mm/cma_debug.c: fix the break condition in cma_maxchunk_get()
[linux-2.6-block.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
4b6f0750
CL
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
dfb4f096 110 * freelist that allows lockless access to
894b8788
CL
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
81819f0f
CL
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
894b8788 116 * the fast path and disables lockless freelists.
81819f0f
CL
117 */
118
af537b0a
CL
119static inline int kmem_cache_debug(struct kmem_cache *s)
120{
5577bd8a 121#ifdef CONFIG_SLUB_DEBUG
af537b0a 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 123#else
af537b0a 124 return 0;
5577bd8a 125#endif
af537b0a 126}
5577bd8a 127
117d54df 128void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
129{
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134}
135
345c905d
JK
136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137{
138#ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140#else
141 return false;
142#endif
143}
144
81819f0f
CL
145/*
146 * Issues still to be resolved:
147 *
81819f0f
CL
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
81819f0f
CL
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
b789ef51
CL
156/* Enable to log cmpxchg failures */
157#undef SLUB_DEBUG_CMPXCHG
158
2086d26a
CL
159/*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
76be8950 163#define MIN_PARTIAL 5
e95eed57 164
2086d26a
CL
165/*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 168 * sort the partial list by the number of objects in use.
2086d26a
CL
169 */
170#define MAX_PARTIAL 10
171
becfda68 172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 173 SLAB_POISON | SLAB_STORE_USER)
672bba3a 174
149daaf3
LA
175/*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
fa5ec8a1 183/*
3de47213
DR
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
fa5ec8a1 187 */
3de47213 188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 189
210b5c06
CG
190#define OO_SHIFT 16
191#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 192#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 193
81819f0f 194/* Internal SLUB flags */
d50112ed 195/* Poison object */
4fd0b46e 196#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 197/* Use cmpxchg_double */
4fd0b46e 198#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 199
02cbc874
CL
200/*
201 * Tracking user of a slab.
202 */
d6543e39 203#define TRACK_ADDRS_COUNT 16
02cbc874 204struct track {
ce71e27c 205 unsigned long addr; /* Called from address */
d6543e39
BG
206#ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208#endif
02cbc874
CL
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212};
213
214enum track_item { TRACK_ALLOC, TRACK_FREE };
215
ab4d5ed5 216#ifdef CONFIG_SYSFS
81819f0f
CL
217static int sysfs_slab_add(struct kmem_cache *);
218static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 219static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 220static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
107dab5c 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 226static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
227#endif
228
4fdccdfb 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
230{
231#ifdef CONFIG_SLUB_STATS
88da03a6
CL
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
237#endif
238}
239
81819f0f
CL
240/********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
2482ddec
KC
244/*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251{
252#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
253 /*
254 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
255 * Normally, this doesn't cause any issues, as both set_freepointer()
256 * and get_freepointer() are called with a pointer with the same tag.
257 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
258 * example, when __free_slub() iterates over objects in a cache, it
259 * passes untagged pointers to check_object(). check_object() in turns
260 * calls get_freepointer() with an untagged pointer, which causes the
261 * freepointer to be restored incorrectly.
262 */
263 return (void *)((unsigned long)ptr ^ s->random ^
264 (unsigned long)kasan_reset_tag((void *)ptr_addr));
2482ddec
KC
265#else
266 return ptr;
267#endif
268}
269
270/* Returns the freelist pointer recorded at location ptr_addr. */
271static inline void *freelist_dereference(const struct kmem_cache *s,
272 void *ptr_addr)
273{
274 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
275 (unsigned long)ptr_addr);
276}
277
7656c72b
CL
278static inline void *get_freepointer(struct kmem_cache *s, void *object)
279{
2482ddec 280 return freelist_dereference(s, object + s->offset);
7656c72b
CL
281}
282
0ad9500e
ED
283static void prefetch_freepointer(const struct kmem_cache *s, void *object)
284{
0882ff91 285 prefetch(object + s->offset);
0ad9500e
ED
286}
287
1393d9a1
CL
288static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
289{
2482ddec 290 unsigned long freepointer_addr;
1393d9a1
CL
291 void *p;
292
922d566c
JK
293 if (!debug_pagealloc_enabled())
294 return get_freepointer(s, object);
295
2482ddec
KC
296 freepointer_addr = (unsigned long)object + s->offset;
297 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
298 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
299}
300
7656c72b
CL
301static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
302{
2482ddec
KC
303 unsigned long freeptr_addr = (unsigned long)object + s->offset;
304
ce6fa91b
AP
305#ifdef CONFIG_SLAB_FREELIST_HARDENED
306 BUG_ON(object == fp); /* naive detection of double free or corruption */
307#endif
308
2482ddec 309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
310}
311
312/* Loop over all objects in a slab */
224a88be 313#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
314 for (__p = fixup_red_left(__s, __addr); \
315 __p < (__addr) + (__objects) * (__s)->size; \
316 __p += (__s)->size)
7656c72b 317
7656c72b 318/* Determine object index from a given position */
284b50dd 319static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b 320{
6373dca1 321 return (kasan_reset_tag(p) - addr) / s->size;
7656c72b
CL
322}
323
9736d2a9 324static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 325{
9736d2a9 326 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
327}
328
19af27af 329static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 330 unsigned int size)
834f3d11
CL
331{
332 struct kmem_cache_order_objects x = {
9736d2a9 333 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
334 };
335
336 return x;
337}
338
19af27af 339static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 340{
210b5c06 341 return x.x >> OO_SHIFT;
834f3d11
CL
342}
343
19af27af 344static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 345{
210b5c06 346 return x.x & OO_MASK;
834f3d11
CL
347}
348
881db7fb
CL
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
48c935ad 354 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
355 bit_spin_lock(PG_locked, &page->flags);
356}
357
358static __always_inline void slab_unlock(struct page *page)
359{
48c935ad 360 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
361 __bit_spin_unlock(PG_locked, &page->flags);
362}
363
1d07171c
CL
364/* Interrupts must be disabled (for the fallback code to work right) */
365static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369{
370 VM_BUG_ON(!irqs_disabled());
2565409f
HC
371#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 373 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 374 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
375 freelist_old, counters_old,
376 freelist_new, counters_new))
6f6528a1 377 return true;
1d07171c
CL
378 } else
379#endif
380 {
381 slab_lock(page);
d0e0ac97
CG
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
1d07171c 384 page->freelist = freelist_new;
7d27a04b 385 page->counters = counters_new;
1d07171c 386 slab_unlock(page);
6f6528a1 387 return true;
1d07171c
CL
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
397#endif
398
6f6528a1 399 return false;
1d07171c
CL
400}
401
b789ef51
CL
402static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406{
2565409f
HC
407#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 409 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 410 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
411 freelist_old, counters_old,
412 freelist_new, counters_new))
6f6528a1 413 return true;
b789ef51
CL
414 } else
415#endif
416 {
1d07171c
CL
417 unsigned long flags;
418
419 local_irq_save(flags);
881db7fb 420 slab_lock(page);
d0e0ac97
CG
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
b789ef51 423 page->freelist = freelist_new;
7d27a04b 424 page->counters = counters_new;
881db7fb 425 slab_unlock(page);
1d07171c 426 local_irq_restore(flags);
6f6528a1 427 return true;
b789ef51 428 }
881db7fb 429 slab_unlock(page);
1d07171c 430 local_irq_restore(flags);
b789ef51
CL
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
438#endif
439
6f6528a1 440 return false;
b789ef51
CL
441}
442
41ecc55b 443#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
444/*
445 * Determine a map of object in use on a page.
446 *
881db7fb 447 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
448 * not vanish from under us.
449 */
450static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451{
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457}
458
870b1fbb 459static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
460{
461 if (s->flags & SLAB_RED_ZONE)
462 return s->size - s->red_left_pad;
463
464 return s->size;
465}
466
467static inline void *restore_red_left(struct kmem_cache *s, void *p)
468{
469 if (s->flags & SLAB_RED_ZONE)
470 p -= s->red_left_pad;
471
472 return p;
473}
474
41ecc55b
CL
475/*
476 * Debug settings:
477 */
89d3c87e 478#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 479static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 480#else
d50112ed 481static slab_flags_t slub_debug;
f0630fff 482#endif
41ecc55b
CL
483
484static char *slub_debug_slabs;
fa5ec8a1 485static int disable_higher_order_debug;
41ecc55b 486
a79316c6
AR
487/*
488 * slub is about to manipulate internal object metadata. This memory lies
489 * outside the range of the allocated object, so accessing it would normally
490 * be reported by kasan as a bounds error. metadata_access_enable() is used
491 * to tell kasan that these accesses are OK.
492 */
493static inline void metadata_access_enable(void)
494{
495 kasan_disable_current();
496}
497
498static inline void metadata_access_disable(void)
499{
500 kasan_enable_current();
501}
502
81819f0f
CL
503/*
504 * Object debugging
505 */
d86bd1be
JK
506
507/* Verify that a pointer has an address that is valid within a slab page */
508static inline int check_valid_pointer(struct kmem_cache *s,
509 struct page *page, void *object)
510{
511 void *base;
512
513 if (!object)
514 return 1;
515
516 base = page_address(page);
338cfaad 517 object = kasan_reset_tag(object);
d86bd1be
JK
518 object = restore_red_left(s, object);
519 if (object < base || object >= base + page->objects * s->size ||
520 (object - base) % s->size) {
521 return 0;
522 }
523
524 return 1;
525}
526
aa2efd5e
DT
527static void print_section(char *level, char *text, u8 *addr,
528 unsigned int length)
81819f0f 529{
a79316c6 530 metadata_access_enable();
aa2efd5e 531 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 532 length, 1);
a79316c6 533 metadata_access_disable();
81819f0f
CL
534}
535
81819f0f
CL
536static struct track *get_track(struct kmem_cache *s, void *object,
537 enum track_item alloc)
538{
539 struct track *p;
540
541 if (s->offset)
542 p = object + s->offset + sizeof(void *);
543 else
544 p = object + s->inuse;
545
546 return p + alloc;
547}
548
549static void set_track(struct kmem_cache *s, void *object,
ce71e27c 550 enum track_item alloc, unsigned long addr)
81819f0f 551{
1a00df4a 552 struct track *p = get_track(s, object, alloc);
81819f0f 553
81819f0f 554 if (addr) {
d6543e39 555#ifdef CONFIG_STACKTRACE
79716799 556 unsigned int nr_entries;
d6543e39 557
a79316c6 558 metadata_access_enable();
79716799 559 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 560 metadata_access_disable();
d6543e39 561
79716799
TG
562 if (nr_entries < TRACK_ADDRS_COUNT)
563 p->addrs[nr_entries] = 0;
d6543e39 564#endif
81819f0f
CL
565 p->addr = addr;
566 p->cpu = smp_processor_id();
88e4ccf2 567 p->pid = current->pid;
81819f0f 568 p->when = jiffies;
b8ca7ff7 569 } else {
81819f0f 570 memset(p, 0, sizeof(struct track));
b8ca7ff7 571 }
81819f0f
CL
572}
573
81819f0f
CL
574static void init_tracking(struct kmem_cache *s, void *object)
575{
24922684
CL
576 if (!(s->flags & SLAB_STORE_USER))
577 return;
578
ce71e27c
EGM
579 set_track(s, object, TRACK_FREE, 0UL);
580 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
581}
582
86609d33 583static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
584{
585 if (!t->addr)
586 return;
587
f9f58285 588 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 589 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
590#ifdef CONFIG_STACKTRACE
591 {
592 int i;
593 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
594 if (t->addrs[i])
f9f58285 595 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
596 else
597 break;
598 }
599#endif
24922684
CL
600}
601
602static void print_tracking(struct kmem_cache *s, void *object)
603{
86609d33 604 unsigned long pr_time = jiffies;
24922684
CL
605 if (!(s->flags & SLAB_STORE_USER))
606 return;
607
86609d33
CP
608 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
609 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
610}
611
612static void print_page_info(struct page *page)
613{
f9f58285 614 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 615 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
616
617}
618
619static void slab_bug(struct kmem_cache *s, char *fmt, ...)
620{
ecc42fbe 621 struct va_format vaf;
24922684 622 va_list args;
24922684
CL
623
624 va_start(args, fmt);
ecc42fbe
FF
625 vaf.fmt = fmt;
626 vaf.va = &args;
f9f58285 627 pr_err("=============================================================================\n");
ecc42fbe 628 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 629 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 630
373d4d09 631 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 632 va_end(args);
81819f0f
CL
633}
634
24922684
CL
635static void slab_fix(struct kmem_cache *s, char *fmt, ...)
636{
ecc42fbe 637 struct va_format vaf;
24922684 638 va_list args;
24922684
CL
639
640 va_start(args, fmt);
ecc42fbe
FF
641 vaf.fmt = fmt;
642 vaf.va = &args;
643 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 644 va_end(args);
24922684
CL
645}
646
647static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
648{
649 unsigned int off; /* Offset of last byte */
a973e9dd 650 u8 *addr = page_address(page);
24922684
CL
651
652 print_tracking(s, p);
653
654 print_page_info(page);
655
f9f58285
FF
656 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
657 p, p - addr, get_freepointer(s, p));
24922684 658
d86bd1be 659 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
660 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
661 s->red_left_pad);
d86bd1be 662 else if (p > addr + 16)
aa2efd5e 663 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 664
aa2efd5e 665 print_section(KERN_ERR, "Object ", p,
1b473f29 666 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 667 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 668 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 669 s->inuse - s->object_size);
81819f0f 670
81819f0f
CL
671 if (s->offset)
672 off = s->offset + sizeof(void *);
673 else
674 off = s->inuse;
675
24922684 676 if (s->flags & SLAB_STORE_USER)
81819f0f 677 off += 2 * sizeof(struct track);
81819f0f 678
80a9201a
AP
679 off += kasan_metadata_size(s);
680
d86bd1be 681 if (off != size_from_object(s))
81819f0f 682 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
683 print_section(KERN_ERR, "Padding ", p + off,
684 size_from_object(s) - off);
24922684
CL
685
686 dump_stack();
81819f0f
CL
687}
688
75c66def 689void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
690 u8 *object, char *reason)
691{
3dc50637 692 slab_bug(s, "%s", reason);
24922684 693 print_trailer(s, page, object);
81819f0f
CL
694}
695
a38965bf 696static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 697 const char *fmt, ...)
81819f0f
CL
698{
699 va_list args;
700 char buf[100];
701
24922684
CL
702 va_start(args, fmt);
703 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 704 va_end(args);
3dc50637 705 slab_bug(s, "%s", buf);
24922684 706 print_page_info(page);
81819f0f
CL
707 dump_stack();
708}
709
f7cb1933 710static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
711{
712 u8 *p = object;
713
d86bd1be
JK
714 if (s->flags & SLAB_RED_ZONE)
715 memset(p - s->red_left_pad, val, s->red_left_pad);
716
81819f0f 717 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
718 memset(p, POISON_FREE, s->object_size - 1);
719 p[s->object_size - 1] = POISON_END;
81819f0f
CL
720 }
721
722 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 723 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
724}
725
24922684
CL
726static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
727 void *from, void *to)
728{
729 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
730 memset(from, data, to - from);
731}
732
733static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
734 u8 *object, char *what,
06428780 735 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
736{
737 u8 *fault;
738 u8 *end;
739
a79316c6 740 metadata_access_enable();
79824820 741 fault = memchr_inv(start, value, bytes);
a79316c6 742 metadata_access_disable();
24922684
CL
743 if (!fault)
744 return 1;
745
746 end = start + bytes;
747 while (end > fault && end[-1] == value)
748 end--;
749
750 slab_bug(s, "%s overwritten", what);
f9f58285 751 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
752 fault, end - 1, fault[0], value);
753 print_trailer(s, page, object);
754
755 restore_bytes(s, what, value, fault, end);
756 return 0;
81819f0f
CL
757}
758
81819f0f
CL
759/*
760 * Object layout:
761 *
762 * object address
763 * Bytes of the object to be managed.
764 * If the freepointer may overlay the object then the free
765 * pointer is the first word of the object.
672bba3a 766 *
81819f0f
CL
767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
768 * 0xa5 (POISON_END)
769 *
3b0efdfa 770 * object + s->object_size
81819f0f 771 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 772 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 773 * object_size == inuse.
672bba3a 774 *
81819f0f
CL
775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776 * 0xcc (RED_ACTIVE) for objects in use.
777 *
778 * object + s->inuse
672bba3a
CL
779 * Meta data starts here.
780 *
81819f0f
CL
781 * A. Free pointer (if we cannot overwrite object on free)
782 * B. Tracking data for SLAB_STORE_USER
672bba3a 783 * C. Padding to reach required alignment boundary or at mininum
6446faa2 784 * one word if debugging is on to be able to detect writes
672bba3a
CL
785 * before the word boundary.
786 *
787 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
788 *
789 * object + s->size
672bba3a 790 * Nothing is used beyond s->size.
81819f0f 791 *
3b0efdfa 792 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 793 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
794 * may be used with merged slabcaches.
795 */
796
81819f0f
CL
797static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798{
799 unsigned long off = s->inuse; /* The end of info */
800
801 if (s->offset)
802 /* Freepointer is placed after the object. */
803 off += sizeof(void *);
804
805 if (s->flags & SLAB_STORE_USER)
806 /* We also have user information there */
807 off += 2 * sizeof(struct track);
808
80a9201a
AP
809 off += kasan_metadata_size(s);
810
d86bd1be 811 if (size_from_object(s) == off)
81819f0f
CL
812 return 1;
813
24922684 814 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 815 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
816}
817
39b26464 818/* Check the pad bytes at the end of a slab page */
81819f0f
CL
819static int slab_pad_check(struct kmem_cache *s, struct page *page)
820{
24922684
CL
821 u8 *start;
822 u8 *fault;
823 u8 *end;
5d682681 824 u8 *pad;
24922684
CL
825 int length;
826 int remainder;
81819f0f
CL
827
828 if (!(s->flags & SLAB_POISON))
829 return 1;
830
a973e9dd 831 start = page_address(page);
9736d2a9 832 length = PAGE_SIZE << compound_order(page);
39b26464
CL
833 end = start + length;
834 remainder = length % s->size;
81819f0f
CL
835 if (!remainder)
836 return 1;
837
5d682681 838 pad = end - remainder;
a79316c6 839 metadata_access_enable();
5d682681 840 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 841 metadata_access_disable();
24922684
CL
842 if (!fault)
843 return 1;
844 while (end > fault && end[-1] == POISON_INUSE)
845 end--;
846
847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
5d682681 848 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 849
5d682681 850 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 851 return 0;
81819f0f
CL
852}
853
854static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 855 void *object, u8 val)
81819f0f
CL
856{
857 u8 *p = object;
3b0efdfa 858 u8 *endobject = object + s->object_size;
81819f0f
CL
859
860 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
861 if (!check_bytes_and_report(s, page, object, "Redzone",
862 object - s->red_left_pad, val, s->red_left_pad))
863 return 0;
864
24922684 865 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 866 endobject, val, s->inuse - s->object_size))
81819f0f 867 return 0;
81819f0f 868 } else {
3b0efdfa 869 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 870 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
871 endobject, POISON_INUSE,
872 s->inuse - s->object_size);
3adbefee 873 }
81819f0f
CL
874 }
875
876 if (s->flags & SLAB_POISON) {
f7cb1933 877 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 878 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 879 POISON_FREE, s->object_size - 1) ||
24922684 880 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 881 p + s->object_size - 1, POISON_END, 1)))
81819f0f 882 return 0;
81819f0f
CL
883 /*
884 * check_pad_bytes cleans up on its own.
885 */
886 check_pad_bytes(s, page, p);
887 }
888
f7cb1933 889 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
890 /*
891 * Object and freepointer overlap. Cannot check
892 * freepointer while object is allocated.
893 */
894 return 1;
895
896 /* Check free pointer validity */
897 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
898 object_err(s, page, p, "Freepointer corrupt");
899 /*
9f6c708e 900 * No choice but to zap it and thus lose the remainder
81819f0f 901 * of the free objects in this slab. May cause
672bba3a 902 * another error because the object count is now wrong.
