net/mlx4_core: Add bad-cable event support
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
5a896d9e 23#include <linux/kmemcheck.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
81819f0f 36
4a92379b
RK
37#include <trace/events/kmem.h>
38
072bb0aa
MG
39#include "internal.h"
40
81819f0f
CL
41/*
42 * Lock order:
18004c5d 43 * 1. slab_mutex (Global Mutex)
881db7fb
CL
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 46 *
18004c5d 47 * slab_mutex
881db7fb 48 *
18004c5d 49 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
81819f0f
CL
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
672bba3a
CL
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 86 * freed then the slab will show up again on the partial lists.
672bba3a
CL
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
81819f0f
CL
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
4b6f0750
CL
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
dfb4f096 108 * freelist that allows lockless access to
894b8788
CL
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
81819f0f
CL
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
894b8788 114 * the fast path and disables lockless freelists.
81819f0f
CL
115 */
116
af537b0a
CL
117static inline int kmem_cache_debug(struct kmem_cache *s)
118{
5577bd8a 119#ifdef CONFIG_SLUB_DEBUG
af537b0a 120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 121#else
af537b0a 122 return 0;
5577bd8a 123#endif
af537b0a 124}
5577bd8a 125
345c905d
JK
126static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127{
128#ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130#else
131 return false;
132#endif
133}
134
81819f0f
CL
135/*
136 * Issues still to be resolved:
137 *
81819f0f
CL
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
81819f0f
CL
140 * - Variable sizing of the per node arrays
141 */
142
143/* Enable to test recovery from slab corruption on boot */
144#undef SLUB_RESILIENCY_TEST
145
b789ef51
CL
146/* Enable to log cmpxchg failures */
147#undef SLUB_DEBUG_CMPXCHG
148
2086d26a
CL
149/*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
76be8950 153#define MIN_PARTIAL 5
e95eed57 154
2086d26a
CL
155/*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 158 * sort the partial list by the number of objects in use.
2086d26a
CL
159 */
160#define MAX_PARTIAL 10
161
81819f0f
CL
162#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
672bba3a 164
fa5ec8a1 165/*
3de47213
DR
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
fa5ec8a1 169 */
3de47213 170#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 171
210b5c06
CG
172#define OO_SHIFT 16
173#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 174#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 175
81819f0f 176/* Internal SLUB flags */
f90ec390 177#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 178#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 179
81819f0f
CL
180#ifdef CONFIG_SMP
181static struct notifier_block slab_notifier;
182#endif
183
02cbc874
CL
184/*
185 * Tracking user of a slab.
186 */
d6543e39 187#define TRACK_ADDRS_COUNT 16
02cbc874 188struct track {
ce71e27c 189 unsigned long addr; /* Called from address */
d6543e39
BG
190#ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192#endif
02cbc874
CL
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196};
197
198enum track_item { TRACK_ALLOC, TRACK_FREE };
199
ab4d5ed5 200#ifdef CONFIG_SYSFS
81819f0f
CL
201static int sysfs_slab_add(struct kmem_cache *);
202static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 203static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 204#else
0c710013
CL
205static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
206static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
207 { return 0; }
107dab5c 208static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
209#endif
210
4fdccdfb 211static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
212{
213#ifdef CONFIG_SLUB_STATS
88da03a6
CL
214 /*
215 * The rmw is racy on a preemptible kernel but this is acceptable, so
216 * avoid this_cpu_add()'s irq-disable overhead.
217 */
218 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
219#endif
220}
221
81819f0f
CL
222/********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
225
6446faa2 226/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
227static inline int check_valid_pointer(struct kmem_cache *s,
228 struct page *page, const void *object)
229{
230 void *base;
231
a973e9dd 232 if (!object)
02cbc874
CL
233 return 1;
234
a973e9dd 235 base = page_address(page);
39b26464 236 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
237 (object - base) % s->size) {
238 return 0;
239 }
240
241 return 1;
242}
243
7656c72b
CL
244static inline void *get_freepointer(struct kmem_cache *s, void *object)
245{
246 return *(void **)(object + s->offset);
247}
248
0ad9500e
ED
249static void prefetch_freepointer(const struct kmem_cache *s, void *object)
250{
251 prefetch(object + s->offset);
252}
253
1393d9a1
CL
254static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
255{
256 void *p;
257
258#ifdef CONFIG_DEBUG_PAGEALLOC
259 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
260#else
261 p = get_freepointer(s, object);
262#endif
263 return p;
264}
265
7656c72b
CL
266static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
267{
268 *(void **)(object + s->offset) = fp;
269}
270
271/* Loop over all objects in a slab */
224a88be
CL
272#define for_each_object(__p, __s, __addr, __objects) \
273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
274 __p += (__s)->size)
275
54266640
WY
276#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
277 for (__p = (__addr), __idx = 1; __idx <= __objects;\
278 __p += (__s)->size, __idx++)
279
7656c72b
CL
280/* Determine object index from a given position */
281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282{
283 return (p - addr) / s->size;
284}
285
d71f606f
MK
286static inline size_t slab_ksize(const struct kmem_cache *s)
287{
288#ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 294 return s->object_size;
d71f606f
MK
295
296#endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308}
309
ab9a0f19
LJ
310static inline int order_objects(int order, unsigned long size, int reserved)
311{
312 return ((PAGE_SIZE << order) - reserved) / size;
313}
314
834f3d11 315static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 316 unsigned long size, int reserved)
834f3d11
CL
317{
318 struct kmem_cache_order_objects x = {
ab9a0f19 319 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
320 };
321
322 return x;
323}
324
325static inline int oo_order(struct kmem_cache_order_objects x)
326{
210b5c06 327 return x.x >> OO_SHIFT;
834f3d11
CL
328}
329
330static inline int oo_objects(struct kmem_cache_order_objects x)
331{
210b5c06 332 return x.x & OO_MASK;
834f3d11
CL
333}
334
881db7fb
CL
335/*
336 * Per slab locking using the pagelock
337 */
338static __always_inline void slab_lock(struct page *page)
339{
340 bit_spin_lock(PG_locked, &page->flags);
341}
342
343static __always_inline void slab_unlock(struct page *page)
344{
345 __bit_spin_unlock(PG_locked, &page->flags);
346}
347
a0320865
DH
348static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
349{
350 struct page tmp;
351 tmp.counters = counters_new;
352 /*
353 * page->counters can cover frozen/inuse/objects as well
354 * as page->_count. If we assign to ->counters directly
355 * we run the risk of losing updates to page->_count, so
356 * be careful and only assign to the fields we need.
357 */
358 page->frozen = tmp.frozen;
359 page->inuse = tmp.inuse;
360 page->objects = tmp.objects;
361}
362
1d07171c
CL
363/* Interrupts must be disabled (for the fallback code to work right) */
364static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 void *freelist_old, unsigned long counters_old,
366 void *freelist_new, unsigned long counters_new,
367 const char *n)
368{
369 VM_BUG_ON(!irqs_disabled());
2565409f
HC
370#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 372 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 373 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
374 freelist_old, counters_old,
375 freelist_new, counters_new))
376 return 1;
1d07171c
CL
377 } else
378#endif
379 {
380 slab_lock(page);
d0e0ac97
CG
381 if (page->freelist == freelist_old &&
382 page->counters == counters_old) {
1d07171c 383 page->freelist = freelist_new;
a0320865 384 set_page_slub_counters(page, counters_new);
1d07171c
CL
385 slab_unlock(page);
386 return 1;
387 }
388 slab_unlock(page);
389 }
390
391 cpu_relax();
392 stat(s, CMPXCHG_DOUBLE_FAIL);
393
394#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 395 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
396#endif
397
398 return 0;
399}
400
b789ef51
CL
401static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 void *freelist_old, unsigned long counters_old,
403 void *freelist_new, unsigned long counters_new,
404 const char *n)
405{
2565409f
HC
406#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 408 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 409 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
410 freelist_old, counters_old,
411 freelist_new, counters_new))
412 return 1;
b789ef51
CL
413 } else
414#endif
415 {
1d07171c
CL
416 unsigned long flags;
417
418 local_irq_save(flags);
881db7fb 419 slab_lock(page);
d0e0ac97
CG
420 if (page->freelist == freelist_old &&
421 page->counters == counters_old) {
b789ef51 422 page->freelist = freelist_new;
a0320865 423 set_page_slub_counters(page, counters_new);
881db7fb 424 slab_unlock(page);
1d07171c 425 local_irq_restore(flags);
b789ef51
CL
426 return 1;
427 }
881db7fb 428 slab_unlock(page);
1d07171c 429 local_irq_restore(flags);
b789ef51
CL
430 }
431
432 cpu_relax();
433 stat(s, CMPXCHG_DOUBLE_FAIL);
434
435#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 436 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
437#endif
438
439 return 0;
440}
441
41ecc55b 442#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
443/*
444 * Determine a map of object in use on a page.
445 *
881db7fb 446 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
447 * not vanish from under us.
448 */
449static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450{
451 void *p;
452 void *addr = page_address(page);
453
454 for (p = page->freelist; p; p = get_freepointer(s, p))
455 set_bit(slab_index(p, s, addr), map);
456}
457
41ecc55b
CL
458/*
459 * Debug settings:
460 */
f0630fff
CL
461#ifdef CONFIG_SLUB_DEBUG_ON
462static int slub_debug = DEBUG_DEFAULT_FLAGS;
463#else
41ecc55b 464static int slub_debug;
f0630fff 465#endif
41ecc55b
CL
466
467static char *slub_debug_slabs;
fa5ec8a1 468static int disable_higher_order_debug;
41ecc55b 469
81819f0f
CL
470/*
471 * Object debugging
472 */
473static void print_section(char *text, u8 *addr, unsigned int length)
474{
ffc79d28
SAS
475 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
476 length, 1);
81819f0f
CL
477}
478
81819f0f
CL
479static struct track *get_track(struct kmem_cache *s, void *object,
480 enum track_item alloc)
481{
482 struct track *p;
483
484 if (s->offset)
485 p = object + s->offset + sizeof(void *);
486 else
487 p = object + s->inuse;
488
489 return p + alloc;
490}
491
492static void set_track(struct kmem_cache *s, void *object,
ce71e27c 493 enum track_item alloc, unsigned long addr)
81819f0f 494{
1a00df4a 495 struct track *p = get_track(s, object, alloc);
81819f0f 496
81819f0f 497 if (addr) {
d6543e39
BG
498#ifdef CONFIG_STACKTRACE
499 struct stack_trace trace;
500 int i;
501
502 trace.nr_entries = 0;
503 trace.max_entries = TRACK_ADDRS_COUNT;
504 trace.entries = p->addrs;
505 trace.skip = 3;
506 save_stack_trace(&trace);
507
508 /* See rant in lockdep.c */
509 if (trace.nr_entries != 0 &&
510 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
511 trace.nr_entries--;
512
513 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
514 p->addrs[i] = 0;
515#endif
81819f0f
CL
516 p->addr = addr;
517 p->cpu = smp_processor_id();
88e4ccf2 518 p->pid = current->pid;
81819f0f
CL
519 p->when = jiffies;
520 } else
521 memset(p, 0, sizeof(struct track));
522}
523
81819f0f
CL
524static void init_tracking(struct kmem_cache *s, void *object)
525{
24922684
CL
526 if (!(s->flags & SLAB_STORE_USER))
527 return;
528
ce71e27c
EGM
529 set_track(s, object, TRACK_FREE, 0UL);
530 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
531}
532
533static void print_track(const char *s, struct track *t)
534{
535 if (!t->addr)
536 return;
537
f9f58285
FF
538 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
539 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
540#ifdef CONFIG_STACKTRACE
541 {
542 int i;
543 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
544 if (t->addrs[i])
f9f58285 545 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
546 else
547 break;
548 }
549#endif
24922684
CL
550}
551
552static void print_tracking(struct kmem_cache *s, void *object)
553{
554 if (!(s->flags & SLAB_STORE_USER))
555 return;
556
557 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
558 print_track("Freed", get_track(s, object, TRACK_FREE));
559}
560
561static void print_page_info(struct page *page)
562{
f9f58285 563 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 564 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
565
566}
567
568static void slab_bug(struct kmem_cache *s, char *fmt, ...)
569{
ecc42fbe 570 struct va_format vaf;
24922684 571 va_list args;
24922684
CL
572
573 va_start(args, fmt);
ecc42fbe
FF
574 vaf.fmt = fmt;
575 vaf.va = &args;
f9f58285 576 pr_err("=============================================================================\n");
ecc42fbe 577 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 578 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 579
373d4d09 580 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 581 va_end(args);
81819f0f
CL
582}
583
24922684
CL
584static void slab_fix(struct kmem_cache *s, char *fmt, ...)
585{
ecc42fbe 586 struct va_format vaf;
24922684 587 va_list args;
24922684
CL
588
589 va_start(args, fmt);
ecc42fbe
FF
590 vaf.fmt = fmt;
591 vaf.va = &args;
592 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 593 va_end(args);
24922684
CL
594}
595
596static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
597{
598 unsigned int off; /* Offset of last byte */
a973e9dd 599 u8 *addr = page_address(page);
24922684
CL
600
601 print_tracking(s, p);
602
603 print_page_info(page);
604
f9f58285
FF
605 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
606 p, p - addr, get_freepointer(s, p));
24922684
CL
607
608 if (p > addr + 16)
ffc79d28 609 print_section("Bytes b4 ", p - 16, 16);
81819f0f 610
3b0efdfa 611 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 612 PAGE_SIZE));
81819f0f 613 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
614 print_section("Redzone ", p + s->object_size,
615 s->inuse - s->object_size);
81819f0f 616
81819f0f
CL
617 if (s->offset)
618 off = s->offset + sizeof(void *);
619 else
620 off = s->inuse;
621
24922684 622 if (s->flags & SLAB_STORE_USER)
81819f0f 623 off += 2 * sizeof(struct track);
81819f0f
CL
624
625 if (off != s->size)
626 /* Beginning of the filler is the free pointer */
ffc79d28 627 print_section("Padding ", p + off, s->size - off);
24922684
CL
628
629 dump_stack();
81819f0f
CL
630}
631
632static void object_err(struct kmem_cache *s, struct page *page,
633 u8 *object, char *reason)
634{
3dc50637 635 slab_bug(s, "%s", reason);
24922684 636 print_trailer(s, page, object);
81819f0f
CL
637}
638
d0e0ac97
CG
639static void slab_err(struct kmem_cache *s, struct page *page,
640 const char *fmt, ...)
81819f0f
CL
641{
642 va_list args;
643 char buf[100];
644
24922684
CL
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 647 va_end(args);
3dc50637 648 slab_bug(s, "%s", buf);
24922684 649 print_page_info(page);
81819f0f
CL
650 dump_stack();
651}
652
f7cb1933 653static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
654{
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
658 memset(p, POISON_FREE, s->object_size - 1);
659 p[s->object_size - 1] = POISON_END;
81819f0f
CL
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 663 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
664}
665
24922684
CL
666static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668{
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671}
672
673static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
06428780 675 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
676{
677 u8 *fault;
678 u8 *end;
679
79824820 680 fault = memchr_inv(start, value, bytes);
24922684
CL
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
f9f58285 689 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
81819f0f
CL
695}
696
81819f0f
CL
697/*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
672bba3a 704 *
81819f0f
CL
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
3b0efdfa 708 * object + s->object_size
81819f0f 709 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 710 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 711 * object_size == inuse.
672bba3a 712 *
81819f0f
CL
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
672bba3a
CL
717 * Meta data starts here.
718 *
81819f0f
CL
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
672bba3a 721 * C. Padding to reach required alignment boundary or at mininum
6446faa2 722 * one word if debugging is on to be able to detect writes
672bba3a
CL
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
726 *
727 * object + s->size
672bba3a 728 * Nothing is used beyond s->size.
81819f0f 729 *
3b0efdfa 730 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 731 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
732 * may be used with merged slabcaches.
733 */
734
81819f0f
CL
735static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736{
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
24922684
CL
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
752}
753
39b26464 754/* Check the pad bytes at the end of a slab page */
81819f0f
CL
755static int slab_pad_check(struct kmem_cache *s, struct page *page)
756{
24922684
CL
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
81819f0f
CL
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
a973e9dd 766 start = page_address(page);
ab9a0f19 767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
768 end = start + length;
769 remainder = length % s->size;
81819f0f
CL
770 if (!remainder)
771 return 1;
772
79824820 773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
24922684
CL
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 780 print_section("Padding ", end - remainder, remainder);
24922684 781
8a3d271d 782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 783 return 0;
81819f0f
CL
784}
785
786static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 787 void *object, u8 val)
81819f0f
CL
788{
789 u8 *p = object;
3b0efdfa 790 u8 *endobject = object + s->object_size;
81819f0f
CL
791
792 if (s->flags & SLAB_RED_ZONE) {
24922684 793 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 794 endobject, val, s->inuse - s->object_size))
81819f0f 795 return 0;
81819f0f 796 } else {
3b0efdfa 797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 798 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
799 endobject, POISON_INUSE,
800 s->inuse - s->object_size);
3adbefee 801 }
81819f0f
CL
802 }
803
804 if (s->flags & SLAB_POISON) {
f7cb1933 805 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 806 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 807 POISON_FREE, s->object_size - 1) ||
24922684 808 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 809 p + s->object_size - 1, POISON_END, 1)))
81819f0f 810 return 0;
81819f0f
CL
811 /*
812 * check_pad_bytes cleans up on its own.
813 */
814 check_pad_bytes(s, page, p);
815 }
816
f7cb1933 817 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
818 /*
819 * Object and freepointer overlap. Cannot check
820 * freepointer while object is allocated.
821 */
822 return 1;
823
824 /* Check free pointer validity */
825 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
826 object_err(s, page, p, "Freepointer corrupt");
827 /*
9f6c708e 828 * No choice but to zap it and thus lose the remainder
81819f0f 829 * of the free objects in this slab. May cause
672bba3a 830 * another error because the object count is now wrong.
81819f0f 831 */
a973e9dd 832 set_freepointer(s, p, NULL);
81819f0f
CL
833 return 0;
834 }
835 return 1;
836}
837
838static int check_slab(struct kmem_cache *s, struct page *page)
839{
39b26464
CL
840 int maxobj;
841
81819f0f
CL
842 VM_BUG_ON(!irqs_disabled());
843
844 if (!PageSlab(page)) {
24922684 845 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
846 return 0;
847 }
39b26464 848
ab9a0f19 849 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
850 if (page->objects > maxobj) {
851 slab_err(s, page, "objects %u > max %u",
f6edde9c 852 page->objects, maxobj);
39b26464
CL
853 return 0;
854 }
855 if (page->inuse > page->objects) {
24922684 856 slab_err(s, page, "inuse %u > max %u",
f6edde9c 857 page->inuse, page->objects);
81819f0f
CL
858 return 0;
859 }
860 /* Slab_pad_check fixes things up after itself */
861 slab_pad_check(s, page);
862 return 1;
863}
864
865/*
672bba3a
CL
866 * Determine if a certain object on a page is on the freelist. Must hold the
867 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
868 */
869static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
870{
871 int nr = 0;
881db7fb 872 void *fp;
81819f0f 873 void *object = NULL;
f6edde9c 874 int max_objects;
81819f0f 875
881db7fb 876 fp = page->freelist;
39b26464 877 while (fp && nr <= page->objects) {
81819f0f
CL
878 if (fp == search)
879 return 1;
880 if (!check_valid_pointer(s, page, fp)) {
881 if (object) {
882 object_err(s, page, object,
883 "Freechain corrupt");
a973e9dd 884 set_freepointer(s, object, NULL);
81819f0f 885 } else {
24922684 886 slab_err(s, page, "Freepointer corrupt");
a973e9dd 887 page->freelist = NULL;
39b26464 888 page->inuse = page->objects;
24922684 889 slab_fix(s, "Freelist cleared");
81819f0f
CL
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
ab9a0f19 899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
39b26464 909 if (page->inuse != page->objects - nr) {
70d71228 910 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
24922684 913 slab_fix(s, "Object count adjusted.");
81819f0f
CL
914 }
915 return search == NULL;
916}
917
0121c619
CL
918static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
3ec09742
CL
920{
921 if (s->flags & SLAB_TRACE) {
f9f58285 922 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
d0e0ac97
CG
929 print_section("Object ", (void *)object,
930 s->object_size);
3ec09742
CL
931
932 dump_stack();
933 }
934}
935
643b1138 936/*
672bba3a 937 * Tracking of fully allocated slabs for debugging purposes.
