jbd: fix oops in jbd_journal_init_inode() on corrupted fs
[linux-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
7b3c3a50 17#include <linux/proc_fs.h>
81819f0f
CL
18#include <linux/seq_file.h>
19#include <linux/cpu.h>
20#include <linux/cpuset.h>
21#include <linux/mempolicy.h>
22#include <linux/ctype.h>
3ac7fe5a 23#include <linux/debugobjects.h>
81819f0f 24#include <linux/kallsyms.h>
b9049e23 25#include <linux/memory.h>
f8bd2258 26#include <linux/math64.h>
773ff60e 27#include <linux/fault-inject.h>
81819f0f
CL
28
29/*
30 * Lock order:
31 * 1. slab_lock(page)
32 * 2. slab->list_lock
33 *
34 * The slab_lock protects operations on the object of a particular
35 * slab and its metadata in the page struct. If the slab lock
36 * has been taken then no allocations nor frees can be performed
37 * on the objects in the slab nor can the slab be added or removed
38 * from the partial or full lists since this would mean modifying
39 * the page_struct of the slab.
40 *
41 * The list_lock protects the partial and full list on each node and
42 * the partial slab counter. If taken then no new slabs may be added or
43 * removed from the lists nor make the number of partial slabs be modified.
44 * (Note that the total number of slabs is an atomic value that may be
45 * modified without taking the list lock).
46 *
47 * The list_lock is a centralized lock and thus we avoid taking it as
48 * much as possible. As long as SLUB does not have to handle partial
49 * slabs, operations can continue without any centralized lock. F.e.
50 * allocating a long series of objects that fill up slabs does not require
51 * the list lock.
52 *
53 * The lock order is sometimes inverted when we are trying to get a slab
54 * off a list. We take the list_lock and then look for a page on the list
55 * to use. While we do that objects in the slabs may be freed. We can
56 * only operate on the slab if we have also taken the slab_lock. So we use
57 * a slab_trylock() on the slab. If trylock was successful then no frees
58 * can occur anymore and we can use the slab for allocations etc. If the
59 * slab_trylock() does not succeed then frees are in progress in the slab and
60 * we must stay away from it for a while since we may cause a bouncing
61 * cacheline if we try to acquire the lock. So go onto the next slab.
62 * If all pages are busy then we may allocate a new slab instead of reusing
63 * a partial slab. A new slab has noone operating on it and thus there is
64 * no danger of cacheline contention.
65 *
66 * Interrupts are disabled during allocation and deallocation in order to
67 * make the slab allocator safe to use in the context of an irq. In addition
68 * interrupts are disabled to ensure that the processor does not change
69 * while handling per_cpu slabs, due to kernel preemption.
70 *
71 * SLUB assigns one slab for allocation to each processor.
72 * Allocations only occur from these slabs called cpu slabs.
73 *
672bba3a
CL
74 * Slabs with free elements are kept on a partial list and during regular
75 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 76 * freed then the slab will show up again on the partial lists.
672bba3a
CL
77 * We track full slabs for debugging purposes though because otherwise we
78 * cannot scan all objects.
81819f0f
CL
79 *
80 * Slabs are freed when they become empty. Teardown and setup is
81 * minimal so we rely on the page allocators per cpu caches for
82 * fast frees and allocs.
83 *
84 * Overloading of page flags that are otherwise used for LRU management.
85 *
4b6f0750
CL
86 * PageActive The slab is frozen and exempt from list processing.
87 * This means that the slab is dedicated to a purpose
88 * such as satisfying allocations for a specific
89 * processor. Objects may be freed in the slab while
90 * it is frozen but slab_free will then skip the usual
91 * list operations. It is up to the processor holding
92 * the slab to integrate the slab into the slab lists
93 * when the slab is no longer needed.
94 *
95 * One use of this flag is to mark slabs that are
96 * used for allocations. Then such a slab becomes a cpu
97 * slab. The cpu slab may be equipped with an additional
dfb4f096 98 * freelist that allows lockless access to
894b8788
CL
99 * free objects in addition to the regular freelist
100 * that requires the slab lock.
81819f0f
CL
101 *
102 * PageError Slab requires special handling due to debug
103 * options set. This moves slab handling out of
894b8788 104 * the fast path and disables lockless freelists.
81819f0f
CL
105 */
106
5577bd8a 107#ifdef CONFIG_SLUB_DEBUG
8a38082d 108#define SLABDEBUG 1
5577bd8a
CL
109#else
110#define SLABDEBUG 0
111#endif
112
81819f0f
CL
113/*
114 * Issues still to be resolved:
115 *
81819f0f
CL
116 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
117 *
81819f0f
CL
118 * - Variable sizing of the per node arrays
119 */
120
121/* Enable to test recovery from slab corruption on boot */
122#undef SLUB_RESILIENCY_TEST
123
2086d26a
CL
124/*
125 * Mininum number of partial slabs. These will be left on the partial
126 * lists even if they are empty. kmem_cache_shrink may reclaim them.
127 */
76be8950 128#define MIN_PARTIAL 5
e95eed57 129
2086d26a
CL
130/*
131 * Maximum number of desirable partial slabs.
132 * The existence of more partial slabs makes kmem_cache_shrink
133 * sort the partial list by the number of objects in the.
134 */
135#define MAX_PARTIAL 10
136
81819f0f
CL
137#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
138 SLAB_POISON | SLAB_STORE_USER)
672bba3a 139
81819f0f
CL
140/*
141 * Set of flags that will prevent slab merging
142 */
143#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
144 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
145
146#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
147 SLAB_CACHE_DMA)
148
149#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 150#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
151#endif
152
153#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 154#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
155#endif
156
210b5c06
CG
157#define OO_SHIFT 16
158#define OO_MASK ((1 << OO_SHIFT) - 1)
159#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
160
81819f0f 161/* Internal SLUB flags */
1ceef402
CL
162#define __OBJECT_POISON 0x80000000 /* Poison object */
163#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
164
165static int kmem_size = sizeof(struct kmem_cache);
166
167#ifdef CONFIG_SMP
168static struct notifier_block slab_notifier;
169#endif
170
171static enum {
172 DOWN, /* No slab functionality available */
173 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 174 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
175 SYSFS /* Sysfs up */
176} slab_state = DOWN;
177
178/* A list of all slab caches on the system */
179static DECLARE_RWSEM(slub_lock);
5af328a5 180static LIST_HEAD(slab_caches);
81819f0f 181
02cbc874
CL
182/*
183 * Tracking user of a slab.
184 */
185struct track {
ce71e27c 186 unsigned long addr; /* Called from address */
02cbc874
CL
187 int cpu; /* Was running on cpu */
188 int pid; /* Pid context */
189 unsigned long when; /* When did the operation occur */
190};
191
192enum track_item { TRACK_ALLOC, TRACK_FREE };
193
f6acb635 194#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
195static int sysfs_slab_add(struct kmem_cache *);
196static int sysfs_slab_alias(struct kmem_cache *, const char *);
197static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 198
81819f0f 199#else
0c710013
CL
200static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
201static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
202 { return 0; }
151c602f
CL
203static inline void sysfs_slab_remove(struct kmem_cache *s)
204{
205 kfree(s);
206}
8ff12cfc 207
81819f0f
CL
208#endif
209
8ff12cfc
CL
210static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
211{
212#ifdef CONFIG_SLUB_STATS
213 c->stat[si]++;
214#endif
215}
216
81819f0f
CL
217/********************************************************************
218 * Core slab cache functions
219 *******************************************************************/
220
221int slab_is_available(void)
222{
223 return slab_state >= UP;
224}
225
226static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
227{
228#ifdef CONFIG_NUMA
229 return s->node[node];
230#else
231 return &s->local_node;
232#endif
233}
234
dfb4f096
CL
235static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
236{
4c93c355
CL
237#ifdef CONFIG_SMP
238 return s->cpu_slab[cpu];
239#else
240 return &s->cpu_slab;
241#endif
dfb4f096
CL
242}
243
6446faa2 244/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
245static inline int check_valid_pointer(struct kmem_cache *s,
246 struct page *page, const void *object)
247{
248 void *base;
249
a973e9dd 250 if (!object)
02cbc874
CL
251 return 1;
252
a973e9dd 253 base = page_address(page);
39b26464 254 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
255 (object - base) % s->size) {
256 return 0;
257 }
258
259 return 1;
260}
261
7656c72b
CL
262/*
263 * Slow version of get and set free pointer.
264 *
265 * This version requires touching the cache lines of kmem_cache which
266 * we avoid to do in the fast alloc free paths. There we obtain the offset
267 * from the page struct.
268 */
269static inline void *get_freepointer(struct kmem_cache *s, void *object)
270{
271 return *(void **)(object + s->offset);
272}
273
274static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
275{
276 *(void **)(object + s->offset) = fp;
277}
278
279/* Loop over all objects in a slab */
224a88be
CL
280#define for_each_object(__p, __s, __addr, __objects) \
281 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
282 __p += (__s)->size)
283
284/* Scan freelist */
285#define for_each_free_object(__p, __s, __free) \
a973e9dd 286 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
287
288/* Determine object index from a given position */
289static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
290{
291 return (p - addr) / s->size;
292}
293
834f3d11
CL
294static inline struct kmem_cache_order_objects oo_make(int order,
295 unsigned long size)
296{
297 struct kmem_cache_order_objects x = {
210b5c06 298 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
299 };
300
301 return x;
302}
303
304static inline int oo_order(struct kmem_cache_order_objects x)
305{
210b5c06 306 return x.x >> OO_SHIFT;
834f3d11
CL
307}
308
309static inline int oo_objects(struct kmem_cache_order_objects x)
310{
210b5c06 311 return x.x & OO_MASK;
834f3d11
CL
312}
313
41ecc55b
CL
314#ifdef CONFIG_SLUB_DEBUG
315/*
316 * Debug settings:
317 */
f0630fff
CL
318#ifdef CONFIG_SLUB_DEBUG_ON
319static int slub_debug = DEBUG_DEFAULT_FLAGS;
320#else
41ecc55b 321static int slub_debug;
f0630fff 322#endif
41ecc55b
CL
323
324static char *slub_debug_slabs;
325
81819f0f
CL
326/*
327 * Object debugging
328 */
329static void print_section(char *text, u8 *addr, unsigned int length)
330{
331 int i, offset;
332 int newline = 1;
333 char ascii[17];
334
335 ascii[16] = 0;
336
337 for (i = 0; i < length; i++) {
338 if (newline) {
24922684 339 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
340 newline = 0;
341 }
06428780 342 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
343 offset = i % 16;
344 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
345 if (offset == 15) {
06428780 346 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
347 newline = 1;
348 }
349 }
350 if (!newline) {
351 i %= 16;
352 while (i < 16) {
06428780 353 printk(KERN_CONT " ");
81819f0f
CL
354 ascii[i] = ' ';
355 i++;
356 }
06428780 357 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
358 }
359}
360
81819f0f
CL
361static struct track *get_track(struct kmem_cache *s, void *object,
362 enum track_item alloc)
363{
364 struct track *p;
365
366 if (s->offset)
367 p = object + s->offset + sizeof(void *);
368 else
369 p = object + s->inuse;
370
371 return p + alloc;
372}
373
374static void set_track(struct kmem_cache *s, void *object,
ce71e27c 375 enum track_item alloc, unsigned long addr)
81819f0f 376{
1a00df4a 377 struct track *p = get_track(s, object, alloc);
81819f0f 378
81819f0f
CL
379 if (addr) {
380 p->addr = addr;
381 p->cpu = smp_processor_id();
88e4ccf2 382 p->pid = current->pid;
81819f0f
CL
383 p->when = jiffies;
384 } else
385 memset(p, 0, sizeof(struct track));
386}
387
81819f0f
CL
388static void init_tracking(struct kmem_cache *s, void *object)
389{
24922684
CL
390 if (!(s->flags & SLAB_STORE_USER))
391 return;
392
ce71e27c
EGM
393 set_track(s, object, TRACK_FREE, 0UL);
394 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
395}
396
397static void print_track(const char *s, struct track *t)
398{
399 if (!t->addr)
400 return;
401
7daf705f 402 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 403 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
404}
405
406static void print_tracking(struct kmem_cache *s, void *object)
407{
408 if (!(s->flags & SLAB_STORE_USER))
409 return;
410
411 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
412 print_track("Freed", get_track(s, object, TRACK_FREE));
413}
414
415static void print_page_info(struct page *page)
416{
39b26464
CL
417 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
418 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
419
420}
421
422static void slab_bug(struct kmem_cache *s, char *fmt, ...)
423{
424 va_list args;
425 char buf[100];
426
427 va_start(args, fmt);
428 vsnprintf(buf, sizeof(buf), fmt, args);
429 va_end(args);
430 printk(KERN_ERR "========================================"
431 "=====================================\n");
432 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
433 printk(KERN_ERR "----------------------------------------"
434 "-------------------------------------\n\n");
81819f0f
CL
435}
436
24922684
CL
437static void slab_fix(struct kmem_cache *s, char *fmt, ...)
438{
439 va_list args;
440 char buf[100];
441
442 va_start(args, fmt);
443 vsnprintf(buf, sizeof(buf), fmt, args);
444 va_end(args);
445 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
446}
447
448static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
449{
450 unsigned int off; /* Offset of last byte */
a973e9dd 451 u8 *addr = page_address(page);
24922684
CL
452
453 print_tracking(s, p);
454
455 print_page_info(page);
456
457 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
458 p, p - addr, get_freepointer(s, p));
459
460 if (p > addr + 16)
461 print_section("Bytes b4", p - 16, 16);
462
0ebd652b 463 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
464
465 if (s->flags & SLAB_RED_ZONE)
466 print_section("Redzone", p + s->objsize,
467 s->inuse - s->objsize);
468
81819f0f
CL
469 if (s->offset)
470 off = s->offset + sizeof(void *);
471 else
472 off = s->inuse;
473
24922684 474 if (s->flags & SLAB_STORE_USER)
81819f0f 475 off += 2 * sizeof(struct track);
81819f0f
CL
476
477 if (off != s->size)
478 /* Beginning of the filler is the free pointer */
24922684
CL
479 print_section("Padding", p + off, s->size - off);
480
481 dump_stack();
81819f0f
CL
482}
483
484static void object_err(struct kmem_cache *s, struct page *page,
485 u8 *object, char *reason)
486{
3dc50637 487 slab_bug(s, "%s", reason);
24922684 488 print_trailer(s, page, object);
81819f0f
CL
489}
490
24922684 491static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
492{
493 va_list args;
494 char buf[100];
495
24922684
CL
496 va_start(args, fmt);
497 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 498 va_end(args);
3dc50637 499 slab_bug(s, "%s", buf);
24922684 500 print_page_info(page);
81819f0f
CL
501 dump_stack();
502}
503
504static void init_object(struct kmem_cache *s, void *object, int active)
505{
506 u8 *p = object;
507
508 if (s->flags & __OBJECT_POISON) {
509 memset(p, POISON_FREE, s->objsize - 1);
06428780 510 p[s->objsize - 1] = POISON_END;
81819f0f
CL
511 }
512
513 if (s->flags & SLAB_RED_ZONE)
514 memset(p + s->objsize,
515 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
516 s->inuse - s->objsize);
517}
518
24922684 519static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
520{
521 while (bytes) {
522 if (*start != (u8)value)
24922684 523 return start;
81819f0f
CL
524 start++;
525 bytes--;
526 }
24922684
CL
527 return NULL;
528}
529
530static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
531 void *from, void *to)
532{
533 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
534 memset(from, data, to - from);
535}
536
537static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
538 u8 *object, char *what,
06428780 539 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
540{
541 u8 *fault;
542 u8 *end;
543
544 fault = check_bytes(start, value, bytes);
545 if (!fault)
546 return 1;
547
548 end = start + bytes;
549 while (end > fault && end[-1] == value)
550 end--;
551
552 slab_bug(s, "%s overwritten", what);
553 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
554 fault, end - 1, fault[0], value);
555 print_trailer(s, page, object);
556
557 restore_bytes(s, what, value, fault, end);
558 return 0;
81819f0f
CL
559}
560
81819f0f
CL
561/*
562 * Object layout:
563 *
564 * object address
565 * Bytes of the object to be managed.
566 * If the freepointer may overlay the object then the free
567 * pointer is the first word of the object.
672bba3a 568 *
81819f0f
CL
569 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
570 * 0xa5 (POISON_END)
571 *
572 * object + s->objsize
573 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
574 * Padding is extended by another word if Redzoning is enabled and
575 * objsize == inuse.
576 *
81819f0f
CL
577 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
578 * 0xcc (RED_ACTIVE) for objects in use.
579 *
580 * object + s->inuse
672bba3a
CL
581 * Meta data starts here.
582 *
81819f0f
CL
583 * A. Free pointer (if we cannot overwrite object on free)
584 * B. Tracking data for SLAB_STORE_USER
672bba3a 585 * C. Padding to reach required alignment boundary or at mininum
6446faa2 586 * one word if debugging is on to be able to detect writes
672bba3a
CL
587 * before the word boundary.
588 *
589 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
590 *
591 * object + s->size
672bba3a 592 * Nothing is used beyond s->size.
81819f0f 593 *
672bba3a
CL
594 * If slabcaches are merged then the objsize and inuse boundaries are mostly
595 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
596 * may be used with merged slabcaches.