81819f0f 903 */
a973e9dd 904 set_freepointer(s, p, NULL);
81819f0f
CL
905 return 0;
906 }
907 return 1;
908}
909
910static int check_slab(struct kmem_cache *s, struct page *page)
911{
39b26464
CL
912 int maxobj;
913
81819f0f
CL
914 VM_BUG_ON(!irqs_disabled());
915
916 if (!PageSlab(page)) {
24922684 917 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
918 return 0;
919 }
39b26464 920
9736d2a9 921 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
922 if (page->objects > maxobj) {
923 slab_err(s, page, "objects %u > max %u",
f6edde9c 924 page->objects, maxobj);
39b26464
CL
925 return 0;
926 }
927 if (page->inuse > page->objects) {
24922684 928 slab_err(s, page, "inuse %u > max %u",
f6edde9c 929 page->inuse, page->objects);
81819f0f
CL
930 return 0;
931 }
932 /* Slab_pad_check fixes things up after itself */
933 slab_pad_check(s, page);
934 return 1;
935}
936
937/*
672bba3a
CL
938 * Determine if a certain object on a page is on the freelist. Must hold the
939 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
940 */
941static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
942{
943 int nr = 0;
881db7fb 944 void *fp;
81819f0f 945 void *object = NULL;
f6edde9c 946 int max_objects;
81819f0f 947
881db7fb 948 fp = page->freelist;
39b26464 949 while (fp && nr <= page->objects) {
81819f0f
CL
950 if (fp == search)
951 return 1;
952 if (!check_valid_pointer(s, page, fp)) {
953 if (object) {
954 object_err(s, page, object,
955 "Freechain corrupt");
a973e9dd 956 set_freepointer(s, object, NULL);
81819f0f 957 } else {
24922684 958 slab_err(s, page, "Freepointer corrupt");
a973e9dd 959 page->freelist = NULL;
39b26464 960 page->inuse = page->objects;
24922684 961 slab_fix(s, "Freelist cleared");
81819f0f
CL
962 return 0;
963 }
964 break;
965 }
966 object = fp;
967 fp = get_freepointer(s, object);
968 nr++;
969 }
970
9736d2a9 971 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
972 if (max_objects > MAX_OBJS_PER_PAGE)
973 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
974
975 if (page->objects != max_objects) {
756a025f
JP
976 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
977 page->objects, max_objects);
224a88be
CL
978 page->objects = max_objects;
979 slab_fix(s, "Number of objects adjusted.");
980 }
39b26464 981 if (page->inuse != page->objects - nr) {
756a025f
JP
982 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
983 page->inuse, page->objects - nr);
39b26464 984 page->inuse = page->objects - nr;
24922684 985 slab_fix(s, "Object count adjusted.");
81819f0f
CL
986 }
987 return search == NULL;
988}
989
0121c619
CL
990static void trace(struct kmem_cache *s, struct page *page, void *object,
991 int alloc)
3ec09742
CL
992{
993 if (s->flags & SLAB_TRACE) {
f9f58285 994 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
995 s->name,
996 alloc ? "alloc" : "free",
997 object, page->inuse,
998 page->freelist);
999
1000 if (!alloc)
aa2efd5e 1001 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1002 s->object_size);
3ec09742
CL
1003
1004 dump_stack();
1005 }
1006}
1007
643b1138 1008/*
672bba3a 1009 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1010 */
5cc6eee8
CL
1011static void add_full(struct kmem_cache *s,
1012 struct kmem_cache_node *n, struct page *page)
643b1138 1013{
5cc6eee8
CL
1014 if (!(s->flags & SLAB_STORE_USER))
1015 return;
1016
255d0884 1017 lockdep_assert_held(&n->list_lock);
916ac052 1018 list_add(&page->slab_list, &n->full);
643b1138
CL
1019}
1020
c65c1877 1021static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1022{
643b1138
CL
1023 if (!(s->flags & SLAB_STORE_USER))
1024 return;
1025
255d0884 1026 lockdep_assert_held(&n->list_lock);
916ac052 1027 list_del(&page->slab_list);
643b1138
CL
1028}
1029
0f389ec6
CL
1030/* Tracking of the number of slabs for debugging purposes */
1031static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1032{
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 return atomic_long_read(&n->nr_slabs);
1036}
1037
26c02cf0
AB
1038static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1039{
1040 return atomic_long_read(&n->nr_slabs);
1041}
1042
205ab99d 1043static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1044{
1045 struct kmem_cache_node *n = get_node(s, node);
1046
1047 /*
1048 * May be called early in order to allocate a slab for the
1049 * kmem_cache_node structure. Solve the chicken-egg
1050 * dilemma by deferring the increment of the count during
1051 * bootstrap (see early_kmem_cache_node_alloc).
1052 */
338b2642 1053 if (likely(n)) {
0f389ec6 1054 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1055 atomic_long_add(objects, &n->total_objects);
1056 }
0f389ec6 1057}
205ab99d 1058static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1059{
1060 struct kmem_cache_node *n = get_node(s, node);
1061
1062 atomic_long_dec(&n->nr_slabs);
205ab99d 1063 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1064}
1065
1066/* Object debug checks for alloc/free paths */
3ec09742
CL
1067static void setup_object_debug(struct kmem_cache *s, struct page *page,
1068 void *object)
1069{
1070 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1071 return;
1072
f7cb1933 1073 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1074 init_tracking(s, object);
1075}
1076
a7101224
AK
1077static void setup_page_debug(struct kmem_cache *s, void *addr, int order)
1078{
1079 if (!(s->flags & SLAB_POISON))
1080 return;
1081
1082 metadata_access_enable();
1083 memset(addr, POISON_INUSE, PAGE_SIZE << order);
1084 metadata_access_disable();
1085}
1086
becfda68 1087static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1088 struct page *page, void *object)
81819f0f
CL
1089{
1090 if (!check_slab(s, page))
becfda68 1091 return 0;
81819f0f 1092
81819f0f
CL
1093 if (!check_valid_pointer(s, page, object)) {
1094 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1095 return 0;
81819f0f
CL
1096 }
1097
f7cb1933 1098 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1099 return 0;
1100
1101 return 1;
1102}
1103
1104static noinline int alloc_debug_processing(struct kmem_cache *s,
1105 struct page *page,
1106 void *object, unsigned long addr)
1107{
1108 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1109 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1110 goto bad;
1111 }
81819f0f 1112
3ec09742
CL
1113 /* Success perform special debug activities for allocs */
1114 if (s->flags & SLAB_STORE_USER)
1115 set_track(s, object, TRACK_ALLOC, addr);
1116 trace(s, page, object, 1);
f7cb1933 1117 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1118 return 1;
3ec09742 1119
81819f0f
CL
1120bad:
1121 if (PageSlab(page)) {
1122 /*
1123 * If this is a slab page then lets do the best we can
1124 * to avoid issues in the future. Marking all objects
672bba3a 1125 * as used avoids touching the remaining objects.
81819f0f 1126 */
24922684 1127 slab_fix(s, "Marking all objects used");
39b26464 1128 page->inuse = page->objects;
a973e9dd 1129 page->freelist = NULL;
81819f0f
CL
1130 }
1131 return 0;
1132}
1133
becfda68
LA
1134static inline int free_consistency_checks(struct kmem_cache *s,
1135 struct page *page, void *object, unsigned long addr)
81819f0f 1136{
81819f0f 1137 if (!check_valid_pointer(s, page, object)) {
70d71228 1138 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1139 return 0;
81819f0f
CL
1140 }
1141
1142 if (on_freelist(s, page, object)) {
24922684 1143 object_err(s, page, object, "Object already free");
becfda68 1144 return 0;
81819f0f
CL
1145 }
1146
f7cb1933 1147 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1148 return 0;
81819f0f 1149
1b4f59e3 1150 if (unlikely(s != page->slab_cache)) {
3adbefee 1151 if (!PageSlab(page)) {
756a025f
JP
1152 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1153 object);
1b4f59e3 1154 } else if (!page->slab_cache) {
f9f58285
FF
1155 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1156 object);
70d71228 1157 dump_stack();
06428780 1158 } else
24922684
CL
1159 object_err(s, page, object,
1160 "page slab pointer corrupt.");
becfda68
LA
1161 return 0;
1162 }
1163 return 1;
1164}
1165
1166/* Supports checking bulk free of a constructed freelist */
1167static noinline int free_debug_processing(
1168 struct kmem_cache *s, struct page *page,
1169 void *head, void *tail, int bulk_cnt,
1170 unsigned long addr)
1171{
1172 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1173 void *object = head;
1174 int cnt = 0;
1175 unsigned long uninitialized_var(flags);
1176 int ret = 0;
1177
1178 spin_lock_irqsave(&n->list_lock, flags);
1179 slab_lock(page);
1180
1181 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1182 if (!check_slab(s, page))
1183 goto out;
1184 }
1185
1186next_object:
1187 cnt++;
1188
1189 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1190 if (!free_consistency_checks(s, page, object, addr))
1191 goto out;
81819f0f 1192 }
3ec09742 1193
3ec09742
CL
1194 if (s->flags & SLAB_STORE_USER)
1195 set_track(s, object, TRACK_FREE, addr);
1196 trace(s, page, object, 0);
81084651 1197 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1198 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1199
1200 /* Reached end of constructed freelist yet? */
1201 if (object != tail) {
1202 object = get_freepointer(s, object);
1203 goto next_object;
1204 }
804aa132
LA
1205 ret = 1;
1206
5c2e4bbb 1207out:
81084651
JDB
1208 if (cnt != bulk_cnt)
1209 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1210 bulk_cnt, cnt);
1211
881db7fb 1212 slab_unlock(page);
282acb43 1213 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1214 if (!ret)
1215 slab_fix(s, "Object at 0x%p not freed", object);
1216 return ret;
81819f0f
CL
1217}
1218
41ecc55b
CL
1219static int __init setup_slub_debug(char *str)
1220{
f0630fff
CL
1221 slub_debug = DEBUG_DEFAULT_FLAGS;
1222 if (*str++ != '=' || !*str)
1223 /*
1224 * No options specified. Switch on full debugging.
1225 */
1226 goto out;
1227
1228 if (*str == ',')
1229 /*
1230 * No options but restriction on slabs. This means full
1231 * debugging for slabs matching a pattern.
1232 */
1233 goto check_slabs;
1234
1235 slub_debug = 0;
1236 if (*str == '-')
1237 /*
1238 * Switch off all debugging measures.
1239 */
1240 goto out;
1241
1242 /*
1243 * Determine which debug features should be switched on
1244 */
06428780 1245 for (; *str && *str != ','; str++) {
f0630fff
CL
1246 switch (tolower(*str)) {
1247 case 'f':
becfda68 1248 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1249 break;
1250 case 'z':
1251 slub_debug |= SLAB_RED_ZONE;
1252 break;
1253 case 'p':
1254 slub_debug |= SLAB_POISON;
1255 break;
1256 case 'u':
1257 slub_debug |= SLAB_STORE_USER;
1258 break;
1259 case 't':
1260 slub_debug |= SLAB_TRACE;
1261 break;
4c13dd3b
DM
1262 case 'a':
1263 slub_debug |= SLAB_FAILSLAB;
1264 break;
08303a73
CA
1265 case 'o':
1266 /*
1267 * Avoid enabling debugging on caches if its minimum
1268 * order would increase as a result.
1269 */
1270 disable_higher_order_debug = 1;
1271 break;
f0630fff 1272 default:
f9f58285
FF
1273 pr_err("slub_debug option '%c' unknown. skipped\n",
1274 *str);
f0630fff 1275 }
41ecc55b
CL
1276 }
1277
f0630fff 1278check_slabs:
41ecc55b
CL
1279 if (*str == ',')
1280 slub_debug_slabs = str + 1;
f0630fff 1281out:
41ecc55b
CL
1282 return 1;
1283}
1284
1285__setup("slub_debug", setup_slub_debug);
1286
c5fd3ca0
AT
1287/*
1288 * kmem_cache_flags - apply debugging options to the cache
1289 * @object_size: the size of an object without meta data
1290 * @flags: flags to set
1291 * @name: name of the cache
1292 * @ctor: constructor function
1293 *
1294 * Debug option(s) are applied to @flags. In addition to the debug
1295 * option(s), if a slab name (or multiple) is specified i.e.
1296 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1297 * then only the select slabs will receive the debug option(s).
1298 */
0293d1fd 1299slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1300 slab_flags_t flags, const char *name,
51cc5068 1301 void (*ctor)(void *))
41ecc55b 1302{
c5fd3ca0
AT
1303 char *iter;
1304 size_t len;
1305
1306 /* If slub_debug = 0, it folds into the if conditional. */
1307 if (!slub_debug_slabs)
1308 return flags | slub_debug;
1309
1310 len = strlen(name);
1311 iter = slub_debug_slabs;
1312 while (*iter) {
1313 char *end, *glob;
1314 size_t cmplen;
1315
1316 end = strchr(iter, ',');
1317 if (!end)
1318 end = iter + strlen(iter);
1319
1320 glob = strnchr(iter, end - iter, '*');
1321 if (glob)
1322 cmplen = glob - iter;
1323 else
1324 cmplen = max_t(size_t, len, (end - iter));
1325
1326 if (!strncmp(name, iter, cmplen)) {
1327 flags |= slub_debug;
1328 break;
1329 }
1330
1331 if (!*end)
1332 break;
1333 iter = end + 1;
1334 }
ba0268a8
CL
1335
1336 return flags;
41ecc55b 1337}
b4a64718 1338#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1339static inline void setup_object_debug(struct kmem_cache *s,
1340 struct page *page, void *object) {}
a7101224
AK
1341static inline void setup_page_debug(struct kmem_cache *s,
1342 void *addr, int order) {}
41ecc55b 1343
3ec09742 1344static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1345 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1346
282acb43 1347static inline int free_debug_processing(
81084651
JDB
1348 struct kmem_cache *s, struct page *page,
1349 void *head, void *tail, int bulk_cnt,
282acb43 1350 unsigned long addr) { return 0; }
41ecc55b 1351
41ecc55b
CL
1352static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1353 { return 1; }
1354static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1355 void *object, u8 val) { return 1; }
5cc6eee8
CL
1356static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1357 struct page *page) {}
c65c1877
PZ
1358static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1359 struct page *page) {}
0293d1fd 1360slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1361 slab_flags_t flags, const char *name,
51cc5068 1362 void (*ctor)(void *))
ba0268a8
CL
1363{
1364 return flags;
1365}
41ecc55b 1366#define slub_debug 0
0f389ec6 1367
fdaa45e9
IM
1368#define disable_higher_order_debug 0
1369
0f389ec6
CL
1370static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1371 { return 0; }
26c02cf0
AB
1372static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1373 { return 0; }
205ab99d
CL
1374static inline void inc_slabs_node(struct kmem_cache *s, int node,
1375 int objects) {}
1376static inline void dec_slabs_node(struct kmem_cache *s, int node,
1377 int objects) {}
7d550c56 1378
02e72cc6
AR
1379#endif /* CONFIG_SLUB_DEBUG */
1380
1381/*
1382 * Hooks for other subsystems that check memory allocations. In a typical
1383 * production configuration these hooks all should produce no code at all.
1384 */
0116523c 1385static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1386{
53128245 1387 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1388 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1389 kmemleak_alloc(ptr, size, 1, flags);
53128245 1390 return ptr;
d56791b3
RB
1391}
1392
ee3ce779 1393static __always_inline void kfree_hook(void *x)
d56791b3
RB
1394{
1395 kmemleak_free(x);
ee3ce779 1396 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1397}
1398
c3895391 1399static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1400{
1401 kmemleak_free_recursive(x, s->flags);
7d550c56 1402
02e72cc6
AR
1403 /*
1404 * Trouble is that we may no longer disable interrupts in the fast path
1405 * So in order to make the debug calls that expect irqs to be
1406 * disabled we need to disable interrupts temporarily.
1407 */
4675ff05 1408#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1409 {
1410 unsigned long flags;
1411
1412 local_irq_save(flags);
02e72cc6
AR
1413 debug_check_no_locks_freed(x, s->object_size);
1414 local_irq_restore(flags);
1415 }
1416#endif
1417 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1418 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1419
c3895391
AK
1420 /* KASAN might put x into memory quarantine, delaying its reuse */
1421 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1422}
205ab99d 1423
c3895391
AK
1424static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1425 void **head, void **tail)
81084651
JDB
1426{
1427/*
1428 * Compiler cannot detect this function can be removed if slab_free_hook()
1429 * evaluates to nothing. Thus, catch all relevant config debug options here.
1430 */
4675ff05 1431#if defined(CONFIG_LOCKDEP) || \
81084651
JDB
1432 defined(CONFIG_DEBUG_KMEMLEAK) || \
1433 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1434 defined(CONFIG_KASAN)
1435
c3895391
AK
1436 void *object;
1437 void *next = *head;
1438 void *old_tail = *tail ? *tail : *head;
1439
1440 /* Head and tail of the reconstructed freelist */
1441 *head = NULL;
1442 *tail = NULL;
81084651
JDB
1443
1444 do {
c3895391
AK
1445 object = next;
1446 next = get_freepointer(s, object);
1447 /* If object's reuse doesn't have to be delayed */
1448 if (!slab_free_hook(s, object)) {
1449 /* Move object to the new freelist */
1450 set_freepointer(s, object, *head);
1451 *head = object;
1452 if (!*tail)
1453 *tail = object;
1454 }
1455 } while (object != old_tail);
1456
1457 if (*head == *tail)
1458 *tail = NULL;
1459
1460 return *head != NULL;
1461#else
1462 return true;
81084651
JDB
1463#endif
1464}
1465
4d176711 1466static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1467 void *object)
1468{
1469 setup_object_debug(s, page, object);
4d176711 1470 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1471 if (unlikely(s->ctor)) {
1472 kasan_unpoison_object_data(s, object);
1473 s->ctor(object);
1474 kasan_poison_object_data(s, object);
1475 }
4d176711 1476 return object;
588f8ba9
TG
1477}
1478
81819f0f
CL
1479/*
1480 * Slab allocation and freeing
1481 */
5dfb4175
VD
1482static inline struct page *alloc_slab_page(struct kmem_cache *s,
1483 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1484{
5dfb4175 1485 struct page *page;
19af27af 1486 unsigned int order = oo_order(oo);
65c3376a 1487
2154a336 1488 if (node == NUMA_NO_NODE)
5dfb4175 1489 page = alloc_pages(flags, order);
65c3376a 1490 else
96db800f 1491 page = __alloc_pages_node(node, flags, order);
5dfb4175 1492
f3ccb2c4
VD
1493 if (page && memcg_charge_slab(page, flags, order, s)) {
1494 __free_pages(page, order);
1495 page = NULL;
1496 }
5dfb4175
VD
1497
1498 return page;
65c3376a
CL
1499}
1500
210e7a43
TG
1501#ifdef CONFIG_SLAB_FREELIST_RANDOM
1502/* Pre-initialize the random sequence cache */
1503static int init_cache_random_seq(struct kmem_cache *s)
1504{
19af27af 1505 unsigned int count = oo_objects(s->oo);
210e7a43 1506 int err;
210e7a43 1507
a810007a
SR
1508 /* Bailout if already initialised */
1509 if (s->random_seq)
1510 return 0;
1511
210e7a43
TG
1512 err = cache_random_seq_create(s, count, GFP_KERNEL);
1513 if (err) {
1514 pr_err("SLUB: Unable to initialize free list for %s\n",
1515 s->name);
1516 return err;
1517 }
1518
1519 /* Transform to an offset on the set of pages */
1520 if (s->random_seq) {
19af27af
AD
1521 unsigned int i;
1522
210e7a43
TG
1523 for (i = 0; i < count; i++)
1524 s->random_seq[i] *= s->size;
1525 }
1526 return 0;
1527}
1528
1529/* Initialize each random sequence freelist per cache */
1530static void __init init_freelist_randomization(void)
1531{
1532 struct kmem_cache *s;
1533
1534 mutex_lock(&slab_mutex);
1535
1536 list_for_each_entry(s, &slab_caches, list)
1537 init_cache_random_seq(s);
1538
1539 mutex_unlock(&slab_mutex);
1540}
1541
1542/* Get the next entry on the pre-computed freelist randomized */
1543static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1544 unsigned long *pos, void *start,
1545 unsigned long page_limit,
1546 unsigned long freelist_count)
1547{
1548 unsigned int idx;
1549
1550 /*
1551 * If the target page allocation failed, the number of objects on the
1552 * page might be smaller than the usual size defined by the cache.
1553 */
1554 do {
1555 idx = s->random_seq[*pos];
1556 *pos += 1;
1557 if (*pos >= freelist_count)
1558 *pos = 0;
1559 } while (unlikely(idx >= page_limit));
1560
1561 return (char *)start + idx;
1562}
1563
1564/* Shuffle the single linked freelist based on a random pre-computed sequence */
1565static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1566{
1567 void *start;
1568 void *cur;
1569 void *next;
1570 unsigned long idx, pos, page_limit, freelist_count;
1571
1572 if (page->objects < 2 || !s->random_seq)
1573 return false;
1574
1575 freelist_count = oo_objects(s->oo);
1576 pos = get_random_int() % freelist_count;
1577
1578 page_limit = page->objects * s->size;
1579 start = fixup_red_left(s, page_address(page));
1580
1581 /* First entry is used as the base of the freelist */
1582 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1583 freelist_count);
4d176711 1584 cur = setup_object(s, page, cur);
210e7a43
TG
1585 page->freelist = cur;
1586
1587 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1588 next = next_freelist_entry(s, page, &pos, start, page_limit,
1589 freelist_count);
4d176711 1590 next = setup_object(s, page, next);
210e7a43
TG
1591 set_freepointer(s, cur, next);
1592 cur = next;
1593 }
210e7a43
TG
1594 set_freepointer(s, cur, NULL);
1595
1596 return true;
1597}
1598#else
1599static inline int init_cache_random_seq(struct kmem_cache *s)
1600{
1601 return 0;
1602}
1603static inline void init_freelist_randomization(void) { }
1604static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1605{
1606 return false;
1607}
1608#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1609
81819f0f
CL
1610static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1611{
06428780 1612 struct page *page;
834f3d11 1613 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1614 gfp_t alloc_gfp;
4d176711 1615 void *start, *p, *next;
588f8ba9 1616 int idx, order;
210e7a43 1617 bool shuffle;
81819f0f 1618
7e0528da
CL
1619 flags &= gfp_allowed_mask;
1620
d0164adc 1621 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1622 local_irq_enable();
1623
b7a49f0d 1624 flags |= s->allocflags;
e12ba74d 1625
ba52270d
PE
1626 /*
1627 * Let the initial higher-order allocation fail under memory pressure
1628 * so we fall-back to the minimum order allocation.
1629 */
1630 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1631 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1632 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1633
5dfb4175 1634 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1635 if (unlikely(!page)) {
1636 oo = s->min;
80c3a998 1637 alloc_gfp = flags;
65c3376a
CL
1638 /*
1639 * Allocation may have failed due to fragmentation.