643b1138 938 */
5cc6eee8
CL
939static void add_full(struct kmem_cache *s,
940 struct kmem_cache_node *n, struct page *page)
643b1138 941{
5cc6eee8
CL
942 if (!(s->flags & SLAB_STORE_USER))
943 return;
944
255d0884 945 lockdep_assert_held(&n->list_lock);
643b1138 946 list_add(&page->lru, &n->full);
643b1138
CL
947}
948
c65c1877 949static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 950{
643b1138
CL
951 if (!(s->flags & SLAB_STORE_USER))
952 return;
953
255d0884 954 lockdep_assert_held(&n->list_lock);
643b1138 955 list_del(&page->lru);
643b1138
CL
956}
957
0f389ec6
CL
958/* Tracking of the number of slabs for debugging purposes */
959static inline unsigned long slabs_node(struct kmem_cache *s, int node)
960{
961 struct kmem_cache_node *n = get_node(s, node);
962
963 return atomic_long_read(&n->nr_slabs);
964}
965
26c02cf0
AB
966static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
967{
968 return atomic_long_read(&n->nr_slabs);
969}
970
205ab99d 971static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
972{
973 struct kmem_cache_node *n = get_node(s, node);
974
975 /*
976 * May be called early in order to allocate a slab for the
977 * kmem_cache_node structure. Solve the chicken-egg
978 * dilemma by deferring the increment of the count during
979 * bootstrap (see early_kmem_cache_node_alloc).
980 */
338b2642 981 if (likely(n)) {
0f389ec6 982 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
983 atomic_long_add(objects, &n->total_objects);
984 }
0f389ec6 985}
205ab99d 986static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
987{
988 struct kmem_cache_node *n = get_node(s, node);
989
990 atomic_long_dec(&n->nr_slabs);
205ab99d 991 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
992}
993
994/* Object debug checks for alloc/free paths */
3ec09742
CL
995static void setup_object_debug(struct kmem_cache *s, struct page *page,
996 void *object)
997{
998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
999 return;
1000
f7cb1933 1001 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1002 init_tracking(s, object);
1003}
1004
d0e0ac97
CG
1005static noinline int alloc_debug_processing(struct kmem_cache *s,
1006 struct page *page,
ce71e27c 1007 void *object, unsigned long addr)
81819f0f
CL
1008{
1009 if (!check_slab(s, page))
1010 goto bad;
1011
81819f0f
CL
1012 if (!check_valid_pointer(s, page, object)) {
1013 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1014 goto bad;
81819f0f
CL
1015 }
1016
f7cb1933 1017 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1018 goto bad;
81819f0f 1019
3ec09742
CL
1020 /* Success perform special debug activities for allocs */
1021 if (s->flags & SLAB_STORE_USER)
1022 set_track(s, object, TRACK_ALLOC, addr);
1023 trace(s, page, object, 1);
f7cb1933 1024 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1025 return 1;
3ec09742 1026
81819f0f
CL
1027bad:
1028 if (PageSlab(page)) {
1029 /*
1030 * If this is a slab page then lets do the best we can
1031 * to avoid issues in the future. Marking all objects
672bba3a 1032 * as used avoids touching the remaining objects.
81819f0f 1033 */
24922684 1034 slab_fix(s, "Marking all objects used");
39b26464 1035 page->inuse = page->objects;
a973e9dd 1036 page->freelist = NULL;
81819f0f
CL
1037 }
1038 return 0;
1039}
1040
19c7ff9e
CL
1041static noinline struct kmem_cache_node *free_debug_processing(
1042 struct kmem_cache *s, struct page *page, void *object,
1043 unsigned long addr, unsigned long *flags)
81819f0f 1044{
19c7ff9e 1045 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1046
19c7ff9e 1047 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1048 slab_lock(page);
1049
81819f0f
CL
1050 if (!check_slab(s, page))
1051 goto fail;
1052
1053 if (!check_valid_pointer(s, page, object)) {
70d71228 1054 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1055 goto fail;
1056 }
1057
1058 if (on_freelist(s, page, object)) {
24922684 1059 object_err(s, page, object, "Object already free");
81819f0f
CL
1060 goto fail;
1061 }
1062
f7cb1933 1063 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1064 goto out;
81819f0f 1065
1b4f59e3 1066 if (unlikely(s != page->slab_cache)) {
3adbefee 1067 if (!PageSlab(page)) {
70d71228
CL
1068 slab_err(s, page, "Attempt to free object(0x%p) "
1069 "outside of slab", object);
1b4f59e3 1070 } else if (!page->slab_cache) {
f9f58285
FF
1071 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1072 object);
70d71228 1073 dump_stack();
06428780 1074 } else
24922684
CL
1075 object_err(s, page, object,
1076 "page slab pointer corrupt.");
81819f0f
CL
1077 goto fail;
1078 }
3ec09742 1079
3ec09742
CL
1080 if (s->flags & SLAB_STORE_USER)
1081 set_track(s, object, TRACK_FREE, addr);
1082 trace(s, page, object, 0);
f7cb1933 1083 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1084out:
881db7fb 1085 slab_unlock(page);
19c7ff9e
CL
1086 /*
1087 * Keep node_lock to preserve integrity
1088 * until the object is actually freed
1089 */
1090 return n;
3ec09742 1091
81819f0f 1092fail:
19c7ff9e
CL
1093 slab_unlock(page);
1094 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1095 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1096 return NULL;
81819f0f
CL
1097}
1098
41ecc55b
CL
1099static int __init setup_slub_debug(char *str)
1100{
f0630fff
CL
1101 slub_debug = DEBUG_DEFAULT_FLAGS;
1102 if (*str++ != '=' || !*str)
1103 /*
1104 * No options specified. Switch on full debugging.
1105 */
1106 goto out;
1107
1108 if (*str == ',')
1109 /*
1110 * No options but restriction on slabs. This means full
1111 * debugging for slabs matching a pattern.
1112 */
1113 goto check_slabs;
1114
fa5ec8a1
DR
1115 if (tolower(*str) == 'o') {
1116 /*
1117 * Avoid enabling debugging on caches if its minimum order
1118 * would increase as a result.
1119 */
1120 disable_higher_order_debug = 1;
1121 goto out;
1122 }
1123
f0630fff
CL
1124 slub_debug = 0;
1125 if (*str == '-')
1126 /*
1127 * Switch off all debugging measures.
1128 */
1129 goto out;
1130
1131 /*
1132 * Determine which debug features should be switched on
1133 */
06428780 1134 for (; *str && *str != ','; str++) {
f0630fff
CL
1135 switch (tolower(*str)) {
1136 case 'f':
1137 slub_debug |= SLAB_DEBUG_FREE;
1138 break;
1139 case 'z':
1140 slub_debug |= SLAB_RED_ZONE;
1141 break;
1142 case 'p':
1143 slub_debug |= SLAB_POISON;
1144 break;
1145 case 'u':
1146 slub_debug |= SLAB_STORE_USER;
1147 break;
1148 case 't':
1149 slub_debug |= SLAB_TRACE;
1150 break;
4c13dd3b
DM
1151 case 'a':
1152 slub_debug |= SLAB_FAILSLAB;
1153 break;
f0630fff 1154 default:
f9f58285
FF
1155 pr_err("slub_debug option '%c' unknown. skipped\n",
1156 *str);
f0630fff 1157 }
41ecc55b
CL
1158 }
1159
f0630fff 1160check_slabs:
41ecc55b
CL
1161 if (*str == ',')
1162 slub_debug_slabs = str + 1;
f0630fff 1163out:
41ecc55b
CL
1164 return 1;
1165}
1166
1167__setup("slub_debug", setup_slub_debug);
1168
423c929c 1169unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1170 unsigned long flags, const char *name,
51cc5068 1171 void (*ctor)(void *))
41ecc55b
CL
1172{
1173 /*
e153362a 1174 * Enable debugging if selected on the kernel commandline.
41ecc55b 1175 */
c6f58d9b
CL
1176 if (slub_debug && (!slub_debug_slabs || (name &&
1177 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1178 flags |= slub_debug;
ba0268a8
CL
1179
1180 return flags;
41ecc55b
CL
1181}
1182#else
3ec09742
CL
1183static inline void setup_object_debug(struct kmem_cache *s,
1184 struct page *page, void *object) {}
41ecc55b 1185
3ec09742 1186static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1187 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1188
19c7ff9e
CL
1189static inline struct kmem_cache_node *free_debug_processing(
1190 struct kmem_cache *s, struct page *page, void *object,
1191 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1192
41ecc55b
CL
1193static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1194 { return 1; }
1195static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1196 void *object, u8 val) { return 1; }
5cc6eee8
CL
1197static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1198 struct page *page) {}
c65c1877
PZ
1199static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1200 struct page *page) {}
423c929c 1201unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1202 unsigned long flags, const char *name,
51cc5068 1203 void (*ctor)(void *))
ba0268a8
CL
1204{
1205 return flags;
1206}
41ecc55b 1207#define slub_debug 0
0f389ec6 1208
fdaa45e9
IM
1209#define disable_higher_order_debug 0
1210
0f389ec6
CL
1211static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1212 { return 0; }
26c02cf0
AB
1213static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1214 { return 0; }
205ab99d
CL
1215static inline void inc_slabs_node(struct kmem_cache *s, int node,
1216 int objects) {}
1217static inline void dec_slabs_node(struct kmem_cache *s, int node,
1218 int objects) {}
7d550c56 1219
02e72cc6
AR
1220#endif /* CONFIG_SLUB_DEBUG */
1221
1222/*
1223 * Hooks for other subsystems that check memory allocations. In a typical
1224 * production configuration these hooks all should produce no code at all.
1225 */
d56791b3
RB
1226static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1227{
1228 kmemleak_alloc(ptr, size, 1, flags);
1229}
1230
1231static inline void kfree_hook(const void *x)
1232{
1233 kmemleak_free(x);
1234}
1235
8135be5a
VD
1236static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1237 gfp_t flags)
02e72cc6
AR
1238{
1239 flags &= gfp_allowed_mask;
1240 lockdep_trace_alloc(flags);
1241 might_sleep_if(flags & __GFP_WAIT);
7d550c56 1242
8135be5a
VD
1243 if (should_failslab(s->object_size, flags, s->flags))
1244 return NULL;
1245
1246 return memcg_kmem_get_cache(s, flags);
02e72cc6
AR
1247}
1248
1249static inline void slab_post_alloc_hook(struct kmem_cache *s,
1250 gfp_t flags, void *object)
d56791b3 1251{
02e72cc6
AR
1252 flags &= gfp_allowed_mask;
1253 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1254 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
8135be5a 1255 memcg_kmem_put_cache(s);
d56791b3 1256}
7d550c56 1257
d56791b3
RB
1258static inline void slab_free_hook(struct kmem_cache *s, void *x)
1259{
1260 kmemleak_free_recursive(x, s->flags);
7d550c56 1261
02e72cc6
AR
1262 /*
1263 * Trouble is that we may no longer disable interrupts in the fast path
1264 * So in order to make the debug calls that expect irqs to be
1265 * disabled we need to disable interrupts temporarily.
1266 */
1267#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1268 {
1269 unsigned long flags;
1270
1271 local_irq_save(flags);
1272 kmemcheck_slab_free(s, x, s->object_size);
1273 debug_check_no_locks_freed(x, s->object_size);
1274 local_irq_restore(flags);
1275 }
1276#endif
1277 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1278 debug_check_no_obj_freed(x, s->object_size);
1279}
205ab99d 1280
81819f0f
CL
1281/*
1282 * Slab allocation and freeing
1283 */
5dfb4175
VD
1284static inline struct page *alloc_slab_page(struct kmem_cache *s,
1285 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1286{
5dfb4175 1287 struct page *page;
65c3376a
CL
1288 int order = oo_order(oo);
1289
b1eeab67
VN
1290 flags |= __GFP_NOTRACK;
1291
5dfb4175
VD
1292 if (memcg_charge_slab(s, flags, order))
1293 return NULL;
1294
2154a336 1295 if (node == NUMA_NO_NODE)
5dfb4175 1296 page = alloc_pages(flags, order);
65c3376a 1297 else
5dfb4175
VD
1298 page = alloc_pages_exact_node(node, flags, order);
1299
1300 if (!page)
1301 memcg_uncharge_slab(s, order);
1302
1303 return page;
65c3376a
CL
1304}
1305
81819f0f
CL
1306static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1307{
06428780 1308 struct page *page;
834f3d11 1309 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1310 gfp_t alloc_gfp;
81819f0f 1311
7e0528da
CL
1312 flags &= gfp_allowed_mask;
1313
1314 if (flags & __GFP_WAIT)
1315 local_irq_enable();
1316
b7a49f0d 1317 flags |= s->allocflags;
e12ba74d 1318
ba52270d
PE
1319 /*
1320 * Let the initial higher-order allocation fail under memory pressure
1321 * so we fall-back to the minimum order allocation.
1322 */
1323 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1324
5dfb4175 1325 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1326 if (unlikely(!page)) {
1327 oo = s->min;
80c3a998 1328 alloc_gfp = flags;
65c3376a
CL
1329 /*
1330 * Allocation may have failed due to fragmentation.
1331 * Try a lower order alloc if possible
1332 */
5dfb4175 1333 page = alloc_slab_page(s, alloc_gfp, node, oo);
81819f0f 1334
7e0528da
CL
1335 if (page)
1336 stat(s, ORDER_FALLBACK);
65c3376a 1337 }
5a896d9e 1338
737b719e 1339 if (kmemcheck_enabled && page
5086c389 1340 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1341 int pages = 1 << oo_order(oo);
1342
80c3a998 1343 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1344
1345 /*
1346 * Objects from caches that have a constructor don't get
1347 * cleared when they're allocated, so we need to do it here.
1348 */
1349 if (s->ctor)
1350 kmemcheck_mark_uninitialized_pages(page, pages);
1351 else
1352 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1353 }
1354
737b719e
DR
1355 if (flags & __GFP_WAIT)
1356 local_irq_disable();
1357 if (!page)
1358 return NULL;
1359
834f3d11 1360 page->objects = oo_objects(oo);
81819f0f
CL
1361 mod_zone_page_state(page_zone(page),
1362 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1363 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1364 1 << oo_order(oo));
81819f0f
CL
1365
1366 return page;
1367}
1368
1369static void setup_object(struct kmem_cache *s, struct page *page,
1370 void *object)
1371{
3ec09742 1372 setup_object_debug(s, page, object);
4f104934 1373 if (unlikely(s->ctor))
51cc5068 1374 s->ctor(object);
81819f0f
CL
1375}
1376
1377static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1378{
1379 struct page *page;
81819f0f 1380 void *start;
81819f0f 1381 void *p;
1f458cbf 1382 int order;
54266640 1383 int idx;
81819f0f 1384
c871ac4e
AM
1385 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1386 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1387 BUG();
1388 }
81819f0f 1389
6cb06229
CL
1390 page = allocate_slab(s,
1391 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1392 if (!page)
1393 goto out;
1394
1f458cbf 1395 order = compound_order(page);
205ab99d 1396 inc_slabs_node(s, page_to_nid(page), page->objects);
1b4f59e3 1397 page->slab_cache = s;
c03f94cc 1398 __SetPageSlab(page);
072bb0aa
MG
1399 if (page->pfmemalloc)
1400 SetPageSlabPfmemalloc(page);
81819f0f
CL
1401
1402 start = page_address(page);
81819f0f
CL
1403
1404 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1405 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1406
54266640
WY
1407 for_each_object_idx(p, idx, s, start, page->objects) {
1408 setup_object(s, page, p);
1409 if (likely(idx < page->objects))
1410 set_freepointer(s, p, p + s->size);
1411 else
1412 set_freepointer(s, p, NULL);
81819f0f 1413 }
81819f0f
CL
1414
1415 page->freelist = start;
e6e82ea1 1416 page->inuse = page->objects;
8cb0a506 1417 page->frozen = 1;
81819f0f 1418out:
81819f0f
CL
1419 return page;
1420}
1421
1422static void __free_slab(struct kmem_cache *s, struct page *page)
1423{
834f3d11
CL
1424 int order = compound_order(page);
1425 int pages = 1 << order;
81819f0f 1426
af537b0a 1427 if (kmem_cache_debug(s)) {
81819f0f
CL
1428 void *p;
1429
1430 slab_pad_check(s, page);
224a88be
CL
1431 for_each_object(p, s, page_address(page),
1432 page->objects)
f7cb1933 1433 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1434 }
1435
b1eeab67 1436 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1437
81819f0f
CL
1438 mod_zone_page_state(page_zone(page),
1439 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1440 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1441 -pages);
81819f0f 1442
072bb0aa 1443 __ClearPageSlabPfmemalloc(page);
49bd5221 1444 __ClearPageSlab(page);
1f458cbf 1445
22b751c3 1446 page_mapcount_reset(page);
1eb5ac64
NP
1447 if (current->reclaim_state)
1448 current->reclaim_state->reclaimed_slab += pages;
5dfb4175
VD
1449 __free_pages(page, order);
1450 memcg_uncharge_slab(s, order);
81819f0f
CL
1451}
1452
da9a638c
LJ
1453#define need_reserve_slab_rcu \
1454 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1455
81819f0f
CL
1456static void rcu_free_slab(struct rcu_head *h)
1457{
1458 struct page *page;
1459
da9a638c
LJ
1460 if (need_reserve_slab_rcu)
1461 page = virt_to_head_page(h);
1462 else
1463 page = container_of((struct list_head *)h, struct page, lru);
1464
1b4f59e3 1465 __free_slab(page->slab_cache, page);
81819f0f
CL
1466}
1467
1468static void free_slab(struct kmem_cache *s, struct page *page)
1469{
1470 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1471 struct rcu_head *head;
1472
1473 if (need_reserve_slab_rcu) {
1474 int order = compound_order(page);
1475 int offset = (PAGE_SIZE << order) - s->reserved;
1476
1477 VM_BUG_ON(s->reserved != sizeof(*head));
1478 head = page_address(page) + offset;
1479 } else {
1480 /*
1481 * RCU free overloads the RCU head over the LRU
1482 */
1483 head = (void *)&page->lru;
1484 }
81819f0f
CL
1485
1486 call_rcu(head, rcu_free_slab);
1487 } else
1488 __free_slab(s, page);
1489}
1490
1491static void discard_slab(struct kmem_cache *s, struct page *page)
1492{
205ab99d 1493 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1494 free_slab(s, page);
1495}
1496
1497/*
5cc6eee8 1498 * Management of partially allocated slabs.
