Merge tag 'for-linus-20181201' of git://git.kernel.dk/linux-block
[linux-2.6-block.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
117d54df 127void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
128{
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133}
134
345c905d
JK
135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136{
137#ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139#else
140 return false;
141#endif
142}
143
81819f0f
CL
144/*
145 * Issues still to be resolved:
146 *
81819f0f
CL
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
81819f0f
CL
149 * - Variable sizing of the per node arrays
150 */
151
152/* Enable to test recovery from slab corruption on boot */
153#undef SLUB_RESILIENCY_TEST
154
b789ef51
CL
155/* Enable to log cmpxchg failures */
156#undef SLUB_DEBUG_CMPXCHG
157
2086d26a
CL
158/*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
76be8950 162#define MIN_PARTIAL 5
e95eed57 163
2086d26a
CL
164/*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 167 * sort the partial list by the number of objects in use.
2086d26a
CL
168 */
169#define MAX_PARTIAL 10
170
becfda68 171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 172 SLAB_POISON | SLAB_STORE_USER)
672bba3a 173
149daaf3
LA
174/*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
fa5ec8a1 182/*
3de47213
DR
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
fa5ec8a1 186 */
3de47213 187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 188
210b5c06
CG
189#define OO_SHIFT 16
190#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 191#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 192
81819f0f 193/* Internal SLUB flags */
d50112ed 194/* Poison object */
4fd0b46e 195#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 196/* Use cmpxchg_double */
4fd0b46e 197#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 198
02cbc874
CL
199/*
200 * Tracking user of a slab.
201 */
d6543e39 202#define TRACK_ADDRS_COUNT 16
02cbc874 203struct track {
ce71e27c 204 unsigned long addr; /* Called from address */
d6543e39
BG
205#ifdef CONFIG_STACKTRACE
206 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
207#endif
02cbc874
CL
208 int cpu; /* Was running on cpu */
209 int pid; /* Pid context */
210 unsigned long when; /* When did the operation occur */
211};
212
213enum track_item { TRACK_ALLOC, TRACK_FREE };
214
ab4d5ed5 215#ifdef CONFIG_SYSFS
81819f0f
CL
216static int sysfs_slab_add(struct kmem_cache *);
217static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 218static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 219static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 220#else
0c710013
CL
221static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
222static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
223 { return 0; }
107dab5c 224static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 225static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
88da03a6
CL
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
236#endif
237}
238
81819f0f
CL
239/********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
242
2482ddec
KC
243/*
244 * Returns freelist pointer (ptr). With hardening, this is obfuscated
245 * with an XOR of the address where the pointer is held and a per-cache
246 * random number.
247 */
248static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
249 unsigned long ptr_addr)
250{
251#ifdef CONFIG_SLAB_FREELIST_HARDENED
252 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
253#else
254 return ptr;
255#endif
256}
257
258/* Returns the freelist pointer recorded at location ptr_addr. */
259static inline void *freelist_dereference(const struct kmem_cache *s,
260 void *ptr_addr)
261{
262 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
263 (unsigned long)ptr_addr);
264}
265
7656c72b
CL
266static inline void *get_freepointer(struct kmem_cache *s, void *object)
267{
2482ddec 268 return freelist_dereference(s, object + s->offset);
7656c72b
CL
269}
270
0ad9500e
ED
271static void prefetch_freepointer(const struct kmem_cache *s, void *object)
272{
0882ff91 273 prefetch(object + s->offset);
0ad9500e
ED
274}
275
1393d9a1
CL
276static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
277{
2482ddec 278 unsigned long freepointer_addr;
1393d9a1
CL
279 void *p;
280
922d566c
JK
281 if (!debug_pagealloc_enabled())
282 return get_freepointer(s, object);
283
2482ddec
KC
284 freepointer_addr = (unsigned long)object + s->offset;
285 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
286 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
287}
288
7656c72b
CL
289static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
290{
2482ddec
KC
291 unsigned long freeptr_addr = (unsigned long)object + s->offset;
292
ce6fa91b
AP
293#ifdef CONFIG_SLAB_FREELIST_HARDENED
294 BUG_ON(object == fp); /* naive detection of double free or corruption */
295#endif
296
2482ddec 297 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
298}
299
300/* Loop over all objects in a slab */
224a88be 301#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
302 for (__p = fixup_red_left(__s, __addr); \
303 __p < (__addr) + (__objects) * (__s)->size; \
304 __p += (__s)->size)
7656c72b 305
54266640 306#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
307 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
308 __idx <= __objects; \
309 __p += (__s)->size, __idx++)
54266640 310
7656c72b 311/* Determine object index from a given position */
284b50dd 312static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b
CL
313{
314 return (p - addr) / s->size;
315}
316
9736d2a9 317static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 318{
9736d2a9 319 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
320}
321
19af27af 322static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 323 unsigned int size)
834f3d11
CL
324{
325 struct kmem_cache_order_objects x = {
9736d2a9 326 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
327 };
328
329 return x;
330}
331
19af27af 332static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 333{
210b5c06 334 return x.x >> OO_SHIFT;
834f3d11
CL
335}
336
19af27af 337static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 338{
210b5c06 339 return x.x & OO_MASK;
834f3d11
CL
340}
341
881db7fb
CL
342/*
343 * Per slab locking using the pagelock
344 */
345static __always_inline void slab_lock(struct page *page)
346{
48c935ad 347 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
348 bit_spin_lock(PG_locked, &page->flags);
349}
350
351static __always_inline void slab_unlock(struct page *page)
352{
48c935ad 353 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
354 __bit_spin_unlock(PG_locked, &page->flags);
355}
356
1d07171c
CL
357/* Interrupts must be disabled (for the fallback code to work right) */
358static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
359 void *freelist_old, unsigned long counters_old,
360 void *freelist_new, unsigned long counters_new,
361 const char *n)
362{
363 VM_BUG_ON(!irqs_disabled());
2565409f
HC
364#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
365 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 366 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 367 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
368 freelist_old, counters_old,
369 freelist_new, counters_new))
6f6528a1 370 return true;
1d07171c
CL
371 } else
372#endif
373 {
374 slab_lock(page);
d0e0ac97
CG
375 if (page->freelist == freelist_old &&
376 page->counters == counters_old) {
1d07171c 377 page->freelist = freelist_new;
7d27a04b 378 page->counters = counters_new;
1d07171c 379 slab_unlock(page);
6f6528a1 380 return true;
1d07171c
CL
381 }
382 slab_unlock(page);
383 }
384
385 cpu_relax();
386 stat(s, CMPXCHG_DOUBLE_FAIL);
387
388#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 389 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
390#endif
391
6f6528a1 392 return false;
1d07171c
CL
393}
394
b789ef51
CL
395static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
396 void *freelist_old, unsigned long counters_old,
397 void *freelist_new, unsigned long counters_new,
398 const char *n)
399{
2565409f
HC
400#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
401 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 402 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 403 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
404 freelist_old, counters_old,
405 freelist_new, counters_new))
6f6528a1 406 return true;
b789ef51
CL
407 } else
408#endif
409 {
1d07171c
CL
410 unsigned long flags;
411
412 local_irq_save(flags);
881db7fb 413 slab_lock(page);
d0e0ac97
CG
414 if (page->freelist == freelist_old &&
415 page->counters == counters_old) {
b789ef51 416 page->freelist = freelist_new;
7d27a04b 417 page->counters = counters_new;
881db7fb 418 slab_unlock(page);
1d07171c 419 local_irq_restore(flags);
6f6528a1 420 return true;
b789ef51 421 }
881db7fb 422 slab_unlock(page);
1d07171c 423 local_irq_restore(flags);
b789ef51
CL
424 }
425
426 cpu_relax();
427 stat(s, CMPXCHG_DOUBLE_FAIL);
428
429#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 430 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
431#endif
432
6f6528a1 433 return false;
b789ef51
CL
434}
435
41ecc55b 436#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
437/*
438 * Determine a map of object in use on a page.
439 *
881db7fb 440 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
441 * not vanish from under us.
442 */
443static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
444{
445 void *p;
446 void *addr = page_address(page);
447
448 for (p = page->freelist; p; p = get_freepointer(s, p))
449 set_bit(slab_index(p, s, addr), map);
450}
451
870b1fbb 452static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
453{
454 if (s->flags & SLAB_RED_ZONE)
455 return s->size - s->red_left_pad;
456
457 return s->size;
458}
459
460static inline void *restore_red_left(struct kmem_cache *s, void *p)
461{
462 if (s->flags & SLAB_RED_ZONE)
463 p -= s->red_left_pad;
464
465 return p;
466}
467
41ecc55b
CL
468/*
469 * Debug settings:
470 */
89d3c87e 471#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 472static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 473#else
d50112ed 474static slab_flags_t slub_debug;
f0630fff 475#endif
41ecc55b
CL
476
477static char *slub_debug_slabs;
fa5ec8a1 478static int disable_higher_order_debug;
41ecc55b 479
a79316c6
AR
480/*
481 * slub is about to manipulate internal object metadata. This memory lies
482 * outside the range of the allocated object, so accessing it would normally
483 * be reported by kasan as a bounds error. metadata_access_enable() is used
484 * to tell kasan that these accesses are OK.
485 */
486static inline void metadata_access_enable(void)
487{
488 kasan_disable_current();
489}
490
491static inline void metadata_access_disable(void)
492{
493 kasan_enable_current();
494}
495
81819f0f
CL
496/*
497 * Object debugging
498 */
d86bd1be
JK
499
500/* Verify that a pointer has an address that is valid within a slab page */
501static inline int check_valid_pointer(struct kmem_cache *s,
502 struct page *page, void *object)
503{
504 void *base;
505
506 if (!object)
507 return 1;
508
509 base = page_address(page);
510 object = restore_red_left(s, object);
511 if (object < base || object >= base + page->objects * s->size ||
512 (object - base) % s->size) {
513 return 0;
514 }
515
516 return 1;
517}
518
aa2efd5e
DT
519static void print_section(char *level, char *text, u8 *addr,
520 unsigned int length)
81819f0f 521{
a79316c6 522 metadata_access_enable();
aa2efd5e 523 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 524 length, 1);
a79316c6 525 metadata_access_disable();
81819f0f
CL
526}
527
81819f0f
CL
528static struct track *get_track(struct kmem_cache *s, void *object,
529 enum track_item alloc)
530{
531 struct track *p;
532
533 if (s->offset)
534 p = object + s->offset + sizeof(void *);
535 else
536 p = object + s->inuse;
537
538 return p + alloc;
539}
540
541static void set_track(struct kmem_cache *s, void *object,
ce71e27c 542 enum track_item alloc, unsigned long addr)
81819f0f 543{
1a00df4a 544 struct track *p = get_track(s, object, alloc);
81819f0f 545
81819f0f 546 if (addr) {
d6543e39
BG
547#ifdef CONFIG_STACKTRACE
548 struct stack_trace trace;
549 int i;
550
551 trace.nr_entries = 0;
552 trace.max_entries = TRACK_ADDRS_COUNT;
553 trace.entries = p->addrs;
554 trace.skip = 3;
a79316c6 555 metadata_access_enable();
d6543e39 556 save_stack_trace(&trace);
a79316c6 557 metadata_access_disable();
d6543e39
BG
558
559 /* See rant in lockdep.c */
560 if (trace.nr_entries != 0 &&
561 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
562 trace.nr_entries--;
563
564 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
565 p->addrs[i] = 0;
566#endif
81819f0f
CL
567 p->addr = addr;
568 p->cpu = smp_processor_id();
88e4ccf2 569 p->pid = current->pid;
81819f0f
CL
570 p->when = jiffies;
571 } else
572 memset(p, 0, sizeof(struct track));
573}
574
81819f0f
CL
575static void init_tracking(struct kmem_cache *s, void *object)
576{
24922684
CL
577 if (!(s->flags & SLAB_STORE_USER))
578 return;
579
ce71e27c
EGM
580 set_track(s, object, TRACK_FREE, 0UL);
581 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
582}
583
86609d33 584static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
585{
586 if (!t->addr)
587 return;
588
f9f58285 589 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 590 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
591#ifdef CONFIG_STACKTRACE
592 {
593 int i;
594 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
595 if (t->addrs[i])
f9f58285 596 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
597 else
598 break;
599 }
600#endif
24922684
CL
601}
602
603static void print_tracking(struct kmem_cache *s, void *object)
604{
86609d33 605 unsigned long pr_time = jiffies;
24922684
CL
606 if (!(s->flags & SLAB_STORE_USER))
607 return;
608
86609d33
CP
609 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
610 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
611}
612
613static void print_page_info(struct page *page)
614{
f9f58285 615 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 616 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
617
618}
619
620static void slab_bug(struct kmem_cache *s, char *fmt, ...)
621{
ecc42fbe 622 struct va_format vaf;
24922684 623 va_list args;
24922684
CL
624
625 va_start(args, fmt);
ecc42fbe
FF
626 vaf.fmt = fmt;
627 vaf.va = &args;
f9f58285 628 pr_err("=============================================================================\n");
ecc42fbe 629 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 630 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 631
373d4d09 632 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 633 va_end(args);
81819f0f
CL
634}
635
24922684
CL
636static void slab_fix(struct kmem_cache *s, char *fmt, ...)
637{
ecc42fbe 638 struct va_format vaf;
24922684 639 va_list args;
24922684
CL
640
641 va_start(args, fmt);
ecc42fbe
FF
642 vaf.fmt = fmt;
643 vaf.va = &args;
644 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 645 va_end(args);
24922684
CL
646}
647
648static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
649{
650 unsigned int off; /* Offset of last byte */
a973e9dd 651 u8 *addr = page_address(page);
24922684
CL
652
653 print_tracking(s, p);
654
655 print_page_info(page);
656
f9f58285
FF
657 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
658 p, p - addr, get_freepointer(s, p));
24922684 659
d86bd1be 660 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
661 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
662 s->red_left_pad);
d86bd1be 663 else if (p > addr + 16)
aa2efd5e 664 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 665
aa2efd5e 666 print_section(KERN_ERR, "Object ", p,
1b473f29 667 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 668 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 669 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 670 s->inuse - s->object_size);
81819f0f 671
81819f0f
CL
672 if (s->offset)
673 off = s->offset + sizeof(void *);
674 else
675 off = s->inuse;
676
24922684 677 if (s->flags & SLAB_STORE_USER)
81819f0f 678 off += 2 * sizeof(struct track);
81819f0f 679
80a9201a
AP
680 off += kasan_metadata_size(s);
681
d86bd1be 682 if (off != size_from_object(s))
81819f0f 683 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
684 print_section(KERN_ERR, "Padding ", p + off,
685 size_from_object(s) - off);
24922684
CL
686
687 dump_stack();
81819f0f
CL
688}
689
75c66def 690void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
691 u8 *object, char *reason)
692{
3dc50637 693 slab_bug(s, "%s", reason);
24922684 694 print_trailer(s, page, object);
81819f0f
CL
695}
696
a38965bf 697static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 698 const char *fmt, ...)
81819f0f
CL
699{
700 va_list args;
701 char buf[100];
702
24922684
CL
703 va_start(args, fmt);
704 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 705 va_end(args);
3dc50637 706 slab_bug(s, "%s", buf);
24922684 707 print_page_info(page);
81819f0f
CL
708 dump_stack();
709}
710
f7cb1933 711static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
712{
713 u8 *p = object;
714
d86bd1be
JK
715 if (s->flags & SLAB_RED_ZONE)
716 memset(p - s->red_left_pad, val, s->red_left_pad);
717
81819f0f 718 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
719 memset(p, POISON_FREE, s->object_size - 1);
720 p[s->object_size - 1] = POISON_END;
81819f0f
CL
721 }
722
723 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 724 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
725}
726
24922684
CL
727static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
728 void *from, void *to)
729{
730 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
731 memset(from, data, to - from);
732}
733
734static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
735 u8 *object, char *what,
06428780 736 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
737{
738 u8 *fault;
739 u8 *end;
740
a79316c6 741 metadata_access_enable();
79824820 742 fault = memchr_inv(start, value, bytes);
a79316c6 743 metadata_access_disable();
24922684
CL
744 if (!fault)
745 return 1;
746
747 end = start + bytes;
748 while (end > fault && end[-1] == value)
749 end--;
750
751 slab_bug(s, "%s overwritten", what);
f9f58285 752 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
753 fault, end - 1, fault[0], value);
754 print_trailer(s, page, object);
755
756 restore_bytes(s, what, value, fault, end);
757 return 0;
81819f0f
CL
758}
759
81819f0f
CL
760/*
761 * Object layout:
762 *
763 * object address
764 * Bytes of the object to be managed.
765 * If the freepointer may overlay the object then the free
766 * pointer is the first word of the object.
672bba3a 767 *
81819f0f
CL
768 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
769 * 0xa5 (POISON_END)
770 *
3b0efdfa 771 * object + s->object_size
81819f0f 772 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 773 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 774 * object_size == inuse.
672bba3a 775 *
81819f0f
CL
776 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
777 * 0xcc (RED_ACTIVE) for objects in use.
778 *
779 * object + s->inuse
672bba3a
CL
780 * Meta data starts here.
781 *
81819f0f
CL
782 * A. Free pointer (if we cannot overwrite object on free)
783 * B. Tracking data for SLAB_STORE_USER
672bba3a 784 * C. Padding to reach required alignment boundary or at mininum
6446faa2 785 * one word if debugging is on to be able to detect writes
672bba3a
CL
786 * before the word boundary.
787 *
788 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
789 *
790 * object + s->size
672bba3a 791 * Nothing is used beyond s->size.
81819f0f 792 *
3b0efdfa 793 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 794 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
795 * may be used with merged slabcaches.
796 */
797
81819f0f
CL
798static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
799{
800 unsigned long off = s->inuse; /* The end of info */
801
802 if (s->offset)
803 /* Freepointer is placed after the object. */
804 off += sizeof(void *);
805
806 if (s->flags & SLAB_STORE_USER)
807 /* We also have user information there */
808 off += 2 * sizeof(struct track);
809
80a9201a
AP
810 off += kasan_metadata_size(s);
811
d86bd1be 812 if (size_from_object(s) == off)
81819f0f
CL
813 return 1;
814
24922684 815 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 816 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
817}
818
39b26464 819/* Check the pad bytes at the end of a slab page */
81819f0f
CL
820static int slab_pad_check(struct kmem_cache *s, struct page *page)
821{
24922684
CL
822 u8 *start;
823 u8 *fault;
824 u8 *end;
5d682681 825 u8 *pad;
24922684
CL
826 int length;
827 int remainder;
81819f0f
CL
828
829 if (!(s->flags & SLAB_POISON))
830 return 1;
831
a973e9dd 832 start = page_address(page);
9736d2a9 833 length = PAGE_SIZE << compound_order(page);
39b26464
CL
834 end = start + length;
835 remainder = length % s->size;
81819f0f
CL
836 if (!remainder)
837 return 1;
838
5d682681 839 pad = end - remainder;
a79316c6 840 metadata_access_enable();
5d682681 841 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 842 metadata_access_disable();
24922684
CL
843 if (!fault)
844 return 1;
845 while (end > fault && end[-1] == POISON_INUSE)
846 end--;
847
848 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
5d682681 849 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 850
5d682681 851 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 852 return 0;
81819f0f
CL
853}
854
855static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 856 void *object, u8 val)
81819f0f
CL
857{
858 u8 *p = object;
3b0efdfa 859 u8 *endobject = object + s->object_size;
81819f0f
CL
860
861 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
862 if (!check_bytes_and_report(s, page, object, "Redzone",
863 object - s->red_left_pad, val, s->red_left_pad))
864 return 0;
865
24922684 866 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 867 endobject, val, s->inuse - s->object_size))
81819f0f 868 return 0;
81819f0f 869 } else {
3b0efdfa 870 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 871 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
872 endobject, POISON_INUSE,
873 s->inuse - s->object_size);
3adbefee 874 }
81819f0f
CL
875 }
876
877 if (s->flags & SLAB_POISON) {
f7cb1933 878 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 879 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 880 POISON_FREE, s->object_size - 1) ||
24922684 881 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 882 p + s->object_size - 1, POISON_END, 1)))
81819f0f 883 return 0;
81819f0f
CL
884 /*
885 * check_pad_bytes cleans up on its own.
886 */
887 check_pad_bytes(s, page, p);
888 }
889
f7cb1933 890 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
891 /*
892 * Object and freepointer overlap. Cannot check
893 * freepointer while object is allocated.
894 */
895 return 1;
896
897 /* Check free pointer validity */
898 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
899 object_err(s, page, p, "Freepointer corrupt");
900 /*
9f6c708e 901 * No choice but to zap it and thus lose the remainder
81819f0f 902 * of the free objects in this slab. May cause
672bba3a 903 * another error because the object count is now wrong.
