1073 struct page *page, void *object, unsigned long addr)
81819f0f 1074{
5c2e4bbb
CL
1075 unsigned long flags;
1076 int rc = 0;
1077
1078 local_irq_save(flags);
881db7fb
CL
1079 slab_lock(page);
1080
81819f0f
CL
1081 if (!check_slab(s, page))
1082 goto fail;
1083
1084 if (!check_valid_pointer(s, page, object)) {
70d71228 1085 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1086 goto fail;
1087 }
1088
1089 if (on_freelist(s, page, object)) {
24922684 1090 object_err(s, page, object, "Object already free");
81819f0f
CL
1091 goto fail;
1092 }
1093
f7cb1933 1094 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1095 goto out;
81819f0f
CL
1096
1097 if (unlikely(s != page->slab)) {
3adbefee 1098 if (!PageSlab(page)) {
70d71228
CL
1099 slab_err(s, page, "Attempt to free object(0x%p) "
1100 "outside of slab", object);
3adbefee 1101 } else if (!page->slab) {
81819f0f 1102 printk(KERN_ERR
70d71228 1103 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1104 object);
70d71228 1105 dump_stack();
06428780 1106 } else
24922684
CL
1107 object_err(s, page, object,
1108 "page slab pointer corrupt.");
81819f0f
CL
1109 goto fail;
1110 }
3ec09742 1111
3ec09742
CL
1112 if (s->flags & SLAB_STORE_USER)
1113 set_track(s, object, TRACK_FREE, addr);
1114 trace(s, page, object, 0);
f7cb1933 1115 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb
CL
1116 rc = 1;
1117out:
881db7fb 1118 slab_unlock(page);
5c2e4bbb
CL
1119 local_irq_restore(flags);
1120 return rc;
3ec09742 1121
81819f0f 1122fail:
24922684 1123 slab_fix(s, "Object at 0x%p not freed", object);
5c2e4bbb 1124 goto out;
81819f0f
CL
1125}
1126
41ecc55b
CL
1127static int __init setup_slub_debug(char *str)
1128{
f0630fff
CL
1129 slub_debug = DEBUG_DEFAULT_FLAGS;
1130 if (*str++ != '=' || !*str)
1131 /*
1132 * No options specified. Switch on full debugging.
1133 */
1134 goto out;
1135
1136 if (*str == ',')
1137 /*
1138 * No options but restriction on slabs. This means full
1139 * debugging for slabs matching a pattern.
1140 */
1141 goto check_slabs;
1142
fa5ec8a1
DR
1143 if (tolower(*str) == 'o') {
1144 /*
1145 * Avoid enabling debugging on caches if its minimum order
1146 * would increase as a result.
1147 */
1148 disable_higher_order_debug = 1;
1149 goto out;
1150 }
1151
f0630fff
CL
1152 slub_debug = 0;
1153 if (*str == '-')
1154 /*
1155 * Switch off all debugging measures.
1156 */
1157 goto out;
1158
1159 /*
1160 * Determine which debug features should be switched on
1161 */
06428780 1162 for (; *str && *str != ','; str++) {
f0630fff
CL
1163 switch (tolower(*str)) {
1164 case 'f':
1165 slub_debug |= SLAB_DEBUG_FREE;
1166 break;
1167 case 'z':
1168 slub_debug |= SLAB_RED_ZONE;
1169 break;
1170 case 'p':
1171 slub_debug |= SLAB_POISON;
1172 break;
1173 case 'u':
1174 slub_debug |= SLAB_STORE_USER;
1175 break;
1176 case 't':
1177 slub_debug |= SLAB_TRACE;
1178 break;
4c13dd3b
DM
1179 case 'a':
1180 slub_debug |= SLAB_FAILSLAB;
1181 break;
f0630fff
CL
1182 default:
1183 printk(KERN_ERR "slub_debug option '%c' "
06428780 1184 "unknown. skipped\n", *str);
f0630fff 1185 }
41ecc55b
CL
1186 }
1187
f0630fff 1188check_slabs:
41ecc55b
CL
1189 if (*str == ',')
1190 slub_debug_slabs = str + 1;
f0630fff 1191out:
41ecc55b
CL
1192 return 1;
1193}
1194
1195__setup("slub_debug", setup_slub_debug);
1196
3b0efdfa 1197static unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1198 unsigned long flags, const char *name,
51cc5068 1199 void (*ctor)(void *))
41ecc55b
CL
1200{
1201 /*
e153362a 1202 * Enable debugging if selected on the kernel commandline.
41ecc55b 1203 */
e153362a 1204 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1205 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1206 flags |= slub_debug;
ba0268a8
CL
1207
1208 return flags;
41ecc55b
CL
1209}
1210#else
3ec09742
CL
1211static inline void setup_object_debug(struct kmem_cache *s,
1212 struct page *page, void *object) {}
41ecc55b 1213
3ec09742 1214static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1215 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1216
3ec09742 1217static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1218 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1219
41ecc55b
CL
1220static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1221 { return 1; }
1222static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1223 void *object, u8 val) { return 1; }
5cc6eee8
CL
1224static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
2cfb7455 1226static inline void remove_full(struct kmem_cache *s, struct page *page) {}
3b0efdfa 1227static inline unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1228 unsigned long flags, const char *name,
51cc5068 1229 void (*ctor)(void *))
ba0268a8
CL
1230{
1231 return flags;
1232}
41ecc55b 1233#define slub_debug 0
0f389ec6 1234
fdaa45e9
IM
1235#define disable_higher_order_debug 0
1236
0f389ec6
CL
1237static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1238 { return 0; }
26c02cf0
AB
1239static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1240 { return 0; }
205ab99d
CL
1241static inline void inc_slabs_node(struct kmem_cache *s, int node,
1242 int objects) {}
1243static inline void dec_slabs_node(struct kmem_cache *s, int node,
1244 int objects) {}
7d550c56
CL
1245
1246static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 { return 0; }
1248
1249static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1250 void *object) {}
1251
1252static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1253
ab4d5ed5 1254#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1255
81819f0f
CL
1256/*
1257 * Slab allocation and freeing
1258 */
65c3376a
CL
1259static inline struct page *alloc_slab_page(gfp_t flags, int node,
1260 struct kmem_cache_order_objects oo)
1261{
1262 int order = oo_order(oo);
1263
b1eeab67
VN
1264 flags |= __GFP_NOTRACK;
1265
2154a336 1266 if (node == NUMA_NO_NODE)
65c3376a
CL
1267 return alloc_pages(flags, order);
1268 else
6b65aaf3 1269 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1270}
1271
81819f0f
CL
1272static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1273{
06428780 1274 struct page *page;
834f3d11 1275 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1276 gfp_t alloc_gfp;
81819f0f 1277
7e0528da
CL
1278 flags &= gfp_allowed_mask;
1279
1280 if (flags & __GFP_WAIT)
1281 local_irq_enable();
1282
b7a49f0d 1283 flags |= s->allocflags;
e12ba74d 1284
ba52270d
PE
1285 /*
1286 * Let the initial higher-order allocation fail under memory pressure
1287 * so we fall-back to the minimum order allocation.
1288 */
1289 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1290
1291 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1292 if (unlikely(!page)) {
1293 oo = s->min;
1294 /*
1295 * Allocation may have failed due to fragmentation.
1296 * Try a lower order alloc if possible
1297 */
1298 page = alloc_slab_page(flags, node, oo);
81819f0f 1299
7e0528da
CL
1300 if (page)
1301 stat(s, ORDER_FALLBACK);
65c3376a 1302 }
5a896d9e 1303
737b719e 1304 if (kmemcheck_enabled && page
5086c389 1305 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1306 int pages = 1 << oo_order(oo);
1307
1308 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1309
1310 /*
1311 * Objects from caches that have a constructor don't get
1312 * cleared when they're allocated, so we need to do it here.
1313 */
1314 if (s->ctor)
1315 kmemcheck_mark_uninitialized_pages(page, pages);
1316 else
1317 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1318 }
1319
737b719e
DR
1320 if (flags & __GFP_WAIT)
1321 local_irq_disable();
1322 if (!page)
1323 return NULL;
1324
834f3d11 1325 page->objects = oo_objects(oo);
81819f0f
CL
1326 mod_zone_page_state(page_zone(page),
1327 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1328 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1329 1 << oo_order(oo));
81819f0f
CL
1330
1331 return page;
1332}
1333
1334static void setup_object(struct kmem_cache *s, struct page *page,
1335 void *object)
1336{
3ec09742 1337 setup_object_debug(s, page, object);
4f104934 1338 if (unlikely(s->ctor))
51cc5068 1339 s->ctor(object);
81819f0f
CL
1340}
1341
1342static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1343{
1344 struct page *page;
81819f0f 1345 void *start;
81819f0f
CL
1346 void *last;
1347 void *p;
1348
6cb06229 1349 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1350
6cb06229
CL
1351 page = allocate_slab(s,
1352 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1353 if (!page)
1354 goto out;
1355
205ab99d 1356 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f 1357 page->slab = s;
c03f94cc 1358 __SetPageSlab(page);
072bb0aa
MG
1359 if (page->pfmemalloc)
1360 SetPageSlabPfmemalloc(page);
81819f0f
CL
1361
1362 start = page_address(page);
81819f0f
CL
1363
1364 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1365 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1366
1367 last = start;
224a88be 1368 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1369 setup_object(s, page, last);
1370 set_freepointer(s, last, p);
1371 last = p;
1372 }
1373 setup_object(s, page, last);
a973e9dd 1374 set_freepointer(s, last, NULL);
81819f0f
CL
1375
1376 page->freelist = start;
e6e82ea1 1377 page->inuse = page->objects;
8cb0a506 1378 page->frozen = 1;
81819f0f 1379out:
81819f0f
CL
1380 return page;
1381}
1382
1383static void __free_slab(struct kmem_cache *s, struct page *page)
1384{
834f3d11
CL
1385 int order = compound_order(page);
1386 int pages = 1 << order;
81819f0f 1387
af537b0a 1388 if (kmem_cache_debug(s)) {
81819f0f
CL
1389 void *p;
1390
1391 slab_pad_check(s, page);
224a88be
CL
1392 for_each_object(p, s, page_address(page),
1393 page->objects)
f7cb1933 1394 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1395 }
1396
b1eeab67 1397 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1398
81819f0f
CL
1399 mod_zone_page_state(page_zone(page),
1400 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1401 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1402 -pages);
81819f0f 1403
072bb0aa 1404 __ClearPageSlabPfmemalloc(page);
49bd5221
CL
1405 __ClearPageSlab(page);
1406 reset_page_mapcount(page);
1eb5ac64
NP
1407 if (current->reclaim_state)
1408 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1409 __free_pages(page, order);
81819f0f
CL
1410}
1411
da9a638c
LJ
1412#define need_reserve_slab_rcu \
1413 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1414
81819f0f
CL
1415static void rcu_free_slab(struct rcu_head *h)
1416{
1417 struct page *page;
1418
da9a638c
LJ
1419 if (need_reserve_slab_rcu)
1420 page = virt_to_head_page(h);
1421 else
1422 page = container_of((struct list_head *)h, struct page, lru);
1423
81819f0f
CL
1424 __free_slab(page->slab, page);
1425}
1426
1427static void free_slab(struct kmem_cache *s, struct page *page)
1428{
1429 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1430 struct rcu_head *head;
1431
1432 if (need_reserve_slab_rcu) {
1433 int order = compound_order(page);
1434 int offset = (PAGE_SIZE << order) - s->reserved;
1435
1436 VM_BUG_ON(s->reserved != sizeof(*head));
1437 head = page_address(page) + offset;
1438 } else {
1439 /*
1440 * RCU free overloads the RCU head over the LRU
1441 */
1442 head = (void *)&page->lru;
1443 }
81819f0f
CL
1444
1445 call_rcu(head, rcu_free_slab);
1446 } else
1447 __free_slab(s, page);
1448}
1449
1450static void discard_slab(struct kmem_cache *s, struct page *page)
1451{
205ab99d 1452 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1453 free_slab(s, page);
1454}
1455
1456/*
5cc6eee8
CL
1457 * Management of partially allocated slabs.
1458 *
1459 * list_lock must be held.
81819f0f 1460 */
5cc6eee8 1461static inline void add_partial(struct kmem_cache_node *n,
7c2e132c 1462 struct page *page, int tail)
81819f0f 1463{
e95eed57 1464 n->nr_partial++;
136333d1 1465 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1466 list_add_tail(&page->lru, &n->partial);
1467 else
1468 list_add(&page->lru, &n->partial);
81819f0f
CL
1469}
1470
5cc6eee8
CL
1471/*
1472 * list_lock must be held.
1473 */
1474static inline void remove_partial(struct kmem_cache_node *n,
62e346a8
CL
1475 struct page *page)
1476{
1477 list_del(&page->lru);
1478 n->nr_partial--;
1479}
1480
81819f0f 1481/*
7ced3719
CL
1482 * Remove slab from the partial list, freeze it and
1483 * return the pointer to the freelist.
81819f0f 1484 *
497b66f2
CL
1485 * Returns a list of objects or NULL if it fails.
1486 *
7ced3719 1487 * Must hold list_lock since we modify the partial list.
81819f0f 1488 */
497b66f2 1489static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1490 struct kmem_cache_node *n, struct page *page,
49e22585 1491 int mode)
81819f0f 1492{
2cfb7455
CL
1493 void *freelist;
1494 unsigned long counters;
1495 struct page new;
1496
2cfb7455
CL
1497 /*
1498 * Zap the freelist and set the frozen bit.
1499 * The old freelist is the list of objects for the
1500 * per cpu allocation list.
1501 */
7ced3719
CL
1502 freelist = page->freelist;
1503 counters = page->counters;
1504 new.counters = counters;
23910c50 1505 if (mode) {
7ced3719 1506 new.inuse = page->objects;
23910c50
PE
1507 new.freelist = NULL;
1508 } else {
1509 new.freelist = freelist;
1510 }
2cfb7455 1511
7ced3719
CL
1512 VM_BUG_ON(new.frozen);
1513 new.frozen = 1;
2cfb7455 1514
7ced3719 1515 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1516 freelist, counters,
02d7633f 1517 new.freelist, new.counters,
7ced3719 1518 "acquire_slab"))
7ced3719 1519 return NULL;
2cfb7455
CL
1520
1521 remove_partial(n, page);
7ced3719 1522 WARN_ON(!freelist);
49e22585 1523 return freelist;
81819f0f
CL
1524}
1525
49e22585
CL
1526static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1527
81819f0f 1528/*
672bba3a 1529 * Try to allocate a partial slab from a specific node.
81819f0f 1530 */
497b66f2 1531static void *get_partial_node(struct kmem_cache *s,
acd19fd1 1532 struct kmem_cache_node *n, struct kmem_cache_cpu *c)
81819f0f 1533{
49e22585
CL
1534 struct page *page, *page2;
1535 void *object = NULL;
81819f0f
CL
1536
1537 /*
1538 * Racy check. If we mistakenly see no partial slabs then we
1539 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1540 * partial slab and there is none available then get_partials()
1541 * will return NULL.
81819f0f
CL
1542 */
1543 if (!n || !n->nr_partial)
1544 return NULL;
1545
1546 spin_lock(&n->list_lock);
49e22585 1547 list_for_each_entry_safe(page, page2, &n->partial, lru) {
12d79634 1548 void *t = acquire_slab(s, n, page, object == NULL);
49e22585
CL
1549 int available;
1550
1551 if (!t)
1552 break;
1553
12d79634 1554 if (!object) {
49e22585 1555 c->page = page;
49e22585 1556 stat(s, ALLOC_FROM_PARTIAL);
49e22585
CL
1557 object = t;
1558 available = page->objects - page->inuse;
1559 } else {
49e22585 1560 available = put_cpu_partial(s, page, 0);
8028dcea 1561 stat(s, CPU_PARTIAL_NODE);
49e22585
CL
1562 }
1563 if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
1564 break;
1565
497b66f2 1566 }
81819f0f 1567 spin_unlock(&n->list_lock);
497b66f2 1568 return object;
81819f0f
CL
1569}
1570
1571/*
672bba3a 1572 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1573 */
de3ec035 1574static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1575 struct kmem_cache_cpu *c)
81819f0f
CL
1576{
1577#ifdef CONFIG_NUMA
1578 struct zonelist *zonelist;
dd1a239f 1579 struct zoneref *z;
54a6eb5c
MG
1580 struct zone *zone;
1581 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1582 void *object;
cc9a6c87 1583 unsigned int cpuset_mems_cookie;
81819f0f
CL
1584
1585 /*
672bba3a
CL
1586 * The defrag ratio allows a configuration of the tradeoffs between
1587 * inter node defragmentation and node local allocations. A lower
1588 * defrag_ratio increases the tendency to do local allocations
1589 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1590 *
672bba3a
CL
1591 * If the defrag_ratio is set to 0 then kmalloc() always
1592 * returns node local objects. If the ratio is higher then kmalloc()
1593 * may return off node objects because partial slabs are obtained
1594 * from other nodes and filled up.
81819f0f 1595 *
6446faa2 1596 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1597 * defrag_ratio = 1000) then every (well almost) allocation will
1598 * first attempt to defrag slab caches on other nodes. This means
1599 * scanning over all nodes to look for partial slabs which may be
1600 * expensive if we do it every time we are trying to find a slab
1601 * with available objects.