81819f0f 1499 */
1e4dd946
SR
1500static inline void
1501__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1502{
e95eed57 1503 n->nr_partial++;
136333d1 1504 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1505 list_add_tail(&page->lru, &n->partial);
1506 else
1507 list_add(&page->lru, &n->partial);
81819f0f
CL
1508}
1509
1e4dd946
SR
1510static inline void add_partial(struct kmem_cache_node *n,
1511 struct page *page, int tail)
62e346a8 1512{
c65c1877 1513 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1514 __add_partial(n, page, tail);
1515}
c65c1877 1516
1e4dd946
SR
1517static inline void
1518__remove_partial(struct kmem_cache_node *n, struct page *page)
1519{
62e346a8
CL
1520 list_del(&page->lru);
1521 n->nr_partial--;
1522}
1523
1e4dd946
SR
1524static inline void remove_partial(struct kmem_cache_node *n,
1525 struct page *page)
1526{
1527 lockdep_assert_held(&n->list_lock);
1528 __remove_partial(n, page);
1529}
1530
81819f0f 1531/*
7ced3719
CL
1532 * Remove slab from the partial list, freeze it and
1533 * return the pointer to the freelist.
81819f0f 1534 *
497b66f2 1535 * Returns a list of objects or NULL if it fails.
81819f0f 1536 */
497b66f2 1537static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1538 struct kmem_cache_node *n, struct page *page,
633b0764 1539 int mode, int *objects)
81819f0f 1540{
2cfb7455
CL
1541 void *freelist;
1542 unsigned long counters;
1543 struct page new;
1544
c65c1877
PZ
1545 lockdep_assert_held(&n->list_lock);
1546
2cfb7455
CL
1547 /*
1548 * Zap the freelist and set the frozen bit.
1549 * The old freelist is the list of objects for the
1550 * per cpu allocation list.
1551 */
7ced3719
CL
1552 freelist = page->freelist;
1553 counters = page->counters;
1554 new.counters = counters;
633b0764 1555 *objects = new.objects - new.inuse;
23910c50 1556 if (mode) {
7ced3719 1557 new.inuse = page->objects;
23910c50
PE
1558 new.freelist = NULL;
1559 } else {
1560 new.freelist = freelist;
1561 }
2cfb7455 1562
a0132ac0 1563 VM_BUG_ON(new.frozen);
7ced3719 1564 new.frozen = 1;
2cfb7455 1565
7ced3719 1566 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1567 freelist, counters,
02d7633f 1568 new.freelist, new.counters,
7ced3719 1569 "acquire_slab"))
7ced3719 1570 return NULL;
2cfb7455
CL
1571
1572 remove_partial(n, page);
7ced3719 1573 WARN_ON(!freelist);
49e22585 1574 return freelist;
81819f0f
CL
1575}
1576
633b0764 1577static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1578static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1579
81819f0f 1580/*
672bba3a 1581 * Try to allocate a partial slab from a specific node.
81819f0f 1582 */
8ba00bb6
JK
1583static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1584 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1585{
49e22585
CL
1586 struct page *page, *page2;
1587 void *object = NULL;
633b0764
JK
1588 int available = 0;
1589 int objects;
81819f0f
CL
1590
1591 /*
1592 * Racy check. If we mistakenly see no partial slabs then we
1593 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1594 * partial slab and there is none available then get_partials()
1595 * will return NULL.
81819f0f
CL
1596 */
1597 if (!n || !n->nr_partial)
1598 return NULL;
1599
1600 spin_lock(&n->list_lock);
49e22585 1601 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1602 void *t;
49e22585 1603
8ba00bb6
JK
1604 if (!pfmemalloc_match(page, flags))
1605 continue;
1606
633b0764 1607 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1608 if (!t)
1609 break;
1610
633b0764 1611 available += objects;
12d79634 1612 if (!object) {
49e22585 1613 c->page = page;
49e22585 1614 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1615 object = t;
49e22585 1616 } else {
633b0764 1617 put_cpu_partial(s, page, 0);
8028dcea 1618 stat(s, CPU_PARTIAL_NODE);
49e22585 1619 }
345c905d
JK
1620 if (!kmem_cache_has_cpu_partial(s)
1621 || available > s->cpu_partial / 2)
49e22585
CL
1622 break;
1623
497b66f2 1624 }
81819f0f 1625 spin_unlock(&n->list_lock);
497b66f2 1626 return object;
81819f0f
CL
1627}
1628
1629/*
672bba3a 1630 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1631 */
de3ec035 1632static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1633 struct kmem_cache_cpu *c)
81819f0f
CL
1634{
1635#ifdef CONFIG_NUMA
1636 struct zonelist *zonelist;
dd1a239f 1637 struct zoneref *z;
54a6eb5c
MG
1638 struct zone *zone;
1639 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1640 void *object;
cc9a6c87 1641 unsigned int cpuset_mems_cookie;
81819f0f
CL
1642
1643 /*
672bba3a
CL
1644 * The defrag ratio allows a configuration of the tradeoffs between
1645 * inter node defragmentation and node local allocations. A lower
1646 * defrag_ratio increases the tendency to do local allocations
1647 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1648 *
672bba3a
CL
1649 * If the defrag_ratio is set to 0 then kmalloc() always
1650 * returns node local objects. If the ratio is higher then kmalloc()
1651 * may return off node objects because partial slabs are obtained
1652 * from other nodes and filled up.
81819f0f 1653 *
6446faa2 1654 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1655 * defrag_ratio = 1000) then every (well almost) allocation will
1656 * first attempt to defrag slab caches on other nodes. This means
1657 * scanning over all nodes to look for partial slabs which may be
1658 * expensive if we do it every time we are trying to find a slab
1659 * with available objects.
81819f0f 1660 */
9824601e
CL
1661 if (!s->remote_node_defrag_ratio ||
1662 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1663 return NULL;
1664
cc9a6c87 1665 do {
d26914d1 1666 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1667 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1668 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1669 struct kmem_cache_node *n;
1670
1671 n = get_node(s, zone_to_nid(zone));
1672
dee2f8aa 1673 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1674 n->nr_partial > s->min_partial) {
8ba00bb6 1675 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1676 if (object) {
1677 /*
d26914d1
MG
1678 * Don't check read_mems_allowed_retry()
1679 * here - if mems_allowed was updated in
1680 * parallel, that was a harmless race
1681 * between allocation and the cpuset
1682 * update
cc9a6c87 1683 */
cc9a6c87
MG
1684 return object;
1685 }
c0ff7453 1686 }
81819f0f 1687 }
d26914d1 1688 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1689#endif
1690 return NULL;
1691}
1692
1693/*
1694 * Get a partial page, lock it and return it.
1695 */
497b66f2 1696static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1697 struct kmem_cache_cpu *c)
81819f0f 1698{
497b66f2 1699 void *object;
a561ce00
JK
1700 int searchnode = node;
1701
1702 if (node == NUMA_NO_NODE)
1703 searchnode = numa_mem_id();
1704 else if (!node_present_pages(node))
1705 searchnode = node_to_mem_node(node);
81819f0f 1706
8ba00bb6 1707 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1708 if (object || node != NUMA_NO_NODE)
1709 return object;
81819f0f 1710
acd19fd1 1711 return get_any_partial(s, flags, c);
81819f0f
CL
1712}
1713
8a5ec0ba
CL
1714#ifdef CONFIG_PREEMPT
1715/*
1716 * Calculate the next globally unique transaction for disambiguiation
1717 * during cmpxchg. The transactions start with the cpu number and are then
1718 * incremented by CONFIG_NR_CPUS.
1719 */
1720#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1721#else
1722/*
1723 * No preemption supported therefore also no need to check for
1724 * different cpus.
1725 */
1726#define TID_STEP 1
1727#endif
1728
1729static inline unsigned long next_tid(unsigned long tid)
1730{
1731 return tid + TID_STEP;
1732}
1733
1734static inline unsigned int tid_to_cpu(unsigned long tid)
1735{
1736 return tid % TID_STEP;
1737}
1738
1739static inline unsigned long tid_to_event(unsigned long tid)
1740{
1741 return tid / TID_STEP;
1742}
1743
1744static inline unsigned int init_tid(int cpu)
1745{
1746 return cpu;
1747}
1748
1749static inline void note_cmpxchg_failure(const char *n,
1750 const struct kmem_cache *s, unsigned long tid)
1751{
1752#ifdef SLUB_DEBUG_CMPXCHG
1753 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1754
f9f58285 1755 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1756
1757#ifdef CONFIG_PREEMPT
1758 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1759 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1760 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1761 else
1762#endif
1763 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1764 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1765 tid_to_event(tid), tid_to_event(actual_tid));
1766 else
f9f58285 1767 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1768 actual_tid, tid, next_tid(tid));
1769#endif
4fdccdfb 1770 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1771}
1772
788e1aad 1773static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1774{
8a5ec0ba
CL
1775 int cpu;
1776
1777 for_each_possible_cpu(cpu)
1778 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1779}
2cfb7455 1780
81819f0f
CL
1781/*
1782 * Remove the cpu slab
1783 */
d0e0ac97
CG
1784static void deactivate_slab(struct kmem_cache *s, struct page *page,
1785 void *freelist)
81819f0f 1786{
2cfb7455 1787 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1788 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1789 int lock = 0;
1790 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1791 void *nextfree;
136333d1 1792 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1793 struct page new;
1794 struct page old;
1795
1796 if (page->freelist) {
84e554e6 1797 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1798 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1799 }
1800
894b8788 1801 /*
2cfb7455
CL
1802 * Stage one: Free all available per cpu objects back
1803 * to the page freelist while it is still frozen. Leave the
1804 * last one.
1805 *
1806 * There is no need to take the list->lock because the page
1807 * is still frozen.
1808 */
1809 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1810 void *prior;
1811 unsigned long counters;
1812
1813 do {
1814 prior = page->freelist;
1815 counters = page->counters;
1816 set_freepointer(s, freelist, prior);
1817 new.counters = counters;
1818 new.inuse--;
a0132ac0 1819 VM_BUG_ON(!new.frozen);
2cfb7455 1820
1d07171c 1821 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1822 prior, counters,
1823 freelist, new.counters,
1824 "drain percpu freelist"));
1825
1826 freelist = nextfree;
1827 }
1828
894b8788 1829 /*
2cfb7455
CL
1830 * Stage two: Ensure that the page is unfrozen while the
1831 * list presence reflects the actual number of objects
1832 * during unfreeze.
1833 *
1834 * We setup the list membership and then perform a cmpxchg
1835 * with the count. If there is a mismatch then the page
1836 * is not unfrozen but the page is on the wrong list.
1837 *
1838 * Then we restart the process which may have to remove
1839 * the page from the list that we just put it on again
1840 * because the number of objects in the slab may have
1841 * changed.
894b8788 1842 */
2cfb7455 1843redo:
894b8788 1844
2cfb7455
CL
1845 old.freelist = page->freelist;
1846 old.counters = page->counters;
a0132ac0 1847 VM_BUG_ON(!old.frozen);
7c2e132c 1848
2cfb7455
CL
1849 /* Determine target state of the slab */
1850 new.counters = old.counters;
1851 if (freelist) {
1852 new.inuse--;
1853 set_freepointer(s, freelist, old.freelist);
1854 new.freelist = freelist;
1855 } else
1856 new.freelist = old.freelist;
1857
1858 new.frozen = 0;
1859
8a5b20ae 1860 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1861 m = M_FREE;
1862 else if (new.freelist) {
1863 m = M_PARTIAL;
1864 if (!lock) {
1865 lock = 1;
1866 /*
1867 * Taking the spinlock removes the possiblity
1868 * that acquire_slab() will see a slab page that
1869 * is frozen
1870 */
1871 spin_lock(&n->list_lock);
1872 }
1873 } else {
1874 m = M_FULL;
1875 if (kmem_cache_debug(s) && !lock) {
1876 lock = 1;
1877 /*
1878 * This also ensures that the scanning of full
1879 * slabs from diagnostic functions will not see
1880 * any frozen slabs.
1881 */
1882 spin_lock(&n->list_lock);
1883 }
1884 }
1885
1886 if (l != m) {
1887
1888 if (l == M_PARTIAL)
1889
1890 remove_partial(n, page);
1891
1892 else if (l == M_FULL)
894b8788 1893
c65c1877 1894 remove_full(s, n, page);
2cfb7455
CL
1895
1896 if (m == M_PARTIAL) {
1897
1898 add_partial(n, page, tail);
136333d1 1899 stat(s, tail);
2cfb7455
CL
1900
1901 } else if (m == M_FULL) {
894b8788 1902
2cfb7455
CL
1903 stat(s, DEACTIVATE_FULL);
1904 add_full(s, n, page);
1905
1906 }
1907 }
1908
1909 l = m;
1d07171c 1910 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1911 old.freelist, old.counters,
1912 new.freelist, new.counters,
1913 "unfreezing slab"))
1914 goto redo;
1915
2cfb7455
CL
1916 if (lock)
1917 spin_unlock(&n->list_lock);
1918
1919 if (m == M_FREE) {
1920 stat(s, DEACTIVATE_EMPTY);
1921 discard_slab(s, page);
1922 stat(s, FREE_SLAB);
894b8788 1923 }
81819f0f
CL
1924}
1925
d24ac77f
JK
1926/*
1927 * Unfreeze all the cpu partial slabs.
1928 *
59a09917
CL
1929 * This function must be called with interrupts disabled
1930 * for the cpu using c (or some other guarantee must be there
1931 * to guarantee no concurrent accesses).
d24ac77f 1932 */
59a09917
CL
1933static void unfreeze_partials(struct kmem_cache *s,
1934 struct kmem_cache_cpu *c)
49e22585 1935{
345c905d 1936#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1937 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1938 struct page *page, *discard_page = NULL;
49e22585
CL
1939
1940 while ((page = c->partial)) {
49e22585
CL
1941 struct page new;
1942 struct page old;
1943
1944 c->partial = page->next;
43d77867
JK
1945
1946 n2 = get_node(s, page_to_nid(page));
1947 if (n != n2) {
1948 if (n)
1949 spin_unlock(&n->list_lock);
1950
1951 n = n2;
1952 spin_lock(&n->list_lock);
1953 }
49e22585
CL
1954
1955 do {
1956
1957 old.freelist = page->freelist;
1958 old.counters = page->counters;
a0132ac0 1959 VM_BUG_ON(!old.frozen);
49e22585
CL
1960
1961 new.counters = old.counters;
1962 new.freelist = old.freelist;
1963
1964 new.frozen = 0;
1965
d24ac77f 1966 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1967 old.freelist, old.counters,
1968 new.freelist, new.counters,
1969 "unfreezing slab"));
1970
8a5b20ae 1971 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
1972 page->next = discard_page;
1973 discard_page = page;
43d77867
JK
1974 } else {
1975 add_partial(n, page, DEACTIVATE_TO_TAIL);
1976 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
1977 }
1978 }
1979
1980 if (n)
1981 spin_unlock(&n->list_lock);
9ada1934
SL
1982
1983 while (discard_page) {
1984 page = discard_page;
1985 discard_page = discard_page->next;
1986
1987 stat(s, DEACTIVATE_EMPTY);
1988 discard_slab(s, page);
1989 stat(s, FREE_SLAB);
1990 }
345c905d 1991#endif
49e22585
CL
1992}
1993
1994/*
1995 * Put a page that was just frozen (in __slab_free) into a partial page
1996 * slot if available. This is done without interrupts disabled and without
1997 * preemption disabled. The cmpxchg is racy and may put the partial page
1998 * onto a random cpus partial slot.
1999 *
2000 * If we did not find a slot then simply move all the partials to the
2001 * per node partial list.
2002 */
633b0764 2003static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2004{
345c905d 2005#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2006 struct page *oldpage;
2007 int pages;
2008 int pobjects;
2009
2010 do {
2011 pages = 0;
2012 pobjects = 0;
2013 oldpage = this_cpu_read(s->cpu_slab->partial);
2014
2015 if (oldpage) {
2016 pobjects = oldpage->pobjects;
2017 pages = oldpage->pages;
2018 if (drain && pobjects > s->cpu_partial) {
2019 unsigned long flags;
2020 /*
2021 * partial array is full. Move the existing
2022 * set to the per node partial list.
2023 */
2024 local_irq_save(flags);
59a09917 2025 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2026 local_irq_restore(flags);
e24fc410 2027 oldpage = NULL;
49e22585
CL
2028 pobjects = 0;
2029 pages = 0;
8028dcea 2030 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2031 }
2032 }
2033
2034 pages++;
2035 pobjects += page->objects - page->inuse;
2036
2037 page->pages = pages;
2038 page->pobjects = pobjects;
2039 page->next = oldpage;
2040
d0e0ac97
CG
2041 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2042 != oldpage);
345c905d 2043#endif
49e22585
CL
2044}
2045
dfb4f096 2046static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2047{
84e554e6 2048 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2049 deactivate_slab(s, c->page, c->freelist);
2050
2051 c->tid = next_tid(c->tid);
2052 c->page = NULL;
2053 c->freelist = NULL;
81819f0f
CL
2054}
2055
2056/*
2057 * Flush cpu slab.
6446faa2 2058 *
81819f0f
CL
2059 * Called from IPI handler with interrupts disabled.
2060 */
0c710013 2061static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2062{
9dfc6e68 2063 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2064
49e22585
CL
2065 if (likely(c)) {
2066 if (c->page)
2067 flush_slab(s, c);
2068
59a09917 2069 unfreeze_partials(s, c);
49e22585 2070 }
81819f0f
CL
2071}
2072
2073static void flush_cpu_slab(void *d)
2074{
2075 struct kmem_cache *s = d;
81819f0f 2076
dfb4f096 2077 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2078}
2079
a8364d55
GBY
2080static bool has_cpu_slab(int cpu, void *info)
2081{
2082 struct kmem_cache *s = info;
2083 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2084
02e1a9cd 2085 return c->page || c->partial;
a8364d55
GBY
2086}
2087
81819f0f
CL
2088static void flush_all(struct kmem_cache *s)
2089{
a8364d55 2090 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2091}
2092
dfb4f096
CL
2093/*
2094 * Check if the objects in a per cpu structure fit numa
2095 * locality expectations.