1640 * Try a lower order alloc if possible
1641 */
5dfb4175 1642 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1643 if (unlikely(!page))
1644 goto out;
1645 stat(s, ORDER_FALLBACK);
65c3376a 1646 }
5a896d9e 1647
834f3d11 1648 page->objects = oo_objects(oo);
81819f0f 1649
1f458cbf 1650 order = compound_order(page);
1b4f59e3 1651 page->slab_cache = s;
c03f94cc 1652 __SetPageSlab(page);
2f064f34 1653 if (page_is_pfmemalloc(page))
072bb0aa 1654 SetPageSlabPfmemalloc(page);
81819f0f 1655
a7101224 1656 kasan_poison_slab(page);
81819f0f 1657
a7101224 1658 start = page_address(page);
81819f0f 1659
a7101224 1660 setup_page_debug(s, start, order);
0316bec2 1661
210e7a43
TG
1662 shuffle = shuffle_freelist(s, page);
1663
1664 if (!shuffle) {
4d176711
AK
1665 start = fixup_red_left(s, start);
1666 start = setup_object(s, page, start);
1667 page->freelist = start;
18e50661
AK
1668 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1669 next = p + s->size;
1670 next = setup_object(s, page, next);
1671 set_freepointer(s, p, next);
1672 p = next;
1673 }
1674 set_freepointer(s, p, NULL);
81819f0f 1675 }
81819f0f 1676
e6e82ea1 1677 page->inuse = page->objects;
8cb0a506 1678 page->frozen = 1;
588f8ba9 1679
81819f0f 1680out:
d0164adc 1681 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1682 local_irq_disable();
1683 if (!page)
1684 return NULL;
1685
7779f212 1686 mod_lruvec_page_state(page,
588f8ba9
TG
1687 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1688 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1689 1 << oo_order(oo));
1690
1691 inc_slabs_node(s, page_to_nid(page), page->objects);
1692
81819f0f
CL
1693 return page;
1694}
1695
588f8ba9
TG
1696static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1697{
1698 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1699 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1700 flags &= ~GFP_SLAB_BUG_MASK;
1701 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1702 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1703 dump_stack();
588f8ba9
TG
1704 }
1705
1706 return allocate_slab(s,
1707 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1708}
1709
81819f0f
CL
1710static void __free_slab(struct kmem_cache *s, struct page *page)
1711{
834f3d11
CL
1712 int order = compound_order(page);
1713 int pages = 1 << order;
81819f0f 1714
becfda68 1715 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1716 void *p;
1717
1718 slab_pad_check(s, page);
224a88be
CL
1719 for_each_object(p, s, page_address(page),
1720 page->objects)
f7cb1933 1721 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1722 }
1723
7779f212 1724 mod_lruvec_page_state(page,
81819f0f
CL
1725 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1726 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1727 -pages);
81819f0f 1728
072bb0aa 1729 __ClearPageSlabPfmemalloc(page);
49bd5221 1730 __ClearPageSlab(page);
1f458cbf 1731
d4fc5069 1732 page->mapping = NULL;
1eb5ac64
NP
1733 if (current->reclaim_state)
1734 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1735 memcg_uncharge_slab(page, order, s);
1736 __free_pages(page, order);
81819f0f
CL
1737}
1738
1739static void rcu_free_slab(struct rcu_head *h)
1740{
bf68c214 1741 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1742
1b4f59e3 1743 __free_slab(page->slab_cache, page);
81819f0f
CL
1744}
1745
1746static void free_slab(struct kmem_cache *s, struct page *page)
1747{
5f0d5a3a 1748 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1749 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1750 } else
1751 __free_slab(s, page);
1752}
1753
1754static void discard_slab(struct kmem_cache *s, struct page *page)
1755{
205ab99d 1756 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1757 free_slab(s, page);
1758}
1759
1760/*
5cc6eee8 1761 * Management of partially allocated slabs.
81819f0f 1762 */
1e4dd946
SR
1763static inline void
1764__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1765{
e95eed57 1766 n->nr_partial++;
136333d1 1767 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1768 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1769 else
916ac052 1770 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1771}
1772
1e4dd946
SR
1773static inline void add_partial(struct kmem_cache_node *n,
1774 struct page *page, int tail)
62e346a8 1775{
c65c1877 1776 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1777 __add_partial(n, page, tail);
1778}
c65c1877 1779
1e4dd946
SR
1780static inline void remove_partial(struct kmem_cache_node *n,
1781 struct page *page)
1782{
1783 lockdep_assert_held(&n->list_lock);
916ac052 1784 list_del(&page->slab_list);
52b4b950 1785 n->nr_partial--;
1e4dd946
SR
1786}
1787
81819f0f 1788/*
7ced3719
CL
1789 * Remove slab from the partial list, freeze it and
1790 * return the pointer to the freelist.
81819f0f 1791 *
497b66f2 1792 * Returns a list of objects or NULL if it fails.
81819f0f 1793 */
497b66f2 1794static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1795 struct kmem_cache_node *n, struct page *page,
633b0764 1796 int mode, int *objects)
81819f0f 1797{
2cfb7455
CL
1798 void *freelist;
1799 unsigned long counters;
1800 struct page new;
1801
c65c1877
PZ
1802 lockdep_assert_held(&n->list_lock);
1803
2cfb7455
CL
1804 /*
1805 * Zap the freelist and set the frozen bit.
1806 * The old freelist is the list of objects for the
1807 * per cpu allocation list.
1808 */
7ced3719
CL
1809 freelist = page->freelist;
1810 counters = page->counters;
1811 new.counters = counters;
633b0764 1812 *objects = new.objects - new.inuse;
23910c50 1813 if (mode) {
7ced3719 1814 new.inuse = page->objects;
23910c50
PE
1815 new.freelist = NULL;
1816 } else {
1817 new.freelist = freelist;
1818 }
2cfb7455 1819
a0132ac0 1820 VM_BUG_ON(new.frozen);
7ced3719 1821 new.frozen = 1;
2cfb7455 1822
7ced3719 1823 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1824 freelist, counters,
02d7633f 1825 new.freelist, new.counters,
7ced3719 1826 "acquire_slab"))
7ced3719 1827 return NULL;
2cfb7455
CL
1828
1829 remove_partial(n, page);
7ced3719 1830 WARN_ON(!freelist);
49e22585 1831 return freelist;
81819f0f
CL
1832}
1833
633b0764 1834static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1835static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1836
81819f0f 1837/*
672bba3a 1838 * Try to allocate a partial slab from a specific node.
81819f0f 1839 */
8ba00bb6
JK
1840static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1841 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1842{
49e22585
CL
1843 struct page *page, *page2;
1844 void *object = NULL;
e5d9998f 1845 unsigned int available = 0;
633b0764 1846 int objects;
81819f0f
CL
1847
1848 /*
1849 * Racy check. If we mistakenly see no partial slabs then we
1850 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1851 * partial slab and there is none available then get_partials()
1852 * will return NULL.
81819f0f
CL
1853 */
1854 if (!n || !n->nr_partial)
1855 return NULL;
1856
1857 spin_lock(&n->list_lock);
916ac052 1858 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1859 void *t;
49e22585 1860
8ba00bb6
JK
1861 if (!pfmemalloc_match(page, flags))
1862 continue;
1863
633b0764 1864 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1865 if (!t)
1866 break;
1867
633b0764 1868 available += objects;
12d79634 1869 if (!object) {
49e22585 1870 c->page = page;
49e22585 1871 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1872 object = t;
49e22585 1873 } else {
633b0764 1874 put_cpu_partial(s, page, 0);
8028dcea 1875 stat(s, CPU_PARTIAL_NODE);
49e22585 1876 }
345c905d 1877 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1878 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1879 break;
1880
497b66f2 1881 }
81819f0f 1882 spin_unlock(&n->list_lock);
497b66f2 1883 return object;
81819f0f
CL
1884}
1885
1886/*
672bba3a 1887 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1888 */
de3ec035 1889static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1890 struct kmem_cache_cpu *c)
81819f0f
CL
1891{
1892#ifdef CONFIG_NUMA
1893 struct zonelist *zonelist;
dd1a239f 1894 struct zoneref *z;
54a6eb5c
MG
1895 struct zone *zone;
1896 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1897 void *object;
cc9a6c87 1898 unsigned int cpuset_mems_cookie;
81819f0f
CL
1899
1900 /*
672bba3a
CL
1901 * The defrag ratio allows a configuration of the tradeoffs between
1902 * inter node defragmentation and node local allocations. A lower
1903 * defrag_ratio increases the tendency to do local allocations
1904 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1905 *
672bba3a
CL
1906 * If the defrag_ratio is set to 0 then kmalloc() always
1907 * returns node local objects. If the ratio is higher then kmalloc()
1908 * may return off node objects because partial slabs are obtained
1909 * from other nodes and filled up.
81819f0f 1910 *
43efd3ea
LP
1911 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1912 * (which makes defrag_ratio = 1000) then every (well almost)
1913 * allocation will first attempt to defrag slab caches on other nodes.
1914 * This means scanning over all nodes to look for partial slabs which
1915 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1916 * with available objects.
81819f0f 1917 */
9824601e
CL
1918 if (!s->remote_node_defrag_ratio ||
1919 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1920 return NULL;
1921
cc9a6c87 1922 do {
d26914d1 1923 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1924 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1925 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1926 struct kmem_cache_node *n;
1927
1928 n = get_node(s, zone_to_nid(zone));
1929
dee2f8aa 1930 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1931 n->nr_partial > s->min_partial) {
8ba00bb6 1932 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1933 if (object) {
1934 /*
d26914d1
MG
1935 * Don't check read_mems_allowed_retry()
1936 * here - if mems_allowed was updated in
1937 * parallel, that was a harmless race
1938 * between allocation and the cpuset
1939 * update
cc9a6c87 1940 */
cc9a6c87
MG
1941 return object;
1942 }
c0ff7453 1943 }
81819f0f 1944 }
d26914d1 1945 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 1946#endif /* CONFIG_NUMA */
81819f0f
CL
1947 return NULL;
1948}
1949
1950/*
1951 * Get a partial page, lock it and return it.
1952 */
497b66f2 1953static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1954 struct kmem_cache_cpu *c)
81819f0f 1955{
497b66f2 1956 void *object;
a561ce00
JK
1957 int searchnode = node;
1958
1959 if (node == NUMA_NO_NODE)
1960 searchnode = numa_mem_id();
1961 else if (!node_present_pages(node))
1962 searchnode = node_to_mem_node(node);
81819f0f 1963
8ba00bb6 1964 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1965 if (object || node != NUMA_NO_NODE)
1966 return object;
81819f0f 1967
acd19fd1 1968 return get_any_partial(s, flags, c);
81819f0f
CL
1969}
1970
8a5ec0ba
CL
1971#ifdef CONFIG_PREEMPT
1972/*
1973 * Calculate the next globally unique transaction for disambiguiation
1974 * during cmpxchg. The transactions start with the cpu number and are then
1975 * incremented by CONFIG_NR_CPUS.
1976 */
1977#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1978#else
1979/*
1980 * No preemption supported therefore also no need to check for
1981 * different cpus.
1982 */
1983#define TID_STEP 1
1984#endif
1985
1986static inline unsigned long next_tid(unsigned long tid)
1987{
1988 return tid + TID_STEP;
1989}
1990
1991static inline unsigned int tid_to_cpu(unsigned long tid)
1992{
1993 return tid % TID_STEP;
1994}
1995
1996static inline unsigned long tid_to_event(unsigned long tid)
1997{
1998 return tid / TID_STEP;
1999}
2000
2001static inline unsigned int init_tid(int cpu)
2002{
2003 return cpu;
2004}
2005
2006static inline void note_cmpxchg_failure(const char *n,
2007 const struct kmem_cache *s, unsigned long tid)
2008{
2009#ifdef SLUB_DEBUG_CMPXCHG
2010 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2011
f9f58285 2012 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
2013
2014#ifdef CONFIG_PREEMPT
2015 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2016 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2017 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2018 else
2019#endif
2020 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2021 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2022 tid_to_event(tid), tid_to_event(actual_tid));
2023 else
f9f58285 2024 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2025 actual_tid, tid, next_tid(tid));
2026#endif
4fdccdfb 2027 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2028}
2029
788e1aad 2030static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2031{
8a5ec0ba
CL
2032 int cpu;
2033
2034 for_each_possible_cpu(cpu)
2035 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2036}
2cfb7455 2037
81819f0f
CL
2038/*
2039 * Remove the cpu slab
2040 */
d0e0ac97 2041static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2042 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2043{
2cfb7455 2044 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2045 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2046 int lock = 0;
2047 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2048 void *nextfree;
136333d1 2049 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2050 struct page new;
2051 struct page old;
2052
2053 if (page->freelist) {
84e554e6 2054 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2055 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2056 }
2057
894b8788 2058 /*
2cfb7455
CL
2059 * Stage one: Free all available per cpu objects back
2060 * to the page freelist while it is still frozen. Leave the
2061 * last one.
2062 *
2063 * There is no need to take the list->lock because the page
2064 * is still frozen.
2065 */
2066 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2067 void *prior;
2068 unsigned long counters;
2069
2070 do {
2071 prior = page->freelist;
2072 counters = page->counters;
2073 set_freepointer(s, freelist, prior);
2074 new.counters = counters;
2075 new.inuse--;
a0132ac0 2076 VM_BUG_ON(!new.frozen);
2cfb7455 2077
1d07171c 2078 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2079 prior, counters,
2080 freelist, new.counters,
2081 "drain percpu freelist"));
2082
2083 freelist = nextfree;
2084 }
2085
894b8788 2086 /*
2cfb7455
CL
2087 * Stage two: Ensure that the page is unfrozen while the
2088 * list presence reflects the actual number of objects
2089 * during unfreeze.
2090 *
2091 * We setup the list membership and then perform a cmpxchg
2092 * with the count. If there is a mismatch then the page
2093 * is not unfrozen but the page is on the wrong list.
2094 *
2095 * Then we restart the process which may have to remove
2096 * the page from the list that we just put it on again
2097 * because the number of objects in the slab may have
2098 * changed.
894b8788 2099 */
2cfb7455 2100redo:
894b8788 2101
2cfb7455
CL
2102 old.freelist = page->freelist;
2103 old.counters = page->counters;
a0132ac0 2104 VM_BUG_ON(!old.frozen);
7c2e132c 2105
2cfb7455
CL
2106 /* Determine target state of the slab */
2107 new.counters = old.counters;
2108 if (freelist) {
2109 new.inuse--;
2110 set_freepointer(s, freelist, old.freelist);
2111 new.freelist = freelist;
2112 } else
2113 new.freelist = old.freelist;
2114
2115 new.frozen = 0;
2116
8a5b20ae 2117 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2118 m = M_FREE;
2119 else if (new.freelist) {
2120 m = M_PARTIAL;
2121 if (!lock) {
2122 lock = 1;
2123 /*
8bb4e7a2 2124 * Taking the spinlock removes the possibility
2cfb7455
CL
2125 * that acquire_slab() will see a slab page that
2126 * is frozen
2127 */
2128 spin_lock(&n->list_lock);
2129 }
2130 } else {
2131 m = M_FULL;
2132 if (kmem_cache_debug(s) && !lock) {
2133 lock = 1;
2134 /*
2135 * This also ensures that the scanning of full
2136 * slabs from diagnostic functions will not see
2137 * any frozen slabs.
2138 */
2139 spin_lock(&n->list_lock);
2140 }
2141 }
2142
2143 if (l != m) {
2cfb7455 2144 if (l == M_PARTIAL)
2cfb7455 2145 remove_partial(n, page);
2cfb7455 2146 else if (l == M_FULL)
c65c1877 2147 remove_full(s, n, page);
2cfb7455 2148
88349a28 2149 if (m == M_PARTIAL)
2cfb7455 2150 add_partial(n, page, tail);
88349a28 2151 else if (m == M_FULL)
2cfb7455 2152 add_full(s, n, page);
2cfb7455
CL
2153 }
2154
2155 l = m;
1d07171c 2156 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2157 old.freelist, old.counters,
2158 new.freelist, new.counters,
2159 "unfreezing slab"))
2160 goto redo;
2161
2cfb7455
CL
2162 if (lock)
2163 spin_unlock(&n->list_lock);
2164
88349a28
WY
2165 if (m == M_PARTIAL)
2166 stat(s, tail);
2167 else if (m == M_FULL)
2168 stat(s, DEACTIVATE_FULL);
2169 else if (m == M_FREE) {
2cfb7455
CL
2170 stat(s, DEACTIVATE_EMPTY);
2171 discard_slab(s, page);
2172 stat(s, FREE_SLAB);
894b8788 2173 }
d4ff6d35
WY
2174
2175 c->page = NULL;
2176 c->freelist = NULL;
81819f0f
CL
2177}
2178
d24ac77f
JK
2179/*
2180 * Unfreeze all the cpu partial slabs.
2181 *
59a09917
CL
2182 * This function must be called with interrupts disabled
2183 * for the cpu using c (or some other guarantee must be there
2184 * to guarantee no concurrent accesses).
d24ac77f 2185 */
59a09917
CL
2186static void unfreeze_partials(struct kmem_cache *s,
2187 struct kmem_cache_cpu *c)
49e22585 2188{
345c905d 2189#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2190 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2191 struct page *page, *discard_page = NULL;
49e22585
CL
2192
2193 while ((page = c->partial)) {
49e22585
CL
2194 struct page new;
2195 struct page old;
2196
2197 c->partial = page->next;
43d77867
JK
2198
2199 n2 = get_node(s, page_to_nid(page));
2200 if (n != n2) {
2201 if (n)
2202 spin_unlock(&n->list_lock);
2203
2204 n = n2;
2205 spin_lock(&n->list_lock);
2206 }
49e22585
CL
2207
2208 do {
2209
2210 old.freelist = page->freelist;
2211 old.counters = page->counters;
a0132ac0 2212 VM_BUG_ON(!old.frozen);
49e22585
CL
2213
2214 new.counters = old.counters;
2215 new.freelist = old.freelist;
2216
2217 new.frozen = 0;
2218
d24ac77f 2219 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2220 old.freelist, old.counters,
2221 new.freelist, new.counters,
2222 "unfreezing slab"));
2223
8a5b20ae 2224 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2225 page->next = discard_page;
2226 discard_page = page;
43d77867
JK
2227 } else {
2228 add_partial(n, page, DEACTIVATE_TO_TAIL);
2229 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2230 }
2231 }
2232
2233 if (n)
2234 spin_unlock(&n->list_lock);
9ada1934
SL
2235
2236 while (discard_page) {
2237 page = discard_page;
2238 discard_page = discard_page->next;
2239
2240 stat(s, DEACTIVATE_EMPTY);
2241 discard_slab(s, page);
2242 stat(s, FREE_SLAB);
2243 }
6dfd1b65 2244#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2245}
2246
2247/*
9234bae9
WY
2248 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2249 * partial page slot if available.
49e22585
CL
2250 *
2251 * If we did not find a slot then simply move all the partials to the
2252 * per node partial list.
2253 */
633b0764 2254static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2255{
345c905d 2256#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2257 struct page *oldpage;
2258 int pages;
2259 int pobjects;
2260
d6e0b7fa 2261 preempt_disable();
49e22585
CL
2262 do {
2263 pages = 0;
2264 pobjects = 0;
2265 oldpage = this_cpu_read(s->cpu_slab->partial);
2266
2267 if (oldpage) {
2268 pobjects = oldpage->pobjects;
2269 pages = oldpage->pages;
2270 if (drain && pobjects > s->cpu_partial) {
2271 unsigned long flags;
2272 /*
2273 * partial array is full. Move the existing
2274 * set to the per node partial list.
2275 */
2276 local_irq_save(flags);
59a09917 2277 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2278 local_irq_restore(flags);
e24fc410 2279 oldpage = NULL;
49e22585
CL
2280 pobjects = 0;
2281 pages = 0;
8028dcea 2282 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2283 }
2284 }
2285
2286 pages++;
2287 pobjects += page->objects - page->inuse;
2288
2289 page->pages = pages;
2290 page->pobjects = pobjects;
2291 page->next = oldpage;
2292
d0e0ac97
CG
2293 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2294 != oldpage);
d6e0b7fa
VD
2295 if (unlikely(!s->cpu_partial)) {
2296 unsigned long flags;
2297
2298 local_irq_save(flags);
2299 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2300 local_irq_restore(flags);
2301 }
2302 preempt_enable();
6dfd1b65 2303#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2304}
2305
dfb4f096 2306static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2307{
84e554e6 2308 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2309 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2310
2311 c->tid = next_tid(c->tid);
81819f0f
CL
2312}
2313
2314/*
2315 * Flush cpu slab.
6446faa2 2316 *
81819f0f
CL
2317 * Called from IPI handler with interrupts disabled.
2318 */
0c710013 2319static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2320{
9dfc6e68 2321 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2322
1265ef2d
WY
2323 if (c->page)
2324 flush_slab(s, c);
49e22585 2325
1265ef2d 2326 unfreeze_partials(s, c);
81819f0f
CL
2327}
2328
2329static void flush_cpu_slab(void *d)
2330{
2331 struct kmem_cache *s = d;
81819f0f 2332
dfb4f096 2333 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2334}
2335
a8364d55
GBY
2336static bool has_cpu_slab(int cpu, void *info)
2337{
2338 struct kmem_cache *s = info;
2339 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2340
a93cf07b 2341 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2342}
2343
81819f0f
CL
2344static void flush_all(struct kmem_cache *s)
2345{
a8364d55 2346 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2347}
2348
a96a87bf
SAS
2349/*
2350 * Use the cpu notifier to insure that the cpu slabs are flushed when
2351 * necessary.
2352 */
2353static int slub_cpu_dead(unsigned int cpu)
2354{
2355 struct kmem_cache *s;
2356 unsigned long flags;
2357
2358 mutex_lock(&slab_mutex);
2359 list_for_each_entry(s, &slab_caches, list) {
2360 local_irq_save(flags);
2361 __flush_cpu_slab(s, cpu);
2362 local_irq_restore(flags);
2363 }
2364 mutex_unlock(&slab_mutex);
2365 return 0;
2366}
2367
dfb4f096
CL
2368/*
2369 * Check if the objects in a per cpu structure fit numa
2370 * locality expectations.