81819f0f 904 */
a973e9dd 905 set_freepointer(s, p, NULL);
81819f0f
CL
906 return 0;
907 }
908 return 1;
909}
910
911static int check_slab(struct kmem_cache *s, struct page *page)
912{
39b26464
CL
913 int maxobj;
914
81819f0f
CL
915 VM_BUG_ON(!irqs_disabled());
916
917 if (!PageSlab(page)) {
24922684 918 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
919 return 0;
920 }
39b26464 921
9736d2a9 922 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
923 if (page->objects > maxobj) {
924 slab_err(s, page, "objects %u > max %u",
f6edde9c 925 page->objects, maxobj);
39b26464
CL
926 return 0;
927 }
928 if (page->inuse > page->objects) {
24922684 929 slab_err(s, page, "inuse %u > max %u",
f6edde9c 930 page->inuse, page->objects);
81819f0f
CL
931 return 0;
932 }
933 /* Slab_pad_check fixes things up after itself */
934 slab_pad_check(s, page);
935 return 1;
936}
937
938/*
672bba3a
CL
939 * Determine if a certain object on a page is on the freelist. Must hold the
940 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
941 */
942static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
943{
944 int nr = 0;
881db7fb 945 void *fp;
81819f0f 946 void *object = NULL;
f6edde9c 947 int max_objects;
81819f0f 948
881db7fb 949 fp = page->freelist;
39b26464 950 while (fp && nr <= page->objects) {
81819f0f
CL
951 if (fp == search)
952 return 1;
953 if (!check_valid_pointer(s, page, fp)) {
954 if (object) {
955 object_err(s, page, object,
956 "Freechain corrupt");
a973e9dd 957 set_freepointer(s, object, NULL);
81819f0f 958 } else {
24922684 959 slab_err(s, page, "Freepointer corrupt");
a973e9dd 960 page->freelist = NULL;
39b26464 961 page->inuse = page->objects;
24922684 962 slab_fix(s, "Freelist cleared");
81819f0f
CL
963 return 0;
964 }
965 break;
966 }
967 object = fp;
968 fp = get_freepointer(s, object);
969 nr++;
970 }
971
9736d2a9 972 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
973 if (max_objects > MAX_OBJS_PER_PAGE)
974 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
975
976 if (page->objects != max_objects) {
756a025f
JP
977 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
978 page->objects, max_objects);
224a88be
CL
979 page->objects = max_objects;
980 slab_fix(s, "Number of objects adjusted.");
981 }
39b26464 982 if (page->inuse != page->objects - nr) {
756a025f
JP
983 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
984 page->inuse, page->objects - nr);
39b26464 985 page->inuse = page->objects - nr;
24922684 986 slab_fix(s, "Object count adjusted.");
81819f0f
CL
987 }
988 return search == NULL;
989}
990
0121c619
CL
991static void trace(struct kmem_cache *s, struct page *page, void *object,
992 int alloc)
3ec09742
CL
993{
994 if (s->flags & SLAB_TRACE) {
f9f58285 995 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
996 s->name,
997 alloc ? "alloc" : "free",
998 object, page->inuse,
999 page->freelist);
1000
1001 if (!alloc)
aa2efd5e 1002 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1003 s->object_size);
3ec09742
CL
1004
1005 dump_stack();
1006 }
1007}
1008
643b1138 1009/*
672bba3a 1010 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1011 */
5cc6eee8
CL
1012static void add_full(struct kmem_cache *s,
1013 struct kmem_cache_node *n, struct page *page)
643b1138 1014{
5cc6eee8
CL
1015 if (!(s->flags & SLAB_STORE_USER))
1016 return;
1017
255d0884 1018 lockdep_assert_held(&n->list_lock);
643b1138 1019 list_add(&page->lru, &n->full);
643b1138
CL
1020}
1021
c65c1877 1022static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1023{
643b1138
CL
1024 if (!(s->flags & SLAB_STORE_USER))
1025 return;
1026
255d0884 1027 lockdep_assert_held(&n->list_lock);
643b1138 1028 list_del(&page->lru);
643b1138
CL
1029}
1030
0f389ec6
CL
1031/* Tracking of the number of slabs for debugging purposes */
1032static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1033{
1034 struct kmem_cache_node *n = get_node(s, node);
1035
1036 return atomic_long_read(&n->nr_slabs);
1037}
1038
26c02cf0
AB
1039static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1040{
1041 return atomic_long_read(&n->nr_slabs);
1042}
1043
205ab99d 1044static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1045{
1046 struct kmem_cache_node *n = get_node(s, node);
1047
1048 /*
1049 * May be called early in order to allocate a slab for the
1050 * kmem_cache_node structure. Solve the chicken-egg
1051 * dilemma by deferring the increment of the count during
1052 * bootstrap (see early_kmem_cache_node_alloc).
1053 */
338b2642 1054 if (likely(n)) {
0f389ec6 1055 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1056 atomic_long_add(objects, &n->total_objects);
1057 }
0f389ec6 1058}
205ab99d 1059static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1060{
1061 struct kmem_cache_node *n = get_node(s, node);
1062
1063 atomic_long_dec(&n->nr_slabs);
205ab99d 1064 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1065}
1066
1067/* Object debug checks for alloc/free paths */
3ec09742
CL
1068static void setup_object_debug(struct kmem_cache *s, struct page *page,
1069 void *object)
1070{
1071 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1072 return;
1073
f7cb1933 1074 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1075 init_tracking(s, object);
1076}
1077
becfda68 1078static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1079 struct page *page,
ce71e27c 1080 void *object, unsigned long addr)
81819f0f
CL
1081{
1082 if (!check_slab(s, page))
becfda68 1083 return 0;
81819f0f 1084
81819f0f
CL
1085 if (!check_valid_pointer(s, page, object)) {
1086 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1087 return 0;
81819f0f
CL
1088 }
1089
f7cb1933 1090 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1091 return 0;
1092
1093 return 1;
1094}
1095
1096static noinline int alloc_debug_processing(struct kmem_cache *s,
1097 struct page *page,
1098 void *object, unsigned long addr)
1099{
1100 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1101 if (!alloc_consistency_checks(s, page, object, addr))
1102 goto bad;
1103 }
81819f0f 1104
3ec09742
CL
1105 /* Success perform special debug activities for allocs */
1106 if (s->flags & SLAB_STORE_USER)
1107 set_track(s, object, TRACK_ALLOC, addr);
1108 trace(s, page, object, 1);
f7cb1933 1109 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1110 return 1;
3ec09742 1111
81819f0f
CL
1112bad:
1113 if (PageSlab(page)) {
1114 /*
1115 * If this is a slab page then lets do the best we can
1116 * to avoid issues in the future. Marking all objects
672bba3a 1117 * as used avoids touching the remaining objects.
81819f0f 1118 */
24922684 1119 slab_fix(s, "Marking all objects used");
39b26464 1120 page->inuse = page->objects;
a973e9dd 1121 page->freelist = NULL;
81819f0f
CL
1122 }
1123 return 0;
1124}
1125
becfda68
LA
1126static inline int free_consistency_checks(struct kmem_cache *s,
1127 struct page *page, void *object, unsigned long addr)
81819f0f 1128{
81819f0f 1129 if (!check_valid_pointer(s, page, object)) {
70d71228 1130 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1131 return 0;
81819f0f
CL
1132 }
1133
1134 if (on_freelist(s, page, object)) {
24922684 1135 object_err(s, page, object, "Object already free");
becfda68 1136 return 0;
81819f0f
CL
1137 }
1138
f7cb1933 1139 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1140 return 0;
81819f0f 1141
1b4f59e3 1142 if (unlikely(s != page->slab_cache)) {
3adbefee 1143 if (!PageSlab(page)) {
756a025f
JP
1144 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1145 object);
1b4f59e3 1146 } else if (!page->slab_cache) {
f9f58285
FF
1147 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1148 object);
70d71228 1149 dump_stack();
06428780 1150 } else
24922684
CL
1151 object_err(s, page, object,
1152 "page slab pointer corrupt.");
becfda68
LA
1153 return 0;
1154 }
1155 return 1;
1156}
1157
1158/* Supports checking bulk free of a constructed freelist */
1159static noinline int free_debug_processing(
1160 struct kmem_cache *s, struct page *page,
1161 void *head, void *tail, int bulk_cnt,
1162 unsigned long addr)
1163{
1164 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1165 void *object = head;
1166 int cnt = 0;
1167 unsigned long uninitialized_var(flags);
1168 int ret = 0;
1169
1170 spin_lock_irqsave(&n->list_lock, flags);
1171 slab_lock(page);
1172
1173 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1174 if (!check_slab(s, page))
1175 goto out;
1176 }
1177
1178next_object:
1179 cnt++;
1180
1181 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1182 if (!free_consistency_checks(s, page, object, addr))
1183 goto out;
81819f0f 1184 }
3ec09742 1185
3ec09742
CL
1186 if (s->flags & SLAB_STORE_USER)
1187 set_track(s, object, TRACK_FREE, addr);
1188 trace(s, page, object, 0);
81084651 1189 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1190 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1191
1192 /* Reached end of constructed freelist yet? */
1193 if (object != tail) {
1194 object = get_freepointer(s, object);
1195 goto next_object;
1196 }
804aa132
LA
1197 ret = 1;
1198
5c2e4bbb 1199out:
81084651
JDB
1200 if (cnt != bulk_cnt)
1201 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1202 bulk_cnt, cnt);
1203
881db7fb 1204 slab_unlock(page);
282acb43 1205 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1206 if (!ret)
1207 slab_fix(s, "Object at 0x%p not freed", object);
1208 return ret;
81819f0f
CL
1209}
1210
41ecc55b
CL
1211static int __init setup_slub_debug(char *str)
1212{
f0630fff
CL
1213 slub_debug = DEBUG_DEFAULT_FLAGS;
1214 if (*str++ != '=' || !*str)
1215 /*
1216 * No options specified. Switch on full debugging.
1217 */
1218 goto out;
1219
1220 if (*str == ',')
1221 /*
1222 * No options but restriction on slabs. This means full
1223 * debugging for slabs matching a pattern.
1224 */
1225 goto check_slabs;
1226
1227 slub_debug = 0;
1228 if (*str == '-')
1229 /*
1230 * Switch off all debugging measures.
1231 */
1232 goto out;
1233
1234 /*
1235 * Determine which debug features should be switched on
1236 */
06428780 1237 for (; *str && *str != ','; str++) {
f0630fff
CL
1238 switch (tolower(*str)) {
1239 case 'f':
becfda68 1240 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1241 break;
1242 case 'z':
1243 slub_debug |= SLAB_RED_ZONE;
1244 break;
1245 case 'p':
1246 slub_debug |= SLAB_POISON;
1247 break;
1248 case 'u':
1249 slub_debug |= SLAB_STORE_USER;
1250 break;
1251 case 't':
1252 slub_debug |= SLAB_TRACE;
1253 break;
4c13dd3b
DM
1254 case 'a':
1255 slub_debug |= SLAB_FAILSLAB;
1256 break;
08303a73
CA
1257 case 'o':
1258 /*
1259 * Avoid enabling debugging on caches if its minimum
1260 * order would increase as a result.
1261 */
1262 disable_higher_order_debug = 1;
1263 break;
f0630fff 1264 default:
f9f58285
FF
1265 pr_err("slub_debug option '%c' unknown. skipped\n",
1266 *str);
f0630fff 1267 }
41ecc55b
CL
1268 }
1269
f0630fff 1270check_slabs:
41ecc55b
CL
1271 if (*str == ',')
1272 slub_debug_slabs = str + 1;
f0630fff 1273out:
41ecc55b
CL
1274 return 1;
1275}
1276
1277__setup("slub_debug", setup_slub_debug);
1278
c5fd3ca0
AT
1279/*
1280 * kmem_cache_flags - apply debugging options to the cache
1281 * @object_size: the size of an object without meta data
1282 * @flags: flags to set
1283 * @name: name of the cache
1284 * @ctor: constructor function
1285 *
1286 * Debug option(s) are applied to @flags. In addition to the debug
1287 * option(s), if a slab name (or multiple) is specified i.e.
1288 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1289 * then only the select slabs will receive the debug option(s).
1290 */
0293d1fd 1291slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1292 slab_flags_t flags, const char *name,
51cc5068 1293 void (*ctor)(void *))
41ecc55b 1294{
c5fd3ca0
AT
1295 char *iter;
1296 size_t len;
1297
1298 /* If slub_debug = 0, it folds into the if conditional. */
1299 if (!slub_debug_slabs)
1300 return flags | slub_debug;
1301
1302 len = strlen(name);
1303 iter = slub_debug_slabs;
1304 while (*iter) {
1305 char *end, *glob;
1306 size_t cmplen;
1307
1308 end = strchr(iter, ',');
1309 if (!end)
1310 end = iter + strlen(iter);
1311
1312 glob = strnchr(iter, end - iter, '*');
1313 if (glob)
1314 cmplen = glob - iter;
1315 else
1316 cmplen = max_t(size_t, len, (end - iter));
1317
1318 if (!strncmp(name, iter, cmplen)) {
1319 flags |= slub_debug;
1320 break;
1321 }
1322
1323 if (!*end)
1324 break;
1325 iter = end + 1;
1326 }
ba0268a8
CL
1327
1328 return flags;
41ecc55b 1329}
b4a64718 1330#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1331static inline void setup_object_debug(struct kmem_cache *s,
1332 struct page *page, void *object) {}
41ecc55b 1333
3ec09742 1334static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1335 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1336
282acb43 1337static inline int free_debug_processing(
81084651
JDB
1338 struct kmem_cache *s, struct page *page,
1339 void *head, void *tail, int bulk_cnt,
282acb43 1340 unsigned long addr) { return 0; }
41ecc55b 1341
41ecc55b
CL
1342static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1343 { return 1; }
1344static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1345 void *object, u8 val) { return 1; }
5cc6eee8
CL
1346static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1347 struct page *page) {}
c65c1877
PZ
1348static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1349 struct page *page) {}
0293d1fd 1350slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1351 slab_flags_t flags, const char *name,
51cc5068 1352 void (*ctor)(void *))
ba0268a8
CL
1353{
1354 return flags;
1355}
41ecc55b 1356#define slub_debug 0
0f389ec6 1357
fdaa45e9
IM
1358#define disable_higher_order_debug 0
1359
0f389ec6
CL
1360static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1361 { return 0; }
26c02cf0
AB
1362static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1363 { return 0; }
205ab99d
CL
1364static inline void inc_slabs_node(struct kmem_cache *s, int node,
1365 int objects) {}
1366static inline void dec_slabs_node(struct kmem_cache *s, int node,
1367 int objects) {}
7d550c56 1368
02e72cc6
AR
1369#endif /* CONFIG_SLUB_DEBUG */
1370
1371/*
1372 * Hooks for other subsystems that check memory allocations. In a typical
1373 * production configuration these hooks all should produce no code at all.
1374 */
d56791b3
RB
1375static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1376{
1377 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1378 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1379}
1380
ee3ce779 1381static __always_inline void kfree_hook(void *x)
d56791b3
RB
1382{
1383 kmemleak_free(x);
ee3ce779 1384 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1385}
1386
c3895391 1387static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1388{
1389 kmemleak_free_recursive(x, s->flags);
7d550c56 1390
02e72cc6
AR
1391 /*
1392 * Trouble is that we may no longer disable interrupts in the fast path
1393 * So in order to make the debug calls that expect irqs to be
1394 * disabled we need to disable interrupts temporarily.
1395 */
4675ff05 1396#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1397 {
1398 unsigned long flags;
1399
1400 local_irq_save(flags);
02e72cc6
AR
1401 debug_check_no_locks_freed(x, s->object_size);
1402 local_irq_restore(flags);
1403 }
1404#endif
1405 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1406 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1407
c3895391
AK
1408 /* KASAN might put x into memory quarantine, delaying its reuse */
1409 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1410}
205ab99d 1411
c3895391
AK
1412static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1413 void **head, void **tail)
81084651
JDB
1414{
1415/*
1416 * Compiler cannot detect this function can be removed if slab_free_hook()
1417 * evaluates to nothing. Thus, catch all relevant config debug options here.
1418 */
4675ff05 1419#if defined(CONFIG_LOCKDEP) || \
81084651
JDB
1420 defined(CONFIG_DEBUG_KMEMLEAK) || \
1421 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1422 defined(CONFIG_KASAN)
1423
c3895391
AK
1424 void *object;
1425 void *next = *head;
1426 void *old_tail = *tail ? *tail : *head;
1427
1428 /* Head and tail of the reconstructed freelist */
1429 *head = NULL;
1430 *tail = NULL;
81084651
JDB
1431
1432 do {
c3895391
AK
1433 object = next;
1434 next = get_freepointer(s, object);
1435 /* If object's reuse doesn't have to be delayed */
1436 if (!slab_free_hook(s, object)) {
1437 /* Move object to the new freelist */
1438 set_freepointer(s, object, *head);
1439 *head = object;
1440 if (!*tail)
1441 *tail = object;
1442 }
1443 } while (object != old_tail);
1444
1445 if (*head == *tail)
1446 *tail = NULL;
1447
1448 return *head != NULL;
1449#else
1450 return true;
81084651
JDB
1451#endif
1452}
1453
588f8ba9
TG
1454static void setup_object(struct kmem_cache *s, struct page *page,
1455 void *object)
1456{
1457 setup_object_debug(s, page, object);
b3cbd9bf 1458 kasan_init_slab_obj(s, object);
588f8ba9
TG
1459 if (unlikely(s->ctor)) {
1460 kasan_unpoison_object_data(s, object);
1461 s->ctor(object);
1462 kasan_poison_object_data(s, object);
1463 }
1464}
1465
81819f0f
CL
1466/*
1467 * Slab allocation and freeing
1468 */
5dfb4175
VD
1469static inline struct page *alloc_slab_page(struct kmem_cache *s,
1470 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1471{
5dfb4175 1472 struct page *page;
19af27af 1473 unsigned int order = oo_order(oo);
65c3376a 1474
2154a336 1475 if (node == NUMA_NO_NODE)
5dfb4175 1476 page = alloc_pages(flags, order);
65c3376a 1477 else
96db800f 1478 page = __alloc_pages_node(node, flags, order);
5dfb4175 1479
f3ccb2c4
VD
1480 if (page && memcg_charge_slab(page, flags, order, s)) {
1481 __free_pages(page, order);
1482 page = NULL;
1483 }
5dfb4175
VD
1484
1485 return page;
65c3376a
CL
1486}
1487
210e7a43
TG
1488#ifdef CONFIG_SLAB_FREELIST_RANDOM
1489/* Pre-initialize the random sequence cache */
1490static int init_cache_random_seq(struct kmem_cache *s)
1491{
19af27af 1492 unsigned int count = oo_objects(s->oo);
210e7a43 1493 int err;
210e7a43 1494
a810007a
SR
1495 /* Bailout if already initialised */
1496 if (s->random_seq)
1497 return 0;
1498
210e7a43
TG
1499 err = cache_random_seq_create(s, count, GFP_KERNEL);
1500 if (err) {
1501 pr_err("SLUB: Unable to initialize free list for %s\n",
1502 s->name);
1503 return err;
1504 }
1505
1506 /* Transform to an offset on the set of pages */
1507 if (s->random_seq) {
19af27af
AD
1508 unsigned int i;
1509
210e7a43
TG
1510 for (i = 0; i < count; i++)
1511 s->random_seq[i] *= s->size;
1512 }
1513 return 0;
1514}
1515
1516/* Initialize each random sequence freelist per cache */
1517static void __init init_freelist_randomization(void)
1518{
1519 struct kmem_cache *s;
1520
1521 mutex_lock(&slab_mutex);
1522
1523 list_for_each_entry(s, &slab_caches, list)
1524 init_cache_random_seq(s);
1525
1526 mutex_unlock(&slab_mutex);
1527}
1528
1529/* Get the next entry on the pre-computed freelist randomized */
1530static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1531 unsigned long *pos, void *start,
1532 unsigned long page_limit,
1533 unsigned long freelist_count)
1534{
1535 unsigned int idx;
1536
1537 /*
1538 * If the target page allocation failed, the number of objects on the
1539 * page might be smaller than the usual size defined by the cache.
1540 */
1541 do {
1542 idx = s->random_seq[*pos];
1543 *pos += 1;
1544 if (*pos >= freelist_count)
1545 *pos = 0;
1546 } while (unlikely(idx >= page_limit));
1547
1548 return (char *)start + idx;
1549}
1550
1551/* Shuffle the single linked freelist based on a random pre-computed sequence */
1552static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1553{
1554 void *start;
1555 void *cur;
1556 void *next;
1557 unsigned long idx, pos, page_limit, freelist_count;
1558
1559 if (page->objects < 2 || !s->random_seq)
1560 return false;
1561
1562 freelist_count = oo_objects(s->oo);
1563 pos = get_random_int() % freelist_count;
1564
1565 page_limit = page->objects * s->size;
1566 start = fixup_red_left(s, page_address(page));
1567
1568 /* First entry is used as the base of the freelist */
1569 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1570 freelist_count);
1571 page->freelist = cur;
1572
1573 for (idx = 1; idx < page->objects; idx++) {
1574 setup_object(s, page, cur);
1575 next = next_freelist_entry(s, page, &pos, start, page_limit,
1576 freelist_count);
1577 set_freepointer(s, cur, next);
1578 cur = next;
1579 }
1580 setup_object(s, page, cur);
1581 set_freepointer(s, cur, NULL);
1582
1583 return true;
1584}
1585#else
1586static inline int init_cache_random_seq(struct kmem_cache *s)
1587{
1588 return 0;
1589}
1590static inline void init_freelist_randomization(void) { }
1591static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1592{
1593 return false;
1594}
1595#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1596
81819f0f
CL
1597static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1598{
06428780 1599 struct page *page;
834f3d11 1600 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1601 gfp_t alloc_gfp;
588f8ba9
TG
1602 void *start, *p;
1603 int idx, order;
210e7a43 1604 bool shuffle;
81819f0f 1605
7e0528da
CL
1606 flags &= gfp_allowed_mask;
1607
d0164adc 1608 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1609 local_irq_enable();
1610
b7a49f0d 1611 flags |= s->allocflags;
e12ba74d 1612
ba52270d
PE
1613 /*
1614 * Let the initial higher-order allocation fail under memory pressure
1615 * so we fall-back to the minimum order allocation.
1616 */
1617 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1618 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1619 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1620
5dfb4175 1621 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1622 if (unlikely(!page)) {
1623 oo = s->min;
80c3a998 1624 alloc_gfp = flags;
65c3376a
CL
1625 /*
1626 * Allocation may have failed due to fragmentation.