597 */
598
81819f0f
CL
599static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
600{
601 unsigned long off = s->inuse; /* The end of info */
602
603 if (s->offset)
604 /* Freepointer is placed after the object. */
605 off += sizeof(void *);
606
607 if (s->flags & SLAB_STORE_USER)
608 /* We also have user information there */
609 off += 2 * sizeof(struct track);
610
611 if (s->size == off)
612 return 1;
613
24922684
CL
614 return check_bytes_and_report(s, page, p, "Object padding",
615 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
616}
617
39b26464 618/* Check the pad bytes at the end of a slab page */
81819f0f
CL
619static int slab_pad_check(struct kmem_cache *s, struct page *page)
620{
24922684
CL
621 u8 *start;
622 u8 *fault;
623 u8 *end;
624 int length;
625 int remainder;
81819f0f
CL
626
627 if (!(s->flags & SLAB_POISON))
628 return 1;
629
a973e9dd 630 start = page_address(page);
834f3d11 631 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
632 end = start + length;
633 remainder = length % s->size;
81819f0f
CL
634 if (!remainder)
635 return 1;
636
39b26464 637 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
638 if (!fault)
639 return 1;
640 while (end > fault && end[-1] == POISON_INUSE)
641 end--;
642
643 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 644 print_section("Padding", end - remainder, remainder);
24922684
CL
645
646 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
647 return 0;
81819f0f
CL
648}
649
650static int check_object(struct kmem_cache *s, struct page *page,
651 void *object, int active)
652{
653 u8 *p = object;
654 u8 *endobject = object + s->objsize;
655
656 if (s->flags & SLAB_RED_ZONE) {
657 unsigned int red =
658 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
659
24922684
CL
660 if (!check_bytes_and_report(s, page, object, "Redzone",
661 endobject, red, s->inuse - s->objsize))
81819f0f 662 return 0;
81819f0f 663 } else {
3adbefee
IM
664 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
665 check_bytes_and_report(s, page, p, "Alignment padding",
666 endobject, POISON_INUSE, s->inuse - s->objsize);
667 }
81819f0f
CL
668 }
669
670 if (s->flags & SLAB_POISON) {
671 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
672 (!check_bytes_and_report(s, page, p, "Poison", p,
673 POISON_FREE, s->objsize - 1) ||
674 !check_bytes_and_report(s, page, p, "Poison",
06428780 675 p + s->objsize - 1, POISON_END, 1)))
81819f0f 676 return 0;
81819f0f
CL
677 /*
678 * check_pad_bytes cleans up on its own.
679 */
680 check_pad_bytes(s, page, p);
681 }
682
683 if (!s->offset && active)
684 /*
685 * Object and freepointer overlap. Cannot check
686 * freepointer while object is allocated.
687 */
688 return 1;
689
690 /* Check free pointer validity */
691 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
692 object_err(s, page, p, "Freepointer corrupt");
693 /*
9f6c708e 694 * No choice but to zap it and thus lose the remainder
81819f0f 695 * of the free objects in this slab. May cause
672bba3a 696 * another error because the object count is now wrong.
81819f0f 697 */
a973e9dd 698 set_freepointer(s, p, NULL);
81819f0f
CL
699 return 0;
700 }
701 return 1;
702}
703
704static int check_slab(struct kmem_cache *s, struct page *page)
705{
39b26464
CL
706 int maxobj;
707
81819f0f
CL
708 VM_BUG_ON(!irqs_disabled());
709
710 if (!PageSlab(page)) {
24922684 711 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
712 return 0;
713 }
39b26464
CL
714
715 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
716 if (page->objects > maxobj) {
717 slab_err(s, page, "objects %u > max %u",
718 s->name, page->objects, maxobj);
719 return 0;
720 }
721 if (page->inuse > page->objects) {
24922684 722 slab_err(s, page, "inuse %u > max %u",
39b26464 723 s->name, page->inuse, page->objects);
81819f0f
CL
724 return 0;
725 }
726 /* Slab_pad_check fixes things up after itself */
727 slab_pad_check(s, page);
728 return 1;
729}
730
731/*
672bba3a
CL
732 * Determine if a certain object on a page is on the freelist. Must hold the
733 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
734 */
735static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
736{
737 int nr = 0;
738 void *fp = page->freelist;
739 void *object = NULL;
224a88be 740 unsigned long max_objects;
81819f0f 741
39b26464 742 while (fp && nr <= page->objects) {
81819f0f
CL
743 if (fp == search)
744 return 1;
745 if (!check_valid_pointer(s, page, fp)) {
746 if (object) {
747 object_err(s, page, object,
748 "Freechain corrupt");
a973e9dd 749 set_freepointer(s, object, NULL);
81819f0f
CL
750 break;
751 } else {
24922684 752 slab_err(s, page, "Freepointer corrupt");
a973e9dd 753 page->freelist = NULL;
39b26464 754 page->inuse = page->objects;
24922684 755 slab_fix(s, "Freelist cleared");
81819f0f
CL
756 return 0;
757 }
758 break;
759 }
760 object = fp;
761 fp = get_freepointer(s, object);
762 nr++;
763 }
764
224a88be 765 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
766 if (max_objects > MAX_OBJS_PER_PAGE)
767 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
768
769 if (page->objects != max_objects) {
770 slab_err(s, page, "Wrong number of objects. Found %d but "
771 "should be %d", page->objects, max_objects);
772 page->objects = max_objects;
773 slab_fix(s, "Number of objects adjusted.");
774 }
39b26464 775 if (page->inuse != page->objects - nr) {
70d71228 776 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
777 "counted were %d", page->inuse, page->objects - nr);
778 page->inuse = page->objects - nr;
24922684 779 slab_fix(s, "Object count adjusted.");
81819f0f
CL
780 }
781 return search == NULL;
782}
783
0121c619
CL
784static void trace(struct kmem_cache *s, struct page *page, void *object,
785 int alloc)
3ec09742
CL
786{
787 if (s->flags & SLAB_TRACE) {
788 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
789 s->name,
790 alloc ? "alloc" : "free",
791 object, page->inuse,
792 page->freelist);
793
794 if (!alloc)
795 print_section("Object", (void *)object, s->objsize);
796
797 dump_stack();
798 }
799}
800
643b1138 801/*
672bba3a 802 * Tracking of fully allocated slabs for debugging purposes.
643b1138 803 */
e95eed57 804static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 805{
643b1138
CL
806 spin_lock(&n->list_lock);
807 list_add(&page->lru, &n->full);
808 spin_unlock(&n->list_lock);
809}
810
811static void remove_full(struct kmem_cache *s, struct page *page)
812{
813 struct kmem_cache_node *n;
814
815 if (!(s->flags & SLAB_STORE_USER))
816 return;
817
818 n = get_node(s, page_to_nid(page));
819
820 spin_lock(&n->list_lock);
821 list_del(&page->lru);
822 spin_unlock(&n->list_lock);
823}
824
0f389ec6
CL
825/* Tracking of the number of slabs for debugging purposes */
826static inline unsigned long slabs_node(struct kmem_cache *s, int node)
827{
828 struct kmem_cache_node *n = get_node(s, node);
829
830 return atomic_long_read(&n->nr_slabs);
831}
832
205ab99d 833static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
834{
835 struct kmem_cache_node *n = get_node(s, node);
836
837 /*
838 * May be called early in order to allocate a slab for the
839 * kmem_cache_node structure. Solve the chicken-egg
840 * dilemma by deferring the increment of the count during
841 * bootstrap (see early_kmem_cache_node_alloc).
842 */
205ab99d 843 if (!NUMA_BUILD || n) {
0f389ec6 844 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
845 atomic_long_add(objects, &n->total_objects);
846 }
0f389ec6 847}
205ab99d 848static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
849{
850 struct kmem_cache_node *n = get_node(s, node);
851
852 atomic_long_dec(&n->nr_slabs);
205ab99d 853 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
854}
855
856/* Object debug checks for alloc/free paths */
3ec09742
CL
857static void setup_object_debug(struct kmem_cache *s, struct page *page,
858 void *object)
859{
860 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
861 return;
862
863 init_object(s, object, 0);
864 init_tracking(s, object);
865}
866
867static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 868 void *object, unsigned long addr)
81819f0f
CL
869{
870 if (!check_slab(s, page))
871 goto bad;
872
d692ef6d 873 if (!on_freelist(s, page, object)) {
24922684 874 object_err(s, page, object, "Object already allocated");
70d71228 875 goto bad;
81819f0f
CL
876 }
877
878 if (!check_valid_pointer(s, page, object)) {
879 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 880 goto bad;
81819f0f
CL
881 }
882
d692ef6d 883 if (!check_object(s, page, object, 0))
81819f0f 884 goto bad;
81819f0f 885
3ec09742
CL
886 /* Success perform special debug activities for allocs */
887 if (s->flags & SLAB_STORE_USER)
888 set_track(s, object, TRACK_ALLOC, addr);
889 trace(s, page, object, 1);
890 init_object(s, object, 1);
81819f0f 891 return 1;
3ec09742 892
81819f0f
CL
893bad:
894 if (PageSlab(page)) {
895 /*
896 * If this is a slab page then lets do the best we can
897 * to avoid issues in the future. Marking all objects
672bba3a 898 * as used avoids touching the remaining objects.
81819f0f 899 */
24922684 900 slab_fix(s, "Marking all objects used");
39b26464 901 page->inuse = page->objects;
a973e9dd 902 page->freelist = NULL;
81819f0f
CL
903 }
904 return 0;
905}
906
3ec09742 907static int free_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 908 void *object, unsigned long addr)
81819f0f
CL
909{
910 if (!check_slab(s, page))
911 goto fail;
912
913 if (!check_valid_pointer(s, page, object)) {
70d71228 914 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
915 goto fail;
916 }
917
918 if (on_freelist(s, page, object)) {
24922684 919 object_err(s, page, object, "Object already free");
81819f0f
CL
920 goto fail;
921 }
922
923 if (!check_object(s, page, object, 1))
924 return 0;
925
926 if (unlikely(s != page->slab)) {
3adbefee 927 if (!PageSlab(page)) {
70d71228
CL
928 slab_err(s, page, "Attempt to free object(0x%p) "
929 "outside of slab", object);
3adbefee 930 } else if (!page->slab) {
81819f0f 931 printk(KERN_ERR
70d71228 932 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 933 object);
70d71228 934 dump_stack();
06428780 935 } else
24922684
CL
936 object_err(s, page, object,
937 "page slab pointer corrupt.");
81819f0f
CL
938 goto fail;
939 }
3ec09742
CL
940
941 /* Special debug activities for freeing objects */
8a38082d 942 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
943 remove_full(s, page);
944 if (s->flags & SLAB_STORE_USER)
945 set_track(s, object, TRACK_FREE, addr);
946 trace(s, page, object, 0);
947 init_object(s, object, 0);
81819f0f 948 return 1;
3ec09742 949
81819f0f 950fail:
24922684 951 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
952 return 0;
953}
954
41ecc55b
CL
955static int __init setup_slub_debug(char *str)
956{
f0630fff
CL
957 slub_debug = DEBUG_DEFAULT_FLAGS;
958 if (*str++ != '=' || !*str)
959 /*
960 * No options specified. Switch on full debugging.
961 */
962 goto out;
963
964 if (*str == ',')
965 /*
966 * No options but restriction on slabs. This means full
967 * debugging for slabs matching a pattern.
968 */
969 goto check_slabs;
970
971 slub_debug = 0;
972 if (*str == '-')
973 /*
974 * Switch off all debugging measures.
975 */
976 goto out;
977
978 /*
979 * Determine which debug features should be switched on
980 */
06428780 981 for (; *str && *str != ','; str++) {
f0630fff
CL
982 switch (tolower(*str)) {
983 case 'f':
984 slub_debug |= SLAB_DEBUG_FREE;
985 break;
986 case 'z':
987 slub_debug |= SLAB_RED_ZONE;
988 break;
989 case 'p':
990 slub_debug |= SLAB_POISON;
991 break;
992 case 'u':
993 slub_debug |= SLAB_STORE_USER;
994 break;
995 case 't':
996 slub_debug |= SLAB_TRACE;
997 break;
998 default:
999 printk(KERN_ERR "slub_debug option '%c' "
06428780 1000 "unknown. skipped\n", *str);
f0630fff 1001 }
41ecc55b
CL
1002 }
1003
f0630fff 1004check_slabs:
41ecc55b
CL
1005 if (*str == ',')
1006 slub_debug_slabs = str + 1;
f0630fff 1007out:
41ecc55b
CL
1008 return 1;
1009}
1010
1011__setup("slub_debug", setup_slub_debug);
1012
ba0268a8
CL
1013static unsigned long kmem_cache_flags(unsigned long objsize,
1014 unsigned long flags, const char *name,
51cc5068 1015 void (*ctor)(void *))
41ecc55b
CL
1016{
1017 /*
e153362a 1018 * Enable debugging if selected on the kernel commandline.
41ecc55b 1019 */
e153362a
CL
1020 if (slub_debug && (!slub_debug_slabs ||
1021 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1022 flags |= slub_debug;
ba0268a8
CL
1023
1024 return flags;
41ecc55b
CL
1025}
1026#else
3ec09742
CL
1027static inline void setup_object_debug(struct kmem_cache *s,
1028 struct page *page, void *object) {}
41ecc55b 1029
3ec09742 1030static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1031 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1032
3ec09742 1033static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1034 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1035
41ecc55b
CL
1036static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1037 { return 1; }
1038static inline int check_object(struct kmem_cache *s, struct page *page,
1039 void *object, int active) { return 1; }
3ec09742 1040static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1041static inline unsigned long kmem_cache_flags(unsigned long objsize,
1042 unsigned long flags, const char *name,
51cc5068 1043 void (*ctor)(void *))
ba0268a8
CL
1044{
1045 return flags;
1046}
41ecc55b 1047#define slub_debug 0
0f389ec6
CL
1048
1049static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050 { return 0; }
205ab99d
CL
1051static inline void inc_slabs_node(struct kmem_cache *s, int node,
1052 int objects) {}
1053static inline void dec_slabs_node(struct kmem_cache *s, int node,
1054 int objects) {}
41ecc55b 1055#endif
205ab99d 1056
81819f0f
CL
1057/*
1058 * Slab allocation and freeing
1059 */
65c3376a
CL
1060static inline struct page *alloc_slab_page(gfp_t flags, int node,
1061 struct kmem_cache_order_objects oo)
1062{
1063 int order = oo_order(oo);
1064
1065 if (node == -1)
1066 return alloc_pages(flags, order);
1067 else
1068 return alloc_pages_node(node, flags, order);
1069}
1070
81819f0f
CL
1071static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1072{
06428780 1073 struct page *page;
834f3d11 1074 struct kmem_cache_order_objects oo = s->oo;
81819f0f 1075
b7a49f0d 1076 flags |= s->allocflags;
e12ba74d 1077
65c3376a
CL
1078 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1079 oo);
1080 if (unlikely(!page)) {
1081 oo = s->min;
1082 /*
1083 * Allocation may have failed due to fragmentation.
1084 * Try a lower order alloc if possible
1085 */
1086 page = alloc_slab_page(flags, node, oo);
1087 if (!page)
1088 return NULL;
81819f0f 1089
65c3376a
CL
1090 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1091 }
834f3d11 1092 page->objects = oo_objects(oo);
81819f0f
CL
1093 mod_zone_page_state(page_zone(page),
1094 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1095 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1096 1 << oo_order(oo));
81819f0f
CL
1097
1098 return page;
1099}
1100
1101static void setup_object(struct kmem_cache *s, struct page *page,
1102 void *object)
1103{
3ec09742 1104 setup_object_debug(s, page, object);
4f104934 1105 if (unlikely(s->ctor))
51cc5068 1106 s->ctor(object);
81819f0f
CL
1107}
1108
1109static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1110{
1111 struct page *page;
81819f0f 1112 void *start;
81819f0f
CL
1113 void *last;
1114 void *p;
1115
6cb06229 1116 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1117
6cb06229
CL
1118 page = allocate_slab(s,
1119 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1120 if (!page)
1121 goto out;
1122
205ab99d 1123 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1124 page->slab = s;
1125 page->flags |= 1 << PG_slab;
1126 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1127 SLAB_STORE_USER | SLAB_TRACE))
8a38082d 1128 __SetPageSlubDebug(page);
81819f0f
CL
1129
1130 start = page_address(page);
81819f0f
CL
1131
1132 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1133 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1134
1135 last = start;
224a88be 1136 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1137 setup_object(s, page, last);
1138 set_freepointer(s, last, p);
1139 last = p;
1140 }
1141 setup_object(s, page, last);
a973e9dd 1142 set_freepointer(s, last, NULL);
81819f0f
CL
1143
1144 page->freelist = start;
1145 page->inuse = 0;
1146out:
81819f0f
CL
1147 return page;
1148}
1149
1150static void __free_slab(struct kmem_cache *s, struct page *page)
1151{
834f3d11
CL
1152 int order = compound_order(page);
1153 int pages = 1 << order;
81819f0f 1154
8a38082d 1155 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
81819f0f
CL
1156 void *p;
1157
1158 slab_pad_check(s, page);
224a88be
CL
1159 for_each_object(p, s, page_address(page),
1160 page->objects)
81819f0f 1161 check_object(s, page, p, 0);
8a38082d 1162 __ClearPageSlubDebug(page);
81819f0f
CL
1163 }
1164
1165 mod_zone_page_state(page_zone(page),
1166 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1167 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1168 -pages);
81819f0f 1169
49bd5221
CL
1170 __ClearPageSlab(page);
1171 reset_page_mapcount(page);
834f3d11 1172 __free_pages(page, order);
81819f0f
CL
1173}
1174
1175static void rcu_free_slab(struct rcu_head *h)
1176{
1177 struct page *page;
1178
1179 page = container_of((struct list_head *)h, struct page, lru);
1180 __free_slab(page->slab, page);
1181}
1182
1183static void free_slab(struct kmem_cache *s, struct page *page)
1184{
1185 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1186 /*
1187 * RCU free overloads the RCU head over the LRU
1188 */
1189 struct rcu_head *head = (void *)&page->lru;
1190
1191 call_rcu(head, rcu_free_slab);
1192 } else
1193 __free_slab(s, page);
1194}
1195
1196static void discard_slab(struct kmem_cache *s, struct page *page)
1197{
205ab99d 1198 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1199 free_slab(s, page);
1200}
1201
1202/*
1203 * Per slab locking using the pagelock
1204 */
1205static __always_inline void slab_lock(struct page *page)
1206{
1207 bit_spin_lock(PG_locked, &page->flags);
1208}
1209
1210static __always_inline void slab_unlock(struct page *page)
1211{
a76d3546 1212 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1213}
1214
1215static __always_inline int slab_trylock(struct page *page)
1216{
1217 int rc = 1;
1218
1219 rc = bit_spin_trylock(PG_locked, &page->flags);
1220 return rc;
1221}
1222
1223/*
1224 * Management of partially allocated slabs
1225 */
7c2e132c
CL
1226static void add_partial(struct kmem_cache_node *n,
1227 struct page *page, int tail)
81819f0f 1228{
e95eed57
CL
1229 spin_lock(&n->list_lock);
1230 n->nr_partial++;
7c2e132c
CL
1231 if (tail)
1232 list_add_tail(&page->lru, &n->partial);
1233 else
1234 list_add(&page->lru, &n->partial);
81819f0f
CL
1235 spin_unlock(&n->list_lock);
1236}
1237
0121c619 1238static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1239{
1240 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1241
1242 spin_lock(&n->list_lock);
1243 list_del(&page->lru);
1244 n->nr_partial--;
1245 spin_unlock(&n->list_lock);
1246}
1247
1248/*
672bba3a 1249 * Lock slab and remove from the partial list.