81819f0f 1602 */
9824601e
CL
1603 if (!s->remote_node_defrag_ratio ||
1604 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1605 return NULL;
1606
cc9a6c87
MG
1607 do {
1608 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 1609 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87
MG
1610 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1611 struct kmem_cache_node *n;
1612
1613 n = get_node(s, zone_to_nid(zone));
1614
1615 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1616 n->nr_partial > s->min_partial) {
1617 object = get_partial_node(s, n, c);
1618 if (object) {
1619 /*
1620 * Return the object even if
1621 * put_mems_allowed indicated that
1622 * the cpuset mems_allowed was
1623 * updated in parallel. It's a
1624 * harmless race between the alloc
1625 * and the cpuset update.
1626 */
1627 put_mems_allowed(cpuset_mems_cookie);
1628 return object;
1629 }
c0ff7453 1630 }
81819f0f 1631 }
cc9a6c87 1632 } while (!put_mems_allowed(cpuset_mems_cookie));
81819f0f
CL
1633#endif
1634 return NULL;
1635}
1636
1637/*
1638 * Get a partial page, lock it and return it.
1639 */
497b66f2 1640static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1641 struct kmem_cache_cpu *c)
81819f0f 1642{
497b66f2 1643 void *object;
2154a336 1644 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f 1645
497b66f2
CL
1646 object = get_partial_node(s, get_node(s, searchnode), c);
1647 if (object || node != NUMA_NO_NODE)
1648 return object;
81819f0f 1649
acd19fd1 1650 return get_any_partial(s, flags, c);
81819f0f
CL
1651}
1652
8a5ec0ba
CL
1653#ifdef CONFIG_PREEMPT
1654/*
1655 * Calculate the next globally unique transaction for disambiguiation
1656 * during cmpxchg. The transactions start with the cpu number and are then
1657 * incremented by CONFIG_NR_CPUS.
1658 */
1659#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1660#else
1661/*
1662 * No preemption supported therefore also no need to check for
1663 * different cpus.
1664 */
1665#define TID_STEP 1
1666#endif
1667
1668static inline unsigned long next_tid(unsigned long tid)
1669{
1670 return tid + TID_STEP;
1671}
1672
1673static inline unsigned int tid_to_cpu(unsigned long tid)
1674{
1675 return tid % TID_STEP;
1676}
1677
1678static inline unsigned long tid_to_event(unsigned long tid)
1679{
1680 return tid / TID_STEP;
1681}
1682
1683static inline unsigned int init_tid(int cpu)
1684{
1685 return cpu;
1686}
1687
1688static inline void note_cmpxchg_failure(const char *n,
1689 const struct kmem_cache *s, unsigned long tid)
1690{
1691#ifdef SLUB_DEBUG_CMPXCHG
1692 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1693
1694 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1695
1696#ifdef CONFIG_PREEMPT
1697 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1698 printk("due to cpu change %d -> %d\n",
1699 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1700 else
1701#endif
1702 if (tid_to_event(tid) != tid_to_event(actual_tid))
1703 printk("due to cpu running other code. Event %ld->%ld\n",
1704 tid_to_event(tid), tid_to_event(actual_tid));
1705 else
1706 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1707 actual_tid, tid, next_tid(tid));
1708#endif
4fdccdfb 1709 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1710}
1711
8a5ec0ba
CL
1712void init_kmem_cache_cpus(struct kmem_cache *s)
1713{
8a5ec0ba
CL
1714 int cpu;
1715
1716 for_each_possible_cpu(cpu)
1717 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1718}
2cfb7455 1719
81819f0f
CL
1720/*
1721 * Remove the cpu slab
1722 */
c17dda40 1723static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
81819f0f 1724{
2cfb7455 1725 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1726 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1727 int lock = 0;
1728 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1729 void *nextfree;
136333d1 1730 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1731 struct page new;
1732 struct page old;
1733
1734 if (page->freelist) {
84e554e6 1735 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1736 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1737 }
1738
894b8788 1739 /*
2cfb7455
CL
1740 * Stage one: Free all available per cpu objects back
1741 * to the page freelist while it is still frozen. Leave the
1742 * last one.
1743 *
1744 * There is no need to take the list->lock because the page
1745 * is still frozen.
1746 */
1747 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1748 void *prior;
1749 unsigned long counters;
1750
1751 do {
1752 prior = page->freelist;
1753 counters = page->counters;
1754 set_freepointer(s, freelist, prior);
1755 new.counters = counters;
1756 new.inuse--;
1757 VM_BUG_ON(!new.frozen);
1758
1d07171c 1759 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1760 prior, counters,
1761 freelist, new.counters,
1762 "drain percpu freelist"));
1763
1764 freelist = nextfree;
1765 }
1766
894b8788 1767 /*
2cfb7455
CL
1768 * Stage two: Ensure that the page is unfrozen while the
1769 * list presence reflects the actual number of objects
1770 * during unfreeze.
1771 *
1772 * We setup the list membership and then perform a cmpxchg
1773 * with the count. If there is a mismatch then the page
1774 * is not unfrozen but the page is on the wrong list.
1775 *
1776 * Then we restart the process which may have to remove
1777 * the page from the list that we just put it on again
1778 * because the number of objects in the slab may have
1779 * changed.
894b8788 1780 */
2cfb7455 1781redo:
894b8788 1782
2cfb7455
CL
1783 old.freelist = page->freelist;
1784 old.counters = page->counters;
1785 VM_BUG_ON(!old.frozen);
7c2e132c 1786
2cfb7455
CL
1787 /* Determine target state of the slab */
1788 new.counters = old.counters;
1789 if (freelist) {
1790 new.inuse--;
1791 set_freepointer(s, freelist, old.freelist);
1792 new.freelist = freelist;
1793 } else
1794 new.freelist = old.freelist;
1795
1796 new.frozen = 0;
1797
81107188 1798 if (!new.inuse && n->nr_partial > s->min_partial)
2cfb7455
CL
1799 m = M_FREE;
1800 else if (new.freelist) {
1801 m = M_PARTIAL;
1802 if (!lock) {
1803 lock = 1;
1804 /*
1805 * Taking the spinlock removes the possiblity
1806 * that acquire_slab() will see a slab page that
1807 * is frozen
1808 */
1809 spin_lock(&n->list_lock);
1810 }
1811 } else {
1812 m = M_FULL;
1813 if (kmem_cache_debug(s) && !lock) {
1814 lock = 1;
1815 /*
1816 * This also ensures that the scanning of full
1817 * slabs from diagnostic functions will not see
1818 * any frozen slabs.
1819 */
1820 spin_lock(&n->list_lock);
1821 }
1822 }
1823
1824 if (l != m) {
1825
1826 if (l == M_PARTIAL)
1827
1828 remove_partial(n, page);
1829
1830 else if (l == M_FULL)
894b8788 1831
2cfb7455
CL
1832 remove_full(s, page);
1833
1834 if (m == M_PARTIAL) {
1835
1836 add_partial(n, page, tail);
136333d1 1837 stat(s, tail);
2cfb7455
CL
1838
1839 } else if (m == M_FULL) {
894b8788 1840
2cfb7455
CL
1841 stat(s, DEACTIVATE_FULL);
1842 add_full(s, n, page);
1843
1844 }
1845 }
1846
1847 l = m;
1d07171c 1848 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1849 old.freelist, old.counters,
1850 new.freelist, new.counters,
1851 "unfreezing slab"))
1852 goto redo;
1853
2cfb7455
CL
1854 if (lock)
1855 spin_unlock(&n->list_lock);
1856
1857 if (m == M_FREE) {
1858 stat(s, DEACTIVATE_EMPTY);
1859 discard_slab(s, page);
1860 stat(s, FREE_SLAB);
894b8788 1861 }
81819f0f
CL
1862}
1863
d24ac77f
JK
1864/*
1865 * Unfreeze all the cpu partial slabs.
1866 *
1867 * This function must be called with interrupt disabled.
1868 */
49e22585
CL
1869static void unfreeze_partials(struct kmem_cache *s)
1870{
43d77867 1871 struct kmem_cache_node *n = NULL, *n2 = NULL;
49e22585 1872 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
9ada1934 1873 struct page *page, *discard_page = NULL;
49e22585
CL
1874
1875 while ((page = c->partial)) {
49e22585
CL
1876 struct page new;
1877 struct page old;
1878
1879 c->partial = page->next;
43d77867
JK
1880
1881 n2 = get_node(s, page_to_nid(page));
1882 if (n != n2) {
1883 if (n)
1884 spin_unlock(&n->list_lock);
1885
1886 n = n2;
1887 spin_lock(&n->list_lock);
1888 }
49e22585
CL
1889
1890 do {
1891
1892 old.freelist = page->freelist;
1893 old.counters = page->counters;
1894 VM_BUG_ON(!old.frozen);
1895
1896 new.counters = old.counters;
1897 new.freelist = old.freelist;
1898
1899 new.frozen = 0;
1900
d24ac77f 1901 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1902 old.freelist, old.counters,
1903 new.freelist, new.counters,
1904 "unfreezing slab"));
1905
43d77867 1906 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
9ada1934
SL
1907 page->next = discard_page;
1908 discard_page = page;
43d77867
JK
1909 } else {
1910 add_partial(n, page, DEACTIVATE_TO_TAIL);
1911 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1912 }
1913 }
1914
1915 if (n)
1916 spin_unlock(&n->list_lock);
9ada1934
SL
1917
1918 while (discard_page) {
1919 page = discard_page;
1920 discard_page = discard_page->next;
1921
1922 stat(s, DEACTIVATE_EMPTY);
1923 discard_slab(s, page);
1924 stat(s, FREE_SLAB);
1925 }
49e22585
CL
1926}
1927
1928/*
1929 * Put a page that was just frozen (in __slab_free) into a partial page
1930 * slot if available. This is done without interrupts disabled and without
1931 * preemption disabled. The cmpxchg is racy and may put the partial page
1932 * onto a random cpus partial slot.
1933 *
1934 * If we did not find a slot then simply move all the partials to the
1935 * per node partial list.
1936 */
1937int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1938{
1939 struct page *oldpage;
1940 int pages;
1941 int pobjects;
1942
1943 do {
1944 pages = 0;
1945 pobjects = 0;
1946 oldpage = this_cpu_read(s->cpu_slab->partial);
1947
1948 if (oldpage) {
1949 pobjects = oldpage->pobjects;
1950 pages = oldpage->pages;
1951 if (drain && pobjects > s->cpu_partial) {
1952 unsigned long flags;
1953 /*
1954 * partial array is full. Move the existing
1955 * set to the per node partial list.
1956 */
1957 local_irq_save(flags);
1958 unfreeze_partials(s);
1959 local_irq_restore(flags);
1960 pobjects = 0;
1961 pages = 0;
8028dcea 1962 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
1963 }
1964 }
1965
1966 pages++;
1967 pobjects += page->objects - page->inuse;
1968
1969 page->pages = pages;
1970 page->pobjects = pobjects;
1971 page->next = oldpage;
1972
933393f5 1973 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
49e22585
CL
1974 return pobjects;
1975}
1976
dfb4f096 1977static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1978{
84e554e6 1979 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
1980 deactivate_slab(s, c->page, c->freelist);
1981
1982 c->tid = next_tid(c->tid);
1983 c->page = NULL;
1984 c->freelist = NULL;
81819f0f
CL
1985}
1986
1987/*
1988 * Flush cpu slab.
6446faa2 1989 *
81819f0f
CL
1990 * Called from IPI handler with interrupts disabled.
1991 */
0c710013 1992static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1993{
9dfc6e68 1994 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1995
49e22585
CL
1996 if (likely(c)) {
1997 if (c->page)
1998 flush_slab(s, c);
1999
2000 unfreeze_partials(s);
2001 }
81819f0f
CL
2002}
2003
2004static void flush_cpu_slab(void *d)
2005{
2006 struct kmem_cache *s = d;
81819f0f 2007
dfb4f096 2008 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2009}
2010
a8364d55
GBY
2011static bool has_cpu_slab(int cpu, void *info)
2012{
2013 struct kmem_cache *s = info;
2014 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2015
02e1a9cd 2016 return c->page || c->partial;
a8364d55
GBY
2017}
2018
81819f0f
CL
2019static void flush_all(struct kmem_cache *s)
2020{
a8364d55 2021 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2022}
2023
dfb4f096
CL
2024/*
2025 * Check if the objects in a per cpu structure fit numa
2026 * locality expectations.
2027 */
57d437d2 2028static inline int node_match(struct page *page, int node)
dfb4f096
CL
2029{
2030#ifdef CONFIG_NUMA
57d437d2 2031 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2032 return 0;
2033#endif
2034 return 1;
2035}
2036
781b2ba6
PE
2037static int count_free(struct page *page)
2038{
2039 return page->objects - page->inuse;
2040}
2041
2042static unsigned long count_partial(struct kmem_cache_node *n,
2043 int (*get_count)(struct page *))
2044{
2045 unsigned long flags;
2046 unsigned long x = 0;
2047 struct page *page;
2048
2049 spin_lock_irqsave(&n->list_lock, flags);
2050 list_for_each_entry(page, &n->partial, lru)
2051 x += get_count(page);
2052 spin_unlock_irqrestore(&n->list_lock, flags);
2053 return x;
2054}
2055
26c02cf0
AB
2056static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2057{
2058#ifdef CONFIG_SLUB_DEBUG
2059 return atomic_long_read(&n->total_objects);
2060#else
2061 return 0;
2062#endif
2063}
2064
781b2ba6
PE
2065static noinline void
2066slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2067{
2068 int node;
2069
2070 printk(KERN_WARNING
2071 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2072 nid, gfpflags);
2073 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
3b0efdfa 2074 "default order: %d, min order: %d\n", s->name, s->object_size,
781b2ba6
PE
2075 s->size, oo_order(s->oo), oo_order(s->min));
2076
3b0efdfa 2077 if (oo_order(s->min) > get_order(s->object_size))
fa5ec8a1
DR
2078 printk(KERN_WARNING " %s debugging increased min order, use "
2079 "slub_debug=O to disable.\n", s->name);
2080
781b2ba6
PE
2081 for_each_online_node(node) {
2082 struct kmem_cache_node *n = get_node(s, node);
2083 unsigned long nr_slabs;
2084 unsigned long nr_objs;
2085 unsigned long nr_free;
2086
2087 if (!n)
2088 continue;
2089
26c02cf0
AB
2090 nr_free = count_partial(n, count_free);
2091 nr_slabs = node_nr_slabs(n);
2092 nr_objs = node_nr_objs(n);
781b2ba6
PE
2093
2094 printk(KERN_WARNING
2095 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2096 node, nr_slabs, nr_objs, nr_free);
2097 }
2098}
2099
497b66f2
CL
2100static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2101 int node, struct kmem_cache_cpu **pc)
2102{
6faa6833 2103 void *freelist;
188fd063
CL
2104 struct kmem_cache_cpu *c = *pc;
2105 struct page *page;
497b66f2 2106
188fd063 2107 freelist = get_partial(s, flags, node, c);
497b66f2 2108
188fd063
CL
2109 if (freelist)
2110 return freelist;
2111
2112 page = new_slab(s, flags, node);
497b66f2
CL
2113 if (page) {
2114 c = __this_cpu_ptr(s->cpu_slab);
2115 if (c->page)
2116 flush_slab(s, c);
2117
2118 /*
2119 * No other reference to the page yet so we can
2120 * muck around with it freely without cmpxchg
2121 */
6faa6833 2122 freelist = page->freelist;
497b66f2
CL
2123 page->freelist = NULL;
2124
2125 stat(s, ALLOC_SLAB);
497b66f2
CL
2126 c->page = page;
2127 *pc = c;
2128 } else
6faa6833 2129 freelist = NULL;
497b66f2 2130
6faa6833 2131 return freelist;
497b66f2
CL
2132}
2133
072bb0aa
MG
2134static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2135{
2136 if (unlikely(PageSlabPfmemalloc(page)))
2137 return gfp_pfmemalloc_allowed(gfpflags);
2138
2139 return true;
2140}
2141
213eeb9f
CL
2142/*
2143 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2144 * or deactivate the page.
2145 *
2146 * The page is still frozen if the return value is not NULL.
2147 *
2148 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2149 *
2150 * This function must be called with interrupt disabled.
213eeb9f
CL
2151 */
2152static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2153{
2154 struct page new;
2155 unsigned long counters;
2156 void *freelist;
2157
2158 do {
2159 freelist = page->freelist;
2160 counters = page->counters;
6faa6833 2161
213eeb9f
CL
2162 new.counters = counters;
2163 VM_BUG_ON(!new.frozen);
2164
2165 new.inuse = page->objects;
2166 new.frozen = freelist != NULL;
2167
d24ac77f 2168 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2169 freelist, counters,
2170 NULL, new.counters,
2171 "get_freelist"));
2172
2173 return freelist;
2174}
2175
81819f0f 2176/*
894b8788
CL
2177 * Slow path. The lockless freelist is empty or we need to perform
2178 * debugging duties.
2179 *
894b8788
CL
2180 * Processing is still very fast if new objects have been freed to the
2181 * regular freelist. In that case we simply take over the regular freelist
2182 * as the lockless freelist and zap the regular freelist.
81819f0f 2183 *
894b8788
CL
2184 * If that is not working then we fall back to the partial lists. We take the
2185 * first element of the freelist as the object to allocate now and move the
2186 * rest of the freelist to the lockless freelist.
81819f0f 2187 *
894b8788 2188 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2189 * we need to allocate a new slab. This is the slowest path since it involves
2190 * a call to the page allocator and the setup of a new slab.
