Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
117d54df 127void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
128{
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133}
134
345c905d
JK
135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136{
137#ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139#else
140 return false;
141#endif
142}
143
81819f0f
CL
144/*
145 * Issues still to be resolved:
146 *
81819f0f
CL
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
81819f0f
CL
149 * - Variable sizing of the per node arrays
150 */
151
152/* Enable to test recovery from slab corruption on boot */
153#undef SLUB_RESILIENCY_TEST
154
b789ef51
CL
155/* Enable to log cmpxchg failures */
156#undef SLUB_DEBUG_CMPXCHG
157
2086d26a
CL
158/*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
76be8950 162#define MIN_PARTIAL 5
e95eed57 163
2086d26a
CL
164/*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 167 * sort the partial list by the number of objects in use.
2086d26a
CL
168 */
169#define MAX_PARTIAL 10
170
becfda68 171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 172 SLAB_POISON | SLAB_STORE_USER)
672bba3a 173
149daaf3
LA
174/*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
fa5ec8a1 182/*
3de47213
DR
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
fa5ec8a1 186 */
3de47213 187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 188
210b5c06
CG
189#define OO_SHIFT 16
190#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 191#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 192
81819f0f 193/* Internal SLUB flags */
f90ec390 194#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 195#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 196
81819f0f
CL
197#ifdef CONFIG_SMP
198static struct notifier_block slab_notifier;
199#endif
200
02cbc874
CL
201/*
202 * Tracking user of a slab.
203 */
d6543e39 204#define TRACK_ADDRS_COUNT 16
02cbc874 205struct track {
ce71e27c 206 unsigned long addr; /* Called from address */
d6543e39
BG
207#ifdef CONFIG_STACKTRACE
208 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
209#endif
02cbc874
CL
210 int cpu; /* Was running on cpu */
211 int pid; /* Pid context */
212 unsigned long when; /* When did the operation occur */
213};
214
215enum track_item { TRACK_ALLOC, TRACK_FREE };
216
ab4d5ed5 217#ifdef CONFIG_SYSFS
81819f0f
CL
218static int sysfs_slab_add(struct kmem_cache *);
219static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 220static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
107dab5c 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
226#endif
227
4fdccdfb 228static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
229{
230#ifdef CONFIG_SLUB_STATS
88da03a6
CL
231 /*
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
234 */
235 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
236#endif
237}
238
81819f0f
CL
239/********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
242
7656c72b
CL
243static inline void *get_freepointer(struct kmem_cache *s, void *object)
244{
245 return *(void **)(object + s->offset);
246}
247
0ad9500e
ED
248static void prefetch_freepointer(const struct kmem_cache *s, void *object)
249{
250 prefetch(object + s->offset);
251}
252
1393d9a1
CL
253static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
254{
255 void *p;
256
922d566c
JK
257 if (!debug_pagealloc_enabled())
258 return get_freepointer(s, object);
259
1393d9a1 260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
1393d9a1
CL
261 return p;
262}
263
7656c72b
CL
264static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
265{
266 *(void **)(object + s->offset) = fp;
267}
268
269/* Loop over all objects in a slab */
224a88be 270#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
271 for (__p = fixup_red_left(__s, __addr); \
272 __p < (__addr) + (__objects) * (__s)->size; \
273 __p += (__s)->size)
7656c72b 274
54266640 275#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
276 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
277 __idx <= __objects; \
278 __p += (__s)->size, __idx++)
54266640 279
7656c72b
CL
280/* Determine object index from a given position */
281static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282{
283 return (p - addr) / s->size;
284}
285
ab9a0f19
LJ
286static inline int order_objects(int order, unsigned long size, int reserved)
287{
288 return ((PAGE_SIZE << order) - reserved) / size;
289}
290
834f3d11 291static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 292 unsigned long size, int reserved)
834f3d11
CL
293{
294 struct kmem_cache_order_objects x = {
ab9a0f19 295 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
296 };
297
298 return x;
299}
300
301static inline int oo_order(struct kmem_cache_order_objects x)
302{
210b5c06 303 return x.x >> OO_SHIFT;
834f3d11
CL
304}
305
306static inline int oo_objects(struct kmem_cache_order_objects x)
307{
210b5c06 308 return x.x & OO_MASK;
834f3d11
CL
309}
310
881db7fb
CL
311/*
312 * Per slab locking using the pagelock
313 */
314static __always_inline void slab_lock(struct page *page)
315{
48c935ad 316 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
317 bit_spin_lock(PG_locked, &page->flags);
318}
319
320static __always_inline void slab_unlock(struct page *page)
321{
48c935ad 322 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
323 __bit_spin_unlock(PG_locked, &page->flags);
324}
325
a0320865
DH
326static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
327{
328 struct page tmp;
329 tmp.counters = counters_new;
330 /*
331 * page->counters can cover frozen/inuse/objects as well
0139aa7b
JK
332 * as page->_refcount. If we assign to ->counters directly
333 * we run the risk of losing updates to page->_refcount, so
a0320865
DH
334 * be careful and only assign to the fields we need.