81819f0f 1250 *
672bba3a 1251 * Must hold list_lock.
81819f0f 1252 */
0121c619
CL
1253static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1254 struct page *page)
81819f0f
CL
1255{
1256 if (slab_trylock(page)) {
1257 list_del(&page->lru);
1258 n->nr_partial--;
8a38082d 1259 __SetPageSlubFrozen(page);
81819f0f
CL
1260 return 1;
1261 }
1262 return 0;
1263}
1264
1265/*
672bba3a 1266 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1267 */
1268static struct page *get_partial_node(struct kmem_cache_node *n)
1269{
1270 struct page *page;
1271
1272 /*
1273 * Racy check. If we mistakenly see no partial slabs then we
1274 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1275 * partial slab and there is none available then get_partials()
1276 * will return NULL.
81819f0f
CL
1277 */
1278 if (!n || !n->nr_partial)
1279 return NULL;
1280
1281 spin_lock(&n->list_lock);
1282 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1283 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1284 goto out;
1285 page = NULL;
1286out:
1287 spin_unlock(&n->list_lock);
1288 return page;
1289}
1290
1291/*
672bba3a 1292 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1293 */
1294static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1295{
1296#ifdef CONFIG_NUMA
1297 struct zonelist *zonelist;
dd1a239f 1298 struct zoneref *z;
54a6eb5c
MG
1299 struct zone *zone;
1300 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1301 struct page *page;
1302
1303 /*
672bba3a
CL
1304 * The defrag ratio allows a configuration of the tradeoffs between
1305 * inter node defragmentation and node local allocations. A lower
1306 * defrag_ratio increases the tendency to do local allocations
1307 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1308 *
672bba3a
CL
1309 * If the defrag_ratio is set to 0 then kmalloc() always
1310 * returns node local objects. If the ratio is higher then kmalloc()
1311 * may return off node objects because partial slabs are obtained
1312 * from other nodes and filled up.
81819f0f 1313 *
6446faa2 1314 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1315 * defrag_ratio = 1000) then every (well almost) allocation will
1316 * first attempt to defrag slab caches on other nodes. This means
1317 * scanning over all nodes to look for partial slabs which may be
1318 * expensive if we do it every time we are trying to find a slab
1319 * with available objects.
81819f0f 1320 */
9824601e
CL
1321 if (!s->remote_node_defrag_ratio ||
1322 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1323 return NULL;
1324
0e88460d 1325 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1326 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1327 struct kmem_cache_node *n;
1328
54a6eb5c 1329 n = get_node(s, zone_to_nid(zone));
81819f0f 1330
54a6eb5c 1331 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1332 n->nr_partial > s->min_partial) {
81819f0f
CL
1333 page = get_partial_node(n);
1334 if (page)
1335 return page;
1336 }
1337 }
1338#endif
1339 return NULL;
1340}
1341
1342/*
1343 * Get a partial page, lock it and return it.
1344 */
1345static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1346{
1347 struct page *page;
1348 int searchnode = (node == -1) ? numa_node_id() : node;
1349
1350 page = get_partial_node(get_node(s, searchnode));
1351 if (page || (flags & __GFP_THISNODE))
1352 return page;
1353
1354 return get_any_partial(s, flags);
1355}
1356
1357/*
1358 * Move a page back to the lists.
1359 *
1360 * Must be called with the slab lock held.
1361 *
1362 * On exit the slab lock will have been dropped.
1363 */
7c2e132c 1364static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1365{
e95eed57 1366 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1367 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1368
8a38082d 1369 __ClearPageSlubFrozen(page);
81819f0f 1370 if (page->inuse) {
e95eed57 1371
a973e9dd 1372 if (page->freelist) {
7c2e132c 1373 add_partial(n, page, tail);
8ff12cfc
CL
1374 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1375 } else {
1376 stat(c, DEACTIVATE_FULL);
8a38082d
AW
1377 if (SLABDEBUG && PageSlubDebug(page) &&
1378 (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1379 add_full(n, page);
1380 }
81819f0f
CL
1381 slab_unlock(page);
1382 } else {
8ff12cfc 1383 stat(c, DEACTIVATE_EMPTY);
3b89d7d8 1384 if (n->nr_partial < s->min_partial) {
e95eed57 1385 /*
672bba3a
CL
1386 * Adding an empty slab to the partial slabs in order
1387 * to avoid page allocator overhead. This slab needs
1388 * to come after the other slabs with objects in
6446faa2
CL
1389 * so that the others get filled first. That way the
1390 * size of the partial list stays small.
1391 *
0121c619
CL
1392 * kmem_cache_shrink can reclaim any empty slabs from
1393 * the partial list.
e95eed57 1394 */
7c2e132c 1395 add_partial(n, page, 1);
e95eed57
CL
1396 slab_unlock(page);
1397 } else {
1398 slab_unlock(page);
8ff12cfc 1399 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1400 discard_slab(s, page);
1401 }
81819f0f
CL
1402 }
1403}
1404
1405/*
1406 * Remove the cpu slab
1407 */
dfb4f096 1408static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1409{
dfb4f096 1410 struct page *page = c->page;
7c2e132c 1411 int tail = 1;
8ff12cfc 1412
b773ad73 1413 if (page->freelist)
8ff12cfc 1414 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1415 /*
6446faa2 1416 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1417 * because both freelists are empty. So this is unlikely
1418 * to occur.
1419 */
a973e9dd 1420 while (unlikely(c->freelist)) {
894b8788
CL
1421 void **object;
1422
7c2e132c
CL
1423 tail = 0; /* Hot objects. Put the slab first */
1424
894b8788 1425 /* Retrieve object from cpu_freelist */
dfb4f096 1426 object = c->freelist;
b3fba8da 1427 c->freelist = c->freelist[c->offset];
894b8788
CL
1428
1429 /* And put onto the regular freelist */
b3fba8da 1430 object[c->offset] = page->freelist;
894b8788
CL
1431 page->freelist = object;
1432 page->inuse--;
1433 }
dfb4f096 1434 c->page = NULL;
7c2e132c 1435 unfreeze_slab(s, page, tail);
81819f0f
CL
1436}
1437
dfb4f096 1438static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1439{
8ff12cfc 1440 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1441 slab_lock(c->page);
1442 deactivate_slab(s, c);
81819f0f
CL
1443}
1444
1445/*
1446 * Flush cpu slab.
6446faa2 1447 *
81819f0f
CL
1448 * Called from IPI handler with interrupts disabled.
1449 */
0c710013 1450static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1451{
dfb4f096 1452 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1453
dfb4f096
CL
1454 if (likely(c && c->page))
1455 flush_slab(s, c);
81819f0f
CL
1456}
1457
1458static void flush_cpu_slab(void *d)
1459{
1460 struct kmem_cache *s = d;
81819f0f 1461
dfb4f096 1462 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1463}
1464
1465static void flush_all(struct kmem_cache *s)
1466{
15c8b6c1 1467 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1468}
1469
dfb4f096
CL
1470/*
1471 * Check if the objects in a per cpu structure fit numa
1472 * locality expectations.
1473 */
1474static inline int node_match(struct kmem_cache_cpu *c, int node)
1475{
1476#ifdef CONFIG_NUMA
1477 if (node != -1 && c->node != node)
1478 return 0;
1479#endif
1480 return 1;
1481}
1482
81819f0f 1483/*
894b8788
CL
1484 * Slow path. The lockless freelist is empty or we need to perform
1485 * debugging duties.
1486 *
1487 * Interrupts are disabled.
81819f0f 1488 *
894b8788
CL
1489 * Processing is still very fast if new objects have been freed to the
1490 * regular freelist. In that case we simply take over the regular freelist
1491 * as the lockless freelist and zap the regular freelist.
81819f0f 1492 *
894b8788
CL
1493 * If that is not working then we fall back to the partial lists. We take the
1494 * first element of the freelist as the object to allocate now and move the
1495 * rest of the freelist to the lockless freelist.
81819f0f 1496 *
894b8788 1497 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1498 * we need to allocate a new slab. This is the slowest path since it involves
1499 * a call to the page allocator and the setup of a new slab.
81819f0f 1500 */
ce71e27c
EGM
1501static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1502 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1503{
81819f0f 1504 void **object;
dfb4f096 1505 struct page *new;
81819f0f 1506
e72e9c23
LT
1507 /* We handle __GFP_ZERO in the caller */
1508 gfpflags &= ~__GFP_ZERO;
1509
dfb4f096 1510 if (!c->page)
81819f0f
CL
1511 goto new_slab;
1512
dfb4f096
CL
1513 slab_lock(c->page);
1514 if (unlikely(!node_match(c, node)))
81819f0f 1515 goto another_slab;
6446faa2 1516
8ff12cfc 1517 stat(c, ALLOC_REFILL);
6446faa2 1518
894b8788 1519load_freelist:
dfb4f096 1520 object = c->page->freelist;
a973e9dd 1521 if (unlikely(!object))
81819f0f 1522 goto another_slab;
8a38082d 1523 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
81819f0f
CL
1524 goto debug;
1525
b3fba8da 1526 c->freelist = object[c->offset];
39b26464 1527 c->page->inuse = c->page->objects;
a973e9dd 1528 c->page->freelist = NULL;
dfb4f096 1529 c->node = page_to_nid(c->page);
1f84260c 1530unlock_out:
dfb4f096 1531 slab_unlock(c->page);
8ff12cfc 1532 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1533 return object;
1534
1535another_slab:
dfb4f096 1536 deactivate_slab(s, c);
81819f0f
CL
1537
1538new_slab:
dfb4f096
CL
1539 new = get_partial(s, gfpflags, node);
1540 if (new) {
1541 c->page = new;
8ff12cfc 1542 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1543 goto load_freelist;
81819f0f
CL
1544 }
1545
b811c202
CL
1546 if (gfpflags & __GFP_WAIT)
1547 local_irq_enable();
1548
dfb4f096 1549 new = new_slab(s, gfpflags, node);
b811c202
CL
1550
1551 if (gfpflags & __GFP_WAIT)
1552 local_irq_disable();
1553
dfb4f096
CL
1554 if (new) {
1555 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1556 stat(c, ALLOC_SLAB);
05aa3450 1557 if (c->page)
dfb4f096 1558 flush_slab(s, c);
dfb4f096 1559 slab_lock(new);
8a38082d 1560 __SetPageSlubFrozen(new);
dfb4f096 1561 c->page = new;
4b6f0750 1562 goto load_freelist;
81819f0f 1563 }
71c7a06f 1564 return NULL;
81819f0f 1565debug:
dfb4f096 1566 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1567 goto another_slab;
894b8788 1568
dfb4f096 1569 c->page->inuse++;
b3fba8da 1570 c->page->freelist = object[c->offset];
ee3c72a1 1571 c->node = -1;
1f84260c 1572 goto unlock_out;
894b8788
CL
1573}
1574
1575/*
1576 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1577 * have the fastpath folded into their functions. So no function call
1578 * overhead for requests that can be satisfied on the fastpath.
1579 *
1580 * The fastpath works by first checking if the lockless freelist can be used.
1581 * If not then __slab_alloc is called for slow processing.
1582 *
1583 * Otherwise we can simply pick the next object from the lockless free list.
1584 */
06428780 1585static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1586 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1587{
894b8788 1588 void **object;
dfb4f096 1589 struct kmem_cache_cpu *c;
1f84260c 1590 unsigned long flags;
bdb21928 1591 unsigned int objsize;
1f84260c 1592
cf40bd16 1593 lockdep_trace_alloc(gfpflags);
89124d70 1594 might_sleep_if(gfpflags & __GFP_WAIT);
3c506efd 1595
773ff60e
AM
1596 if (should_failslab(s->objsize, gfpflags))
1597 return NULL;
1f84260c 1598
894b8788 1599 local_irq_save(flags);
dfb4f096 1600 c = get_cpu_slab(s, smp_processor_id());
bdb21928 1601 objsize = c->objsize;
a973e9dd 1602 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1603
dfb4f096 1604 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1605
1606 else {
dfb4f096 1607 object = c->freelist;
b3fba8da 1608 c->freelist = object[c->offset];
8ff12cfc 1609 stat(c, ALLOC_FASTPATH);
894b8788
CL
1610 }
1611 local_irq_restore(flags);
d07dbea4
CL
1612
1613 if (unlikely((gfpflags & __GFP_ZERO) && object))
bdb21928 1614 memset(object, 0, objsize);
d07dbea4 1615
894b8788 1616 return object;
81819f0f
CL
1617}
1618
1619void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1620{
ce71e27c 1621 return slab_alloc(s, gfpflags, -1, _RET_IP_);
81819f0f
CL
1622}
1623EXPORT_SYMBOL(kmem_cache_alloc);
1624
1625#ifdef CONFIG_NUMA
1626void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1627{
ce71e27c 1628 return slab_alloc(s, gfpflags, node, _RET_IP_);
81819f0f
CL
1629}
1630EXPORT_SYMBOL(kmem_cache_alloc_node);
1631#endif
1632
1633/*
894b8788
CL
1634 * Slow patch handling. This may still be called frequently since objects
1635 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1636 *
894b8788
CL
1637 * So we still attempt to reduce cache line usage. Just take the slab
1638 * lock and free the item. If there is no additional partial page
1639 * handling required then we can return immediately.
81819f0f 1640 */
894b8788 1641static void __slab_free(struct kmem_cache *s, struct page *page,
ce71e27c 1642 void *x, unsigned long addr, unsigned int offset)
81819f0f
CL
1643{
1644 void *prior;
1645 void **object = (void *)x;
8ff12cfc 1646 struct kmem_cache_cpu *c;
81819f0f 1647
8ff12cfc
CL
1648 c = get_cpu_slab(s, raw_smp_processor_id());
1649 stat(c, FREE_SLOWPATH);
81819f0f
CL
1650 slab_lock(page);
1651
8a38082d 1652 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
81819f0f 1653 goto debug;
6446faa2 1654
81819f0f 1655checks_ok:
b3fba8da 1656 prior = object[offset] = page->freelist;
81819f0f
CL
1657 page->freelist = object;
1658 page->inuse--;
1659
8a38082d 1660 if (unlikely(PageSlubFrozen(page))) {
8ff12cfc 1661 stat(c, FREE_FROZEN);
81819f0f 1662 goto out_unlock;
8ff12cfc 1663 }
81819f0f
CL
1664
1665 if (unlikely(!page->inuse))
1666 goto slab_empty;
1667
1668 /*
6446faa2 1669 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1670 * then add it.
1671 */
a973e9dd 1672 if (unlikely(!prior)) {
7c2e132c 1673 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1674 stat(c, FREE_ADD_PARTIAL);
1675 }
81819f0f
CL
1676
1677out_unlock:
1678 slab_unlock(page);
81819f0f
CL
1679 return;
1680
1681slab_empty:
a973e9dd 1682 if (prior) {
81819f0f 1683 /*
672bba3a 1684 * Slab still on the partial list.