1627 * Try a lower order alloc if possible
1628 */
5dfb4175 1629 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1630 if (unlikely(!page))
1631 goto out;
1632 stat(s, ORDER_FALLBACK);
65c3376a 1633 }
5a896d9e 1634
834f3d11 1635 page->objects = oo_objects(oo);
81819f0f 1636
1f458cbf 1637 order = compound_order(page);
1b4f59e3 1638 page->slab_cache = s;
c03f94cc 1639 __SetPageSlab(page);
2f064f34 1640 if (page_is_pfmemalloc(page))
072bb0aa 1641 SetPageSlabPfmemalloc(page);
81819f0f
CL
1642
1643 start = page_address(page);
81819f0f
CL
1644
1645 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1646 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1647
0316bec2
AR
1648 kasan_poison_slab(page);
1649
210e7a43
TG
1650 shuffle = shuffle_freelist(s, page);
1651
1652 if (!shuffle) {
1653 for_each_object_idx(p, idx, s, start, page->objects) {
1654 setup_object(s, page, p);
1655 if (likely(idx < page->objects))
1656 set_freepointer(s, p, p + s->size);
1657 else
1658 set_freepointer(s, p, NULL);
1659 }
1660 page->freelist = fixup_red_left(s, start);
81819f0f 1661 }
81819f0f 1662
e6e82ea1 1663 page->inuse = page->objects;
8cb0a506 1664 page->frozen = 1;
588f8ba9 1665
81819f0f 1666out:
d0164adc 1667 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1668 local_irq_disable();
1669 if (!page)
1670 return NULL;
1671
7779f212 1672 mod_lruvec_page_state(page,
588f8ba9
TG
1673 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1674 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1675 1 << oo_order(oo));
1676
1677 inc_slabs_node(s, page_to_nid(page), page->objects);
1678
81819f0f
CL
1679 return page;
1680}
1681
588f8ba9
TG
1682static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1683{
1684 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1685 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1686 flags &= ~GFP_SLAB_BUG_MASK;
1687 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1688 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1689 dump_stack();
588f8ba9
TG
1690 }
1691
1692 return allocate_slab(s,
1693 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1694}
1695
81819f0f
CL
1696static void __free_slab(struct kmem_cache *s, struct page *page)
1697{
834f3d11
CL
1698 int order = compound_order(page);
1699 int pages = 1 << order;
81819f0f 1700
becfda68 1701 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1702 void *p;
1703
1704 slab_pad_check(s, page);
224a88be
CL
1705 for_each_object(p, s, page_address(page),
1706 page->objects)
f7cb1933 1707 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1708 }
1709
7779f212 1710 mod_lruvec_page_state(page,
81819f0f
CL
1711 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1712 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1713 -pages);
81819f0f 1714
072bb0aa 1715 __ClearPageSlabPfmemalloc(page);
49bd5221 1716 __ClearPageSlab(page);
1f458cbf 1717
d4fc5069 1718 page->mapping = NULL;
1eb5ac64
NP
1719 if (current->reclaim_state)
1720 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1721 memcg_uncharge_slab(page, order, s);
1722 __free_pages(page, order);
81819f0f
CL
1723}
1724
1725static void rcu_free_slab(struct rcu_head *h)
1726{
bf68c214 1727 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1728
1b4f59e3 1729 __free_slab(page->slab_cache, page);
81819f0f
CL
1730}
1731
1732static void free_slab(struct kmem_cache *s, struct page *page)
1733{
5f0d5a3a 1734 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1735 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1736 } else
1737 __free_slab(s, page);
1738}
1739
1740static void discard_slab(struct kmem_cache *s, struct page *page)
1741{
205ab99d 1742 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1743 free_slab(s, page);
1744}
1745
1746/*
5cc6eee8 1747 * Management of partially allocated slabs.
81819f0f 1748 */
1e4dd946
SR
1749static inline void
1750__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1751{
e95eed57 1752 n->nr_partial++;
136333d1 1753 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1754 list_add_tail(&page->lru, &n->partial);
1755 else
1756 list_add(&page->lru, &n->partial);
81819f0f
CL
1757}
1758
1e4dd946
SR
1759static inline void add_partial(struct kmem_cache_node *n,
1760 struct page *page, int tail)
62e346a8 1761{
c65c1877 1762 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1763 __add_partial(n, page, tail);
1764}
c65c1877 1765
1e4dd946
SR
1766static inline void remove_partial(struct kmem_cache_node *n,
1767 struct page *page)
1768{
1769 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1770 list_del(&page->lru);
1771 n->nr_partial--;
1e4dd946
SR
1772}
1773
81819f0f 1774/*
7ced3719
CL
1775 * Remove slab from the partial list, freeze it and
1776 * return the pointer to the freelist.
81819f0f 1777 *
497b66f2 1778 * Returns a list of objects or NULL if it fails.
81819f0f 1779 */
497b66f2 1780static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1781 struct kmem_cache_node *n, struct page *page,
633b0764 1782 int mode, int *objects)
81819f0f 1783{
2cfb7455
CL
1784 void *freelist;
1785 unsigned long counters;
1786 struct page new;
1787
c65c1877
PZ
1788 lockdep_assert_held(&n->list_lock);
1789
2cfb7455
CL
1790 /*
1791 * Zap the freelist and set the frozen bit.
1792 * The old freelist is the list of objects for the
1793 * per cpu allocation list.
1794 */
7ced3719
CL
1795 freelist = page->freelist;
1796 counters = page->counters;
1797 new.counters = counters;
633b0764 1798 *objects = new.objects - new.inuse;
23910c50 1799 if (mode) {
7ced3719 1800 new.inuse = page->objects;
23910c50
PE
1801 new.freelist = NULL;
1802 } else {
1803 new.freelist = freelist;
1804 }
2cfb7455 1805
a0132ac0 1806 VM_BUG_ON(new.frozen);
7ced3719 1807 new.frozen = 1;
2cfb7455 1808
7ced3719 1809 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1810 freelist, counters,
02d7633f 1811 new.freelist, new.counters,
7ced3719 1812 "acquire_slab"))
7ced3719 1813 return NULL;
2cfb7455
CL
1814
1815 remove_partial(n, page);
7ced3719 1816 WARN_ON(!freelist);
49e22585 1817 return freelist;
81819f0f
CL
1818}
1819
633b0764 1820static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1821static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1822
81819f0f 1823/*
672bba3a 1824 * Try to allocate a partial slab from a specific node.
81819f0f 1825 */
8ba00bb6
JK
1826static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1827 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1828{
49e22585
CL
1829 struct page *page, *page2;
1830 void *object = NULL;
e5d9998f 1831 unsigned int available = 0;
633b0764 1832 int objects;
81819f0f
CL
1833
1834 /*
1835 * Racy check. If we mistakenly see no partial slabs then we
1836 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1837 * partial slab and there is none available then get_partials()
1838 * will return NULL.
81819f0f
CL
1839 */
1840 if (!n || !n->nr_partial)
1841 return NULL;
1842
1843 spin_lock(&n->list_lock);
49e22585 1844 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1845 void *t;
49e22585 1846
8ba00bb6
JK
1847 if (!pfmemalloc_match(page, flags))
1848 continue;
1849
633b0764 1850 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1851 if (!t)
1852 break;
1853
633b0764 1854 available += objects;
12d79634 1855 if (!object) {
49e22585 1856 c->page = page;
49e22585 1857 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1858 object = t;
49e22585 1859 } else {
633b0764 1860 put_cpu_partial(s, page, 0);
8028dcea 1861 stat(s, CPU_PARTIAL_NODE);
49e22585 1862 }
345c905d 1863 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1864 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1865 break;
1866
497b66f2 1867 }
81819f0f 1868 spin_unlock(&n->list_lock);
497b66f2 1869 return object;
81819f0f
CL
1870}
1871
1872/*
672bba3a 1873 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1874 */
de3ec035 1875static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1876 struct kmem_cache_cpu *c)
81819f0f
CL
1877{
1878#ifdef CONFIG_NUMA
1879 struct zonelist *zonelist;
dd1a239f 1880 struct zoneref *z;
54a6eb5c
MG
1881 struct zone *zone;
1882 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1883 void *object;
cc9a6c87 1884 unsigned int cpuset_mems_cookie;
81819f0f
CL
1885
1886 /*
672bba3a
CL
1887 * The defrag ratio allows a configuration of the tradeoffs between
1888 * inter node defragmentation and node local allocations. A lower
1889 * defrag_ratio increases the tendency to do local allocations
1890 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1891 *
672bba3a
CL
1892 * If the defrag_ratio is set to 0 then kmalloc() always
1893 * returns node local objects. If the ratio is higher then kmalloc()
1894 * may return off node objects because partial slabs are obtained
1895 * from other nodes and filled up.
81819f0f 1896 *
43efd3ea
LP
1897 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1898 * (which makes defrag_ratio = 1000) then every (well almost)
1899 * allocation will first attempt to defrag slab caches on other nodes.
1900 * This means scanning over all nodes to look for partial slabs which
1901 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1902 * with available objects.
81819f0f 1903 */
9824601e
CL
1904 if (!s->remote_node_defrag_ratio ||
1905 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1906 return NULL;
1907
cc9a6c87 1908 do {
d26914d1 1909 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1910 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1911 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1912 struct kmem_cache_node *n;
1913
1914 n = get_node(s, zone_to_nid(zone));
1915
dee2f8aa 1916 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1917 n->nr_partial > s->min_partial) {
8ba00bb6 1918 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1919 if (object) {
1920 /*
d26914d1
MG
1921 * Don't check read_mems_allowed_retry()
1922 * here - if mems_allowed was updated in
1923 * parallel, that was a harmless race
1924 * between allocation and the cpuset
1925 * update
cc9a6c87 1926 */
cc9a6c87
MG
1927 return object;
1928 }
c0ff7453 1929 }
81819f0f 1930 }
d26914d1 1931 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1932#endif
1933 return NULL;
1934}
1935
1936/*
1937 * Get a partial page, lock it and return it.
1938 */
497b66f2 1939static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1940 struct kmem_cache_cpu *c)
81819f0f 1941{
497b66f2 1942 void *object;
a561ce00
JK
1943 int searchnode = node;
1944
1945 if (node == NUMA_NO_NODE)
1946 searchnode = numa_mem_id();
1947 else if (!node_present_pages(node))
1948 searchnode = node_to_mem_node(node);
81819f0f 1949
8ba00bb6 1950 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1951 if (object || node != NUMA_NO_NODE)
1952 return object;
81819f0f 1953
acd19fd1 1954 return get_any_partial(s, flags, c);
81819f0f
CL
1955}
1956
8a5ec0ba
CL
1957#ifdef CONFIG_PREEMPT
1958/*
1959 * Calculate the next globally unique transaction for disambiguiation
1960 * during cmpxchg. The transactions start with the cpu number and are then
1961 * incremented by CONFIG_NR_CPUS.
1962 */
1963#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1964#else
1965/*
1966 * No preemption supported therefore also no need to check for
1967 * different cpus.
1968 */
1969#define TID_STEP 1
1970#endif
1971
1972static inline unsigned long next_tid(unsigned long tid)
1973{
1974 return tid + TID_STEP;
1975}
1976
1977static inline unsigned int tid_to_cpu(unsigned long tid)
1978{
1979 return tid % TID_STEP;
1980}
1981
1982static inline unsigned long tid_to_event(unsigned long tid)
1983{
1984 return tid / TID_STEP;
1985}
1986
1987static inline unsigned int init_tid(int cpu)
1988{
1989 return cpu;
1990}
1991
1992static inline void note_cmpxchg_failure(const char *n,
1993 const struct kmem_cache *s, unsigned long tid)
1994{
1995#ifdef SLUB_DEBUG_CMPXCHG
1996 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1997
f9f58285 1998 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1999
2000#ifdef CONFIG_PREEMPT
2001 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2002 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2003 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2004 else
2005#endif
2006 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2007 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2008 tid_to_event(tid), tid_to_event(actual_tid));
2009 else
f9f58285 2010 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2011 actual_tid, tid, next_tid(tid));
2012#endif
4fdccdfb 2013 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2014}
2015
788e1aad 2016static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2017{
8a5ec0ba
CL
2018 int cpu;
2019
2020 for_each_possible_cpu(cpu)
2021 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2022}
2cfb7455 2023
81819f0f
CL
2024/*
2025 * Remove the cpu slab
2026 */
d0e0ac97 2027static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2028 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2029{
2cfb7455 2030 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2031 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2032 int lock = 0;
2033 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2034 void *nextfree;
136333d1 2035 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2036 struct page new;
2037 struct page old;
2038
2039 if (page->freelist) {
84e554e6 2040 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2041 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2042 }
2043
894b8788 2044 /*
2cfb7455
CL
2045 * Stage one: Free all available per cpu objects back
2046 * to the page freelist while it is still frozen. Leave the
2047 * last one.
2048 *
2049 * There is no need to take the list->lock because the page
2050 * is still frozen.
2051 */
2052 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2053 void *prior;
2054 unsigned long counters;
2055
2056 do {
2057 prior = page->freelist;
2058 counters = page->counters;
2059 set_freepointer(s, freelist, prior);
2060 new.counters = counters;
2061 new.inuse--;
a0132ac0 2062 VM_BUG_ON(!new.frozen);
2cfb7455 2063
1d07171c 2064 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2065 prior, counters,
2066 freelist, new.counters,
2067 "drain percpu freelist"));
2068
2069 freelist = nextfree;
2070 }
2071
894b8788 2072 /*
2cfb7455
CL
2073 * Stage two: Ensure that the page is unfrozen while the
2074 * list presence reflects the actual number of objects
2075 * during unfreeze.
2076 *
2077 * We setup the list membership and then perform a cmpxchg
2078 * with the count. If there is a mismatch then the page
2079 * is not unfrozen but the page is on the wrong list.
2080 *
2081 * Then we restart the process which may have to remove
2082 * the page from the list that we just put it on again
2083 * because the number of objects in the slab may have
2084 * changed.
894b8788 2085 */
2cfb7455 2086redo:
894b8788 2087
2cfb7455
CL
2088 old.freelist = page->freelist;
2089 old.counters = page->counters;
a0132ac0 2090 VM_BUG_ON(!old.frozen);
7c2e132c 2091
2cfb7455
CL
2092 /* Determine target state of the slab */
2093 new.counters = old.counters;
2094 if (freelist) {
2095 new.inuse--;
2096 set_freepointer(s, freelist, old.freelist);
2097 new.freelist = freelist;
2098 } else
2099 new.freelist = old.freelist;
2100
2101 new.frozen = 0;
2102
8a5b20ae 2103 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2104 m = M_FREE;
2105 else if (new.freelist) {
2106 m = M_PARTIAL;
2107 if (!lock) {
2108 lock = 1;
2109 /*
2110 * Taking the spinlock removes the possiblity
2111 * that acquire_slab() will see a slab page that
2112 * is frozen
2113 */
2114 spin_lock(&n->list_lock);
2115 }
2116 } else {
2117 m = M_FULL;
2118 if (kmem_cache_debug(s) && !lock) {
2119 lock = 1;
2120 /*
2121 * This also ensures that the scanning of full
2122 * slabs from diagnostic functions will not see
2123 * any frozen slabs.
2124 */
2125 spin_lock(&n->list_lock);
2126 }
2127 }
2128
2129 if (l != m) {
2130
2131 if (l == M_PARTIAL)
2132
2133 remove_partial(n, page);
2134
2135 else if (l == M_FULL)
894b8788 2136
c65c1877 2137 remove_full(s, n, page);
2cfb7455
CL
2138
2139 if (m == M_PARTIAL) {
2140
2141 add_partial(n, page, tail);
136333d1 2142 stat(s, tail);
2cfb7455
CL
2143
2144 } else if (m == M_FULL) {
894b8788 2145
2cfb7455
CL
2146 stat(s, DEACTIVATE_FULL);
2147 add_full(s, n, page);
2148
2149 }
2150 }
2151
2152 l = m;
1d07171c 2153 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2154 old.freelist, old.counters,
2155 new.freelist, new.counters,
2156 "unfreezing slab"))
2157 goto redo;
2158
2cfb7455
CL
2159 if (lock)
2160 spin_unlock(&n->list_lock);
2161
2162 if (m == M_FREE) {
2163 stat(s, DEACTIVATE_EMPTY);
2164 discard_slab(s, page);
2165 stat(s, FREE_SLAB);
894b8788 2166 }
d4ff6d35
WY
2167
2168 c->page = NULL;
2169 c->freelist = NULL;
81819f0f
CL
2170}
2171
d24ac77f
JK
2172/*
2173 * Unfreeze all the cpu partial slabs.
2174 *
59a09917
CL
2175 * This function must be called with interrupts disabled
2176 * for the cpu using c (or some other guarantee must be there
2177 * to guarantee no concurrent accesses).
d24ac77f 2178 */
59a09917
CL
2179static void unfreeze_partials(struct kmem_cache *s,
2180 struct kmem_cache_cpu *c)
49e22585 2181{
345c905d 2182#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2183 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2184 struct page *page, *discard_page = NULL;
49e22585
CL
2185
2186 while ((page = c->partial)) {
49e22585
CL
2187 struct page new;
2188 struct page old;
2189
2190 c->partial = page->next;
43d77867
JK
2191
2192 n2 = get_node(s, page_to_nid(page));
2193 if (n != n2) {
2194 if (n)
2195 spin_unlock(&n->list_lock);
2196
2197 n = n2;
2198 spin_lock(&n->list_lock);
2199 }
49e22585
CL
2200
2201 do {
2202
2203 old.freelist = page->freelist;
2204 old.counters = page->counters;
a0132ac0 2205 VM_BUG_ON(!old.frozen);
49e22585
CL
2206
2207 new.counters = old.counters;
2208 new.freelist = old.freelist;
2209
2210 new.frozen = 0;
2211
d24ac77f 2212 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2213 old.freelist, old.counters,
2214 new.freelist, new.counters,
2215 "unfreezing slab"));
2216
8a5b20ae 2217 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2218 page->next = discard_page;
2219 discard_page = page;
43d77867
JK
2220 } else {
2221 add_partial(n, page, DEACTIVATE_TO_TAIL);
2222 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2223 }
2224 }
2225
2226 if (n)
2227 spin_unlock(&n->list_lock);
9ada1934
SL
2228
2229 while (discard_page) {
2230 page = discard_page;
2231 discard_page = discard_page->next;
2232
2233 stat(s, DEACTIVATE_EMPTY);
2234 discard_slab(s, page);
2235 stat(s, FREE_SLAB);
2236 }
345c905d 2237#endif
49e22585
CL
2238}
2239
2240/*
2241 * Put a page that was just frozen (in __slab_free) into a partial page
0d2d5d40 2242 * slot if available.
49e22585
CL
2243 *
2244 * If we did not find a slot then simply move all the partials to the
2245 * per node partial list.
2246 */
633b0764 2247static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2248{
345c905d 2249#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2250 struct page *oldpage;
2251 int pages;
2252 int pobjects;
2253
d6e0b7fa 2254 preempt_disable();
49e22585
CL
2255 do {
2256 pages = 0;
2257 pobjects = 0;
2258 oldpage = this_cpu_read(s->cpu_slab->partial);
2259
2260 if (oldpage) {
2261 pobjects = oldpage->pobjects;
2262 pages = oldpage->pages;
2263 if (drain && pobjects > s->cpu_partial) {
2264 unsigned long flags;
2265 /*
2266 * partial array is full. Move the existing
2267 * set to the per node partial list.
2268 */
2269 local_irq_save(flags);
59a09917 2270 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2271 local_irq_restore(flags);
e24fc410 2272 oldpage = NULL;
49e22585
CL
2273 pobjects = 0;
2274 pages = 0;
8028dcea 2275 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2276 }
2277 }
2278
2279 pages++;
2280 pobjects += page->objects - page->inuse;
2281
2282 page->pages = pages;
2283 page->pobjects = pobjects;
2284 page->next = oldpage;
2285
d0e0ac97
CG
2286 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2287 != oldpage);
d6e0b7fa
VD
2288 if (unlikely(!s->cpu_partial)) {
2289 unsigned long flags;
2290
2291 local_irq_save(flags);
2292 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2293 local_irq_restore(flags);
2294 }
2295 preempt_enable();
345c905d 2296#endif
49e22585
CL
2297}
2298
dfb4f096 2299static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2300{
84e554e6 2301 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2302 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2303
2304 c->tid = next_tid(c->tid);
81819f0f
CL
2305}
2306
2307/*
2308 * Flush cpu slab.
6446faa2 2309 *
81819f0f
CL
2310 * Called from IPI handler with interrupts disabled.
2311 */
0c710013 2312static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2313{
9dfc6e68 2314 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2315
49e22585
CL
2316 if (likely(c)) {
2317 if (c->page)
2318 flush_slab(s, c);
2319
59a09917 2320 unfreeze_partials(s, c);
49e22585 2321 }
81819f0f
CL
2322}
2323
2324static void flush_cpu_slab(void *d)
2325{
2326 struct kmem_cache *s = d;
81819f0f 2327
dfb4f096 2328 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2329}
2330
a8364d55
GBY
2331static bool has_cpu_slab(int cpu, void *info)
2332{
2333 struct kmem_cache *s = info;
2334 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2335
a93cf07b 2336 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2337}
2338
81819f0f
CL
2339static void flush_all(struct kmem_cache *s)
2340{
a8364d55 2341 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2342}
2343
a96a87bf
SAS
2344/*
2345 * Use the cpu notifier to insure that the cpu slabs are flushed when
2346 * necessary.
2347 */
2348static int slub_cpu_dead(unsigned int cpu)
2349{
2350 struct kmem_cache *s;
2351 unsigned long flags;
2352
2353 mutex_lock(&slab_mutex);
2354 list_for_each_entry(s, &slab_caches, list) {
2355 local_irq_save(flags);
2356 __flush_cpu_slab(s, cpu);
2357 local_irq_restore(flags);
2358 }
2359 mutex_unlock(&slab_mutex);
2360 return 0;
2361}
2362
dfb4f096
CL
2363/*
2364 * Check if the objects in a per cpu structure fit numa
2365 * locality expectations.