335 */
336 page->frozen = tmp.frozen;
337 page->inuse = tmp.inuse;
338 page->objects = tmp.objects;
339}
340
1d07171c
CL
341/* Interrupts must be disabled (for the fallback code to work right) */
342static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
343 void *freelist_old, unsigned long counters_old,
344 void *freelist_new, unsigned long counters_new,
345 const char *n)
346{
347 VM_BUG_ON(!irqs_disabled());
2565409f
HC
348#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
349 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 350 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 351 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
352 freelist_old, counters_old,
353 freelist_new, counters_new))
6f6528a1 354 return true;
1d07171c
CL
355 } else
356#endif
357 {
358 slab_lock(page);
d0e0ac97
CG
359 if (page->freelist == freelist_old &&
360 page->counters == counters_old) {
1d07171c 361 page->freelist = freelist_new;
a0320865 362 set_page_slub_counters(page, counters_new);
1d07171c 363 slab_unlock(page);
6f6528a1 364 return true;
1d07171c
CL
365 }
366 slab_unlock(page);
367 }
368
369 cpu_relax();
370 stat(s, CMPXCHG_DOUBLE_FAIL);
371
372#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 373 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
374#endif
375
6f6528a1 376 return false;
1d07171c
CL
377}
378
b789ef51
CL
379static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
380 void *freelist_old, unsigned long counters_old,
381 void *freelist_new, unsigned long counters_new,
382 const char *n)
383{
2565409f
HC
384#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
385 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 386 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 387 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
388 freelist_old, counters_old,
389 freelist_new, counters_new))
6f6528a1 390 return true;
b789ef51
CL
391 } else
392#endif
393 {
1d07171c
CL
394 unsigned long flags;
395
396 local_irq_save(flags);
881db7fb 397 slab_lock(page);
d0e0ac97
CG
398 if (page->freelist == freelist_old &&
399 page->counters == counters_old) {
b789ef51 400 page->freelist = freelist_new;
a0320865 401 set_page_slub_counters(page, counters_new);
881db7fb 402 slab_unlock(page);
1d07171c 403 local_irq_restore(flags);
6f6528a1 404 return true;
b789ef51 405 }
881db7fb 406 slab_unlock(page);
1d07171c 407 local_irq_restore(flags);
b789ef51
CL
408 }
409
410 cpu_relax();
411 stat(s, CMPXCHG_DOUBLE_FAIL);
412
413#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 414 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
415#endif
416
6f6528a1 417 return false;
b789ef51
CL
418}
419
41ecc55b 420#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
421/*
422 * Determine a map of object in use on a page.
423 *
881db7fb 424 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
425 * not vanish from under us.
426 */
427static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
428{
429 void *p;
430 void *addr = page_address(page);
431
432 for (p = page->freelist; p; p = get_freepointer(s, p))
433 set_bit(slab_index(p, s, addr), map);
434}
435
d86bd1be
JK
436static inline int size_from_object(struct kmem_cache *s)
437{
438 if (s->flags & SLAB_RED_ZONE)
439 return s->size - s->red_left_pad;
440
441 return s->size;
442}
443
444static inline void *restore_red_left(struct kmem_cache *s, void *p)
445{
446 if (s->flags & SLAB_RED_ZONE)
447 p -= s->red_left_pad;
448
449 return p;
450}
451
41ecc55b
CL
452/*
453 * Debug settings:
454 */
89d3c87e 455#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff
CL
456static int slub_debug = DEBUG_DEFAULT_FLAGS;
457#else
41ecc55b 458static int slub_debug;
f0630fff 459#endif
41ecc55b
CL
460
461static char *slub_debug_slabs;
fa5ec8a1 462static int disable_higher_order_debug;
41ecc55b 463
a79316c6
AR
464/*
465 * slub is about to manipulate internal object metadata. This memory lies
466 * outside the range of the allocated object, so accessing it would normally
467 * be reported by kasan as a bounds error. metadata_access_enable() is used
468 * to tell kasan that these accesses are OK.