2096 */
57d437d2 2097static inline int node_match(struct page *page, int node)
dfb4f096
CL
2098{
2099#ifdef CONFIG_NUMA
4d7868e6 2100 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2101 return 0;
2102#endif
2103 return 1;
2104}
2105
9a02d699 2106#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2107static int count_free(struct page *page)
2108{
2109 return page->objects - page->inuse;
2110}
2111
9a02d699
DR
2112static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2113{
2114 return atomic_long_read(&n->total_objects);
2115}
2116#endif /* CONFIG_SLUB_DEBUG */
2117
2118#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2119static unsigned long count_partial(struct kmem_cache_node *n,
2120 int (*get_count)(struct page *))
2121{
2122 unsigned long flags;
2123 unsigned long x = 0;
2124 struct page *page;
2125
2126 spin_lock_irqsave(&n->list_lock, flags);
2127 list_for_each_entry(page, &n->partial, lru)
2128 x += get_count(page);
2129 spin_unlock_irqrestore(&n->list_lock, flags);
2130 return x;
2131}
9a02d699 2132#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2133
781b2ba6
PE
2134static noinline void
2135slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2136{
9a02d699
DR
2137#ifdef CONFIG_SLUB_DEBUG
2138 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2139 DEFAULT_RATELIMIT_BURST);
781b2ba6 2140 int node;
fa45dc25 2141 struct kmem_cache_node *n;
781b2ba6 2142
9a02d699
DR
2143 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2144 return;
2145
f9f58285 2146 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2147 nid, gfpflags);
f9f58285
FF
2148 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2149 s->name, s->object_size, s->size, oo_order(s->oo),
2150 oo_order(s->min));
781b2ba6 2151
3b0efdfa 2152 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2153 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2154 s->name);
fa5ec8a1 2155
fa45dc25 2156 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2157 unsigned long nr_slabs;
2158 unsigned long nr_objs;
2159 unsigned long nr_free;
2160
26c02cf0
AB
2161 nr_free = count_partial(n, count_free);
2162 nr_slabs = node_nr_slabs(n);
2163 nr_objs = node_nr_objs(n);
781b2ba6 2164
f9f58285 2165 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2166 node, nr_slabs, nr_objs, nr_free);
2167 }
9a02d699 2168#endif
781b2ba6
PE
2169}
2170
497b66f2
CL
2171static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2172 int node, struct kmem_cache_cpu **pc)
2173{
6faa6833 2174 void *freelist;
188fd063
CL
2175 struct kmem_cache_cpu *c = *pc;
2176 struct page *page;
497b66f2 2177
188fd063 2178 freelist = get_partial(s, flags, node, c);
497b66f2 2179
188fd063
CL
2180 if (freelist)
2181 return freelist;
2182
2183 page = new_slab(s, flags, node);
497b66f2 2184 if (page) {
7c8e0181 2185 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2186 if (c->page)
2187 flush_slab(s, c);
2188
2189 /*
2190 * No other reference to the page yet so we can
2191 * muck around with it freely without cmpxchg
2192 */
6faa6833 2193 freelist = page->freelist;
497b66f2
CL
2194 page->freelist = NULL;
2195
2196 stat(s, ALLOC_SLAB);
497b66f2
CL
2197 c->page = page;
2198 *pc = c;
2199 } else
6faa6833 2200 freelist = NULL;
497b66f2 2201
6faa6833 2202 return freelist;
497b66f2
CL
2203}
2204
072bb0aa
MG
2205static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2206{
2207 if (unlikely(PageSlabPfmemalloc(page)))
2208 return gfp_pfmemalloc_allowed(gfpflags);
2209
2210 return true;
2211}
2212
213eeb9f 2213/*
d0e0ac97
CG
2214 * Check the page->freelist of a page and either transfer the freelist to the
2215 * per cpu freelist or deactivate the page.
213eeb9f
CL
2216 *
2217 * The page is still frozen if the return value is not NULL.
2218 *
2219 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2220 *
2221 * This function must be called with interrupt disabled.
213eeb9f
CL
2222 */
2223static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2224{
2225 struct page new;
2226 unsigned long counters;
2227 void *freelist;
2228
2229 do {
2230 freelist = page->freelist;
2231 counters = page->counters;
6faa6833 2232
213eeb9f 2233 new.counters = counters;
a0132ac0 2234 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2235
2236 new.inuse = page->objects;
2237 new.frozen = freelist != NULL;
2238
d24ac77f 2239 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2240 freelist, counters,
2241 NULL, new.counters,
2242 "get_freelist"));
2243
2244 return freelist;
2245}
2246
81819f0f 2247/*
894b8788
CL
2248 * Slow path. The lockless freelist is empty or we need to perform
2249 * debugging duties.
2250 *
894b8788
CL
2251 * Processing is still very fast if new objects have been freed to the
2252 * regular freelist. In that case we simply take over the regular freelist
2253 * as the lockless freelist and zap the regular freelist.
81819f0f 2254 *
894b8788
CL
2255 * If that is not working then we fall back to the partial lists. We take the
2256 * first element of the freelist as the object to allocate now and move the
2257 * rest of the freelist to the lockless freelist.
81819f0f 2258 *
894b8788 2259 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2260 * we need to allocate a new slab. This is the slowest path since it involves
2261 * a call to the page allocator and the setup of a new slab.
81819f0f 2262 */
ce71e27c
EGM
2263static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2264 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2265{
6faa6833 2266 void *freelist;
f6e7def7 2267 struct page *page;
8a5ec0ba
CL
2268 unsigned long flags;
2269
2270 local_irq_save(flags);
2271#ifdef CONFIG_PREEMPT
2272 /*
2273 * We may have been preempted and rescheduled on a different
2274 * cpu before disabling interrupts. Need to reload cpu area
2275 * pointer.
2276 */
2277 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2278#endif
81819f0f 2279
f6e7def7
CL
2280 page = c->page;
2281 if (!page)
81819f0f 2282 goto new_slab;
49e22585 2283redo:
6faa6833 2284
57d437d2 2285 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2286 int searchnode = node;
2287
2288 if (node != NUMA_NO_NODE && !node_present_pages(node))
2289 searchnode = node_to_mem_node(node);
2290
2291 if (unlikely(!node_match(page, searchnode))) {
2292 stat(s, ALLOC_NODE_MISMATCH);
2293 deactivate_slab(s, page, c->freelist);
2294 c->page = NULL;
2295 c->freelist = NULL;
2296 goto new_slab;
2297 }
fc59c053 2298 }
6446faa2 2299
072bb0aa
MG
2300 /*
2301 * By rights, we should be searching for a slab page that was
2302 * PFMEMALLOC but right now, we are losing the pfmemalloc
2303 * information when the page leaves the per-cpu allocator
2304 */
2305 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2306 deactivate_slab(s, page, c->freelist);
2307 c->page = NULL;
2308 c->freelist = NULL;
2309 goto new_slab;
2310 }
2311
73736e03 2312 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2313 freelist = c->freelist;
2314 if (freelist)
73736e03 2315 goto load_freelist;
03e404af 2316
f6e7def7 2317 freelist = get_freelist(s, page);
6446faa2 2318
6faa6833 2319 if (!freelist) {
03e404af
CL
2320 c->page = NULL;
2321 stat(s, DEACTIVATE_BYPASS);
fc59c053 2322 goto new_slab;
03e404af 2323 }
6446faa2 2324
84e554e6 2325 stat(s, ALLOC_REFILL);
6446faa2 2326
894b8788 2327load_freelist:
507effea
CL
2328 /*
2329 * freelist is pointing to the list of objects to be used.
2330 * page is pointing to the page from which the objects are obtained.
2331 * That page must be frozen for per cpu allocations to work.
2332 */
a0132ac0 2333 VM_BUG_ON(!c->page->frozen);
6faa6833 2334 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2335 c->tid = next_tid(c->tid);
2336 local_irq_restore(flags);
6faa6833 2337 return freelist;
81819f0f 2338
81819f0f 2339new_slab:
2cfb7455 2340
49e22585 2341 if (c->partial) {
f6e7def7
CL
2342 page = c->page = c->partial;
2343 c->partial = page->next;
49e22585
CL
2344 stat(s, CPU_PARTIAL_ALLOC);
2345 c->freelist = NULL;
2346 goto redo;
81819f0f
CL
2347 }
2348
188fd063 2349 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2350
f4697436 2351 if (unlikely(!freelist)) {
9a02d699 2352 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2353 local_irq_restore(flags);
2354 return NULL;
81819f0f 2355 }
2cfb7455 2356
f6e7def7 2357 page = c->page;
5091b74a 2358 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2359 goto load_freelist;
2cfb7455 2360
497b66f2 2361 /* Only entered in the debug case */
d0e0ac97
CG
2362 if (kmem_cache_debug(s) &&
2363 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2364 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2365
f6e7def7 2366 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2367 c->page = NULL;
2368 c->freelist = NULL;
a71ae47a 2369 local_irq_restore(flags);
6faa6833 2370 return freelist;
894b8788
CL
2371}
2372
2373/*
2374 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2375 * have the fastpath folded into their functions. So no function call
2376 * overhead for requests that can be satisfied on the fastpath.
2377 *
2378 * The fastpath works by first checking if the lockless freelist can be used.
2379 * If not then __slab_alloc is called for slow processing.
2380 *
2381 * Otherwise we can simply pick the next object from the lockless free list.
2382 */
2b847c3c 2383static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2384 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2385{
894b8788 2386 void **object;
dfb4f096 2387 struct kmem_cache_cpu *c;
57d437d2 2388 struct page *page;
8a5ec0ba 2389 unsigned long tid;
1f84260c 2390
8135be5a
VD
2391 s = slab_pre_alloc_hook(s, gfpflags);
2392 if (!s)
773ff60e 2393 return NULL;
8a5ec0ba 2394redo:
8a5ec0ba
CL
2395 /*
2396 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2397 * enabled. We may switch back and forth between cpus while
2398 * reading from one cpu area. That does not matter as long
2399 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b
CL
2400 *
2401 * Preemption is disabled for the retrieval of the tid because that
2402 * must occur from the current processor. We cannot allow rescheduling
2403 * on a different processor between the determination of the pointer
2404 * and the retrieval of the tid.
8a5ec0ba 2405 */
7cccd80b 2406 preempt_disable();
7c8e0181 2407 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2408
8a5ec0ba
CL
2409 /*
2410 * The transaction ids are globally unique per cpu and per operation on
2411 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2412 * occurs on the right processor and that there was no operation on the
2413 * linked list in between.
2414 */
2415 tid = c->tid;
7cccd80b 2416 preempt_enable();
8a5ec0ba 2417
9dfc6e68 2418 object = c->freelist;
57d437d2 2419 page = c->page;
8eae1492 2420 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2421 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2422 stat(s, ALLOC_SLOWPATH);
2423 } else {
0ad9500e
ED
2424 void *next_object = get_freepointer_safe(s, object);
2425
8a5ec0ba 2426 /*
25985edc 2427 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2428 * operation and if we are on the right processor.
2429 *
d0e0ac97
CG
2430 * The cmpxchg does the following atomically (without lock
2431 * semantics!)
8a5ec0ba
CL
2432 * 1. Relocate first pointer to the current per cpu area.
2433 * 2. Verify that tid and freelist have not been changed
2434 * 3. If they were not changed replace tid and freelist
2435 *
d0e0ac97
CG
2436 * Since this is without lock semantics the protection is only
2437 * against code executing on this cpu *not* from access by
2438 * other cpus.
8a5ec0ba 2439 */
933393f5 2440 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2441 s->cpu_slab->freelist, s->cpu_slab->tid,
2442 object, tid,
0ad9500e 2443 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2444
2445 note_cmpxchg_failure("slab_alloc", s, tid);
2446 goto redo;
2447 }
0ad9500e 2448 prefetch_freepointer(s, next_object);
84e554e6 2449 stat(s, ALLOC_FASTPATH);
894b8788 2450 }
8a5ec0ba 2451
74e2134f 2452 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2453 memset(object, 0, s->object_size);
d07dbea4 2454
c016b0bd 2455 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2456
894b8788 2457 return object;
81819f0f
CL
2458}
2459
2b847c3c
EG
2460static __always_inline void *slab_alloc(struct kmem_cache *s,
2461 gfp_t gfpflags, unsigned long addr)
2462{
2463 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2464}
2465
81819f0f
CL
2466void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2467{
2b847c3c 2468 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2469
d0e0ac97
CG
2470 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2471 s->size, gfpflags);
5b882be4
EGM
2472
2473 return ret;
81819f0f
CL
2474}
2475EXPORT_SYMBOL(kmem_cache_alloc);
2476
0f24f128 2477#ifdef CONFIG_TRACING
4a92379b
RK
2478void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2479{
2b847c3c 2480 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b
RK
2481 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2482 return ret;
2483}
2484EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2485#endif
2486
81819f0f
CL
2487#ifdef CONFIG_NUMA
2488void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2489{
2b847c3c 2490 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2491
ca2b84cb 2492 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2493 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2494
2495 return ret;
81819f0f
CL
2496}
2497EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2498
0f24f128 2499#ifdef CONFIG_TRACING
4a92379b 2500void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2501 gfp_t gfpflags,
4a92379b 2502 int node, size_t size)
5b882be4 2503{
2b847c3c 2504 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2505
2506 trace_kmalloc_node(_RET_IP_, ret,
2507 size, s->size, gfpflags, node);
2508 return ret;
5b882be4 2509}
4a92379b 2510EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2511#endif
5d1f57e4 2512#endif
5b882be4 2513
81819f0f 2514/*
894b8788
CL
2515 * Slow patch handling. This may still be called frequently since objects
2516 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2517 *
894b8788
CL
2518 * So we still attempt to reduce cache line usage. Just take the slab
2519 * lock and free the item. If there is no additional partial page
2520 * handling required then we can return immediately.
81819f0f 2521 */
894b8788 2522static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2523 void *x, unsigned long addr)
81819f0f
CL
2524{
2525 void *prior;
2526 void **object = (void *)x;
2cfb7455 2527 int was_frozen;
2cfb7455
CL
2528 struct page new;
2529 unsigned long counters;
2530 struct kmem_cache_node *n = NULL;
61728d1e 2531 unsigned long uninitialized_var(flags);
81819f0f 2532
8a5ec0ba 2533 stat(s, FREE_SLOWPATH);
81819f0f 2534
19c7ff9e
CL
2535 if (kmem_cache_debug(s) &&
2536 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2537 return;
6446faa2 2538
2cfb7455 2539 do {
837d678d
JK
2540 if (unlikely(n)) {
2541 spin_unlock_irqrestore(&n->list_lock, flags);
2542 n = NULL;
2543 }
2cfb7455
CL
2544 prior = page->freelist;
2545 counters = page->counters;
2546 set_freepointer(s, object, prior);
2547 new.counters = counters;
2548 was_frozen = new.frozen;
2549 new.inuse--;
837d678d 2550 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2551
c65c1877 2552 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2553
2554 /*
d0e0ac97
CG
2555 * Slab was on no list before and will be
2556 * partially empty
2557 * We can defer the list move and instead
2558 * freeze it.
49e22585
CL
2559 */
2560 new.frozen = 1;
2561
c65c1877 2562 } else { /* Needs to be taken off a list */
49e22585 2563
b455def2 2564 n = get_node(s, page_to_nid(page));
49e22585
CL
2565 /*
2566 * Speculatively acquire the list_lock.
2567 * If the cmpxchg does not succeed then we may
2568 * drop the list_lock without any processing.
2569 *
2570 * Otherwise the list_lock will synchronize with
2571 * other processors updating the list of slabs.
2572 */
2573 spin_lock_irqsave(&n->list_lock, flags);
2574
2575 }
2cfb7455 2576 }
81819f0f 2577
2cfb7455
CL
2578 } while (!cmpxchg_double_slab(s, page,
2579 prior, counters,
2580 object, new.counters,
2581 "__slab_free"));
81819f0f 2582
2cfb7455 2583 if (likely(!n)) {
49e22585
CL
2584
2585 /*
2586 * If we just froze the page then put it onto the
2587 * per cpu partial list.
2588 */
8028dcea 2589 if (new.frozen && !was_frozen) {
49e22585 2590 put_cpu_partial(s, page, 1);
8028dcea
AS
2591 stat(s, CPU_PARTIAL_FREE);
2592 }
49e22585 2593 /*
2cfb7455
CL
2594 * The list lock was not taken therefore no list
2595 * activity can be necessary.
2596 */
b455def2
L
2597 if (was_frozen)
2598 stat(s, FREE_FROZEN);
2599 return;
2600 }
81819f0f 2601
8a5b20ae 2602 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2603 goto slab_empty;
2604
81819f0f 2605 /*
837d678d
JK
2606 * Objects left in the slab. If it was not on the partial list before
2607 * then add it.
81819f0f 2608 */
345c905d
JK
2609 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2610 if (kmem_cache_debug(s))
c65c1877 2611 remove_full(s, n, page);
837d678d
JK
2612 add_partial(n, page, DEACTIVATE_TO_TAIL);
2613 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2614 }
80f08c19 2615 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2616 return;
2617
2618slab_empty:
a973e9dd 2619 if (prior) {
81819f0f 2620 /*
6fbabb20 2621 * Slab on the partial list.
81819f0f 2622 */
5cc6eee8 2623 remove_partial(n, page);
84e554e6 2624 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2625 } else {
6fbabb20 2626 /* Slab must be on the full list */
c65c1877
PZ
2627 remove_full(s, n, page);
2628 }
2cfb7455 2629
80f08c19 2630 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2631 stat(s, FREE_SLAB);
81819f0f 2632 discard_slab(s, page);
81819f0f
CL
2633}
2634
894b8788
CL
2635/*
2636 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2637 * can perform fastpath freeing without additional function calls.
2638 *
2639 * The fastpath is only possible if we are freeing to the current cpu slab
2640 * of this processor. This typically the case if we have just allocated
2641 * the item before.
2642 *
2643 * If fastpath is not possible then fall back to __slab_free where we deal
2644 * with all sorts of special processing.
2645 */
06428780 2646static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2647 struct page *page, void *x, unsigned long addr)
894b8788
CL
2648{
2649 void **object = (void *)x;
dfb4f096 2650 struct kmem_cache_cpu *c;
8a5ec0ba 2651 unsigned long tid;
1f84260c 2652
c016b0bd
CL
2653 slab_free_hook(s, x);
2654
8a5ec0ba
CL
2655redo:
2656 /*
2657 * Determine the currently cpus per cpu slab.
2658 * The cpu may change afterward. However that does not matter since
2659 * data is retrieved via this pointer. If we are on the same cpu
2660 * during the cmpxchg then the free will succedd.
2661 */
7cccd80b 2662 preempt_disable();
7c8e0181 2663 c = this_cpu_ptr(s->cpu_slab);
c016b0bd 2664
8a5ec0ba 2665 tid = c->tid;
7cccd80b 2666 preempt_enable();
c016b0bd 2667
442b06bc 2668 if (likely(page == c->page)) {
ff12059e 2669 set_freepointer(s, object, c->freelist);
8a5ec0ba 2670
933393f5 2671 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2672 s->cpu_slab->freelist, s->cpu_slab->tid,
2673 c->freelist, tid,
2674 object, next_tid(tid)))) {
2675
2676 note_cmpxchg_failure("slab_free", s, tid);
2677 goto redo;
2678 }
84e554e6 2679 stat(s, FREE_FASTPATH);
894b8788 2680 } else
ff12059e 2681 __slab_free(s, page, x, addr);
894b8788 2682
894b8788
CL
2683}
2684
81819f0f
CL
2685void kmem_cache_free(struct kmem_cache *s, void *x)
2686{
b9ce5ef4
GC
2687 s = cache_from_obj(s, x);
2688 if (!s)
79576102 2689 return;
b9ce5ef4 2690 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2691 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2692}
2693EXPORT_SYMBOL(kmem_cache_free);
2694
81819f0f 2695/*
672bba3a
CL
2696 * Object placement in a slab is made very easy because we always start at
2697 * offset 0. If we tune the size of the object to the alignment then we can
2698 * get the required alignment by putting one properly sized object after
2699 * another.
81819f0f
CL
2700 *
2701 * Notice that the allocation order determines the sizes of the per cpu
2702 * caches. Each processor has always one slab available for allocations.
2703 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2704 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2705 * locking overhead.
81819f0f
CL
2706 */
2707
2708/*
2709 * Mininum / Maximum order of slab pages. This influences locking overhead
2710 * and slab fragmentation. A higher order reduces the number of partial slabs
2711 * and increases the number of allocations possible without having to
2712 * take the list_lock.
2713 */
2714static int slub_min_order;
114e9e89 2715static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2716static int slub_min_objects;
81819f0f 2717
81819f0f
CL
2718/*
2719 * Calculate the order of allocation given an slab object size.
2720 *
672bba3a
CL
2721 * The order of allocation has significant impact on performance and other
2722 * system components. Generally order 0 allocations should be preferred since
2723 * order 0 does not cause fragmentation in the page allocator. Larger objects
2724 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2725 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2726 * would be wasted.
2727 *
2728 * In order to reach satisfactory performance we must ensure that a minimum
2729 * number of objects is in one slab. Otherwise we may generate too much
2730 * activity on the partial lists which requires taking the list_lock. This is
2731 * less a concern for large slabs though which are rarely used.