2366 */
57d437d2 2367static inline int node_match(struct page *page, int node)
dfb4f096
CL
2368{
2369#ifdef CONFIG_NUMA
4d7868e6 2370 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2371 return 0;
2372#endif
2373 return 1;
2374}
2375
9a02d699 2376#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2377static int count_free(struct page *page)
2378{
2379 return page->objects - page->inuse;
2380}
2381
9a02d699
DR
2382static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2383{
2384 return atomic_long_read(&n->total_objects);
2385}
2386#endif /* CONFIG_SLUB_DEBUG */
2387
2388#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2389static unsigned long count_partial(struct kmem_cache_node *n,
2390 int (*get_count)(struct page *))
2391{
2392 unsigned long flags;
2393 unsigned long x = 0;
2394 struct page *page;
2395
2396 spin_lock_irqsave(&n->list_lock, flags);
2397 list_for_each_entry(page, &n->partial, lru)
2398 x += get_count(page);
2399 spin_unlock_irqrestore(&n->list_lock, flags);
2400 return x;
2401}
9a02d699 2402#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2403
781b2ba6
PE
2404static noinline void
2405slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2406{
9a02d699
DR
2407#ifdef CONFIG_SLUB_DEBUG
2408 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2409 DEFAULT_RATELIMIT_BURST);
781b2ba6 2410 int node;
fa45dc25 2411 struct kmem_cache_node *n;
781b2ba6 2412
9a02d699
DR
2413 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2414 return;
2415
5b3810e5
VB
2416 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2417 nid, gfpflags, &gfpflags);
19af27af 2418 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2419 s->name, s->object_size, s->size, oo_order(s->oo),
2420 oo_order(s->min));
781b2ba6 2421
3b0efdfa 2422 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2423 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2424 s->name);
fa5ec8a1 2425
fa45dc25 2426 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2427 unsigned long nr_slabs;
2428 unsigned long nr_objs;
2429 unsigned long nr_free;
2430
26c02cf0
AB
2431 nr_free = count_partial(n, count_free);
2432 nr_slabs = node_nr_slabs(n);
2433 nr_objs = node_nr_objs(n);
781b2ba6 2434
f9f58285 2435 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2436 node, nr_slabs, nr_objs, nr_free);
2437 }
9a02d699 2438#endif
781b2ba6
PE
2439}
2440
497b66f2
CL
2441static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2442 int node, struct kmem_cache_cpu **pc)
2443{
6faa6833 2444 void *freelist;
188fd063
CL
2445 struct kmem_cache_cpu *c = *pc;
2446 struct page *page;
497b66f2 2447
128227e7
MW
2448 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2449
188fd063 2450 freelist = get_partial(s, flags, node, c);
497b66f2 2451
188fd063
CL
2452 if (freelist)
2453 return freelist;
2454
2455 page = new_slab(s, flags, node);
497b66f2 2456 if (page) {
7c8e0181 2457 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2458 if (c->page)
2459 flush_slab(s, c);
2460
2461 /*
2462 * No other reference to the page yet so we can
2463 * muck around with it freely without cmpxchg
2464 */
6faa6833 2465 freelist = page->freelist;
497b66f2
CL
2466 page->freelist = NULL;
2467
2468 stat(s, ALLOC_SLAB);
497b66f2
CL
2469 c->page = page;
2470 *pc = c;
2471 } else
6faa6833 2472 freelist = NULL;
497b66f2 2473
6faa6833 2474 return freelist;
497b66f2
CL
2475}
2476
072bb0aa
MG
2477static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2478{
2479 if (unlikely(PageSlabPfmemalloc(page)))
2480 return gfp_pfmemalloc_allowed(gfpflags);
2481
2482 return true;
2483}
2484
213eeb9f 2485/*
d0e0ac97
CG
2486 * Check the page->freelist of a page and either transfer the freelist to the
2487 * per cpu freelist or deactivate the page.
213eeb9f
CL
2488 *
2489 * The page is still frozen if the return value is not NULL.
2490 *
2491 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2492 *
2493 * This function must be called with interrupt disabled.
213eeb9f
CL
2494 */
2495static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2496{
2497 struct page new;
2498 unsigned long counters;
2499 void *freelist;
2500
2501 do {
2502 freelist = page->freelist;
2503 counters = page->counters;
6faa6833 2504
213eeb9f 2505 new.counters = counters;
a0132ac0 2506 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2507
2508 new.inuse = page->objects;
2509 new.frozen = freelist != NULL;
2510
d24ac77f 2511 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2512 freelist, counters,
2513 NULL, new.counters,
2514 "get_freelist"));
2515
2516 return freelist;
2517}
2518
81819f0f 2519/*
894b8788
CL
2520 * Slow path. The lockless freelist is empty or we need to perform
2521 * debugging duties.
2522 *
894b8788
CL
2523 * Processing is still very fast if new objects have been freed to the
2524 * regular freelist. In that case we simply take over the regular freelist
2525 * as the lockless freelist and zap the regular freelist.
81819f0f 2526 *
894b8788
CL
2527 * If that is not working then we fall back to the partial lists. We take the
2528 * first element of the freelist as the object to allocate now and move the
2529 * rest of the freelist to the lockless freelist.
81819f0f 2530 *
894b8788 2531 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2532 * we need to allocate a new slab. This is the slowest path since it involves
2533 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2534 *
2535 * Version of __slab_alloc to use when we know that interrupts are
2536 * already disabled (which is the case for bulk allocation).
81819f0f 2537 */
a380a3c7 2538static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2539 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2540{
6faa6833 2541 void *freelist;
f6e7def7 2542 struct page *page;
81819f0f 2543
f6e7def7
CL
2544 page = c->page;
2545 if (!page)
81819f0f 2546 goto new_slab;
49e22585 2547redo:
6faa6833 2548
57d437d2 2549 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2550 int searchnode = node;
2551
2552 if (node != NUMA_NO_NODE && !node_present_pages(node))
2553 searchnode = node_to_mem_node(node);
2554
2555 if (unlikely(!node_match(page, searchnode))) {
2556 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2557 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2558 goto new_slab;
2559 }
fc59c053 2560 }
6446faa2 2561
072bb0aa
MG
2562 /*
2563 * By rights, we should be searching for a slab page that was
2564 * PFMEMALLOC but right now, we are losing the pfmemalloc
2565 * information when the page leaves the per-cpu allocator
2566 */
2567 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2568 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2569 goto new_slab;
2570 }
2571
73736e03 2572 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2573 freelist = c->freelist;
2574 if (freelist)
73736e03 2575 goto load_freelist;
03e404af 2576
f6e7def7 2577 freelist = get_freelist(s, page);
6446faa2 2578
6faa6833 2579 if (!freelist) {
03e404af
CL
2580 c->page = NULL;
2581 stat(s, DEACTIVATE_BYPASS);
fc59c053 2582 goto new_slab;
03e404af 2583 }
6446faa2 2584
84e554e6 2585 stat(s, ALLOC_REFILL);
6446faa2 2586
894b8788 2587load_freelist:
507effea
CL
2588 /*
2589 * freelist is pointing to the list of objects to be used.
2590 * page is pointing to the page from which the objects are obtained.
2591 * That page must be frozen for per cpu allocations to work.
2592 */
a0132ac0 2593 VM_BUG_ON(!c->page->frozen);
6faa6833 2594 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2595 c->tid = next_tid(c->tid);
6faa6833 2596 return freelist;
81819f0f 2597
81819f0f 2598new_slab:
2cfb7455 2599
a93cf07b
WY
2600 if (slub_percpu_partial(c)) {
2601 page = c->page = slub_percpu_partial(c);
2602 slub_set_percpu_partial(c, page);
49e22585 2603 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2604 goto redo;
81819f0f
CL
2605 }
2606
188fd063 2607 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2608
f4697436 2609 if (unlikely(!freelist)) {
9a02d699 2610 slab_out_of_memory(s, gfpflags, node);
f4697436 2611 return NULL;
81819f0f 2612 }
2cfb7455 2613
f6e7def7 2614 page = c->page;
5091b74a 2615 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2616 goto load_freelist;
2cfb7455 2617
497b66f2 2618 /* Only entered in the debug case */
d0e0ac97
CG
2619 if (kmem_cache_debug(s) &&
2620 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2621 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2622
d4ff6d35 2623 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2624 return freelist;
894b8788
CL
2625}
2626
a380a3c7
CL
2627/*
2628 * Another one that disabled interrupt and compensates for possible
2629 * cpu changes by refetching the per cpu area pointer.
2630 */
2631static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2632 unsigned long addr, struct kmem_cache_cpu *c)
2633{
2634 void *p;
2635 unsigned long flags;
2636
2637 local_irq_save(flags);
2638#ifdef CONFIG_PREEMPT
2639 /*
2640 * We may have been preempted and rescheduled on a different
2641 * cpu before disabling interrupts. Need to reload cpu area
2642 * pointer.
2643 */
2644 c = this_cpu_ptr(s->cpu_slab);
2645#endif
2646
2647 p = ___slab_alloc(s, gfpflags, node, addr, c);
2648 local_irq_restore(flags);
2649 return p;
2650}
2651
894b8788
CL
2652/*
2653 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2654 * have the fastpath folded into their functions. So no function call
2655 * overhead for requests that can be satisfied on the fastpath.
2656 *
2657 * The fastpath works by first checking if the lockless freelist can be used.
2658 * If not then __slab_alloc is called for slow processing.
2659 *
2660 * Otherwise we can simply pick the next object from the lockless free list.
2661 */
2b847c3c 2662static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2663 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2664{
03ec0ed5 2665 void *object;
dfb4f096 2666 struct kmem_cache_cpu *c;
57d437d2 2667 struct page *page;
8a5ec0ba 2668 unsigned long tid;
1f84260c 2669
8135be5a
VD
2670 s = slab_pre_alloc_hook(s, gfpflags);
2671 if (!s)
773ff60e 2672 return NULL;
8a5ec0ba 2673redo:
8a5ec0ba
CL
2674 /*
2675 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2676 * enabled. We may switch back and forth between cpus while
2677 * reading from one cpu area. That does not matter as long
2678 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2679 *
9aabf810
JK
2680 * We should guarantee that tid and kmem_cache are retrieved on
2681 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2682 * to check if it is matched or not.
8a5ec0ba 2683 */
9aabf810
JK
2684 do {
2685 tid = this_cpu_read(s->cpu_slab->tid);
2686 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2687 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2688 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2689
2690 /*
2691 * Irqless object alloc/free algorithm used here depends on sequence
2692 * of fetching cpu_slab's data. tid should be fetched before anything
2693 * on c to guarantee that object and page associated with previous tid
2694 * won't be used with current tid. If we fetch tid first, object and
2695 * page could be one associated with next tid and our alloc/free
2696 * request will be failed. In this case, we will retry. So, no problem.
2697 */
2698 barrier();
8a5ec0ba 2699
8a5ec0ba
CL
2700 /*
2701 * The transaction ids are globally unique per cpu and per operation on
2702 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2703 * occurs on the right processor and that there was no operation on the
2704 * linked list in between.
2705 */
8a5ec0ba 2706
9dfc6e68 2707 object = c->freelist;
57d437d2 2708 page = c->page;
8eae1492 2709 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2710 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2711 stat(s, ALLOC_SLOWPATH);
2712 } else {
0ad9500e
ED
2713 void *next_object = get_freepointer_safe(s, object);
2714
8a5ec0ba 2715 /*
25985edc 2716 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2717 * operation and if we are on the right processor.
2718 *
d0e0ac97
CG
2719 * The cmpxchg does the following atomically (without lock
2720 * semantics!)
8a5ec0ba
CL
2721 * 1. Relocate first pointer to the current per cpu area.
2722 * 2. Verify that tid and freelist have not been changed
2723 * 3. If they were not changed replace tid and freelist
2724 *
d0e0ac97
CG
2725 * Since this is without lock semantics the protection is only
2726 * against code executing on this cpu *not* from access by
2727 * other cpus.
8a5ec0ba 2728 */
933393f5 2729 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2730 s->cpu_slab->freelist, s->cpu_slab->tid,
2731 object, tid,
0ad9500e 2732 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2733
2734 note_cmpxchg_failure("slab_alloc", s, tid);
2735 goto redo;
2736 }
0ad9500e 2737 prefetch_freepointer(s, next_object);
84e554e6 2738 stat(s, ALLOC_FASTPATH);
894b8788 2739 }
8a5ec0ba 2740
74e2134f 2741 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2742 memset(object, 0, s->object_size);
d07dbea4 2743
03ec0ed5 2744 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2745
894b8788 2746 return object;
81819f0f
CL
2747}
2748
2b847c3c
EG
2749static __always_inline void *slab_alloc(struct kmem_cache *s,
2750 gfp_t gfpflags, unsigned long addr)
2751{
2752 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2753}
2754
81819f0f
CL
2755void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2756{
2b847c3c 2757 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2758
d0e0ac97
CG
2759 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2760 s->size, gfpflags);
5b882be4
EGM
2761
2762 return ret;
81819f0f
CL
2763}
2764EXPORT_SYMBOL(kmem_cache_alloc);
2765
0f24f128 2766#ifdef CONFIG_TRACING
4a92379b
RK
2767void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2768{
2b847c3c 2769 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2770 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2771 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2772 return ret;
2773}
2774EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2775#endif
2776
81819f0f
CL
2777#ifdef CONFIG_NUMA
2778void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2779{
2b847c3c 2780 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2781
ca2b84cb 2782 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2783 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2784
2785 return ret;
81819f0f
CL
2786}
2787EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2788
0f24f128 2789#ifdef CONFIG_TRACING
4a92379b 2790void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2791 gfp_t gfpflags,
4a92379b 2792 int node, size_t size)
5b882be4 2793{
2b847c3c 2794 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2795
2796 trace_kmalloc_node(_RET_IP_, ret,
2797 size, s->size, gfpflags, node);
0316bec2 2798
505f5dcb 2799 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2800 return ret;
5b882be4 2801}
4a92379b 2802EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2803#endif
5d1f57e4 2804#endif
5b882be4 2805
81819f0f 2806/*
94e4d712 2807 * Slow path handling. This may still be called frequently since objects
894b8788 2808 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2809 *
894b8788
CL
2810 * So we still attempt to reduce cache line usage. Just take the slab
2811 * lock and free the item. If there is no additional partial page
2812 * handling required then we can return immediately.
81819f0f 2813 */
894b8788 2814static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2815 void *head, void *tail, int cnt,
2816 unsigned long addr)
2817
81819f0f
CL
2818{
2819 void *prior;
2cfb7455 2820 int was_frozen;
2cfb7455
CL
2821 struct page new;
2822 unsigned long counters;
2823 struct kmem_cache_node *n = NULL;
61728d1e 2824 unsigned long uninitialized_var(flags);
81819f0f 2825
8a5ec0ba 2826 stat(s, FREE_SLOWPATH);
81819f0f 2827
19c7ff9e 2828 if (kmem_cache_debug(s) &&
282acb43 2829 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2830 return;
6446faa2 2831
2cfb7455 2832 do {
837d678d
JK
2833 if (unlikely(n)) {
2834 spin_unlock_irqrestore(&n->list_lock, flags);
2835 n = NULL;
2836 }
2cfb7455
CL
2837 prior = page->freelist;
2838 counters = page->counters;
81084651 2839 set_freepointer(s, tail, prior);
2cfb7455
CL
2840 new.counters = counters;
2841 was_frozen = new.frozen;
81084651 2842 new.inuse -= cnt;
837d678d 2843 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2844
c65c1877 2845 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2846
2847 /*
d0e0ac97
CG
2848 * Slab was on no list before and will be
2849 * partially empty
2850 * We can defer the list move and instead
2851 * freeze it.
49e22585
CL
2852 */
2853 new.frozen = 1;
2854
c65c1877 2855 } else { /* Needs to be taken off a list */
49e22585 2856
b455def2 2857 n = get_node(s, page_to_nid(page));
49e22585
CL
2858 /*
2859 * Speculatively acquire the list_lock.
2860 * If the cmpxchg does not succeed then we may
2861 * drop the list_lock without any processing.
2862 *
2863 * Otherwise the list_lock will synchronize with
2864 * other processors updating the list of slabs.
2865 */
2866 spin_lock_irqsave(&n->list_lock, flags);
2867
2868 }
2cfb7455 2869 }
81819f0f 2870
2cfb7455
CL
2871 } while (!cmpxchg_double_slab(s, page,
2872 prior, counters,
81084651 2873 head, new.counters,
2cfb7455 2874 "__slab_free"));
81819f0f 2875
2cfb7455 2876 if (likely(!n)) {
49e22585
CL
2877
2878 /*
2879 * If we just froze the page then put it onto the
2880 * per cpu partial list.
2881 */
8028dcea 2882 if (new.frozen && !was_frozen) {
49e22585 2883 put_cpu_partial(s, page, 1);
8028dcea
AS
2884 stat(s, CPU_PARTIAL_FREE);
2885 }
49e22585 2886 /*
2cfb7455
CL
2887 * The list lock was not taken therefore no list
2888 * activity can be necessary.
2889 */
b455def2
L
2890 if (was_frozen)
2891 stat(s, FREE_FROZEN);
2892 return;
2893 }
81819f0f 2894
8a5b20ae 2895 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2896 goto slab_empty;
2897
81819f0f 2898 /*
837d678d
JK
2899 * Objects left in the slab. If it was not on the partial list before
2900 * then add it.
81819f0f 2901 */
345c905d
JK
2902 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2903 if (kmem_cache_debug(s))
c65c1877 2904 remove_full(s, n, page);
837d678d
JK
2905 add_partial(n, page, DEACTIVATE_TO_TAIL);
2906 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2907 }
80f08c19 2908 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2909 return;
2910
2911slab_empty:
a973e9dd 2912 if (prior) {
81819f0f 2913 /*
6fbabb20 2914 * Slab on the partial list.
81819f0f 2915 */
5cc6eee8 2916 remove_partial(n, page);
84e554e6 2917 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2918 } else {
6fbabb20 2919 /* Slab must be on the full list */
c65c1877
PZ
2920 remove_full(s, n, page);
2921 }
2cfb7455 2922
80f08c19 2923 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2924 stat(s, FREE_SLAB);
81819f0f 2925 discard_slab(s, page);
81819f0f
CL
2926}
2927
894b8788
CL
2928/*
2929 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2930 * can perform fastpath freeing without additional function calls.
2931 *
2932 * The fastpath is only possible if we are freeing to the current cpu slab
2933 * of this processor. This typically the case if we have just allocated
2934 * the item before.
2935 *
2936 * If fastpath is not possible then fall back to __slab_free where we deal
2937 * with all sorts of special processing.
81084651
JDB
2938 *
2939 * Bulk free of a freelist with several objects (all pointing to the
2940 * same page) possible by specifying head and tail ptr, plus objects
2941 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2942 */
80a9201a
AP
2943static __always_inline void do_slab_free(struct kmem_cache *s,
2944 struct page *page, void *head, void *tail,
2945 int cnt, unsigned long addr)
894b8788 2946{
81084651 2947 void *tail_obj = tail ? : head;
dfb4f096 2948 struct kmem_cache_cpu *c;
8a5ec0ba 2949 unsigned long tid;
8a5ec0ba
CL
2950redo:
2951 /*
2952 * Determine the currently cpus per cpu slab.
2953 * The cpu may change afterward. However that does not matter since
2954 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2955 * during the cmpxchg then the free will succeed.
8a5ec0ba 2956 */
9aabf810
JK
2957 do {
2958 tid = this_cpu_read(s->cpu_slab->tid);
2959 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2960 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2961 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2962
9aabf810
JK
2963 /* Same with comment on barrier() in slab_alloc_node() */
2964 barrier();
c016b0bd 2965
442b06bc 2966 if (likely(page == c->page)) {
81084651 2967 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2968
933393f5 2969 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2970 s->cpu_slab->freelist, s->cpu_slab->tid,
2971 c->freelist, tid,
81084651 2972 head, next_tid(tid)))) {
8a5ec0ba
CL
2973
2974 note_cmpxchg_failure("slab_free", s, tid);
2975 goto redo;
2976 }
84e554e6 2977 stat(s, FREE_FASTPATH);
894b8788 2978 } else
81084651 2979 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2980
894b8788
CL
2981}
2982
80a9201a
AP
2983static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2984 void *head, void *tail, int cnt,
2985 unsigned long addr)
2986{
80a9201a 2987 /*
c3895391
AK
2988 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2989 * to remove objects, whose reuse must be delayed.
80a9201a 2990 */
c3895391
AK
2991 if (slab_free_freelist_hook(s, &head, &tail))
2992 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
2993}
2994
2995#ifdef CONFIG_KASAN
2996void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2997{
2998 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2999}
3000#endif
3001
81819f0f
CL
3002void kmem_cache_free(struct kmem_cache *s, void *x)
3003{
b9ce5ef4
GC
3004 s = cache_from_obj(s, x);
3005 if (!s)
79576102 3006 return;
81084651 3007 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3008 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3009}
3010EXPORT_SYMBOL(kmem_cache_free);
3011
d0ecd894 3012struct detached_freelist {
fbd02630 3013 struct page *page;
d0ecd894
JDB
3014 void *tail;
3015 void *freelist;
3016 int cnt;
376bf125 3017 struct kmem_cache *s;
d0ecd894 3018};
fbd02630 3019
d0ecd894
JDB
3020/*
3021 * This function progressively scans the array with free objects (with
3022 * a limited look ahead) and extract objects belonging to the same
3023 * page. It builds a detached freelist directly within the given
3024 * page/objects. This can happen without any need for
3025 * synchronization, because the objects are owned by running process.
3026 * The freelist is build up as a single linked list in the objects.
3027 * The idea is, that this detached freelist can then be bulk
3028 * transferred to the real freelist(s), but only requiring a single
3029 * synchronization primitive. Look ahead in the array is limited due
3030 * to performance reasons.