81819f0f 2191 */
ce71e27c
EGM
2192static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2193 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2194{
6faa6833 2195 void *freelist;
f6e7def7 2196 struct page *page;
8a5ec0ba
CL
2197 unsigned long flags;
2198
2199 local_irq_save(flags);
2200#ifdef CONFIG_PREEMPT
2201 /*
2202 * We may have been preempted and rescheduled on a different
2203 * cpu before disabling interrupts. Need to reload cpu area
2204 * pointer.
2205 */
2206 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2207#endif
81819f0f 2208
f6e7def7
CL
2209 page = c->page;
2210 if (!page)
81819f0f 2211 goto new_slab;
49e22585 2212redo:
6faa6833 2213
57d437d2 2214 if (unlikely(!node_match(page, node))) {
e36a2652 2215 stat(s, ALLOC_NODE_MISMATCH);
f6e7def7 2216 deactivate_slab(s, page, c->freelist);
c17dda40
CL
2217 c->page = NULL;
2218 c->freelist = NULL;
fc59c053
CL
2219 goto new_slab;
2220 }
6446faa2 2221
072bb0aa
MG
2222 /*
2223 * By rights, we should be searching for a slab page that was
2224 * PFMEMALLOC but right now, we are losing the pfmemalloc
2225 * information when the page leaves the per-cpu allocator
2226 */
2227 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2228 deactivate_slab(s, page, c->freelist);
2229 c->page = NULL;
2230 c->freelist = NULL;
2231 goto new_slab;
2232 }
2233
73736e03 2234 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2235 freelist = c->freelist;
2236 if (freelist)
73736e03 2237 goto load_freelist;
03e404af 2238
2cfb7455 2239 stat(s, ALLOC_SLOWPATH);
03e404af 2240
f6e7def7 2241 freelist = get_freelist(s, page);
6446faa2 2242
6faa6833 2243 if (!freelist) {
03e404af
CL
2244 c->page = NULL;
2245 stat(s, DEACTIVATE_BYPASS);
fc59c053 2246 goto new_slab;
03e404af 2247 }
6446faa2 2248
84e554e6 2249 stat(s, ALLOC_REFILL);
6446faa2 2250
894b8788 2251load_freelist:
507effea
CL
2252 /*
2253 * freelist is pointing to the list of objects to be used.
2254 * page is pointing to the page from which the objects are obtained.
2255 * That page must be frozen for per cpu allocations to work.
2256 */
2257 VM_BUG_ON(!c->page->frozen);
6faa6833 2258 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2259 c->tid = next_tid(c->tid);
2260 local_irq_restore(flags);
6faa6833 2261 return freelist;
81819f0f 2262
81819f0f 2263new_slab:
2cfb7455 2264
49e22585 2265 if (c->partial) {
f6e7def7
CL
2266 page = c->page = c->partial;
2267 c->partial = page->next;
49e22585
CL
2268 stat(s, CPU_PARTIAL_ALLOC);
2269 c->freelist = NULL;
2270 goto redo;
81819f0f
CL
2271 }
2272
188fd063 2273 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2274
f4697436
CL
2275 if (unlikely(!freelist)) {
2276 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2277 slab_out_of_memory(s, gfpflags, node);
2cfb7455 2278
f4697436
CL
2279 local_irq_restore(flags);
2280 return NULL;
81819f0f 2281 }
2cfb7455 2282
f6e7def7 2283 page = c->page;
497b66f2 2284 if (likely(!kmem_cache_debug(s)))
4b6f0750 2285 goto load_freelist;
2cfb7455 2286
497b66f2 2287 /* Only entered in the debug case */
f6e7def7 2288 if (!alloc_debug_processing(s, page, freelist, addr))
497b66f2 2289 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2290
f6e7def7 2291 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2292 c->page = NULL;
2293 c->freelist = NULL;
a71ae47a 2294 local_irq_restore(flags);
6faa6833 2295 return freelist;
894b8788
CL
2296}
2297
2298/*
2299 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2300 * have the fastpath folded into their functions. So no function call
2301 * overhead for requests that can be satisfied on the fastpath.
2302 *
2303 * The fastpath works by first checking if the lockless freelist can be used.
2304 * If not then __slab_alloc is called for slow processing.
2305 *
2306 * Otherwise we can simply pick the next object from the lockless free list.
2307 */
06428780 2308static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 2309 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2310{
894b8788 2311 void **object;
dfb4f096 2312 struct kmem_cache_cpu *c;
57d437d2 2313 struct page *page;
8a5ec0ba 2314 unsigned long tid;
1f84260c 2315
c016b0bd 2316 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 2317 return NULL;
1f84260c 2318
8a5ec0ba 2319redo:
8a5ec0ba
CL
2320
2321 /*
2322 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2323 * enabled. We may switch back and forth between cpus while
2324 * reading from one cpu area. That does not matter as long
2325 * as we end up on the original cpu again when doing the cmpxchg.
2326 */
9dfc6e68 2327 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2328
8a5ec0ba
CL
2329 /*
2330 * The transaction ids are globally unique per cpu and per operation on
2331 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2332 * occurs on the right processor and that there was no operation on the
2333 * linked list in between.
2334 */
2335 tid = c->tid;
2336 barrier();
8a5ec0ba 2337
9dfc6e68 2338 object = c->freelist;
57d437d2 2339 page = c->page;
072bb0aa
MG
2340 if (unlikely(!object || !node_match(page, node) ||
2341 !pfmemalloc_match(page, gfpflags)))
dfb4f096 2342 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
2343
2344 else {
0ad9500e
ED
2345 void *next_object = get_freepointer_safe(s, object);
2346
8a5ec0ba 2347 /*
25985edc 2348 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2349 * operation and if we are on the right processor.
2350 *
2351 * The cmpxchg does the following atomically (without lock semantics!)
2352 * 1. Relocate first pointer to the current per cpu area.
2353 * 2. Verify that tid and freelist have not been changed
2354 * 3. If they were not changed replace tid and freelist
2355 *
2356 * Since this is without lock semantics the protection is only against
2357 * code executing on this cpu *not* from access by other cpus.
2358 */
933393f5 2359 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2360 s->cpu_slab->freelist, s->cpu_slab->tid,
2361 object, tid,
0ad9500e 2362 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2363
2364 note_cmpxchg_failure("slab_alloc", s, tid);
2365 goto redo;
2366 }
0ad9500e 2367 prefetch_freepointer(s, next_object);
84e554e6 2368 stat(s, ALLOC_FASTPATH);
894b8788 2369 }
8a5ec0ba 2370
74e2134f 2371 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2372 memset(object, 0, s->object_size);
d07dbea4 2373
c016b0bd 2374 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2375
894b8788 2376 return object;
81819f0f
CL
2377}
2378
2379void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2380{
2154a336 2381 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2382
3b0efdfa 2383 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
5b882be4
EGM
2384
2385 return ret;
81819f0f
CL
2386}
2387EXPORT_SYMBOL(kmem_cache_alloc);
2388
0f24f128 2389#ifdef CONFIG_TRACING
4a92379b
RK
2390void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2391{
2392 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2393 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2394 return ret;
2395}
2396EXPORT_SYMBOL(kmem_cache_alloc_trace);
2397
2398void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2399{
4a92379b
RK
2400 void *ret = kmalloc_order(size, flags, order);
2401 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2402 return ret;
5b882be4 2403}
4a92379b 2404EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2405#endif
2406
81819f0f
CL
2407#ifdef CONFIG_NUMA
2408void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2409{
5b882be4
EGM
2410 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2411
ca2b84cb 2412 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2413 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2414
2415 return ret;
81819f0f
CL
2416}
2417EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2418
0f24f128 2419#ifdef CONFIG_TRACING
4a92379b 2420void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2421 gfp_t gfpflags,
4a92379b 2422 int node, size_t size)
5b882be4 2423{
4a92379b
RK
2424 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2425
2426 trace_kmalloc_node(_RET_IP_, ret,
2427 size, s->size, gfpflags, node);
2428 return ret;
5b882be4 2429}
4a92379b 2430EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2431#endif
5d1f57e4 2432#endif
5b882be4 2433
81819f0f 2434/*
894b8788
CL
2435 * Slow patch handling. This may still be called frequently since objects
2436 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2437 *
894b8788
CL
2438 * So we still attempt to reduce cache line usage. Just take the slab
2439 * lock and free the item. If there is no additional partial page
2440 * handling required then we can return immediately.
81819f0f 2441 */
894b8788 2442static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2443 void *x, unsigned long addr)
81819f0f
CL
2444{
2445 void *prior;
2446 void **object = (void *)x;
2cfb7455
CL
2447 int was_frozen;
2448 int inuse;
2449 struct page new;
2450 unsigned long counters;
2451 struct kmem_cache_node *n = NULL;
61728d1e 2452 unsigned long uninitialized_var(flags);
81819f0f 2453
8a5ec0ba 2454 stat(s, FREE_SLOWPATH);
81819f0f 2455
8dc16c6c 2456 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
80f08c19 2457 return;
6446faa2 2458
2cfb7455
CL
2459 do {
2460 prior = page->freelist;
2461 counters = page->counters;
2462 set_freepointer(s, object, prior);
2463 new.counters = counters;
2464 was_frozen = new.frozen;
2465 new.inuse--;
2466 if ((!new.inuse || !prior) && !was_frozen && !n) {
49e22585
CL
2467
2468 if (!kmem_cache_debug(s) && !prior)
2469
2470 /*
2471 * Slab was on no list before and will be partially empty
2472 * We can defer the list move and instead freeze it.
2473 */
2474 new.frozen = 1;
2475
2476 else { /* Needs to be taken off a list */
2477
2478 n = get_node(s, page_to_nid(page));
2479 /*
2480 * Speculatively acquire the list_lock.
2481 * If the cmpxchg does not succeed then we may
2482 * drop the list_lock without any processing.
2483 *
2484 * Otherwise the list_lock will synchronize with
2485 * other processors updating the list of slabs.
2486 */
2487 spin_lock_irqsave(&n->list_lock, flags);
2488
2489 }
2cfb7455
CL
2490 }
2491 inuse = new.inuse;
81819f0f 2492
2cfb7455
CL
2493 } while (!cmpxchg_double_slab(s, page,
2494 prior, counters,
2495 object, new.counters,
2496 "__slab_free"));
81819f0f 2497
2cfb7455 2498 if (likely(!n)) {
49e22585
CL
2499
2500 /*
2501 * If we just froze the page then put it onto the
2502 * per cpu partial list.
2503 */
8028dcea 2504 if (new.frozen && !was_frozen) {
49e22585 2505 put_cpu_partial(s, page, 1);
8028dcea
AS
2506 stat(s, CPU_PARTIAL_FREE);
2507 }
49e22585 2508 /*
2cfb7455
CL
2509 * The list lock was not taken therefore no list
2510 * activity can be necessary.
2511 */
2512 if (was_frozen)
2513 stat(s, FREE_FROZEN);
80f08c19 2514 return;
2cfb7455 2515 }
81819f0f
CL
2516
2517 /*
2cfb7455
CL
2518 * was_frozen may have been set after we acquired the list_lock in
2519 * an earlier loop. So we need to check it here again.
81819f0f 2520 */
2cfb7455
CL
2521 if (was_frozen)
2522 stat(s, FREE_FROZEN);
2523 else {
2524 if (unlikely(!inuse && n->nr_partial > s->min_partial))
2525 goto slab_empty;
81819f0f 2526
2cfb7455
CL
2527 /*
2528 * Objects left in the slab. If it was not on the partial list before
2529 * then add it.
2530 */
2531 if (unlikely(!prior)) {
2532 remove_full(s, page);
136333d1 2533 add_partial(n, page, DEACTIVATE_TO_TAIL);
2cfb7455
CL
2534 stat(s, FREE_ADD_PARTIAL);
2535 }
8ff12cfc 2536 }
80f08c19 2537 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2538 return;
2539
2540slab_empty:
a973e9dd 2541 if (prior) {
81819f0f 2542 /*
6fbabb20 2543 * Slab on the partial list.
81819f0f 2544 */
5cc6eee8 2545 remove_partial(n, page);
84e554e6 2546 stat(s, FREE_REMOVE_PARTIAL);
6fbabb20
CL
2547 } else
2548 /* Slab must be on the full list */
2549 remove_full(s, page);
2cfb7455 2550
80f08c19 2551 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2552 stat(s, FREE_SLAB);
81819f0f 2553 discard_slab(s, page);
81819f0f
CL
2554}
2555
894b8788
CL
2556/*
2557 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2558 * can perform fastpath freeing without additional function calls.
2559 *
2560 * The fastpath is only possible if we are freeing to the current cpu slab
2561 * of this processor. This typically the case if we have just allocated
2562 * the item before.
2563 *
2564 * If fastpath is not possible then fall back to __slab_free where we deal
2565 * with all sorts of special processing.
2566 */
06428780 2567static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2568 struct page *page, void *x, unsigned long addr)
894b8788
CL
2569{
2570 void **object = (void *)x;
dfb4f096 2571 struct kmem_cache_cpu *c;
8a5ec0ba 2572 unsigned long tid;
1f84260c 2573
c016b0bd
CL
2574 slab_free_hook(s, x);
2575
8a5ec0ba
CL
2576redo:
2577 /*
2578 * Determine the currently cpus per cpu slab.
2579 * The cpu may change afterward. However that does not matter since
2580 * data is retrieved via this pointer. If we are on the same cpu
2581 * during the cmpxchg then the free will succedd.
2582 */
9dfc6e68 2583 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2584
8a5ec0ba
CL
2585 tid = c->tid;
2586 barrier();
c016b0bd 2587
442b06bc 2588 if (likely(page == c->page)) {
ff12059e 2589 set_freepointer(s, object, c->freelist);
8a5ec0ba 2590
933393f5 2591 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2592 s->cpu_slab->freelist, s->cpu_slab->tid,
2593 c->freelist, tid,
2594 object, next_tid(tid)))) {
2595
2596 note_cmpxchg_failure("slab_free", s, tid);
2597 goto redo;
2598 }
84e554e6 2599 stat(s, FREE_FASTPATH);
894b8788 2600 } else
ff12059e 2601 __slab_free(s, page, x, addr);
894b8788 2602
894b8788
CL
2603}
2604
81819f0f
CL
2605void kmem_cache_free(struct kmem_cache *s, void *x)
2606{
77c5e2d0 2607 struct page *page;
81819f0f 2608
b49af68f 2609 page = virt_to_head_page(x);
81819f0f 2610
ce71e27c 2611 slab_free(s, page, x, _RET_IP_);
5b882be4 2612
ca2b84cb 2613 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2614}
2615EXPORT_SYMBOL(kmem_cache_free);
2616
81819f0f 2617/*
672bba3a
CL
2618 * Object placement in a slab is made very easy because we always start at
2619 * offset 0. If we tune the size of the object to the alignment then we can
2620 * get the required alignment by putting one properly sized object after
2621 * another.
81819f0f
CL
2622 *
2623 * Notice that the allocation order determines the sizes of the per cpu
2624 * caches. Each processor has always one slab available for allocations.
2625 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2626 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2627 * locking overhead.
81819f0f
CL
2628 */
2629
2630/*
2631 * Mininum / Maximum order of slab pages. This influences locking overhead
2632 * and slab fragmentation. A higher order reduces the number of partial slabs
2633 * and increases the number of allocations possible without having to
2634 * take the list_lock.
2635 */
2636static int slub_min_order;
114e9e89 2637static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2638static int slub_min_objects;
81819f0f
CL
2639
2640/*
2641 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2642 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2643 */
2644static int slub_nomerge;
2645
81819f0f
CL
2646/*
2647 * Calculate the order of allocation given an slab object size.
2648 *
672bba3a
CL
2649 * The order of allocation has significant impact on performance and other
2650 * system components. Generally order 0 allocations should be preferred since
2651 * order 0 does not cause fragmentation in the page allocator. Larger objects
2652 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2653 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2654 * would be wasted.
2655 *
2656 * In order to reach satisfactory performance we must ensure that a minimum
2657 * number of objects is in one slab. Otherwise we may generate too much
2658 * activity on the partial lists which requires taking the list_lock. This is
2659 * less a concern for large slabs though which are rarely used.
81819f0f 2660 *
672bba3a
CL
2661 * slub_max_order specifies the order where we begin to stop considering the
2662 * number of objects in a slab as critical. If we reach slub_max_order then
2663 * we try to keep the page order as low as possible. So we accept more waste
2664 * of space in favor of a small page order.
81819f0f 2665 *
672bba3a
CL
2666 * Higher order allocations also allow the placement of more objects in a
2667 * slab and thereby reduce object handling overhead. If the user has
2668 * requested a higher mininum order then we start with that one instead of
2669 * the smallest order which will fit the object.
81819f0f 2670 */
5e6d444e 2671static inline int slab_order(int size, int min_objects,
ab9a0f19 2672 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2673{
2674 int order;
2675 int rem;
6300ea75 2676 int min_order = slub_min_order;
81819f0f 2677
ab9a0f19 2678 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2679 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2680
6300ea75 2681 for (order = max(min_order,
5e6d444e
CL
2682 fls(min_objects * size - 1) - PAGE_SHIFT);
2683 order <= max_order; order++) {
81819f0f 2684
5e6d444e 2685 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2686
ab9a0f19 2687 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2688 continue;
2689
ab9a0f19 2690 rem = (slab_size - reserved) % size;
81819f0f 2691
5e6d444e 2692 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2693 break;
2694
2695 }
672bba3a 2696
81819f0f
CL
2697 return order;
2698}
2699
ab9a0f19 2700static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2701{
2702 int order;
2703 int min_objects;
2704 int fraction;
e8120ff1 2705 int max_objects;
5e6d444e
CL
2706
2707 /*
2708 * Attempt to find best configuration for a slab. This
2709 * works by first attempting to generate a layout with
2710 * the best configuration and backing off gradually.