81819f0f
CL
1685 */
1686 remove_partial(s, page);
8ff12cfc
CL
1687 stat(c, FREE_REMOVE_PARTIAL);
1688 }
81819f0f 1689 slab_unlock(page);
8ff12cfc 1690 stat(c, FREE_SLAB);
81819f0f 1691 discard_slab(s, page);
81819f0f
CL
1692 return;
1693
1694debug:
3ec09742 1695 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1696 goto out_unlock;
77c5e2d0 1697 goto checks_ok;
81819f0f
CL
1698}
1699
894b8788
CL
1700/*
1701 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1702 * can perform fastpath freeing without additional function calls.
1703 *
1704 * The fastpath is only possible if we are freeing to the current cpu slab
1705 * of this processor. This typically the case if we have just allocated
1706 * the item before.
1707 *
1708 * If fastpath is not possible then fall back to __slab_free where we deal
1709 * with all sorts of special processing.
1710 */
06428780 1711static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1712 struct page *page, void *x, unsigned long addr)
894b8788
CL
1713{
1714 void **object = (void *)x;
dfb4f096 1715 struct kmem_cache_cpu *c;
1f84260c
CL
1716 unsigned long flags;
1717
894b8788 1718 local_irq_save(flags);
dfb4f096 1719 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1720 debug_check_no_locks_freed(object, c->objsize);
3ac7fe5a 1721 if (!(s->flags & SLAB_DEBUG_OBJECTS))
6047a007 1722 debug_check_no_obj_freed(object, c->objsize);
ee3c72a1 1723 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1724 object[c->offset] = c->freelist;
dfb4f096 1725 c->freelist = object;
8ff12cfc 1726 stat(c, FREE_FASTPATH);
894b8788 1727 } else
b3fba8da 1728 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1729
1730 local_irq_restore(flags);
1731}
1732
81819f0f
CL
1733void kmem_cache_free(struct kmem_cache *s, void *x)
1734{
77c5e2d0 1735 struct page *page;
81819f0f 1736
b49af68f 1737 page = virt_to_head_page(x);
81819f0f 1738
ce71e27c 1739 slab_free(s, page, x, _RET_IP_);
81819f0f
CL
1740}
1741EXPORT_SYMBOL(kmem_cache_free);
1742
e9beef18 1743/* Figure out on which slab page the object resides */
81819f0f
CL
1744static struct page *get_object_page(const void *x)
1745{
b49af68f 1746 struct page *page = virt_to_head_page(x);
81819f0f
CL
1747
1748 if (!PageSlab(page))
1749 return NULL;
1750
1751 return page;
1752}
1753
1754/*
672bba3a
CL
1755 * Object placement in a slab is made very easy because we always start at
1756 * offset 0. If we tune the size of the object to the alignment then we can
1757 * get the required alignment by putting one properly sized object after
1758 * another.
81819f0f
CL
1759 *
1760 * Notice that the allocation order determines the sizes of the per cpu
1761 * caches. Each processor has always one slab available for allocations.
1762 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1763 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1764 * locking overhead.
81819f0f
CL
1765 */
1766
1767/*
1768 * Mininum / Maximum order of slab pages. This influences locking overhead
1769 * and slab fragmentation. A higher order reduces the number of partial slabs
1770 * and increases the number of allocations possible without having to
1771 * take the list_lock.
1772 */
1773static int slub_min_order;
114e9e89 1774static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1775static int slub_min_objects;
81819f0f
CL
1776
1777/*
1778 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1779 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1780 */
1781static int slub_nomerge;
1782
81819f0f
CL
1783/*
1784 * Calculate the order of allocation given an slab object size.
1785 *
672bba3a
CL
1786 * The order of allocation has significant impact on performance and other
1787 * system components. Generally order 0 allocations should be preferred since
1788 * order 0 does not cause fragmentation in the page allocator. Larger objects
1789 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1790 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1791 * would be wasted.
1792 *
1793 * In order to reach satisfactory performance we must ensure that a minimum
1794 * number of objects is in one slab. Otherwise we may generate too much
1795 * activity on the partial lists which requires taking the list_lock. This is
1796 * less a concern for large slabs though which are rarely used.
81819f0f 1797 *
672bba3a
CL
1798 * slub_max_order specifies the order where we begin to stop considering the
1799 * number of objects in a slab as critical. If we reach slub_max_order then
1800 * we try to keep the page order as low as possible. So we accept more waste
1801 * of space in favor of a small page order.
81819f0f 1802 *
672bba3a
CL
1803 * Higher order allocations also allow the placement of more objects in a
1804 * slab and thereby reduce object handling overhead. If the user has
1805 * requested a higher mininum order then we start with that one instead of
1806 * the smallest order which will fit the object.
81819f0f 1807 */
5e6d444e
CL
1808static inline int slab_order(int size, int min_objects,
1809 int max_order, int fract_leftover)
81819f0f
CL
1810{
1811 int order;
1812 int rem;
6300ea75 1813 int min_order = slub_min_order;
81819f0f 1814
210b5c06
CG
1815 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1816 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1817
6300ea75 1818 for (order = max(min_order,
5e6d444e
CL
1819 fls(min_objects * size - 1) - PAGE_SHIFT);
1820 order <= max_order; order++) {
81819f0f 1821
5e6d444e 1822 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1823
5e6d444e 1824 if (slab_size < min_objects * size)
81819f0f
CL
1825 continue;
1826
1827 rem = slab_size % size;
1828
5e6d444e 1829 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1830 break;
1831
1832 }
672bba3a 1833
81819f0f
CL
1834 return order;
1835}
1836
5e6d444e
CL
1837static inline int calculate_order(int size)
1838{
1839 int order;
1840 int min_objects;
1841 int fraction;
e8120ff1 1842 int max_objects;
5e6d444e
CL
1843
1844 /*
1845 * Attempt to find best configuration for a slab. This
1846 * works by first attempting to generate a layout with
1847 * the best configuration and backing off gradually.
1848 *
1849 * First we reduce the acceptable waste in a slab. Then
1850 * we reduce the minimum objects required in a slab.
1851 */
1852 min_objects = slub_min_objects;
9b2cd506
CL
1853 if (!min_objects)
1854 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
1855 max_objects = (PAGE_SIZE << slub_max_order)/size;
1856 min_objects = min(min_objects, max_objects);
1857
5e6d444e 1858 while (min_objects > 1) {
c124f5b5 1859 fraction = 16;
5e6d444e
CL
1860 while (fraction >= 4) {
1861 order = slab_order(size, min_objects,
1862 slub_max_order, fraction);
1863 if (order <= slub_max_order)
1864 return order;
1865 fraction /= 2;
1866 }
e8120ff1 1867 min_objects --;
5e6d444e
CL
1868 }
1869
1870 /*
1871 * We were unable to place multiple objects in a slab. Now
1872 * lets see if we can place a single object there.
1873 */
1874 order = slab_order(size, 1, slub_max_order, 1);
1875 if (order <= slub_max_order)
1876 return order;
1877
1878 /*
1879 * Doh this slab cannot be placed using slub_max_order.
1880 */
1881 order = slab_order(size, 1, MAX_ORDER, 1);
1882 if (order <= MAX_ORDER)
1883 return order;
1884 return -ENOSYS;
1885}
1886
81819f0f 1887/*
672bba3a 1888 * Figure out what the alignment of the objects will be.
81819f0f
CL
1889 */
1890static unsigned long calculate_alignment(unsigned long flags,
1891 unsigned long align, unsigned long size)
1892{
1893 /*
6446faa2
CL
1894 * If the user wants hardware cache aligned objects then follow that
1895 * suggestion if the object is sufficiently large.
81819f0f 1896 *
6446faa2
CL
1897 * The hardware cache alignment cannot override the specified
1898 * alignment though. If that is greater then use it.
81819f0f 1899 */
b6210386
NP
1900 if (flags & SLAB_HWCACHE_ALIGN) {
1901 unsigned long ralign = cache_line_size();
1902 while (size <= ralign / 2)
1903 ralign /= 2;
1904 align = max(align, ralign);
1905 }
81819f0f
CL
1906
1907 if (align < ARCH_SLAB_MINALIGN)
b6210386 1908 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1909
1910 return ALIGN(align, sizeof(void *));
1911}
1912
dfb4f096
CL
1913static void init_kmem_cache_cpu(struct kmem_cache *s,
1914 struct kmem_cache_cpu *c)
1915{
1916 c->page = NULL;
a973e9dd 1917 c->freelist = NULL;
dfb4f096 1918 c->node = 0;
42a9fdbb
CL
1919 c->offset = s->offset / sizeof(void *);
1920 c->objsize = s->objsize;
62f75532
PE
1921#ifdef CONFIG_SLUB_STATS
1922 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1923#endif
dfb4f096
CL
1924}
1925
5595cffc
PE
1926static void
1927init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
1928{
1929 n->nr_partial = 0;
81819f0f
CL
1930 spin_lock_init(&n->list_lock);
1931 INIT_LIST_HEAD(&n->partial);
8ab1372f 1932#ifdef CONFIG_SLUB_DEBUG
0f389ec6 1933 atomic_long_set(&n->nr_slabs, 0);
02b71b70 1934 atomic_long_set(&n->total_objects, 0);
643b1138 1935 INIT_LIST_HEAD(&n->full);
8ab1372f 1936#endif
81819f0f
CL
1937}
1938
4c93c355
CL
1939#ifdef CONFIG_SMP
1940/*
1941 * Per cpu array for per cpu structures.
1942 *
1943 * The per cpu array places all kmem_cache_cpu structures from one processor
1944 * close together meaning that it becomes possible that multiple per cpu
1945 * structures are contained in one cacheline. This may be particularly
1946 * beneficial for the kmalloc caches.
1947 *
1948 * A desktop system typically has around 60-80 slabs. With 100 here we are
1949 * likely able to get per cpu structures for all caches from the array defined
1950 * here. We must be able to cover all kmalloc caches during bootstrap.
1951 *
1952 * If the per cpu array is exhausted then fall back to kmalloc
1953 * of individual cachelines. No sharing is possible then.
1954 */
1955#define NR_KMEM_CACHE_CPU 100
1956
1957static DEFINE_PER_CPU(struct kmem_cache_cpu,
1958 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1959
1960static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
174596a0 1961static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
4c93c355
CL
1962
1963static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1964 int cpu, gfp_t flags)
1965{
1966 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1967
1968 if (c)
1969 per_cpu(kmem_cache_cpu_free, cpu) =
1970 (void *)c->freelist;
1971 else {
1972 /* Table overflow: So allocate ourselves */
1973 c = kmalloc_node(
1974 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1975 flags, cpu_to_node(cpu));
1976 if (!c)
1977 return NULL;
1978 }
1979
1980 init_kmem_cache_cpu(s, c);
1981 return c;
1982}
1983
1984static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1985{
1986 if (c < per_cpu(kmem_cache_cpu, cpu) ||
37189094 1987 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
4c93c355
CL
1988 kfree(c);
1989 return;
1990 }
1991 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1992 per_cpu(kmem_cache_cpu_free, cpu) = c;
1993}
1994
1995static void free_kmem_cache_cpus(struct kmem_cache *s)
1996{
1997 int cpu;
1998
1999 for_each_online_cpu(cpu) {
2000 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2001
2002 if (c) {
2003 s->cpu_slab[cpu] = NULL;
2004 free_kmem_cache_cpu(c, cpu);
2005 }
2006 }
2007}
2008
2009static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2010{
2011 int cpu;
2012
2013 for_each_online_cpu(cpu) {
2014 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2015
2016 if (c)
2017 continue;
2018
2019 c = alloc_kmem_cache_cpu(s, cpu, flags);
2020 if (!c) {
2021 free_kmem_cache_cpus(s);
2022 return 0;
2023 }
2024 s->cpu_slab[cpu] = c;
2025 }
2026 return 1;
2027}
2028
2029/*
2030 * Initialize the per cpu array.
2031 */
2032static void init_alloc_cpu_cpu(int cpu)
2033{
2034 int i;
2035
174596a0 2036 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
4c93c355
CL
2037 return;
2038
2039 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2040 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2041
174596a0 2042 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
4c93c355
CL
2043}
2044
2045static void __init init_alloc_cpu(void)
2046{
2047 int cpu;
2048
2049 for_each_online_cpu(cpu)
2050 init_alloc_cpu_cpu(cpu);
2051 }
2052
2053#else
2054static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2055static inline void init_alloc_cpu(void) {}
2056
2057static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2058{
2059 init_kmem_cache_cpu(s, &s->cpu_slab);
2060 return 1;
2061}
2062#endif
2063
81819f0f
CL
2064#ifdef CONFIG_NUMA
2065/*
2066 * No kmalloc_node yet so do it by hand. We know that this is the first
2067 * slab on the node for this slabcache. There are no concurrent accesses
2068 * possible.
2069 *
2070 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2071 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2072 * memory on a fresh node that has no slab structures yet.
81819f0f 2073 */
0094de92 2074static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
81819f0f
CL
2075{
2076 struct page *page;
2077 struct kmem_cache_node *n;
ba84c73c 2078 unsigned long flags;
81819f0f
CL
2079
2080 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2081
a2f92ee7 2082 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2083
2084 BUG_ON(!page);
a2f92ee7
CL
2085 if (page_to_nid(page) != node) {
2086 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2087 "node %d\n", node);
2088 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2089 "in order to be able to continue\n");
2090 }
2091
81819f0f
CL
2092 n = page->freelist;
2093 BUG_ON(!n);
2094 page->freelist = get_freepointer(kmalloc_caches, n);
2095 page->inuse++;
2096 kmalloc_caches->node[node] = n;
8ab1372f 2097#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2098 init_object(kmalloc_caches, n, 1);
2099 init_tracking(kmalloc_caches, n);
8ab1372f 2100#endif
5595cffc 2101 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2102 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2103
ba84c73c 2104 /*
2105 * lockdep requires consistent irq usage for each lock
2106 * so even though there cannot be a race this early in
2107 * the boot sequence, we still disable irqs.
2108 */
2109 local_irq_save(flags);
7c2e132c 2110 add_partial(n, page, 0);
ba84c73c 2111 local_irq_restore(flags);
81819f0f
CL
2112}
2113
2114static void free_kmem_cache_nodes(struct kmem_cache *s)
2115{
2116 int node;
2117
f64dc58c 2118 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2119 struct kmem_cache_node *n = s->node[node];
2120 if (n && n != &s->local_node)
2121 kmem_cache_free(kmalloc_caches, n);
2122 s->node[node] = NULL;
2123 }
2124}
2125
2126static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2127{
2128 int node;
2129 int local_node;
2130
2131 if (slab_state >= UP)
2132 local_node = page_to_nid(virt_to_page(s));
2133 else
2134 local_node = 0;
2135
f64dc58c 2136 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2137 struct kmem_cache_node *n;
2138
2139 if (local_node == node)
2140 n = &s->local_node;
2141 else {
2142 if (slab_state == DOWN) {
0094de92 2143 early_kmem_cache_node_alloc(gfpflags, node);
81819f0f
CL
2144 continue;
2145 }
2146 n = kmem_cache_alloc_node(kmalloc_caches,
2147 gfpflags, node);
2148
2149 if (!n) {
2150 free_kmem_cache_nodes(s);
2151 return 0;
2152 }
2153
2154 }
2155 s->node[node] = n;
5595cffc 2156 init_kmem_cache_node(n, s);
81819f0f
CL
2157 }
2158 return 1;
2159}
2160#else
2161static void free_kmem_cache_nodes(struct kmem_cache *s)
2162{
2163}
2164
2165static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2166{
5595cffc 2167 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2168 return 1;
2169}
2170#endif
2171
c0bdb232 2172static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2173{
2174 if (min < MIN_PARTIAL)
2175 min = MIN_PARTIAL;
2176 else if (min > MAX_PARTIAL)
2177 min = MAX_PARTIAL;
2178 s->min_partial = min;
2179}
2180
81819f0f
CL
2181/*
2182 * calculate_sizes() determines the order and the distribution of data within
2183 * a slab object.
2184 */
06b285dc 2185static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2186{
2187 unsigned long flags = s->flags;
2188 unsigned long size = s->objsize;
2189 unsigned long align = s->align;
834f3d11 2190 int order;
81819f0f 2191
d8b42bf5
CL
2192 /*
2193 * Round up object size to the next word boundary. We can only
2194 * place the free pointer at word boundaries and this determines
2195 * the possible location of the free pointer.
2196 */
2197 size = ALIGN(size, sizeof(void *));
2198
2199#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2200 /*
2201 * Determine if we can poison the object itself. If the user of
2202 * the slab may touch the object after free or before allocation
2203 * then we should never poison the object itself.
2204 */
2205 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2206 !s->ctor)
81819f0f
CL
2207 s->flags |= __OBJECT_POISON;
2208 else
2209 s->flags &= ~__OBJECT_POISON;
2210
81819f0f
CL
2211
2212 /*
672bba3a 2213 * If we are Redzoning then check if there is some space between the
81819f0f 2214 * end of the object and the free pointer. If not then add an
672bba3a 2215 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2216 */
2217 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2218 size += sizeof(void *);
41ecc55b 2219#endif
81819f0f
CL
2220
2221 /*
672bba3a
CL
2222 * With that we have determined the number of bytes in actual use
2223 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2224 */
2225 s->inuse = size;
2226
2227 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2228 s->ctor)) {
81819f0f
CL
2229 /*
2230 * Relocate free pointer after the object if it is not
2231 * permitted to overwrite the first word of the object on
2232 * kmem_cache_free.
2233 *
2234 * This is the case if we do RCU, have a constructor or
2235 * destructor or are poisoning the objects.