3031 */
376bf125
JDB
3032static inline
3033int build_detached_freelist(struct kmem_cache *s, size_t size,
3034 void **p, struct detached_freelist *df)
d0ecd894
JDB
3035{
3036 size_t first_skipped_index = 0;
3037 int lookahead = 3;
3038 void *object;
ca257195 3039 struct page *page;
fbd02630 3040
d0ecd894
JDB
3041 /* Always re-init detached_freelist */
3042 df->page = NULL;
fbd02630 3043
d0ecd894
JDB
3044 do {
3045 object = p[--size];
ca257195 3046 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3047 } while (!object && size);
3eed034d 3048
d0ecd894
JDB
3049 if (!object)
3050 return 0;
fbd02630 3051
ca257195
JDB
3052 page = virt_to_head_page(object);
3053 if (!s) {
3054 /* Handle kalloc'ed objects */
3055 if (unlikely(!PageSlab(page))) {
3056 BUG_ON(!PageCompound(page));
3057 kfree_hook(object);
4949148a 3058 __free_pages(page, compound_order(page));
ca257195
JDB
3059 p[size] = NULL; /* mark object processed */
3060 return size;
3061 }
3062 /* Derive kmem_cache from object */
3063 df->s = page->slab_cache;
3064 } else {
3065 df->s = cache_from_obj(s, object); /* Support for memcg */
3066 }
376bf125 3067
d0ecd894 3068 /* Start new detached freelist */
ca257195 3069 df->page = page;
376bf125 3070 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3071 df->tail = object;
3072 df->freelist = object;
3073 p[size] = NULL; /* mark object processed */
3074 df->cnt = 1;
3075
3076 while (size) {
3077 object = p[--size];
3078 if (!object)
3079 continue; /* Skip processed objects */
3080
3081 /* df->page is always set at this point */
3082 if (df->page == virt_to_head_page(object)) {
3083 /* Opportunity build freelist */
376bf125 3084 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3085 df->freelist = object;
3086 df->cnt++;
3087 p[size] = NULL; /* mark object processed */
3088
3089 continue;
fbd02630 3090 }
d0ecd894
JDB
3091
3092 /* Limit look ahead search */
3093 if (!--lookahead)
3094 break;
3095
3096 if (!first_skipped_index)
3097 first_skipped_index = size + 1;
fbd02630 3098 }
d0ecd894
JDB
3099
3100 return first_skipped_index;
3101}
3102
d0ecd894 3103/* Note that interrupts must be enabled when calling this function. */
376bf125 3104void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3105{
3106 if (WARN_ON(!size))
3107 return;
3108
3109 do {
3110 struct detached_freelist df;
3111
3112 size = build_detached_freelist(s, size, p, &df);
84582c8a 3113 if (!df.page)
d0ecd894
JDB
3114 continue;
3115
376bf125 3116 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3117 } while (likely(size));
484748f0
CL
3118}
3119EXPORT_SYMBOL(kmem_cache_free_bulk);
3120
994eb764 3121/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3122int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3123 void **p)
484748f0 3124{
994eb764
JDB
3125 struct kmem_cache_cpu *c;
3126 int i;
3127
03ec0ed5
JDB
3128 /* memcg and kmem_cache debug support */
3129 s = slab_pre_alloc_hook(s, flags);
3130 if (unlikely(!s))
3131 return false;
994eb764
JDB
3132 /*
3133 * Drain objects in the per cpu slab, while disabling local
3134 * IRQs, which protects against PREEMPT and interrupts
3135 * handlers invoking normal fastpath.
3136 */
3137 local_irq_disable();
3138 c = this_cpu_ptr(s->cpu_slab);
3139
3140 for (i = 0; i < size; i++) {
3141 void *object = c->freelist;
3142
ebe909e0 3143 if (unlikely(!object)) {
ebe909e0
JDB
3144 /*
3145 * Invoking slow path likely have side-effect
3146 * of re-populating per CPU c->freelist
3147 */
87098373 3148 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3149 _RET_IP_, c);
87098373
CL
3150 if (unlikely(!p[i]))
3151 goto error;
3152
ebe909e0
JDB
3153 c = this_cpu_ptr(s->cpu_slab);
3154 continue; /* goto for-loop */
3155 }
994eb764
JDB
3156 c->freelist = get_freepointer(s, object);
3157 p[i] = object;
3158 }
3159 c->tid = next_tid(c->tid);
3160 local_irq_enable();
3161
3162 /* Clear memory outside IRQ disabled fastpath loop */
3163 if (unlikely(flags & __GFP_ZERO)) {
3164 int j;
3165
3166 for (j = 0; j < i; j++)
3167 memset(p[j], 0, s->object_size);
3168 }
3169
03ec0ed5
JDB
3170 /* memcg and kmem_cache debug support */
3171 slab_post_alloc_hook(s, flags, size, p);
865762a8 3172 return i;
87098373 3173error:
87098373 3174 local_irq_enable();
03ec0ed5
JDB
3175 slab_post_alloc_hook(s, flags, i, p);
3176 __kmem_cache_free_bulk(s, i, p);
865762a8 3177 return 0;
484748f0
CL
3178}
3179EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3180
3181
81819f0f 3182/*
672bba3a
CL
3183 * Object placement in a slab is made very easy because we always start at
3184 * offset 0. If we tune the size of the object to the alignment then we can
3185 * get the required alignment by putting one properly sized object after
3186 * another.
81819f0f
CL
3187 *
3188 * Notice that the allocation order determines the sizes of the per cpu
3189 * caches. Each processor has always one slab available for allocations.
3190 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3191 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3192 * locking overhead.
81819f0f
CL
3193 */
3194
3195/*
3196 * Mininum / Maximum order of slab pages. This influences locking overhead
3197 * and slab fragmentation. A higher order reduces the number of partial slabs
3198 * and increases the number of allocations possible without having to
3199 * take the list_lock.
3200 */
19af27af
AD
3201static unsigned int slub_min_order;
3202static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3203static unsigned int slub_min_objects;
81819f0f 3204
81819f0f
CL
3205/*
3206 * Calculate the order of allocation given an slab object size.
3207 *
672bba3a
CL
3208 * The order of allocation has significant impact on performance and other
3209 * system components. Generally order 0 allocations should be preferred since
3210 * order 0 does not cause fragmentation in the page allocator. Larger objects
3211 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3212 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3213 * would be wasted.
3214 *
3215 * In order to reach satisfactory performance we must ensure that a minimum
3216 * number of objects is in one slab. Otherwise we may generate too much
3217 * activity on the partial lists which requires taking the list_lock. This is
3218 * less a concern for large slabs though which are rarely used.
81819f0f 3219 *
672bba3a
CL
3220 * slub_max_order specifies the order where we begin to stop considering the
3221 * number of objects in a slab as critical. If we reach slub_max_order then
3222 * we try to keep the page order as low as possible. So we accept more waste
3223 * of space in favor of a small page order.
81819f0f 3224 *
672bba3a
CL
3225 * Higher order allocations also allow the placement of more objects in a
3226 * slab and thereby reduce object handling overhead. If the user has
3227 * requested a higher mininum order then we start with that one instead of
3228 * the smallest order which will fit the object.
81819f0f 3229 */
19af27af
AD
3230static inline unsigned int slab_order(unsigned int size,
3231 unsigned int min_objects, unsigned int max_order,
9736d2a9 3232 unsigned int fract_leftover)
81819f0f 3233{
19af27af
AD
3234 unsigned int min_order = slub_min_order;
3235 unsigned int order;
81819f0f 3236
9736d2a9 3237 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3238 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3239
9736d2a9 3240 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3241 order <= max_order; order++) {
81819f0f 3242
19af27af
AD
3243 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3244 unsigned int rem;
81819f0f 3245
9736d2a9 3246 rem = slab_size % size;
81819f0f 3247
5e6d444e 3248 if (rem <= slab_size / fract_leftover)
81819f0f 3249 break;
81819f0f 3250 }
672bba3a 3251
81819f0f
CL
3252 return order;
3253}
3254
9736d2a9 3255static inline int calculate_order(unsigned int size)
5e6d444e 3256{
19af27af
AD
3257 unsigned int order;
3258 unsigned int min_objects;
3259 unsigned int max_objects;
5e6d444e
CL
3260
3261 /*
3262 * Attempt to find best configuration for a slab. This
3263 * works by first attempting to generate a layout with
3264 * the best configuration and backing off gradually.
3265 *
422ff4d7 3266 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3267 * we reduce the minimum objects required in a slab.
3268 */
3269 min_objects = slub_min_objects;
9b2cd506
CL
3270 if (!min_objects)
3271 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3272 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3273 min_objects = min(min_objects, max_objects);
3274
5e6d444e 3275 while (min_objects > 1) {
19af27af
AD
3276 unsigned int fraction;
3277
c124f5b5 3278 fraction = 16;
5e6d444e
CL
3279 while (fraction >= 4) {
3280 order = slab_order(size, min_objects,
9736d2a9 3281 slub_max_order, fraction);
5e6d444e
CL
3282 if (order <= slub_max_order)
3283 return order;
3284 fraction /= 2;
3285 }
5086c389 3286 min_objects--;
5e6d444e
CL
3287 }
3288
3289 /*
3290 * We were unable to place multiple objects in a slab. Now
3291 * lets see if we can place a single object there.
3292 */
9736d2a9 3293 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3294 if (order <= slub_max_order)
3295 return order;
3296
3297 /*
3298 * Doh this slab cannot be placed using slub_max_order.
3299 */
9736d2a9 3300 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3301 if (order < MAX_ORDER)
5e6d444e
CL
3302 return order;
3303 return -ENOSYS;
3304}
3305
5595cffc 3306static void
4053497d 3307init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3308{
3309 n->nr_partial = 0;
81819f0f
CL
3310 spin_lock_init(&n->list_lock);
3311 INIT_LIST_HEAD(&n->partial);
8ab1372f 3312#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3313 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3314 atomic_long_set(&n->total_objects, 0);
643b1138 3315 INIT_LIST_HEAD(&n->full);
8ab1372f 3316#endif
81819f0f
CL
3317}
3318
55136592 3319static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3320{
6c182dc0 3321 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3322 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3323
8a5ec0ba 3324 /*
d4d84fef
CM
3325 * Must align to double word boundary for the double cmpxchg
3326 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3327 */
d4d84fef
CM
3328 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3329 2 * sizeof(void *));
8a5ec0ba
CL
3330
3331 if (!s->cpu_slab)
3332 return 0;
3333
3334 init_kmem_cache_cpus(s);
4c93c355 3335
8a5ec0ba 3336 return 1;
4c93c355 3337}
4c93c355 3338
51df1142
CL
3339static struct kmem_cache *kmem_cache_node;
3340
81819f0f
CL
3341/*
3342 * No kmalloc_node yet so do it by hand. We know that this is the first
3343 * slab on the node for this slabcache. There are no concurrent accesses
3344 * possible.
3345 *
721ae22a
ZYW
3346 * Note that this function only works on the kmem_cache_node
3347 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3348 * memory on a fresh node that has no slab structures yet.
81819f0f 3349 */
55136592 3350static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3351{
3352 struct page *page;
3353 struct kmem_cache_node *n;
3354
51df1142 3355 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3356
51df1142 3357 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3358
3359 BUG_ON(!page);
a2f92ee7 3360 if (page_to_nid(page) != node) {
f9f58285
FF
3361 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3362 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3363 }
3364
81819f0f
CL
3365 n = page->freelist;
3366 BUG_ON(!n);
51df1142 3367 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3368 page->inuse = 1;
8cb0a506 3369 page->frozen = 0;
51df1142 3370 kmem_cache_node->node[node] = n;
8ab1372f 3371#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3372 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3373 init_tracking(kmem_cache_node, n);
8ab1372f 3374#endif
505f5dcb
AP
3375 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3376 GFP_KERNEL);
4053497d 3377 init_kmem_cache_node(n);
51df1142 3378 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3379
67b6c900 3380 /*
1e4dd946
SR
3381 * No locks need to be taken here as it has just been
3382 * initialized and there is no concurrent access.
67b6c900 3383 */
1e4dd946 3384 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3385}
3386
3387static void free_kmem_cache_nodes(struct kmem_cache *s)
3388{
3389 int node;
fa45dc25 3390 struct kmem_cache_node *n;
81819f0f 3391
fa45dc25 3392 for_each_kmem_cache_node(s, node, n) {
81819f0f 3393 s->node[node] = NULL;
ea37df54 3394 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3395 }
3396}
3397
52b4b950
DS
3398void __kmem_cache_release(struct kmem_cache *s)
3399{
210e7a43 3400 cache_random_seq_destroy(s);
52b4b950
DS
3401 free_percpu(s->cpu_slab);
3402 free_kmem_cache_nodes(s);
3403}
3404
55136592 3405static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3406{
3407 int node;
81819f0f 3408
f64dc58c 3409 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3410 struct kmem_cache_node *n;
3411
73367bd8 3412 if (slab_state == DOWN) {
55136592 3413 early_kmem_cache_node_alloc(node);
73367bd8
AD
3414 continue;
3415 }
51df1142 3416 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3417 GFP_KERNEL, node);
81819f0f 3418
73367bd8
AD
3419 if (!n) {
3420 free_kmem_cache_nodes(s);
3421 return 0;
81819f0f 3422 }
73367bd8 3423
4053497d 3424 init_kmem_cache_node(n);
ea37df54 3425 s->node[node] = n;
81819f0f
CL
3426 }
3427 return 1;
3428}
81819f0f 3429
c0bdb232 3430static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3431{
3432 if (min < MIN_PARTIAL)
3433 min = MIN_PARTIAL;
3434 else if (min > MAX_PARTIAL)
3435 min = MAX_PARTIAL;
3436 s->min_partial = min;
3437}
3438
e6d0e1dc
WY
3439static void set_cpu_partial(struct kmem_cache *s)
3440{
3441#ifdef CONFIG_SLUB_CPU_PARTIAL
3442 /*
3443 * cpu_partial determined the maximum number of objects kept in the
3444 * per cpu partial lists of a processor.
3445 *
3446 * Per cpu partial lists mainly contain slabs that just have one
3447 * object freed. If they are used for allocation then they can be
3448 * filled up again with minimal effort. The slab will never hit the
3449 * per node partial lists and therefore no locking will be required.
3450 *
3451 * This setting also determines
3452 *
3453 * A) The number of objects from per cpu partial slabs dumped to the
3454 * per node list when we reach the limit.
3455 * B) The number of objects in cpu partial slabs to extract from the
3456 * per node list when we run out of per cpu objects. We only fetch
3457 * 50% to keep some capacity around for frees.
3458 */
3459 if (!kmem_cache_has_cpu_partial(s))
3460 s->cpu_partial = 0;
3461 else if (s->size >= PAGE_SIZE)
3462 s->cpu_partial = 2;
3463 else if (s->size >= 1024)
3464 s->cpu_partial = 6;
3465 else if (s->size >= 256)
3466 s->cpu_partial = 13;
3467 else
3468 s->cpu_partial = 30;
3469#endif
3470}
3471
81819f0f
CL
3472/*
3473 * calculate_sizes() determines the order and the distribution of data within
3474 * a slab object.
3475 */
06b285dc 3476static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3477{
d50112ed 3478 slab_flags_t flags = s->flags;
be4a7988 3479 unsigned int size = s->object_size;
19af27af 3480 unsigned int order;
81819f0f 3481
d8b42bf5
CL
3482 /*
3483 * Round up object size to the next word boundary. We can only
3484 * place the free pointer at word boundaries and this determines
3485 * the possible location of the free pointer.
3486 */
3487 size = ALIGN(size, sizeof(void *));
3488
3489#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3490 /*
3491 * Determine if we can poison the object itself. If the user of
3492 * the slab may touch the object after free or before allocation
3493 * then we should never poison the object itself.
3494 */
5f0d5a3a 3495 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3496 !s->ctor)
81819f0f
CL
3497 s->flags |= __OBJECT_POISON;
3498 else
3499 s->flags &= ~__OBJECT_POISON;
3500
81819f0f
CL
3501
3502 /*
672bba3a 3503 * If we are Redzoning then check if there is some space between the
81819f0f 3504 * end of the object and the free pointer. If not then add an
672bba3a 3505 * additional word to have some bytes to store Redzone information.
81819f0f 3506 */
3b0efdfa 3507 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3508 size += sizeof(void *);
41ecc55b 3509#endif
81819f0f
CL
3510
3511 /*
672bba3a
CL
3512 * With that we have determined the number of bytes in actual use
3513 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3514 */
3515 s->inuse = size;
3516
5f0d5a3a 3517 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3518 s->ctor)) {
81819f0f
CL
3519 /*
3520 * Relocate free pointer after the object if it is not
3521 * permitted to overwrite the first word of the object on
3522 * kmem_cache_free.
3523 *
3524 * This is the case if we do RCU, have a constructor or
3525 * destructor or are poisoning the objects.
3526 */
3527 s->offset = size;
3528 size += sizeof(void *);
3529 }
3530
c12b3c62 3531#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3532 if (flags & SLAB_STORE_USER)
3533 /*
3534 * Need to store information about allocs and frees after
3535 * the object.
3536 */
3537 size += 2 * sizeof(struct track);
80a9201a 3538#endif
81819f0f 3539
80a9201a
AP
3540 kasan_cache_create(s, &size, &s->flags);
3541#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3542 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3543 /*
3544 * Add some empty padding so that we can catch
3545 * overwrites from earlier objects rather than let
3546 * tracking information or the free pointer be
0211a9c8 3547 * corrupted if a user writes before the start
81819f0f
CL
3548 * of the object.
3549 */
3550 size += sizeof(void *);
d86bd1be
JK
3551
3552 s->red_left_pad = sizeof(void *);
3553 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3554 size += s->red_left_pad;
3555 }
41ecc55b 3556#endif
672bba3a 3557
81819f0f
CL
3558 /*
3559 * SLUB stores one object immediately after another beginning from
3560 * offset 0. In order to align the objects we have to simply size
3561 * each object to conform to the alignment.
3562 */
45906855 3563 size = ALIGN(size, s->align);
81819f0f 3564 s->size = size;
06b285dc
CL
3565 if (forced_order >= 0)
3566 order = forced_order;
3567 else
9736d2a9 3568 order = calculate_order(size);
81819f0f 3569
19af27af 3570 if ((int)order < 0)
81819f0f
CL
3571 return 0;
3572
b7a49f0d 3573 s->allocflags = 0;
834f3d11 3574 if (order)
b7a49f0d
CL
3575 s->allocflags |= __GFP_COMP;
3576
3577 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3578 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3579
3580 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3581 s->allocflags |= __GFP_RECLAIMABLE;
3582
81819f0f
CL
3583 /*
3584 * Determine the number of objects per slab
3585 */
9736d2a9
MW
3586 s->oo = oo_make(order, size);
3587 s->min = oo_make(get_order(size), size);
205ab99d
CL
3588 if (oo_objects(s->oo) > oo_objects(s->max))
3589 s->max = s->oo;
81819f0f 3590
834f3d11 3591 return !!oo_objects(s->oo);
81819f0f
CL
3592}
3593
d50112ed 3594static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3595{
8a13a4cc 3596 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3597#ifdef CONFIG_SLAB_FREELIST_HARDENED
3598 s->random = get_random_long();
3599#endif
81819f0f 3600
06b285dc 3601 if (!calculate_sizes(s, -1))
81819f0f 3602 goto error;
3de47213
DR
3603 if (disable_higher_order_debug) {
3604 /*
3605 * Disable debugging flags that store metadata if the min slab
3606 * order increased.
3607 */
3b0efdfa 3608 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3609 s->flags &= ~DEBUG_METADATA_FLAGS;
3610 s->offset = 0;
3611 if (!calculate_sizes(s, -1))
3612 goto error;
3613 }
3614 }
81819f0f 3615
2565409f
HC
3616#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3617 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3618 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3619 /* Enable fast mode */
3620 s->flags |= __CMPXCHG_DOUBLE;
3621#endif
3622
3b89d7d8
DR
3623 /*
3624 * The larger the object size is, the more pages we want on the partial
3625 * list to avoid pounding the page allocator excessively.
3626 */
49e22585
CL
3627 set_min_partial(s, ilog2(s->size) / 2);
3628
e6d0e1dc 3629 set_cpu_partial(s);
49e22585 3630
81819f0f 3631#ifdef CONFIG_NUMA
e2cb96b7 3632 s->remote_node_defrag_ratio = 1000;
81819f0f 3633#endif
210e7a43
TG
3634
3635 /* Initialize the pre-computed randomized freelist if slab is up */
3636 if (slab_state >= UP) {
3637 if (init_cache_random_seq(s))
3638 goto error;
3639 }
3640
55136592 3641 if (!init_kmem_cache_nodes(s))
dfb4f096 3642 goto error;
81819f0f 3643
55136592 3644 if (alloc_kmem_cache_cpus(s))
278b1bb1 3645 return 0;
ff12059e 3646
4c93c355 3647 free_kmem_cache_nodes(s);
81819f0f
CL
3648error:
3649 if (flags & SLAB_PANIC)
44065b2e
AD
3650 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3651 s->name, s->size, s->size,
4fd0b46e 3652 oo_order(s->oo), s->offset, (unsigned long)flags);
278b1bb1 3653 return -EINVAL;
81819f0f 3654}
81819f0f 3655
33b12c38
CL
3656static void list_slab_objects(struct kmem_cache *s, struct page *page,
3657 const char *text)
3658{
3659#ifdef CONFIG_SLUB_DEBUG
3660 void *addr = page_address(page);
3661 void *p;
0684e652 3662 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
bbd7d57b
ED
3663 if (!map)
3664 return;
945cf2b6 3665 slab_err(s, page, text, s->name);
33b12c38 3666 slab_lock(page);
33b12c38 3667
5f80b13a 3668 get_map(s, page, map);
33b12c38
CL
3669 for_each_object(p, s, addr, page->objects) {
3670
3671 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3672 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3673 print_tracking(s, p);
3674 }
3675 }
3676 slab_unlock(page);
0684e652 3677 bitmap_free(map);
33b12c38
CL
3678#endif
3679}
3680
81819f0f 3681/*
599870b1 3682 * Attempt to free all partial slabs on a node.
52b4b950
DS
3683 * This is called from __kmem_cache_shutdown(). We must take list_lock
3684 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3685 */
599870b1 3686static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3687{
60398923 3688 LIST_HEAD(discard);
81819f0f
CL
3689 struct page *page, *h;
3690
52b4b950
DS
3691 BUG_ON(irqs_disabled());
3692 spin_lock_irq(&n->list_lock);
33b12c38 3693 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3694 if (!page->inuse) {
52b4b950 3695 remove_partial(n, page);
60398923 3696 list_add(&page->lru, &discard);
33b12c38
CL
3697 } else {
3698 list_slab_objects(s, page,
52b4b950 3699 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3700 }
33b12c38 3701 }
52b4b950 3702 spin_unlock_irq(&n->list_lock);
60398923
CW
3703
3704 list_for_each_entry_safe(page, h, &discard, lru)
3705 discard_slab(s, page);
81819f0f
CL
3706}
3707
f9e13c0a
SB
3708bool __kmem_cache_empty(struct kmem_cache *s)
3709{
3710 int node;
3711 struct kmem_cache_node *n;
3712
3713 for_each_kmem_cache_node(s, node, n)
3714 if (n->nr_partial || slabs_node(s, node))
3715 return false;
3716 return true;
3717}
3718
81819f0f 3719/*
672bba3a 3720 * Release all resources used by a slab cache.