469 */
470static inline void metadata_access_enable(void)
471{
472 kasan_disable_current();
473}
474
475static inline void metadata_access_disable(void)
476{
477 kasan_enable_current();
478}
479
81819f0f
CL
480/*
481 * Object debugging
482 */
d86bd1be
JK
483
484/* Verify that a pointer has an address that is valid within a slab page */
485static inline int check_valid_pointer(struct kmem_cache *s,
486 struct page *page, void *object)
487{
488 void *base;
489
490 if (!object)
491 return 1;
492
493 base = page_address(page);
494 object = restore_red_left(s, object);
495 if (object < base || object >= base + page->objects * s->size ||
496 (object - base) % s->size) {
497 return 0;
498 }
499
500 return 1;
501}
502
81819f0f
CL
503static void print_section(char *text, u8 *addr, unsigned int length)
504{
a79316c6 505 metadata_access_enable();
ffc79d28
SAS
506 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
507 length, 1);
a79316c6 508 metadata_access_disable();
81819f0f
CL
509}
510
81819f0f
CL
511static struct track *get_track(struct kmem_cache *s, void *object,
512 enum track_item alloc)
513{
514 struct track *p;
515
516 if (s->offset)
517 p = object + s->offset + sizeof(void *);
518 else
519 p = object + s->inuse;
520
521 return p + alloc;
522}
523
524static void set_track(struct kmem_cache *s, void *object,
ce71e27c 525 enum track_item alloc, unsigned long addr)
81819f0f 526{
1a00df4a 527 struct track *p = get_track(s, object, alloc);
81819f0f 528
81819f0f 529 if (addr) {
d6543e39
BG
530#ifdef CONFIG_STACKTRACE
531 struct stack_trace trace;
532 int i;
533
534 trace.nr_entries = 0;
535 trace.max_entries = TRACK_ADDRS_COUNT;
536 trace.entries = p->addrs;
537 trace.skip = 3;
a79316c6 538 metadata_access_enable();
d6543e39 539 save_stack_trace(&trace);
a79316c6 540 metadata_access_disable();
d6543e39
BG
541
542 /* See rant in lockdep.c */
543 if (trace.nr_entries != 0 &&
544 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
545 trace.nr_entries--;
546
547 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
548 p->addrs[i] = 0;
549#endif
81819f0f
CL
550 p->addr = addr;
551 p->cpu = smp_processor_id();
88e4ccf2 552 p->pid = current->pid;
81819f0f
CL
553 p->when = jiffies;
554 } else
555 memset(p, 0, sizeof(struct track));
556}
557
81819f0f
CL
558static void init_tracking(struct kmem_cache *s, void *object)
559{
24922684
CL
560 if (!(s->flags & SLAB_STORE_USER))
561 return;
562
ce71e27c
EGM
563 set_track(s, object, TRACK_FREE, 0UL);
564 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
565}
566
567static void print_track(const char *s, struct track *t)
568{
569 if (!t->addr)
570 return;
571
f9f58285
FF
572 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
573 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
574#ifdef CONFIG_STACKTRACE
575 {
576 int i;
577 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
578 if (t->addrs[i])
f9f58285 579 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
580 else
581 break;
582 }
583#endif
24922684
CL
584}
585
586static void print_tracking(struct kmem_cache *s, void *object)
587{
588 if (!(s->flags & SLAB_STORE_USER))
589 return;
590
591 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
592 print_track("Freed", get_track(s, object, TRACK_FREE));
593}
594
595static void print_page_info(struct page *page)
596{
f9f58285 597 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 598 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
599
600}
601
602static void slab_bug(struct kmem_cache *s, char *fmt, ...)
603{
ecc42fbe 604 struct va_format vaf;
24922684 605 va_list args;
24922684
CL
606
607 va_start(args, fmt);
ecc42fbe
FF
608 vaf.fmt = fmt;
609 vaf.va = &args;
f9f58285 610 pr_err("=============================================================================\n");
ecc42fbe 611 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 612 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 613
373d4d09 614 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 615 va_end(args);
81819f0f
CL
616}
617
24922684
CL
618static void slab_fix(struct kmem_cache *s, char *fmt, ...)