2236 */
2237 s->offset = size;
2238 size += sizeof(void *);
2239 }
2240
c12b3c62 2241#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2242 if (flags & SLAB_STORE_USER)
2243 /*
2244 * Need to store information about allocs and frees after
2245 * the object.
2246 */
2247 size += 2 * sizeof(struct track);
2248
be7b3fbc 2249 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2250 /*
2251 * Add some empty padding so that we can catch
2252 * overwrites from earlier objects rather than let
2253 * tracking information or the free pointer be
0211a9c8 2254 * corrupted if a user writes before the start
81819f0f
CL
2255 * of the object.
2256 */
2257 size += sizeof(void *);
41ecc55b 2258#endif
672bba3a 2259
81819f0f
CL
2260 /*
2261 * Determine the alignment based on various parameters that the
65c02d4c
CL
2262 * user specified and the dynamic determination of cache line size
2263 * on bootup.
81819f0f
CL
2264 */
2265 align = calculate_alignment(flags, align, s->objsize);
2266
2267 /*
2268 * SLUB stores one object immediately after another beginning from
2269 * offset 0. In order to align the objects we have to simply size
2270 * each object to conform to the alignment.
2271 */
2272 size = ALIGN(size, align);
2273 s->size = size;
06b285dc
CL
2274 if (forced_order >= 0)
2275 order = forced_order;
2276 else
2277 order = calculate_order(size);
81819f0f 2278
834f3d11 2279 if (order < 0)
81819f0f
CL
2280 return 0;
2281
b7a49f0d 2282 s->allocflags = 0;
834f3d11 2283 if (order)
b7a49f0d
CL
2284 s->allocflags |= __GFP_COMP;
2285
2286 if (s->flags & SLAB_CACHE_DMA)
2287 s->allocflags |= SLUB_DMA;
2288
2289 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2290 s->allocflags |= __GFP_RECLAIMABLE;
2291
81819f0f
CL
2292 /*
2293 * Determine the number of objects per slab
2294 */
834f3d11 2295 s->oo = oo_make(order, size);
65c3376a 2296 s->min = oo_make(get_order(size), size);
205ab99d
CL
2297 if (oo_objects(s->oo) > oo_objects(s->max))
2298 s->max = s->oo;
81819f0f 2299
834f3d11 2300 return !!oo_objects(s->oo);
81819f0f
CL
2301
2302}
2303
81819f0f
CL
2304static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2305 const char *name, size_t size,
2306 size_t align, unsigned long flags,
51cc5068 2307 void (*ctor)(void *))
81819f0f
CL
2308{
2309 memset(s, 0, kmem_size);
2310 s->name = name;
2311 s->ctor = ctor;
81819f0f 2312 s->objsize = size;
81819f0f 2313 s->align = align;
ba0268a8 2314 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2315
06b285dc 2316 if (!calculate_sizes(s, -1))
81819f0f
CL
2317 goto error;
2318
3b89d7d8
DR
2319 /*
2320 * The larger the object size is, the more pages we want on the partial
2321 * list to avoid pounding the page allocator excessively.
2322 */
c0bdb232 2323 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2324 s->refcount = 1;
2325#ifdef CONFIG_NUMA
e2cb96b7 2326 s->remote_node_defrag_ratio = 1000;
81819f0f 2327#endif
dfb4f096
CL
2328 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2329 goto error;
81819f0f 2330
dfb4f096 2331 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2332 return 1;
4c93c355 2333 free_kmem_cache_nodes(s);
81819f0f
CL
2334error:
2335 if (flags & SLAB_PANIC)
2336 panic("Cannot create slab %s size=%lu realsize=%u "
2337 "order=%u offset=%u flags=%lx\n",
834f3d11 2338 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2339 s->offset, flags);
2340 return 0;
2341}
81819f0f
CL
2342
2343/*
2344 * Check if a given pointer is valid
2345 */
2346int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2347{
06428780 2348 struct page *page;
81819f0f
CL
2349
2350 page = get_object_page(object);
2351
2352 if (!page || s != page->slab)
2353 /* No slab or wrong slab */
2354 return 0;
2355
abcd08a6 2356 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2357 return 0;
2358
2359 /*
2360 * We could also check if the object is on the slabs freelist.
2361 * But this would be too expensive and it seems that the main
6446faa2 2362 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2363 * to a certain slab.
2364 */
2365 return 1;
2366}
2367EXPORT_SYMBOL(kmem_ptr_validate);
2368
2369/*
2370 * Determine the size of a slab object
2371 */
2372unsigned int kmem_cache_size(struct kmem_cache *s)
2373{
2374 return s->objsize;
2375}
2376EXPORT_SYMBOL(kmem_cache_size);
2377
2378const char *kmem_cache_name(struct kmem_cache *s)
2379{
2380 return s->name;
2381}
2382EXPORT_SYMBOL(kmem_cache_name);
2383
33b12c38
CL
2384static void list_slab_objects(struct kmem_cache *s, struct page *page,
2385 const char *text)
2386{
2387#ifdef CONFIG_SLUB_DEBUG
2388 void *addr = page_address(page);
2389 void *p;
2390 DECLARE_BITMAP(map, page->objects);
2391
2392 bitmap_zero(map, page->objects);
2393 slab_err(s, page, "%s", text);
2394 slab_lock(page);
2395 for_each_free_object(p, s, page->freelist)
2396 set_bit(slab_index(p, s, addr), map);
2397
2398 for_each_object(p, s, addr, page->objects) {
2399
2400 if (!test_bit(slab_index(p, s, addr), map)) {
2401 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2402 p, p - addr);
2403 print_tracking(s, p);
2404 }
2405 }
2406 slab_unlock(page);
2407#endif
2408}
2409
81819f0f 2410/*
599870b1 2411 * Attempt to free all partial slabs on a node.
81819f0f 2412 */
599870b1 2413static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2414{
81819f0f
CL
2415 unsigned long flags;
2416 struct page *page, *h;
2417
2418 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2419 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2420 if (!page->inuse) {
2421 list_del(&page->lru);
2422 discard_slab(s, page);
599870b1 2423 n->nr_partial--;
33b12c38
CL
2424 } else {
2425 list_slab_objects(s, page,
2426 "Objects remaining on kmem_cache_close()");
599870b1 2427 }
33b12c38 2428 }
81819f0f 2429 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2430}
2431
2432/*
672bba3a 2433 * Release all resources used by a slab cache.
81819f0f 2434 */
0c710013 2435static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2436{
2437 int node;
2438
2439 flush_all(s);
2440
2441 /* Attempt to free all objects */
4c93c355 2442 free_kmem_cache_cpus(s);
f64dc58c 2443 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2444 struct kmem_cache_node *n = get_node(s, node);
2445
599870b1
CL
2446 free_partial(s, n);
2447 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2448 return 1;
2449 }
2450 free_kmem_cache_nodes(s);
2451 return 0;
2452}
2453
2454/*
2455 * Close a cache and release the kmem_cache structure
2456 * (must be used for caches created using kmem_cache_create)
2457 */
2458void kmem_cache_destroy(struct kmem_cache *s)
2459{
2460 down_write(&slub_lock);
2461 s->refcount--;
2462 if (!s->refcount) {
2463 list_del(&s->list);
a0e1d1be 2464 up_write(&slub_lock);
d629d819
PE
2465 if (kmem_cache_close(s)) {
2466 printk(KERN_ERR "SLUB %s: %s called for cache that "
2467 "still has objects.\n", s->name, __func__);
2468 dump_stack();
2469 }
81819f0f 2470 sysfs_slab_remove(s);
a0e1d1be
CL
2471 } else
2472 up_write(&slub_lock);
81819f0f
CL
2473}
2474EXPORT_SYMBOL(kmem_cache_destroy);
2475
2476/********************************************************************
2477 * Kmalloc subsystem
2478 *******************************************************************/
2479
ffadd4d0 2480struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
81819f0f
CL
2481EXPORT_SYMBOL(kmalloc_caches);
2482
81819f0f
CL
2483static int __init setup_slub_min_order(char *str)
2484{
06428780 2485 get_option(&str, &slub_min_order);
81819f0f
CL
2486
2487 return 1;
2488}
2489
2490__setup("slub_min_order=", setup_slub_min_order);
2491
2492static int __init setup_slub_max_order(char *str)
2493{
06428780 2494 get_option(&str, &slub_max_order);
81819f0f
CL
2495
2496 return 1;
2497}
2498
2499__setup("slub_max_order=", setup_slub_max_order);
2500
2501static int __init setup_slub_min_objects(char *str)
2502{
06428780 2503 get_option(&str, &slub_min_objects);
81819f0f
CL
2504
2505 return 1;
2506}
2507
2508__setup("slub_min_objects=", setup_slub_min_objects);
2509
2510static int __init setup_slub_nomerge(char *str)
2511{
2512 slub_nomerge = 1;
2513 return 1;
2514}
2515
2516__setup("slub_nomerge", setup_slub_nomerge);
2517
81819f0f
CL
2518static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2519 const char *name, int size, gfp_t gfp_flags)
2520{
2521 unsigned int flags = 0;
2522
2523 if (gfp_flags & SLUB_DMA)
2524 flags = SLAB_CACHE_DMA;
2525
2526 down_write(&slub_lock);
2527 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2528 flags, NULL))
81819f0f
CL
2529 goto panic;
2530
2531 list_add(&s->list, &slab_caches);
2532 up_write(&slub_lock);
2533 if (sysfs_slab_add(s))
2534 goto panic;
2535 return s;
2536
2537panic:
2538 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2539}
2540
2e443fd0 2541#ifdef CONFIG_ZONE_DMA
ffadd4d0 2542static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
1ceef402
CL
2543
2544static void sysfs_add_func(struct work_struct *w)
2545{
2546 struct kmem_cache *s;
2547
2548 down_write(&slub_lock);
2549 list_for_each_entry(s, &slab_caches, list) {
2550 if (s->flags & __SYSFS_ADD_DEFERRED) {
2551 s->flags &= ~__SYSFS_ADD_DEFERRED;
2552 sysfs_slab_add(s);
2553 }
2554 }
2555 up_write(&slub_lock);
2556}
2557
2558static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2559
2e443fd0
CL
2560static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2561{
2562 struct kmem_cache *s;
2e443fd0
CL
2563 char *text;
2564 size_t realsize;
2565
2566 s = kmalloc_caches_dma[index];
2567 if (s)
2568 return s;
2569
2570 /* Dynamically create dma cache */
1ceef402
CL
2571 if (flags & __GFP_WAIT)
2572 down_write(&slub_lock);
2573 else {
2574 if (!down_write_trylock(&slub_lock))
2575 goto out;
2576 }
2577
2578 if (kmalloc_caches_dma[index])
2579 goto unlock_out;
2e443fd0 2580
7b55f620 2581 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2582 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2583 (unsigned int)realsize);
1ceef402
CL
2584 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2585
2586 if (!s || !text || !kmem_cache_open(s, flags, text,
2587 realsize, ARCH_KMALLOC_MINALIGN,
2588 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2589 kfree(s);
2590 kfree(text);
2591 goto unlock_out;
dfce8648 2592 }
1ceef402
CL
2593
2594 list_add(&s->list, &slab_caches);
2595 kmalloc_caches_dma[index] = s;
2596
2597 schedule_work(&sysfs_add_work);
2598
2599unlock_out:
dfce8648 2600 up_write(&slub_lock);
1ceef402 2601out:
dfce8648 2602 return kmalloc_caches_dma[index];
2e443fd0
CL
2603}
2604#endif
2605
f1b26339
CL
2606/*
2607 * Conversion table for small slabs sizes / 8 to the index in the
2608 * kmalloc array. This is necessary for slabs < 192 since we have non power
2609 * of two cache sizes there. The size of larger slabs can be determined using
2610 * fls.
2611 */
2612static s8 size_index[24] = {
2613 3, /* 8 */
2614 4, /* 16 */
2615 5, /* 24 */
2616 5, /* 32 */
2617 6, /* 40 */
2618 6, /* 48 */
2619 6, /* 56 */
2620 6, /* 64 */
2621 1, /* 72 */
2622 1, /* 80 */
2623 1, /* 88 */
2624 1, /* 96 */
2625 7, /* 104 */
2626 7, /* 112 */
2627 7, /* 120 */
2628 7, /* 128 */
2629 2, /* 136 */
2630 2, /* 144 */
2631 2, /* 152 */
2632 2, /* 160 */
2633 2, /* 168 */
2634 2, /* 176 */
2635 2, /* 184 */
2636 2 /* 192 */
2637};
2638
81819f0f
CL
2639static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2640{
f1b26339 2641 int index;
81819f0f 2642
f1b26339
CL
2643 if (size <= 192) {
2644 if (!size)
2645 return ZERO_SIZE_PTR;
81819f0f 2646
f1b26339 2647 index = size_index[(size - 1) / 8];
aadb4bc4 2648 } else
f1b26339 2649 index = fls(size - 1);
81819f0f
CL
2650
2651#ifdef CONFIG_ZONE_DMA
f1b26339 2652 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2653 return dma_kmalloc_cache(index, flags);
f1b26339 2654
81819f0f
CL
2655#endif
2656 return &kmalloc_caches[index];
2657}
2658
2659void *__kmalloc(size_t size, gfp_t flags)
2660{
aadb4bc4 2661 struct kmem_cache *s;
81819f0f 2662
ffadd4d0 2663 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2664 return kmalloc_large(size, flags);
aadb4bc4
CL
2665
2666 s = get_slab(size, flags);
2667
2668 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2669 return s;
2670
ce71e27c 2671 return slab_alloc(s, flags, -1, _RET_IP_);
81819f0f
CL
2672}
2673EXPORT_SYMBOL(__kmalloc);
2674
f619cfe1
CL
2675static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2676{
2677 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2678 get_order(size));
2679
2680 if (page)
2681 return page_address(page);
2682 else
2683 return NULL;
2684}
2685
81819f0f
CL
2686#ifdef CONFIG_NUMA
2687void *__kmalloc_node(size_t size, gfp_t flags, int node)
2688{
aadb4bc4 2689 struct kmem_cache *s;
81819f0f 2690
ffadd4d0 2691 if (unlikely(size > SLUB_MAX_SIZE))
f619cfe1 2692 return kmalloc_large_node(size, flags, node);
aadb4bc4
CL
2693
2694 s = get_slab(size, flags);
2695
2696 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2697 return s;
2698
ce71e27c 2699 return slab_alloc(s, flags, node, _RET_IP_);
81819f0f
CL
2700}
2701EXPORT_SYMBOL(__kmalloc_node);
2702#endif
2703
2704size_t ksize(const void *object)
2705{
272c1d21 2706 struct page *page;
81819f0f
CL
2707 struct kmem_cache *s;
2708
ef8b4520 2709 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2710 return 0;
2711
294a80a8 2712 page = virt_to_head_page(object);
294a80a8 2713
76994412
PE
2714 if (unlikely(!PageSlab(page))) {
2715 WARN_ON(!PageCompound(page));
294a80a8 2716 return PAGE_SIZE << compound_order(page);
76994412 2717 }
81819f0f 2718 s = page->slab;
81819f0f 2719
ae20bfda 2720#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2721 /*
2722 * Debugging requires use of the padding between object
2723 * and whatever may come after it.
2724 */
2725 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2726 return s->objsize;
2727
ae20bfda 2728#endif
81819f0f
CL
2729 /*
2730 * If we have the need to store the freelist pointer
2731 * back there or track user information then we can
2732 * only use the space before that information.
2733 */
2734 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2735 return s->inuse;
81819f0f
CL
2736 /*
2737 * Else we can use all the padding etc for the allocation
2738 */
2739 return s->size;
2740}
b1aabecd 2741EXPORT_SYMBOL(ksize);
81819f0f
CL
2742
2743void kfree(const void *x)
2744{
81819f0f 2745 struct page *page;
5bb983b0 2746 void *object = (void *)x;
81819f0f 2747
2408c550 2748 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2749 return;
2750
b49af68f 2751 page = virt_to_head_page(x);
aadb4bc4 2752 if (unlikely(!PageSlab(page))) {
0937502a 2753 BUG_ON(!PageCompound(page));
aadb4bc4
CL
2754 put_page(page);
2755 return;
2756 }
ce71e27c 2757 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2758}
2759EXPORT_SYMBOL(kfree);
2760
2086d26a 2761/*
672bba3a
CL
2762 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2763 * the remaining slabs by the number of items in use. The slabs with the
2764 * most items in use come first. New allocations will then fill those up
2765 * and thus they can be removed from the partial lists.
2766 *
2767 * The slabs with the least items are placed last. This results in them
2768 * being allocated from last increasing the chance that the last objects
2769 * are freed in them.
2086d26a
CL
2770 */
2771int kmem_cache_shrink(struct kmem_cache *s)
2772{
2773 int node;
2774 int i;
2775 struct kmem_cache_node *n;
2776 struct page *page;
2777 struct page *t;
205ab99d 2778 int objects = oo_objects(s->max);
2086d26a 2779 struct list_head *slabs_by_inuse =
834f3d11 2780 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2781 unsigned long flags;
2782
2783 if (!slabs_by_inuse)
2784 return -ENOMEM;
2785
2786 flush_all(s);
f64dc58c 2787 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2788 n = get_node(s, node);
2789
2790 if (!n->nr_partial)
2791 continue;
2792
834f3d11 2793 for (i = 0; i < objects; i++)
2086d26a
CL
2794 INIT_LIST_HEAD(slabs_by_inuse + i);
2795
2796 spin_lock_irqsave(&n->list_lock, flags);
2797
2798 /*
672bba3a 2799 * Build lists indexed by the items in use in each slab.