81819f0f 3721 */
52b4b950 3722int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3723{
3724 int node;
fa45dc25 3725 struct kmem_cache_node *n;
81819f0f
CL
3726
3727 flush_all(s);
81819f0f 3728 /* Attempt to free all objects */
fa45dc25 3729 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3730 free_partial(s, n);
3731 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3732 return 1;
3733 }
bf5eb3de 3734 sysfs_slab_remove(s);
81819f0f
CL
3735 return 0;
3736}
3737
81819f0f
CL
3738/********************************************************************
3739 * Kmalloc subsystem
3740 *******************************************************************/
3741
81819f0f
CL
3742static int __init setup_slub_min_order(char *str)
3743{
19af27af 3744 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3745
3746 return 1;
3747}
3748
3749__setup("slub_min_order=", setup_slub_min_order);
3750
3751static int __init setup_slub_max_order(char *str)
3752{
19af27af
AD
3753 get_option(&str, (int *)&slub_max_order);
3754 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3755
3756 return 1;
3757}
3758
3759__setup("slub_max_order=", setup_slub_max_order);
3760
3761static int __init setup_slub_min_objects(char *str)
3762{
19af27af 3763 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3764
3765 return 1;
3766}
3767
3768__setup("slub_min_objects=", setup_slub_min_objects);
3769
81819f0f
CL
3770void *__kmalloc(size_t size, gfp_t flags)
3771{
aadb4bc4 3772 struct kmem_cache *s;
5b882be4 3773 void *ret;
81819f0f 3774
95a05b42 3775 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3776 return kmalloc_large(size, flags);
aadb4bc4 3777
2c59dd65 3778 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3779
3780 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3781 return s;
3782
2b847c3c 3783 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3784
ca2b84cb 3785 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3786
505f5dcb 3787 kasan_kmalloc(s, ret, size, flags);
0316bec2 3788
5b882be4 3789 return ret;
81819f0f
CL
3790}
3791EXPORT_SYMBOL(__kmalloc);
3792
5d1f57e4 3793#ifdef CONFIG_NUMA
f619cfe1
CL
3794static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3795{
b1eeab67 3796 struct page *page;
e4f7c0b4 3797 void *ptr = NULL;
f619cfe1 3798
75f296d9 3799 flags |= __GFP_COMP;
4949148a 3800 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3801 if (page)
e4f7c0b4
CM
3802 ptr = page_address(page);
3803
d56791b3 3804 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3805 return ptr;
f619cfe1
CL
3806}
3807
81819f0f
CL
3808void *__kmalloc_node(size_t size, gfp_t flags, int node)
3809{
aadb4bc4 3810 struct kmem_cache *s;
5b882be4 3811 void *ret;
81819f0f 3812
95a05b42 3813 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3814 ret = kmalloc_large_node(size, flags, node);
3815
ca2b84cb
EGM
3816 trace_kmalloc_node(_RET_IP_, ret,
3817 size, PAGE_SIZE << get_order(size),
3818 flags, node);
5b882be4
EGM
3819
3820 return ret;
3821 }
aadb4bc4 3822
2c59dd65 3823 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3824
3825 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3826 return s;
3827
2b847c3c 3828 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3829
ca2b84cb 3830 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3831
505f5dcb 3832 kasan_kmalloc(s, ret, size, flags);
0316bec2 3833
5b882be4 3834 return ret;
81819f0f
CL
3835}
3836EXPORT_SYMBOL(__kmalloc_node);
3837#endif
3838
ed18adc1
KC
3839#ifdef CONFIG_HARDENED_USERCOPY
3840/*
afcc90f8
KC
3841 * Rejects incorrectly sized objects and objects that are to be copied
3842 * to/from userspace but do not fall entirely within the containing slab
3843 * cache's usercopy region.
ed18adc1
KC
3844 *
3845 * Returns NULL if check passes, otherwise const char * to name of cache
3846 * to indicate an error.
3847 */
f4e6e289
KC
3848void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3849 bool to_user)
ed18adc1
KC
3850{
3851 struct kmem_cache *s;
44065b2e 3852 unsigned int offset;
ed18adc1
KC
3853 size_t object_size;
3854
3855 /* Find object and usable object size. */
3856 s = page->slab_cache;
ed18adc1
KC
3857
3858 /* Reject impossible pointers. */
3859 if (ptr < page_address(page))
f4e6e289
KC
3860 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3861 to_user, 0, n);
ed18adc1
KC
3862
3863 /* Find offset within object. */
3864 offset = (ptr - page_address(page)) % s->size;
3865
3866 /* Adjust for redzone and reject if within the redzone. */
3867 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3868 if (offset < s->red_left_pad)
f4e6e289
KC
3869 usercopy_abort("SLUB object in left red zone",
3870 s->name, to_user, offset, n);
ed18adc1
KC
3871 offset -= s->red_left_pad;
3872 }
3873
afcc90f8
KC
3874 /* Allow address range falling entirely within usercopy region. */
3875 if (offset >= s->useroffset &&
3876 offset - s->useroffset <= s->usersize &&
3877 n <= s->useroffset - offset + s->usersize)
f4e6e289 3878 return;
ed18adc1 3879
afcc90f8
KC
3880 /*
3881 * If the copy is still within the allocated object, produce
3882 * a warning instead of rejecting the copy. This is intended
3883 * to be a temporary method to find any missing usercopy
3884 * whitelists.
3885 */
3886 object_size = slab_ksize(s);
2d891fbc
KC
3887 if (usercopy_fallback &&
3888 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
3889 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3890 return;
3891 }
ed18adc1 3892
f4e6e289 3893 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
3894}
3895#endif /* CONFIG_HARDENED_USERCOPY */
3896
0316bec2 3897static size_t __ksize(const void *object)
81819f0f 3898{
272c1d21 3899 struct page *page;
81819f0f 3900
ef8b4520 3901 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3902 return 0;
3903
294a80a8 3904 page = virt_to_head_page(object);
294a80a8 3905
76994412
PE
3906 if (unlikely(!PageSlab(page))) {
3907 WARN_ON(!PageCompound(page));
294a80a8 3908 return PAGE_SIZE << compound_order(page);
76994412 3909 }
81819f0f 3910
1b4f59e3 3911 return slab_ksize(page->slab_cache);
81819f0f 3912}
0316bec2
AR
3913
3914size_t ksize(const void *object)
3915{
3916 size_t size = __ksize(object);
3917 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3918 * so we need to unpoison this area.
3919 */
3920 kasan_unpoison_shadow(object, size);
0316bec2
AR
3921 return size;
3922}
b1aabecd 3923EXPORT_SYMBOL(ksize);
81819f0f
CL
3924
3925void kfree(const void *x)
3926{
81819f0f 3927 struct page *page;
5bb983b0 3928 void *object = (void *)x;
81819f0f 3929
2121db74
PE
3930 trace_kfree(_RET_IP_, x);
3931
2408c550 3932 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3933 return;
3934
b49af68f 3935 page = virt_to_head_page(x);
aadb4bc4 3936 if (unlikely(!PageSlab(page))) {
0937502a 3937 BUG_ON(!PageCompound(page));
47adccce 3938 kfree_hook(object);
4949148a 3939 __free_pages(page, compound_order(page));
aadb4bc4
CL
3940 return;
3941 }
81084651 3942 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3943}
3944EXPORT_SYMBOL(kfree);
3945
832f37f5
VD
3946#define SHRINK_PROMOTE_MAX 32
3947
2086d26a 3948/*
832f37f5
VD
3949 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3950 * up most to the head of the partial lists. New allocations will then
3951 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3952 *
3953 * The slabs with the least items are placed last. This results in them
3954 * being allocated from last increasing the chance that the last objects
3955 * are freed in them.
2086d26a 3956 */
c9fc5864 3957int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3958{
3959 int node;
3960 int i;
3961 struct kmem_cache_node *n;
3962 struct page *page;
3963 struct page *t;
832f37f5
VD
3964 struct list_head discard;
3965 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3966 unsigned long flags;
ce3712d7 3967 int ret = 0;
2086d26a 3968
2086d26a 3969 flush_all(s);
fa45dc25 3970 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3971 INIT_LIST_HEAD(&discard);
3972 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3973 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3974
3975 spin_lock_irqsave(&n->list_lock, flags);
3976
3977 /*
832f37f5 3978 * Build lists of slabs to discard or promote.
2086d26a 3979 *
672bba3a
CL
3980 * Note that concurrent frees may occur while we hold the
3981 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3982 */
3983 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3984 int free = page->objects - page->inuse;
3985
3986 /* Do not reread page->inuse */
3987 barrier();
3988
3989 /* We do not keep full slabs on the list */
3990 BUG_ON(free <= 0);
3991
3992 if (free == page->objects) {
3993 list_move(&page->lru, &discard);
69cb8e6b 3994 n->nr_partial--;
832f37f5
VD
3995 } else if (free <= SHRINK_PROMOTE_MAX)
3996 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3997 }
3998
2086d26a 3999 /*
832f37f5
VD
4000 * Promote the slabs filled up most to the head of the
4001 * partial list.
2086d26a 4002 */
832f37f5
VD
4003 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4004 list_splice(promote + i, &n->partial);
2086d26a 4005
2086d26a 4006 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4007
4008 /* Release empty slabs */
832f37f5 4009 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 4010 discard_slab(s, page);
ce3712d7
VD
4011
4012 if (slabs_node(s, node))
4013 ret = 1;
2086d26a
CL
4014 }
4015
ce3712d7 4016 return ret;
2086d26a 4017}
2086d26a 4018
c9fc5864 4019#ifdef CONFIG_MEMCG
01fb58bc
TH
4020static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4021{
50862ce7
TH
4022 /*
4023 * Called with all the locks held after a sched RCU grace period.
4024 * Even if @s becomes empty after shrinking, we can't know that @s
4025 * doesn't have allocations already in-flight and thus can't
4026 * destroy @s until the associated memcg is released.
4027 *
4028 * However, let's remove the sysfs files for empty caches here.
4029 * Each cache has a lot of interface files which aren't
4030 * particularly useful for empty draining caches; otherwise, we can
4031 * easily end up with millions of unnecessary sysfs files on
4032 * systems which have a lot of memory and transient cgroups.
4033 */
4034 if (!__kmem_cache_shrink(s))
4035 sysfs_slab_remove(s);
01fb58bc
TH
4036}
4037
c9fc5864
TH
4038void __kmemcg_cache_deactivate(struct kmem_cache *s)
4039{
4040 /*
4041 * Disable empty slabs caching. Used to avoid pinning offline
4042 * memory cgroups by kmem pages that can be freed.
4043 */
e6d0e1dc 4044 slub_set_cpu_partial(s, 0);
c9fc5864
TH
4045 s->min_partial = 0;
4046
4047 /*
4048 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 4049 * we have to make sure the change is visible before shrinking.
c9fc5864 4050 */
01fb58bc 4051 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864
TH
4052}
4053#endif
4054
b9049e23
YG
4055static int slab_mem_going_offline_callback(void *arg)
4056{
4057 struct kmem_cache *s;
4058
18004c5d 4059 mutex_lock(&slab_mutex);
b9049e23 4060 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4061 __kmem_cache_shrink(s);
18004c5d 4062 mutex_unlock(&slab_mutex);
b9049e23
YG
4063
4064 return 0;
4065}
4066
4067static void slab_mem_offline_callback(void *arg)
4068{
4069 struct kmem_cache_node *n;
4070 struct kmem_cache *s;
4071 struct memory_notify *marg = arg;
4072 int offline_node;
4073
b9d5ab25 4074 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4075
4076 /*
4077 * If the node still has available memory. we need kmem_cache_node
4078 * for it yet.
4079 */
4080 if (offline_node < 0)
4081 return;
4082
18004c5d 4083 mutex_lock(&slab_mutex);
b9049e23
YG
4084 list_for_each_entry(s, &slab_caches, list) {
4085 n = get_node(s, offline_node);
4086 if (n) {
4087 /*
4088 * if n->nr_slabs > 0, slabs still exist on the node
4089 * that is going down. We were unable to free them,
c9404c9c 4090 * and offline_pages() function shouldn't call this
b9049e23
YG
4091 * callback. So, we must fail.
4092 */
0f389ec6 4093 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4094
4095 s->node[offline_node] = NULL;
8de66a0c 4096 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4097 }
4098 }
18004c5d 4099 mutex_unlock(&slab_mutex);
b9049e23
YG
4100}
4101
4102static int slab_mem_going_online_callback(void *arg)
4103{
4104 struct kmem_cache_node *n;
4105 struct kmem_cache *s;
4106 struct memory_notify *marg = arg;
b9d5ab25 4107 int nid = marg->status_change_nid_normal;
b9049e23
YG
4108 int ret = 0;
4109
4110 /*
4111 * If the node's memory is already available, then kmem_cache_node is
4112 * already created. Nothing to do.
4113 */
4114 if (nid < 0)
4115 return 0;
4116
4117 /*
0121c619 4118 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4119 * allocate a kmem_cache_node structure in order to bring the node
4120 * online.
4121 */
18004c5d 4122 mutex_lock(&slab_mutex);
b9049e23
YG
4123 list_for_each_entry(s, &slab_caches, list) {
4124 /*
4125 * XXX: kmem_cache_alloc_node will fallback to other nodes
4126 * since memory is not yet available from the node that
4127 * is brought up.
4128 */
8de66a0c 4129 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4130 if (!n) {
4131 ret = -ENOMEM;
4132 goto out;
4133 }
4053497d 4134 init_kmem_cache_node(n);
b9049e23
YG
4135 s->node[nid] = n;
4136 }
4137out:
18004c5d 4138 mutex_unlock(&slab_mutex);
b9049e23
YG
4139 return ret;
4140}
4141
4142static int slab_memory_callback(struct notifier_block *self,
4143 unsigned long action, void *arg)
4144{
4145 int ret = 0;
4146
4147 switch (action) {
4148 case MEM_GOING_ONLINE:
4149 ret = slab_mem_going_online_callback(arg);
4150 break;
4151 case MEM_GOING_OFFLINE:
4152 ret = slab_mem_going_offline_callback(arg);
4153 break;
4154 case MEM_OFFLINE:
4155 case MEM_CANCEL_ONLINE:
4156 slab_mem_offline_callback(arg);
4157 break;
4158 case MEM_ONLINE:
4159 case MEM_CANCEL_OFFLINE:
4160 break;
4161 }
dc19f9db
KH
4162 if (ret)
4163 ret = notifier_from_errno(ret);
4164 else
4165 ret = NOTIFY_OK;
b9049e23
YG
4166 return ret;
4167}
4168
3ac38faa
AM
4169static struct notifier_block slab_memory_callback_nb = {
4170 .notifier_call = slab_memory_callback,
4171 .priority = SLAB_CALLBACK_PRI,
4172};
b9049e23 4173
81819f0f
CL
4174/********************************************************************
4175 * Basic setup of slabs
4176 *******************************************************************/
4177
51df1142
CL
4178/*
4179 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4180 * the page allocator. Allocate them properly then fix up the pointers
4181 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4182 */
4183
dffb4d60 4184static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4185{
4186 int node;
dffb4d60 4187 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4188 struct kmem_cache_node *n;
51df1142 4189
dffb4d60 4190 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4191
7d557b3c
GC
4192 /*
4193 * This runs very early, and only the boot processor is supposed to be
4194 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4195 * IPIs around.
4196 */
4197 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4198 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4199 struct page *p;
4200
fa45dc25
CL
4201 list_for_each_entry(p, &n->partial, lru)
4202 p->slab_cache = s;
51df1142 4203
607bf324 4204#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4205 list_for_each_entry(p, &n->full, lru)
4206 p->slab_cache = s;
51df1142 4207#endif
51df1142 4208 }
f7ce3190 4209 slab_init_memcg_params(s);
dffb4d60 4210 list_add(&s->list, &slab_caches);
510ded33 4211 memcg_link_cache(s);
dffb4d60 4212 return s;
51df1142
CL
4213}
4214
81819f0f
CL
4215void __init kmem_cache_init(void)
4216{
dffb4d60
CL
4217 static __initdata struct kmem_cache boot_kmem_cache,
4218 boot_kmem_cache_node;
51df1142 4219
fc8d8620
SG
4220 if (debug_guardpage_minorder())
4221 slub_max_order = 0;
4222
dffb4d60
CL
4223 kmem_cache_node = &boot_kmem_cache_node;
4224 kmem_cache = &boot_kmem_cache;
51df1142 4225
dffb4d60 4226 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4227 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4228
3ac38faa 4229 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4230
4231 /* Able to allocate the per node structures */
4232 slab_state = PARTIAL;
4233
dffb4d60
CL
4234 create_boot_cache(kmem_cache, "kmem_cache",
4235 offsetof(struct kmem_cache, node) +
4236 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4237 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4238
dffb4d60 4239 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4240 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4241
4242 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4243 setup_kmalloc_cache_index_table();
f97d5f63 4244 create_kmalloc_caches(0);
81819f0f 4245
210e7a43
TG
4246 /* Setup random freelists for each cache */
4247 init_freelist_randomization();
4248
a96a87bf
SAS
4249 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4250 slub_cpu_dead);
81819f0f 4251
19af27af 4252 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
f97d5f63 4253 cache_line_size(),
81819f0f
CL
4254 slub_min_order, slub_max_order, slub_min_objects,
4255 nr_cpu_ids, nr_node_ids);
4256}
4257
7e85ee0c
PE
4258void __init kmem_cache_init_late(void)
4259{
7e85ee0c
PE
4260}
4261
2633d7a0 4262struct kmem_cache *
f4957d5b 4263__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4264 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4265{
426589f5 4266 struct kmem_cache *s, *c;
81819f0f 4267
a44cb944 4268 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4269 if (s) {
4270 s->refcount++;
84d0ddd6 4271
81819f0f
CL
4272 /*
4273 * Adjust the object sizes so that we clear
4274 * the complete object on kzalloc.
4275 */
1b473f29 4276 s->object_size = max(s->object_size, size);
52ee6d74 4277 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4278
426589f5 4279 for_each_memcg_cache(c, s) {
84d0ddd6 4280 c->object_size = s->object_size;
52ee6d74 4281 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4282 }
4283
7b8f3b66 4284 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4285 s->refcount--;
cbb79694 4286 s = NULL;
7b8f3b66 4287 }
a0e1d1be 4288 }
6446faa2 4289
cbb79694
CL
4290 return s;
4291}
84c1cf62 4292
d50112ed 4293int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4294{
aac3a166
PE
4295 int err;
4296
4297 err = kmem_cache_open(s, flags);
4298 if (err)
4299 return err;
20cea968 4300
45530c44
CL
4301 /* Mutex is not taken during early boot */
4302 if (slab_state <= UP)
4303 return 0;
4304
107dab5c 4305 memcg_propagate_slab_attrs(s);
aac3a166 4306 err = sysfs_slab_add(s);
aac3a166 4307 if (err)
52b4b950 4308 __kmem_cache_release(s);
20cea968 4309
aac3a166 4310 return err;
81819f0f 4311}
81819f0f 4312
ce71e27c 4313void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4314{
aadb4bc4 4315 struct kmem_cache *s;
94b528d0 4316 void *ret;
aadb4bc4 4317
95a05b42 4318 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4319 return kmalloc_large(size, gfpflags);
4320
2c59dd65 4321 s = kmalloc_slab(size, gfpflags);
81819f0f 4322
2408c550 4323 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4324 return s;
81819f0f 4325
2b847c3c 4326 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4327
25985edc 4328 /* Honor the call site pointer we received. */
ca2b84cb 4329 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4330
4331 return ret;
81819f0f
CL
4332}
4333
5d1f57e4 4334#ifdef CONFIG_NUMA
81819f0f 4335void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4336 int node, unsigned long caller)
81819f0f 4337{
aadb4bc4 4338 struct kmem_cache *s;
94b528d0 4339 void *ret;
aadb4bc4 4340
95a05b42 4341 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4342 ret = kmalloc_large_node(size, gfpflags, node);
4343
4344 trace_kmalloc_node(caller, ret,
4345 size, PAGE_SIZE << get_order(size),
4346 gfpflags, node);
4347
4348 return ret;
4349 }
eada35ef 4350
2c59dd65 4351 s = kmalloc_slab(size, gfpflags);
81819f0f 4352
2408c550 4353 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4354 return s;
81819f0f 4355
2b847c3c 4356 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4357
25985edc 4358 /* Honor the call site pointer we received. */
ca2b84cb 4359 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4360
4361 return ret;
81819f0f 4362}
5d1f57e4 4363#endif
81819f0f 4364
ab4d5ed5 4365#ifdef CONFIG_SYSFS
205ab99d
CL
4366static int count_inuse(struct page *page)
4367{
4368 return page->inuse;
4369}
4370
4371static int count_total(struct page *page)
4372{
4373 return page->objects;
4374}
ab4d5ed5 4375#endif
205ab99d 4376
ab4d5ed5 4377#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4378static int validate_slab(struct kmem_cache *s, struct page *page,
4379 unsigned long *map)
53e15af0
CL
4380{
4381 void *p;
a973e9dd 4382 void *addr = page_address(page);
53e15af0
CL
4383
4384 if (!check_slab(s, page) ||
4385 !on_freelist(s, page, NULL))
4386 return 0;
4387
4388 /* Now we know that a valid freelist exists */
39b26464 4389 bitmap_zero(map, page->objects);
53e15af0 4390
5f80b13a
CL
4391 get_map(s, page, map);
4392 for_each_object(p, s, addr, page->objects) {
4393 if (test_bit(slab_index(p, s, addr), map))
4394 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4395 return 0;
53e15af0
CL
4396 }
4397
224a88be 4398 for_each_object(p, s, addr, page->objects)
7656c72b 4399 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4400 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4401 return 0;
4402 return 1;
4403}
4404
434e245d
CL
4405static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4406 unsigned long *map)
53e15af0 4407{
881db7fb
CL
4408 slab_lock(page);
4409 validate_slab(s, page, map);
4410 slab_unlock(page);
53e15af0
CL
4411}
4412
434e245d
CL
4413static int validate_slab_node(struct kmem_cache *s,
4414 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4415{
4416 unsigned long count = 0;
4417 struct page *page;
4418 unsigned long flags;
4419
4420 spin_lock_irqsave(&n->list_lock, flags);
4421
4422 list_for_each_entry(page, &n->partial, lru) {
434e245d 4423 validate_slab_slab(s, page, map);
53e15af0
CL
4424 count++;
4425 }
4426 if (count != n->nr_partial)
f9f58285
FF
4427 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4428 s->name, count, n->nr_partial);
53e15af0
CL
4429
4430 if (!(s->flags & SLAB_STORE_USER))
4431 goto out;
4432
4433 list_for_each_entry(page, &n->full, lru) {
434e245d 4434 validate_slab_slab(s, page, map);
53e15af0
CL
4435 count++;
4436 }
4437 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4438 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4439 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4440
4441out:
4442 spin_unlock_irqrestore(&n->list_lock, flags);
4443 return count;
4444}
4445
434e245d 4446static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4447{
4448 int node;
4449 unsigned long count = 0;
fa45dc25 4450 struct kmem_cache_node *n;
0684e652 4451 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
434e245d
CL
4452
4453 if (!map)
4454 return -ENOMEM;
53e15af0
CL
4455
4456 flush_all(s);
fa45dc25 4457 for_each_kmem_cache_node(s, node, n)
434e245d 4458 count += validate_slab_node(s, n, map);
0684e652 4459 bitmap_free(map);
53e15af0
CL
4460 return count;
4461}
88a420e4 4462/*
672bba3a 4463 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4464 * and freed.