81819f0f 2732 *
672bba3a
CL
2733 * slub_max_order specifies the order where we begin to stop considering the
2734 * number of objects in a slab as critical. If we reach slub_max_order then
2735 * we try to keep the page order as low as possible. So we accept more waste
2736 * of space in favor of a small page order.
81819f0f 2737 *
672bba3a
CL
2738 * Higher order allocations also allow the placement of more objects in a
2739 * slab and thereby reduce object handling overhead. If the user has
2740 * requested a higher mininum order then we start with that one instead of
2741 * the smallest order which will fit the object.
81819f0f 2742 */
5e6d444e 2743static inline int slab_order(int size, int min_objects,
ab9a0f19 2744 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2745{
2746 int order;
2747 int rem;
6300ea75 2748 int min_order = slub_min_order;
81819f0f 2749
ab9a0f19 2750 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2751 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2752
6300ea75 2753 for (order = max(min_order,
5e6d444e
CL
2754 fls(min_objects * size - 1) - PAGE_SHIFT);
2755 order <= max_order; order++) {
81819f0f 2756
5e6d444e 2757 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2758
ab9a0f19 2759 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2760 continue;
2761
ab9a0f19 2762 rem = (slab_size - reserved) % size;
81819f0f 2763
5e6d444e 2764 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2765 break;
2766
2767 }
672bba3a 2768
81819f0f
CL
2769 return order;
2770}
2771
ab9a0f19 2772static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2773{
2774 int order;
2775 int min_objects;
2776 int fraction;
e8120ff1 2777 int max_objects;
5e6d444e
CL
2778
2779 /*
2780 * Attempt to find best configuration for a slab. This
2781 * works by first attempting to generate a layout with
2782 * the best configuration and backing off gradually.
2783 *
2784 * First we reduce the acceptable waste in a slab. Then
2785 * we reduce the minimum objects required in a slab.
2786 */
2787 min_objects = slub_min_objects;
9b2cd506
CL
2788 if (!min_objects)
2789 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2790 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2791 min_objects = min(min_objects, max_objects);
2792
5e6d444e 2793 while (min_objects > 1) {
c124f5b5 2794 fraction = 16;
5e6d444e
CL
2795 while (fraction >= 4) {
2796 order = slab_order(size, min_objects,
ab9a0f19 2797 slub_max_order, fraction, reserved);
5e6d444e
CL
2798 if (order <= slub_max_order)
2799 return order;
2800 fraction /= 2;
2801 }
5086c389 2802 min_objects--;
5e6d444e
CL
2803 }
2804
2805 /*
2806 * We were unable to place multiple objects in a slab. Now
2807 * lets see if we can place a single object there.
2808 */
ab9a0f19 2809 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2810 if (order <= slub_max_order)
2811 return order;
2812
2813 /*
2814 * Doh this slab cannot be placed using slub_max_order.
2815 */
ab9a0f19 2816 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2817 if (order < MAX_ORDER)
5e6d444e
CL
2818 return order;
2819 return -ENOSYS;
2820}
2821
5595cffc 2822static void
4053497d 2823init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2824{
2825 n->nr_partial = 0;
81819f0f
CL
2826 spin_lock_init(&n->list_lock);
2827 INIT_LIST_HEAD(&n->partial);
8ab1372f 2828#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2829 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2830 atomic_long_set(&n->total_objects, 0);
643b1138 2831 INIT_LIST_HEAD(&n->full);
8ab1372f 2832#endif
81819f0f
CL
2833}
2834
55136592 2835static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2836{
6c182dc0 2837 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2838 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2839
8a5ec0ba 2840 /*
d4d84fef
CM
2841 * Must align to double word boundary for the double cmpxchg
2842 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2843 */
d4d84fef
CM
2844 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2845 2 * sizeof(void *));
8a5ec0ba
CL
2846
2847 if (!s->cpu_slab)
2848 return 0;
2849
2850 init_kmem_cache_cpus(s);
4c93c355 2851
8a5ec0ba 2852 return 1;
4c93c355 2853}
4c93c355 2854
51df1142
CL
2855static struct kmem_cache *kmem_cache_node;
2856
81819f0f
CL
2857/*
2858 * No kmalloc_node yet so do it by hand. We know that this is the first
2859 * slab on the node for this slabcache. There are no concurrent accesses
2860 * possible.
2861 *
721ae22a
ZYW
2862 * Note that this function only works on the kmem_cache_node
2863 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 2864 * memory on a fresh node that has no slab structures yet.
81819f0f 2865 */
55136592 2866static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2867{
2868 struct page *page;
2869 struct kmem_cache_node *n;
2870
51df1142 2871 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2872
51df1142 2873 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2874
2875 BUG_ON(!page);
a2f92ee7 2876 if (page_to_nid(page) != node) {
f9f58285
FF
2877 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2878 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
2879 }
2880
81819f0f
CL
2881 n = page->freelist;
2882 BUG_ON(!n);
51df1142 2883 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 2884 page->inuse = 1;
8cb0a506 2885 page->frozen = 0;
51df1142 2886 kmem_cache_node->node[node] = n;
8ab1372f 2887#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2888 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2889 init_tracking(kmem_cache_node, n);
8ab1372f 2890#endif
4053497d 2891 init_kmem_cache_node(n);
51df1142 2892 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2893
67b6c900 2894 /*
1e4dd946
SR
2895 * No locks need to be taken here as it has just been
2896 * initialized and there is no concurrent access.
67b6c900 2897 */
1e4dd946 2898 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
2899}
2900
2901static void free_kmem_cache_nodes(struct kmem_cache *s)
2902{
2903 int node;
fa45dc25 2904 struct kmem_cache_node *n;
81819f0f 2905
fa45dc25
CL
2906 for_each_kmem_cache_node(s, node, n) {
2907 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
2908 s->node[node] = NULL;
2909 }
2910}
2911
55136592 2912static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2913{
2914 int node;
81819f0f 2915
f64dc58c 2916 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2917 struct kmem_cache_node *n;
2918
73367bd8 2919 if (slab_state == DOWN) {
55136592 2920 early_kmem_cache_node_alloc(node);
73367bd8
AD
2921 continue;
2922 }
51df1142 2923 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2924 GFP_KERNEL, node);
81819f0f 2925
73367bd8
AD
2926 if (!n) {
2927 free_kmem_cache_nodes(s);
2928 return 0;
81819f0f 2929 }
73367bd8 2930
81819f0f 2931 s->node[node] = n;
4053497d 2932 init_kmem_cache_node(n);
81819f0f
CL
2933 }
2934 return 1;
2935}
81819f0f 2936
c0bdb232 2937static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2938{
2939 if (min < MIN_PARTIAL)
2940 min = MIN_PARTIAL;
2941 else if (min > MAX_PARTIAL)
2942 min = MAX_PARTIAL;
2943 s->min_partial = min;
2944}
2945
81819f0f
CL
2946/*
2947 * calculate_sizes() determines the order and the distribution of data within
2948 * a slab object.
2949 */
06b285dc 2950static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2951{
2952 unsigned long flags = s->flags;
3b0efdfa 2953 unsigned long size = s->object_size;
834f3d11 2954 int order;
81819f0f 2955
d8b42bf5
CL
2956 /*
2957 * Round up object size to the next word boundary. We can only
2958 * place the free pointer at word boundaries and this determines
2959 * the possible location of the free pointer.
2960 */
2961 size = ALIGN(size, sizeof(void *));
2962
2963#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2964 /*
2965 * Determine if we can poison the object itself. If the user of
2966 * the slab may touch the object after free or before allocation
2967 * then we should never poison the object itself.
2968 */
2969 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2970 !s->ctor)
81819f0f
CL
2971 s->flags |= __OBJECT_POISON;
2972 else
2973 s->flags &= ~__OBJECT_POISON;
2974
81819f0f
CL
2975
2976 /*
672bba3a 2977 * If we are Redzoning then check if there is some space between the
81819f0f 2978 * end of the object and the free pointer. If not then add an
672bba3a 2979 * additional word to have some bytes to store Redzone information.
81819f0f 2980 */
3b0efdfa 2981 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 2982 size += sizeof(void *);
41ecc55b 2983#endif
81819f0f
CL
2984
2985 /*
672bba3a
CL
2986 * With that we have determined the number of bytes in actual use
2987 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2988 */
2989 s->inuse = size;
2990
2991 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2992 s->ctor)) {
81819f0f
CL
2993 /*
2994 * Relocate free pointer after the object if it is not
2995 * permitted to overwrite the first word of the object on
2996 * kmem_cache_free.
2997 *
2998 * This is the case if we do RCU, have a constructor or
2999 * destructor or are poisoning the objects.
3000 */
3001 s->offset = size;
3002 size += sizeof(void *);
3003 }
3004
c12b3c62 3005#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3006 if (flags & SLAB_STORE_USER)
3007 /*
3008 * Need to store information about allocs and frees after
3009 * the object.
3010 */
3011 size += 2 * sizeof(struct track);
3012
be7b3fbc 3013 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3014 /*
3015 * Add some empty padding so that we can catch
3016 * overwrites from earlier objects rather than let
3017 * tracking information or the free pointer be
0211a9c8 3018 * corrupted if a user writes before the start
81819f0f
CL
3019 * of the object.
3020 */
3021 size += sizeof(void *);
41ecc55b 3022#endif
672bba3a 3023
81819f0f
CL
3024 /*
3025 * SLUB stores one object immediately after another beginning from
3026 * offset 0. In order to align the objects we have to simply size
3027 * each object to conform to the alignment.
3028 */
45906855 3029 size = ALIGN(size, s->align);
81819f0f 3030 s->size = size;
06b285dc
CL
3031 if (forced_order >= 0)
3032 order = forced_order;
3033 else
ab9a0f19 3034 order = calculate_order(size, s->reserved);
81819f0f 3035
834f3d11 3036 if (order < 0)
81819f0f
CL
3037 return 0;
3038
b7a49f0d 3039 s->allocflags = 0;
834f3d11 3040 if (order)
b7a49f0d
CL
3041 s->allocflags |= __GFP_COMP;
3042
3043 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3044 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3045
3046 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3047 s->allocflags |= __GFP_RECLAIMABLE;
3048
81819f0f
CL
3049 /*
3050 * Determine the number of objects per slab
3051 */
ab9a0f19
LJ
3052 s->oo = oo_make(order, size, s->reserved);
3053 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3054 if (oo_objects(s->oo) > oo_objects(s->max))
3055 s->max = s->oo;
81819f0f 3056
834f3d11 3057 return !!oo_objects(s->oo);
81819f0f
CL
3058}
3059
8a13a4cc 3060static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3061{
8a13a4cc 3062 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3063 s->reserved = 0;
81819f0f 3064
da9a638c
LJ
3065 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3066 s->reserved = sizeof(struct rcu_head);
81819f0f 3067
06b285dc 3068 if (!calculate_sizes(s, -1))
81819f0f 3069 goto error;
3de47213
DR
3070 if (disable_higher_order_debug) {
3071 /*
3072 * Disable debugging flags that store metadata if the min slab
3073 * order increased.
3074 */
3b0efdfa 3075 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3076 s->flags &= ~DEBUG_METADATA_FLAGS;
3077 s->offset = 0;
3078 if (!calculate_sizes(s, -1))
3079 goto error;
3080 }
3081 }
81819f0f 3082
2565409f
HC
3083#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3084 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3085 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3086 /* Enable fast mode */
3087 s->flags |= __CMPXCHG_DOUBLE;
3088#endif
3089
3b89d7d8
DR
3090 /*
3091 * The larger the object size is, the more pages we want on the partial
3092 * list to avoid pounding the page allocator excessively.
3093 */
49e22585
CL
3094 set_min_partial(s, ilog2(s->size) / 2);
3095
3096 /*
3097 * cpu_partial determined the maximum number of objects kept in the
3098 * per cpu partial lists of a processor.
3099 *
3100 * Per cpu partial lists mainly contain slabs that just have one
3101 * object freed. If they are used for allocation then they can be
3102 * filled up again with minimal effort. The slab will never hit the
3103 * per node partial lists and therefore no locking will be required.
3104 *
3105 * This setting also determines
3106 *
3107 * A) The number of objects from per cpu partial slabs dumped to the
3108 * per node list when we reach the limit.
9f264904 3109 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3110 * per node list when we run out of per cpu objects. We only fetch
3111 * 50% to keep some capacity around for frees.
49e22585 3112 */
345c905d 3113 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3114 s->cpu_partial = 0;
3115 else if (s->size >= PAGE_SIZE)
49e22585
CL
3116 s->cpu_partial = 2;
3117 else if (s->size >= 1024)
3118 s->cpu_partial = 6;
3119 else if (s->size >= 256)
3120 s->cpu_partial = 13;
3121 else
3122 s->cpu_partial = 30;
3123
81819f0f 3124#ifdef CONFIG_NUMA
e2cb96b7 3125 s->remote_node_defrag_ratio = 1000;
81819f0f 3126#endif
55136592 3127 if (!init_kmem_cache_nodes(s))
dfb4f096 3128 goto error;
81819f0f 3129
55136592 3130 if (alloc_kmem_cache_cpus(s))
278b1bb1 3131 return 0;
ff12059e 3132
4c93c355 3133 free_kmem_cache_nodes(s);
81819f0f
CL
3134error:
3135 if (flags & SLAB_PANIC)
3136 panic("Cannot create slab %s size=%lu realsize=%u "
3137 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3138 s->name, (unsigned long)s->size, s->size,
3139 oo_order(s->oo), s->offset, flags);
278b1bb1 3140 return -EINVAL;
81819f0f 3141}
81819f0f 3142
33b12c38
CL
3143static void list_slab_objects(struct kmem_cache *s, struct page *page,
3144 const char *text)
3145{
3146#ifdef CONFIG_SLUB_DEBUG
3147 void *addr = page_address(page);
3148 void *p;
a5dd5c11
NK
3149 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3150 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3151 if (!map)
3152 return;
945cf2b6 3153 slab_err(s, page, text, s->name);
33b12c38 3154 slab_lock(page);
33b12c38 3155
5f80b13a 3156 get_map(s, page, map);
33b12c38
CL
3157 for_each_object(p, s, addr, page->objects) {
3158
3159 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3160 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3161 print_tracking(s, p);
3162 }
3163 }
3164 slab_unlock(page);
bbd7d57b 3165 kfree(map);
33b12c38
CL
3166#endif
3167}
3168
81819f0f 3169/*
599870b1 3170 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3171 * This is called from kmem_cache_close(). We must be the last thread
3172 * using the cache and therefore we do not need to lock anymore.
81819f0f 3173 */
599870b1 3174static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3175{
81819f0f
CL
3176 struct page *page, *h;
3177
33b12c38 3178 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3179 if (!page->inuse) {
1e4dd946 3180 __remove_partial(n, page);
81819f0f 3181 discard_slab(s, page);
33b12c38
CL
3182 } else {
3183 list_slab_objects(s, page,
945cf2b6 3184 "Objects remaining in %s on kmem_cache_close()");
599870b1 3185 }
33b12c38 3186 }
81819f0f
CL
3187}
3188
3189/*
672bba3a 3190 * Release all resources used by a slab cache.
81819f0f 3191 */
0c710013 3192static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3193{
3194 int node;
fa45dc25 3195 struct kmem_cache_node *n;
81819f0f
CL
3196
3197 flush_all(s);
81819f0f 3198 /* Attempt to free all objects */
fa45dc25 3199 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3200 free_partial(s, n);
3201 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3202 return 1;
3203 }
945cf2b6 3204 free_percpu(s->cpu_slab);
81819f0f
CL
3205 free_kmem_cache_nodes(s);
3206 return 0;
3207}
3208
945cf2b6 3209int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3210{
41a21285 3211 return kmem_cache_close(s);
81819f0f 3212}
81819f0f
CL
3213
3214/********************************************************************
3215 * Kmalloc subsystem
3216 *******************************************************************/
3217
81819f0f
CL
3218static int __init setup_slub_min_order(char *str)
3219{
06428780 3220 get_option(&str, &slub_min_order);
81819f0f
CL
3221
3222 return 1;
3223}
3224
3225__setup("slub_min_order=", setup_slub_min_order);
3226
3227static int __init setup_slub_max_order(char *str)
3228{
06428780 3229 get_option(&str, &slub_max_order);
818cf590 3230 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3231
3232 return 1;
3233}
3234
3235__setup("slub_max_order=", setup_slub_max_order);
3236
3237static int __init setup_slub_min_objects(char *str)
3238{
06428780 3239 get_option(&str, &slub_min_objects);
81819f0f
CL
3240
3241 return 1;
3242}
3243
3244__setup("slub_min_objects=", setup_slub_min_objects);
3245
81819f0f
CL
3246void *__kmalloc(size_t size, gfp_t flags)
3247{
aadb4bc4 3248 struct kmem_cache *s;
5b882be4 3249 void *ret;
81819f0f 3250
95a05b42 3251 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3252 return kmalloc_large(size, flags);
aadb4bc4 3253
2c59dd65 3254 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3255
3256 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3257 return s;
3258
2b847c3c 3259 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3260
ca2b84cb 3261 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
3262
3263 return ret;
81819f0f
CL
3264}
3265EXPORT_SYMBOL(__kmalloc);
3266
5d1f57e4 3267#ifdef CONFIG_NUMA
f619cfe1
CL
3268static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3269{
b1eeab67 3270 struct page *page;
e4f7c0b4 3271 void *ptr = NULL;
f619cfe1 3272
52383431
VD
3273 flags |= __GFP_COMP | __GFP_NOTRACK;
3274 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3275 if (page)
e4f7c0b4
CM
3276 ptr = page_address(page);
3277
d56791b3 3278 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3279 return ptr;
f619cfe1
CL
3280}
3281
81819f0f
CL
3282void *__kmalloc_node(size_t size, gfp_t flags, int node)
3283{
aadb4bc4 3284 struct kmem_cache *s;
5b882be4 3285 void *ret;
81819f0f 3286
95a05b42 3287 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3288 ret = kmalloc_large_node(size, flags, node);
3289
ca2b84cb
EGM
3290 trace_kmalloc_node(_RET_IP_, ret,
3291 size, PAGE_SIZE << get_order(size),
3292 flags, node);
5b882be4
EGM
3293
3294 return ret;
3295 }
aadb4bc4 3296
2c59dd65 3297 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3298
3299 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3300 return s;
3301
2b847c3c 3302 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3303
ca2b84cb 3304 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
3305
3306 return ret;
81819f0f
CL
3307}
3308EXPORT_SYMBOL(__kmalloc_node);
3309#endif
3310
3311size_t ksize(const void *object)
3312{
272c1d21 3313 struct page *page;
81819f0f 3314
ef8b4520 3315 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3316 return 0;
3317
294a80a8 3318 page = virt_to_head_page(object);
294a80a8 3319
76994412
PE
3320 if (unlikely(!PageSlab(page))) {
3321 WARN_ON(!PageCompound(page));
294a80a8 3322 return PAGE_SIZE << compound_order(page);
76994412 3323 }
81819f0f 3324
1b4f59e3 3325 return slab_ksize(page->slab_cache);
81819f0f 3326}
b1aabecd 3327EXPORT_SYMBOL(ksize);
81819f0f
CL
3328
3329void kfree(const void *x)
3330{
81819f0f 3331 struct page *page;
5bb983b0 3332 void *object = (void *)x;
81819f0f 3333
2121db74
PE
3334 trace_kfree(_RET_IP_, x);
3335
2408c550 3336 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3337 return;
3338
b49af68f 3339 page = virt_to_head_page(x);
aadb4bc4 3340 if (unlikely(!PageSlab(page))) {
0937502a 3341 BUG_ON(!PageCompound(page));
d56791b3 3342 kfree_hook(x);
52383431 3343 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3344 return;
3345 }
1b4f59e3 3346 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3347}
3348EXPORT_SYMBOL(kfree);
3349
2086d26a 3350/*
672bba3a
CL
3351 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3352 * the remaining slabs by the number of items in use. The slabs with the
3353 * most items in use come first. New allocations will then fill those up
3354 * and thus they can be removed from the partial lists.