2371 */
57d437d2 2372static inline int node_match(struct page *page, int node)
dfb4f096
CL
2373{
2374#ifdef CONFIG_NUMA
6159d0f5 2375 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2376 return 0;
2377#endif
2378 return 1;
2379}
2380
9a02d699 2381#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2382static int count_free(struct page *page)
2383{
2384 return page->objects - page->inuse;
2385}
2386
9a02d699
DR
2387static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2388{
2389 return atomic_long_read(&n->total_objects);
2390}
2391#endif /* CONFIG_SLUB_DEBUG */
2392
2393#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2394static unsigned long count_partial(struct kmem_cache_node *n,
2395 int (*get_count)(struct page *))
2396{
2397 unsigned long flags;
2398 unsigned long x = 0;
2399 struct page *page;
2400
2401 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2402 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2403 x += get_count(page);
2404 spin_unlock_irqrestore(&n->list_lock, flags);
2405 return x;
2406}
9a02d699 2407#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2408
781b2ba6
PE
2409static noinline void
2410slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2411{
9a02d699
DR
2412#ifdef CONFIG_SLUB_DEBUG
2413 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2414 DEFAULT_RATELIMIT_BURST);
781b2ba6 2415 int node;
fa45dc25 2416 struct kmem_cache_node *n;
781b2ba6 2417
9a02d699
DR
2418 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2419 return;
2420
5b3810e5
VB
2421 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2422 nid, gfpflags, &gfpflags);
19af27af 2423 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2424 s->name, s->object_size, s->size, oo_order(s->oo),
2425 oo_order(s->min));
781b2ba6 2426
3b0efdfa 2427 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2428 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2429 s->name);
fa5ec8a1 2430
fa45dc25 2431 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2432 unsigned long nr_slabs;
2433 unsigned long nr_objs;
2434 unsigned long nr_free;
2435
26c02cf0
AB
2436 nr_free = count_partial(n, count_free);
2437 nr_slabs = node_nr_slabs(n);
2438 nr_objs = node_nr_objs(n);
781b2ba6 2439
f9f58285 2440 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2441 node, nr_slabs, nr_objs, nr_free);
2442 }
9a02d699 2443#endif
781b2ba6
PE
2444}
2445
497b66f2
CL
2446static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2447 int node, struct kmem_cache_cpu **pc)
2448{
6faa6833 2449 void *freelist;
188fd063
CL
2450 struct kmem_cache_cpu *c = *pc;
2451 struct page *page;
497b66f2 2452
128227e7
MW
2453 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2454
188fd063 2455 freelist = get_partial(s, flags, node, c);
497b66f2 2456
188fd063
CL
2457 if (freelist)
2458 return freelist;
2459
2460 page = new_slab(s, flags, node);
497b66f2 2461 if (page) {
7c8e0181 2462 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2463 if (c->page)
2464 flush_slab(s, c);
2465
2466 /*
2467 * No other reference to the page yet so we can
2468 * muck around with it freely without cmpxchg
2469 */
6faa6833 2470 freelist = page->freelist;
497b66f2
CL
2471 page->freelist = NULL;
2472
2473 stat(s, ALLOC_SLAB);
497b66f2
CL
2474 c->page = page;
2475 *pc = c;
edde82b6 2476 }
497b66f2 2477
6faa6833 2478 return freelist;
497b66f2
CL
2479}
2480
072bb0aa
MG
2481static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2482{
2483 if (unlikely(PageSlabPfmemalloc(page)))
2484 return gfp_pfmemalloc_allowed(gfpflags);
2485
2486 return true;
2487}
2488
213eeb9f 2489/*
d0e0ac97
CG
2490 * Check the page->freelist of a page and either transfer the freelist to the
2491 * per cpu freelist or deactivate the page.
213eeb9f
CL
2492 *
2493 * The page is still frozen if the return value is not NULL.
2494 *
2495 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2496 *
2497 * This function must be called with interrupt disabled.
213eeb9f
CL
2498 */
2499static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2500{
2501 struct page new;
2502 unsigned long counters;
2503 void *freelist;
2504
2505 do {
2506 freelist = page->freelist;
2507 counters = page->counters;
6faa6833 2508
213eeb9f 2509 new.counters = counters;
a0132ac0 2510 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2511
2512 new.inuse = page->objects;
2513 new.frozen = freelist != NULL;
2514
d24ac77f 2515 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2516 freelist, counters,
2517 NULL, new.counters,
2518 "get_freelist"));
2519
2520 return freelist;
2521}
2522
81819f0f 2523/*
894b8788
CL
2524 * Slow path. The lockless freelist is empty or we need to perform
2525 * debugging duties.
2526 *
894b8788
CL
2527 * Processing is still very fast if new objects have been freed to the
2528 * regular freelist. In that case we simply take over the regular freelist
2529 * as the lockless freelist and zap the regular freelist.
81819f0f 2530 *
894b8788
CL
2531 * If that is not working then we fall back to the partial lists. We take the
2532 * first element of the freelist as the object to allocate now and move the
2533 * rest of the freelist to the lockless freelist.
81819f0f 2534 *
894b8788 2535 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2536 * we need to allocate a new slab. This is the slowest path since it involves
2537 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2538 *
2539 * Version of __slab_alloc to use when we know that interrupts are
2540 * already disabled (which is the case for bulk allocation).
81819f0f 2541 */
a380a3c7 2542static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2543 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2544{
6faa6833 2545 void *freelist;
f6e7def7 2546 struct page *page;
81819f0f 2547
f6e7def7
CL
2548 page = c->page;
2549 if (!page)
81819f0f 2550 goto new_slab;
49e22585 2551redo:
6faa6833 2552
57d437d2 2553 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2554 int searchnode = node;
2555
2556 if (node != NUMA_NO_NODE && !node_present_pages(node))
2557 searchnode = node_to_mem_node(node);
2558
2559 if (unlikely(!node_match(page, searchnode))) {
2560 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2561 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2562 goto new_slab;
2563 }
fc59c053 2564 }
6446faa2 2565
072bb0aa
MG
2566 /*
2567 * By rights, we should be searching for a slab page that was
2568 * PFMEMALLOC but right now, we are losing the pfmemalloc
2569 * information when the page leaves the per-cpu allocator
2570 */
2571 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2572 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2573 goto new_slab;
2574 }
2575
73736e03 2576 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2577 freelist = c->freelist;
2578 if (freelist)
73736e03 2579 goto load_freelist;
03e404af 2580
f6e7def7 2581 freelist = get_freelist(s, page);
6446faa2 2582
6faa6833 2583 if (!freelist) {
03e404af
CL
2584 c->page = NULL;
2585 stat(s, DEACTIVATE_BYPASS);
fc59c053 2586 goto new_slab;
03e404af 2587 }
6446faa2 2588
84e554e6 2589 stat(s, ALLOC_REFILL);
6446faa2 2590
894b8788 2591load_freelist:
507effea
CL
2592 /*
2593 * freelist is pointing to the list of objects to be used.
2594 * page is pointing to the page from which the objects are obtained.
2595 * That page must be frozen for per cpu allocations to work.
2596 */
a0132ac0 2597 VM_BUG_ON(!c->page->frozen);
6faa6833 2598 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2599 c->tid = next_tid(c->tid);
6faa6833 2600 return freelist;
81819f0f 2601
81819f0f 2602new_slab:
2cfb7455 2603
a93cf07b
WY
2604 if (slub_percpu_partial(c)) {
2605 page = c->page = slub_percpu_partial(c);
2606 slub_set_percpu_partial(c, page);
49e22585 2607 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2608 goto redo;
81819f0f
CL
2609 }
2610
188fd063 2611 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2612
f4697436 2613 if (unlikely(!freelist)) {
9a02d699 2614 slab_out_of_memory(s, gfpflags, node);
f4697436 2615 return NULL;
81819f0f 2616 }
2cfb7455 2617
f6e7def7 2618 page = c->page;
5091b74a 2619 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2620 goto load_freelist;
2cfb7455 2621
497b66f2 2622 /* Only entered in the debug case */
d0e0ac97
CG
2623 if (kmem_cache_debug(s) &&
2624 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2625 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2626
d4ff6d35 2627 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2628 return freelist;
894b8788
CL
2629}
2630
a380a3c7
CL
2631/*
2632 * Another one that disabled interrupt and compensates for possible
2633 * cpu changes by refetching the per cpu area pointer.
2634 */
2635static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2636 unsigned long addr, struct kmem_cache_cpu *c)
2637{
2638 void *p;
2639 unsigned long flags;
2640
2641 local_irq_save(flags);
2642#ifdef CONFIG_PREEMPT
2643 /*
2644 * We may have been preempted and rescheduled on a different
2645 * cpu before disabling interrupts. Need to reload cpu area
2646 * pointer.
2647 */
2648 c = this_cpu_ptr(s->cpu_slab);
2649#endif
2650
2651 p = ___slab_alloc(s, gfpflags, node, addr, c);
2652 local_irq_restore(flags);
2653 return p;
2654}
2655
894b8788
CL
2656/*
2657 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2658 * have the fastpath folded into their functions. So no function call
2659 * overhead for requests that can be satisfied on the fastpath.
2660 *
2661 * The fastpath works by first checking if the lockless freelist can be used.
2662 * If not then __slab_alloc is called for slow processing.
2663 *
2664 * Otherwise we can simply pick the next object from the lockless free list.
2665 */
2b847c3c 2666static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2667 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2668{
03ec0ed5 2669 void *object;
dfb4f096 2670 struct kmem_cache_cpu *c;
57d437d2 2671 struct page *page;
8a5ec0ba 2672 unsigned long tid;
1f84260c 2673
8135be5a
VD
2674 s = slab_pre_alloc_hook(s, gfpflags);
2675 if (!s)
773ff60e 2676 return NULL;
8a5ec0ba 2677redo:
8a5ec0ba
CL
2678 /*
2679 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2680 * enabled. We may switch back and forth between cpus while
2681 * reading from one cpu area. That does not matter as long
2682 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2683 *
9aabf810
JK
2684 * We should guarantee that tid and kmem_cache are retrieved on
2685 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2686 * to check if it is matched or not.
8a5ec0ba 2687 */
9aabf810
JK
2688 do {
2689 tid = this_cpu_read(s->cpu_slab->tid);
2690 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2691 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2692 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2693
2694 /*
2695 * Irqless object alloc/free algorithm used here depends on sequence
2696 * of fetching cpu_slab's data. tid should be fetched before anything
2697 * on c to guarantee that object and page associated with previous tid
2698 * won't be used with current tid. If we fetch tid first, object and
2699 * page could be one associated with next tid and our alloc/free
2700 * request will be failed. In this case, we will retry. So, no problem.
2701 */
2702 barrier();
8a5ec0ba 2703
8a5ec0ba
CL
2704 /*
2705 * The transaction ids are globally unique per cpu and per operation on
2706 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2707 * occurs on the right processor and that there was no operation on the
2708 * linked list in between.
2709 */
8a5ec0ba 2710
9dfc6e68 2711 object = c->freelist;
57d437d2 2712 page = c->page;
8eae1492 2713 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2714 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2715 stat(s, ALLOC_SLOWPATH);
2716 } else {
0ad9500e
ED
2717 void *next_object = get_freepointer_safe(s, object);
2718
8a5ec0ba 2719 /*
25985edc 2720 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2721 * operation and if we are on the right processor.
2722 *
d0e0ac97
CG
2723 * The cmpxchg does the following atomically (without lock
2724 * semantics!)
8a5ec0ba
CL
2725 * 1. Relocate first pointer to the current per cpu area.
2726 * 2. Verify that tid and freelist have not been changed
2727 * 3. If they were not changed replace tid and freelist
2728 *
d0e0ac97
CG
2729 * Since this is without lock semantics the protection is only
2730 * against code executing on this cpu *not* from access by
2731 * other cpus.
8a5ec0ba 2732 */
933393f5 2733 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2734 s->cpu_slab->freelist, s->cpu_slab->tid,
2735 object, tid,
0ad9500e 2736 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2737
2738 note_cmpxchg_failure("slab_alloc", s, tid);
2739 goto redo;
2740 }
0ad9500e 2741 prefetch_freepointer(s, next_object);
84e554e6 2742 stat(s, ALLOC_FASTPATH);
894b8788 2743 }
8a5ec0ba 2744
74e2134f 2745 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2746 memset(object, 0, s->object_size);
d07dbea4 2747
03ec0ed5 2748 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2749
894b8788 2750 return object;
81819f0f
CL
2751}
2752
2b847c3c
EG
2753static __always_inline void *slab_alloc(struct kmem_cache *s,
2754 gfp_t gfpflags, unsigned long addr)
2755{
2756 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2757}
2758
81819f0f
CL
2759void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2760{
2b847c3c 2761 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2762
d0e0ac97
CG
2763 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2764 s->size, gfpflags);
5b882be4
EGM
2765
2766 return ret;
81819f0f
CL
2767}
2768EXPORT_SYMBOL(kmem_cache_alloc);
2769
0f24f128 2770#ifdef CONFIG_TRACING
4a92379b
RK
2771void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2772{
2b847c3c 2773 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2774 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2775 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2776 return ret;
2777}
2778EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2779#endif
2780
81819f0f
CL
2781#ifdef CONFIG_NUMA
2782void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2783{
2b847c3c 2784 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2785
ca2b84cb 2786 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2787 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2788
2789 return ret;
81819f0f
CL
2790}
2791EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2792
0f24f128 2793#ifdef CONFIG_TRACING
4a92379b 2794void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2795 gfp_t gfpflags,
4a92379b 2796 int node, size_t size)
5b882be4 2797{
2b847c3c 2798 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2799
2800 trace_kmalloc_node(_RET_IP_, ret,
2801 size, s->size, gfpflags, node);
0316bec2 2802
0116523c 2803 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2804 return ret;
5b882be4 2805}
4a92379b 2806EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2807#endif
6dfd1b65 2808#endif /* CONFIG_NUMA */
5b882be4 2809
81819f0f 2810/*
94e4d712 2811 * Slow path handling. This may still be called frequently since objects
894b8788 2812 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2813 *
894b8788
CL
2814 * So we still attempt to reduce cache line usage. Just take the slab
2815 * lock and free the item. If there is no additional partial page
2816 * handling required then we can return immediately.
81819f0f 2817 */
894b8788 2818static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2819 void *head, void *tail, int cnt,
2820 unsigned long addr)
2821
81819f0f
CL
2822{
2823 void *prior;
2cfb7455 2824 int was_frozen;
2cfb7455
CL
2825 struct page new;
2826 unsigned long counters;
2827 struct kmem_cache_node *n = NULL;
61728d1e 2828 unsigned long uninitialized_var(flags);
81819f0f 2829
8a5ec0ba 2830 stat(s, FREE_SLOWPATH);
81819f0f 2831
19c7ff9e 2832 if (kmem_cache_debug(s) &&
282acb43 2833 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2834 return;
6446faa2 2835
2cfb7455 2836 do {
837d678d
JK
2837 if (unlikely(n)) {
2838 spin_unlock_irqrestore(&n->list_lock, flags);
2839 n = NULL;
2840 }
2cfb7455
CL
2841 prior = page->freelist;
2842 counters = page->counters;
81084651 2843 set_freepointer(s, tail, prior);
2cfb7455
CL
2844 new.counters = counters;
2845 was_frozen = new.frozen;
81084651 2846 new.inuse -= cnt;
837d678d 2847 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2848
c65c1877 2849 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2850
2851 /*
d0e0ac97
CG
2852 * Slab was on no list before and will be
2853 * partially empty
2854 * We can defer the list move and instead
2855 * freeze it.
49e22585
CL
2856 */
2857 new.frozen = 1;
2858
c65c1877 2859 } else { /* Needs to be taken off a list */
49e22585 2860
b455def2 2861 n = get_node(s, page_to_nid(page));
49e22585
CL
2862 /*
2863 * Speculatively acquire the list_lock.
2864 * If the cmpxchg does not succeed then we may
2865 * drop the list_lock without any processing.
2866 *
2867 * Otherwise the list_lock will synchronize with
2868 * other processors updating the list of slabs.
2869 */
2870 spin_lock_irqsave(&n->list_lock, flags);
2871
2872 }
2cfb7455 2873 }
81819f0f 2874
2cfb7455
CL
2875 } while (!cmpxchg_double_slab(s, page,
2876 prior, counters,
81084651 2877 head, new.counters,
2cfb7455 2878 "__slab_free"));
81819f0f 2879
2cfb7455 2880 if (likely(!n)) {
49e22585
CL
2881
2882 /*
2883 * If we just froze the page then put it onto the
2884 * per cpu partial list.
2885 */
8028dcea 2886 if (new.frozen && !was_frozen) {
49e22585 2887 put_cpu_partial(s, page, 1);
8028dcea
AS
2888 stat(s, CPU_PARTIAL_FREE);
2889 }
49e22585 2890 /*
2cfb7455
CL
2891 * The list lock was not taken therefore no list
2892 * activity can be necessary.
2893 */
b455def2
L
2894 if (was_frozen)
2895 stat(s, FREE_FROZEN);
2896 return;
2897 }
81819f0f 2898
8a5b20ae 2899 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2900 goto slab_empty;
2901
81819f0f 2902 /*
837d678d
JK
2903 * Objects left in the slab. If it was not on the partial list before
2904 * then add it.
81819f0f 2905 */
345c905d 2906 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 2907 remove_full(s, n, page);
837d678d
JK
2908 add_partial(n, page, DEACTIVATE_TO_TAIL);
2909 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2910 }
80f08c19 2911 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2912 return;
2913
2914slab_empty:
a973e9dd 2915 if (prior) {
81819f0f 2916 /*
6fbabb20 2917 * Slab on the partial list.
81819f0f 2918 */
5cc6eee8 2919 remove_partial(n, page);
84e554e6 2920 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2921 } else {
6fbabb20 2922 /* Slab must be on the full list */
c65c1877
PZ
2923 remove_full(s, n, page);
2924 }
2cfb7455 2925
80f08c19 2926 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2927 stat(s, FREE_SLAB);
81819f0f 2928 discard_slab(s, page);
81819f0f
CL
2929}
2930
894b8788
CL
2931/*
2932 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2933 * can perform fastpath freeing without additional function calls.
2934 *
2935 * The fastpath is only possible if we are freeing to the current cpu slab
2936 * of this processor. This typically the case if we have just allocated
2937 * the item before.
2938 *
2939 * If fastpath is not possible then fall back to __slab_free where we deal
2940 * with all sorts of special processing.
81084651
JDB
2941 *
2942 * Bulk free of a freelist with several objects (all pointing to the
2943 * same page) possible by specifying head and tail ptr, plus objects
2944 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2945 */
80a9201a
AP
2946static __always_inline void do_slab_free(struct kmem_cache *s,
2947 struct page *page, void *head, void *tail,
2948 int cnt, unsigned long addr)
894b8788 2949{
81084651 2950 void *tail_obj = tail ? : head;
dfb4f096 2951 struct kmem_cache_cpu *c;
8a5ec0ba 2952 unsigned long tid;
8a5ec0ba
CL
2953redo:
2954 /*
2955 * Determine the currently cpus per cpu slab.
2956 * The cpu may change afterward. However that does not matter since
2957 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2958 * during the cmpxchg then the free will succeed.
8a5ec0ba 2959 */
9aabf810
JK
2960 do {
2961 tid = this_cpu_read(s->cpu_slab->tid);
2962 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2963 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2964 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2965
9aabf810
JK
2966 /* Same with comment on barrier() in slab_alloc_node() */
2967 barrier();
c016b0bd 2968
442b06bc 2969 if (likely(page == c->page)) {
81084651 2970 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2971
933393f5 2972 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2973 s->cpu_slab->freelist, s->cpu_slab->tid,
2974 c->freelist, tid,
81084651 2975 head, next_tid(tid)))) {
8a5ec0ba
CL
2976
2977 note_cmpxchg_failure("slab_free", s, tid);
2978 goto redo;
2979 }
84e554e6 2980 stat(s, FREE_FASTPATH);
894b8788 2981 } else
81084651 2982 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2983
894b8788
CL
2984}
2985
80a9201a
AP
2986static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2987 void *head, void *tail, int cnt,
2988 unsigned long addr)
2989{
80a9201a 2990 /*
c3895391
AK
2991 * With KASAN enabled slab_free_freelist_hook modifies the freelist
2992 * to remove objects, whose reuse must be delayed.
80a9201a 2993 */
c3895391
AK
2994 if (slab_free_freelist_hook(s, &head, &tail))
2995 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
2996}
2997
2bd926b4 2998#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
2999void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3000{
3001 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3002}
3003#endif
3004
81819f0f
CL
3005void kmem_cache_free(struct kmem_cache *s, void *x)
3006{
b9ce5ef4
GC
3007 s = cache_from_obj(s, x);
3008 if (!s)
79576102 3009 return;
81084651 3010 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3011 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3012}
3013EXPORT_SYMBOL(kmem_cache_free);
3014
d0ecd894 3015struct detached_freelist {
fbd02630 3016 struct page *page;
d0ecd894
JDB
3017 void *tail;
3018 void *freelist;
3019 int cnt;
376bf125 3020 struct kmem_cache *s;
d0ecd894 3021};
fbd02630 3022
d0ecd894
JDB
3023/*
3024 * This function progressively scans the array with free objects (with
3025 * a limited look ahead) and extract objects belonging to the same
3026 * page. It builds a detached freelist directly within the given
3027 * page/objects. This can happen without any need for
3028 * synchronization, because the objects are owned by running process.
3029 * The freelist is build up as a single linked list in the objects.
3030 * The idea is, that this detached freelist can then be bulk
3031 * transferred to the real freelist(s), but only requiring a single
3032 * synchronization primitive. Look ahead in the array is limited due
3033 * to performance reasons.
3034 */
376bf125
JDB
3035static inline
3036int build_detached_freelist(struct kmem_cache *s, size_t size,
3037 void **p, struct detached_freelist *df)
d0ecd894
JDB
3038{
3039 size_t first_skipped_index = 0;
3040 int lookahead = 3;
3041 void *object;
ca257195 3042 struct page *page;
fbd02630 3043
d0ecd894
JDB
3044 /* Always re-init detached_freelist */
3045 df->page = NULL;
fbd02630 3046
d0ecd894
JDB
3047 do {
3048 object = p[--size];
ca257195 3049 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3050 } while (!object && size);
3eed034d 3051
d0ecd894
JDB
3052 if (!object)
3053 return 0;
fbd02630 3054
ca257195
JDB
3055 page = virt_to_head_page(object);
3056 if (!s) {
3057 /* Handle kalloc'ed objects */
3058 if (unlikely(!PageSlab(page))) {
3059 BUG_ON(!PageCompound(page));
3060 kfree_hook(object);
4949148a 3061 __free_pages(page, compound_order(page));
ca257195
JDB
3062 p[size] = NULL; /* mark object processed */
3063 return size;
3064 }
3065 /* Derive kmem_cache from object */
3066 df->s = page->slab_cache;
3067 } else {
3068 df->s = cache_from_obj(s, object); /* Support for memcg */
3069 }
376bf125 3070
d0ecd894 3071 /* Start new detached freelist */
ca257195 3072 df->page = page;
376bf125 3073 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3074 df->tail = object;
3075 df->freelist = object;
3076 p[size] = NULL; /* mark object processed */
3077 df->cnt = 1;
3078
3079 while (size) {
3080 object = p[--size];
3081 if (!object)
3082 continue; /* Skip processed objects */
3083
3084 /* df->page is always set at this point */
3085 if (df->page == virt_to_head_page(object)) {
3086 /* Opportunity build freelist */
376bf125 3087 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3088 df->freelist = object;
3089 df->cnt++;
3090 p[size] = NULL; /* mark object processed */
3091
3092 continue;
fbd02630 3093 }
d0ecd894
JDB
3094
3095 /* Limit look ahead search */
3096 if (!--lookahead)
3097 break;
3098
3099 if (!first_skipped_index)
3100 first_skipped_index = size + 1;
fbd02630 3101 }
d0ecd894
JDB
3102
3103 return first_skipped_index;
3104}
3105
d0ecd894 3106/* Note that interrupts must be enabled when calling this function. */
376bf125 3107void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3108{
3109 if (WARN_ON(!size))
3110 return;
3111
3112 do {
3113 struct detached_freelist df;
3114
3115 size = build_detached_freelist(s, size, p, &df);
84582c8a 3116 if (!df.page)
d0ecd894
JDB
3117 continue;
3118
376bf125 3119 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3120 } while (likely(size));
484748f0
CL
3121}
3122EXPORT_SYMBOL(kmem_cache_free_bulk);
3123
994eb764 3124/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3125int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3126 void **p)
484748f0 3127{
994eb764
JDB
3128 struct kmem_cache_cpu *c;
3129 int i;
3130
03ec0ed5
JDB
3131 /* memcg and kmem_cache debug support */
3132 s = slab_pre_alloc_hook(s, flags);
3133 if (unlikely(!s))
3134 return false;
994eb764
JDB
3135 /*
3136 * Drain objects in the per cpu slab, while disabling local
3137 * IRQs, which protects against PREEMPT and interrupts
3138 * handlers invoking normal fastpath.