2086d26a 2800 *
672bba3a
CL
2801 * Note that concurrent frees may occur while we hold the
2802 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2803 */
2804 list_for_each_entry_safe(page, t, &n->partial, lru) {
2805 if (!page->inuse && slab_trylock(page)) {
2806 /*
2807 * Must hold slab lock here because slab_free
2808 * may have freed the last object and be
2809 * waiting to release the slab.
2810 */
2811 list_del(&page->lru);
2812 n->nr_partial--;
2813 slab_unlock(page);
2814 discard_slab(s, page);
2815 } else {
fcda3d89
CL
2816 list_move(&page->lru,
2817 slabs_by_inuse + page->inuse);
2086d26a
CL
2818 }
2819 }
2820
2086d26a 2821 /*
672bba3a
CL
2822 * Rebuild the partial list with the slabs filled up most
2823 * first and the least used slabs at the end.
2086d26a 2824 */
834f3d11 2825 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2826 list_splice(slabs_by_inuse + i, n->partial.prev);
2827
2086d26a
CL
2828 spin_unlock_irqrestore(&n->list_lock, flags);
2829 }
2830
2831 kfree(slabs_by_inuse);
2832 return 0;
2833}
2834EXPORT_SYMBOL(kmem_cache_shrink);
2835
b9049e23
YG
2836#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2837static int slab_mem_going_offline_callback(void *arg)
2838{
2839 struct kmem_cache *s;
2840
2841 down_read(&slub_lock);
2842 list_for_each_entry(s, &slab_caches, list)
2843 kmem_cache_shrink(s);
2844 up_read(&slub_lock);
2845
2846 return 0;
2847}
2848
2849static void slab_mem_offline_callback(void *arg)
2850{
2851 struct kmem_cache_node *n;
2852 struct kmem_cache *s;
2853 struct memory_notify *marg = arg;
2854 int offline_node;
2855
2856 offline_node = marg->status_change_nid;
2857
2858 /*
2859 * If the node still has available memory. we need kmem_cache_node
2860 * for it yet.
2861 */
2862 if (offline_node < 0)
2863 return;
2864
2865 down_read(&slub_lock);
2866 list_for_each_entry(s, &slab_caches, list) {
2867 n = get_node(s, offline_node);
2868 if (n) {
2869 /*
2870 * if n->nr_slabs > 0, slabs still exist on the node
2871 * that is going down. We were unable to free them,
2872 * and offline_pages() function shoudn't call this
2873 * callback. So, we must fail.
2874 */
0f389ec6 2875 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2876
2877 s->node[offline_node] = NULL;
2878 kmem_cache_free(kmalloc_caches, n);
2879 }
2880 }
2881 up_read(&slub_lock);
2882}
2883
2884static int slab_mem_going_online_callback(void *arg)
2885{
2886 struct kmem_cache_node *n;
2887 struct kmem_cache *s;
2888 struct memory_notify *marg = arg;
2889 int nid = marg->status_change_nid;
2890 int ret = 0;
2891
2892 /*
2893 * If the node's memory is already available, then kmem_cache_node is
2894 * already created. Nothing to do.
2895 */
2896 if (nid < 0)
2897 return 0;
2898
2899 /*
0121c619 2900 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2901 * allocate a kmem_cache_node structure in order to bring the node
2902 * online.
2903 */
2904 down_read(&slub_lock);
2905 list_for_each_entry(s, &slab_caches, list) {
2906 /*
2907 * XXX: kmem_cache_alloc_node will fallback to other nodes
2908 * since memory is not yet available from the node that
2909 * is brought up.
2910 */
2911 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2912 if (!n) {
2913 ret = -ENOMEM;
2914 goto out;
2915 }
5595cffc 2916 init_kmem_cache_node(n, s);
b9049e23
YG
2917 s->node[nid] = n;
2918 }
2919out:
2920 up_read(&slub_lock);
2921 return ret;
2922}
2923
2924static int slab_memory_callback(struct notifier_block *self,
2925 unsigned long action, void *arg)
2926{
2927 int ret = 0;
2928
2929 switch (action) {
2930 case MEM_GOING_ONLINE:
2931 ret = slab_mem_going_online_callback(arg);
2932 break;
2933 case MEM_GOING_OFFLINE:
2934 ret = slab_mem_going_offline_callback(arg);
2935 break;
2936 case MEM_OFFLINE:
2937 case MEM_CANCEL_ONLINE:
2938 slab_mem_offline_callback(arg);
2939 break;
2940 case MEM_ONLINE:
2941 case MEM_CANCEL_OFFLINE:
2942 break;
2943 }
dc19f9db
KH
2944 if (ret)
2945 ret = notifier_from_errno(ret);
2946 else
2947 ret = NOTIFY_OK;
b9049e23
YG
2948 return ret;
2949}
2950
2951#endif /* CONFIG_MEMORY_HOTPLUG */
2952
81819f0f
CL
2953/********************************************************************
2954 * Basic setup of slabs
2955 *******************************************************************/
2956
2957void __init kmem_cache_init(void)
2958{
2959 int i;
4b356be0 2960 int caches = 0;
81819f0f 2961
4c93c355
CL
2962 init_alloc_cpu();
2963
81819f0f
CL
2964#ifdef CONFIG_NUMA
2965 /*
2966 * Must first have the slab cache available for the allocations of the
672bba3a 2967 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2968 * kmem_cache_open for slab_state == DOWN.
2969 */
2970 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2971 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2972 kmalloc_caches[0].refcount = -1;
4b356be0 2973 caches++;
b9049e23 2974
0c40ba4f 2975 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
2976#endif
2977
2978 /* Able to allocate the per node structures */
2979 slab_state = PARTIAL;
2980
2981 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2982 if (KMALLOC_MIN_SIZE <= 64) {
2983 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2984 "kmalloc-96", 96, GFP_KERNEL);
4b356be0 2985 caches++;
4b356be0 2986 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2987 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
2988 caches++;
2989 }
81819f0f 2990
ffadd4d0 2991 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
81819f0f
CL
2992 create_kmalloc_cache(&kmalloc_caches[i],
2993 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
2994 caches++;
2995 }
81819f0f 2996
f1b26339
CL
2997
2998 /*
2999 * Patch up the size_index table if we have strange large alignment
3000 * requirements for the kmalloc array. This is only the case for
6446faa2 3001 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3002 *
3003 * Largest permitted alignment is 256 bytes due to the way we
3004 * handle the index determination for the smaller caches.
3005 *
3006 * Make sure that nothing crazy happens if someone starts tinkering
3007 * around with ARCH_KMALLOC_MINALIGN
3008 */
3009 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3010 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3011
12ad6843 3012 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3013 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3014
41d54d3b
CL
3015 if (KMALLOC_MIN_SIZE == 128) {
3016 /*
3017 * The 192 byte sized cache is not used if the alignment
3018 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3019 * instead.
3020 */
3021 for (i = 128 + 8; i <= 192; i += 8)
3022 size_index[(i - 1) / 8] = 8;
3023 }
3024
81819f0f
CL
3025 slab_state = UP;
3026
3027 /* Provide the correct kmalloc names now that the caches are up */
ffadd4d0 3028 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
81819f0f
CL
3029 kmalloc_caches[i]. name =
3030 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3031
3032#ifdef CONFIG_SMP
3033 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3034 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3035 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3036#else
3037 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3038#endif
3039
3adbefee
IM
3040 printk(KERN_INFO
3041 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3042 " CPUs=%d, Nodes=%d\n",
3043 caches, cache_line_size(),
81819f0f
CL
3044 slub_min_order, slub_max_order, slub_min_objects,
3045 nr_cpu_ids, nr_node_ids);
3046}
3047
3048/*
3049 * Find a mergeable slab cache
3050 */
3051static int slab_unmergeable(struct kmem_cache *s)
3052{
3053 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3054 return 1;
3055
c59def9f 3056 if (s->ctor)
81819f0f
CL
3057 return 1;
3058
8ffa6875
CL
3059 /*
3060 * We may have set a slab to be unmergeable during bootstrap.
3061 */
3062 if (s->refcount < 0)
3063 return 1;
3064
81819f0f
CL
3065 return 0;
3066}
3067
3068static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3069 size_t align, unsigned long flags, const char *name,
51cc5068 3070 void (*ctor)(void *))
81819f0f 3071{
5b95a4ac 3072 struct kmem_cache *s;
81819f0f
CL
3073
3074 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3075 return NULL;
3076
c59def9f 3077 if (ctor)
81819f0f
CL
3078 return NULL;
3079
3080 size = ALIGN(size, sizeof(void *));
3081 align = calculate_alignment(flags, align, size);
3082 size = ALIGN(size, align);
ba0268a8 3083 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3084
5b95a4ac 3085 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3086 if (slab_unmergeable(s))
3087 continue;
3088
3089 if (size > s->size)
3090 continue;
3091
ba0268a8 3092 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3093 continue;
3094 /*
3095 * Check if alignment is compatible.
3096 * Courtesy of Adrian Drzewiecki
3097 */
06428780 3098 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3099 continue;
3100
3101 if (s->size - size >= sizeof(void *))
3102 continue;
3103
3104 return s;
3105 }
3106 return NULL;
3107}
3108
3109struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3110 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3111{
3112 struct kmem_cache *s;
3113
3114 down_write(&slub_lock);
ba0268a8 3115 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3116 if (s) {
42a9fdbb
CL
3117 int cpu;
3118
81819f0f
CL
3119 s->refcount++;
3120 /*
3121 * Adjust the object sizes so that we clear
3122 * the complete object on kzalloc.
3123 */
3124 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3125
3126 /*
3127 * And then we need to update the object size in the
3128 * per cpu structures
3129 */
3130 for_each_online_cpu(cpu)
3131 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3132
81819f0f 3133 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3134 up_write(&slub_lock);
6446faa2 3135
7b8f3b66
DR
3136 if (sysfs_slab_alias(s, name)) {
3137 down_write(&slub_lock);
3138 s->refcount--;
3139 up_write(&slub_lock);
81819f0f 3140 goto err;
7b8f3b66 3141 }
a0e1d1be
CL
3142 return s;
3143 }
6446faa2 3144
a0e1d1be
CL
3145 s = kmalloc(kmem_size, GFP_KERNEL);
3146 if (s) {
3147 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3148 size, align, flags, ctor)) {
81819f0f 3149 list_add(&s->list, &slab_caches);
a0e1d1be 3150 up_write(&slub_lock);
7b8f3b66
DR
3151 if (sysfs_slab_add(s)) {
3152 down_write(&slub_lock);
3153 list_del(&s->list);
3154 up_write(&slub_lock);
3155 kfree(s);
a0e1d1be 3156 goto err;
7b8f3b66 3157 }
a0e1d1be
CL
3158 return s;
3159 }
3160 kfree(s);
81819f0f
CL
3161 }
3162 up_write(&slub_lock);
81819f0f
CL
3163
3164err:
81819f0f
CL
3165 if (flags & SLAB_PANIC)
3166 panic("Cannot create slabcache %s\n", name);
3167 else
3168 s = NULL;
3169 return s;
3170}
3171EXPORT_SYMBOL(kmem_cache_create);
3172
81819f0f 3173#ifdef CONFIG_SMP
81819f0f 3174/*
672bba3a
CL
3175 * Use the cpu notifier to insure that the cpu slabs are flushed when
3176 * necessary.
81819f0f
CL
3177 */
3178static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3179 unsigned long action, void *hcpu)
3180{
3181 long cpu = (long)hcpu;
5b95a4ac
CL
3182 struct kmem_cache *s;
3183 unsigned long flags;
81819f0f
CL
3184
3185 switch (action) {
4c93c355
CL
3186 case CPU_UP_PREPARE:
3187 case CPU_UP_PREPARE_FROZEN:
3188 init_alloc_cpu_cpu(cpu);
3189 down_read(&slub_lock);
3190 list_for_each_entry(s, &slab_caches, list)
3191 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3192 GFP_KERNEL);
3193 up_read(&slub_lock);
3194 break;
3195
81819f0f 3196 case CPU_UP_CANCELED:
8bb78442 3197 case CPU_UP_CANCELED_FROZEN:
81819f0f 3198 case CPU_DEAD:
8bb78442 3199 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3200 down_read(&slub_lock);
3201 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3202 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3203
5b95a4ac
CL
3204 local_irq_save(flags);
3205 __flush_cpu_slab(s, cpu);
3206 local_irq_restore(flags);
4c93c355
CL
3207 free_kmem_cache_cpu(c, cpu);
3208 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3209 }
3210 up_read(&slub_lock);
81819f0f
CL
3211 break;
3212 default:
3213 break;
3214 }
3215 return NOTIFY_OK;
3216}
3217
06428780 3218static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3219 .notifier_call = slab_cpuup_callback
06428780 3220};
81819f0f
CL
3221
3222#endif
3223
ce71e27c 3224void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3225{
aadb4bc4
CL
3226 struct kmem_cache *s;
3227
ffadd4d0 3228 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3229 return kmalloc_large(size, gfpflags);
3230
aadb4bc4 3231 s = get_slab(size, gfpflags);
81819f0f 3232
2408c550 3233 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3234 return s;
81819f0f 3235
ce15fea8 3236 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
3237}
3238
3239void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3240 int node, unsigned long caller)
81819f0f 3241{
aadb4bc4
CL
3242 struct kmem_cache *s;
3243
ffadd4d0 3244 if (unlikely(size > SLUB_MAX_SIZE))
f619cfe1 3245 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3246
aadb4bc4 3247 s = get_slab(size, gfpflags);
81819f0f 3248
2408c550 3249 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3250 return s;
81819f0f 3251
ce15fea8 3252 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
3253}
3254
f6acb635 3255#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3256static unsigned long count_partial(struct kmem_cache_node *n,
3257 int (*get_count)(struct page *))
5b06c853
CL
3258{
3259 unsigned long flags;
3260 unsigned long x = 0;
3261 struct page *page;
3262
3263 spin_lock_irqsave(&n->list_lock, flags);
3264 list_for_each_entry(page, &n->partial, lru)
205ab99d 3265 x += get_count(page);
5b06c853
CL
3266 spin_unlock_irqrestore(&n->list_lock, flags);
3267 return x;
3268}
205ab99d
CL
3269
3270static int count_inuse(struct page *page)
3271{
3272 return page->inuse;
3273}
3274
3275static int count_total(struct page *page)
3276{
3277 return page->objects;
3278}
3279
3280static int count_free(struct page *page)
3281{
3282 return page->objects - page->inuse;
3283}
5b06c853 3284
434e245d
CL
3285static int validate_slab(struct kmem_cache *s, struct page *page,
3286 unsigned long *map)
53e15af0
CL
3287{
3288 void *p;
a973e9dd 3289 void *addr = page_address(page);
53e15af0
CL
3290
3291 if (!check_slab(s, page) ||
3292 !on_freelist(s, page, NULL))
3293 return 0;
3294
3295 /* Now we know that a valid freelist exists */
39b26464 3296 bitmap_zero(map, page->objects);
53e15af0 3297
7656c72b
CL
3298 for_each_free_object(p, s, page->freelist) {
3299 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3300 if (!check_object(s, page, p, 0))
3301 return 0;
3302 }
3303
224a88be 3304 for_each_object(p, s, addr, page->objects)
7656c72b 3305 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3306 if (!check_object(s, page, p, 1))
3307 return 0;
3308 return 1;
3309}
3310
434e245d
CL
3311static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3312 unsigned long *map)
53e15af0
CL
3313{
3314 if (slab_trylock(page)) {
434e245d 3315 validate_slab(s, page, map);
53e15af0
CL
3316 slab_unlock(page);
3317 } else
3318 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3319 s->name, page);
3320
3321 if (s->flags & DEBUG_DEFAULT_FLAGS) {
8a38082d
AW
3322 if (!PageSlubDebug(page))
3323 printk(KERN_ERR "SLUB %s: SlubDebug not set "
53e15af0
CL
3324 "on slab 0x%p\n", s->name, page);
3325 } else {
8a38082d
AW
3326 if (PageSlubDebug(page))
3327 printk(KERN_ERR "SLUB %s: SlubDebug set on "
53e15af0
CL
3328 "slab 0x%p\n", s->name, page);
3329 }
3330}
3331
434e245d
CL
3332static int validate_slab_node(struct kmem_cache *s,
3333 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3334{
3335 unsigned long count = 0;
3336 struct page *page;
3337 unsigned long flags;
3338
3339 spin_lock_irqsave(&n->list_lock, flags);
3340
3341 list_for_each_entry(page, &n->partial, lru) {
434e245d 3342 validate_slab_slab(s, page, map);
53e15af0
CL
3343 count++;
3344 }
3345 if (count != n->nr_partial)
3346 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3347 "counter=%ld\n", s->name, count, n->nr_partial);
3348
3349 if (!(s->flags & SLAB_STORE_USER))
3350 goto out;
3351
3352 list_for_each_entry(page, &n->full, lru) {
434e245d 3353 validate_slab_slab(s, page, map);
53e15af0
CL
3354 count++;
3355 }
3356 if (count != atomic_long_read(&n->nr_slabs))
3357 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3358 "counter=%ld\n", s->name, count,
3359 atomic_long_read(&n->nr_slabs));
3360
3361out:
3362 spin_unlock_irqrestore(&n->list_lock, flags);
3363 return count;
3364}
3365
434e245d 3366static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3367{
3368 int node;
3369 unsigned long count = 0;
205ab99d 3370 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3371 sizeof(unsigned long), GFP_KERNEL);
3372
3373 if (!map)
3374 return -ENOMEM;
53e15af0
CL
3375
3376 flush_all(s);
f64dc58c 3377 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3378 struct kmem_cache_node *n = get_node(s, node);
3379
434e245d 3380 count += validate_slab_node(s, n, map);
53e15af0 3381 }
434e245d 3382 kfree(map);
53e15af0
CL
3383 return count;
3384}
3385
b3459709
CL
3386#ifdef SLUB_RESILIENCY_TEST
3387static void resiliency_test(void)
3388{
3389 u8 *p;
3390
3391 printk(KERN_ERR "SLUB resiliency testing\n");
3392 printk(KERN_ERR "-----------------------\n");
3393 printk(KERN_ERR "A. Corruption after allocation\n");
3394
3395 p = kzalloc(16, GFP_KERNEL);
3396 p[16] = 0x12;
3397 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3398 " 0x12->0x%p\n\n", p + 16);
3399
3400 validate_slab_cache(kmalloc_caches + 4);
3401
3402 /* Hmmm... The next two are dangerous */
3403 p = kzalloc(32, GFP_KERNEL);
3404 p[32 + sizeof(void *)] = 0x34;
3405 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3406 " 0x34 -> -0x%p\n", p);
3407 printk(KERN_ERR
3408 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3409
3410 validate_slab_cache(kmalloc_caches + 5);
3411 p = kzalloc(64, GFP_KERNEL);
3412 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3413 *p = 0x56;
3414 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3415 p);
3adbefee
IM
3416 printk(KERN_ERR
3417 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3418 validate_slab_cache(kmalloc_caches + 6);
3419
3420 printk(KERN_ERR "\nB. Corruption after free\n");
3421 p = kzalloc(128, GFP_KERNEL);
3422 kfree(p);
3423 *p = 0x78;
3424 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3425 validate_slab_cache(kmalloc_caches + 7);
3426
3427 p = kzalloc(256, GFP_KERNEL);
3428 kfree(p);
3429 p[50] = 0x9a;
3adbefee
IM
3430 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3431 p);
b3459709
CL
3432 validate_slab_cache(kmalloc_caches + 8);
3433
3434 p = kzalloc(512, GFP_KERNEL);
3435 kfree(p);
3436 p[512] = 0xab;
3437 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3438 validate_slab_cache(kmalloc_caches + 9);
3439}
3440#else
3441static void resiliency_test(void) {};
3442#endif
3443
88a420e4 3444/*
672bba3a 3445 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3446 * and freed.