2711 *
2712 * First we reduce the acceptable waste in a slab. Then
2713 * we reduce the minimum objects required in a slab.
2714 */
2715 min_objects = slub_min_objects;
9b2cd506
CL
2716 if (!min_objects)
2717 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2718 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2719 min_objects = min(min_objects, max_objects);
2720
5e6d444e 2721 while (min_objects > 1) {
c124f5b5 2722 fraction = 16;
5e6d444e
CL
2723 while (fraction >= 4) {
2724 order = slab_order(size, min_objects,
ab9a0f19 2725 slub_max_order, fraction, reserved);
5e6d444e
CL
2726 if (order <= slub_max_order)
2727 return order;
2728 fraction /= 2;
2729 }
5086c389 2730 min_objects--;
5e6d444e
CL
2731 }
2732
2733 /*
2734 * We were unable to place multiple objects in a slab. Now
2735 * lets see if we can place a single object there.
2736 */
ab9a0f19 2737 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2738 if (order <= slub_max_order)
2739 return order;
2740
2741 /*
2742 * Doh this slab cannot be placed using slub_max_order.
2743 */
ab9a0f19 2744 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2745 if (order < MAX_ORDER)
5e6d444e
CL
2746 return order;
2747 return -ENOSYS;
2748}
2749
81819f0f 2750/*
672bba3a 2751 * Figure out what the alignment of the objects will be.
81819f0f
CL
2752 */
2753static unsigned long calculate_alignment(unsigned long flags,
2754 unsigned long align, unsigned long size)
2755{
2756 /*
6446faa2
CL
2757 * If the user wants hardware cache aligned objects then follow that
2758 * suggestion if the object is sufficiently large.
81819f0f 2759 *
6446faa2
CL
2760 * The hardware cache alignment cannot override the specified
2761 * alignment though. If that is greater then use it.
81819f0f 2762 */
b6210386
NP
2763 if (flags & SLAB_HWCACHE_ALIGN) {
2764 unsigned long ralign = cache_line_size();
2765 while (size <= ralign / 2)
2766 ralign /= 2;
2767 align = max(align, ralign);
2768 }
81819f0f
CL
2769
2770 if (align < ARCH_SLAB_MINALIGN)
b6210386 2771 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2772
2773 return ALIGN(align, sizeof(void *));
2774}
2775
5595cffc 2776static void
4053497d 2777init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2778{
2779 n->nr_partial = 0;
81819f0f
CL
2780 spin_lock_init(&n->list_lock);
2781 INIT_LIST_HEAD(&n->partial);
8ab1372f 2782#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2783 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2784 atomic_long_set(&n->total_objects, 0);
643b1138 2785 INIT_LIST_HEAD(&n->full);
8ab1372f 2786#endif
81819f0f
CL
2787}
2788
55136592 2789static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2790{
6c182dc0
CL
2791 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2792 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2793
8a5ec0ba 2794 /*
d4d84fef
CM
2795 * Must align to double word boundary for the double cmpxchg
2796 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2797 */
d4d84fef
CM
2798 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2799 2 * sizeof(void *));
8a5ec0ba
CL
2800
2801 if (!s->cpu_slab)
2802 return 0;
2803
2804 init_kmem_cache_cpus(s);
4c93c355 2805
8a5ec0ba 2806 return 1;
4c93c355 2807}
4c93c355 2808
51df1142
CL
2809static struct kmem_cache *kmem_cache_node;
2810
81819f0f
CL
2811/*
2812 * No kmalloc_node yet so do it by hand. We know that this is the first
2813 * slab on the node for this slabcache. There are no concurrent accesses
2814 * possible.
2815 *
2816 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2817 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2818 * memory on a fresh node that has no slab structures yet.
81819f0f 2819 */
55136592 2820static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2821{
2822 struct page *page;
2823 struct kmem_cache_node *n;
2824
51df1142 2825 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2826
51df1142 2827 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2828
2829 BUG_ON(!page);
a2f92ee7
CL
2830 if (page_to_nid(page) != node) {
2831 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2832 "node %d\n", node);
2833 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2834 "in order to be able to continue\n");
2835 }
2836
81819f0f
CL
2837 n = page->freelist;
2838 BUG_ON(!n);
51df1142 2839 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2840 page->inuse = 1;
8cb0a506 2841 page->frozen = 0;
51df1142 2842 kmem_cache_node->node[node] = n;
8ab1372f 2843#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2844 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2845 init_tracking(kmem_cache_node, n);
8ab1372f 2846#endif
4053497d 2847 init_kmem_cache_node(n);
51df1142 2848 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2849
136333d1 2850 add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2851}
2852
2853static void free_kmem_cache_nodes(struct kmem_cache *s)
2854{
2855 int node;
2856
f64dc58c 2857 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2858 struct kmem_cache_node *n = s->node[node];
51df1142 2859
73367bd8 2860 if (n)
51df1142
CL
2861 kmem_cache_free(kmem_cache_node, n);
2862
81819f0f
CL
2863 s->node[node] = NULL;
2864 }
2865}
2866
55136592 2867static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2868{
2869 int node;
81819f0f 2870
f64dc58c 2871 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2872 struct kmem_cache_node *n;
2873
73367bd8 2874 if (slab_state == DOWN) {
55136592 2875 early_kmem_cache_node_alloc(node);
73367bd8
AD
2876 continue;
2877 }
51df1142 2878 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2879 GFP_KERNEL, node);
81819f0f 2880
73367bd8
AD
2881 if (!n) {
2882 free_kmem_cache_nodes(s);
2883 return 0;
81819f0f 2884 }
73367bd8 2885
81819f0f 2886 s->node[node] = n;
4053497d 2887 init_kmem_cache_node(n);
81819f0f
CL
2888 }
2889 return 1;
2890}
81819f0f 2891
c0bdb232 2892static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2893{
2894 if (min < MIN_PARTIAL)
2895 min = MIN_PARTIAL;
2896 else if (min > MAX_PARTIAL)
2897 min = MAX_PARTIAL;
2898 s->min_partial = min;
2899}
2900
81819f0f
CL
2901/*
2902 * calculate_sizes() determines the order and the distribution of data within
2903 * a slab object.
2904 */
06b285dc 2905static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2906{
2907 unsigned long flags = s->flags;
3b0efdfa 2908 unsigned long size = s->object_size;
81819f0f 2909 unsigned long align = s->align;
834f3d11 2910 int order;
81819f0f 2911
d8b42bf5
CL
2912 /*
2913 * Round up object size to the next word boundary. We can only
2914 * place the free pointer at word boundaries and this determines
2915 * the possible location of the free pointer.
2916 */
2917 size = ALIGN(size, sizeof(void *));
2918
2919#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2920 /*
2921 * Determine if we can poison the object itself. If the user of
2922 * the slab may touch the object after free or before allocation
2923 * then we should never poison the object itself.
2924 */
2925 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2926 !s->ctor)
81819f0f
CL
2927 s->flags |= __OBJECT_POISON;
2928 else
2929 s->flags &= ~__OBJECT_POISON;
2930
81819f0f
CL
2931
2932 /*
672bba3a 2933 * If we are Redzoning then check if there is some space between the
81819f0f 2934 * end of the object and the free pointer. If not then add an
672bba3a 2935 * additional word to have some bytes to store Redzone information.
81819f0f 2936 */
3b0efdfa 2937 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2938 size += sizeof(void *);
41ecc55b 2939#endif
81819f0f
CL
2940
2941 /*
672bba3a
CL
2942 * With that we have determined the number of bytes in actual use
2943 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2944 */
2945 s->inuse = size;
2946
2947 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2948 s->ctor)) {
81819f0f
CL
2949 /*
2950 * Relocate free pointer after the object if it is not
2951 * permitted to overwrite the first word of the object on
2952 * kmem_cache_free.
2953 *
2954 * This is the case if we do RCU, have a constructor or
2955 * destructor or are poisoning the objects.
2956 */
2957 s->offset = size;
2958 size += sizeof(void *);
2959 }
2960
c12b3c62 2961#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2962 if (flags & SLAB_STORE_USER)
2963 /*
2964 * Need to store information about allocs and frees after
2965 * the object.
2966 */
2967 size += 2 * sizeof(struct track);
2968
be7b3fbc 2969 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2970 /*
2971 * Add some empty padding so that we can catch
2972 * overwrites from earlier objects rather than let
2973 * tracking information or the free pointer be
0211a9c8 2974 * corrupted if a user writes before the start
81819f0f
CL
2975 * of the object.
2976 */
2977 size += sizeof(void *);
41ecc55b 2978#endif
672bba3a 2979
81819f0f
CL
2980 /*
2981 * Determine the alignment based on various parameters that the
65c02d4c
CL
2982 * user specified and the dynamic determination of cache line size
2983 * on bootup.
81819f0f 2984 */
3b0efdfa 2985 align = calculate_alignment(flags, align, s->object_size);
dcb0ce1b 2986 s->align = align;
81819f0f
CL
2987
2988 /*
2989 * SLUB stores one object immediately after another beginning from
2990 * offset 0. In order to align the objects we have to simply size
2991 * each object to conform to the alignment.
2992 */
2993 size = ALIGN(size, align);
2994 s->size = size;
06b285dc
CL
2995 if (forced_order >= 0)
2996 order = forced_order;
2997 else
ab9a0f19 2998 order = calculate_order(size, s->reserved);
81819f0f 2999
834f3d11 3000 if (order < 0)
81819f0f
CL
3001 return 0;
3002
b7a49f0d 3003 s->allocflags = 0;
834f3d11 3004 if (order)
b7a49f0d
CL
3005 s->allocflags |= __GFP_COMP;
3006
3007 if (s->flags & SLAB_CACHE_DMA)
3008 s->allocflags |= SLUB_DMA;
3009
3010 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3011 s->allocflags |= __GFP_RECLAIMABLE;
3012
81819f0f
CL
3013 /*
3014 * Determine the number of objects per slab
3015 */
ab9a0f19
LJ
3016 s->oo = oo_make(order, size, s->reserved);
3017 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3018 if (oo_objects(s->oo) > oo_objects(s->max))
3019 s->max = s->oo;
81819f0f 3020
834f3d11 3021 return !!oo_objects(s->oo);
81819f0f
CL
3022
3023}
3024
55136592 3025static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
3026 const char *name, size_t size,
3027 size_t align, unsigned long flags,
51cc5068 3028 void (*ctor)(void *))
81819f0f
CL
3029{
3030 memset(s, 0, kmem_size);
3031 s->name = name;
3032 s->ctor = ctor;
3b0efdfa 3033 s->object_size = size;
81819f0f 3034 s->align = align;
ba0268a8 3035 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 3036 s->reserved = 0;
81819f0f 3037
da9a638c
LJ
3038 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3039 s->reserved = sizeof(struct rcu_head);
81819f0f 3040
06b285dc 3041 if (!calculate_sizes(s, -1))
81819f0f 3042 goto error;
3de47213
DR
3043 if (disable_higher_order_debug) {
3044 /*
3045 * Disable debugging flags that store metadata if the min slab
3046 * order increased.
3047 */
3b0efdfa 3048 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3049 s->flags &= ~DEBUG_METADATA_FLAGS;
3050 s->offset = 0;
3051 if (!calculate_sizes(s, -1))
3052 goto error;
3053 }
3054 }
81819f0f 3055
2565409f
HC
3056#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3057 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3058 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3059 /* Enable fast mode */
3060 s->flags |= __CMPXCHG_DOUBLE;
3061#endif
3062
3b89d7d8
DR
3063 /*
3064 * The larger the object size is, the more pages we want on the partial
3065 * list to avoid pounding the page allocator excessively.
3066 */
49e22585
CL
3067 set_min_partial(s, ilog2(s->size) / 2);
3068
3069 /*
3070 * cpu_partial determined the maximum number of objects kept in the
3071 * per cpu partial lists of a processor.
3072 *
3073 * Per cpu partial lists mainly contain slabs that just have one
3074 * object freed. If they are used for allocation then they can be
3075 * filled up again with minimal effort. The slab will never hit the
3076 * per node partial lists and therefore no locking will be required.
3077 *
3078 * This setting also determines
3079 *
3080 * A) The number of objects from per cpu partial slabs dumped to the
3081 * per node list when we reach the limit.
9f264904 3082 * B) The number of objects in cpu partial slabs to extract from the
49e22585
CL
3083 * per node list when we run out of per cpu objects. We only fetch 50%
3084 * to keep some capacity around for frees.
3085 */
8f1e33da
CL
3086 if (kmem_cache_debug(s))
3087 s->cpu_partial = 0;
3088 else if (s->size >= PAGE_SIZE)
49e22585
CL
3089 s->cpu_partial = 2;
3090 else if (s->size >= 1024)
3091 s->cpu_partial = 6;
3092 else if (s->size >= 256)
3093 s->cpu_partial = 13;
3094 else
3095 s->cpu_partial = 30;
3096
81819f0f
CL
3097 s->refcount = 1;
3098#ifdef CONFIG_NUMA
e2cb96b7 3099 s->remote_node_defrag_ratio = 1000;
81819f0f 3100#endif
55136592 3101 if (!init_kmem_cache_nodes(s))
dfb4f096 3102 goto error;
81819f0f 3103
55136592 3104 if (alloc_kmem_cache_cpus(s))
81819f0f 3105 return 1;
ff12059e 3106
4c93c355 3107 free_kmem_cache_nodes(s);
81819f0f
CL
3108error:
3109 if (flags & SLAB_PANIC)
3110 panic("Cannot create slab %s size=%lu realsize=%u "
3111 "order=%u offset=%u flags=%lx\n",
834f3d11 3112 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
3113 s->offset, flags);
3114 return 0;
3115}
81819f0f 3116
81819f0f
CL
3117/*
3118 * Determine the size of a slab object
3119 */
3120unsigned int kmem_cache_size(struct kmem_cache *s)
3121{
3b0efdfa 3122 return s->object_size;
81819f0f
CL
3123}
3124EXPORT_SYMBOL(kmem_cache_size);
3125
33b12c38
CL
3126static void list_slab_objects(struct kmem_cache *s, struct page *page,
3127 const char *text)
3128{
3129#ifdef CONFIG_SLUB_DEBUG
3130 void *addr = page_address(page);
3131 void *p;
a5dd5c11
NK
3132 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3133 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3134 if (!map)
3135 return;
33b12c38
CL
3136 slab_err(s, page, "%s", text);
3137 slab_lock(page);
33b12c38 3138
5f80b13a 3139 get_map(s, page, map);
33b12c38
CL
3140 for_each_object(p, s, addr, page->objects) {
3141
3142 if (!test_bit(slab_index(p, s, addr), map)) {
3143 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3144 p, p - addr);
3145 print_tracking(s, p);
3146 }
3147 }
3148 slab_unlock(page);
bbd7d57b 3149 kfree(map);
33b12c38
CL
3150#endif
3151}
3152
81819f0f 3153/*
599870b1 3154 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3155 * This is called from kmem_cache_close(). We must be the last thread
3156 * using the cache and therefore we do not need to lock anymore.
81819f0f 3157 */
599870b1 3158static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3159{
81819f0f
CL
3160 struct page *page, *h;
3161
33b12c38 3162 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3163 if (!page->inuse) {
5cc6eee8 3164 remove_partial(n, page);
81819f0f 3165 discard_slab(s, page);
33b12c38
CL
3166 } else {
3167 list_slab_objects(s, page,
3168 "Objects remaining on kmem_cache_close()");
599870b1 3169 }
33b12c38 3170 }
81819f0f
CL
3171}
3172
3173/*
672bba3a 3174 * Release all resources used by a slab cache.