3139 */
3140 local_irq_disable();
3141 c = this_cpu_ptr(s->cpu_slab);
3142
3143 for (i = 0; i < size; i++) {
3144 void *object = c->freelist;
3145
ebe909e0 3146 if (unlikely(!object)) {
ebe909e0
JDB
3147 /*
3148 * Invoking slow path likely have side-effect
3149 * of re-populating per CPU c->freelist
3150 */
87098373 3151 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3152 _RET_IP_, c);
87098373
CL
3153 if (unlikely(!p[i]))
3154 goto error;
3155
ebe909e0
JDB
3156 c = this_cpu_ptr(s->cpu_slab);
3157 continue; /* goto for-loop */
3158 }
994eb764
JDB
3159 c->freelist = get_freepointer(s, object);
3160 p[i] = object;
3161 }
3162 c->tid = next_tid(c->tid);
3163 local_irq_enable();
3164
3165 /* Clear memory outside IRQ disabled fastpath loop */
3166 if (unlikely(flags & __GFP_ZERO)) {
3167 int j;
3168
3169 for (j = 0; j < i; j++)
3170 memset(p[j], 0, s->object_size);
3171 }
3172
03ec0ed5
JDB
3173 /* memcg and kmem_cache debug support */
3174 slab_post_alloc_hook(s, flags, size, p);
865762a8 3175 return i;
87098373 3176error:
87098373 3177 local_irq_enable();
03ec0ed5
JDB
3178 slab_post_alloc_hook(s, flags, i, p);
3179 __kmem_cache_free_bulk(s, i, p);
865762a8 3180 return 0;
484748f0
CL
3181}
3182EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3183
3184
81819f0f 3185/*
672bba3a
CL
3186 * Object placement in a slab is made very easy because we always start at
3187 * offset 0. If we tune the size of the object to the alignment then we can
3188 * get the required alignment by putting one properly sized object after
3189 * another.
81819f0f
CL
3190 *
3191 * Notice that the allocation order determines the sizes of the per cpu
3192 * caches. Each processor has always one slab available for allocations.
3193 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3194 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3195 * locking overhead.
81819f0f
CL
3196 */
3197
3198/*
3199 * Mininum / Maximum order of slab pages. This influences locking overhead
3200 * and slab fragmentation. A higher order reduces the number of partial slabs
3201 * and increases the number of allocations possible without having to
3202 * take the list_lock.
3203 */
19af27af
AD
3204static unsigned int slub_min_order;
3205static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3206static unsigned int slub_min_objects;
81819f0f 3207
81819f0f
CL
3208/*
3209 * Calculate the order of allocation given an slab object size.
3210 *
672bba3a
CL
3211 * The order of allocation has significant impact on performance and other
3212 * system components. Generally order 0 allocations should be preferred since
3213 * order 0 does not cause fragmentation in the page allocator. Larger objects
3214 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3215 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3216 * would be wasted.
3217 *
3218 * In order to reach satisfactory performance we must ensure that a minimum
3219 * number of objects is in one slab. Otherwise we may generate too much
3220 * activity on the partial lists which requires taking the list_lock. This is
3221 * less a concern for large slabs though which are rarely used.
81819f0f 3222 *
672bba3a
CL
3223 * slub_max_order specifies the order where we begin to stop considering the
3224 * number of objects in a slab as critical. If we reach slub_max_order then
3225 * we try to keep the page order as low as possible. So we accept more waste
3226 * of space in favor of a small page order.
81819f0f 3227 *
672bba3a
CL
3228 * Higher order allocations also allow the placement of more objects in a
3229 * slab and thereby reduce object handling overhead. If the user has
3230 * requested a higher mininum order then we start with that one instead of
3231 * the smallest order which will fit the object.
81819f0f 3232 */
19af27af
AD
3233static inline unsigned int slab_order(unsigned int size,
3234 unsigned int min_objects, unsigned int max_order,
9736d2a9 3235 unsigned int fract_leftover)
81819f0f 3236{
19af27af
AD
3237 unsigned int min_order = slub_min_order;
3238 unsigned int order;
81819f0f 3239
9736d2a9 3240 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3241 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3242
9736d2a9 3243 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3244 order <= max_order; order++) {
81819f0f 3245
19af27af
AD
3246 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3247 unsigned int rem;
81819f0f 3248
9736d2a9 3249 rem = slab_size % size;
81819f0f 3250
5e6d444e 3251 if (rem <= slab_size / fract_leftover)
81819f0f 3252 break;
81819f0f 3253 }
672bba3a 3254
81819f0f
CL
3255 return order;
3256}
3257
9736d2a9 3258static inline int calculate_order(unsigned int size)
5e6d444e 3259{
19af27af
AD
3260 unsigned int order;
3261 unsigned int min_objects;
3262 unsigned int max_objects;
5e6d444e
CL
3263
3264 /*
3265 * Attempt to find best configuration for a slab. This
3266 * works by first attempting to generate a layout with
3267 * the best configuration and backing off gradually.
3268 *
422ff4d7 3269 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3270 * we reduce the minimum objects required in a slab.
3271 */
3272 min_objects = slub_min_objects;
9b2cd506
CL
3273 if (!min_objects)
3274 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3275 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3276 min_objects = min(min_objects, max_objects);
3277
5e6d444e 3278 while (min_objects > 1) {
19af27af
AD
3279 unsigned int fraction;
3280
c124f5b5 3281 fraction = 16;
5e6d444e
CL
3282 while (fraction >= 4) {
3283 order = slab_order(size, min_objects,
9736d2a9 3284 slub_max_order, fraction);
5e6d444e
CL
3285 if (order <= slub_max_order)
3286 return order;
3287 fraction /= 2;
3288 }
5086c389 3289 min_objects--;
5e6d444e
CL
3290 }
3291
3292 /*
3293 * We were unable to place multiple objects in a slab. Now
3294 * lets see if we can place a single object there.
3295 */
9736d2a9 3296 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3297 if (order <= slub_max_order)
3298 return order;
3299
3300 /*
3301 * Doh this slab cannot be placed using slub_max_order.
3302 */
9736d2a9 3303 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3304 if (order < MAX_ORDER)
5e6d444e
CL
3305 return order;
3306 return -ENOSYS;
3307}
3308
5595cffc 3309static void
4053497d 3310init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3311{
3312 n->nr_partial = 0;
81819f0f
CL
3313 spin_lock_init(&n->list_lock);
3314 INIT_LIST_HEAD(&n->partial);
8ab1372f 3315#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3316 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3317 atomic_long_set(&n->total_objects, 0);
643b1138 3318 INIT_LIST_HEAD(&n->full);
8ab1372f 3319#endif
81819f0f
CL
3320}
3321
55136592 3322static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3323{
6c182dc0 3324 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3325 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3326
8a5ec0ba 3327 /*
d4d84fef
CM
3328 * Must align to double word boundary for the double cmpxchg
3329 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3330 */
d4d84fef
CM
3331 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3332 2 * sizeof(void *));
8a5ec0ba
CL
3333
3334 if (!s->cpu_slab)
3335 return 0;
3336
3337 init_kmem_cache_cpus(s);
4c93c355 3338
8a5ec0ba 3339 return 1;
4c93c355 3340}
4c93c355 3341
51df1142
CL
3342static struct kmem_cache *kmem_cache_node;
3343
81819f0f
CL
3344/*
3345 * No kmalloc_node yet so do it by hand. We know that this is the first
3346 * slab on the node for this slabcache. There are no concurrent accesses
3347 * possible.
3348 *
721ae22a
ZYW
3349 * Note that this function only works on the kmem_cache_node
3350 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3351 * memory on a fresh node that has no slab structures yet.
81819f0f 3352 */
55136592 3353static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3354{
3355 struct page *page;
3356 struct kmem_cache_node *n;
3357
51df1142 3358 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3359
51df1142 3360 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3361
3362 BUG_ON(!page);
a2f92ee7 3363 if (page_to_nid(page) != node) {
f9f58285
FF
3364 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3365 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3366 }
3367
81819f0f
CL
3368 n = page->freelist;
3369 BUG_ON(!n);
8ab1372f 3370#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3371 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3372 init_tracking(kmem_cache_node, n);
8ab1372f 3373#endif
12b22386 3374 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3375 GFP_KERNEL);
12b22386
AK
3376 page->freelist = get_freepointer(kmem_cache_node, n);
3377 page->inuse = 1;
3378 page->frozen = 0;
3379 kmem_cache_node->node[node] = n;
4053497d 3380 init_kmem_cache_node(n);
51df1142 3381 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3382
67b6c900 3383 /*
1e4dd946
SR
3384 * No locks need to be taken here as it has just been
3385 * initialized and there is no concurrent access.
67b6c900 3386 */
1e4dd946 3387 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3388}
3389
3390static void free_kmem_cache_nodes(struct kmem_cache *s)
3391{
3392 int node;
fa45dc25 3393 struct kmem_cache_node *n;
81819f0f 3394
fa45dc25 3395 for_each_kmem_cache_node(s, node, n) {
81819f0f 3396 s->node[node] = NULL;
ea37df54 3397 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3398 }
3399}
3400
52b4b950
DS
3401void __kmem_cache_release(struct kmem_cache *s)
3402{
210e7a43 3403 cache_random_seq_destroy(s);
52b4b950
DS
3404 free_percpu(s->cpu_slab);
3405 free_kmem_cache_nodes(s);
3406}
3407
55136592 3408static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3409{
3410 int node;
81819f0f 3411
f64dc58c 3412 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3413 struct kmem_cache_node *n;
3414
73367bd8 3415 if (slab_state == DOWN) {
55136592 3416 early_kmem_cache_node_alloc(node);
73367bd8
AD
3417 continue;
3418 }
51df1142 3419 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3420 GFP_KERNEL, node);
81819f0f 3421
73367bd8
AD
3422 if (!n) {
3423 free_kmem_cache_nodes(s);
3424 return 0;
81819f0f 3425 }
73367bd8 3426
4053497d 3427 init_kmem_cache_node(n);
ea37df54 3428 s->node[node] = n;
81819f0f
CL
3429 }
3430 return 1;
3431}
81819f0f 3432
c0bdb232 3433static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3434{
3435 if (min < MIN_PARTIAL)
3436 min = MIN_PARTIAL;
3437 else if (min > MAX_PARTIAL)
3438 min = MAX_PARTIAL;
3439 s->min_partial = min;
3440}
3441
e6d0e1dc
WY
3442static void set_cpu_partial(struct kmem_cache *s)
3443{
3444#ifdef CONFIG_SLUB_CPU_PARTIAL
3445 /*
3446 * cpu_partial determined the maximum number of objects kept in the
3447 * per cpu partial lists of a processor.
3448 *
3449 * Per cpu partial lists mainly contain slabs that just have one
3450 * object freed. If they are used for allocation then they can be
3451 * filled up again with minimal effort. The slab will never hit the
3452 * per node partial lists and therefore no locking will be required.
3453 *
3454 * This setting also determines
3455 *
3456 * A) The number of objects from per cpu partial slabs dumped to the
3457 * per node list when we reach the limit.
3458 * B) The number of objects in cpu partial slabs to extract from the
3459 * per node list when we run out of per cpu objects. We only fetch
3460 * 50% to keep some capacity around for frees.
3461 */
3462 if (!kmem_cache_has_cpu_partial(s))
3463 s->cpu_partial = 0;
3464 else if (s->size >= PAGE_SIZE)
3465 s->cpu_partial = 2;
3466 else if (s->size >= 1024)
3467 s->cpu_partial = 6;
3468 else if (s->size >= 256)
3469 s->cpu_partial = 13;
3470 else
3471 s->cpu_partial = 30;
3472#endif
3473}
3474
81819f0f
CL
3475/*
3476 * calculate_sizes() determines the order and the distribution of data within
3477 * a slab object.
3478 */
06b285dc 3479static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3480{
d50112ed 3481 slab_flags_t flags = s->flags;
be4a7988 3482 unsigned int size = s->object_size;
19af27af 3483 unsigned int order;
81819f0f 3484
d8b42bf5
CL
3485 /*
3486 * Round up object size to the next word boundary. We can only
3487 * place the free pointer at word boundaries and this determines
3488 * the possible location of the free pointer.
3489 */
3490 size = ALIGN(size, sizeof(void *));
3491
3492#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3493 /*
3494 * Determine if we can poison the object itself. If the user of
3495 * the slab may touch the object after free or before allocation
3496 * then we should never poison the object itself.
3497 */
5f0d5a3a 3498 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3499 !s->ctor)
81819f0f
CL
3500 s->flags |= __OBJECT_POISON;
3501 else
3502 s->flags &= ~__OBJECT_POISON;
3503
81819f0f
CL
3504
3505 /*
672bba3a 3506 * If we are Redzoning then check if there is some space between the
81819f0f 3507 * end of the object and the free pointer. If not then add an
672bba3a 3508 * additional word to have some bytes to store Redzone information.
81819f0f 3509 */
3b0efdfa 3510 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3511 size += sizeof(void *);
41ecc55b 3512#endif
81819f0f
CL
3513
3514 /*
672bba3a
CL
3515 * With that we have determined the number of bytes in actual use
3516 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3517 */
3518 s->inuse = size;
3519
5f0d5a3a 3520 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3521 s->ctor)) {
81819f0f
CL
3522 /*
3523 * Relocate free pointer after the object if it is not
3524 * permitted to overwrite the first word of the object on
3525 * kmem_cache_free.
3526 *
3527 * This is the case if we do RCU, have a constructor or
3528 * destructor or are poisoning the objects.
3529 */
3530 s->offset = size;
3531 size += sizeof(void *);
3532 }
3533
c12b3c62 3534#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3535 if (flags & SLAB_STORE_USER)
3536 /*
3537 * Need to store information about allocs and frees after
3538 * the object.
3539 */
3540 size += 2 * sizeof(struct track);
80a9201a 3541#endif
81819f0f 3542
80a9201a
AP
3543 kasan_cache_create(s, &size, &s->flags);
3544#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3545 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3546 /*
3547 * Add some empty padding so that we can catch
3548 * overwrites from earlier objects rather than let
3549 * tracking information or the free pointer be
0211a9c8 3550 * corrupted if a user writes before the start
81819f0f
CL
3551 * of the object.
3552 */
3553 size += sizeof(void *);
d86bd1be
JK
3554
3555 s->red_left_pad = sizeof(void *);
3556 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3557 size += s->red_left_pad;
3558 }
41ecc55b 3559#endif
672bba3a 3560
81819f0f
CL
3561 /*
3562 * SLUB stores one object immediately after another beginning from
3563 * offset 0. In order to align the objects we have to simply size
3564 * each object to conform to the alignment.
3565 */
45906855 3566 size = ALIGN(size, s->align);
81819f0f 3567 s->size = size;
06b285dc
CL
3568 if (forced_order >= 0)
3569 order = forced_order;
3570 else
9736d2a9 3571 order = calculate_order(size);
81819f0f 3572
19af27af 3573 if ((int)order < 0)
81819f0f
CL
3574 return 0;
3575
b7a49f0d 3576 s->allocflags = 0;
834f3d11 3577 if (order)
b7a49f0d
CL
3578 s->allocflags |= __GFP_COMP;
3579
3580 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3581 s->allocflags |= GFP_DMA;
b7a49f0d 3582
6d6ea1e9
NB
3583 if (s->flags & SLAB_CACHE_DMA32)
3584 s->allocflags |= GFP_DMA32;
3585
b7a49f0d
CL
3586 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3587 s->allocflags |= __GFP_RECLAIMABLE;
3588
81819f0f
CL
3589 /*
3590 * Determine the number of objects per slab
3591 */
9736d2a9
MW
3592 s->oo = oo_make(order, size);
3593 s->min = oo_make(get_order(size), size);
205ab99d
CL
3594 if (oo_objects(s->oo) > oo_objects(s->max))
3595 s->max = s->oo;
81819f0f 3596
834f3d11 3597 return !!oo_objects(s->oo);
81819f0f
CL
3598}
3599
d50112ed 3600static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3601{
8a13a4cc 3602 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3603#ifdef CONFIG_SLAB_FREELIST_HARDENED
3604 s->random = get_random_long();
3605#endif
81819f0f 3606
06b285dc 3607 if (!calculate_sizes(s, -1))
81819f0f 3608 goto error;
3de47213
DR
3609 if (disable_higher_order_debug) {
3610 /*
3611 * Disable debugging flags that store metadata if the min slab
3612 * order increased.
3613 */
3b0efdfa 3614 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3615 s->flags &= ~DEBUG_METADATA_FLAGS;
3616 s->offset = 0;
3617 if (!calculate_sizes(s, -1))
3618 goto error;
3619 }
3620 }
81819f0f 3621
2565409f
HC
3622#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3623 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3624 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3625 /* Enable fast mode */
3626 s->flags |= __CMPXCHG_DOUBLE;
3627#endif
3628
3b89d7d8
DR
3629 /*
3630 * The larger the object size is, the more pages we want on the partial
3631 * list to avoid pounding the page allocator excessively.
3632 */
49e22585
CL
3633 set_min_partial(s, ilog2(s->size) / 2);
3634
e6d0e1dc 3635 set_cpu_partial(s);
49e22585 3636
81819f0f 3637#ifdef CONFIG_NUMA
e2cb96b7 3638 s->remote_node_defrag_ratio = 1000;
81819f0f 3639#endif
210e7a43
TG
3640
3641 /* Initialize the pre-computed randomized freelist if slab is up */
3642 if (slab_state >= UP) {
3643 if (init_cache_random_seq(s))
3644 goto error;
3645 }
3646
55136592 3647 if (!init_kmem_cache_nodes(s))
dfb4f096 3648 goto error;
81819f0f 3649
55136592 3650 if (alloc_kmem_cache_cpus(s))
278b1bb1 3651 return 0;
ff12059e 3652
4c93c355 3653 free_kmem_cache_nodes(s);
81819f0f
CL
3654error:
3655 if (flags & SLAB_PANIC)
44065b2e
AD
3656 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3657 s->name, s->size, s->size,
4fd0b46e 3658 oo_order(s->oo), s->offset, (unsigned long)flags);
278b1bb1 3659 return -EINVAL;
81819f0f 3660}
81819f0f 3661
33b12c38
CL
3662static void list_slab_objects(struct kmem_cache *s, struct page *page,
3663 const char *text)
3664{
3665#ifdef CONFIG_SLUB_DEBUG
3666 void *addr = page_address(page);
3667 void *p;
0684e652 3668 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
bbd7d57b
ED
3669 if (!map)
3670 return;
945cf2b6 3671 slab_err(s, page, text, s->name);
33b12c38 3672 slab_lock(page);
33b12c38 3673
5f80b13a 3674 get_map(s, page, map);
33b12c38
CL
3675 for_each_object(p, s, addr, page->objects) {
3676
3677 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3678 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3679 print_tracking(s, p);
3680 }
3681 }
3682 slab_unlock(page);
0684e652 3683 bitmap_free(map);
33b12c38
CL
3684#endif
3685}
3686
81819f0f 3687/*
599870b1 3688 * Attempt to free all partial slabs on a node.
52b4b950
DS
3689 * This is called from __kmem_cache_shutdown(). We must take list_lock
3690 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3691 */
599870b1 3692static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3693{
60398923 3694 LIST_HEAD(discard);
81819f0f
CL
3695 struct page *page, *h;
3696
52b4b950
DS
3697 BUG_ON(irqs_disabled());
3698 spin_lock_irq(&n->list_lock);
916ac052 3699 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3700 if (!page->inuse) {
52b4b950 3701 remove_partial(n, page);
916ac052 3702 list_add(&page->slab_list, &discard);
33b12c38
CL
3703 } else {
3704 list_slab_objects(s, page,
52b4b950 3705 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3706 }
33b12c38 3707 }
52b4b950 3708 spin_unlock_irq(&n->list_lock);
60398923 3709
916ac052 3710 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3711 discard_slab(s, page);
81819f0f
CL
3712}
3713
f9e13c0a
SB
3714bool __kmem_cache_empty(struct kmem_cache *s)
3715{
3716 int node;
3717 struct kmem_cache_node *n;
3718
3719 for_each_kmem_cache_node(s, node, n)
3720 if (n->nr_partial || slabs_node(s, node))
3721 return false;
3722 return true;
3723}
3724
81819f0f 3725/*
672bba3a 3726 * Release all resources used by a slab cache.