3447 */
3448
3449struct location {
3450 unsigned long count;
ce71e27c 3451 unsigned long addr;
45edfa58
CL
3452 long long sum_time;
3453 long min_time;
3454 long max_time;
3455 long min_pid;
3456 long max_pid;
174596a0 3457 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3458 nodemask_t nodes;
88a420e4
CL
3459};
3460
3461struct loc_track {
3462 unsigned long max;
3463 unsigned long count;
3464 struct location *loc;
3465};
3466
3467static void free_loc_track(struct loc_track *t)
3468{
3469 if (t->max)
3470 free_pages((unsigned long)t->loc,
3471 get_order(sizeof(struct location) * t->max));
3472}
3473
68dff6a9 3474static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3475{
3476 struct location *l;
3477 int order;
3478
88a420e4
CL
3479 order = get_order(sizeof(struct location) * max);
3480
68dff6a9 3481 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3482 if (!l)
3483 return 0;
3484
3485 if (t->count) {
3486 memcpy(l, t->loc, sizeof(struct location) * t->count);
3487 free_loc_track(t);
3488 }
3489 t->max = max;
3490 t->loc = l;
3491 return 1;
3492}
3493
3494static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3495 const struct track *track)
88a420e4
CL
3496{
3497 long start, end, pos;
3498 struct location *l;
ce71e27c 3499 unsigned long caddr;
45edfa58 3500 unsigned long age = jiffies - track->when;
88a420e4
CL
3501
3502 start = -1;
3503 end = t->count;
3504
3505 for ( ; ; ) {
3506 pos = start + (end - start + 1) / 2;
3507
3508 /*
3509 * There is nothing at "end". If we end up there
3510 * we need to add something to before end.
3511 */
3512 if (pos == end)
3513 break;
3514
3515 caddr = t->loc[pos].addr;
45edfa58
CL
3516 if (track->addr == caddr) {
3517
3518 l = &t->loc[pos];
3519 l->count++;
3520 if (track->when) {
3521 l->sum_time += age;
3522 if (age < l->min_time)
3523 l->min_time = age;
3524 if (age > l->max_time)
3525 l->max_time = age;
3526
3527 if (track->pid < l->min_pid)
3528 l->min_pid = track->pid;
3529 if (track->pid > l->max_pid)
3530 l->max_pid = track->pid;
3531
174596a0
RR
3532 cpumask_set_cpu(track->cpu,
3533 to_cpumask(l->cpus));
45edfa58
CL
3534 }
3535 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3536 return 1;
3537 }
3538
45edfa58 3539 if (track->addr < caddr)
88a420e4
CL
3540 end = pos;
3541 else
3542 start = pos;
3543 }
3544
3545 /*
672bba3a 3546 * Not found. Insert new tracking element.
88a420e4 3547 */
68dff6a9 3548 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3549 return 0;
3550
3551 l = t->loc + pos;
3552 if (pos < t->count)
3553 memmove(l + 1, l,
3554 (t->count - pos) * sizeof(struct location));
3555 t->count++;
3556 l->count = 1;
45edfa58
CL
3557 l->addr = track->addr;
3558 l->sum_time = age;
3559 l->min_time = age;
3560 l->max_time = age;
3561 l->min_pid = track->pid;
3562 l->max_pid = track->pid;
174596a0
RR
3563 cpumask_clear(to_cpumask(l->cpus));
3564 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3565 nodes_clear(l->nodes);
3566 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3567 return 1;
3568}
3569
3570static void process_slab(struct loc_track *t, struct kmem_cache *s,
3571 struct page *page, enum track_item alloc)
3572{
a973e9dd 3573 void *addr = page_address(page);
39b26464 3574 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3575 void *p;
3576
39b26464 3577 bitmap_zero(map, page->objects);
7656c72b
CL
3578 for_each_free_object(p, s, page->freelist)
3579 set_bit(slab_index(p, s, addr), map);
88a420e4 3580
224a88be 3581 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3582 if (!test_bit(slab_index(p, s, addr), map))
3583 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3584}
3585
3586static int list_locations(struct kmem_cache *s, char *buf,
3587 enum track_item alloc)
3588{
e374d483 3589 int len = 0;
88a420e4 3590 unsigned long i;
68dff6a9 3591 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3592 int node;
3593
68dff6a9 3594 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3595 GFP_TEMPORARY))
68dff6a9 3596 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3597
3598 /* Push back cpu slabs */
3599 flush_all(s);
3600
f64dc58c 3601 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3602 struct kmem_cache_node *n = get_node(s, node);
3603 unsigned long flags;
3604 struct page *page;
3605
9e86943b 3606 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3607 continue;
3608
3609 spin_lock_irqsave(&n->list_lock, flags);
3610 list_for_each_entry(page, &n->partial, lru)
3611 process_slab(&t, s, page, alloc);
3612 list_for_each_entry(page, &n->full, lru)
3613 process_slab(&t, s, page, alloc);
3614 spin_unlock_irqrestore(&n->list_lock, flags);
3615 }
3616
3617 for (i = 0; i < t.count; i++) {
45edfa58 3618 struct location *l = &t.loc[i];
88a420e4 3619
9c246247 3620 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3621 break;
e374d483 3622 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3623
3624 if (l->addr)
e374d483 3625 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3626 else
e374d483 3627 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3628
3629 if (l->sum_time != l->min_time) {
e374d483 3630 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3631 l->min_time,
3632 (long)div_u64(l->sum_time, l->count),
3633 l->max_time);
45edfa58 3634 } else
e374d483 3635 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3636 l->min_time);
3637
3638 if (l->min_pid != l->max_pid)
e374d483 3639 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3640 l->min_pid, l->max_pid);
3641 else
e374d483 3642 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3643 l->min_pid);
3644
174596a0
RR
3645 if (num_online_cpus() > 1 &&
3646 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3647 len < PAGE_SIZE - 60) {
3648 len += sprintf(buf + len, " cpus=");
3649 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3650 to_cpumask(l->cpus));
45edfa58
CL
3651 }
3652
84966343 3653 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3654 len < PAGE_SIZE - 60) {
3655 len += sprintf(buf + len, " nodes=");
3656 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3657 l->nodes);
3658 }
3659
e374d483 3660 len += sprintf(buf + len, "\n");
88a420e4
CL
3661 }
3662
3663 free_loc_track(&t);
3664 if (!t.count)
e374d483
HH
3665 len += sprintf(buf, "No data\n");
3666 return len;
88a420e4
CL
3667}
3668
81819f0f 3669enum slab_stat_type {
205ab99d
CL
3670 SL_ALL, /* All slabs */
3671 SL_PARTIAL, /* Only partially allocated slabs */
3672 SL_CPU, /* Only slabs used for cpu caches */
3673 SL_OBJECTS, /* Determine allocated objects not slabs */
3674 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3675};
3676
205ab99d 3677#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3678#define SO_PARTIAL (1 << SL_PARTIAL)
3679#define SO_CPU (1 << SL_CPU)
3680#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3681#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3682
62e5c4b4
CG
3683static ssize_t show_slab_objects(struct kmem_cache *s,
3684 char *buf, unsigned long flags)
81819f0f
CL
3685{
3686 unsigned long total = 0;
81819f0f
CL
3687 int node;
3688 int x;
3689 unsigned long *nodes;
3690 unsigned long *per_cpu;
3691
3692 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3693 if (!nodes)
3694 return -ENOMEM;
81819f0f
CL
3695 per_cpu = nodes + nr_node_ids;
3696
205ab99d
CL
3697 if (flags & SO_CPU) {
3698 int cpu;
81819f0f 3699
205ab99d
CL
3700 for_each_possible_cpu(cpu) {
3701 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3702
205ab99d
CL
3703 if (!c || c->node < 0)
3704 continue;
3705
3706 if (c->page) {
3707 if (flags & SO_TOTAL)
3708 x = c->page->objects;
3709 else if (flags & SO_OBJECTS)
3710 x = c->page->inuse;
81819f0f
CL
3711 else
3712 x = 1;
205ab99d 3713
81819f0f 3714 total += x;
205ab99d 3715 nodes[c->node] += x;
81819f0f 3716 }
205ab99d 3717 per_cpu[c->node]++;
81819f0f
CL
3718 }
3719 }
3720
205ab99d
CL
3721 if (flags & SO_ALL) {
3722 for_each_node_state(node, N_NORMAL_MEMORY) {
3723 struct kmem_cache_node *n = get_node(s, node);
3724
3725 if (flags & SO_TOTAL)
3726 x = atomic_long_read(&n->total_objects);
3727 else if (flags & SO_OBJECTS)
3728 x = atomic_long_read(&n->total_objects) -
3729 count_partial(n, count_free);
81819f0f 3730
81819f0f 3731 else
205ab99d 3732 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3733 total += x;
3734 nodes[node] += x;
3735 }
3736
205ab99d
CL
3737 } else if (flags & SO_PARTIAL) {
3738 for_each_node_state(node, N_NORMAL_MEMORY) {
3739 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3740
205ab99d
CL
3741 if (flags & SO_TOTAL)
3742 x = count_partial(n, count_total);
3743 else if (flags & SO_OBJECTS)
3744 x = count_partial(n, count_inuse);
81819f0f 3745 else
205ab99d 3746 x = n->nr_partial;
81819f0f
CL
3747 total += x;
3748 nodes[node] += x;
3749 }
3750 }
81819f0f
CL
3751 x = sprintf(buf, "%lu", total);
3752#ifdef CONFIG_NUMA
f64dc58c 3753 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3754 if (nodes[node])
3755 x += sprintf(buf + x, " N%d=%lu",
3756 node, nodes[node]);
3757#endif
3758 kfree(nodes);
3759 return x + sprintf(buf + x, "\n");
3760}
3761
3762static int any_slab_objects(struct kmem_cache *s)
3763{
3764 int node;
81819f0f 3765
dfb4f096 3766 for_each_online_node(node) {
81819f0f
CL
3767 struct kmem_cache_node *n = get_node(s, node);
3768
dfb4f096
CL
3769 if (!n)
3770 continue;
3771
4ea33e2d 3772 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3773 return 1;
3774 }
3775 return 0;
3776}
3777
3778#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3779#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3780
3781struct slab_attribute {
3782 struct attribute attr;
3783 ssize_t (*show)(struct kmem_cache *s, char *buf);
3784 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3785};
3786
3787#define SLAB_ATTR_RO(_name) \
3788 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3789
3790#define SLAB_ATTR(_name) \
3791 static struct slab_attribute _name##_attr = \
3792 __ATTR(_name, 0644, _name##_show, _name##_store)
3793
81819f0f
CL
3794static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3795{
3796 return sprintf(buf, "%d\n", s->size);
3797}
3798SLAB_ATTR_RO(slab_size);
3799
3800static ssize_t align_show(struct kmem_cache *s, char *buf)
3801{
3802 return sprintf(buf, "%d\n", s->align);
3803}
3804SLAB_ATTR_RO(align);
3805
3806static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3807{
3808 return sprintf(buf, "%d\n", s->objsize);
3809}
3810SLAB_ATTR_RO(object_size);
3811
3812static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3813{
834f3d11 3814 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3815}
3816SLAB_ATTR_RO(objs_per_slab);
3817
06b285dc
CL
3818static ssize_t order_store(struct kmem_cache *s,
3819 const char *buf, size_t length)
3820{
0121c619
CL
3821 unsigned long order;
3822 int err;
3823
3824 err = strict_strtoul(buf, 10, &order);
3825 if (err)
3826 return err;
06b285dc
CL
3827
3828 if (order > slub_max_order || order < slub_min_order)
3829 return -EINVAL;
3830
3831 calculate_sizes(s, order);
3832 return length;
3833}
3834
81819f0f
CL
3835static ssize_t order_show(struct kmem_cache *s, char *buf)
3836{
834f3d11 3837 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3838}
06b285dc 3839SLAB_ATTR(order);
81819f0f 3840
73d342b1
DR
3841static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3842{
3843 return sprintf(buf, "%lu\n", s->min_partial);
3844}
3845
3846static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3847 size_t length)
3848{
3849 unsigned long min;
3850 int err;
3851
3852 err = strict_strtoul(buf, 10, &min);
3853 if (err)
3854 return err;
3855
c0bdb232 3856 set_min_partial(s, min);
73d342b1
DR
3857 return length;
3858}
3859SLAB_ATTR(min_partial);
3860
81819f0f
CL
3861static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3862{
3863 if (s->ctor) {
3864 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3865
3866 return n + sprintf(buf + n, "\n");
3867 }
3868 return 0;
3869}
3870SLAB_ATTR_RO(ctor);
3871
81819f0f
CL
3872static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3873{
3874 return sprintf(buf, "%d\n", s->refcount - 1);
3875}
3876SLAB_ATTR_RO(aliases);
3877
3878static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3879{
205ab99d 3880 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3881}
3882SLAB_ATTR_RO(slabs);
3883
3884static ssize_t partial_show(struct kmem_cache *s, char *buf)
3885{
d9acf4b7 3886 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3887}
3888SLAB_ATTR_RO(partial);
3889
3890static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3891{
d9acf4b7 3892 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3893}
3894SLAB_ATTR_RO(cpu_slabs);
3895
3896static ssize_t objects_show(struct kmem_cache *s, char *buf)
3897{
205ab99d 3898 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3899}
3900SLAB_ATTR_RO(objects);
3901
205ab99d
CL
3902static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3903{
3904 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3905}
3906SLAB_ATTR_RO(objects_partial);
3907
3908static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3909{
3910 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3911}
3912SLAB_ATTR_RO(total_objects);
3913
81819f0f
CL
3914static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3915{
3916 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3917}
3918
3919static ssize_t sanity_checks_store(struct kmem_cache *s,
3920 const char *buf, size_t length)
3921{
3922 s->flags &= ~SLAB_DEBUG_FREE;
3923 if (buf[0] == '1')
3924 s->flags |= SLAB_DEBUG_FREE;
3925 return length;
3926}
3927SLAB_ATTR(sanity_checks);
3928
3929static ssize_t trace_show(struct kmem_cache *s, char *buf)
3930{
3931 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3932}
3933
3934static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3935 size_t length)
3936{
3937 s->flags &= ~SLAB_TRACE;
3938 if (buf[0] == '1')
3939 s->flags |= SLAB_TRACE;
3940 return length;
3941}
3942SLAB_ATTR(trace);
3943
3944static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3945{
3946 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3947}
3948
3949static ssize_t reclaim_account_store(struct kmem_cache *s,
3950 const char *buf, size_t length)
3951{
3952 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3953 if (buf[0] == '1')
3954 s->flags |= SLAB_RECLAIM_ACCOUNT;
3955 return length;
3956}
3957SLAB_ATTR(reclaim_account);
3958
3959static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3960{
5af60839 3961 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3962}
3963SLAB_ATTR_RO(hwcache_align);
3964
3965#ifdef CONFIG_ZONE_DMA
3966static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3967{
3968 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3969}
3970SLAB_ATTR_RO(cache_dma);
3971#endif
3972
3973static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3974{
3975 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3976}
3977SLAB_ATTR_RO(destroy_by_rcu);
3978
3979static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3980{
3981 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3982}
3983
3984static ssize_t red_zone_store(struct kmem_cache *s,
3985 const char *buf, size_t length)
3986{
3987 if (any_slab_objects(s))
3988 return -EBUSY;
3989
3990 s->flags &= ~SLAB_RED_ZONE;
3991 if (buf[0] == '1')