81819f0f 3175 */
0c710013 3176static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3177{
3178 int node;
3179
3180 flush_all(s);
9dfc6e68 3181 free_percpu(s->cpu_slab);
81819f0f 3182 /* Attempt to free all objects */
f64dc58c 3183 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3184 struct kmem_cache_node *n = get_node(s, node);
3185
599870b1
CL
3186 free_partial(s, n);
3187 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3188 return 1;
3189 }
3190 free_kmem_cache_nodes(s);
3191 return 0;
3192}
3193
3194/*
3195 * Close a cache and release the kmem_cache structure
3196 * (must be used for caches created using kmem_cache_create)
3197 */
3198void kmem_cache_destroy(struct kmem_cache *s)
3199{
18004c5d 3200 mutex_lock(&slab_mutex);
81819f0f
CL
3201 s->refcount--;
3202 if (!s->refcount) {
3203 list_del(&s->list);
18004c5d 3204 mutex_unlock(&slab_mutex);
d629d819
PE
3205 if (kmem_cache_close(s)) {
3206 printk(KERN_ERR "SLUB %s: %s called for cache that "
3207 "still has objects.\n", s->name, __func__);
3208 dump_stack();
3209 }
d76b1590
ED
3210 if (s->flags & SLAB_DESTROY_BY_RCU)
3211 rcu_barrier();
81819f0f 3212 sysfs_slab_remove(s);
69cb8e6b 3213 } else
18004c5d 3214 mutex_unlock(&slab_mutex);
81819f0f
CL
3215}
3216EXPORT_SYMBOL(kmem_cache_destroy);
3217
3218/********************************************************************
3219 * Kmalloc subsystem
3220 *******************************************************************/
3221
51df1142 3222struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
3223EXPORT_SYMBOL(kmalloc_caches);
3224
51df1142
CL
3225static struct kmem_cache *kmem_cache;
3226
55136592 3227#ifdef CONFIG_ZONE_DMA
51df1142 3228static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
3229#endif
3230
81819f0f
CL
3231static int __init setup_slub_min_order(char *str)
3232{
06428780 3233 get_option(&str, &slub_min_order);
81819f0f
CL
3234
3235 return 1;
3236}
3237
3238__setup("slub_min_order=", setup_slub_min_order);
3239
3240static int __init setup_slub_max_order(char *str)
3241{
06428780 3242 get_option(&str, &slub_max_order);
818cf590 3243 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3244
3245 return 1;
3246}
3247
3248__setup("slub_max_order=", setup_slub_max_order);
3249
3250static int __init setup_slub_min_objects(char *str)
3251{
06428780 3252 get_option(&str, &slub_min_objects);
81819f0f
CL
3253
3254 return 1;
3255}
3256
3257__setup("slub_min_objects=", setup_slub_min_objects);
3258
3259static int __init setup_slub_nomerge(char *str)
3260{
3261 slub_nomerge = 1;
3262 return 1;
3263}
3264
3265__setup("slub_nomerge", setup_slub_nomerge);
3266
51df1142
CL
3267static struct kmem_cache *__init create_kmalloc_cache(const char *name,
3268 int size, unsigned int flags)
81819f0f 3269{
51df1142
CL
3270 struct kmem_cache *s;
3271
3272 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3273
83b519e8
PE
3274 /*
3275 * This function is called with IRQs disabled during early-boot on
18004c5d 3276 * single CPU so there's no need to take slab_mutex here.
83b519e8 3277 */
55136592 3278 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 3279 flags, NULL))
81819f0f
CL
3280 goto panic;
3281
3282 list_add(&s->list, &slab_caches);
51df1142 3283 return s;
81819f0f
CL
3284
3285panic:
3286 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 3287 return NULL;
81819f0f
CL
3288}
3289
f1b26339
CL
3290/*
3291 * Conversion table for small slabs sizes / 8 to the index in the
3292 * kmalloc array. This is necessary for slabs < 192 since we have non power
3293 * of two cache sizes there. The size of larger slabs can be determined using
3294 * fls.
3295 */
3296static s8 size_index[24] = {
3297 3, /* 8 */
3298 4, /* 16 */
3299 5, /* 24 */
3300 5, /* 32 */
3301 6, /* 40 */
3302 6, /* 48 */
3303 6, /* 56 */
3304 6, /* 64 */
3305 1, /* 72 */
3306 1, /* 80 */
3307 1, /* 88 */
3308 1, /* 96 */
3309 7, /* 104 */
3310 7, /* 112 */
3311 7, /* 120 */
3312 7, /* 128 */
3313 2, /* 136 */
3314 2, /* 144 */
3315 2, /* 152 */
3316 2, /* 160 */
3317 2, /* 168 */
3318 2, /* 176 */
3319 2, /* 184 */
3320 2 /* 192 */
3321};
3322
acdfcd04
AK
3323static inline int size_index_elem(size_t bytes)
3324{
3325 return (bytes - 1) / 8;
3326}
3327
81819f0f
CL
3328static struct kmem_cache *get_slab(size_t size, gfp_t flags)
3329{
f1b26339 3330 int index;
81819f0f 3331
f1b26339
CL
3332 if (size <= 192) {
3333 if (!size)
3334 return ZERO_SIZE_PTR;
81819f0f 3335
acdfcd04 3336 index = size_index[size_index_elem(size)];
aadb4bc4 3337 } else
f1b26339 3338 index = fls(size - 1);
81819f0f
CL
3339
3340#ifdef CONFIG_ZONE_DMA
f1b26339 3341 if (unlikely((flags & SLUB_DMA)))
51df1142 3342 return kmalloc_dma_caches[index];
f1b26339 3343
81819f0f 3344#endif
51df1142 3345 return kmalloc_caches[index];
81819f0f
CL
3346}
3347
3348void *__kmalloc(size_t size, gfp_t flags)
3349{
aadb4bc4 3350 struct kmem_cache *s;
5b882be4 3351 void *ret;
81819f0f 3352
ffadd4d0 3353 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 3354 return kmalloc_large(size, flags);
aadb4bc4
CL
3355
3356 s = get_slab(size, flags);
3357
3358 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3359 return s;
3360
2154a336 3361 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 3362
ca2b84cb 3363 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3364
3365 return ret;
81819f0f
CL
3366}
3367EXPORT_SYMBOL(__kmalloc);
3368
5d1f57e4 3369#ifdef CONFIG_NUMA
f619cfe1
CL
3370static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3371{
b1eeab67 3372 struct page *page;
e4f7c0b4 3373 void *ptr = NULL;
f619cfe1 3374
b1eeab67
VN
3375 flags |= __GFP_COMP | __GFP_NOTRACK;
3376 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3377 if (page)
e4f7c0b4
CM
3378 ptr = page_address(page);
3379
3380 kmemleak_alloc(ptr, size, 1, flags);
3381 return ptr;
f619cfe1
CL
3382}
3383
81819f0f
CL
3384void *__kmalloc_node(size_t size, gfp_t flags, int node)
3385{
aadb4bc4 3386 struct kmem_cache *s;
5b882be4 3387 void *ret;
81819f0f 3388
057685cf 3389 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
3390 ret = kmalloc_large_node(size, flags, node);
3391
ca2b84cb
EGM
3392 trace_kmalloc_node(_RET_IP_, ret,
3393 size, PAGE_SIZE << get_order(size),
3394 flags, node);
5b882be4
EGM
3395
3396 return ret;
3397 }
aadb4bc4
CL
3398
3399 s = get_slab(size, flags);
3400
3401 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3402 return s;
3403
5b882be4
EGM
3404 ret = slab_alloc(s, flags, node, _RET_IP_);
3405
ca2b84cb 3406 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3407
3408 return ret;
81819f0f
CL
3409}
3410EXPORT_SYMBOL(__kmalloc_node);
3411#endif
3412
3413size_t ksize(const void *object)
3414{
272c1d21 3415 struct page *page;
81819f0f 3416
ef8b4520 3417 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3418 return 0;
3419
294a80a8 3420 page = virt_to_head_page(object);
294a80a8 3421
76994412
PE
3422 if (unlikely(!PageSlab(page))) {
3423 WARN_ON(!PageCompound(page));
294a80a8 3424 return PAGE_SIZE << compound_order(page);
76994412 3425 }
81819f0f 3426
b3d41885 3427 return slab_ksize(page->slab);
81819f0f 3428}
b1aabecd 3429EXPORT_SYMBOL(ksize);
81819f0f 3430
d18a90dd
BG
3431#ifdef CONFIG_SLUB_DEBUG
3432bool verify_mem_not_deleted(const void *x)
3433{
3434 struct page *page;
3435 void *object = (void *)x;
3436 unsigned long flags;
3437 bool rv;
3438
3439 if (unlikely(ZERO_OR_NULL_PTR(x)))
3440 return false;
3441
3442 local_irq_save(flags);
3443
3444 page = virt_to_head_page(x);
3445 if (unlikely(!PageSlab(page))) {
3446 /* maybe it was from stack? */
3447 rv = true;
3448 goto out_unlock;
3449 }
3450
3451 slab_lock(page);
3452 if (on_freelist(page->slab, page, object)) {
3453 object_err(page->slab, page, object, "Object is on free-list");
3454 rv = false;
3455 } else {
3456 rv = true;
3457 }
3458 slab_unlock(page);
3459
3460out_unlock:
3461 local_irq_restore(flags);
3462 return rv;
3463}
3464EXPORT_SYMBOL(verify_mem_not_deleted);
3465#endif
3466
81819f0f
CL
3467void kfree(const void *x)
3468{
81819f0f 3469 struct page *page;
5bb983b0 3470 void *object = (void *)x;
81819f0f 3471
2121db74
PE
3472 trace_kfree(_RET_IP_, x);
3473
2408c550 3474 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3475 return;
3476
b49af68f 3477 page = virt_to_head_page(x);
aadb4bc4 3478 if (unlikely(!PageSlab(page))) {
0937502a 3479 BUG_ON(!PageCompound(page));
e4f7c0b4 3480 kmemleak_free(x);
aadb4bc4
CL
3481 put_page(page);
3482 return;
3483 }
ce71e27c 3484 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3485}
3486EXPORT_SYMBOL(kfree);
3487
2086d26a 3488/*
672bba3a
CL
3489 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3490 * the remaining slabs by the number of items in use. The slabs with the
3491 * most items in use come first. New allocations will then fill those up
3492 * and thus they can be removed from the partial lists.
3493 *
3494 * The slabs with the least items are placed last. This results in them
3495 * being allocated from last increasing the chance that the last objects
3496 * are freed in them.
2086d26a
CL
3497 */
3498int kmem_cache_shrink(struct kmem_cache *s)
3499{
3500 int node;
3501 int i;
3502 struct kmem_cache_node *n;
3503 struct page *page;
3504 struct page *t;
205ab99d 3505 int objects = oo_objects(s->max);
2086d26a 3506 struct list_head *slabs_by_inuse =
834f3d11 3507 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3508 unsigned long flags;
3509
3510 if (!slabs_by_inuse)
3511 return -ENOMEM;
3512
3513 flush_all(s);
f64dc58c 3514 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3515 n = get_node(s, node);
3516
3517 if (!n->nr_partial)
3518 continue;
3519
834f3d11 3520 for (i = 0; i < objects; i++)
2086d26a
CL
3521 INIT_LIST_HEAD(slabs_by_inuse + i);
3522
3523 spin_lock_irqsave(&n->list_lock, flags);
3524
3525 /*
672bba3a 3526 * Build lists indexed by the items in use in each slab.
2086d26a 3527 *
672bba3a
CL
3528 * Note that concurrent frees may occur while we hold the
3529 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3530 */
3531 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3532 list_move(&page->lru, slabs_by_inuse + page->inuse);
3533 if (!page->inuse)
3534 n->nr_partial--;
2086d26a
CL
3535 }
3536
2086d26a 3537 /*
672bba3a
CL
3538 * Rebuild the partial list with the slabs filled up most
3539 * first and the least used slabs at the end.
2086d26a 3540 */
69cb8e6b 3541 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3542 list_splice(slabs_by_inuse + i, n->partial.prev);
3543
2086d26a 3544 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3545
3546 /* Release empty slabs */
3547 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3548 discard_slab(s, page);
2086d26a
CL
3549 }
3550
3551 kfree(slabs_by_inuse);
3552 return 0;
3553}
3554EXPORT_SYMBOL(kmem_cache_shrink);
3555
92a5bbc1 3556#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3557static int slab_mem_going_offline_callback(void *arg)
3558{
3559 struct kmem_cache *s;
3560
18004c5d 3561 mutex_lock(&slab_mutex);
b9049e23
YG
3562 list_for_each_entry(s, &slab_caches, list)
3563 kmem_cache_shrink(s);
18004c5d 3564 mutex_unlock(&slab_mutex);
b9049e23
YG
3565
3566 return 0;
3567}
3568
3569static void slab_mem_offline_callback(void *arg)
3570{
3571 struct kmem_cache_node *n;
3572 struct kmem_cache *s;
3573 struct memory_notify *marg = arg;
3574 int offline_node;
3575
3576 offline_node = marg->status_change_nid;
3577
3578 /*
3579 * If the node still has available memory. we need kmem_cache_node
3580 * for it yet.
3581 */
3582 if (offline_node < 0)
3583 return;
3584
18004c5d 3585 mutex_lock(&slab_mutex);
b9049e23
YG
3586 list_for_each_entry(s, &slab_caches, list) {
3587 n = get_node(s, offline_node);
3588 if (n) {
3589 /*
3590 * if n->nr_slabs > 0, slabs still exist on the node
3591 * that is going down. We were unable to free them,
c9404c9c 3592 * and offline_pages() function shouldn't call this
b9049e23
YG
3593 * callback. So, we must fail.
3594 */
0f389ec6 3595 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3596
3597 s->node[offline_node] = NULL;
8de66a0c 3598 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3599 }
3600 }
18004c5d 3601 mutex_unlock(&slab_mutex);
b9049e23
YG
3602}
3603
3604static int slab_mem_going_online_callback(void *arg)
3605{
3606 struct kmem_cache_node *n;
3607 struct kmem_cache *s;
3608 struct memory_notify *marg = arg;
3609 int nid = marg->status_change_nid;
3610 int ret = 0;
3611
3612 /*
3613 * If the node's memory is already available, then kmem_cache_node is
3614 * already created. Nothing to do.
3615 */
3616 if (nid < 0)
3617 return 0;
3618
3619 /*
0121c619 3620 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3621 * allocate a kmem_cache_node structure in order to bring the node
3622 * online.
3623 */
18004c5d 3624 mutex_lock(&slab_mutex);
b9049e23
YG
3625 list_for_each_entry(s, &slab_caches, list) {
3626 /*
3627 * XXX: kmem_cache_alloc_node will fallback to other nodes
3628 * since memory is not yet available from the node that
3629 * is brought up.
3630 */
8de66a0c 3631 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3632 if (!n) {
3633 ret = -ENOMEM;
3634 goto out;
3635 }
4053497d 3636 init_kmem_cache_node(n);
b9049e23
YG
3637 s->node[nid] = n;
3638 }
3639out:
18004c5d 3640 mutex_unlock(&slab_mutex);
b9049e23
YG
3641 return ret;
3642}
3643
3644static int slab_memory_callback(struct notifier_block *self,
3645 unsigned long action, void *arg)
3646{
3647 int ret = 0;
3648
3649 switch (action) {
3650 case MEM_GOING_ONLINE:
3651 ret = slab_mem_going_online_callback(arg);
3652 break;
3653 case MEM_GOING_OFFLINE:
3654 ret = slab_mem_going_offline_callback(arg);
3655 break;
3656 case MEM_OFFLINE:
3657 case MEM_CANCEL_ONLINE:
3658 slab_mem_offline_callback(arg);
3659 break;
3660 case MEM_ONLINE:
3661 case MEM_CANCEL_OFFLINE:
3662 break;
3663 }
dc19f9db
KH
3664 if (ret)
3665 ret = notifier_from_errno(ret);
3666 else
3667 ret = NOTIFY_OK;
b9049e23
YG
3668 return ret;
3669}
3670
3671#endif /* CONFIG_MEMORY_HOTPLUG */
3672
81819f0f
CL
3673/********************************************************************
3674 * Basic setup of slabs
3675 *******************************************************************/
3676
51df1142
CL
3677/*
3678 * Used for early kmem_cache structures that were allocated using
3679 * the page allocator
3680 */
3681
3682static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3683{
3684 int node;
3685
3686 list_add(&s->list, &slab_caches);
3687 s->refcount = -1;
3688
3689 for_each_node_state(node, N_NORMAL_MEMORY) {
3690 struct kmem_cache_node *n = get_node(s, node);
3691 struct page *p;
3692
3693 if (n) {
3694 list_for_each_entry(p, &n->partial, lru)
3695 p->slab = s;
3696
607bf324 3697#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3698 list_for_each_entry(p, &n->full, lru)
3699 p->slab = s;
3700#endif
3701 }
3702 }
3703}
3704
81819f0f
CL
3705void __init kmem_cache_init(void)
3706{
3707 int i;
4b356be0 3708 int caches = 0;
51df1142
CL
3709 struct kmem_cache *temp_kmem_cache;
3710 int order;
51df1142
CL
3711 struct kmem_cache *temp_kmem_cache_node;
3712 unsigned long kmalloc_size;
3713
fc8d8620
SG
3714 if (debug_guardpage_minorder())
3715 slub_max_order = 0;
3716
51df1142
CL
3717 kmem_size = offsetof(struct kmem_cache, node) +
3718 nr_node_ids * sizeof(struct kmem_cache_node *);
3719
3720 /* Allocate two kmem_caches from the page allocator */
3721 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3722 order = get_order(2 * kmalloc_size);
3723 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3724
81819f0f
CL
3725 /*
3726 * Must first have the slab cache available for the allocations of the
672bba3a 3727 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3728 * kmem_cache_open for slab_state == DOWN.
3729 */
51df1142
CL
3730 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3731
3732 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3733 sizeof(struct kmem_cache_node),
3734 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3735
0c40ba4f 3736 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3737
3738 /* Able to allocate the per node structures */
3739 slab_state = PARTIAL;
3740
51df1142
CL
3741 temp_kmem_cache = kmem_cache;
3742 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3743 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3744 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3745 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3746
51df1142
CL
3747 /*
3748 * Allocate kmem_cache_node properly from the kmem_cache slab.
3749 * kmem_cache_node is separately allocated so no need to
3750 * update any list pointers.
3751 */
3752 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3753
51df1142
CL
3754 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3755 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3756
3757 kmem_cache_bootstrap_fixup(kmem_cache_node);
3758
3759 caches++;
51df1142
CL
3760 kmem_cache_bootstrap_fixup(kmem_cache);
3761 caches++;
3762 /* Free temporary boot structure */
3763 free_pages((unsigned long)temp_kmem_cache, order);
3764
3765 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3766
3767 /*
3768 * Patch up the size_index table if we have strange large alignment
3769 * requirements for the kmalloc array. This is only the case for
6446faa2 3770 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3771 *
3772 * Largest permitted alignment is 256 bytes due to the way we
3773 * handle the index determination for the smaller caches.