81819f0f 3727 */
52b4b950 3728int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3729{
3730 int node;
fa45dc25 3731 struct kmem_cache_node *n;
81819f0f
CL
3732
3733 flush_all(s);
81819f0f 3734 /* Attempt to free all objects */
fa45dc25 3735 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3736 free_partial(s, n);
3737 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3738 return 1;
3739 }
bf5eb3de 3740 sysfs_slab_remove(s);
81819f0f
CL
3741 return 0;
3742}
3743
81819f0f
CL
3744/********************************************************************
3745 * Kmalloc subsystem
3746 *******************************************************************/
3747
81819f0f
CL
3748static int __init setup_slub_min_order(char *str)
3749{
19af27af 3750 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3751
3752 return 1;
3753}
3754
3755__setup("slub_min_order=", setup_slub_min_order);
3756
3757static int __init setup_slub_max_order(char *str)
3758{
19af27af
AD
3759 get_option(&str, (int *)&slub_max_order);
3760 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3761
3762 return 1;
3763}
3764
3765__setup("slub_max_order=", setup_slub_max_order);
3766
3767static int __init setup_slub_min_objects(char *str)
3768{
19af27af 3769 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3770
3771 return 1;
3772}
3773
3774__setup("slub_min_objects=", setup_slub_min_objects);
3775
81819f0f
CL
3776void *__kmalloc(size_t size, gfp_t flags)
3777{
aadb4bc4 3778 struct kmem_cache *s;
5b882be4 3779 void *ret;
81819f0f 3780
95a05b42 3781 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3782 return kmalloc_large(size, flags);
aadb4bc4 3783
2c59dd65 3784 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3785
3786 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3787 return s;
3788
2b847c3c 3789 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3790
ca2b84cb 3791 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3792
0116523c 3793 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3794
5b882be4 3795 return ret;
81819f0f
CL
3796}
3797EXPORT_SYMBOL(__kmalloc);
3798
5d1f57e4 3799#ifdef CONFIG_NUMA
f619cfe1
CL
3800static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3801{
b1eeab67 3802 struct page *page;
e4f7c0b4 3803 void *ptr = NULL;
f619cfe1 3804
75f296d9 3805 flags |= __GFP_COMP;
4949148a 3806 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3807 if (page)
e4f7c0b4
CM
3808 ptr = page_address(page);
3809
0116523c 3810 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3811}
3812
81819f0f
CL
3813void *__kmalloc_node(size_t size, gfp_t flags, int node)
3814{
aadb4bc4 3815 struct kmem_cache *s;
5b882be4 3816 void *ret;
81819f0f 3817
95a05b42 3818 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3819 ret = kmalloc_large_node(size, flags, node);
3820
ca2b84cb
EGM
3821 trace_kmalloc_node(_RET_IP_, ret,
3822 size, PAGE_SIZE << get_order(size),
3823 flags, node);
5b882be4
EGM
3824
3825 return ret;
3826 }
aadb4bc4 3827
2c59dd65 3828 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3829
3830 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3831 return s;
3832
2b847c3c 3833 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3834
ca2b84cb 3835 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3836
0116523c 3837 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3838
5b882be4 3839 return ret;
81819f0f
CL
3840}
3841EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 3842#endif /* CONFIG_NUMA */
81819f0f 3843
ed18adc1
KC
3844#ifdef CONFIG_HARDENED_USERCOPY
3845/*
afcc90f8
KC
3846 * Rejects incorrectly sized objects and objects that are to be copied
3847 * to/from userspace but do not fall entirely within the containing slab
3848 * cache's usercopy region.
ed18adc1
KC
3849 *
3850 * Returns NULL if check passes, otherwise const char * to name of cache
3851 * to indicate an error.
3852 */
f4e6e289
KC
3853void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3854 bool to_user)
ed18adc1
KC
3855{
3856 struct kmem_cache *s;
44065b2e 3857 unsigned int offset;
ed18adc1
KC
3858 size_t object_size;
3859
96fedce2
AK
3860 ptr = kasan_reset_tag(ptr);
3861
ed18adc1
KC
3862 /* Find object and usable object size. */
3863 s = page->slab_cache;
ed18adc1
KC
3864
3865 /* Reject impossible pointers. */
3866 if (ptr < page_address(page))
f4e6e289
KC
3867 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3868 to_user, 0, n);
ed18adc1
KC
3869
3870 /* Find offset within object. */
3871 offset = (ptr - page_address(page)) % s->size;
3872
3873 /* Adjust for redzone and reject if within the redzone. */
3874 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3875 if (offset < s->red_left_pad)
f4e6e289
KC
3876 usercopy_abort("SLUB object in left red zone",
3877 s->name, to_user, offset, n);
ed18adc1
KC
3878 offset -= s->red_left_pad;
3879 }
3880
afcc90f8
KC
3881 /* Allow address range falling entirely within usercopy region. */
3882 if (offset >= s->useroffset &&
3883 offset - s->useroffset <= s->usersize &&
3884 n <= s->useroffset - offset + s->usersize)
f4e6e289 3885 return;
ed18adc1 3886
afcc90f8
KC
3887 /*
3888 * If the copy is still within the allocated object, produce
3889 * a warning instead of rejecting the copy. This is intended
3890 * to be a temporary method to find any missing usercopy
3891 * whitelists.
3892 */
3893 object_size = slab_ksize(s);
2d891fbc
KC
3894 if (usercopy_fallback &&
3895 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
3896 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3897 return;
3898 }
ed18adc1 3899
f4e6e289 3900 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
3901}
3902#endif /* CONFIG_HARDENED_USERCOPY */
3903
0316bec2 3904static size_t __ksize(const void *object)
81819f0f 3905{
272c1d21 3906 struct page *page;
81819f0f 3907
ef8b4520 3908 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3909 return 0;
3910
294a80a8 3911 page = virt_to_head_page(object);
294a80a8 3912
76994412
PE
3913 if (unlikely(!PageSlab(page))) {
3914 WARN_ON(!PageCompound(page));
294a80a8 3915 return PAGE_SIZE << compound_order(page);
76994412 3916 }
81819f0f 3917
1b4f59e3 3918 return slab_ksize(page->slab_cache);
81819f0f 3919}
0316bec2
AR
3920
3921size_t ksize(const void *object)
3922{
3923 size_t size = __ksize(object);
3924 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3925 * so we need to unpoison this area.
3926 */
3927 kasan_unpoison_shadow(object, size);
0316bec2
AR
3928 return size;
3929}
b1aabecd 3930EXPORT_SYMBOL(ksize);
81819f0f
CL
3931
3932void kfree(const void *x)
3933{
81819f0f 3934 struct page *page;
5bb983b0 3935 void *object = (void *)x;
81819f0f 3936
2121db74
PE
3937 trace_kfree(_RET_IP_, x);
3938
2408c550 3939 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3940 return;
3941
b49af68f 3942 page = virt_to_head_page(x);
aadb4bc4 3943 if (unlikely(!PageSlab(page))) {
0937502a 3944 BUG_ON(!PageCompound(page));
47adccce 3945 kfree_hook(object);
4949148a 3946 __free_pages(page, compound_order(page));
aadb4bc4
CL
3947 return;
3948 }
81084651 3949 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3950}
3951EXPORT_SYMBOL(kfree);
3952
832f37f5
VD
3953#define SHRINK_PROMOTE_MAX 32
3954
2086d26a 3955/*
832f37f5
VD
3956 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3957 * up most to the head of the partial lists. New allocations will then
3958 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3959 *
3960 * The slabs with the least items are placed last. This results in them
3961 * being allocated from last increasing the chance that the last objects
3962 * are freed in them.
2086d26a 3963 */
c9fc5864 3964int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3965{
3966 int node;
3967 int i;
3968 struct kmem_cache_node *n;
3969 struct page *page;
3970 struct page *t;
832f37f5
VD
3971 struct list_head discard;
3972 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3973 unsigned long flags;
ce3712d7 3974 int ret = 0;
2086d26a 3975
2086d26a 3976 flush_all(s);
fa45dc25 3977 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3978 INIT_LIST_HEAD(&discard);
3979 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3980 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3981
3982 spin_lock_irqsave(&n->list_lock, flags);
3983
3984 /*
832f37f5 3985 * Build lists of slabs to discard or promote.
2086d26a 3986 *
672bba3a
CL
3987 * Note that concurrent frees may occur while we hold the
3988 * list_lock. page->inuse here is the upper limit.
2086d26a 3989 */
916ac052 3990 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
3991 int free = page->objects - page->inuse;
3992
3993 /* Do not reread page->inuse */
3994 barrier();
3995
3996 /* We do not keep full slabs on the list */
3997 BUG_ON(free <= 0);
3998
3999 if (free == page->objects) {
916ac052 4000 list_move(&page->slab_list, &discard);
69cb8e6b 4001 n->nr_partial--;
832f37f5 4002 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4003 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4004 }
4005
2086d26a 4006 /*
832f37f5
VD
4007 * Promote the slabs filled up most to the head of the
4008 * partial list.
2086d26a 4009 */
832f37f5
VD
4010 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4011 list_splice(promote + i, &n->partial);
2086d26a 4012
2086d26a 4013 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4014
4015 /* Release empty slabs */
916ac052 4016 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4017 discard_slab(s, page);
ce3712d7
VD
4018
4019 if (slabs_node(s, node))
4020 ret = 1;
2086d26a
CL
4021 }
4022
ce3712d7 4023 return ret;
2086d26a 4024}
2086d26a 4025
c9fc5864 4026#ifdef CONFIG_MEMCG
01fb58bc
TH
4027static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4028{
50862ce7
TH
4029 /*
4030 * Called with all the locks held after a sched RCU grace period.
4031 * Even if @s becomes empty after shrinking, we can't know that @s
4032 * doesn't have allocations already in-flight and thus can't
4033 * destroy @s until the associated memcg is released.
4034 *
4035 * However, let's remove the sysfs files for empty caches here.
4036 * Each cache has a lot of interface files which aren't
4037 * particularly useful for empty draining caches; otherwise, we can
4038 * easily end up with millions of unnecessary sysfs files on
4039 * systems which have a lot of memory and transient cgroups.
4040 */
4041 if (!__kmem_cache_shrink(s))
4042 sysfs_slab_remove(s);
01fb58bc
TH
4043}
4044
c9fc5864
TH
4045void __kmemcg_cache_deactivate(struct kmem_cache *s)
4046{
4047 /*
4048 * Disable empty slabs caching. Used to avoid pinning offline
4049 * memory cgroups by kmem pages that can be freed.
4050 */
e6d0e1dc 4051 slub_set_cpu_partial(s, 0);
c9fc5864
TH
4052 s->min_partial = 0;
4053
4054 /*
4055 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 4056 * we have to make sure the change is visible before shrinking.
c9fc5864 4057 */
01fb58bc 4058 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864 4059}
6dfd1b65 4060#endif /* CONFIG_MEMCG */
c9fc5864 4061
b9049e23
YG
4062static int slab_mem_going_offline_callback(void *arg)
4063{
4064 struct kmem_cache *s;
4065
18004c5d 4066 mutex_lock(&slab_mutex);
b9049e23 4067 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4068 __kmem_cache_shrink(s);
18004c5d 4069 mutex_unlock(&slab_mutex);
b9049e23
YG
4070
4071 return 0;
4072}
4073
4074static void slab_mem_offline_callback(void *arg)
4075{
4076 struct kmem_cache_node *n;
4077 struct kmem_cache *s;
4078 struct memory_notify *marg = arg;
4079 int offline_node;
4080
b9d5ab25 4081 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4082
4083 /*
4084 * If the node still has available memory. we need kmem_cache_node
4085 * for it yet.
4086 */
4087 if (offline_node < 0)
4088 return;
4089
18004c5d 4090 mutex_lock(&slab_mutex);
b9049e23
YG
4091 list_for_each_entry(s, &slab_caches, list) {
4092 n = get_node(s, offline_node);
4093 if (n) {
4094 /*
4095 * if n->nr_slabs > 0, slabs still exist on the node
4096 * that is going down. We were unable to free them,
c9404c9c 4097 * and offline_pages() function shouldn't call this
b9049e23
YG
4098 * callback. So, we must fail.
4099 */
0f389ec6 4100 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4101
4102 s->node[offline_node] = NULL;
8de66a0c 4103 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4104 }
4105 }
18004c5d 4106 mutex_unlock(&slab_mutex);
b9049e23
YG
4107}
4108
4109static int slab_mem_going_online_callback(void *arg)
4110{
4111 struct kmem_cache_node *n;
4112 struct kmem_cache *s;
4113 struct memory_notify *marg = arg;
b9d5ab25 4114 int nid = marg->status_change_nid_normal;
b9049e23
YG
4115 int ret = 0;
4116
4117 /*
4118 * If the node's memory is already available, then kmem_cache_node is
4119 * already created. Nothing to do.
4120 */
4121 if (nid < 0)
4122 return 0;
4123
4124 /*
0121c619 4125 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4126 * allocate a kmem_cache_node structure in order to bring the node
4127 * online.
4128 */
18004c5d 4129 mutex_lock(&slab_mutex);
b9049e23
YG
4130 list_for_each_entry(s, &slab_caches, list) {
4131 /*
4132 * XXX: kmem_cache_alloc_node will fallback to other nodes
4133 * since memory is not yet available from the node that
4134 * is brought up.
4135 */
8de66a0c 4136 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4137 if (!n) {
4138 ret = -ENOMEM;
4139 goto out;
4140 }
4053497d 4141 init_kmem_cache_node(n);
b9049e23
YG
4142 s->node[nid] = n;
4143 }
4144out:
18004c5d 4145 mutex_unlock(&slab_mutex);
b9049e23
YG
4146 return ret;
4147}
4148
4149static int slab_memory_callback(struct notifier_block *self,
4150 unsigned long action, void *arg)
4151{
4152 int ret = 0;
4153
4154 switch (action) {
4155 case MEM_GOING_ONLINE:
4156 ret = slab_mem_going_online_callback(arg);
4157 break;
4158 case MEM_GOING_OFFLINE:
4159 ret = slab_mem_going_offline_callback(arg);
4160 break;
4161 case MEM_OFFLINE:
4162 case MEM_CANCEL_ONLINE:
4163 slab_mem_offline_callback(arg);
4164 break;
4165 case MEM_ONLINE:
4166 case MEM_CANCEL_OFFLINE:
4167 break;
4168 }
dc19f9db
KH
4169 if (ret)
4170 ret = notifier_from_errno(ret);
4171 else
4172 ret = NOTIFY_OK;
b9049e23
YG
4173 return ret;
4174}
4175
3ac38faa
AM
4176static struct notifier_block slab_memory_callback_nb = {
4177 .notifier_call = slab_memory_callback,
4178 .priority = SLAB_CALLBACK_PRI,
4179};
b9049e23 4180
81819f0f
CL
4181/********************************************************************
4182 * Basic setup of slabs
4183 *******************************************************************/
4184
51df1142
CL
4185/*
4186 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4187 * the page allocator. Allocate them properly then fix up the pointers
4188 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4189 */
4190
dffb4d60 4191static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4192{
4193 int node;
dffb4d60 4194 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4195 struct kmem_cache_node *n;
51df1142 4196
dffb4d60 4197 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4198
7d557b3c
GC
4199 /*
4200 * This runs very early, and only the boot processor is supposed to be
4201 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4202 * IPIs around.
4203 */
4204 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4205 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4206 struct page *p;
4207
916ac052 4208 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4209 p->slab_cache = s;
51df1142 4210
607bf324 4211#ifdef CONFIG_SLUB_DEBUG
916ac052 4212 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4213 p->slab_cache = s;
51df1142 4214#endif
51df1142 4215 }
f7ce3190 4216 slab_init_memcg_params(s);
dffb4d60 4217 list_add(&s->list, &slab_caches);
510ded33 4218 memcg_link_cache(s);
dffb4d60 4219 return s;
51df1142
CL
4220}
4221
81819f0f
CL
4222void __init kmem_cache_init(void)
4223{
dffb4d60
CL
4224 static __initdata struct kmem_cache boot_kmem_cache,
4225 boot_kmem_cache_node;
51df1142 4226
fc8d8620
SG
4227 if (debug_guardpage_minorder())
4228 slub_max_order = 0;
4229
dffb4d60
CL
4230 kmem_cache_node = &boot_kmem_cache_node;
4231 kmem_cache = &boot_kmem_cache;
51df1142 4232
dffb4d60 4233 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4234 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4235
3ac38faa 4236 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4237
4238 /* Able to allocate the per node structures */
4239 slab_state = PARTIAL;
4240
dffb4d60
CL
4241 create_boot_cache(kmem_cache, "kmem_cache",
4242 offsetof(struct kmem_cache, node) +
4243 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4244 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4245
dffb4d60 4246 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4247 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4248
4249 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4250 setup_kmalloc_cache_index_table();
f97d5f63 4251 create_kmalloc_caches(0);
81819f0f 4252
210e7a43
TG
4253 /* Setup random freelists for each cache */
4254 init_freelist_randomization();
4255
a96a87bf
SAS
4256 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4257 slub_cpu_dead);
81819f0f 4258
b9726c26 4259 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4260 cache_line_size(),
81819f0f
CL
4261 slub_min_order, slub_max_order, slub_min_objects,
4262 nr_cpu_ids, nr_node_ids);
4263}
4264
7e85ee0c
PE
4265void __init kmem_cache_init_late(void)
4266{
7e85ee0c
PE
4267}
4268
2633d7a0 4269struct kmem_cache *
f4957d5b 4270__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4271 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4272{
426589f5 4273 struct kmem_cache *s, *c;
81819f0f 4274
a44cb944 4275 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4276 if (s) {
4277 s->refcount++;
84d0ddd6 4278
81819f0f
CL
4279 /*
4280 * Adjust the object sizes so that we clear
4281 * the complete object on kzalloc.
4282 */
1b473f29 4283 s->object_size = max(s->object_size, size);
52ee6d74 4284 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4285
426589f5 4286 for_each_memcg_cache(c, s) {
84d0ddd6 4287 c->object_size = s->object_size;
52ee6d74 4288 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4289 }
4290
7b8f3b66 4291 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4292 s->refcount--;
cbb79694 4293 s = NULL;
7b8f3b66 4294 }
a0e1d1be 4295 }
6446faa2 4296
cbb79694
CL
4297 return s;
4298}
84c1cf62 4299
d50112ed 4300int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4301{
aac3a166
PE
4302 int err;
4303
4304 err = kmem_cache_open(s, flags);
4305 if (err)
4306 return err;
20cea968 4307
45530c44
CL
4308 /* Mutex is not taken during early boot */
4309 if (slab_state <= UP)
4310 return 0;
4311
107dab5c 4312 memcg_propagate_slab_attrs(s);
aac3a166 4313 err = sysfs_slab_add(s);
aac3a166 4314 if (err)
52b4b950 4315 __kmem_cache_release(s);
20cea968 4316
aac3a166 4317 return err;
81819f0f 4318}
81819f0f 4319
ce71e27c 4320void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4321{
aadb4bc4 4322 struct kmem_cache *s;
94b528d0 4323 void *ret;
aadb4bc4 4324
95a05b42 4325 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4326 return kmalloc_large(size, gfpflags);
4327
2c59dd65 4328 s = kmalloc_slab(size, gfpflags);
81819f0f 4329
2408c550 4330 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4331 return s;
81819f0f 4332
2b847c3c 4333 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4334
25985edc 4335 /* Honor the call site pointer we received. */
ca2b84cb 4336 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4337
4338 return ret;
81819f0f
CL
4339}
4340
5d1f57e4 4341#ifdef CONFIG_NUMA
81819f0f 4342void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4343 int node, unsigned long caller)
81819f0f 4344{
aadb4bc4 4345 struct kmem_cache *s;
94b528d0 4346 void *ret;
aadb4bc4 4347
95a05b42 4348 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4349 ret = kmalloc_large_node(size, gfpflags, node);
4350
4351 trace_kmalloc_node(caller, ret,
4352 size, PAGE_SIZE << get_order(size),
4353 gfpflags, node);
4354
4355 return ret;
4356 }
eada35ef 4357
2c59dd65 4358 s = kmalloc_slab(size, gfpflags);
81819f0f 4359
2408c550 4360 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4361 return s;
81819f0f 4362
2b847c3c 4363 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4364
25985edc 4365 /* Honor the call site pointer we received. */
ca2b84cb 4366 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4367
4368 return ret;
81819f0f 4369}
5d1f57e4 4370#endif
81819f0f 4371
ab4d5ed5 4372#ifdef CONFIG_SYSFS
205ab99d
CL
4373static int count_inuse(struct page *page)
4374{
4375 return page->inuse;
4376}
4377
4378static int count_total(struct page *page)
4379{
4380 return page->objects;
4381}
ab4d5ed5 4382#endif
205ab99d 4383
ab4d5ed5 4384#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4385static int validate_slab(struct kmem_cache *s, struct page *page,
4386 unsigned long *map)
53e15af0
CL
4387{
4388 void *p;
a973e9dd 4389 void *addr = page_address(page);
53e15af0
CL
4390
4391 if (!check_slab(s, page) ||
4392 !on_freelist(s, page, NULL))
4393 return 0;
4394
4395 /* Now we know that a valid freelist exists */
39b26464 4396 bitmap_zero(map, page->objects);
53e15af0 4397
5f80b13a
CL
4398 get_map(s, page, map);
4399 for_each_object(p, s, addr, page->objects) {
4400 if (test_bit(slab_index(p, s, addr), map))
4401 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4402 return 0;
53e15af0
CL
4403 }
4404
224a88be 4405 for_each_object(p, s, addr, page->objects)
7656c72b 4406 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4407 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4408 return 0;
4409 return 1;
4410}
4411
434e245d
CL
4412static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4413 unsigned long *map)
53e15af0 4414{
881db7fb
CL
4415 slab_lock(page);
4416 validate_slab(s, page, map);
4417 slab_unlock(page);
53e15af0
CL
4418}
4419
434e245d
CL
4420static int validate_slab_node(struct kmem_cache *s,
4421 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4422{
4423 unsigned long count = 0;
4424 struct page *page;
4425 unsigned long flags;
4426
4427 spin_lock_irqsave(&n->list_lock, flags);
4428
916ac052 4429 list_for_each_entry(page, &n->partial, slab_list) {
434e245d 4430 validate_slab_slab(s, page, map);
53e15af0
CL
4431 count++;
4432 }
4433 if (count != n->nr_partial)
f9f58285
FF
4434 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4435 s->name, count, n->nr_partial);
53e15af0
CL
4436
4437 if (!(s->flags & SLAB_STORE_USER))
4438 goto out;
4439
916ac052 4440 list_for_each_entry(page, &n->full, slab_list) {
434e245d 4441 validate_slab_slab(s, page, map);
53e15af0
CL
4442 count++;
4443 }
4444 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4445 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4446 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4447
4448out:
4449 spin_unlock_irqrestore(&n->list_lock, flags);
4450 return count;
4451}
4452
434e245d 4453static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4454{
4455 int node;
4456 unsigned long count = 0;
fa45dc25 4457 struct kmem_cache_node *n;
0684e652 4458 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
434e245d
CL
4459
4460 if (!map)
4461 return -ENOMEM;
53e15af0
CL
4462
4463 flush_all(s);
fa45dc25 4464 for_each_kmem_cache_node(s, node, n)
434e245d 4465 count += validate_slab_node(s, n, map);
0684e652 4466 bitmap_free(map);
53e15af0
CL
4467 return count;
4468}
88a420e4 4469/*
672bba3a 4470 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4471 * and freed.