3992 s->flags |= SLAB_RED_ZONE;
06b285dc 3993 calculate_sizes(s, -1);
81819f0f
CL
3994 return length;
3995}
3996SLAB_ATTR(red_zone);
3997
3998static ssize_t poison_show(struct kmem_cache *s, char *buf)
3999{
4000 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4001}
4002
4003static ssize_t poison_store(struct kmem_cache *s,
4004 const char *buf, size_t length)
4005{
4006 if (any_slab_objects(s))
4007 return -EBUSY;
4008
4009 s->flags &= ~SLAB_POISON;
4010 if (buf[0] == '1')
4011 s->flags |= SLAB_POISON;
06b285dc 4012 calculate_sizes(s, -1);
81819f0f
CL
4013 return length;
4014}
4015SLAB_ATTR(poison);
4016
4017static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4018{
4019 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4020}
4021
4022static ssize_t store_user_store(struct kmem_cache *s,
4023 const char *buf, size_t length)
4024{
4025 if (any_slab_objects(s))
4026 return -EBUSY;
4027
4028 s->flags &= ~SLAB_STORE_USER;
4029 if (buf[0] == '1')
4030 s->flags |= SLAB_STORE_USER;
06b285dc 4031 calculate_sizes(s, -1);
81819f0f
CL
4032 return length;
4033}
4034SLAB_ATTR(store_user);
4035
53e15af0
CL
4036static ssize_t validate_show(struct kmem_cache *s, char *buf)
4037{
4038 return 0;
4039}
4040
4041static ssize_t validate_store(struct kmem_cache *s,
4042 const char *buf, size_t length)
4043{
434e245d
CL
4044 int ret = -EINVAL;
4045
4046 if (buf[0] == '1') {
4047 ret = validate_slab_cache(s);
4048 if (ret >= 0)
4049 ret = length;
4050 }
4051 return ret;
53e15af0
CL
4052}
4053SLAB_ATTR(validate);
4054
2086d26a
CL
4055static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4056{
4057 return 0;
4058}
4059
4060static ssize_t shrink_store(struct kmem_cache *s,
4061 const char *buf, size_t length)
4062{
4063 if (buf[0] == '1') {
4064 int rc = kmem_cache_shrink(s);
4065
4066 if (rc)
4067 return rc;
4068 } else
4069 return -EINVAL;
4070 return length;
4071}
4072SLAB_ATTR(shrink);
4073
88a420e4
CL
4074static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4075{
4076 if (!(s->flags & SLAB_STORE_USER))
4077 return -ENOSYS;
4078 return list_locations(s, buf, TRACK_ALLOC);
4079}
4080SLAB_ATTR_RO(alloc_calls);
4081
4082static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4083{
4084 if (!(s->flags & SLAB_STORE_USER))
4085 return -ENOSYS;
4086 return list_locations(s, buf, TRACK_FREE);
4087}
4088SLAB_ATTR_RO(free_calls);
4089
81819f0f 4090#ifdef CONFIG_NUMA
9824601e 4091static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4092{
9824601e 4093 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4094}
4095
9824601e 4096static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4097 const char *buf, size_t length)
4098{
0121c619
CL
4099 unsigned long ratio;
4100 int err;
4101
4102 err = strict_strtoul(buf, 10, &ratio);
4103 if (err)
4104 return err;
4105
e2cb96b7 4106 if (ratio <= 100)
0121c619 4107 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4108
81819f0f
CL
4109 return length;
4110}
9824601e 4111SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4112#endif
4113
8ff12cfc 4114#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4115static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4116{
4117 unsigned long sum = 0;
4118 int cpu;
4119 int len;
4120 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4121
4122 if (!data)
4123 return -ENOMEM;
4124
4125 for_each_online_cpu(cpu) {
4126 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4127
4128 data[cpu] = x;
4129 sum += x;
4130 }
4131
4132 len = sprintf(buf, "%lu", sum);
4133
50ef37b9 4134#ifdef CONFIG_SMP
8ff12cfc
CL
4135 for_each_online_cpu(cpu) {
4136 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4137 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4138 }
50ef37b9 4139#endif
8ff12cfc
CL
4140 kfree(data);
4141 return len + sprintf(buf + len, "\n");
4142}
4143
4144#define STAT_ATTR(si, text) \
4145static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4146{ \
4147 return show_stat(s, buf, si); \
4148} \
4149SLAB_ATTR_RO(text); \
4150
4151STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4152STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4153STAT_ATTR(FREE_FASTPATH, free_fastpath);
4154STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4155STAT_ATTR(FREE_FROZEN, free_frozen);
4156STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4157STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4158STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4159STAT_ATTR(ALLOC_SLAB, alloc_slab);
4160STAT_ATTR(ALLOC_REFILL, alloc_refill);
4161STAT_ATTR(FREE_SLAB, free_slab);
4162STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4163STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4164STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4165STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4166STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4167STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4168STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4169#endif
4170
06428780 4171static struct attribute *slab_attrs[] = {
81819f0f
CL
4172 &slab_size_attr.attr,
4173 &object_size_attr.attr,
4174 &objs_per_slab_attr.attr,
4175 &order_attr.attr,
73d342b1 4176 &min_partial_attr.attr,
81819f0f 4177 &objects_attr.attr,
205ab99d
CL
4178 &objects_partial_attr.attr,
4179 &total_objects_attr.attr,
81819f0f
CL
4180 &slabs_attr.attr,
4181 &partial_attr.attr,
4182 &cpu_slabs_attr.attr,
4183 &ctor_attr.attr,
81819f0f
CL
4184 &aliases_attr.attr,
4185 &align_attr.attr,
4186 &sanity_checks_attr.attr,
4187 &trace_attr.attr,
4188 &hwcache_align_attr.attr,
4189 &reclaim_account_attr.attr,
4190 &destroy_by_rcu_attr.attr,
4191 &red_zone_attr.attr,
4192 &poison_attr.attr,
4193 &store_user_attr.attr,
53e15af0 4194 &validate_attr.attr,
2086d26a 4195 &shrink_attr.attr,
88a420e4
CL
4196 &alloc_calls_attr.attr,
4197 &free_calls_attr.attr,
81819f0f
CL
4198#ifdef CONFIG_ZONE_DMA
4199 &cache_dma_attr.attr,
4200#endif
4201#ifdef CONFIG_NUMA
9824601e 4202 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4203#endif
4204#ifdef CONFIG_SLUB_STATS
4205 &alloc_fastpath_attr.attr,
4206 &alloc_slowpath_attr.attr,
4207 &free_fastpath_attr.attr,
4208 &free_slowpath_attr.attr,
4209 &free_frozen_attr.attr,
4210 &free_add_partial_attr.attr,
4211 &free_remove_partial_attr.attr,
4212 &alloc_from_partial_attr.attr,
4213 &alloc_slab_attr.attr,
4214 &alloc_refill_attr.attr,
4215 &free_slab_attr.attr,
4216 &cpuslab_flush_attr.attr,
4217 &deactivate_full_attr.attr,
4218 &deactivate_empty_attr.attr,
4219 &deactivate_to_head_attr.attr,
4220 &deactivate_to_tail_attr.attr,
4221 &deactivate_remote_frees_attr.attr,
65c3376a 4222 &order_fallback_attr.attr,
81819f0f
CL
4223#endif
4224 NULL
4225};
4226
4227static struct attribute_group slab_attr_group = {
4228 .attrs = slab_attrs,
4229};
4230
4231static ssize_t slab_attr_show(struct kobject *kobj,
4232 struct attribute *attr,
4233 char *buf)
4234{
4235 struct slab_attribute *attribute;
4236 struct kmem_cache *s;
4237 int err;
4238
4239 attribute = to_slab_attr(attr);
4240 s = to_slab(kobj);
4241
4242 if (!attribute->show)
4243 return -EIO;
4244
4245 err = attribute->show(s, buf);
4246
4247 return err;
4248}
4249
4250static ssize_t slab_attr_store(struct kobject *kobj,
4251 struct attribute *attr,
4252 const char *buf, size_t len)
4253{
4254 struct slab_attribute *attribute;
4255 struct kmem_cache *s;
4256 int err;
4257
4258 attribute = to_slab_attr(attr);
4259 s = to_slab(kobj);
4260
4261 if (!attribute->store)
4262 return -EIO;
4263
4264 err = attribute->store(s, buf, len);
4265
4266 return err;
4267}
4268
151c602f
CL
4269static void kmem_cache_release(struct kobject *kobj)
4270{
4271 struct kmem_cache *s = to_slab(kobj);
4272
4273 kfree(s);
4274}
4275
81819f0f
CL
4276static struct sysfs_ops slab_sysfs_ops = {
4277 .show = slab_attr_show,
4278 .store = slab_attr_store,
4279};
4280
4281static struct kobj_type slab_ktype = {
4282 .sysfs_ops = &slab_sysfs_ops,
151c602f 4283 .release = kmem_cache_release
81819f0f
CL
4284};
4285
4286static int uevent_filter(struct kset *kset, struct kobject *kobj)
4287{
4288 struct kobj_type *ktype = get_ktype(kobj);
4289
4290 if (ktype == &slab_ktype)
4291 return 1;
4292 return 0;
4293}
4294
4295static struct kset_uevent_ops slab_uevent_ops = {
4296 .filter = uevent_filter,
4297};
4298
27c3a314 4299static struct kset *slab_kset;
81819f0f
CL
4300
4301#define ID_STR_LENGTH 64
4302
4303/* Create a unique string id for a slab cache:
6446faa2
CL
4304 *
4305 * Format :[flags-]size
81819f0f
CL
4306 */
4307static char *create_unique_id(struct kmem_cache *s)
4308{
4309 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4310 char *p = name;
4311
4312 BUG_ON(!name);
4313
4314 *p++ = ':';
4315 /*
4316 * First flags affecting slabcache operations. We will only
4317 * get here for aliasable slabs so we do not need to support
4318 * too many flags. The flags here must cover all flags that
4319 * are matched during merging to guarantee that the id is
4320 * unique.
4321 */
4322 if (s->flags & SLAB_CACHE_DMA)
4323 *p++ = 'd';
4324 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4325 *p++ = 'a';
4326 if (s->flags & SLAB_DEBUG_FREE)
4327 *p++ = 'F';
4328 if (p != name + 1)
4329 *p++ = '-';
4330 p += sprintf(p, "%07d", s->size);
4331 BUG_ON(p > name + ID_STR_LENGTH - 1);
4332 return name;
4333}
4334
4335static int sysfs_slab_add(struct kmem_cache *s)
4336{
4337 int err;
4338 const char *name;
4339 int unmergeable;
4340
4341 if (slab_state < SYSFS)
4342 /* Defer until later */
4343 return 0;
4344
4345 unmergeable = slab_unmergeable(s);
4346 if (unmergeable) {
4347 /*
4348 * Slabcache can never be merged so we can use the name proper.
4349 * This is typically the case for debug situations. In that
4350 * case we can catch duplicate names easily.
4351 */
27c3a314 4352 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4353 name = s->name;
4354 } else {
4355 /*
4356 * Create a unique name for the slab as a target
4357 * for the symlinks.
4358 */
4359 name = create_unique_id(s);
4360 }
4361
27c3a314 4362 s->kobj.kset = slab_kset;
1eada11c
GKH
4363 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4364 if (err) {
4365 kobject_put(&s->kobj);
81819f0f 4366 return err;
1eada11c 4367 }
81819f0f
CL
4368
4369 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4370 if (err)
4371 return err;
4372 kobject_uevent(&s->kobj, KOBJ_ADD);
4373 if (!unmergeable) {
4374 /* Setup first alias */
4375 sysfs_slab_alias(s, s->name);
4376 kfree(name);
4377 }
4378 return 0;
4379}
4380
4381static void sysfs_slab_remove(struct kmem_cache *s)
4382{
4383 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4384 kobject_del(&s->kobj);
151c602f 4385 kobject_put(&s->kobj);
81819f0f
CL
4386}
4387
4388/*
4389 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4390 * available lest we lose that information.
81819f0f
CL
4391 */
4392struct saved_alias {
4393 struct kmem_cache *s;
4394 const char *name;
4395 struct saved_alias *next;
4396};
4397
5af328a5 4398static struct saved_alias *alias_list;
81819f0f
CL
4399
4400static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4401{
4402 struct saved_alias *al;
4403
4404 if (slab_state == SYSFS) {
4405 /*
4406 * If we have a leftover link then remove it.
4407 */
27c3a314
GKH
4408 sysfs_remove_link(&slab_kset->kobj, name);
4409 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4410 }
4411
4412 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4413 if (!al)
4414 return -ENOMEM;
4415
4416 al->s = s;
4417 al->name = name;
4418 al->next = alias_list;
4419 alias_list = al;
4420 return 0;
4421}
4422
4423static int __init slab_sysfs_init(void)
4424{
5b95a4ac 4425 struct kmem_cache *s;
81819f0f
CL
4426 int err;
4427
0ff21e46 4428 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4429 if (!slab_kset) {
81819f0f
CL
4430 printk(KERN_ERR "Cannot register slab subsystem.\n");
4431 return -ENOSYS;
4432 }
4433
26a7bd03
CL
4434 slab_state = SYSFS;
4435
5b95a4ac 4436 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4437 err = sysfs_slab_add(s);
5d540fb7
CL
4438 if (err)
4439 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4440 " to sysfs\n", s->name);
26a7bd03 4441 }
81819f0f
CL
4442
4443 while (alias_list) {
4444 struct saved_alias *al = alias_list;
4445
4446 alias_list = alias_list->next;
4447 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4448 if (err)
4449 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4450 " %s to sysfs\n", s->name);
81819f0f
CL
4451 kfree(al);
4452 }
4453
4454 resiliency_test();
4455 return 0;
4456}
4457
4458__initcall(slab_sysfs_init);
81819f0f 4459#endif
57ed3eda
PE
4460
4461/*
4462 * The /proc/slabinfo ABI
4463 */
158a9624 4464#ifdef CONFIG_SLABINFO
57ed3eda
PE
4465static void print_slabinfo_header(struct seq_file *m)
4466{
4467 seq_puts(m, "slabinfo - version: 2.1\n");
4468 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4469 "<objperslab> <pagesperslab>");
4470 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4471 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4472 seq_putc(m, '\n');
4473}
4474
4475static void *s_start(struct seq_file *m, loff_t *pos)
4476{
4477 loff_t n = *pos;
4478
4479 down_read(&slub_lock);
4480 if (!n)
4481 print_slabinfo_header(m);
4482
4483 return seq_list_start(&slab_caches, *pos);
4484}
4485
4486static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4487{
4488 return seq_list_next(p, &slab_caches, pos);
4489}
4490
4491static void s_stop(struct seq_file *m, void *p)
4492{
4493 up_read(&slub_lock);
4494}
4495
4496static int s_show(struct seq_file *m, void *p)
4497{
4498 unsigned long nr_partials = 0;
4499 unsigned long nr_slabs = 0;
4500 unsigned long nr_inuse = 0;
205ab99d
CL
4501 unsigned long nr_objs = 0;
4502 unsigned long nr_free = 0;
57ed3eda
PE
4503 struct kmem_cache *s;
4504 int node;
4505
4506 s = list_entry(p, struct kmem_cache, list);
4507
4508 for_each_online_node(node) {
4509 struct kmem_cache_node *n = get_node(s, node);
4510
4511 if (!n)
4512 continue;
4513
4514 nr_partials += n->nr_partial;
4515 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4516 nr_objs += atomic_long_read(&n->total_objects);
4517 nr_free += count_partial(n, count_free);
57ed3eda
PE
4518 }
4519
205ab99d 4520 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4521
4522 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4523 nr_objs, s->size, oo_objects(s->oo),
4524 (1 << oo_order(s->oo)));
57ed3eda
PE
4525 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4526 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4527 0UL);
4528 seq_putc(m, '\n');
4529 return 0;
4530}
4531
7b3c3a50 4532static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4533 .start = s_start,
4534 .next = s_next,
4535 .stop = s_stop,
4536 .show = s_show,
4537};
4538
7b3c3a50
AD
4539static int slabinfo_open(struct inode *inode, struct file *file)
4540{
4541 return seq_open(file, &slabinfo_op);
4542}
4543
4544static const struct file_operations proc_slabinfo_operations = {
4545 .open = slabinfo_open,
4546 .read = seq_read,
4547 .llseek = seq_lseek,
4548 .release = seq_release,
4549};
4550
4551static int __init slab_proc_init(void)
4552{
4553 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4554 return 0;
4555}
4556module_init(slab_proc_init);
158a9624 4557#endif /* CONFIG_SLABINFO */