3774 *
3775 * Make sure that nothing crazy happens if someone starts tinkering
3776 * around with ARCH_KMALLOC_MINALIGN
3777 */
3778 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3779 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3780
acdfcd04
AK
3781 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3782 int elem = size_index_elem(i);
3783 if (elem >= ARRAY_SIZE(size_index))
3784 break;
3785 size_index[elem] = KMALLOC_SHIFT_LOW;
3786 }
f1b26339 3787
acdfcd04
AK
3788 if (KMALLOC_MIN_SIZE == 64) {
3789 /*
3790 * The 96 byte size cache is not used if the alignment
3791 * is 64 byte.
3792 */
3793 for (i = 64 + 8; i <= 96; i += 8)
3794 size_index[size_index_elem(i)] = 7;
3795 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3796 /*
3797 * The 192 byte sized cache is not used if the alignment
3798 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3799 * instead.
3800 */
3801 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3802 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3803 }
3804
51df1142
CL
3805 /* Caches that are not of the two-to-the-power-of size */
3806 if (KMALLOC_MIN_SIZE <= 32) {
3807 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3808 caches++;
3809 }
3810
3811 if (KMALLOC_MIN_SIZE <= 64) {
3812 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3813 caches++;
3814 }
3815
3816 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3817 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3818 caches++;
3819 }
3820
81819f0f
CL
3821 slab_state = UP;
3822
3823 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3824 if (KMALLOC_MIN_SIZE <= 32) {
3825 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3826 BUG_ON(!kmalloc_caches[1]->name);
3827 }
3828
3829 if (KMALLOC_MIN_SIZE <= 64) {
3830 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3831 BUG_ON(!kmalloc_caches[2]->name);
3832 }
3833
d7278bd7
CL
3834 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3835 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3836
3837 BUG_ON(!s);
51df1142 3838 kmalloc_caches[i]->name = s;
d7278bd7 3839 }
81819f0f
CL
3840
3841#ifdef CONFIG_SMP
3842 register_cpu_notifier(&slab_notifier);
9dfc6e68 3843#endif
81819f0f 3844
55136592 3845#ifdef CONFIG_ZONE_DMA
51df1142
CL
3846 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3847 struct kmem_cache *s = kmalloc_caches[i];
55136592 3848
51df1142 3849 if (s && s->size) {
55136592 3850 char *name = kasprintf(GFP_NOWAIT,
3b0efdfa 3851 "dma-kmalloc-%d", s->object_size);
55136592
CL
3852
3853 BUG_ON(!name);
51df1142 3854 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3b0efdfa 3855 s->object_size, SLAB_CACHE_DMA);
55136592
CL
3856 }
3857 }
3858#endif
3adbefee
IM
3859 printk(KERN_INFO
3860 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3861 " CPUs=%d, Nodes=%d\n",
3862 caches, cache_line_size(),
81819f0f
CL
3863 slub_min_order, slub_max_order, slub_min_objects,
3864 nr_cpu_ids, nr_node_ids);
3865}
3866
7e85ee0c
PE
3867void __init kmem_cache_init_late(void)
3868{
7e85ee0c
PE
3869}
3870
81819f0f
CL
3871/*
3872 * Find a mergeable slab cache
3873 */
3874static int slab_unmergeable(struct kmem_cache *s)
3875{
3876 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3877 return 1;
3878
c59def9f 3879 if (s->ctor)
81819f0f
CL
3880 return 1;
3881
8ffa6875
CL
3882 /*
3883 * We may have set a slab to be unmergeable during bootstrap.
3884 */
3885 if (s->refcount < 0)
3886 return 1;
3887
81819f0f
CL
3888 return 0;
3889}
3890
3891static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3892 size_t align, unsigned long flags, const char *name,
51cc5068 3893 void (*ctor)(void *))
81819f0f 3894{
5b95a4ac 3895 struct kmem_cache *s;
81819f0f
CL
3896
3897 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3898 return NULL;
3899
c59def9f 3900 if (ctor)
81819f0f
CL
3901 return NULL;
3902
3903 size = ALIGN(size, sizeof(void *));
3904 align = calculate_alignment(flags, align, size);
3905 size = ALIGN(size, align);
ba0268a8 3906 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3907
5b95a4ac 3908 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3909 if (slab_unmergeable(s))
3910 continue;
3911
3912 if (size > s->size)
3913 continue;
3914
ba0268a8 3915 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3916 continue;
3917 /*
3918 * Check if alignment is compatible.
3919 * Courtesy of Adrian Drzewiecki
3920 */
06428780 3921 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3922 continue;
3923
3924 if (s->size - size >= sizeof(void *))
3925 continue;
3926
3927 return s;
3928 }
3929 return NULL;
3930}
3931
039363f3 3932struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
51cc5068 3933 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3934{
3935 struct kmem_cache *s;
84c1cf62 3936 char *n;
81819f0f 3937
ba0268a8 3938 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3939 if (s) {
3940 s->refcount++;
3941 /*
3942 * Adjust the object sizes so that we clear
3943 * the complete object on kzalloc.
3944 */
3b0efdfa 3945 s->object_size = max(s->object_size, (int)size);
81819f0f 3946 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3947
7b8f3b66 3948 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3949 s->refcount--;
20cea968 3950 return NULL;
7b8f3b66 3951 }
a0e1d1be
CL
3952 return s;
3953 }
6446faa2 3954
84c1cf62
PE
3955 n = kstrdup(name, GFP_KERNEL);
3956 if (!n)
20cea968 3957 return NULL;
84c1cf62 3958
a0e1d1be
CL
3959 s = kmalloc(kmem_size, GFP_KERNEL);
3960 if (s) {
84c1cf62 3961 if (kmem_cache_open(s, n,
c59def9f 3962 size, align, flags, ctor)) {
20cea968
CL
3963 int r;
3964
81819f0f 3965 list_add(&s->list, &slab_caches);
18004c5d 3966 mutex_unlock(&slab_mutex);
20cea968
CL
3967 r = sysfs_slab_add(s);
3968 mutex_lock(&slab_mutex);
3969
3970 if (!r)
3971 return s;
3972
3973 list_del(&s->list);
3974 kmem_cache_close(s);
a0e1d1be
CL
3975 }
3976 kfree(s);
81819f0f 3977 }
601d39d0 3978 kfree(n);
20cea968 3979 return NULL;
81819f0f 3980}
81819f0f 3981
81819f0f 3982#ifdef CONFIG_SMP
81819f0f 3983/*
672bba3a
CL
3984 * Use the cpu notifier to insure that the cpu slabs are flushed when
3985 * necessary.
81819f0f
CL
3986 */
3987static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3988 unsigned long action, void *hcpu)
3989{
3990 long cpu = (long)hcpu;
5b95a4ac
CL
3991 struct kmem_cache *s;
3992 unsigned long flags;
81819f0f
CL
3993
3994 switch (action) {
3995 case CPU_UP_CANCELED:
8bb78442 3996 case CPU_UP_CANCELED_FROZEN:
81819f0f 3997 case CPU_DEAD:
8bb78442 3998 case CPU_DEAD_FROZEN:
18004c5d 3999 mutex_lock(&slab_mutex);
5b95a4ac
CL
4000 list_for_each_entry(s, &slab_caches, list) {
4001 local_irq_save(flags);
4002 __flush_cpu_slab(s, cpu);
4003 local_irq_restore(flags);
4004 }
18004c5d 4005 mutex_unlock(&slab_mutex);
81819f0f
CL
4006 break;
4007 default:
4008 break;
4009 }
4010 return NOTIFY_OK;
4011}
4012
06428780 4013static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 4014 .notifier_call = slab_cpuup_callback
06428780 4015};
81819f0f
CL
4016
4017#endif
4018
ce71e27c 4019void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4020{
aadb4bc4 4021 struct kmem_cache *s;
94b528d0 4022 void *ret;
aadb4bc4 4023
ffadd4d0 4024 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
4025 return kmalloc_large(size, gfpflags);
4026
aadb4bc4 4027 s = get_slab(size, gfpflags);
81819f0f 4028
2408c550 4029 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4030 return s;
81819f0f 4031
2154a336 4032 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 4033
25985edc 4034 /* Honor the call site pointer we received. */
ca2b84cb 4035 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4036
4037 return ret;
81819f0f
CL
4038}
4039
5d1f57e4 4040#ifdef CONFIG_NUMA
81819f0f 4041void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4042 int node, unsigned long caller)
81819f0f 4043{
aadb4bc4 4044 struct kmem_cache *s;
94b528d0 4045 void *ret;
aadb4bc4 4046
d3e14aa3
XF
4047 if (unlikely(size > SLUB_MAX_SIZE)) {
4048 ret = kmalloc_large_node(size, gfpflags, node);
4049
4050 trace_kmalloc_node(caller, ret,
4051 size, PAGE_SIZE << get_order(size),
4052 gfpflags, node);
4053
4054 return ret;
4055 }
eada35ef 4056
aadb4bc4 4057 s = get_slab(size, gfpflags);
81819f0f 4058
2408c550 4059 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4060 return s;
81819f0f 4061
94b528d0
EGM
4062 ret = slab_alloc(s, gfpflags, node, caller);
4063
25985edc 4064 /* Honor the call site pointer we received. */
ca2b84cb 4065 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4066
4067 return ret;
81819f0f 4068}
5d1f57e4 4069#endif
81819f0f 4070
ab4d5ed5 4071#ifdef CONFIG_SYSFS
205ab99d
CL
4072static int count_inuse(struct page *page)
4073{
4074 return page->inuse;
4075}
4076
4077static int count_total(struct page *page)
4078{
4079 return page->objects;
4080}
ab4d5ed5 4081#endif
205ab99d 4082
ab4d5ed5 4083#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4084static int validate_slab(struct kmem_cache *s, struct page *page,
4085 unsigned long *map)
53e15af0
CL
4086{
4087 void *p;
a973e9dd 4088 void *addr = page_address(page);
53e15af0
CL
4089
4090 if (!check_slab(s, page) ||
4091 !on_freelist(s, page, NULL))
4092 return 0;
4093
4094 /* Now we know that a valid freelist exists */
39b26464 4095 bitmap_zero(map, page->objects);
53e15af0 4096
5f80b13a
CL
4097 get_map(s, page, map);
4098 for_each_object(p, s, addr, page->objects) {
4099 if (test_bit(slab_index(p, s, addr), map))
4100 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4101 return 0;
53e15af0
CL
4102 }
4103
224a88be 4104 for_each_object(p, s, addr, page->objects)
7656c72b 4105 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4106 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4107 return 0;
4108 return 1;
4109}
4110
434e245d
CL
4111static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4112 unsigned long *map)
53e15af0 4113{
881db7fb
CL
4114 slab_lock(page);
4115 validate_slab(s, page, map);
4116 slab_unlock(page);
53e15af0
CL
4117}
4118
434e245d
CL
4119static int validate_slab_node(struct kmem_cache *s,
4120 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4121{
4122 unsigned long count = 0;
4123 struct page *page;
4124 unsigned long flags;
4125
4126 spin_lock_irqsave(&n->list_lock, flags);
4127
4128 list_for_each_entry(page, &n->partial, lru) {
434e245d 4129 validate_slab_slab(s, page, map);
53e15af0
CL
4130 count++;
4131 }
4132 if (count != n->nr_partial)
4133 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
4134 "counter=%ld\n", s->name, count, n->nr_partial);
4135
4136 if (!(s->flags & SLAB_STORE_USER))
4137 goto out;
4138
4139 list_for_each_entry(page, &n->full, lru) {
434e245d 4140 validate_slab_slab(s, page, map);
53e15af0
CL
4141 count++;
4142 }
4143 if (count != atomic_long_read(&n->nr_slabs))
4144 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
4145 "counter=%ld\n", s->name, count,
4146 atomic_long_read(&n->nr_slabs));
4147
4148out:
4149 spin_unlock_irqrestore(&n->list_lock, flags);
4150 return count;
4151}
4152
434e245d 4153static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4154{
4155 int node;
4156 unsigned long count = 0;
205ab99d 4157 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
4158 sizeof(unsigned long), GFP_KERNEL);
4159
4160 if (!map)
4161 return -ENOMEM;
53e15af0
CL
4162
4163 flush_all(s);
f64dc58c 4164 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
4165 struct kmem_cache_node *n = get_node(s, node);
4166
434e245d 4167 count += validate_slab_node(s, n, map);
53e15af0 4168 }
434e245d 4169 kfree(map);
53e15af0
CL
4170 return count;
4171}
88a420e4 4172/*
672bba3a 4173 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4174 * and freed.
4175 */
4176
4177struct location {
4178 unsigned long count;
ce71e27c 4179 unsigned long addr;
45edfa58
CL
4180 long long sum_time;
4181 long min_time;
4182 long max_time;
4183 long min_pid;
4184 long max_pid;
174596a0 4185 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4186 nodemask_t nodes;
88a420e4
CL
4187};
4188
4189struct loc_track {
4190 unsigned long max;
4191 unsigned long count;
4192 struct location *loc;
4193};
4194
4195static void free_loc_track(struct loc_track *t)
4196{
4197 if (t->max)
4198 free_pages((unsigned long)t->loc,
4199 get_order(sizeof(struct location) * t->max));
4200}
4201
68dff6a9 4202static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4203{
4204 struct location *l;
4205 int order;
4206
88a420e4
CL
4207 order = get_order(sizeof(struct location) * max);
4208
68dff6a9 4209 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4210 if (!l)
4211 return 0;
4212
4213 if (t->count) {
4214 memcpy(l, t->loc, sizeof(struct location) * t->count);
4215 free_loc_track(t);
4216 }
4217 t->max = max;
4218 t->loc = l;
4219 return 1;
4220}
4221
4222static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4223 const struct track *track)
88a420e4
CL
4224{
4225 long start, end, pos;
4226 struct location *l;
ce71e27c 4227 unsigned long caddr;
45edfa58 4228 unsigned long age = jiffies - track->when;
88a420e4
CL
4229
4230 start = -1;
4231 end = t->count;
4232
4233 for ( ; ; ) {
4234 pos = start + (end - start + 1) / 2;
4235
4236 /*
4237 * There is nothing at "end". If we end up there
4238 * we need to add something to before end.
4239 */
4240 if (pos == end)
4241 break;
4242
4243 caddr = t->loc[pos].addr;
45edfa58
CL
4244 if (track->addr == caddr) {
4245
4246 l = &t->loc[pos];
4247 l->count++;
4248 if (track->when) {
4249 l->sum_time += age;
4250 if (age < l->min_time)
4251 l->min_time = age;
4252 if (age > l->max_time)
4253 l->max_time = age;
4254
4255 if (track->pid < l->min_pid)
4256 l->min_pid = track->pid;
4257 if (track->pid > l->max_pid)
4258 l->max_pid = track->pid;
4259
174596a0
RR
4260 cpumask_set_cpu(track->cpu,
4261 to_cpumask(l->cpus));
45edfa58
CL
4262 }
4263 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4264 return 1;
4265 }
4266
45edfa58 4267 if (track->addr < caddr)
88a420e4
CL
4268 end = pos;
4269 else
4270 start = pos;
4271 }
4272
4273 /*
672bba3a 4274 * Not found. Insert new tracking element.