4472 */
4473
4474struct location {
4475 unsigned long count;
ce71e27c 4476 unsigned long addr;
45edfa58
CL
4477 long long sum_time;
4478 long min_time;
4479 long max_time;
4480 long min_pid;
4481 long max_pid;
174596a0 4482 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4483 nodemask_t nodes;
88a420e4
CL
4484};
4485
4486struct loc_track {
4487 unsigned long max;
4488 unsigned long count;
4489 struct location *loc;
4490};
4491
4492static void free_loc_track(struct loc_track *t)
4493{
4494 if (t->max)
4495 free_pages((unsigned long)t->loc,
4496 get_order(sizeof(struct location) * t->max));
4497}
4498
68dff6a9 4499static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4500{
4501 struct location *l;
4502 int order;
4503
88a420e4
CL
4504 order = get_order(sizeof(struct location) * max);
4505
68dff6a9 4506 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4507 if (!l)
4508 return 0;
4509
4510 if (t->count) {
4511 memcpy(l, t->loc, sizeof(struct location) * t->count);
4512 free_loc_track(t);
4513 }
4514 t->max = max;
4515 t->loc = l;
4516 return 1;
4517}
4518
4519static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4520 const struct track *track)
88a420e4
CL
4521{
4522 long start, end, pos;
4523 struct location *l;
ce71e27c 4524 unsigned long caddr;
45edfa58 4525 unsigned long age = jiffies - track->when;
88a420e4
CL
4526
4527 start = -1;
4528 end = t->count;
4529
4530 for ( ; ; ) {
4531 pos = start + (end - start + 1) / 2;
4532
4533 /*
4534 * There is nothing at "end". If we end up there
4535 * we need to add something to before end.
4536 */
4537 if (pos == end)
4538 break;
4539
4540 caddr = t->loc[pos].addr;
45edfa58
CL
4541 if (track->addr == caddr) {
4542
4543 l = &t->loc[pos];
4544 l->count++;
4545 if (track->when) {
4546 l->sum_time += age;
4547 if (age < l->min_time)
4548 l->min_time = age;
4549 if (age > l->max_time)
4550 l->max_time = age;
4551
4552 if (track->pid < l->min_pid)
4553 l->min_pid = track->pid;
4554 if (track->pid > l->max_pid)
4555 l->max_pid = track->pid;
4556
174596a0
RR
4557 cpumask_set_cpu(track->cpu,
4558 to_cpumask(l->cpus));
45edfa58
CL
4559 }
4560 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4561 return 1;
4562 }
4563
45edfa58 4564 if (track->addr < caddr)
88a420e4
CL
4565 end = pos;
4566 else
4567 start = pos;
4568 }
4569
4570 /*
672bba3a 4571 * Not found. Insert new tracking element.
88a420e4 4572 */
68dff6a9 4573 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4574 return 0;
4575
4576 l = t->loc + pos;
4577 if (pos < t->count)
4578 memmove(l + 1, l,
4579 (t->count - pos) * sizeof(struct location));
4580 t->count++;
4581 l->count = 1;
45edfa58
CL
4582 l->addr = track->addr;
4583 l->sum_time = age;
4584 l->min_time = age;
4585 l->max_time = age;
4586 l->min_pid = track->pid;
4587 l->max_pid = track->pid;
174596a0
RR
4588 cpumask_clear(to_cpumask(l->cpus));
4589 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4590 nodes_clear(l->nodes);
4591 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4592 return 1;
4593}
4594
4595static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4596 struct page *page, enum track_item alloc,
a5dd5c11 4597 unsigned long *map)
88a420e4 4598{
a973e9dd 4599 void *addr = page_address(page);
88a420e4
CL
4600 void *p;
4601
39b26464 4602 bitmap_zero(map, page->objects);
5f80b13a 4603 get_map(s, page, map);
88a420e4 4604
224a88be 4605 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4606 if (!test_bit(slab_index(p, s, addr), map))
4607 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4608}
4609
4610static int list_locations(struct kmem_cache *s, char *buf,
4611 enum track_item alloc)
4612{
e374d483 4613 int len = 0;
88a420e4 4614 unsigned long i;
68dff6a9 4615 struct loc_track t = { 0, 0, NULL };
88a420e4 4616 int node;
fa45dc25 4617 struct kmem_cache_node *n;
0684e652 4618 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
88a420e4 4619
bbd7d57b 4620 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
0ee931c4 4621 GFP_KERNEL)) {
0684e652 4622 bitmap_free(map);
68dff6a9 4623 return sprintf(buf, "Out of memory\n");
bbd7d57b 4624 }
88a420e4
CL
4625 /* Push back cpu slabs */
4626 flush_all(s);
4627
fa45dc25 4628 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4629 unsigned long flags;
4630 struct page *page;
4631
9e86943b 4632 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4633 continue;
4634
4635 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4636 list_for_each_entry(page, &n->partial, slab_list)
bbd7d57b 4637 process_slab(&t, s, page, alloc, map);
916ac052 4638 list_for_each_entry(page, &n->full, slab_list)
bbd7d57b 4639 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4640 spin_unlock_irqrestore(&n->list_lock, flags);
4641 }
4642
4643 for (i = 0; i < t.count; i++) {
45edfa58 4644 struct location *l = &t.loc[i];
88a420e4 4645
9c246247 4646 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4647 break;
e374d483 4648 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4649
4650 if (l->addr)
62c70bce 4651 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4652 else
e374d483 4653 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4654
4655 if (l->sum_time != l->min_time) {
e374d483 4656 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4657 l->min_time,
4658 (long)div_u64(l->sum_time, l->count),
4659 l->max_time);
45edfa58 4660 } else
e374d483 4661 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4662 l->min_time);
4663
4664 if (l->min_pid != l->max_pid)
e374d483 4665 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4666 l->min_pid, l->max_pid);
4667 else
e374d483 4668 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4669 l->min_pid);
4670
174596a0
RR
4671 if (num_online_cpus() > 1 &&
4672 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4673 len < PAGE_SIZE - 60)
4674 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4675 " cpus=%*pbl",
4676 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4677
62bc62a8 4678 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4679 len < PAGE_SIZE - 60)
4680 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4681 " nodes=%*pbl",
4682 nodemask_pr_args(&l->nodes));
45edfa58 4683
e374d483 4684 len += sprintf(buf + len, "\n");
88a420e4
CL
4685 }
4686
4687 free_loc_track(&t);
0684e652 4688 bitmap_free(map);
88a420e4 4689 if (!t.count)
e374d483
HH
4690 len += sprintf(buf, "No data\n");
4691 return len;
88a420e4 4692}
6dfd1b65 4693#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4694
a5a84755 4695#ifdef SLUB_RESILIENCY_TEST
c07b8183 4696static void __init resiliency_test(void)
a5a84755
CL
4697{
4698 u8 *p;
cc252eae 4699 int type = KMALLOC_NORMAL;
a5a84755 4700
95a05b42 4701 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4702
f9f58285
FF
4703 pr_err("SLUB resiliency testing\n");
4704 pr_err("-----------------------\n");
4705 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4706
4707 p = kzalloc(16, GFP_KERNEL);
4708 p[16] = 0x12;
f9f58285
FF
4709 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4710 p + 16);
a5a84755 4711
cc252eae 4712 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4713
4714 /* Hmmm... The next two are dangerous */
4715 p = kzalloc(32, GFP_KERNEL);
4716 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4717 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4718 p);
4719 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4720
cc252eae 4721 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4722 p = kzalloc(64, GFP_KERNEL);
4723 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4724 *p = 0x56;
f9f58285
FF
4725 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4726 p);
4727 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4728 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4729
f9f58285 4730 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4731 p = kzalloc(128, GFP_KERNEL);
4732 kfree(p);
4733 *p = 0x78;
f9f58285 4734 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4735 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4736
4737 p = kzalloc(256, GFP_KERNEL);
4738 kfree(p);
4739 p[50] = 0x9a;
f9f58285 4740 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4741 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4742
4743 p = kzalloc(512, GFP_KERNEL);
4744 kfree(p);
4745 p[512] = 0xab;
f9f58285 4746 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4747 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4748}
4749#else
4750#ifdef CONFIG_SYSFS
4751static void resiliency_test(void) {};
4752#endif
6dfd1b65 4753#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4754
ab4d5ed5 4755#ifdef CONFIG_SYSFS
81819f0f 4756enum slab_stat_type {
205ab99d
CL
4757 SL_ALL, /* All slabs */
4758 SL_PARTIAL, /* Only partially allocated slabs */
4759 SL_CPU, /* Only slabs used for cpu caches */
4760 SL_OBJECTS, /* Determine allocated objects not slabs */
4761 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4762};
4763
205ab99d 4764#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4765#define SO_PARTIAL (1 << SL_PARTIAL)
4766#define SO_CPU (1 << SL_CPU)
4767#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4768#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4769
1663f26d
TH
4770#ifdef CONFIG_MEMCG
4771static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4772
4773static int __init setup_slub_memcg_sysfs(char *str)
4774{
4775 int v;
4776
4777 if (get_option(&str, &v) > 0)
4778 memcg_sysfs_enabled = v;
4779
4780 return 1;
4781}
4782
4783__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4784#endif
4785
62e5c4b4
CG
4786static ssize_t show_slab_objects(struct kmem_cache *s,
4787 char *buf, unsigned long flags)
81819f0f
CL
4788{
4789 unsigned long total = 0;
81819f0f
CL
4790 int node;
4791 int x;
4792 unsigned long *nodes;
81819f0f 4793
6396bb22 4794 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4795 if (!nodes)
4796 return -ENOMEM;
81819f0f 4797
205ab99d
CL
4798 if (flags & SO_CPU) {
4799 int cpu;
81819f0f 4800
205ab99d 4801 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4802 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4803 cpu);
ec3ab083 4804 int node;
49e22585 4805 struct page *page;
dfb4f096 4806
4db0c3c2 4807 page = READ_ONCE(c->page);
ec3ab083
CL
4808 if (!page)
4809 continue;
205ab99d 4810
ec3ab083
CL
4811 node = page_to_nid(page);
4812 if (flags & SO_TOTAL)
4813 x = page->objects;
4814 else if (flags & SO_OBJECTS)
4815 x = page->inuse;
4816 else
4817 x = 1;
49e22585 4818
ec3ab083
CL
4819 total += x;
4820 nodes[node] += x;
4821
a93cf07b 4822 page = slub_percpu_partial_read_once(c);
49e22585 4823 if (page) {
8afb1474
LZ
4824 node = page_to_nid(page);
4825 if (flags & SO_TOTAL)
4826 WARN_ON_ONCE(1);
4827 else if (flags & SO_OBJECTS)
4828 WARN_ON_ONCE(1);
4829 else
4830 x = page->pages;
bc6697d8
ED
4831 total += x;
4832 nodes[node] += x;
49e22585 4833 }
81819f0f
CL
4834 }
4835 }
4836
bfc8c901 4837 get_online_mems();
ab4d5ed5 4838#ifdef CONFIG_SLUB_DEBUG
205ab99d 4839 if (flags & SO_ALL) {
fa45dc25
CL
4840 struct kmem_cache_node *n;
4841
4842 for_each_kmem_cache_node(s, node, n) {
205ab99d 4843
d0e0ac97
CG
4844 if (flags & SO_TOTAL)
4845 x = atomic_long_read(&n->total_objects);
4846 else if (flags & SO_OBJECTS)
4847 x = atomic_long_read(&n->total_objects) -
4848 count_partial(n, count_free);
81819f0f 4849 else
205ab99d 4850 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4851 total += x;
4852 nodes[node] += x;
4853 }
4854
ab4d5ed5
CL
4855 } else
4856#endif
4857 if (flags & SO_PARTIAL) {
fa45dc25 4858 struct kmem_cache_node *n;
81819f0f 4859
fa45dc25 4860 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4861 if (flags & SO_TOTAL)
4862 x = count_partial(n, count_total);
4863 else if (flags & SO_OBJECTS)
4864 x = count_partial(n, count_inuse);
81819f0f 4865 else
205ab99d 4866 x = n->nr_partial;
81819f0f
CL
4867 total += x;
4868 nodes[node] += x;
4869 }
4870 }
81819f0f
CL
4871 x = sprintf(buf, "%lu", total);
4872#ifdef CONFIG_NUMA
fa45dc25 4873 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4874 if (nodes[node])
4875 x += sprintf(buf + x, " N%d=%lu",
4876 node, nodes[node]);
4877#endif
bfc8c901 4878 put_online_mems();
81819f0f
CL
4879 kfree(nodes);
4880 return x + sprintf(buf + x, "\n");
4881}
4882
ab4d5ed5 4883#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4884static int any_slab_objects(struct kmem_cache *s)
4885{
4886 int node;
fa45dc25 4887 struct kmem_cache_node *n;
81819f0f 4888
fa45dc25 4889 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4890 if (atomic_long_read(&n->total_objects))
81819f0f 4891 return 1;
fa45dc25 4892
81819f0f
CL
4893 return 0;
4894}
ab4d5ed5 4895#endif
81819f0f
CL
4896
4897#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4898#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4899
4900struct slab_attribute {
4901 struct attribute attr;
4902 ssize_t (*show)(struct kmem_cache *s, char *buf);
4903 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4904};
4905
4906#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4907 static struct slab_attribute _name##_attr = \
4908 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4909
4910#define SLAB_ATTR(_name) \
4911 static struct slab_attribute _name##_attr = \
ab067e99 4912 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4913
81819f0f
CL
4914static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4915{
44065b2e 4916 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
4917}
4918SLAB_ATTR_RO(slab_size);
4919
4920static ssize_t align_show(struct kmem_cache *s, char *buf)
4921{
3a3791ec 4922 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
4923}
4924SLAB_ATTR_RO(align);
4925
4926static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4927{
1b473f29 4928 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
4929}
4930SLAB_ATTR_RO(object_size);
4931
4932static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4933{
19af27af 4934 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
4935}
4936SLAB_ATTR_RO(objs_per_slab);
4937
06b285dc
CL
4938static ssize_t order_store(struct kmem_cache *s,
4939 const char *buf, size_t length)
4940{
19af27af 4941 unsigned int order;
0121c619
CL
4942 int err;
4943
19af27af 4944 err = kstrtouint(buf, 10, &order);
0121c619
CL
4945 if (err)
4946 return err;
06b285dc
CL
4947
4948 if (order > slub_max_order || order < slub_min_order)
4949 return -EINVAL;
4950
4951 calculate_sizes(s, order);
4952 return length;
4953}
4954
81819f0f
CL
4955static ssize_t order_show(struct kmem_cache *s, char *buf)
4956{
19af27af 4957 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 4958}
06b285dc 4959SLAB_ATTR(order);
81819f0f 4960
73d342b1
DR
4961static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4962{
4963 return sprintf(buf, "%lu\n", s->min_partial);
4964}
4965
4966static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4967 size_t length)
4968{
4969 unsigned long min;
4970 int err;
4971
3dbb95f7 4972 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4973 if (err)
4974 return err;
4975
c0bdb232 4976 set_min_partial(s, min);
73d342b1
DR
4977 return length;
4978}
4979SLAB_ATTR(min_partial);
4980
49e22585
CL
4981static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4982{
e6d0e1dc 4983 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4984}
4985
4986static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4987 size_t length)
4988{
e5d9998f 4989 unsigned int objects;
49e22585
CL
4990 int err;
4991
e5d9998f 4992 err = kstrtouint(buf, 10, &objects);
49e22585
CL
4993 if (err)
4994 return err;
345c905d 4995 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4996 return -EINVAL;
49e22585 4997
e6d0e1dc 4998 slub_set_cpu_partial(s, objects);
49e22585
CL
4999 flush_all(s);
5000 return length;
5001}
5002SLAB_ATTR(cpu_partial);
5003
81819f0f
CL
5004static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5005{
62c70bce
JP
5006 if (!s->ctor)
5007 return 0;
5008 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5009}
5010SLAB_ATTR_RO(ctor);
5011
81819f0f
CL
5012static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5013{
4307c14f 5014 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5015}
5016SLAB_ATTR_RO(aliases);
5017
81819f0f
CL
5018static ssize_t partial_show(struct kmem_cache *s, char *buf)
5019{
d9acf4b7 5020 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5021}
5022SLAB_ATTR_RO(partial);
5023
5024static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5025{
d9acf4b7 5026 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5027}
5028SLAB_ATTR_RO(cpu_slabs);
5029
5030static ssize_t objects_show(struct kmem_cache *s, char *buf)
5031{
205ab99d 5032 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5033}
5034SLAB_ATTR_RO(objects);
5035
205ab99d
CL
5036static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5037{
5038 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5039}
5040SLAB_ATTR_RO(objects_partial);
5041
49e22585
CL
5042static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5043{
5044 int objects = 0;
5045 int pages = 0;
5046 int cpu;
5047 int len;
5048
5049 for_each_online_cpu(cpu) {
a93cf07b
WY
5050 struct page *page;
5051
5052 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5053
5054 if (page) {
5055 pages += page->pages;
5056 objects += page->pobjects;
5057 }
5058 }
5059
5060 len = sprintf(buf, "%d(%d)", objects, pages);
5061
5062#ifdef CONFIG_SMP
5063 for_each_online_cpu(cpu) {
a93cf07b
WY
5064 struct page *page;
5065
5066 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5067
5068 if (page && len < PAGE_SIZE - 20)
5069 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5070 page->pobjects, page->pages);
5071 }
5072#endif
5073 return len + sprintf(buf + len, "\n");
5074}
5075SLAB_ATTR_RO(slabs_cpu_partial);
5076
a5a84755
CL
5077static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5078{
5079 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5080}
5081
5082static ssize_t reclaim_account_store(struct kmem_cache *s,
5083 const char *buf, size_t length)
5084{
5085 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5086 if (buf[0] == '1')
5087 s->flags |= SLAB_RECLAIM_ACCOUNT;
5088 return length;
5089}
5090SLAB_ATTR(reclaim_account);
5091
5092static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5093{
5094 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5095}
5096SLAB_ATTR_RO(hwcache_align);
5097
5098#ifdef CONFIG_ZONE_DMA
5099static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5100{
5101 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5102}
5103SLAB_ATTR_RO(cache_dma);
5104#endif
5105
8eb8284b
DW
5106static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5107{
7bbdb81e 5108 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5109}
5110SLAB_ATTR_RO(usersize);
5111
a5a84755
CL
5112static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5113{
5f0d5a3a 5114 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5115}
5116SLAB_ATTR_RO(destroy_by_rcu);
5117
ab4d5ed5 5118#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5119static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5120{
5121 return show_slab_objects(s, buf, SO_ALL);
5122}
5123SLAB_ATTR_RO(slabs);
5124
205ab99d
CL
5125static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5126{
5127 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5128}
5129SLAB_ATTR_RO(total_objects);
5130
81819f0f
CL
5131static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5132{
becfda68 5133 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5134}
5135
5136static ssize_t sanity_checks_store(struct kmem_cache *s,
5137 const char *buf, size_t length)
5138{
becfda68 5139 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5140 if (buf[0] == '1') {
5141 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5142 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5143 }
81819f0f
CL
5144 return length;
5145}
5146SLAB_ATTR(sanity_checks);
5147
5148static ssize_t trace_show(struct kmem_cache *s, char *buf)
5149{
5150 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5151}
5152
5153static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5154 size_t length)
5155{
c9e16131
CL
5156 /*
5157 * Tracing a merged cache is going to give confusing results
5158 * as well as cause other issues like converting a mergeable
5159 * cache into an umergeable one.