3355 *
3356 * The slabs with the least items are placed last. This results in them
3357 * being allocated from last increasing the chance that the last objects
3358 * are freed in them.
2086d26a 3359 */
03afc0e2 3360int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3361{
3362 int node;
3363 int i;
3364 struct kmem_cache_node *n;
3365 struct page *page;
3366 struct page *t;
205ab99d 3367 int objects = oo_objects(s->max);
2086d26a 3368 struct list_head *slabs_by_inuse =
834f3d11 3369 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3370 unsigned long flags;
3371
3372 if (!slabs_by_inuse)
3373 return -ENOMEM;
3374
3375 flush_all(s);
fa45dc25 3376 for_each_kmem_cache_node(s, node, n) {
2086d26a
CL
3377 if (!n->nr_partial)
3378 continue;
3379
834f3d11 3380 for (i = 0; i < objects; i++)
2086d26a
CL
3381 INIT_LIST_HEAD(slabs_by_inuse + i);
3382
3383 spin_lock_irqsave(&n->list_lock, flags);
3384
3385 /*
672bba3a 3386 * Build lists indexed by the items in use in each slab.
2086d26a 3387 *
672bba3a
CL
3388 * Note that concurrent frees may occur while we hold the
3389 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3390 */
3391 list_for_each_entry_safe(page, t, &n->partial, lru) {
69cb8e6b
CL
3392 list_move(&page->lru, slabs_by_inuse + page->inuse);
3393 if (!page->inuse)
3394 n->nr_partial--;
2086d26a
CL
3395 }
3396
2086d26a 3397 /*
672bba3a
CL
3398 * Rebuild the partial list with the slabs filled up most
3399 * first and the least used slabs at the end.
2086d26a 3400 */
69cb8e6b 3401 for (i = objects - 1; i > 0; i--)
2086d26a
CL
3402 list_splice(slabs_by_inuse + i, n->partial.prev);
3403
2086d26a 3404 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3405
3406 /* Release empty slabs */
3407 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3408 discard_slab(s, page);
2086d26a
CL
3409 }
3410
3411 kfree(slabs_by_inuse);
3412 return 0;
3413}
2086d26a 3414
b9049e23
YG
3415static int slab_mem_going_offline_callback(void *arg)
3416{
3417 struct kmem_cache *s;
3418
18004c5d 3419 mutex_lock(&slab_mutex);
b9049e23 3420 list_for_each_entry(s, &slab_caches, list)
03afc0e2 3421 __kmem_cache_shrink(s);
18004c5d 3422 mutex_unlock(&slab_mutex);
b9049e23
YG
3423
3424 return 0;
3425}
3426
3427static void slab_mem_offline_callback(void *arg)
3428{
3429 struct kmem_cache_node *n;
3430 struct kmem_cache *s;
3431 struct memory_notify *marg = arg;
3432 int offline_node;
3433
b9d5ab25 3434 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3435
3436 /*
3437 * If the node still has available memory. we need kmem_cache_node
3438 * for it yet.
3439 */
3440 if (offline_node < 0)
3441 return;
3442
18004c5d 3443 mutex_lock(&slab_mutex);
b9049e23
YG
3444 list_for_each_entry(s, &slab_caches, list) {
3445 n = get_node(s, offline_node);
3446 if (n) {
3447 /*
3448 * if n->nr_slabs > 0, slabs still exist on the node
3449 * that is going down. We were unable to free them,
c9404c9c 3450 * and offline_pages() function shouldn't call this
b9049e23
YG
3451 * callback. So, we must fail.
3452 */
0f389ec6 3453 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3454
3455 s->node[offline_node] = NULL;
8de66a0c 3456 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3457 }
3458 }
18004c5d 3459 mutex_unlock(&slab_mutex);
b9049e23
YG
3460}
3461
3462static int slab_mem_going_online_callback(void *arg)
3463{
3464 struct kmem_cache_node *n;
3465 struct kmem_cache *s;
3466 struct memory_notify *marg = arg;
b9d5ab25 3467 int nid = marg->status_change_nid_normal;
b9049e23
YG
3468 int ret = 0;
3469
3470 /*
3471 * If the node's memory is already available, then kmem_cache_node is
3472 * already created. Nothing to do.
3473 */
3474 if (nid < 0)
3475 return 0;
3476
3477 /*
0121c619 3478 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3479 * allocate a kmem_cache_node structure in order to bring the node
3480 * online.
3481 */
18004c5d 3482 mutex_lock(&slab_mutex);
b9049e23
YG
3483 list_for_each_entry(s, &slab_caches, list) {
3484 /*
3485 * XXX: kmem_cache_alloc_node will fallback to other nodes
3486 * since memory is not yet available from the node that
3487 * is brought up.
3488 */
8de66a0c 3489 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3490 if (!n) {
3491 ret = -ENOMEM;
3492 goto out;
3493 }
4053497d 3494 init_kmem_cache_node(n);
b9049e23
YG
3495 s->node[nid] = n;
3496 }
3497out:
18004c5d 3498 mutex_unlock(&slab_mutex);
b9049e23
YG
3499 return ret;
3500}
3501
3502static int slab_memory_callback(struct notifier_block *self,
3503 unsigned long action, void *arg)
3504{
3505 int ret = 0;
3506
3507 switch (action) {
3508 case MEM_GOING_ONLINE:
3509 ret = slab_mem_going_online_callback(arg);
3510 break;
3511 case MEM_GOING_OFFLINE:
3512 ret = slab_mem_going_offline_callback(arg);
3513 break;
3514 case MEM_OFFLINE:
3515 case MEM_CANCEL_ONLINE:
3516 slab_mem_offline_callback(arg);
3517 break;
3518 case MEM_ONLINE:
3519 case MEM_CANCEL_OFFLINE:
3520 break;
3521 }
dc19f9db
KH
3522 if (ret)
3523 ret = notifier_from_errno(ret);
3524 else
3525 ret = NOTIFY_OK;
b9049e23
YG
3526 return ret;
3527}
3528
3ac38faa
AM
3529static struct notifier_block slab_memory_callback_nb = {
3530 .notifier_call = slab_memory_callback,
3531 .priority = SLAB_CALLBACK_PRI,
3532};
b9049e23 3533
81819f0f
CL
3534/********************************************************************
3535 * Basic setup of slabs
3536 *******************************************************************/
3537
51df1142
CL
3538/*
3539 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3540 * the page allocator. Allocate them properly then fix up the pointers
3541 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3542 */
3543
dffb4d60 3544static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3545{
3546 int node;
dffb4d60 3547 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3548 struct kmem_cache_node *n;
51df1142 3549
dffb4d60 3550 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3551
7d557b3c
GC
3552 /*
3553 * This runs very early, and only the boot processor is supposed to be
3554 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3555 * IPIs around.
3556 */
3557 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3558 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3559 struct page *p;
3560
fa45dc25
CL
3561 list_for_each_entry(p, &n->partial, lru)
3562 p->slab_cache = s;
51df1142 3563
607bf324 3564#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3565 list_for_each_entry(p, &n->full, lru)
3566 p->slab_cache = s;
51df1142 3567#endif
51df1142 3568 }
dffb4d60
CL
3569 list_add(&s->list, &slab_caches);
3570 return s;
51df1142
CL
3571}
3572
81819f0f
CL
3573void __init kmem_cache_init(void)
3574{
dffb4d60
CL
3575 static __initdata struct kmem_cache boot_kmem_cache,
3576 boot_kmem_cache_node;
51df1142 3577
fc8d8620
SG
3578 if (debug_guardpage_minorder())
3579 slub_max_order = 0;
3580
dffb4d60
CL
3581 kmem_cache_node = &boot_kmem_cache_node;
3582 kmem_cache = &boot_kmem_cache;
51df1142 3583
dffb4d60
CL
3584 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3585 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3586
3ac38faa 3587 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3588
3589 /* Able to allocate the per node structures */
3590 slab_state = PARTIAL;
3591
dffb4d60
CL
3592 create_boot_cache(kmem_cache, "kmem_cache",
3593 offsetof(struct kmem_cache, node) +
3594 nr_node_ids * sizeof(struct kmem_cache_node *),
3595 SLAB_HWCACHE_ALIGN);
8a13a4cc 3596
dffb4d60 3597 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3598
51df1142
CL
3599 /*
3600 * Allocate kmem_cache_node properly from the kmem_cache slab.
3601 * kmem_cache_node is separately allocated so no need to
3602 * update any list pointers.
3603 */
dffb4d60 3604 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3605
3606 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f97d5f63 3607 create_kmalloc_caches(0);
81819f0f
CL
3608
3609#ifdef CONFIG_SMP
3610 register_cpu_notifier(&slab_notifier);
9dfc6e68 3611#endif
81819f0f 3612
f9f58285 3613 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3614 cache_line_size(),
81819f0f
CL
3615 slub_min_order, slub_max_order, slub_min_objects,
3616 nr_cpu_ids, nr_node_ids);
3617}
3618
7e85ee0c
PE
3619void __init kmem_cache_init_late(void)
3620{
7e85ee0c
PE
3621}
3622
2633d7a0 3623struct kmem_cache *
a44cb944
VD
3624__kmem_cache_alias(const char *name, size_t size, size_t align,
3625 unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3626{
3627 struct kmem_cache *s;
3628
a44cb944 3629 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3630 if (s) {
84d0ddd6
VD
3631 int i;
3632 struct kmem_cache *c;
3633
81819f0f 3634 s->refcount++;
84d0ddd6 3635
81819f0f
CL
3636 /*
3637 * Adjust the object sizes so that we clear
3638 * the complete object on kzalloc.
3639 */
3b0efdfa 3640 s->object_size = max(s->object_size, (int)size);
81819f0f 3641 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3642
84d0ddd6
VD
3643 for_each_memcg_cache_index(i) {
3644 c = cache_from_memcg_idx(s, i);
3645 if (!c)
3646 continue;
3647 c->object_size = s->object_size;
3648 c->inuse = max_t(int, c->inuse,
3649 ALIGN(size, sizeof(void *)));
3650 }
3651
7b8f3b66 3652 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3653 s->refcount--;
cbb79694 3654 s = NULL;
7b8f3b66 3655 }
a0e1d1be 3656 }
6446faa2 3657
cbb79694
CL
3658 return s;
3659}
84c1cf62 3660
8a13a4cc 3661int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3662{
aac3a166
PE
3663 int err;
3664
3665 err = kmem_cache_open(s, flags);
3666 if (err)
3667 return err;
20cea968 3668
45530c44
CL
3669 /* Mutex is not taken during early boot */
3670 if (slab_state <= UP)
3671 return 0;
3672
107dab5c 3673 memcg_propagate_slab_attrs(s);
aac3a166 3674 err = sysfs_slab_add(s);
aac3a166
PE
3675 if (err)
3676 kmem_cache_close(s);
20cea968 3677
aac3a166 3678 return err;
81819f0f 3679}
81819f0f 3680
81819f0f 3681#ifdef CONFIG_SMP
81819f0f 3682/*
672bba3a
CL
3683 * Use the cpu notifier to insure that the cpu slabs are flushed when
3684 * necessary.
81819f0f 3685 */
0db0628d 3686static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3687 unsigned long action, void *hcpu)
3688{
3689 long cpu = (long)hcpu;
5b95a4ac
CL
3690 struct kmem_cache *s;
3691 unsigned long flags;
81819f0f
CL
3692
3693 switch (action) {
3694 case CPU_UP_CANCELED:
8bb78442 3695 case CPU_UP_CANCELED_FROZEN:
81819f0f 3696 case CPU_DEAD:
8bb78442 3697 case CPU_DEAD_FROZEN:
18004c5d 3698 mutex_lock(&slab_mutex);
5b95a4ac
CL
3699 list_for_each_entry(s, &slab_caches, list) {
3700 local_irq_save(flags);
3701 __flush_cpu_slab(s, cpu);
3702 local_irq_restore(flags);
3703 }
18004c5d 3704 mutex_unlock(&slab_mutex);
81819f0f
CL
3705 break;
3706 default:
3707 break;
3708 }
3709 return NOTIFY_OK;
3710}
3711
0db0628d 3712static struct notifier_block slab_notifier = {
3adbefee 3713 .notifier_call = slab_cpuup_callback
06428780 3714};
81819f0f
CL
3715
3716#endif
3717
ce71e27c 3718void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3719{
aadb4bc4 3720 struct kmem_cache *s;
94b528d0 3721 void *ret;
aadb4bc4 3722
95a05b42 3723 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3724 return kmalloc_large(size, gfpflags);
3725
2c59dd65 3726 s = kmalloc_slab(size, gfpflags);
81819f0f 3727
2408c550 3728 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3729 return s;
81819f0f 3730
2b847c3c 3731 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3732
25985edc 3733 /* Honor the call site pointer we received. */
ca2b84cb 3734 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3735
3736 return ret;
81819f0f
CL
3737}
3738
5d1f57e4 3739#ifdef CONFIG_NUMA
81819f0f 3740void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3741 int node, unsigned long caller)
81819f0f 3742{
aadb4bc4 3743 struct kmem_cache *s;
94b528d0 3744 void *ret;
aadb4bc4 3745
95a05b42 3746 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3747 ret = kmalloc_large_node(size, gfpflags, node);
3748
3749 trace_kmalloc_node(caller, ret,
3750 size, PAGE_SIZE << get_order(size),
3751 gfpflags, node);
3752
3753 return ret;
3754 }
eada35ef 3755
2c59dd65 3756 s = kmalloc_slab(size, gfpflags);
81819f0f 3757
2408c550 3758 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3759 return s;
81819f0f 3760
2b847c3c 3761 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3762
25985edc 3763 /* Honor the call site pointer we received. */
ca2b84cb 3764 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3765
3766 return ret;
81819f0f 3767}
5d1f57e4 3768#endif
81819f0f 3769
ab4d5ed5 3770#ifdef CONFIG_SYSFS
205ab99d
CL
3771static int count_inuse(struct page *page)
3772{
3773 return page->inuse;
3774}
3775
3776static int count_total(struct page *page)
3777{
3778 return page->objects;
3779}
ab4d5ed5 3780#endif
205ab99d 3781
ab4d5ed5 3782#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3783static int validate_slab(struct kmem_cache *s, struct page *page,
3784 unsigned long *map)
53e15af0
CL
3785{
3786 void *p;
a973e9dd 3787 void *addr = page_address(page);
53e15af0
CL
3788
3789 if (!check_slab(s, page) ||
3790 !on_freelist(s, page, NULL))
3791 return 0;
3792
3793 /* Now we know that a valid freelist exists */
39b26464 3794 bitmap_zero(map, page->objects);
53e15af0 3795
5f80b13a
CL
3796 get_map(s, page, map);
3797 for_each_object(p, s, addr, page->objects) {
3798 if (test_bit(slab_index(p, s, addr), map))
3799 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3800 return 0;
53e15af0
CL
3801 }
3802
224a88be 3803 for_each_object(p, s, addr, page->objects)
7656c72b 3804 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3805 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3806 return 0;
3807 return 1;
3808}
3809
434e245d
CL
3810static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3811 unsigned long *map)
53e15af0 3812{
881db7fb
CL
3813 slab_lock(page);
3814 validate_slab(s, page, map);
3815 slab_unlock(page);
53e15af0
CL
3816}
3817
434e245d
CL
3818static int validate_slab_node(struct kmem_cache *s,
3819 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3820{
3821 unsigned long count = 0;
3822 struct page *page;
3823 unsigned long flags;
3824
3825 spin_lock_irqsave(&n->list_lock, flags);
3826
3827 list_for_each_entry(page, &n->partial, lru) {
434e245d 3828 validate_slab_slab(s, page, map);
53e15af0
CL
3829 count++;
3830 }
3831 if (count != n->nr_partial)
f9f58285
FF
3832 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3833 s->name, count, n->nr_partial);
53e15af0
CL
3834
3835 if (!(s->flags & SLAB_STORE_USER))
3836 goto out;
3837
3838 list_for_each_entry(page, &n->full, lru) {
434e245d 3839 validate_slab_slab(s, page, map);
53e15af0
CL
3840 count++;
3841 }
3842 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
3843 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3844 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
3845
3846out:
3847 spin_unlock_irqrestore(&n->list_lock, flags);
3848 return count;
3849}
3850
434e245d 3851static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3852{
3853 int node;
3854 unsigned long count = 0;
205ab99d 3855 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 3856 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 3857 struct kmem_cache_node *n;
434e245d
CL
3858
3859 if (!map)
3860 return -ENOMEM;
53e15af0
CL
3861
3862 flush_all(s);
fa45dc25 3863 for_each_kmem_cache_node(s, node, n)
434e245d 3864 count += validate_slab_node(s, n, map);
434e245d 3865 kfree(map);
53e15af0
CL
3866 return count;
3867}
88a420e4 3868/*
672bba3a 3869 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3870 * and freed.
3871 */
3872
3873struct location {
3874 unsigned long count;
ce71e27c 3875 unsigned long addr;
45edfa58
CL
3876 long long sum_time;
3877 long min_time;
3878 long max_time;
3879 long min_pid;
3880 long max_pid;
174596a0 3881 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3882 nodemask_t nodes;
88a420e4
CL
3883};
3884
3885struct loc_track {
3886 unsigned long max;
3887 unsigned long count;
3888 struct location *loc;
3889};
3890
3891static void free_loc_track(struct loc_track *t)
3892{
3893 if (t->max)
3894 free_pages((unsigned long)t->loc,
3895 get_order(sizeof(struct location) * t->max));
3896}
3897
68dff6a9 3898static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3899{
3900 struct location *l;
3901 int order;
3902
88a420e4
CL
3903 order = get_order(sizeof(struct location) * max);
3904
68dff6a9 3905 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3906 if (!l)
3907 return 0;
3908
3909 if (t->count) {
3910 memcpy(l, t->loc, sizeof(struct location) * t->count);
3911 free_loc_track(t);
3912 }
3913 t->max = max;
3914 t->loc = l;
3915 return 1;
3916}
3917
3918static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3919 const struct track *track)
88a420e4
CL
3920{
3921 long start, end, pos;
3922 struct location *l;
ce71e27c 3923 unsigned long caddr;
45edfa58 3924 unsigned long age = jiffies - track->when;
88a420e4
CL
3925
3926 start = -1;
3927 end = t->count;
3928
3929 for ( ; ; ) {
3930 pos = start + (end - start + 1) / 2;
3931
3932 /*
3933 * There is nothing at "end". If we end up there
3934 * we need to add something to before end.
3935 */
3936 if (pos == end)
3937 break;
3938
3939 caddr = t->loc[pos].addr;
45edfa58
CL
3940 if (track->addr == caddr) {
3941
3942 l = &t->loc[pos];
3943 l->count++;
3944 if (track->when) {
3945 l->sum_time += age;
3946 if (age < l->min_time)
3947 l->min_time = age;
3948 if (age > l->max_time)
3949 l->max_time = age;
3950
3951 if (track->pid < l->min_pid)
3952 l->min_pid = track->pid;
3953 if (track->pid > l->max_pid)
3954 l->max_pid = track->pid;
3955
174596a0
RR
3956 cpumask_set_cpu(track->cpu,
3957 to_cpumask(l->cpus));
45edfa58
CL
3958 }
3959 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3960 return 1;
3961 }
3962
45edfa58 3963 if (track->addr < caddr)
88a420e4
CL
3964 end = pos;
3965 else
3966 start = pos;
3967 }
3968
3969 /*
672bba3a 3970 * Not found. Insert new tracking element.