88a420e4 4275 */
68dff6a9 4276 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4277 return 0;
4278
4279 l = t->loc + pos;
4280 if (pos < t->count)
4281 memmove(l + 1, l,
4282 (t->count - pos) * sizeof(struct location));
4283 t->count++;
4284 l->count = 1;
45edfa58
CL
4285 l->addr = track->addr;
4286 l->sum_time = age;
4287 l->min_time = age;
4288 l->max_time = age;
4289 l->min_pid = track->pid;
4290 l->max_pid = track->pid;
174596a0
RR
4291 cpumask_clear(to_cpumask(l->cpus));
4292 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4293 nodes_clear(l->nodes);
4294 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4295 return 1;
4296}
4297
4298static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4299 struct page *page, enum track_item alloc,
a5dd5c11 4300 unsigned long *map)
88a420e4 4301{
a973e9dd 4302 void *addr = page_address(page);
88a420e4
CL
4303 void *p;
4304
39b26464 4305 bitmap_zero(map, page->objects);
5f80b13a 4306 get_map(s, page, map);
88a420e4 4307
224a88be 4308 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4309 if (!test_bit(slab_index(p, s, addr), map))
4310 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4311}
4312
4313static int list_locations(struct kmem_cache *s, char *buf,
4314 enum track_item alloc)
4315{
e374d483 4316 int len = 0;
88a420e4 4317 unsigned long i;
68dff6a9 4318 struct loc_track t = { 0, 0, NULL };
88a420e4 4319 int node;
bbd7d57b
ED
4320 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4321 sizeof(unsigned long), GFP_KERNEL);
88a420e4 4322
bbd7d57b
ED
4323 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4324 GFP_TEMPORARY)) {
4325 kfree(map);
68dff6a9 4326 return sprintf(buf, "Out of memory\n");
bbd7d57b 4327 }
88a420e4
CL
4328 /* Push back cpu slabs */
4329 flush_all(s);
4330
f64dc58c 4331 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
4332 struct kmem_cache_node *n = get_node(s, node);
4333 unsigned long flags;
4334 struct page *page;
4335
9e86943b 4336 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4337 continue;
4338
4339 spin_lock_irqsave(&n->list_lock, flags);
4340 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4341 process_slab(&t, s, page, alloc, map);
88a420e4 4342 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4343 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4344 spin_unlock_irqrestore(&n->list_lock, flags);
4345 }
4346
4347 for (i = 0; i < t.count; i++) {
45edfa58 4348 struct location *l = &t.loc[i];
88a420e4 4349
9c246247 4350 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4351 break;
e374d483 4352 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4353
4354 if (l->addr)
62c70bce 4355 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4356 else
e374d483 4357 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4358
4359 if (l->sum_time != l->min_time) {
e374d483 4360 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4361 l->min_time,
4362 (long)div_u64(l->sum_time, l->count),
4363 l->max_time);
45edfa58 4364 } else
e374d483 4365 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4366 l->min_time);
4367
4368 if (l->min_pid != l->max_pid)
e374d483 4369 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4370 l->min_pid, l->max_pid);
4371 else
e374d483 4372 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4373 l->min_pid);
4374
174596a0
RR
4375 if (num_online_cpus() > 1 &&
4376 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4377 len < PAGE_SIZE - 60) {
4378 len += sprintf(buf + len, " cpus=");
4379 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 4380 to_cpumask(l->cpus));
45edfa58
CL
4381 }
4382
62bc62a8 4383 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4384 len < PAGE_SIZE - 60) {
4385 len += sprintf(buf + len, " nodes=");
4386 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
4387 l->nodes);
4388 }
4389
e374d483 4390 len += sprintf(buf + len, "\n");
88a420e4
CL
4391 }
4392
4393 free_loc_track(&t);
bbd7d57b 4394 kfree(map);
88a420e4 4395 if (!t.count)
e374d483
HH
4396 len += sprintf(buf, "No data\n");
4397 return len;
88a420e4 4398}
ab4d5ed5 4399#endif
88a420e4 4400
a5a84755
CL
4401#ifdef SLUB_RESILIENCY_TEST
4402static void resiliency_test(void)
4403{
4404 u8 *p;
4405
4406 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
4407
4408 printk(KERN_ERR "SLUB resiliency testing\n");
4409 printk(KERN_ERR "-----------------------\n");
4410 printk(KERN_ERR "A. Corruption after allocation\n");
4411
4412 p = kzalloc(16, GFP_KERNEL);
4413 p[16] = 0x12;
4414 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4415 " 0x12->0x%p\n\n", p + 16);
4416
4417 validate_slab_cache(kmalloc_caches[4]);
4418
4419 /* Hmmm... The next two are dangerous */
4420 p = kzalloc(32, GFP_KERNEL);
4421 p[32 + sizeof(void *)] = 0x34;
4422 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4423 " 0x34 -> -0x%p\n", p);
4424 printk(KERN_ERR
4425 "If allocated object is overwritten then not detectable\n\n");
4426
4427 validate_slab_cache(kmalloc_caches[5]);
4428 p = kzalloc(64, GFP_KERNEL);
4429 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4430 *p = 0x56;
4431 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4432 p);
4433 printk(KERN_ERR
4434 "If allocated object is overwritten then not detectable\n\n");
4435 validate_slab_cache(kmalloc_caches[6]);
4436
4437 printk(KERN_ERR "\nB. Corruption after free\n");
4438 p = kzalloc(128, GFP_KERNEL);
4439 kfree(p);
4440 *p = 0x78;
4441 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4442 validate_slab_cache(kmalloc_caches[7]);
4443
4444 p = kzalloc(256, GFP_KERNEL);
4445 kfree(p);
4446 p[50] = 0x9a;
4447 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4448 p);
4449 validate_slab_cache(kmalloc_caches[8]);
4450
4451 p = kzalloc(512, GFP_KERNEL);
4452 kfree(p);
4453 p[512] = 0xab;
4454 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4455 validate_slab_cache(kmalloc_caches[9]);
4456}
4457#else
4458#ifdef CONFIG_SYSFS
4459static void resiliency_test(void) {};
4460#endif
4461#endif
4462
ab4d5ed5 4463#ifdef CONFIG_SYSFS
81819f0f 4464enum slab_stat_type {
205ab99d
CL
4465 SL_ALL, /* All slabs */
4466 SL_PARTIAL, /* Only partially allocated slabs */
4467 SL_CPU, /* Only slabs used for cpu caches */
4468 SL_OBJECTS, /* Determine allocated objects not slabs */
4469 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4470};
4471
205ab99d 4472#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4473#define SO_PARTIAL (1 << SL_PARTIAL)
4474#define SO_CPU (1 << SL_CPU)
4475#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4476#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4477
62e5c4b4
CG
4478static ssize_t show_slab_objects(struct kmem_cache *s,
4479 char *buf, unsigned long flags)
81819f0f
CL
4480{
4481 unsigned long total = 0;
81819f0f
CL
4482 int node;
4483 int x;
4484 unsigned long *nodes;
4485 unsigned long *per_cpu;
4486
4487 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4488 if (!nodes)
4489 return -ENOMEM;
81819f0f
CL
4490 per_cpu = nodes + nr_node_ids;
4491
205ab99d
CL
4492 if (flags & SO_CPU) {
4493 int cpu;
81819f0f 4494
205ab99d 4495 for_each_possible_cpu(cpu) {
9dfc6e68 4496 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
ec3ab083 4497 int node;
49e22585 4498 struct page *page;
dfb4f096 4499
bc6697d8 4500 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4501 if (!page)
4502 continue;
205ab99d 4503
ec3ab083
CL
4504 node = page_to_nid(page);
4505 if (flags & SO_TOTAL)
4506 x = page->objects;
4507 else if (flags & SO_OBJECTS)
4508 x = page->inuse;
4509 else
4510 x = 1;
49e22585 4511
ec3ab083
CL
4512 total += x;
4513 nodes[node] += x;
4514
4515 page = ACCESS_ONCE(c->partial);
49e22585
CL
4516 if (page) {
4517 x = page->pobjects;
bc6697d8
ED
4518 total += x;
4519 nodes[node] += x;
49e22585 4520 }
ec3ab083 4521
bc6697d8 4522 per_cpu[node]++;
81819f0f
CL
4523 }
4524 }
4525
04d94879 4526 lock_memory_hotplug();
ab4d5ed5 4527#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4528 if (flags & SO_ALL) {
4529 for_each_node_state(node, N_NORMAL_MEMORY) {
4530 struct kmem_cache_node *n = get_node(s, node);
4531
4532 if (flags & SO_TOTAL)
4533 x = atomic_long_read(&n->total_objects);
4534 else if (flags & SO_OBJECTS)
4535 x = atomic_long_read(&n->total_objects) -
4536 count_partial(n, count_free);
81819f0f 4537
81819f0f 4538 else
205ab99d 4539 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4540 total += x;
4541 nodes[node] += x;
4542 }
4543
ab4d5ed5
CL
4544 } else
4545#endif
4546 if (flags & SO_PARTIAL) {
205ab99d
CL
4547 for_each_node_state(node, N_NORMAL_MEMORY) {
4548 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4549
205ab99d
CL
4550 if (flags & SO_TOTAL)
4551 x = count_partial(n, count_total);
4552 else if (flags & SO_OBJECTS)
4553 x = count_partial(n, count_inuse);
81819f0f 4554 else
205ab99d 4555 x = n->nr_partial;
81819f0f
CL
4556 total += x;
4557 nodes[node] += x;
4558 }
4559 }
81819f0f
CL
4560 x = sprintf(buf, "%lu", total);
4561#ifdef CONFIG_NUMA
f64dc58c 4562 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4563 if (nodes[node])
4564 x += sprintf(buf + x, " N%d=%lu",
4565 node, nodes[node]);
4566#endif
04d94879 4567 unlock_memory_hotplug();
81819f0f
CL
4568 kfree(nodes);
4569 return x + sprintf(buf + x, "\n");
4570}
4571
ab4d5ed5 4572#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4573static int any_slab_objects(struct kmem_cache *s)
4574{
4575 int node;
81819f0f 4576
dfb4f096 4577 for_each_online_node(node) {
81819f0f
CL
4578 struct kmem_cache_node *n = get_node(s, node);
4579
dfb4f096
CL
4580 if (!n)
4581 continue;
4582
4ea33e2d 4583 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4584 return 1;
4585 }
4586 return 0;
4587}
ab4d5ed5 4588#endif
81819f0f
CL
4589
4590#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4591#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4592
4593struct slab_attribute {
4594 struct attribute attr;
4595 ssize_t (*show)(struct kmem_cache *s, char *buf);
4596 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4597};
4598
4599#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4600 static struct slab_attribute _name##_attr = \
4601 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4602
4603#define SLAB_ATTR(_name) \
4604 static struct slab_attribute _name##_attr = \
ab067e99 4605 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4606
81819f0f
CL
4607static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4608{
4609 return sprintf(buf, "%d\n", s->size);
4610}
4611SLAB_ATTR_RO(slab_size);
4612
4613static ssize_t align_show(struct kmem_cache *s, char *buf)
4614{
4615 return sprintf(buf, "%d\n", s->align);
4616}
4617SLAB_ATTR_RO(align);
4618
4619static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4620{
3b0efdfa 4621 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4622}
4623SLAB_ATTR_RO(object_size);
4624
4625static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4626{
834f3d11 4627 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4628}
4629SLAB_ATTR_RO(objs_per_slab);
4630
06b285dc
CL
4631static ssize_t order_store(struct kmem_cache *s,
4632 const char *buf, size_t length)
4633{
0121c619
CL
4634 unsigned long order;
4635 int err;
4636
4637 err = strict_strtoul(buf, 10, &order);
4638 if (err)
4639 return err;
06b285dc
CL
4640
4641 if (order > slub_max_order || order < slub_min_order)
4642 return -EINVAL;
4643
4644 calculate_sizes(s, order);
4645 return length;
4646}
4647
81819f0f
CL
4648static ssize_t order_show(struct kmem_cache *s, char *buf)
4649{
834f3d11 4650 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4651}
06b285dc 4652SLAB_ATTR(order);
81819f0f 4653
73d342b1
DR
4654static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4655{
4656 return sprintf(buf, "%lu\n", s->min_partial);
4657}
4658
4659static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4660 size_t length)
4661{
4662 unsigned long min;
4663 int err;
4664
4665 err = strict_strtoul(buf, 10, &min);
4666 if (err)
4667 return err;
4668
c0bdb232 4669 set_min_partial(s, min);
73d342b1
DR
4670 return length;
4671}
4672SLAB_ATTR(min_partial);
4673
49e22585
CL
4674static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4675{
4676 return sprintf(buf, "%u\n", s->cpu_partial);
4677}
4678
4679static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4680 size_t length)
4681{
4682 unsigned long objects;
4683 int err;
4684
4685 err = strict_strtoul(buf, 10, &objects);
4686 if (err)
4687 return err;
74ee4ef1
DR
4688 if (objects && kmem_cache_debug(s))
4689 return -EINVAL;
49e22585
CL
4690
4691 s->cpu_partial = objects;
4692 flush_all(s);
4693 return length;
4694}
4695SLAB_ATTR(cpu_partial);
4696
81819f0f
CL
4697static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4698{
62c70bce
JP
4699 if (!s->ctor)
4700 return 0;
4701 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4702}
4703SLAB_ATTR_RO(ctor);
4704
81819f0f
CL
4705static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4706{
4707 return sprintf(buf, "%d\n", s->refcount - 1);
4708}
4709SLAB_ATTR_RO(aliases);
4710
81819f0f
CL
4711static ssize_t partial_show(struct kmem_cache *s, char *buf)
4712{
d9acf4b7 4713 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4714}
4715SLAB_ATTR_RO(partial);
4716
4717static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4718{
d9acf4b7 4719 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4720}
4721SLAB_ATTR_RO(cpu_slabs);
4722
4723static ssize_t objects_show(struct kmem_cache *s, char *buf)
4724{
205ab99d 4725 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4726}
4727SLAB_ATTR_RO(objects);
4728
205ab99d
CL
4729static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4730{
4731 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4732}
4733SLAB_ATTR_RO(objects_partial);
4734
49e22585
CL
4735static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4736{
4737 int objects = 0;
4738 int pages = 0;
4739 int cpu;
4740 int len;
4741
4742 for_each_online_cpu(cpu) {
4743 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4744
4745 if (page) {
4746 pages += page->pages;
4747 objects += page->pobjects;
4748 }
4749 }
4750
4751 len = sprintf(buf, "%d(%d)", objects, pages);
4752
4753#ifdef CONFIG_SMP
4754 for_each_online_cpu(cpu) {
4755 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4756
4757 if (page && len < PAGE_SIZE - 20)
4758 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4759 page->pobjects, page->pages);
4760 }
4761#endif
4762 return len + sprintf(buf + len, "\n");
4763}
4764SLAB_ATTR_RO(slabs_cpu_partial);
4765
a5a84755
CL
4766static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4767{
4768 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4769}
4770
4771static ssize_t reclaim_account_store(struct kmem_cache *s,
4772 const char *buf, size_t length)
4773{
4774 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4775 if (buf[0] == '1')
4776 s->flags |= SLAB_RECLAIM_ACCOUNT;
4777 return length;
4778}
4779SLAB_ATTR(reclaim_account);
4780
4781static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4782{
4783 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4784}
4785SLAB_ATTR_RO(hwcache_align);
4786
4787#ifdef CONFIG_ZONE_DMA
4788static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4789{
4790 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4791}
4792SLAB_ATTR_RO(cache_dma);
4793#endif
4794
4795static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4796{
4797 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4798}
4799SLAB_ATTR_RO(destroy_by_rcu);
4800
ab9a0f19
LJ
4801static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4802{
4803 return sprintf(buf, "%d\n", s->reserved);
4804}
4805SLAB_ATTR_RO(reserved);
4806
ab4d5ed5 4807#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4808static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4809{
4810 return show_slab_objects(s, buf, SO_ALL);
4811}
4812SLAB_ATTR_RO(slabs);
4813
205ab99d
CL
4814static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4815{
4816 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4817}
4818SLAB_ATTR_RO(total_objects);
4819
81819f0f
CL
4820static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4821{
4822 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4823}
4824
4825static ssize_t sanity_checks_store(struct kmem_cache *s,
4826 const char *buf, size_t length)
4827{
4828 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4829 if (buf[0] == '1') {
4830 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4831 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4832 }
81819f0f
CL
4833 return length;
4834}
4835SLAB_ATTR(sanity_checks);
4836
4837static ssize_t trace_show(struct kmem_cache *s, char *buf)
4838{
4839 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4840}
4841
4842static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4843 size_t length)
4844{
4845 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4846 if (buf[0] == '1') {
4847 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4848 s->flags |= SLAB_TRACE;
b789ef51 4849 }
81819f0f
CL
4850 return length;
4851}
4852SLAB_ATTR(trace);
4853
81819f0f
CL
4854static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4855{
4856 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4857}
4858
4859static ssize_t red_zone_store(struct kmem_cache *s,
4860 const char *buf, size_t length)
4861{
4862 if (any_slab_objects(s))
4863 return -EBUSY;
4864
4865 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4866 if (buf[0] == '1') {
4867 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4868 s->flags |= SLAB_RED_ZONE;
b789ef51 4869 }
06b285dc 4870 calculate_sizes(s, -1);
81819f0f
CL
4871 return length;
4872}
4873SLAB_ATTR(red_zone);
4874
4875static ssize_t poison_show(struct kmem_cache *s, char *buf)
4876{
4877 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4878}
4879
4880static ssize_t poison_store(struct kmem_cache *s,
4881 const char *buf, size_t length)
4882{
4883 if (any_slab_objects(s))