5160 */
5161 if (s->refcount > 1)
5162 return -EINVAL;
5163
81819f0f 5164 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5165 if (buf[0] == '1') {
5166 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5167 s->flags |= SLAB_TRACE;
b789ef51 5168 }
81819f0f
CL
5169 return length;
5170}
5171SLAB_ATTR(trace);
5172
81819f0f
CL
5173static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5174{
5175 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5176}
5177
5178static ssize_t red_zone_store(struct kmem_cache *s,
5179 const char *buf, size_t length)
5180{
5181 if (any_slab_objects(s))
5182 return -EBUSY;
5183
5184 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5185 if (buf[0] == '1') {
81819f0f 5186 s->flags |= SLAB_RED_ZONE;
b789ef51 5187 }
06b285dc 5188 calculate_sizes(s, -1);
81819f0f
CL
5189 return length;
5190}
5191SLAB_ATTR(red_zone);
5192
5193static ssize_t poison_show(struct kmem_cache *s, char *buf)
5194{
5195 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5196}
5197
5198static ssize_t poison_store(struct kmem_cache *s,
5199 const char *buf, size_t length)
5200{
5201 if (any_slab_objects(s))
5202 return -EBUSY;
5203
5204 s->flags &= ~SLAB_POISON;
b789ef51 5205 if (buf[0] == '1') {
81819f0f 5206 s->flags |= SLAB_POISON;
b789ef51 5207 }
06b285dc 5208 calculate_sizes(s, -1);
81819f0f
CL
5209 return length;
5210}
5211SLAB_ATTR(poison);
5212
5213static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5214{
5215 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5216}
5217
5218static ssize_t store_user_store(struct kmem_cache *s,
5219 const char *buf, size_t length)
5220{
5221 if (any_slab_objects(s))
5222 return -EBUSY;
5223
5224 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5225 if (buf[0] == '1') {
5226 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5227 s->flags |= SLAB_STORE_USER;
b789ef51 5228 }
06b285dc 5229 calculate_sizes(s, -1);
81819f0f
CL
5230 return length;
5231}
5232SLAB_ATTR(store_user);
5233
53e15af0
CL
5234static ssize_t validate_show(struct kmem_cache *s, char *buf)
5235{
5236 return 0;
5237}
5238
5239static ssize_t validate_store(struct kmem_cache *s,
5240 const char *buf, size_t length)
5241{
434e245d
CL
5242 int ret = -EINVAL;
5243
5244 if (buf[0] == '1') {
5245 ret = validate_slab_cache(s);
5246 if (ret >= 0)
5247 ret = length;
5248 }
5249 return ret;
53e15af0
CL
5250}
5251SLAB_ATTR(validate);
a5a84755
CL
5252
5253static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5254{
5255 if (!(s->flags & SLAB_STORE_USER))
5256 return -ENOSYS;
5257 return list_locations(s, buf, TRACK_ALLOC);
5258}
5259SLAB_ATTR_RO(alloc_calls);
5260
5261static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5262{
5263 if (!(s->flags & SLAB_STORE_USER))
5264 return -ENOSYS;
5265 return list_locations(s, buf, TRACK_FREE);
5266}
5267SLAB_ATTR_RO(free_calls);
5268#endif /* CONFIG_SLUB_DEBUG */
5269
5270#ifdef CONFIG_FAILSLAB
5271static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5272{
5273 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5274}
5275
5276static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5277 size_t length)
5278{
c9e16131
CL
5279 if (s->refcount > 1)
5280 return -EINVAL;
5281
a5a84755
CL
5282 s->flags &= ~SLAB_FAILSLAB;
5283 if (buf[0] == '1')
5284 s->flags |= SLAB_FAILSLAB;
5285 return length;
5286}
5287SLAB_ATTR(failslab);
ab4d5ed5 5288#endif
53e15af0 5289
2086d26a
CL
5290static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5291{
5292 return 0;
5293}
5294
5295static ssize_t shrink_store(struct kmem_cache *s,
5296 const char *buf, size_t length)
5297{
832f37f5
VD
5298 if (buf[0] == '1')
5299 kmem_cache_shrink(s);
5300 else
2086d26a
CL
5301 return -EINVAL;
5302 return length;
5303}
5304SLAB_ATTR(shrink);
5305
81819f0f 5306#ifdef CONFIG_NUMA
9824601e 5307static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5308{
eb7235eb 5309 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5310}
5311
9824601e 5312static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5313 const char *buf, size_t length)
5314{
eb7235eb 5315 unsigned int ratio;
0121c619
CL
5316 int err;
5317
eb7235eb 5318 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5319 if (err)
5320 return err;
eb7235eb
AD
5321 if (ratio > 100)
5322 return -ERANGE;
0121c619 5323
eb7235eb 5324 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5325
81819f0f
CL
5326 return length;
5327}
9824601e 5328SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5329#endif
5330
8ff12cfc 5331#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5332static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5333{
5334 unsigned long sum = 0;
5335 int cpu;
5336 int len;
6da2ec56 5337 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5338
5339 if (!data)
5340 return -ENOMEM;
5341
5342 for_each_online_cpu(cpu) {
9dfc6e68 5343 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5344
5345 data[cpu] = x;
5346 sum += x;
5347 }
5348
5349 len = sprintf(buf, "%lu", sum);
5350
50ef37b9 5351#ifdef CONFIG_SMP
8ff12cfc
CL
5352 for_each_online_cpu(cpu) {
5353 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5354 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5355 }
50ef37b9 5356#endif
8ff12cfc
CL
5357 kfree(data);
5358 return len + sprintf(buf + len, "\n");
5359}
5360
78eb00cc
DR
5361static void clear_stat(struct kmem_cache *s, enum stat_item si)
5362{
5363 int cpu;
5364
5365 for_each_online_cpu(cpu)
9dfc6e68 5366 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5367}
5368
8ff12cfc
CL
5369#define STAT_ATTR(si, text) \
5370static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5371{ \
5372 return show_stat(s, buf, si); \
5373} \
78eb00cc
DR
5374static ssize_t text##_store(struct kmem_cache *s, \
5375 const char *buf, size_t length) \
5376{ \
5377 if (buf[0] != '0') \
5378 return -EINVAL; \
5379 clear_stat(s, si); \
5380 return length; \
5381} \
5382SLAB_ATTR(text); \
8ff12cfc
CL
5383
5384STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5385STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5386STAT_ATTR(FREE_FASTPATH, free_fastpath);
5387STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5388STAT_ATTR(FREE_FROZEN, free_frozen);
5389STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5390STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5391STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5392STAT_ATTR(ALLOC_SLAB, alloc_slab);
5393STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5394STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5395STAT_ATTR(FREE_SLAB, free_slab);
5396STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5397STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5398STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5399STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5400STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5401STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5402STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5403STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5404STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5405STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5406STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5407STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5408STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5409STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5410#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5411
06428780 5412static struct attribute *slab_attrs[] = {
81819f0f
CL
5413 &slab_size_attr.attr,
5414 &object_size_attr.attr,
5415 &objs_per_slab_attr.attr,
5416 &order_attr.attr,
73d342b1 5417 &min_partial_attr.attr,
49e22585 5418 &cpu_partial_attr.attr,
81819f0f 5419 &objects_attr.attr,
205ab99d 5420 &objects_partial_attr.attr,
81819f0f
CL
5421 &partial_attr.attr,
5422 &cpu_slabs_attr.attr,
5423 &ctor_attr.attr,
81819f0f
CL
5424 &aliases_attr.attr,
5425 &align_attr.attr,
81819f0f
CL
5426 &hwcache_align_attr.attr,
5427 &reclaim_account_attr.attr,
5428 &destroy_by_rcu_attr.attr,
a5a84755 5429 &shrink_attr.attr,
49e22585 5430 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5431#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5432 &total_objects_attr.attr,
5433 &slabs_attr.attr,
5434 &sanity_checks_attr.attr,
5435 &trace_attr.attr,
81819f0f
CL
5436 &red_zone_attr.attr,
5437 &poison_attr.attr,
5438 &store_user_attr.attr,
53e15af0 5439 &validate_attr.attr,
88a420e4
CL
5440 &alloc_calls_attr.attr,
5441 &free_calls_attr.attr,
ab4d5ed5 5442#endif
81819f0f
CL
5443#ifdef CONFIG_ZONE_DMA
5444 &cache_dma_attr.attr,
5445#endif
5446#ifdef CONFIG_NUMA
9824601e 5447 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5448#endif
5449#ifdef CONFIG_SLUB_STATS
5450 &alloc_fastpath_attr.attr,
5451 &alloc_slowpath_attr.attr,
5452 &free_fastpath_attr.attr,
5453 &free_slowpath_attr.attr,
5454 &free_frozen_attr.attr,
5455 &free_add_partial_attr.attr,
5456 &free_remove_partial_attr.attr,
5457 &alloc_from_partial_attr.attr,
5458 &alloc_slab_attr.attr,
5459 &alloc_refill_attr.attr,
e36a2652 5460 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5461 &free_slab_attr.attr,
5462 &cpuslab_flush_attr.attr,
5463 &deactivate_full_attr.attr,
5464 &deactivate_empty_attr.attr,
5465 &deactivate_to_head_attr.attr,
5466 &deactivate_to_tail_attr.attr,
5467 &deactivate_remote_frees_attr.attr,
03e404af 5468 &deactivate_bypass_attr.attr,
65c3376a 5469 &order_fallback_attr.attr,
b789ef51
CL
5470 &cmpxchg_double_fail_attr.attr,
5471 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5472 &cpu_partial_alloc_attr.attr,
5473 &cpu_partial_free_attr.attr,
8028dcea
AS
5474 &cpu_partial_node_attr.attr,
5475 &cpu_partial_drain_attr.attr,
81819f0f 5476#endif
4c13dd3b
DM
5477#ifdef CONFIG_FAILSLAB
5478 &failslab_attr.attr,
5479#endif
8eb8284b 5480 &usersize_attr.attr,
4c13dd3b 5481
81819f0f
CL
5482 NULL
5483};
5484
1fdaaa23 5485static const struct attribute_group slab_attr_group = {
81819f0f
CL
5486 .attrs = slab_attrs,
5487};
5488
5489static ssize_t slab_attr_show(struct kobject *kobj,
5490 struct attribute *attr,
5491 char *buf)
5492{
5493 struct slab_attribute *attribute;
5494 struct kmem_cache *s;
5495 int err;
5496
5497 attribute = to_slab_attr(attr);
5498 s = to_slab(kobj);
5499
5500 if (!attribute->show)
5501 return -EIO;
5502
5503 err = attribute->show(s, buf);
5504
5505 return err;
5506}
5507
5508static ssize_t slab_attr_store(struct kobject *kobj,
5509 struct attribute *attr,
5510 const char *buf, size_t len)
5511{
5512 struct slab_attribute *attribute;
5513 struct kmem_cache *s;
5514 int err;
5515
5516 attribute = to_slab_attr(attr);
5517 s = to_slab(kobj);
5518
5519 if (!attribute->store)
5520 return -EIO;
5521
5522 err = attribute->store(s, buf, len);
127424c8 5523#ifdef CONFIG_MEMCG
107dab5c 5524 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5525 struct kmem_cache *c;
81819f0f 5526
107dab5c
GC
5527 mutex_lock(&slab_mutex);
5528 if (s->max_attr_size < len)
5529 s->max_attr_size = len;
5530
ebe945c2
GC
5531 /*
5532 * This is a best effort propagation, so this function's return
5533 * value will be determined by the parent cache only. This is
5534 * basically because not all attributes will have a well
5535 * defined semantics for rollbacks - most of the actions will
5536 * have permanent effects.
5537 *
5538 * Returning the error value of any of the children that fail
5539 * is not 100 % defined, in the sense that users seeing the
5540 * error code won't be able to know anything about the state of
5541 * the cache.
5542 *
5543 * Only returning the error code for the parent cache at least
5544 * has well defined semantics. The cache being written to
5545 * directly either failed or succeeded, in which case we loop
5546 * through the descendants with best-effort propagation.
5547 */
426589f5
VD
5548 for_each_memcg_cache(c, s)
5549 attribute->store(c, buf, len);
107dab5c
GC
5550 mutex_unlock(&slab_mutex);
5551 }
5552#endif
81819f0f
CL
5553 return err;
5554}
5555
107dab5c
GC
5556static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5557{
127424c8 5558#ifdef CONFIG_MEMCG
107dab5c
GC
5559 int i;
5560 char *buffer = NULL;
93030d83 5561 struct kmem_cache *root_cache;
107dab5c 5562
93030d83 5563 if (is_root_cache(s))
107dab5c
GC
5564 return;
5565
f7ce3190 5566 root_cache = s->memcg_params.root_cache;
93030d83 5567
107dab5c
GC
5568 /*
5569 * This mean this cache had no attribute written. Therefore, no point
5570 * in copying default values around
5571 */
93030d83 5572 if (!root_cache->max_attr_size)
107dab5c
GC
5573 return;
5574
5575 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5576 char mbuf[64];
5577 char *buf;
5578 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5579 ssize_t len;
107dab5c
GC
5580
5581 if (!attr || !attr->store || !attr->show)
5582 continue;
5583
5584 /*
5585 * It is really bad that we have to allocate here, so we will
5586 * do it only as a fallback. If we actually allocate, though,
5587 * we can just use the allocated buffer until the end.
5588 *
5589 * Most of the slub attributes will tend to be very small in
5590 * size, but sysfs allows buffers up to a page, so they can
5591 * theoretically happen.
5592 */
5593 if (buffer)
5594 buf = buffer;
93030d83 5595 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5596 buf = mbuf;
5597 else {
5598 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5599 if (WARN_ON(!buffer))
5600 continue;
5601 buf = buffer;
5602 }
5603
478fe303
TG
5604 len = attr->show(root_cache, buf);
5605 if (len > 0)
5606 attr->store(s, buf, len);
107dab5c
GC
5607 }
5608
5609 if (buffer)
5610 free_page((unsigned long)buffer);
6dfd1b65 5611#endif /* CONFIG_MEMCG */
107dab5c
GC
5612}
5613
41a21285
CL
5614static void kmem_cache_release(struct kobject *k)
5615{
5616 slab_kmem_cache_release(to_slab(k));
5617}
5618
52cf25d0 5619static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5620 .show = slab_attr_show,
5621 .store = slab_attr_store,
5622};
5623
5624static struct kobj_type slab_ktype = {
5625 .sysfs_ops = &slab_sysfs_ops,
41a21285 5626 .release = kmem_cache_release,
81819f0f
CL
5627};
5628
5629static int uevent_filter(struct kset *kset, struct kobject *kobj)
5630{
5631 struct kobj_type *ktype = get_ktype(kobj);
5632
5633 if (ktype == &slab_ktype)
5634 return 1;
5635 return 0;
5636}
5637
9cd43611 5638static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5639 .filter = uevent_filter,
5640};
5641
27c3a314 5642static struct kset *slab_kset;
81819f0f 5643
9a41707b
VD
5644static inline struct kset *cache_kset(struct kmem_cache *s)
5645{
127424c8 5646#ifdef CONFIG_MEMCG
9a41707b 5647 if (!is_root_cache(s))
f7ce3190 5648 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5649#endif
5650 return slab_kset;
5651}
5652
81819f0f
CL
5653#define ID_STR_LENGTH 64
5654
5655/* Create a unique string id for a slab cache:
6446faa2
CL
5656 *
5657 * Format :[flags-]size
81819f0f
CL
5658 */
5659static char *create_unique_id(struct kmem_cache *s)
5660{
5661 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5662 char *p = name;
5663
5664 BUG_ON(!name);
5665
5666 *p++ = ':';
5667 /*
5668 * First flags affecting slabcache operations. We will only
5669 * get here for aliasable slabs so we do not need to support
5670 * too many flags. The flags here must cover all flags that
5671 * are matched during merging to guarantee that the id is
5672 * unique.
5673 */
5674 if (s->flags & SLAB_CACHE_DMA)
5675 *p++ = 'd';
6d6ea1e9
NB
5676 if (s->flags & SLAB_CACHE_DMA32)
5677 *p++ = 'D';
81819f0f
CL
5678 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5679 *p++ = 'a';
becfda68 5680 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5681 *p++ = 'F';
230e9fc2
VD
5682 if (s->flags & SLAB_ACCOUNT)
5683 *p++ = 'A';
81819f0f
CL
5684 if (p != name + 1)
5685 *p++ = '-';
44065b2e 5686 p += sprintf(p, "%07u", s->size);
2633d7a0 5687
81819f0f
CL
5688 BUG_ON(p > name + ID_STR_LENGTH - 1);
5689 return name;
5690}
5691
3b7b3140
TH
5692static void sysfs_slab_remove_workfn(struct work_struct *work)
5693{
5694 struct kmem_cache *s =
5695 container_of(work, struct kmem_cache, kobj_remove_work);
5696
5697 if (!s->kobj.state_in_sysfs)
5698 /*
5699 * For a memcg cache, this may be called during
5700 * deactivation and again on shutdown. Remove only once.
5701 * A cache is never shut down before deactivation is
5702 * complete, so no need to worry about synchronization.
5703 */
f6ba4880 5704 goto out;
3b7b3140
TH
5705
5706#ifdef CONFIG_MEMCG
5707 kset_unregister(s->memcg_kset);
5708#endif
5709 kobject_uevent(&s->kobj, KOBJ_REMOVE);
f6ba4880 5710out:
3b7b3140
TH
5711 kobject_put(&s->kobj);
5712}
5713
81819f0f
CL
5714static int sysfs_slab_add(struct kmem_cache *s)
5715{
5716 int err;
5717 const char *name;
1663f26d 5718 struct kset *kset = cache_kset(s);
45530c44 5719 int unmergeable = slab_unmergeable(s);
81819f0f 5720
3b7b3140
TH
5721 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5722
1663f26d
TH
5723 if (!kset) {
5724 kobject_init(&s->kobj, &slab_ktype);
5725 return 0;
5726 }
5727
11066386
MC
5728 if (!unmergeable && disable_higher_order_debug &&
5729 (slub_debug & DEBUG_METADATA_FLAGS))
5730 unmergeable = 1;
5731
81819f0f
CL
5732 if (unmergeable) {
5733 /*
5734 * Slabcache can never be merged so we can use the name proper.
5735 * This is typically the case for debug situations. In that
5736 * case we can catch duplicate names easily.
5737 */
27c3a314 5738 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5739 name = s->name;
5740 } else {
5741 /*
5742 * Create a unique name for the slab as a target
5743 * for the symlinks.
5744 */
5745 name = create_unique_id(s);
5746 }
5747
1663f26d 5748 s->kobj.kset = kset;
26e4f205 5749 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5750 if (err)
80da026a 5751 goto out;
81819f0f
CL
5752
5753 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5754 if (err)
5755 goto out_del_kobj;
9a41707b 5756
127424c8 5757#ifdef CONFIG_MEMCG
1663f26d 5758 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5759 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5760 if (!s->memcg_kset) {
54b6a731
DJ
5761 err = -ENOMEM;
5762 goto out_del_kobj;
9a41707b
VD
5763 }
5764 }
5765#endif
5766
81819f0f
CL
5767 kobject_uevent(&s->kobj, KOBJ_ADD);
5768 if (!unmergeable) {
5769 /* Setup first alias */
5770 sysfs_slab_alias(s, s->name);
81819f0f 5771 }
54b6a731
DJ
5772out:
5773 if (!unmergeable)
5774 kfree(name);
5775 return err;
5776out_del_kobj:
5777 kobject_del(&s->kobj);
54b6a731 5778 goto out;
81819f0f
CL
5779}
5780
bf5eb3de 5781static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5782{
97d06609 5783 if (slab_state < FULL)
2bce6485
CL
5784 /*
5785 * Sysfs has not been setup yet so no need to remove the
5786 * cache from sysfs.
5787 */
5788 return;
5789
3b7b3140
TH
5790 kobject_get(&s->kobj);
5791 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5792}
5793
d50d82fa
MP
5794void sysfs_slab_unlink(struct kmem_cache *s)
5795{
5796 if (slab_state >= FULL)
5797 kobject_del(&s->kobj);
5798}
5799
bf5eb3de
TH
5800void sysfs_slab_release(struct kmem_cache *s)
5801{
5802 if (slab_state >= FULL)
5803 kobject_put(&s->kobj);
81819f0f
CL
5804}
5805
5806/*
5807 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5808 * available lest we lose that information.
81819f0f
CL
5809 */
5810struct saved_alias {
5811 struct kmem_cache *s;
5812 const char *name;
5813 struct saved_alias *next;
5814};
5815
5af328a5 5816static struct saved_alias *alias_list;
81819f0f
CL
5817
5818static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5819{
5820 struct saved_alias *al;
5821
97d06609 5822 if (slab_state == FULL) {
81819f0f
CL
5823 /*
5824 * If we have a leftover link then remove it.
5825 */
27c3a314
GKH
5826 sysfs_remove_link(&slab_kset->kobj, name);
5827 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5828 }
5829
5830 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5831 if (!al)
5832 return -ENOMEM;
5833
5834 al->s = s;
5835 al->name = name;
5836 al->next = alias_list;
5837 alias_list = al;
5838 return 0;
5839}
5840
5841static int __init slab_sysfs_init(void)
5842{
5b95a4ac 5843 struct kmem_cache *s;
81819f0f
CL
5844 int err;
5845
18004c5d 5846 mutex_lock(&slab_mutex);
2bce6485 5847
0ff21e46 5848 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5849 if (!slab_kset) {
18004c5d 5850 mutex_unlock(&slab_mutex);
f9f58285 5851 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5852 return -ENOSYS;
5853 }
5854
97d06609 5855 slab_state = FULL;
26a7bd03 5856
5b95a4ac 5857 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5858 err = sysfs_slab_add(s);
5d540fb7 5859 if (err)
f9f58285
FF
5860 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5861 s->name);
26a7bd03 5862 }
81819f0f
CL
5863
5864 while (alias_list) {
5865 struct saved_alias *al = alias_list;
5866
5867 alias_list = alias_list->next;
5868 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5869 if (err)
f9f58285
FF
5870 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5871 al->name);
81819f0f
CL
5872 kfree(al);
5873 }
5874
18004c5d 5875 mutex_unlock(&slab_mutex);
81819f0f
CL
5876 resiliency_test();
5877 return 0;
5878}
5879
5880__initcall(slab_sysfs_init);
ab4d5ed5 5881#endif /* CONFIG_SYSFS */
57ed3eda
PE
5882
5883/*
5884 * The /proc/slabinfo ABI
5885 */
5b365771 5886#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5887void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5888{
57ed3eda 5889 unsigned long nr_slabs = 0;
205ab99d
CL
5890 unsigned long nr_objs = 0;
5891 unsigned long nr_free = 0;
57ed3eda 5892 int node;
fa45dc25 5893 struct kmem_cache_node *n;
57ed3eda 5894
fa45dc25 5895 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5896 nr_slabs += node_nr_slabs(n);
5897 nr_objs += node_nr_objs(n);
205ab99d 5898 nr_free += count_partial(n, count_free);
57ed3eda
PE
5899 }
5900
0d7561c6
GC
5901 sinfo->active_objs = nr_objs - nr_free;
5902 sinfo->num_objs = nr_objs;
5903 sinfo->active_slabs = nr_slabs;
5904 sinfo->num_slabs = nr_slabs;
5905 sinfo->objects_per_slab = oo_objects(s->oo);
5906 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5907}
5908
0d7561c6 5909void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5910{
7b3c3a50
AD
5911}
5912
b7454ad3
GC
5913ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5914 size_t count, loff_t *ppos)
7b3c3a50 5915{
b7454ad3 5916 return -EIO;
7b3c3a50 5917}
5b365771 5918#endif /* CONFIG_SLUB_DEBUG */