88a420e4 3971 */
68dff6a9 3972 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3973 return 0;
3974
3975 l = t->loc + pos;
3976 if (pos < t->count)
3977 memmove(l + 1, l,
3978 (t->count - pos) * sizeof(struct location));
3979 t->count++;
3980 l->count = 1;
45edfa58
CL
3981 l->addr = track->addr;
3982 l->sum_time = age;
3983 l->min_time = age;
3984 l->max_time = age;
3985 l->min_pid = track->pid;
3986 l->max_pid = track->pid;
174596a0
RR
3987 cpumask_clear(to_cpumask(l->cpus));
3988 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3989 nodes_clear(l->nodes);
3990 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3991 return 1;
3992}
3993
3994static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3995 struct page *page, enum track_item alloc,
a5dd5c11 3996 unsigned long *map)
88a420e4 3997{
a973e9dd 3998 void *addr = page_address(page);
88a420e4
CL
3999 void *p;
4000
39b26464 4001 bitmap_zero(map, page->objects);
5f80b13a 4002 get_map(s, page, map);
88a420e4 4003
224a88be 4004 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4005 if (!test_bit(slab_index(p, s, addr), map))
4006 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4007}
4008
4009static int list_locations(struct kmem_cache *s, char *buf,
4010 enum track_item alloc)
4011{
e374d483 4012 int len = 0;
88a420e4 4013 unsigned long i;
68dff6a9 4014 struct loc_track t = { 0, 0, NULL };
88a420e4 4015 int node;
bbd7d57b
ED
4016 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4017 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4018 struct kmem_cache_node *n;
88a420e4 4019
bbd7d57b
ED
4020 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4021 GFP_TEMPORARY)) {
4022 kfree(map);
68dff6a9 4023 return sprintf(buf, "Out of memory\n");
bbd7d57b 4024 }
88a420e4
CL
4025 /* Push back cpu slabs */
4026 flush_all(s);
4027
fa45dc25 4028 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4029 unsigned long flags;
4030 struct page *page;
4031
9e86943b 4032 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4033 continue;
4034
4035 spin_lock_irqsave(&n->list_lock, flags);
4036 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4037 process_slab(&t, s, page, alloc, map);
88a420e4 4038 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4039 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4040 spin_unlock_irqrestore(&n->list_lock, flags);
4041 }
4042
4043 for (i = 0; i < t.count; i++) {
45edfa58 4044 struct location *l = &t.loc[i];
88a420e4 4045
9c246247 4046 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4047 break;
e374d483 4048 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4049
4050 if (l->addr)
62c70bce 4051 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4052 else
e374d483 4053 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4054
4055 if (l->sum_time != l->min_time) {
e374d483 4056 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4057 l->min_time,
4058 (long)div_u64(l->sum_time, l->count),
4059 l->max_time);
45edfa58 4060 } else
e374d483 4061 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4062 l->min_time);
4063
4064 if (l->min_pid != l->max_pid)
e374d483 4065 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4066 l->min_pid, l->max_pid);
4067 else
e374d483 4068 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4069 l->min_pid);
4070
174596a0
RR
4071 if (num_online_cpus() > 1 &&
4072 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
4073 len < PAGE_SIZE - 60) {
4074 len += sprintf(buf + len, " cpus=");
d0e0ac97
CG
4075 len += cpulist_scnprintf(buf + len,
4076 PAGE_SIZE - len - 50,
174596a0 4077 to_cpumask(l->cpus));
45edfa58
CL
4078 }
4079
62bc62a8 4080 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
4081 len < PAGE_SIZE - 60) {
4082 len += sprintf(buf + len, " nodes=");
d0e0ac97
CG
4083 len += nodelist_scnprintf(buf + len,
4084 PAGE_SIZE - len - 50,
4085 l->nodes);
45edfa58
CL
4086 }
4087
e374d483 4088 len += sprintf(buf + len, "\n");
88a420e4
CL
4089 }
4090
4091 free_loc_track(&t);
bbd7d57b 4092 kfree(map);
88a420e4 4093 if (!t.count)
e374d483
HH
4094 len += sprintf(buf, "No data\n");
4095 return len;
88a420e4 4096}
ab4d5ed5 4097#endif
88a420e4 4098
a5a84755 4099#ifdef SLUB_RESILIENCY_TEST
c07b8183 4100static void __init resiliency_test(void)
a5a84755
CL
4101{
4102 u8 *p;
4103
95a05b42 4104 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4105
f9f58285
FF
4106 pr_err("SLUB resiliency testing\n");
4107 pr_err("-----------------------\n");
4108 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4109
4110 p = kzalloc(16, GFP_KERNEL);
4111 p[16] = 0x12;
f9f58285
FF
4112 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4113 p + 16);
a5a84755
CL
4114
4115 validate_slab_cache(kmalloc_caches[4]);
4116
4117 /* Hmmm... The next two are dangerous */
4118 p = kzalloc(32, GFP_KERNEL);
4119 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4120 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4121 p);
4122 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4123
4124 validate_slab_cache(kmalloc_caches[5]);
4125 p = kzalloc(64, GFP_KERNEL);
4126 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4127 *p = 0x56;
f9f58285
FF
4128 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4129 p);
4130 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4131 validate_slab_cache(kmalloc_caches[6]);
4132
f9f58285 4133 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4134 p = kzalloc(128, GFP_KERNEL);
4135 kfree(p);
4136 *p = 0x78;
f9f58285 4137 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4138 validate_slab_cache(kmalloc_caches[7]);
4139
4140 p = kzalloc(256, GFP_KERNEL);
4141 kfree(p);
4142 p[50] = 0x9a;
f9f58285 4143 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4144 validate_slab_cache(kmalloc_caches[8]);
4145
4146 p = kzalloc(512, GFP_KERNEL);
4147 kfree(p);
4148 p[512] = 0xab;
f9f58285 4149 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4150 validate_slab_cache(kmalloc_caches[9]);
4151}
4152#else
4153#ifdef CONFIG_SYSFS
4154static void resiliency_test(void) {};
4155#endif
4156#endif
4157
ab4d5ed5 4158#ifdef CONFIG_SYSFS
81819f0f 4159enum slab_stat_type {
205ab99d
CL
4160 SL_ALL, /* All slabs */
4161 SL_PARTIAL, /* Only partially allocated slabs */
4162 SL_CPU, /* Only slabs used for cpu caches */
4163 SL_OBJECTS, /* Determine allocated objects not slabs */
4164 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4165};
4166
205ab99d 4167#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4168#define SO_PARTIAL (1 << SL_PARTIAL)
4169#define SO_CPU (1 << SL_CPU)
4170#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4171#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4172
62e5c4b4
CG
4173static ssize_t show_slab_objects(struct kmem_cache *s,
4174 char *buf, unsigned long flags)
81819f0f
CL
4175{
4176 unsigned long total = 0;
81819f0f
CL
4177 int node;
4178 int x;
4179 unsigned long *nodes;
81819f0f 4180
e35e1a97 4181 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4182 if (!nodes)
4183 return -ENOMEM;
81819f0f 4184
205ab99d
CL
4185 if (flags & SO_CPU) {
4186 int cpu;
81819f0f 4187
205ab99d 4188 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4189 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4190 cpu);
ec3ab083 4191 int node;
49e22585 4192 struct page *page;
dfb4f096 4193
bc6697d8 4194 page = ACCESS_ONCE(c->page);
ec3ab083
CL
4195 if (!page)
4196 continue;
205ab99d 4197
ec3ab083
CL
4198 node = page_to_nid(page);
4199 if (flags & SO_TOTAL)
4200 x = page->objects;
4201 else if (flags & SO_OBJECTS)
4202 x = page->inuse;
4203 else
4204 x = 1;
49e22585 4205
ec3ab083
CL
4206 total += x;
4207 nodes[node] += x;
4208
4209 page = ACCESS_ONCE(c->partial);
49e22585 4210 if (page) {
8afb1474
LZ
4211 node = page_to_nid(page);
4212 if (flags & SO_TOTAL)
4213 WARN_ON_ONCE(1);
4214 else if (flags & SO_OBJECTS)
4215 WARN_ON_ONCE(1);
4216 else
4217 x = page->pages;
bc6697d8
ED
4218 total += x;
4219 nodes[node] += x;
49e22585 4220 }
81819f0f
CL
4221 }
4222 }
4223
bfc8c901 4224 get_online_mems();
ab4d5ed5 4225#ifdef CONFIG_SLUB_DEBUG
205ab99d 4226 if (flags & SO_ALL) {
fa45dc25
CL
4227 struct kmem_cache_node *n;
4228
4229 for_each_kmem_cache_node(s, node, n) {
205ab99d 4230
d0e0ac97
CG
4231 if (flags & SO_TOTAL)
4232 x = atomic_long_read(&n->total_objects);
4233 else if (flags & SO_OBJECTS)
4234 x = atomic_long_read(&n->total_objects) -
4235 count_partial(n, count_free);
81819f0f 4236 else
205ab99d 4237 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4238 total += x;
4239 nodes[node] += x;
4240 }
4241
ab4d5ed5
CL
4242 } else
4243#endif
4244 if (flags & SO_PARTIAL) {
fa45dc25 4245 struct kmem_cache_node *n;
81819f0f 4246
fa45dc25 4247 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4248 if (flags & SO_TOTAL)
4249 x = count_partial(n, count_total);
4250 else if (flags & SO_OBJECTS)
4251 x = count_partial(n, count_inuse);
81819f0f 4252 else
205ab99d 4253 x = n->nr_partial;
81819f0f
CL
4254 total += x;
4255 nodes[node] += x;
4256 }
4257 }
81819f0f
CL
4258 x = sprintf(buf, "%lu", total);
4259#ifdef CONFIG_NUMA
fa45dc25 4260 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4261 if (nodes[node])
4262 x += sprintf(buf + x, " N%d=%lu",
4263 node, nodes[node]);
4264#endif
bfc8c901 4265 put_online_mems();
81819f0f
CL
4266 kfree(nodes);
4267 return x + sprintf(buf + x, "\n");
4268}
4269
ab4d5ed5 4270#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4271static int any_slab_objects(struct kmem_cache *s)
4272{
4273 int node;
fa45dc25 4274 struct kmem_cache_node *n;
81819f0f 4275
fa45dc25 4276 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4277 if (atomic_long_read(&n->total_objects))
81819f0f 4278 return 1;
fa45dc25 4279
81819f0f
CL
4280 return 0;
4281}
ab4d5ed5 4282#endif
81819f0f
CL
4283
4284#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4285#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4286
4287struct slab_attribute {
4288 struct attribute attr;
4289 ssize_t (*show)(struct kmem_cache *s, char *buf);
4290 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4291};
4292
4293#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4294 static struct slab_attribute _name##_attr = \
4295 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4296
4297#define SLAB_ATTR(_name) \
4298 static struct slab_attribute _name##_attr = \
ab067e99 4299 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4300
81819f0f
CL
4301static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4302{
4303 return sprintf(buf, "%d\n", s->size);
4304}
4305SLAB_ATTR_RO(slab_size);
4306
4307static ssize_t align_show(struct kmem_cache *s, char *buf)
4308{
4309 return sprintf(buf, "%d\n", s->align);
4310}
4311SLAB_ATTR_RO(align);
4312
4313static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4314{
3b0efdfa 4315 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4316}
4317SLAB_ATTR_RO(object_size);
4318
4319static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4320{
834f3d11 4321 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4322}
4323SLAB_ATTR_RO(objs_per_slab);
4324
06b285dc
CL
4325static ssize_t order_store(struct kmem_cache *s,
4326 const char *buf, size_t length)
4327{
0121c619
CL
4328 unsigned long order;
4329 int err;
4330
3dbb95f7 4331 err = kstrtoul(buf, 10, &order);
0121c619
CL
4332 if (err)
4333 return err;
06b285dc
CL
4334
4335 if (order > slub_max_order || order < slub_min_order)
4336 return -EINVAL;
4337
4338 calculate_sizes(s, order);
4339 return length;
4340}
4341
81819f0f
CL
4342static ssize_t order_show(struct kmem_cache *s, char *buf)
4343{
834f3d11 4344 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4345}
06b285dc 4346SLAB_ATTR(order);
81819f0f 4347
73d342b1
DR
4348static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4349{
4350 return sprintf(buf, "%lu\n", s->min_partial);
4351}
4352
4353static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4354 size_t length)
4355{
4356 unsigned long min;
4357 int err;
4358
3dbb95f7 4359 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4360 if (err)
4361 return err;
4362
c0bdb232 4363 set_min_partial(s, min);
73d342b1
DR
4364 return length;
4365}
4366SLAB_ATTR(min_partial);
4367
49e22585
CL
4368static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4369{
4370 return sprintf(buf, "%u\n", s->cpu_partial);
4371}
4372
4373static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4374 size_t length)
4375{
4376 unsigned long objects;
4377 int err;
4378
3dbb95f7 4379 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4380 if (err)
4381 return err;
345c905d 4382 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4383 return -EINVAL;
49e22585
CL
4384
4385 s->cpu_partial = objects;
4386 flush_all(s);
4387 return length;
4388}
4389SLAB_ATTR(cpu_partial);
4390
81819f0f
CL
4391static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4392{
62c70bce
JP
4393 if (!s->ctor)
4394 return 0;
4395 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4396}
4397SLAB_ATTR_RO(ctor);
4398
81819f0f
CL
4399static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4400{
4307c14f 4401 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4402}
4403SLAB_ATTR_RO(aliases);
4404
81819f0f
CL
4405static ssize_t partial_show(struct kmem_cache *s, char *buf)
4406{
d9acf4b7 4407 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4408}
4409SLAB_ATTR_RO(partial);
4410
4411static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4412{
d9acf4b7 4413 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4414}
4415SLAB_ATTR_RO(cpu_slabs);
4416
4417static ssize_t objects_show(struct kmem_cache *s, char *buf)
4418{
205ab99d 4419 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4420}
4421SLAB_ATTR_RO(objects);
4422
205ab99d
CL
4423static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4424{
4425 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4426}
4427SLAB_ATTR_RO(objects_partial);
4428
49e22585
CL
4429static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4430{
4431 int objects = 0;
4432 int pages = 0;
4433 int cpu;
4434 int len;
4435
4436 for_each_online_cpu(cpu) {
4437 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4438
4439 if (page) {
4440 pages += page->pages;
4441 objects += page->pobjects;
4442 }
4443 }
4444
4445 len = sprintf(buf, "%d(%d)", objects, pages);
4446
4447#ifdef CONFIG_SMP
4448 for_each_online_cpu(cpu) {
4449 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4450
4451 if (page && len < PAGE_SIZE - 20)
4452 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4453 page->pobjects, page->pages);
4454 }
4455#endif
4456 return len + sprintf(buf + len, "\n");
4457}
4458SLAB_ATTR_RO(slabs_cpu_partial);
4459
a5a84755
CL
4460static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4461{
4462 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4463}
4464
4465static ssize_t reclaim_account_store(struct kmem_cache *s,
4466 const char *buf, size_t length)
4467{
4468 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4469 if (buf[0] == '1')
4470 s->flags |= SLAB_RECLAIM_ACCOUNT;
4471 return length;
4472}
4473SLAB_ATTR(reclaim_account);
4474
4475static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4476{
4477 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4478}
4479SLAB_ATTR_RO(hwcache_align);
4480
4481#ifdef CONFIG_ZONE_DMA
4482static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4483{
4484 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4485}
4486SLAB_ATTR_RO(cache_dma);
4487#endif
4488
4489static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4490{
4491 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4492}
4493SLAB_ATTR_RO(destroy_by_rcu);
4494
ab9a0f19
LJ
4495static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4496{
4497 return sprintf(buf, "%d\n", s->reserved);
4498}
4499SLAB_ATTR_RO(reserved);
4500
ab4d5ed5 4501#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4502static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4503{
4504 return show_slab_objects(s, buf, SO_ALL);
4505}
4506SLAB_ATTR_RO(slabs);
4507
205ab99d
CL
4508static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4509{
4510 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4511}
4512SLAB_ATTR_RO(total_objects);
4513
81819f0f
CL
4514static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4515{
4516 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4517}
4518
4519static ssize_t sanity_checks_store(struct kmem_cache *s,
4520 const char *buf, size_t length)
4521{
4522 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4523 if (buf[0] == '1') {
4524 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4525 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4526 }
81819f0f
CL
4527 return length;
4528}
4529SLAB_ATTR(sanity_checks);
4530
4531static ssize_t trace_show(struct kmem_cache *s, char *buf)
4532{
4533 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4534}
4535
4536static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4537 size_t length)
4538{
c9e16131
CL
4539 /*
4540 * Tracing a merged cache is going to give confusing results
4541 * as well as cause other issues like converting a mergeable
4542 * cache into an umergeable one.