4465 */
4466
4467struct location {
4468 unsigned long count;
ce71e27c 4469 unsigned long addr;
45edfa58
CL
4470 long long sum_time;
4471 long min_time;
4472 long max_time;
4473 long min_pid;
4474 long max_pid;
174596a0 4475 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4476 nodemask_t nodes;
88a420e4
CL
4477};
4478
4479struct loc_track {
4480 unsigned long max;
4481 unsigned long count;
4482 struct location *loc;
4483};
4484
4485static void free_loc_track(struct loc_track *t)
4486{
4487 if (t->max)
4488 free_pages((unsigned long)t->loc,
4489 get_order(sizeof(struct location) * t->max));
4490}
4491
68dff6a9 4492static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4493{
4494 struct location *l;
4495 int order;
4496
88a420e4
CL
4497 order = get_order(sizeof(struct location) * max);
4498
68dff6a9 4499 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4500 if (!l)
4501 return 0;
4502
4503 if (t->count) {
4504 memcpy(l, t->loc, sizeof(struct location) * t->count);
4505 free_loc_track(t);
4506 }
4507 t->max = max;
4508 t->loc = l;
4509 return 1;
4510}
4511
4512static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4513 const struct track *track)
88a420e4
CL
4514{
4515 long start, end, pos;
4516 struct location *l;
ce71e27c 4517 unsigned long caddr;
45edfa58 4518 unsigned long age = jiffies - track->when;
88a420e4
CL
4519
4520 start = -1;
4521 end = t->count;
4522
4523 for ( ; ; ) {
4524 pos = start + (end - start + 1) / 2;
4525
4526 /*
4527 * There is nothing at "end". If we end up there
4528 * we need to add something to before end.
4529 */
4530 if (pos == end)
4531 break;
4532
4533 caddr = t->loc[pos].addr;
45edfa58
CL
4534 if (track->addr == caddr) {
4535
4536 l = &t->loc[pos];
4537 l->count++;
4538 if (track->when) {
4539 l->sum_time += age;
4540 if (age < l->min_time)
4541 l->min_time = age;
4542 if (age > l->max_time)
4543 l->max_time = age;
4544
4545 if (track->pid < l->min_pid)
4546 l->min_pid = track->pid;
4547 if (track->pid > l->max_pid)
4548 l->max_pid = track->pid;
4549
174596a0
RR
4550 cpumask_set_cpu(track->cpu,
4551 to_cpumask(l->cpus));
45edfa58
CL
4552 }
4553 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4554 return 1;
4555 }
4556
45edfa58 4557 if (track->addr < caddr)
88a420e4
CL
4558 end = pos;
4559 else
4560 start = pos;
4561 }
4562
4563 /*
672bba3a 4564 * Not found. Insert new tracking element.
88a420e4 4565 */
68dff6a9 4566 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4567 return 0;
4568
4569 l = t->loc + pos;
4570 if (pos < t->count)
4571 memmove(l + 1, l,
4572 (t->count - pos) * sizeof(struct location));
4573 t->count++;
4574 l->count = 1;
45edfa58
CL
4575 l->addr = track->addr;
4576 l->sum_time = age;
4577 l->min_time = age;
4578 l->max_time = age;
4579 l->min_pid = track->pid;
4580 l->max_pid = track->pid;
174596a0
RR
4581 cpumask_clear(to_cpumask(l->cpus));
4582 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4583 nodes_clear(l->nodes);
4584 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4585 return 1;
4586}
4587
4588static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4589 struct page *page, enum track_item alloc,
a5dd5c11 4590 unsigned long *map)
88a420e4 4591{
a973e9dd 4592 void *addr = page_address(page);
88a420e4
CL
4593 void *p;
4594
39b26464 4595 bitmap_zero(map, page->objects);
5f80b13a 4596 get_map(s, page, map);
88a420e4 4597
224a88be 4598 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4599 if (!test_bit(slab_index(p, s, addr), map))
4600 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4601}
4602
4603static int list_locations(struct kmem_cache *s, char *buf,
4604 enum track_item alloc)
4605{
e374d483 4606 int len = 0;
88a420e4 4607 unsigned long i;
68dff6a9 4608 struct loc_track t = { 0, 0, NULL };
88a420e4 4609 int node;
fa45dc25 4610 struct kmem_cache_node *n;
0684e652 4611 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
88a420e4 4612
bbd7d57b 4613 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
0ee931c4 4614 GFP_KERNEL)) {
0684e652 4615 bitmap_free(map);
68dff6a9 4616 return sprintf(buf, "Out of memory\n");
bbd7d57b 4617 }
88a420e4
CL
4618 /* Push back cpu slabs */
4619 flush_all(s);
4620
fa45dc25 4621 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4622 unsigned long flags;
4623 struct page *page;
4624
9e86943b 4625 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4626 continue;
4627
4628 spin_lock_irqsave(&n->list_lock, flags);
4629 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4630 process_slab(&t, s, page, alloc, map);
88a420e4 4631 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4632 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4633 spin_unlock_irqrestore(&n->list_lock, flags);
4634 }
4635
4636 for (i = 0; i < t.count; i++) {
45edfa58 4637 struct location *l = &t.loc[i];
88a420e4 4638
9c246247 4639 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4640 break;
e374d483 4641 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4642
4643 if (l->addr)
62c70bce 4644 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4645 else
e374d483 4646 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4647
4648 if (l->sum_time != l->min_time) {
e374d483 4649 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4650 l->min_time,
4651 (long)div_u64(l->sum_time, l->count),
4652 l->max_time);
45edfa58 4653 } else
e374d483 4654 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4655 l->min_time);
4656
4657 if (l->min_pid != l->max_pid)
e374d483 4658 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4659 l->min_pid, l->max_pid);
4660 else
e374d483 4661 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4662 l->min_pid);
4663
174596a0
RR
4664 if (num_online_cpus() > 1 &&
4665 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4666 len < PAGE_SIZE - 60)
4667 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4668 " cpus=%*pbl",
4669 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4670
62bc62a8 4671 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4672 len < PAGE_SIZE - 60)
4673 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4674 " nodes=%*pbl",
4675 nodemask_pr_args(&l->nodes));
45edfa58 4676
e374d483 4677 len += sprintf(buf + len, "\n");
88a420e4
CL
4678 }
4679
4680 free_loc_track(&t);
0684e652 4681 bitmap_free(map);
88a420e4 4682 if (!t.count)
e374d483
HH
4683 len += sprintf(buf, "No data\n");
4684 return len;
88a420e4 4685}
ab4d5ed5 4686#endif
88a420e4 4687
a5a84755 4688#ifdef SLUB_RESILIENCY_TEST
c07b8183 4689static void __init resiliency_test(void)
a5a84755
CL
4690{
4691 u8 *p;
cc252eae 4692 int type = KMALLOC_NORMAL;
a5a84755 4693
95a05b42 4694 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4695
f9f58285
FF
4696 pr_err("SLUB resiliency testing\n");
4697 pr_err("-----------------------\n");
4698 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4699
4700 p = kzalloc(16, GFP_KERNEL);
4701 p[16] = 0x12;
f9f58285
FF
4702 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4703 p + 16);
a5a84755 4704
cc252eae 4705 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4706
4707 /* Hmmm... The next two are dangerous */
4708 p = kzalloc(32, GFP_KERNEL);
4709 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4710 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4711 p);
4712 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4713
cc252eae 4714 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4715 p = kzalloc(64, GFP_KERNEL);
4716 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4717 *p = 0x56;
f9f58285
FF
4718 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4719 p);
4720 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4721 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4722
f9f58285 4723 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4724 p = kzalloc(128, GFP_KERNEL);
4725 kfree(p);
4726 *p = 0x78;
f9f58285 4727 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4728 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4729
4730 p = kzalloc(256, GFP_KERNEL);
4731 kfree(p);
4732 p[50] = 0x9a;
f9f58285 4733 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4734 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4735
4736 p = kzalloc(512, GFP_KERNEL);
4737 kfree(p);
4738 p[512] = 0xab;
f9f58285 4739 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4740 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4741}
4742#else
4743#ifdef CONFIG_SYSFS
4744static void resiliency_test(void) {};
4745#endif
4746#endif
4747
ab4d5ed5 4748#ifdef CONFIG_SYSFS
81819f0f 4749enum slab_stat_type {
205ab99d
CL
4750 SL_ALL, /* All slabs */
4751 SL_PARTIAL, /* Only partially allocated slabs */
4752 SL_CPU, /* Only slabs used for cpu caches */
4753 SL_OBJECTS, /* Determine allocated objects not slabs */
4754 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4755};
4756
205ab99d 4757#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4758#define SO_PARTIAL (1 << SL_PARTIAL)
4759#define SO_CPU (1 << SL_CPU)
4760#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4761#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4762
1663f26d
TH
4763#ifdef CONFIG_MEMCG
4764static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4765
4766static int __init setup_slub_memcg_sysfs(char *str)
4767{
4768 int v;
4769
4770 if (get_option(&str, &v) > 0)
4771 memcg_sysfs_enabled = v;
4772
4773 return 1;
4774}
4775
4776__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4777#endif
4778
62e5c4b4
CG
4779static ssize_t show_slab_objects(struct kmem_cache *s,
4780 char *buf, unsigned long flags)
81819f0f
CL
4781{
4782 unsigned long total = 0;
81819f0f
CL
4783 int node;
4784 int x;
4785 unsigned long *nodes;
81819f0f 4786
6396bb22 4787 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4788 if (!nodes)
4789 return -ENOMEM;
81819f0f 4790
205ab99d
CL
4791 if (flags & SO_CPU) {
4792 int cpu;
81819f0f 4793
205ab99d 4794 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4795 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4796 cpu);
ec3ab083 4797 int node;
49e22585 4798 struct page *page;
dfb4f096 4799
4db0c3c2 4800 page = READ_ONCE(c->page);
ec3ab083
CL
4801 if (!page)
4802 continue;
205ab99d 4803
ec3ab083
CL
4804 node = page_to_nid(page);
4805 if (flags & SO_TOTAL)
4806 x = page->objects;
4807 else if (flags & SO_OBJECTS)
4808 x = page->inuse;
4809 else
4810 x = 1;
49e22585 4811
ec3ab083
CL
4812 total += x;
4813 nodes[node] += x;
4814
a93cf07b 4815 page = slub_percpu_partial_read_once(c);
49e22585 4816 if (page) {
8afb1474
LZ
4817 node = page_to_nid(page);
4818 if (flags & SO_TOTAL)
4819 WARN_ON_ONCE(1);
4820 else if (flags & SO_OBJECTS)
4821 WARN_ON_ONCE(1);
4822 else
4823 x = page->pages;
bc6697d8
ED
4824 total += x;
4825 nodes[node] += x;
49e22585 4826 }
81819f0f
CL
4827 }
4828 }
4829
bfc8c901 4830 get_online_mems();
ab4d5ed5 4831#ifdef CONFIG_SLUB_DEBUG
205ab99d 4832 if (flags & SO_ALL) {
fa45dc25
CL
4833 struct kmem_cache_node *n;
4834
4835 for_each_kmem_cache_node(s, node, n) {
205ab99d 4836
d0e0ac97
CG
4837 if (flags & SO_TOTAL)
4838 x = atomic_long_read(&n->total_objects);
4839 else if (flags & SO_OBJECTS)
4840 x = atomic_long_read(&n->total_objects) -
4841 count_partial(n, count_free);
81819f0f 4842 else
205ab99d 4843 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4844 total += x;
4845 nodes[node] += x;
4846 }
4847
ab4d5ed5
CL
4848 } else
4849#endif
4850 if (flags & SO_PARTIAL) {
fa45dc25 4851 struct kmem_cache_node *n;
81819f0f 4852
fa45dc25 4853 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4854 if (flags & SO_TOTAL)
4855 x = count_partial(n, count_total);
4856 else if (flags & SO_OBJECTS)
4857 x = count_partial(n, count_inuse);
81819f0f 4858 else
205ab99d 4859 x = n->nr_partial;
81819f0f
CL
4860 total += x;
4861 nodes[node] += x;
4862 }
4863 }
81819f0f
CL
4864 x = sprintf(buf, "%lu", total);
4865#ifdef CONFIG_NUMA
fa45dc25 4866 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4867 if (nodes[node])
4868 x += sprintf(buf + x, " N%d=%lu",
4869 node, nodes[node]);
4870#endif
bfc8c901 4871 put_online_mems();
81819f0f
CL
4872 kfree(nodes);
4873 return x + sprintf(buf + x, "\n");
4874}
4875
ab4d5ed5 4876#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4877static int any_slab_objects(struct kmem_cache *s)
4878{
4879 int node;
fa45dc25 4880 struct kmem_cache_node *n;
81819f0f 4881
fa45dc25 4882 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4883 if (atomic_long_read(&n->total_objects))
81819f0f 4884 return 1;
fa45dc25 4885
81819f0f
CL
4886 return 0;
4887}
ab4d5ed5 4888#endif
81819f0f
CL
4889
4890#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4891#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4892
4893struct slab_attribute {
4894 struct attribute attr;
4895 ssize_t (*show)(struct kmem_cache *s, char *buf);
4896 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4897};
4898
4899#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4900 static struct slab_attribute _name##_attr = \
4901 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4902
4903#define SLAB_ATTR(_name) \
4904 static struct slab_attribute _name##_attr = \
ab067e99 4905 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4906
81819f0f
CL
4907static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4908{
44065b2e 4909 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
4910}
4911SLAB_ATTR_RO(slab_size);
4912
4913static ssize_t align_show(struct kmem_cache *s, char *buf)
4914{
3a3791ec 4915 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
4916}
4917SLAB_ATTR_RO(align);
4918
4919static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4920{
1b473f29 4921 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
4922}
4923SLAB_ATTR_RO(object_size);
4924
4925static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4926{
19af27af 4927 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
4928}
4929SLAB_ATTR_RO(objs_per_slab);
4930
06b285dc
CL
4931static ssize_t order_store(struct kmem_cache *s,
4932 const char *buf, size_t length)
4933{
19af27af 4934 unsigned int order;
0121c619
CL
4935 int err;
4936
19af27af 4937 err = kstrtouint(buf, 10, &order);
0121c619
CL
4938 if (err)
4939 return err;
06b285dc
CL
4940
4941 if (order > slub_max_order || order < slub_min_order)
4942 return -EINVAL;
4943
4944 calculate_sizes(s, order);
4945 return length;
4946}
4947
81819f0f
CL
4948static ssize_t order_show(struct kmem_cache *s, char *buf)
4949{
19af27af 4950 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 4951}
06b285dc 4952SLAB_ATTR(order);
81819f0f 4953
73d342b1
DR
4954static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4955{
4956 return sprintf(buf, "%lu\n", s->min_partial);
4957}
4958
4959static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4960 size_t length)
4961{
4962 unsigned long min;
4963 int err;
4964
3dbb95f7 4965 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4966 if (err)
4967 return err;
4968
c0bdb232 4969 set_min_partial(s, min);
73d342b1
DR
4970 return length;
4971}
4972SLAB_ATTR(min_partial);
4973
49e22585
CL
4974static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4975{
e6d0e1dc 4976 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4977}
4978
4979static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4980 size_t length)
4981{
e5d9998f 4982 unsigned int objects;
49e22585
CL
4983 int err;
4984
e5d9998f 4985 err = kstrtouint(buf, 10, &objects);
49e22585
CL
4986 if (err)
4987 return err;
345c905d 4988 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4989 return -EINVAL;
49e22585 4990
e6d0e1dc 4991 slub_set_cpu_partial(s, objects);
49e22585
CL
4992 flush_all(s);
4993 return length;
4994}
4995SLAB_ATTR(cpu_partial);
4996
81819f0f
CL
4997static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4998{
62c70bce
JP
4999 if (!s->ctor)
5000 return 0;
5001 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5002}
5003SLAB_ATTR_RO(ctor);
5004
81819f0f
CL
5005static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5006{
4307c14f 5007 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5008}
5009SLAB_ATTR_RO(aliases);
5010
81819f0f
CL
5011static ssize_t partial_show(struct kmem_cache *s, char *buf)
5012{
d9acf4b7 5013 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5014}
5015SLAB_ATTR_RO(partial);
5016
5017static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5018{
d9acf4b7 5019 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5020}
5021SLAB_ATTR_RO(cpu_slabs);
5022
5023static ssize_t objects_show(struct kmem_cache *s, char *buf)
5024{
205ab99d 5025 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5026}
5027SLAB_ATTR_RO(objects);
5028
205ab99d
CL
5029static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5030{
5031 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5032}
5033SLAB_ATTR_RO(objects_partial);
5034
49e22585
CL
5035static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5036{
5037 int objects = 0;
5038 int pages = 0;
5039 int cpu;
5040 int len;
5041
5042 for_each_online_cpu(cpu) {
a93cf07b
WY
5043 struct page *page;
5044
5045 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5046
5047 if (page) {
5048 pages += page->pages;
5049 objects += page->pobjects;
5050 }
5051 }
5052
5053 len = sprintf(buf, "%d(%d)", objects, pages);
5054
5055#ifdef CONFIG_SMP
5056 for_each_online_cpu(cpu) {
a93cf07b
WY
5057 struct page *page;
5058
5059 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5060
5061 if (page && len < PAGE_SIZE - 20)
5062 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5063 page->pobjects, page->pages);
5064 }
5065#endif
5066 return len + sprintf(buf + len, "\n");
5067}
5068SLAB_ATTR_RO(slabs_cpu_partial);
5069
a5a84755
CL
5070static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5071{
5072 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5073}
5074
5075static ssize_t reclaim_account_store(struct kmem_cache *s,
5076 const char *buf, size_t length)
5077{
5078 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5079 if (buf[0] == '1')
5080 s->flags |= SLAB_RECLAIM_ACCOUNT;
5081 return length;
5082}
5083SLAB_ATTR(reclaim_account);
5084
5085static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5086{
5087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5088}
5089SLAB_ATTR_RO(hwcache_align);
5090
5091#ifdef CONFIG_ZONE_DMA
5092static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5093{
5094 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5095}
5096SLAB_ATTR_RO(cache_dma);
5097#endif
5098
8eb8284b
DW
5099static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5100{
7bbdb81e 5101 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5102}
5103SLAB_ATTR_RO(usersize);
5104
a5a84755
CL
5105static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5106{
5f0d5a3a 5107 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5108}
5109SLAB_ATTR_RO(destroy_by_rcu);
5110
ab4d5ed5 5111#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5112static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5113{
5114 return show_slab_objects(s, buf, SO_ALL);
5115}
5116SLAB_ATTR_RO(slabs);
5117
205ab99d
CL
5118static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5119{
5120 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5121}
5122SLAB_ATTR_RO(total_objects);
5123
81819f0f
CL
5124static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5125{
becfda68 5126 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5127}
5128
5129static ssize_t sanity_checks_store(struct kmem_cache *s,
5130 const char *buf, size_t length)
5131{
becfda68 5132 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5133 if (buf[0] == '1') {
5134 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5135 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5136 }
81819f0f
CL
5137 return length;
5138}
5139SLAB_ATTR(sanity_checks);
5140
5141static ssize_t trace_show(struct kmem_cache *s, char *buf)
5142{
5143 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5144}
5145
5146static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5147 size_t length)
5148{
c9e16131
CL
5149 /*
5150 * Tracing a merged cache is going to give confusing results
5151 * as well as cause other issues like converting a mergeable
5152 * cache into an umergeable one.