4884 return -EBUSY;
4885
4886 s->flags &= ~SLAB_POISON;
b789ef51
CL
4887 if (buf[0] == '1') {
4888 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4889 s->flags |= SLAB_POISON;
b789ef51 4890 }
06b285dc 4891 calculate_sizes(s, -1);
81819f0f
CL
4892 return length;
4893}
4894SLAB_ATTR(poison);
4895
4896static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4897{
4898 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4899}
4900
4901static ssize_t store_user_store(struct kmem_cache *s,
4902 const char *buf, size_t length)
4903{
4904 if (any_slab_objects(s))
4905 return -EBUSY;
4906
4907 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4908 if (buf[0] == '1') {
4909 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4910 s->flags |= SLAB_STORE_USER;
b789ef51 4911 }
06b285dc 4912 calculate_sizes(s, -1);
81819f0f
CL
4913 return length;
4914}
4915SLAB_ATTR(store_user);
4916
53e15af0
CL
4917static ssize_t validate_show(struct kmem_cache *s, char *buf)
4918{
4919 return 0;
4920}
4921
4922static ssize_t validate_store(struct kmem_cache *s,
4923 const char *buf, size_t length)
4924{
434e245d
CL
4925 int ret = -EINVAL;
4926
4927 if (buf[0] == '1') {
4928 ret = validate_slab_cache(s);
4929 if (ret >= 0)
4930 ret = length;
4931 }
4932 return ret;
53e15af0
CL
4933}
4934SLAB_ATTR(validate);
a5a84755
CL
4935
4936static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4937{
4938 if (!(s->flags & SLAB_STORE_USER))
4939 return -ENOSYS;
4940 return list_locations(s, buf, TRACK_ALLOC);
4941}
4942SLAB_ATTR_RO(alloc_calls);
4943
4944static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4945{
4946 if (!(s->flags & SLAB_STORE_USER))
4947 return -ENOSYS;
4948 return list_locations(s, buf, TRACK_FREE);
4949}
4950SLAB_ATTR_RO(free_calls);
4951#endif /* CONFIG_SLUB_DEBUG */
4952
4953#ifdef CONFIG_FAILSLAB
4954static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4955{
4956 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4957}
4958
4959static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4960 size_t length)
4961{
4962 s->flags &= ~SLAB_FAILSLAB;
4963 if (buf[0] == '1')
4964 s->flags |= SLAB_FAILSLAB;
4965 return length;
4966}
4967SLAB_ATTR(failslab);
ab4d5ed5 4968#endif
53e15af0 4969
2086d26a
CL
4970static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4971{
4972 return 0;
4973}
4974
4975static ssize_t shrink_store(struct kmem_cache *s,
4976 const char *buf, size_t length)
4977{
4978 if (buf[0] == '1') {
4979 int rc = kmem_cache_shrink(s);
4980
4981 if (rc)
4982 return rc;
4983 } else
4984 return -EINVAL;
4985 return length;
4986}
4987SLAB_ATTR(shrink);
4988
81819f0f 4989#ifdef CONFIG_NUMA
9824601e 4990static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4991{
9824601e 4992 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4993}
4994
9824601e 4995static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4996 const char *buf, size_t length)
4997{
0121c619
CL
4998 unsigned long ratio;
4999 int err;
5000
5001 err = strict_strtoul(buf, 10, &ratio);
5002 if (err)
5003 return err;
5004
e2cb96b7 5005 if (ratio <= 100)
0121c619 5006 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5007
81819f0f
CL
5008 return length;
5009}
9824601e 5010SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5011#endif
5012
8ff12cfc 5013#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5014static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5015{
5016 unsigned long sum = 0;
5017 int cpu;
5018 int len;
5019 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5020
5021 if (!data)
5022 return -ENOMEM;
5023
5024 for_each_online_cpu(cpu) {
9dfc6e68 5025 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5026
5027 data[cpu] = x;
5028 sum += x;
5029 }
5030
5031 len = sprintf(buf, "%lu", sum);
5032
50ef37b9 5033#ifdef CONFIG_SMP
8ff12cfc
CL
5034 for_each_online_cpu(cpu) {
5035 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5036 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5037 }
50ef37b9 5038#endif
8ff12cfc
CL
5039 kfree(data);
5040 return len + sprintf(buf + len, "\n");
5041}
5042
78eb00cc
DR
5043static void clear_stat(struct kmem_cache *s, enum stat_item si)
5044{
5045 int cpu;
5046
5047 for_each_online_cpu(cpu)
9dfc6e68 5048 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5049}
5050
8ff12cfc
CL
5051#define STAT_ATTR(si, text) \
5052static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5053{ \
5054 return show_stat(s, buf, si); \
5055} \
78eb00cc
DR
5056static ssize_t text##_store(struct kmem_cache *s, \
5057 const char *buf, size_t length) \
5058{ \
5059 if (buf[0] != '0') \
5060 return -EINVAL; \
5061 clear_stat(s, si); \
5062 return length; \
5063} \
5064SLAB_ATTR(text); \
8ff12cfc
CL
5065
5066STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5067STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5068STAT_ATTR(FREE_FASTPATH, free_fastpath);
5069STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5070STAT_ATTR(FREE_FROZEN, free_frozen);
5071STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5072STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5073STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5074STAT_ATTR(ALLOC_SLAB, alloc_slab);
5075STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5076STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5077STAT_ATTR(FREE_SLAB, free_slab);
5078STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5079STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5080STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5081STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5082STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5083STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5084STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5085STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5086STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5087STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5088STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5089STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5090STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5091STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5092#endif
5093
06428780 5094static struct attribute *slab_attrs[] = {
81819f0f
CL
5095 &slab_size_attr.attr,
5096 &object_size_attr.attr,
5097 &objs_per_slab_attr.attr,
5098 &order_attr.attr,
73d342b1 5099 &min_partial_attr.attr,
49e22585 5100 &cpu_partial_attr.attr,
81819f0f 5101 &objects_attr.attr,
205ab99d 5102 &objects_partial_attr.attr,
81819f0f
CL
5103 &partial_attr.attr,
5104 &cpu_slabs_attr.attr,
5105 &ctor_attr.attr,
81819f0f
CL
5106 &aliases_attr.attr,
5107 &align_attr.attr,
81819f0f
CL
5108 &hwcache_align_attr.attr,
5109 &reclaim_account_attr.attr,
5110 &destroy_by_rcu_attr.attr,
a5a84755 5111 &shrink_attr.attr,
ab9a0f19 5112 &reserved_attr.attr,
49e22585 5113 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5114#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5115 &total_objects_attr.attr,
5116 &slabs_attr.attr,
5117 &sanity_checks_attr.attr,
5118 &trace_attr.attr,
81819f0f
CL
5119 &red_zone_attr.attr,
5120 &poison_attr.attr,
5121 &store_user_attr.attr,
53e15af0 5122 &validate_attr.attr,
88a420e4
CL
5123 &alloc_calls_attr.attr,
5124 &free_calls_attr.attr,
ab4d5ed5 5125#endif
81819f0f
CL
5126#ifdef CONFIG_ZONE_DMA
5127 &cache_dma_attr.attr,
5128#endif
5129#ifdef CONFIG_NUMA
9824601e 5130 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5131#endif
5132#ifdef CONFIG_SLUB_STATS
5133 &alloc_fastpath_attr.attr,
5134 &alloc_slowpath_attr.attr,
5135 &free_fastpath_attr.attr,
5136 &free_slowpath_attr.attr,
5137 &free_frozen_attr.attr,
5138 &free_add_partial_attr.attr,
5139 &free_remove_partial_attr.attr,
5140 &alloc_from_partial_attr.attr,
5141 &alloc_slab_attr.attr,
5142 &alloc_refill_attr.attr,
e36a2652 5143 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5144 &free_slab_attr.attr,
5145 &cpuslab_flush_attr.attr,
5146 &deactivate_full_attr.attr,
5147 &deactivate_empty_attr.attr,
5148 &deactivate_to_head_attr.attr,
5149 &deactivate_to_tail_attr.attr,
5150 &deactivate_remote_frees_attr.attr,
03e404af 5151 &deactivate_bypass_attr.attr,
65c3376a 5152 &order_fallback_attr.attr,
b789ef51
CL
5153 &cmpxchg_double_fail_attr.attr,
5154 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5155 &cpu_partial_alloc_attr.attr,
5156 &cpu_partial_free_attr.attr,
8028dcea
AS
5157 &cpu_partial_node_attr.attr,
5158 &cpu_partial_drain_attr.attr,
81819f0f 5159#endif
4c13dd3b
DM
5160#ifdef CONFIG_FAILSLAB
5161 &failslab_attr.attr,
5162#endif
5163
81819f0f
CL
5164 NULL
5165};
5166
5167static struct attribute_group slab_attr_group = {
5168 .attrs = slab_attrs,
5169};
5170
5171static ssize_t slab_attr_show(struct kobject *kobj,
5172 struct attribute *attr,
5173 char *buf)
5174{
5175 struct slab_attribute *attribute;
5176 struct kmem_cache *s;
5177 int err;
5178
5179 attribute = to_slab_attr(attr);
5180 s = to_slab(kobj);
5181
5182 if (!attribute->show)
5183 return -EIO;
5184
5185 err = attribute->show(s, buf);
5186
5187 return err;
5188}
5189
5190static ssize_t slab_attr_store(struct kobject *kobj,
5191 struct attribute *attr,
5192 const char *buf, size_t len)
5193{
5194 struct slab_attribute *attribute;
5195 struct kmem_cache *s;
5196 int err;
5197
5198 attribute = to_slab_attr(attr);
5199 s = to_slab(kobj);
5200
5201 if (!attribute->store)
5202 return -EIO;
5203
5204 err = attribute->store(s, buf, len);
5205
5206 return err;
5207}
5208
151c602f
CL
5209static void kmem_cache_release(struct kobject *kobj)
5210{
5211 struct kmem_cache *s = to_slab(kobj);
5212
84c1cf62 5213 kfree(s->name);
151c602f
CL
5214 kfree(s);
5215}
5216
52cf25d0 5217static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5218 .show = slab_attr_show,
5219 .store = slab_attr_store,
5220};
5221
5222static struct kobj_type slab_ktype = {
5223 .sysfs_ops = &slab_sysfs_ops,
151c602f 5224 .release = kmem_cache_release
81819f0f
CL
5225};
5226
5227static int uevent_filter(struct kset *kset, struct kobject *kobj)
5228{
5229 struct kobj_type *ktype = get_ktype(kobj);
5230
5231 if (ktype == &slab_ktype)
5232 return 1;
5233 return 0;
5234}
5235
9cd43611 5236static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5237 .filter = uevent_filter,
5238};
5239
27c3a314 5240static struct kset *slab_kset;
81819f0f
CL
5241
5242#define ID_STR_LENGTH 64
5243
5244/* Create a unique string id for a slab cache:
6446faa2
CL
5245 *
5246 * Format :[flags-]size
81819f0f
CL
5247 */
5248static char *create_unique_id(struct kmem_cache *s)
5249{
5250 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5251 char *p = name;
5252
5253 BUG_ON(!name);
5254
5255 *p++ = ':';
5256 /*
5257 * First flags affecting slabcache operations. We will only
5258 * get here for aliasable slabs so we do not need to support
5259 * too many flags. The flags here must cover all flags that
5260 * are matched during merging to guarantee that the id is
5261 * unique.
5262 */
5263 if (s->flags & SLAB_CACHE_DMA)
5264 *p++ = 'd';
5265 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5266 *p++ = 'a';
5267 if (s->flags & SLAB_DEBUG_FREE)
5268 *p++ = 'F';
5a896d9e
VN
5269 if (!(s->flags & SLAB_NOTRACK))
5270 *p++ = 't';
81819f0f
CL
5271 if (p != name + 1)
5272 *p++ = '-';
5273 p += sprintf(p, "%07d", s->size);
5274 BUG_ON(p > name + ID_STR_LENGTH - 1);
5275 return name;
5276}
5277
5278static int sysfs_slab_add(struct kmem_cache *s)
5279{
5280 int err;
5281 const char *name;
5282 int unmergeable;
5283
97d06609 5284 if (slab_state < FULL)
81819f0f
CL
5285 /* Defer until later */
5286 return 0;
5287
5288 unmergeable = slab_unmergeable(s);
5289 if (unmergeable) {
5290 /*
5291 * Slabcache can never be merged so we can use the name proper.
5292 * This is typically the case for debug situations. In that
5293 * case we can catch duplicate names easily.
5294 */
27c3a314 5295 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5296 name = s->name;
5297 } else {
5298 /*
5299 * Create a unique name for the slab as a target
5300 * for the symlinks.
5301 */
5302 name = create_unique_id(s);
5303 }
5304
27c3a314 5305 s->kobj.kset = slab_kset;
1eada11c
GKH
5306 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5307 if (err) {
5308 kobject_put(&s->kobj);
81819f0f 5309 return err;
1eada11c 5310 }
81819f0f
CL
5311
5312 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
5313 if (err) {
5314 kobject_del(&s->kobj);
5315 kobject_put(&s->kobj);
81819f0f 5316 return err;
5788d8ad 5317 }
81819f0f
CL
5318 kobject_uevent(&s->kobj, KOBJ_ADD);
5319 if (!unmergeable) {
5320 /* Setup first alias */
5321 sysfs_slab_alias(s, s->name);
5322 kfree(name);
5323 }
5324 return 0;
5325}
5326
5327static void sysfs_slab_remove(struct kmem_cache *s)
5328{
97d06609 5329 if (slab_state < FULL)
2bce6485
CL
5330 /*
5331 * Sysfs has not been setup yet so no need to remove the
5332 * cache from sysfs.
5333 */
5334 return;
5335
81819f0f
CL
5336 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5337 kobject_del(&s->kobj);
151c602f 5338 kobject_put(&s->kobj);
81819f0f
CL
5339}
5340
5341/*
5342 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5343 * available lest we lose that information.
81819f0f
CL
5344 */
5345struct saved_alias {
5346 struct kmem_cache *s;
5347 const char *name;
5348 struct saved_alias *next;
5349};
5350
5af328a5 5351static struct saved_alias *alias_list;
81819f0f
CL
5352
5353static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5354{
5355 struct saved_alias *al;
5356
97d06609 5357 if (slab_state == FULL) {
81819f0f
CL
5358 /*
5359 * If we have a leftover link then remove it.
5360 */
27c3a314
GKH
5361 sysfs_remove_link(&slab_kset->kobj, name);
5362 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5363 }
5364
5365 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5366 if (!al)
5367 return -ENOMEM;
5368
5369 al->s = s;
5370 al->name = name;
5371 al->next = alias_list;
5372 alias_list = al;
5373 return 0;
5374}
5375
5376static int __init slab_sysfs_init(void)
5377{
5b95a4ac 5378 struct kmem_cache *s;
81819f0f
CL
5379 int err;
5380
18004c5d 5381 mutex_lock(&slab_mutex);
2bce6485 5382
0ff21e46 5383 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5384 if (!slab_kset) {
18004c5d 5385 mutex_unlock(&slab_mutex);
81819f0f
CL
5386 printk(KERN_ERR "Cannot register slab subsystem.\n");
5387 return -ENOSYS;
5388 }
5389
97d06609 5390 slab_state = FULL;
26a7bd03 5391
5b95a4ac 5392 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5393 err = sysfs_slab_add(s);
5d540fb7
CL
5394 if (err)
5395 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5396 " to sysfs\n", s->name);
26a7bd03 5397 }
81819f0f
CL
5398
5399 while (alias_list) {
5400 struct saved_alias *al = alias_list;
5401
5402 alias_list = alias_list->next;
5403 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
5404 if (err)
5405 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
068ce415 5406 " %s to sysfs\n", al->name);
81819f0f
CL
5407 kfree(al);
5408 }
5409
18004c5d 5410 mutex_unlock(&slab_mutex);
81819f0f
CL
5411 resiliency_test();
5412 return 0;
5413}
5414
5415__initcall(slab_sysfs_init);
ab4d5ed5 5416#endif /* CONFIG_SYSFS */
57ed3eda
PE
5417
5418/*
5419 * The /proc/slabinfo ABI
5420 */
158a9624 5421#ifdef CONFIG_SLABINFO
57ed3eda
PE
5422static void print_slabinfo_header(struct seq_file *m)
5423{
5424 seq_puts(m, "slabinfo - version: 2.1\n");
3b0efdfa 5425 seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
57ed3eda
PE
5426 "<objperslab> <pagesperslab>");
5427 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
5428 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5429 seq_putc(m, '\n');
5430}
5431
5432static void *s_start(struct seq_file *m, loff_t *pos)
5433{
5434 loff_t n = *pos;
5435
18004c5d 5436 mutex_lock(&slab_mutex);
57ed3eda
PE
5437 if (!n)
5438 print_slabinfo_header(m);
5439
5440 return seq_list_start(&slab_caches, *pos);
5441}
5442
5443static void *s_next(struct seq_file *m, void *p, loff_t *pos)
5444{
5445 return seq_list_next(p, &slab_caches, pos);
5446}
5447
5448static void s_stop(struct seq_file *m, void *p)
5449{
18004c5d 5450 mutex_unlock(&slab_mutex);
57ed3eda
PE
5451}
5452
5453static int s_show(struct seq_file *m, void *p)
5454{
5455 unsigned long nr_partials = 0;
5456 unsigned long nr_slabs = 0;
5457 unsigned long nr_inuse = 0;
205ab99d
CL
5458 unsigned long nr_objs = 0;
5459 unsigned long nr_free = 0;
57ed3eda
PE
5460 struct kmem_cache *s;
5461 int node;
5462
5463 s = list_entry(p, struct kmem_cache, list);
5464
5465 for_each_online_node(node) {
5466 struct kmem_cache_node *n = get_node(s, node);
5467
5468 if (!n)
5469 continue;
5470
5471 nr_partials += n->nr_partial;
5472 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
5473 nr_objs += atomic_long_read(&n->total_objects);
5474 nr_free += count_partial(n, count_free);
57ed3eda
PE
5475 }
5476
205ab99d 5477 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
5478
5479 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
5480 nr_objs, s->size, oo_objects(s->oo),
5481 (1 << oo_order(s->oo)));
57ed3eda
PE
5482 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
5483 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
5484 0UL);
5485 seq_putc(m, '\n');
5486 return 0;
5487}
5488
7b3c3a50 5489static const struct seq_operations slabinfo_op = {
57ed3eda
PE
5490 .start = s_start,
5491 .next = s_next,
5492 .stop = s_stop,
5493 .show = s_show,
5494};
5495
7b3c3a50
AD
5496static int slabinfo_open(struct inode *inode, struct file *file)
5497{
5498 return seq_open(file, &slabinfo_op);
5499}
5500
5501static const struct file_operations proc_slabinfo_operations = {
5502 .open = slabinfo_open,
5503 .read = seq_read,
5504 .llseek = seq_lseek,
5505 .release = seq_release,
5506};
5507
5508static int __init slab_proc_init(void)
5509{
ab067e99 5510 proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
5511 return 0;
5512}
5513module_init(slab_proc_init);
158a9624 5514#endif /* CONFIG_SLABINFO */