4543 */
4544 if (s->refcount > 1)
4545 return -EINVAL;
4546
81819f0f 4547 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4548 if (buf[0] == '1') {
4549 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4550 s->flags |= SLAB_TRACE;
b789ef51 4551 }
81819f0f
CL
4552 return length;
4553}
4554SLAB_ATTR(trace);
4555
81819f0f
CL
4556static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4557{
4558 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4559}
4560
4561static ssize_t red_zone_store(struct kmem_cache *s,
4562 const char *buf, size_t length)
4563{
4564 if (any_slab_objects(s))
4565 return -EBUSY;
4566
4567 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4568 if (buf[0] == '1') {
4569 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4570 s->flags |= SLAB_RED_ZONE;
b789ef51 4571 }
06b285dc 4572 calculate_sizes(s, -1);
81819f0f
CL
4573 return length;
4574}
4575SLAB_ATTR(red_zone);
4576
4577static ssize_t poison_show(struct kmem_cache *s, char *buf)
4578{
4579 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4580}
4581
4582static ssize_t poison_store(struct kmem_cache *s,
4583 const char *buf, size_t length)
4584{
4585 if (any_slab_objects(s))
4586 return -EBUSY;
4587
4588 s->flags &= ~SLAB_POISON;
b789ef51
CL
4589 if (buf[0] == '1') {
4590 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4591 s->flags |= SLAB_POISON;
b789ef51 4592 }
06b285dc 4593 calculate_sizes(s, -1);
81819f0f
CL
4594 return length;
4595}
4596SLAB_ATTR(poison);
4597
4598static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4599{
4600 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4601}
4602
4603static ssize_t store_user_store(struct kmem_cache *s,
4604 const char *buf, size_t length)
4605{
4606 if (any_slab_objects(s))
4607 return -EBUSY;
4608
4609 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4610 if (buf[0] == '1') {
4611 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4612 s->flags |= SLAB_STORE_USER;
b789ef51 4613 }
06b285dc 4614 calculate_sizes(s, -1);
81819f0f
CL
4615 return length;
4616}
4617SLAB_ATTR(store_user);
4618
53e15af0
CL
4619static ssize_t validate_show(struct kmem_cache *s, char *buf)
4620{
4621 return 0;
4622}
4623
4624static ssize_t validate_store(struct kmem_cache *s,
4625 const char *buf, size_t length)
4626{
434e245d
CL
4627 int ret = -EINVAL;
4628
4629 if (buf[0] == '1') {
4630 ret = validate_slab_cache(s);
4631 if (ret >= 0)
4632 ret = length;
4633 }
4634 return ret;
53e15af0
CL
4635}
4636SLAB_ATTR(validate);
a5a84755
CL
4637
4638static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4639{
4640 if (!(s->flags & SLAB_STORE_USER))
4641 return -ENOSYS;
4642 return list_locations(s, buf, TRACK_ALLOC);
4643}
4644SLAB_ATTR_RO(alloc_calls);
4645
4646static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4647{
4648 if (!(s->flags & SLAB_STORE_USER))
4649 return -ENOSYS;
4650 return list_locations(s, buf, TRACK_FREE);
4651}
4652SLAB_ATTR_RO(free_calls);
4653#endif /* CONFIG_SLUB_DEBUG */
4654
4655#ifdef CONFIG_FAILSLAB
4656static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4657{
4658 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4659}
4660
4661static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4662 size_t length)
4663{
c9e16131
CL
4664 if (s->refcount > 1)
4665 return -EINVAL;
4666
a5a84755
CL
4667 s->flags &= ~SLAB_FAILSLAB;
4668 if (buf[0] == '1')
4669 s->flags |= SLAB_FAILSLAB;
4670 return length;
4671}
4672SLAB_ATTR(failslab);
ab4d5ed5 4673#endif
53e15af0 4674
2086d26a
CL
4675static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4676{
4677 return 0;
4678}
4679
4680static ssize_t shrink_store(struct kmem_cache *s,
4681 const char *buf, size_t length)
4682{
4683 if (buf[0] == '1') {
4684 int rc = kmem_cache_shrink(s);
4685
4686 if (rc)
4687 return rc;
4688 } else
4689 return -EINVAL;
4690 return length;
4691}
4692SLAB_ATTR(shrink);
4693
81819f0f 4694#ifdef CONFIG_NUMA
9824601e 4695static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4696{
9824601e 4697 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4698}
4699
9824601e 4700static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4701 const char *buf, size_t length)
4702{
0121c619
CL
4703 unsigned long ratio;
4704 int err;
4705
3dbb95f7 4706 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4707 if (err)
4708 return err;
4709
e2cb96b7 4710 if (ratio <= 100)
0121c619 4711 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4712
81819f0f
CL
4713 return length;
4714}
9824601e 4715SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4716#endif
4717
8ff12cfc 4718#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4719static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4720{
4721 unsigned long sum = 0;
4722 int cpu;
4723 int len;
4724 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4725
4726 if (!data)
4727 return -ENOMEM;
4728
4729 for_each_online_cpu(cpu) {
9dfc6e68 4730 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4731
4732 data[cpu] = x;
4733 sum += x;
4734 }
4735
4736 len = sprintf(buf, "%lu", sum);
4737
50ef37b9 4738#ifdef CONFIG_SMP
8ff12cfc
CL
4739 for_each_online_cpu(cpu) {
4740 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4741 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4742 }
50ef37b9 4743#endif
8ff12cfc
CL
4744 kfree(data);
4745 return len + sprintf(buf + len, "\n");
4746}
4747
78eb00cc
DR
4748static void clear_stat(struct kmem_cache *s, enum stat_item si)
4749{
4750 int cpu;
4751
4752 for_each_online_cpu(cpu)
9dfc6e68 4753 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4754}
4755
8ff12cfc
CL
4756#define STAT_ATTR(si, text) \
4757static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4758{ \
4759 return show_stat(s, buf, si); \
4760} \
78eb00cc
DR
4761static ssize_t text##_store(struct kmem_cache *s, \
4762 const char *buf, size_t length) \
4763{ \
4764 if (buf[0] != '0') \
4765 return -EINVAL; \
4766 clear_stat(s, si); \
4767 return length; \
4768} \
4769SLAB_ATTR(text); \
8ff12cfc
CL
4770
4771STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4772STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4773STAT_ATTR(FREE_FASTPATH, free_fastpath);
4774STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4775STAT_ATTR(FREE_FROZEN, free_frozen);
4776STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4777STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4778STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4779STAT_ATTR(ALLOC_SLAB, alloc_slab);
4780STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4781STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4782STAT_ATTR(FREE_SLAB, free_slab);
4783STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4784STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4785STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4786STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4787STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4788STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4789STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4790STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4791STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4792STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4793STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4794STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4795STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4796STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4797#endif
4798
06428780 4799static struct attribute *slab_attrs[] = {
81819f0f
CL
4800 &slab_size_attr.attr,
4801 &object_size_attr.attr,
4802 &objs_per_slab_attr.attr,
4803 &order_attr.attr,
73d342b1 4804 &min_partial_attr.attr,
49e22585 4805 &cpu_partial_attr.attr,
81819f0f 4806 &objects_attr.attr,
205ab99d 4807 &objects_partial_attr.attr,
81819f0f
CL
4808 &partial_attr.attr,
4809 &cpu_slabs_attr.attr,
4810 &ctor_attr.attr,
81819f0f
CL
4811 &aliases_attr.attr,
4812 &align_attr.attr,
81819f0f
CL
4813 &hwcache_align_attr.attr,
4814 &reclaim_account_attr.attr,
4815 &destroy_by_rcu_attr.attr,
a5a84755 4816 &shrink_attr.attr,
ab9a0f19 4817 &reserved_attr.attr,
49e22585 4818 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4819#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4820 &total_objects_attr.attr,
4821 &slabs_attr.attr,
4822 &sanity_checks_attr.attr,
4823 &trace_attr.attr,
81819f0f
CL
4824 &red_zone_attr.attr,
4825 &poison_attr.attr,
4826 &store_user_attr.attr,
53e15af0 4827 &validate_attr.attr,
88a420e4
CL
4828 &alloc_calls_attr.attr,
4829 &free_calls_attr.attr,
ab4d5ed5 4830#endif
81819f0f
CL
4831#ifdef CONFIG_ZONE_DMA
4832 &cache_dma_attr.attr,
4833#endif
4834#ifdef CONFIG_NUMA
9824601e 4835 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4836#endif
4837#ifdef CONFIG_SLUB_STATS
4838 &alloc_fastpath_attr.attr,
4839 &alloc_slowpath_attr.attr,
4840 &free_fastpath_attr.attr,
4841 &free_slowpath_attr.attr,
4842 &free_frozen_attr.attr,
4843 &free_add_partial_attr.attr,
4844 &free_remove_partial_attr.attr,
4845 &alloc_from_partial_attr.attr,
4846 &alloc_slab_attr.attr,
4847 &alloc_refill_attr.attr,
e36a2652 4848 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
4849 &free_slab_attr.attr,
4850 &cpuslab_flush_attr.attr,
4851 &deactivate_full_attr.attr,
4852 &deactivate_empty_attr.attr,
4853 &deactivate_to_head_attr.attr,
4854 &deactivate_to_tail_attr.attr,
4855 &deactivate_remote_frees_attr.attr,
03e404af 4856 &deactivate_bypass_attr.attr,
65c3376a 4857 &order_fallback_attr.attr,
b789ef51
CL
4858 &cmpxchg_double_fail_attr.attr,
4859 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
4860 &cpu_partial_alloc_attr.attr,
4861 &cpu_partial_free_attr.attr,
8028dcea
AS
4862 &cpu_partial_node_attr.attr,
4863 &cpu_partial_drain_attr.attr,
81819f0f 4864#endif
4c13dd3b
DM
4865#ifdef CONFIG_FAILSLAB
4866 &failslab_attr.attr,
4867#endif
4868
81819f0f
CL
4869 NULL
4870};
4871
4872static struct attribute_group slab_attr_group = {
4873 .attrs = slab_attrs,
4874};
4875
4876static ssize_t slab_attr_show(struct kobject *kobj,
4877 struct attribute *attr,
4878 char *buf)
4879{
4880 struct slab_attribute *attribute;
4881 struct kmem_cache *s;
4882 int err;
4883
4884 attribute = to_slab_attr(attr);
4885 s = to_slab(kobj);
4886
4887 if (!attribute->show)
4888 return -EIO;
4889
4890 err = attribute->show(s, buf);
4891
4892 return err;
4893}
4894
4895static ssize_t slab_attr_store(struct kobject *kobj,
4896 struct attribute *attr,
4897 const char *buf, size_t len)
4898{
4899 struct slab_attribute *attribute;
4900 struct kmem_cache *s;
4901 int err;
4902
4903 attribute = to_slab_attr(attr);
4904 s = to_slab(kobj);
4905
4906 if (!attribute->store)
4907 return -EIO;
4908
4909 err = attribute->store(s, buf, len);
107dab5c
GC
4910#ifdef CONFIG_MEMCG_KMEM
4911 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4912 int i;
81819f0f 4913
107dab5c
GC
4914 mutex_lock(&slab_mutex);
4915 if (s->max_attr_size < len)
4916 s->max_attr_size = len;
4917
ebe945c2
GC
4918 /*
4919 * This is a best effort propagation, so this function's return
4920 * value will be determined by the parent cache only. This is
4921 * basically because not all attributes will have a well
4922 * defined semantics for rollbacks - most of the actions will
4923 * have permanent effects.
4924 *
4925 * Returning the error value of any of the children that fail
4926 * is not 100 % defined, in the sense that users seeing the
4927 * error code won't be able to know anything about the state of
4928 * the cache.
4929 *
4930 * Only returning the error code for the parent cache at least
4931 * has well defined semantics. The cache being written to
4932 * directly either failed or succeeded, in which case we loop
4933 * through the descendants with best-effort propagation.
4934 */
107dab5c 4935 for_each_memcg_cache_index(i) {
2ade4de8 4936 struct kmem_cache *c = cache_from_memcg_idx(s, i);
107dab5c
GC
4937 if (c)
4938 attribute->store(c, buf, len);
4939 }
4940 mutex_unlock(&slab_mutex);
4941 }
4942#endif
81819f0f
CL
4943 return err;
4944}
4945
107dab5c
GC
4946static void memcg_propagate_slab_attrs(struct kmem_cache *s)
4947{
4948#ifdef CONFIG_MEMCG_KMEM
4949 int i;
4950 char *buffer = NULL;
93030d83 4951 struct kmem_cache *root_cache;
107dab5c 4952
93030d83 4953 if (is_root_cache(s))
107dab5c
GC
4954 return;
4955
93030d83
VD
4956 root_cache = s->memcg_params->root_cache;
4957
107dab5c
GC
4958 /*
4959 * This mean this cache had no attribute written. Therefore, no point
4960 * in copying default values around
4961 */
93030d83 4962 if (!root_cache->max_attr_size)
107dab5c
GC
4963 return;
4964
4965 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
4966 char mbuf[64];
4967 char *buf;
4968 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
4969
4970 if (!attr || !attr->store || !attr->show)
4971 continue;
4972
4973 /*
4974 * It is really bad that we have to allocate here, so we will
4975 * do it only as a fallback. If we actually allocate, though,
4976 * we can just use the allocated buffer until the end.
4977 *
4978 * Most of the slub attributes will tend to be very small in
4979 * size, but sysfs allows buffers up to a page, so they can
4980 * theoretically happen.
4981 */
4982 if (buffer)
4983 buf = buffer;
93030d83 4984 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
4985 buf = mbuf;
4986 else {
4987 buffer = (char *) get_zeroed_page(GFP_KERNEL);
4988 if (WARN_ON(!buffer))
4989 continue;
4990 buf = buffer;
4991 }
4992
93030d83 4993 attr->show(root_cache, buf);
107dab5c
GC
4994 attr->store(s, buf, strlen(buf));
4995 }
4996
4997 if (buffer)
4998 free_page((unsigned long)buffer);
4999#endif
5000}
5001
41a21285
CL
5002static void kmem_cache_release(struct kobject *k)
5003{
5004 slab_kmem_cache_release(to_slab(k));
5005}
5006
52cf25d0 5007static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5008 .show = slab_attr_show,
5009 .store = slab_attr_store,
5010};
5011
5012static struct kobj_type slab_ktype = {
5013 .sysfs_ops = &slab_sysfs_ops,
41a21285 5014 .release = kmem_cache_release,
81819f0f
CL
5015};
5016
5017static int uevent_filter(struct kset *kset, struct kobject *kobj)
5018{
5019 struct kobj_type *ktype = get_ktype(kobj);
5020
5021 if (ktype == &slab_ktype)
5022 return 1;
5023 return 0;
5024}
5025
9cd43611 5026static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5027 .filter = uevent_filter,
5028};
5029
27c3a314 5030static struct kset *slab_kset;
81819f0f 5031
9a41707b
VD
5032static inline struct kset *cache_kset(struct kmem_cache *s)
5033{
5034#ifdef CONFIG_MEMCG_KMEM
5035 if (!is_root_cache(s))
5036 return s->memcg_params->root_cache->memcg_kset;
5037#endif
5038 return slab_kset;
5039}
5040
81819f0f
CL
5041#define ID_STR_LENGTH 64
5042
5043/* Create a unique string id for a slab cache:
6446faa2
CL
5044 *
5045 * Format :[flags-]size
81819f0f
CL
5046 */
5047static char *create_unique_id(struct kmem_cache *s)
5048{
5049 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5050 char *p = name;
5051
5052 BUG_ON(!name);
5053
5054 *p++ = ':';
5055 /*
5056 * First flags affecting slabcache operations. We will only
5057 * get here for aliasable slabs so we do not need to support
5058 * too many flags. The flags here must cover all flags that
5059 * are matched during merging to guarantee that the id is
5060 * unique.
5061 */
5062 if (s->flags & SLAB_CACHE_DMA)
5063 *p++ = 'd';
5064 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5065 *p++ = 'a';
5066 if (s->flags & SLAB_DEBUG_FREE)
5067 *p++ = 'F';
5a896d9e
VN
5068 if (!(s->flags & SLAB_NOTRACK))
5069 *p++ = 't';
81819f0f
CL
5070 if (p != name + 1)
5071 *p++ = '-';
5072 p += sprintf(p, "%07d", s->size);
2633d7a0 5073
81819f0f
CL
5074 BUG_ON(p > name + ID_STR_LENGTH - 1);
5075 return name;
5076}
5077
5078static int sysfs_slab_add(struct kmem_cache *s)
5079{
5080 int err;
5081 const char *name;
45530c44 5082 int unmergeable = slab_unmergeable(s);
81819f0f 5083
81819f0f
CL
5084 if (unmergeable) {
5085 /*
5086 * Slabcache can never be merged so we can use the name proper.
5087 * This is typically the case for debug situations. In that
5088 * case we can catch duplicate names easily.
5089 */
27c3a314 5090 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5091 name = s->name;
5092 } else {
5093 /*
5094 * Create a unique name for the slab as a target
5095 * for the symlinks.
5096 */
5097 name = create_unique_id(s);
5098 }
5099
9a41707b 5100 s->kobj.kset = cache_kset(s);
26e4f205 5101 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731
DJ
5102 if (err)
5103 goto out_put_kobj;
81819f0f
CL
5104
5105 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5106 if (err)
5107 goto out_del_kobj;
9a41707b
VD
5108
5109#ifdef CONFIG_MEMCG_KMEM
5110 if (is_root_cache(s)) {
5111 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5112 if (!s->memcg_kset) {
54b6a731
DJ
5113 err = -ENOMEM;
5114 goto out_del_kobj;
9a41707b
VD
5115 }
5116 }
5117#endif
5118
81819f0f
CL
5119 kobject_uevent(&s->kobj, KOBJ_ADD);
5120 if (!unmergeable) {
5121 /* Setup first alias */
5122 sysfs_slab_alias(s, s->name);
81819f0f 5123 }
54b6a731
DJ
5124out:
5125 if (!unmergeable)
5126 kfree(name);
5127 return err;
5128out_del_kobj:
5129 kobject_del(&s->kobj);
5130out_put_kobj:
5131 kobject_put(&s->kobj);
5132 goto out;
81819f0f
CL
5133}
5134
41a21285 5135void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5136{
97d06609 5137 if (slab_state < FULL)
2bce6485
CL
5138 /*
5139 * Sysfs has not been setup yet so no need to remove the
5140 * cache from sysfs.
5141 */
5142 return;
5143
9a41707b
VD
5144#ifdef CONFIG_MEMCG_KMEM
5145 kset_unregister(s->memcg_kset);
5146#endif
81819f0f
CL
5147 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5148 kobject_del(&s->kobj);
151c602f 5149 kobject_put(&s->kobj);
81819f0f
CL
5150}
5151
5152/*
5153 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5154 * available lest we lose that information.
81819f0f
CL
5155 */
5156struct saved_alias {
5157 struct kmem_cache *s;
5158 const char *name;
5159 struct saved_alias *next;
5160};
5161
5af328a5 5162static struct saved_alias *alias_list;
81819f0f
CL
5163
5164static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5165{
5166 struct saved_alias *al;
5167
97d06609 5168 if (slab_state == FULL) {
81819f0f
CL
5169 /*
5170 * If we have a leftover link then remove it.
5171 */
27c3a314
GKH
5172 sysfs_remove_link(&slab_kset->kobj, name);
5173 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5174 }
5175
5176 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5177 if (!al)
5178 return -ENOMEM;
5179
5180 al->s = s;
5181 al->name = name;
5182 al->next = alias_list;
5183 alias_list = al;
5184 return 0;
5185}
5186
5187static int __init slab_sysfs_init(void)
5188{
5b95a4ac 5189 struct kmem_cache *s;
81819f0f
CL
5190 int err;
5191
18004c5d 5192 mutex_lock(&slab_mutex);
2bce6485 5193
0ff21e46 5194 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5195 if (!slab_kset) {
18004c5d 5196 mutex_unlock(&slab_mutex);
f9f58285 5197 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5198 return -ENOSYS;
5199 }
5200
97d06609 5201 slab_state = FULL;
26a7bd03 5202
5b95a4ac 5203 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5204 err = sysfs_slab_add(s);
5d540fb7 5205 if (err)
f9f58285
FF
5206 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5207 s->name);
26a7bd03 5208 }
81819f0f
CL
5209
5210 while (alias_list) {
5211 struct saved_alias *al = alias_list;
5212
5213 alias_list = alias_list->next;
5214 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5215 if (err)
f9f58285
FF
5216 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5217 al->name);
81819f0f
CL
5218 kfree(al);
5219 }
5220
18004c5d 5221 mutex_unlock(&slab_mutex);
81819f0f
CL
5222 resiliency_test();
5223 return 0;
5224}
5225
5226__initcall(slab_sysfs_init);
ab4d5ed5 5227#endif /* CONFIG_SYSFS */
57ed3eda
PE
5228
5229/*
5230 * The /proc/slabinfo ABI
5231 */
158a9624 5232#ifdef CONFIG_SLABINFO
0d7561c6 5233void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5234{
57ed3eda 5235 unsigned long nr_slabs = 0;
205ab99d
CL
5236 unsigned long nr_objs = 0;
5237 unsigned long nr_free = 0;
57ed3eda 5238 int node;
fa45dc25 5239 struct kmem_cache_node *n;
57ed3eda 5240
fa45dc25 5241 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5242 nr_slabs += node_nr_slabs(n);
5243 nr_objs += node_nr_objs(n);
205ab99d 5244 nr_free += count_partial(n, count_free);
57ed3eda
PE
5245 }
5246
0d7561c6
GC
5247 sinfo->active_objs = nr_objs - nr_free;
5248 sinfo->num_objs = nr_objs;
5249 sinfo->active_slabs = nr_slabs;
5250 sinfo->num_slabs = nr_slabs;
5251 sinfo->objects_per_slab = oo_objects(s->oo);
5252 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5253}
5254
0d7561c6 5255void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5256{
7b3c3a50
AD
5257}
5258
b7454ad3
GC
5259ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5260 size_t count, loff_t *ppos)
7b3c3a50 5261{
b7454ad3 5262 return -EIO;
7b3c3a50 5263}
158a9624 5264#endif /* CONFIG_SLABINFO */