5153 */
5154 if (s->refcount > 1)
5155 return -EINVAL;
5156
81819f0f 5157 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5158 if (buf[0] == '1') {
5159 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5160 s->flags |= SLAB_TRACE;
b789ef51 5161 }
81819f0f
CL
5162 return length;
5163}
5164SLAB_ATTR(trace);
5165
81819f0f
CL
5166static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5167{
5168 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5169}
5170
5171static ssize_t red_zone_store(struct kmem_cache *s,
5172 const char *buf, size_t length)
5173{
5174 if (any_slab_objects(s))
5175 return -EBUSY;
5176
5177 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5178 if (buf[0] == '1') {
81819f0f 5179 s->flags |= SLAB_RED_ZONE;
b789ef51 5180 }
06b285dc 5181 calculate_sizes(s, -1);
81819f0f
CL
5182 return length;
5183}
5184SLAB_ATTR(red_zone);
5185
5186static ssize_t poison_show(struct kmem_cache *s, char *buf)
5187{
5188 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5189}
5190
5191static ssize_t poison_store(struct kmem_cache *s,
5192 const char *buf, size_t length)
5193{
5194 if (any_slab_objects(s))
5195 return -EBUSY;
5196
5197 s->flags &= ~SLAB_POISON;
b789ef51 5198 if (buf[0] == '1') {
81819f0f 5199 s->flags |= SLAB_POISON;
b789ef51 5200 }
06b285dc 5201 calculate_sizes(s, -1);
81819f0f
CL
5202 return length;
5203}
5204SLAB_ATTR(poison);
5205
5206static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5207{
5208 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5209}
5210
5211static ssize_t store_user_store(struct kmem_cache *s,
5212 const char *buf, size_t length)
5213{
5214 if (any_slab_objects(s))
5215 return -EBUSY;
5216
5217 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5218 if (buf[0] == '1') {
5219 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5220 s->flags |= SLAB_STORE_USER;
b789ef51 5221 }
06b285dc 5222 calculate_sizes(s, -1);
81819f0f
CL
5223 return length;
5224}
5225SLAB_ATTR(store_user);
5226
53e15af0
CL
5227static ssize_t validate_show(struct kmem_cache *s, char *buf)
5228{
5229 return 0;
5230}
5231
5232static ssize_t validate_store(struct kmem_cache *s,
5233 const char *buf, size_t length)
5234{
434e245d
CL
5235 int ret = -EINVAL;
5236
5237 if (buf[0] == '1') {
5238 ret = validate_slab_cache(s);
5239 if (ret >= 0)
5240 ret = length;
5241 }
5242 return ret;
53e15af0
CL
5243}
5244SLAB_ATTR(validate);
a5a84755
CL
5245
5246static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5247{
5248 if (!(s->flags & SLAB_STORE_USER))
5249 return -ENOSYS;
5250 return list_locations(s, buf, TRACK_ALLOC);
5251}
5252SLAB_ATTR_RO(alloc_calls);
5253
5254static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5255{
5256 if (!(s->flags & SLAB_STORE_USER))
5257 return -ENOSYS;
5258 return list_locations(s, buf, TRACK_FREE);
5259}
5260SLAB_ATTR_RO(free_calls);
5261#endif /* CONFIG_SLUB_DEBUG */
5262
5263#ifdef CONFIG_FAILSLAB
5264static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5265{
5266 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5267}
5268
5269static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5270 size_t length)
5271{
c9e16131
CL
5272 if (s->refcount > 1)
5273 return -EINVAL;
5274
a5a84755
CL
5275 s->flags &= ~SLAB_FAILSLAB;
5276 if (buf[0] == '1')
5277 s->flags |= SLAB_FAILSLAB;
5278 return length;
5279}
5280SLAB_ATTR(failslab);
ab4d5ed5 5281#endif
53e15af0 5282
2086d26a
CL
5283static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5284{
5285 return 0;
5286}
5287
5288static ssize_t shrink_store(struct kmem_cache *s,
5289 const char *buf, size_t length)
5290{
832f37f5
VD
5291 if (buf[0] == '1')
5292 kmem_cache_shrink(s);
5293 else
2086d26a
CL
5294 return -EINVAL;
5295 return length;
5296}
5297SLAB_ATTR(shrink);
5298
81819f0f 5299#ifdef CONFIG_NUMA
9824601e 5300static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5301{
eb7235eb 5302 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5303}
5304
9824601e 5305static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5306 const char *buf, size_t length)
5307{
eb7235eb 5308 unsigned int ratio;
0121c619
CL
5309 int err;
5310
eb7235eb 5311 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5312 if (err)
5313 return err;
eb7235eb
AD
5314 if (ratio > 100)
5315 return -ERANGE;
0121c619 5316
eb7235eb 5317 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5318
81819f0f
CL
5319 return length;
5320}
9824601e 5321SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5322#endif
5323
8ff12cfc 5324#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5325static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5326{
5327 unsigned long sum = 0;
5328 int cpu;
5329 int len;
6da2ec56 5330 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5331
5332 if (!data)
5333 return -ENOMEM;
5334
5335 for_each_online_cpu(cpu) {
9dfc6e68 5336 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5337
5338 data[cpu] = x;
5339 sum += x;
5340 }
5341
5342 len = sprintf(buf, "%lu", sum);
5343
50ef37b9 5344#ifdef CONFIG_SMP
8ff12cfc
CL
5345 for_each_online_cpu(cpu) {
5346 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5347 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5348 }
50ef37b9 5349#endif
8ff12cfc
CL
5350 kfree(data);
5351 return len + sprintf(buf + len, "\n");
5352}
5353
78eb00cc
DR
5354static void clear_stat(struct kmem_cache *s, enum stat_item si)
5355{
5356 int cpu;
5357
5358 for_each_online_cpu(cpu)
9dfc6e68 5359 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5360}
5361
8ff12cfc
CL
5362#define STAT_ATTR(si, text) \
5363static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5364{ \
5365 return show_stat(s, buf, si); \
5366} \
78eb00cc
DR
5367static ssize_t text##_store(struct kmem_cache *s, \
5368 const char *buf, size_t length) \
5369{ \
5370 if (buf[0] != '0') \
5371 return -EINVAL; \
5372 clear_stat(s, si); \
5373 return length; \
5374} \
5375SLAB_ATTR(text); \
8ff12cfc
CL
5376
5377STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5378STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5379STAT_ATTR(FREE_FASTPATH, free_fastpath);
5380STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5381STAT_ATTR(FREE_FROZEN, free_frozen);
5382STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5383STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5384STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5385STAT_ATTR(ALLOC_SLAB, alloc_slab);
5386STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5387STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5388STAT_ATTR(FREE_SLAB, free_slab);
5389STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5390STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5391STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5392STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5393STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5394STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5395STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5396STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5397STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5398STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5399STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5400STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5401STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5402STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5403#endif
5404
06428780 5405static struct attribute *slab_attrs[] = {
81819f0f
CL
5406 &slab_size_attr.attr,
5407 &object_size_attr.attr,
5408 &objs_per_slab_attr.attr,
5409 &order_attr.attr,
73d342b1 5410 &min_partial_attr.attr,
49e22585 5411 &cpu_partial_attr.attr,
81819f0f 5412 &objects_attr.attr,
205ab99d 5413 &objects_partial_attr.attr,
81819f0f
CL
5414 &partial_attr.attr,
5415 &cpu_slabs_attr.attr,
5416 &ctor_attr.attr,
81819f0f
CL
5417 &aliases_attr.attr,
5418 &align_attr.attr,
81819f0f
CL
5419 &hwcache_align_attr.attr,
5420 &reclaim_account_attr.attr,
5421 &destroy_by_rcu_attr.attr,
a5a84755 5422 &shrink_attr.attr,
49e22585 5423 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5424#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5425 &total_objects_attr.attr,
5426 &slabs_attr.attr,
5427 &sanity_checks_attr.attr,
5428 &trace_attr.attr,
81819f0f
CL
5429 &red_zone_attr.attr,
5430 &poison_attr.attr,
5431 &store_user_attr.attr,
53e15af0 5432 &validate_attr.attr,
88a420e4
CL
5433 &alloc_calls_attr.attr,
5434 &free_calls_attr.attr,
ab4d5ed5 5435#endif
81819f0f
CL
5436#ifdef CONFIG_ZONE_DMA
5437 &cache_dma_attr.attr,
5438#endif
5439#ifdef CONFIG_NUMA
9824601e 5440 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5441#endif
5442#ifdef CONFIG_SLUB_STATS
5443 &alloc_fastpath_attr.attr,
5444 &alloc_slowpath_attr.attr,
5445 &free_fastpath_attr.attr,
5446 &free_slowpath_attr.attr,
5447 &free_frozen_attr.attr,
5448 &free_add_partial_attr.attr,
5449 &free_remove_partial_attr.attr,
5450 &alloc_from_partial_attr.attr,
5451 &alloc_slab_attr.attr,
5452 &alloc_refill_attr.attr,
e36a2652 5453 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5454 &free_slab_attr.attr,
5455 &cpuslab_flush_attr.attr,
5456 &deactivate_full_attr.attr,
5457 &deactivate_empty_attr.attr,
5458 &deactivate_to_head_attr.attr,
5459 &deactivate_to_tail_attr.attr,
5460 &deactivate_remote_frees_attr.attr,
03e404af 5461 &deactivate_bypass_attr.attr,
65c3376a 5462 &order_fallback_attr.attr,
b789ef51
CL
5463 &cmpxchg_double_fail_attr.attr,
5464 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5465 &cpu_partial_alloc_attr.attr,
5466 &cpu_partial_free_attr.attr,
8028dcea
AS
5467 &cpu_partial_node_attr.attr,
5468 &cpu_partial_drain_attr.attr,
81819f0f 5469#endif
4c13dd3b
DM
5470#ifdef CONFIG_FAILSLAB
5471 &failslab_attr.attr,
5472#endif
8eb8284b 5473 &usersize_attr.attr,
4c13dd3b 5474
81819f0f
CL
5475 NULL
5476};
5477
1fdaaa23 5478static const struct attribute_group slab_attr_group = {
81819f0f
CL
5479 .attrs = slab_attrs,
5480};
5481
5482static ssize_t slab_attr_show(struct kobject *kobj,
5483 struct attribute *attr,
5484 char *buf)
5485{
5486 struct slab_attribute *attribute;
5487 struct kmem_cache *s;
5488 int err;
5489
5490 attribute = to_slab_attr(attr);
5491 s = to_slab(kobj);
5492
5493 if (!attribute->show)
5494 return -EIO;
5495
5496 err = attribute->show(s, buf);
5497
5498 return err;
5499}
5500
5501static ssize_t slab_attr_store(struct kobject *kobj,
5502 struct attribute *attr,
5503 const char *buf, size_t len)
5504{
5505 struct slab_attribute *attribute;
5506 struct kmem_cache *s;
5507 int err;
5508
5509 attribute = to_slab_attr(attr);
5510 s = to_slab(kobj);
5511
5512 if (!attribute->store)
5513 return -EIO;
5514
5515 err = attribute->store(s, buf, len);
127424c8 5516#ifdef CONFIG_MEMCG
107dab5c 5517 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5518 struct kmem_cache *c;
81819f0f 5519
107dab5c
GC
5520 mutex_lock(&slab_mutex);
5521 if (s->max_attr_size < len)
5522 s->max_attr_size = len;
5523
ebe945c2
GC
5524 /*
5525 * This is a best effort propagation, so this function's return
5526 * value will be determined by the parent cache only. This is
5527 * basically because not all attributes will have a well
5528 * defined semantics for rollbacks - most of the actions will
5529 * have permanent effects.
5530 *
5531 * Returning the error value of any of the children that fail
5532 * is not 100 % defined, in the sense that users seeing the
5533 * error code won't be able to know anything about the state of
5534 * the cache.
5535 *
5536 * Only returning the error code for the parent cache at least
5537 * has well defined semantics. The cache being written to
5538 * directly either failed or succeeded, in which case we loop
5539 * through the descendants with best-effort propagation.
5540 */
426589f5
VD
5541 for_each_memcg_cache(c, s)
5542 attribute->store(c, buf, len);
107dab5c
GC
5543 mutex_unlock(&slab_mutex);
5544 }
5545#endif
81819f0f
CL
5546 return err;
5547}
5548
107dab5c
GC
5549static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5550{
127424c8 5551#ifdef CONFIG_MEMCG
107dab5c
GC
5552 int i;
5553 char *buffer = NULL;
93030d83 5554 struct kmem_cache *root_cache;
107dab5c 5555
93030d83 5556 if (is_root_cache(s))
107dab5c
GC
5557 return;
5558
f7ce3190 5559 root_cache = s->memcg_params.root_cache;
93030d83 5560
107dab5c
GC
5561 /*
5562 * This mean this cache had no attribute written. Therefore, no point
5563 * in copying default values around
5564 */
93030d83 5565 if (!root_cache->max_attr_size)
107dab5c
GC
5566 return;
5567
5568 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5569 char mbuf[64];
5570 char *buf;
5571 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5572 ssize_t len;
107dab5c
GC
5573
5574 if (!attr || !attr->store || !attr->show)
5575 continue;
5576
5577 /*
5578 * It is really bad that we have to allocate here, so we will
5579 * do it only as a fallback. If we actually allocate, though,
5580 * we can just use the allocated buffer until the end.
5581 *
5582 * Most of the slub attributes will tend to be very small in
5583 * size, but sysfs allows buffers up to a page, so they can
5584 * theoretically happen.
5585 */
5586 if (buffer)
5587 buf = buffer;
93030d83 5588 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5589 buf = mbuf;
5590 else {
5591 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5592 if (WARN_ON(!buffer))
5593 continue;
5594 buf = buffer;
5595 }
5596
478fe303
TG
5597 len = attr->show(root_cache, buf);
5598 if (len > 0)
5599 attr->store(s, buf, len);
107dab5c
GC
5600 }
5601
5602 if (buffer)
5603 free_page((unsigned long)buffer);
5604#endif
5605}
5606
41a21285
CL
5607static void kmem_cache_release(struct kobject *k)
5608{
5609 slab_kmem_cache_release(to_slab(k));
5610}
5611
52cf25d0 5612static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5613 .show = slab_attr_show,
5614 .store = slab_attr_store,
5615};
5616
5617static struct kobj_type slab_ktype = {
5618 .sysfs_ops = &slab_sysfs_ops,
41a21285 5619 .release = kmem_cache_release,
81819f0f
CL
5620};
5621
5622static int uevent_filter(struct kset *kset, struct kobject *kobj)
5623{
5624 struct kobj_type *ktype = get_ktype(kobj);
5625
5626 if (ktype == &slab_ktype)
5627 return 1;
5628 return 0;
5629}
5630
9cd43611 5631static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5632 .filter = uevent_filter,
5633};
5634
27c3a314 5635static struct kset *slab_kset;
81819f0f 5636
9a41707b
VD
5637static inline struct kset *cache_kset(struct kmem_cache *s)
5638{
127424c8 5639#ifdef CONFIG_MEMCG
9a41707b 5640 if (!is_root_cache(s))
f7ce3190 5641 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5642#endif
5643 return slab_kset;
5644}
5645
81819f0f
CL
5646#define ID_STR_LENGTH 64
5647
5648/* Create a unique string id for a slab cache:
6446faa2
CL
5649 *
5650 * Format :[flags-]size
81819f0f
CL
5651 */
5652static char *create_unique_id(struct kmem_cache *s)
5653{
5654 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5655 char *p = name;
5656
5657 BUG_ON(!name);
5658
5659 *p++ = ':';
5660 /*
5661 * First flags affecting slabcache operations. We will only
5662 * get here for aliasable slabs so we do not need to support
5663 * too many flags. The flags here must cover all flags that
5664 * are matched during merging to guarantee that the id is
5665 * unique.
5666 */
5667 if (s->flags & SLAB_CACHE_DMA)
5668 *p++ = 'd';
5669 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5670 *p++ = 'a';
becfda68 5671 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5672 *p++ = 'F';
230e9fc2
VD
5673 if (s->flags & SLAB_ACCOUNT)
5674 *p++ = 'A';
81819f0f
CL
5675 if (p != name + 1)
5676 *p++ = '-';
44065b2e 5677 p += sprintf(p, "%07u", s->size);
2633d7a0 5678
81819f0f
CL
5679 BUG_ON(p > name + ID_STR_LENGTH - 1);
5680 return name;
5681}
5682
3b7b3140
TH
5683static void sysfs_slab_remove_workfn(struct work_struct *work)
5684{
5685 struct kmem_cache *s =
5686 container_of(work, struct kmem_cache, kobj_remove_work);
5687
5688 if (!s->kobj.state_in_sysfs)
5689 /*
5690 * For a memcg cache, this may be called during
5691 * deactivation and again on shutdown. Remove only once.
5692 * A cache is never shut down before deactivation is
5693 * complete, so no need to worry about synchronization.
5694 */
f6ba4880 5695 goto out;
3b7b3140
TH
5696
5697#ifdef CONFIG_MEMCG
5698 kset_unregister(s->memcg_kset);
5699#endif
5700 kobject_uevent(&s->kobj, KOBJ_REMOVE);
f6ba4880 5701out:
3b7b3140
TH
5702 kobject_put(&s->kobj);
5703}
5704
81819f0f
CL
5705static int sysfs_slab_add(struct kmem_cache *s)
5706{
5707 int err;
5708 const char *name;
1663f26d 5709 struct kset *kset = cache_kset(s);
45530c44 5710 int unmergeable = slab_unmergeable(s);
81819f0f 5711
3b7b3140
TH
5712 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5713
1663f26d
TH
5714 if (!kset) {
5715 kobject_init(&s->kobj, &slab_ktype);
5716 return 0;
5717 }
5718
11066386
MC
5719 if (!unmergeable && disable_higher_order_debug &&
5720 (slub_debug & DEBUG_METADATA_FLAGS))
5721 unmergeable = 1;
5722
81819f0f
CL
5723 if (unmergeable) {
5724 /*
5725 * Slabcache can never be merged so we can use the name proper.
5726 * This is typically the case for debug situations. In that
5727 * case we can catch duplicate names easily.
5728 */
27c3a314 5729 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5730 name = s->name;
5731 } else {
5732 /*
5733 * Create a unique name for the slab as a target
5734 * for the symlinks.
5735 */
5736 name = create_unique_id(s);
5737 }
5738
1663f26d 5739 s->kobj.kset = kset;
26e4f205 5740 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5741 if (err)
80da026a 5742 goto out;
81819f0f
CL
5743
5744 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5745 if (err)
5746 goto out_del_kobj;
9a41707b 5747
127424c8 5748#ifdef CONFIG_MEMCG
1663f26d 5749 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5750 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5751 if (!s->memcg_kset) {
54b6a731
DJ
5752 err = -ENOMEM;
5753 goto out_del_kobj;
9a41707b
VD
5754 }
5755 }
5756#endif
5757
81819f0f
CL
5758 kobject_uevent(&s->kobj, KOBJ_ADD);
5759 if (!unmergeable) {
5760 /* Setup first alias */
5761 sysfs_slab_alias(s, s->name);
81819f0f 5762 }
54b6a731
DJ
5763out:
5764 if (!unmergeable)
5765 kfree(name);
5766 return err;
5767out_del_kobj:
5768 kobject_del(&s->kobj);
54b6a731 5769 goto out;
81819f0f
CL
5770}
5771
bf5eb3de 5772static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5773{
97d06609 5774 if (slab_state < FULL)
2bce6485
CL
5775 /*
5776 * Sysfs has not been setup yet so no need to remove the
5777 * cache from sysfs.
5778 */
5779 return;
5780
3b7b3140
TH
5781 kobject_get(&s->kobj);
5782 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5783}
5784
d50d82fa
MP
5785void sysfs_slab_unlink(struct kmem_cache *s)
5786{
5787 if (slab_state >= FULL)
5788 kobject_del(&s->kobj);
5789}
5790
bf5eb3de
TH
5791void sysfs_slab_release(struct kmem_cache *s)
5792{
5793 if (slab_state >= FULL)
5794 kobject_put(&s->kobj);
81819f0f
CL
5795}
5796
5797/*
5798 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5799 * available lest we lose that information.
81819f0f
CL
5800 */
5801struct saved_alias {
5802 struct kmem_cache *s;
5803 const char *name;
5804 struct saved_alias *next;
5805};
5806
5af328a5 5807static struct saved_alias *alias_list;
81819f0f
CL
5808
5809static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5810{
5811 struct saved_alias *al;
5812
97d06609 5813 if (slab_state == FULL) {
81819f0f
CL
5814 /*
5815 * If we have a leftover link then remove it.
5816 */
27c3a314
GKH
5817 sysfs_remove_link(&slab_kset->kobj, name);
5818 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5819 }
5820
5821 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5822 if (!al)
5823 return -ENOMEM;
5824
5825 al->s = s;
5826 al->name = name;
5827 al->next = alias_list;
5828 alias_list = al;
5829 return 0;
5830}
5831
5832static int __init slab_sysfs_init(void)
5833{
5b95a4ac 5834 struct kmem_cache *s;
81819f0f
CL
5835 int err;
5836
18004c5d 5837 mutex_lock(&slab_mutex);
2bce6485 5838
0ff21e46 5839 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5840 if (!slab_kset) {
18004c5d 5841 mutex_unlock(&slab_mutex);
f9f58285 5842 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5843 return -ENOSYS;
5844 }
5845
97d06609 5846 slab_state = FULL;
26a7bd03 5847
5b95a4ac 5848 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5849 err = sysfs_slab_add(s);
5d540fb7 5850 if (err)
f9f58285
FF
5851 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5852 s->name);
26a7bd03 5853 }
81819f0f
CL
5854
5855 while (alias_list) {
5856 struct saved_alias *al = alias_list;
5857
5858 alias_list = alias_list->next;
5859 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5860 if (err)
f9f58285
FF
5861 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5862 al->name);
81819f0f
CL
5863 kfree(al);
5864 }
5865
18004c5d 5866 mutex_unlock(&slab_mutex);
81819f0f
CL
5867 resiliency_test();
5868 return 0;
5869}
5870
5871__initcall(slab_sysfs_init);
ab4d5ed5 5872#endif /* CONFIG_SYSFS */
57ed3eda
PE
5873
5874/*
5875 * The /proc/slabinfo ABI
5876 */
5b365771 5877#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5878void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5879{
57ed3eda 5880 unsigned long nr_slabs = 0;
205ab99d
CL
5881 unsigned long nr_objs = 0;
5882 unsigned long nr_free = 0;
57ed3eda 5883 int node;
fa45dc25 5884 struct kmem_cache_node *n;
57ed3eda 5885
fa45dc25 5886 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5887 nr_slabs += node_nr_slabs(n);
5888 nr_objs += node_nr_objs(n);
205ab99d 5889 nr_free += count_partial(n, count_free);
57ed3eda
PE
5890 }
5891
0d7561c6
GC
5892 sinfo->active_objs = nr_objs - nr_free;
5893 sinfo->num_objs = nr_objs;
5894 sinfo->active_slabs = nr_slabs;
5895 sinfo->num_slabs = nr_slabs;
5896 sinfo->objects_per_slab = oo_objects(s->oo);
5897 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5898}
5899
0d7561c6 5900void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5901{
7b3c3a50
AD
5902}
5903
b7454ad3
GC
5904ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5905 size_t count, loff_t *ppos)
7b3c3a50 5906{
b7454ad3 5907 return -EIO;
7b3c3a50 5908}
5b365771 5909#endif /* CONFIG_SLUB_DEBUG */