619{
ecc42fbe 620 struct va_format vaf;
24922684 621 va_list args;
24922684
CL
622
623 va_start(args, fmt);
ecc42fbe
FF
624 vaf.fmt = fmt;
625 vaf.va = &args;
626 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 627 va_end(args);
24922684
CL
628}
629
630static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
631{
632 unsigned int off; /* Offset of last byte */
a973e9dd 633 u8 *addr = page_address(page);
24922684
CL
634
635 print_tracking(s, p);
636
637 print_page_info(page);
638
f9f58285
FF
639 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
640 p, p - addr, get_freepointer(s, p));
24922684 641
d86bd1be
JK
642 if (s->flags & SLAB_RED_ZONE)
643 print_section("Redzone ", p - s->red_left_pad, s->red_left_pad);
644 else if (p > addr + 16)
ffc79d28 645 print_section("Bytes b4 ", p - 16, 16);
81819f0f 646
3b0efdfa 647 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 648 PAGE_SIZE));
81819f0f 649 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
650 print_section("Redzone ", p + s->object_size,
651 s->inuse - s->object_size);
81819f0f 652
81819f0f
CL
653 if (s->offset)
654 off = s->offset + sizeof(void *);
655 else
656 off = s->inuse;
657
24922684 658 if (s->flags & SLAB_STORE_USER)
81819f0f 659 off += 2 * sizeof(struct track);
81819f0f 660
80a9201a
AP
661 off += kasan_metadata_size(s);
662
d86bd1be 663 if (off != size_from_object(s))
81819f0f 664 /* Beginning of the filler is the free pointer */
d86bd1be 665 print_section("Padding ", p + off, size_from_object(s) - off);
24922684
CL
666
667 dump_stack();
81819f0f
CL
668}
669
75c66def 670void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
671 u8 *object, char *reason)
672{
3dc50637 673 slab_bug(s, "%s", reason);
24922684 674 print_trailer(s, page, object);
81819f0f
CL
675}
676
d0e0ac97
CG
677static void slab_err(struct kmem_cache *s, struct page *page,
678 const char *fmt, ...)
81819f0f
CL
679{
680 va_list args;
681 char buf[100];
682
24922684
CL
683 va_start(args, fmt);
684 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 685 va_end(args);
3dc50637 686 slab_bug(s, "%s", buf);
24922684 687 print_page_info(page);
81819f0f
CL
688 dump_stack();
689}
690
f7cb1933 691static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
692{
693 u8 *p = object;
694
d86bd1be
JK
695 if (s->flags & SLAB_RED_ZONE)
696 memset(p - s->red_left_pad, val, s->red_left_pad);
697
81819f0f 698 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
699 memset(p, POISON_FREE, s->object_size - 1);
700 p[s->object_size - 1] = POISON_END;
81819f0f
CL
701 }
702
703 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 704 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
705}
706
24922684
CL
707static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
708 void *from, void *to)
709{
710 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
711 memset(from, data, to - from);
712}
713
714static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
715 u8 *object, char *what,
06428780 716 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
717{
718 u8 *fault;
719 u8 *end;
720
a79316c6 721 metadata_access_enable();
79824820 722 fault = memchr_inv(start, value, bytes);
a79316c6 723 metadata_access_disable();
24922684
CL
724 if (!fault)
725 return 1;
726
727 end = start + bytes;
728 while (end > fault && end[-1] == value)
729 end--;
730
731 slab_bug(s, "%s overwritten", what);
f9f58285 732 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
733 fault, end - 1, fault[0], value);
734 print_trailer(s, page, object);
735
736 restore_bytes(s, what, value, fault, end);
737 return 0;
81819f0f
CL
738}
739
81819f0f
CL
740/*
741 * Object layout:
742 *
743 * object address
744 * Bytes of the object to be managed.
745 * If the freepointer may overlay the object then the free
746 * pointer is the first word of the object.
672bba3a 747 *
81819f0f
CL
748 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
749 * 0xa5 (POISON_END)
750 *
3b0efdfa 751 * object + s->object_size
81819f0f 752 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 753 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 754 * object_size == inuse.
672bba3a 755 *
81819f0f
CL
756 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
757 * 0xcc (RED_ACTIVE) for objects in use.
758 *
759 * object + s->inuse
672bba3a
CL
760 * Meta data starts here.
761 *
81819f0f
CL
762 * A. Free pointer (if we cannot overwrite object on free)
763 * B. Tracking data for SLAB_STORE_USER
672bba3a 764 * C. Padding to reach required alignment boundary or at mininum
6446faa2 765 * one word if debugging is on to be able to detect writes
672bba3a
CL
766 * before the word boundary.
767 *
768 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
769 *
770 * object + s->size
672bba3a 771 * Nothing is used beyond s->size.
81819f0f 772 *
3b0efdfa 773 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 774 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
775 * may be used with merged slabcaches.
776 */
777
81819f0f
CL
778static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
779{
780 unsigned long off = s->inuse; /* The end of info */
781
782 if (s->offset)
783 /* Freepointer is placed after the object. */
784 off += sizeof(void *);
785
786 if (s->flags & SLAB_STORE_USER)
787 /* We also have user information there */
788 off += 2 * sizeof(struct track);
789
80a9201a
AP
790 off += kasan_metadata_size(s);
791
d86bd1be 792 if (size_from_object(s) == off)
81819f0f
CL
793 return 1;
794
24922684 795 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 796 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
797}
798
39b26464 799/* Check the pad bytes at the end of a slab page */
81819f0f
CL
800static int slab_pad_check(struct kmem_cache *s, struct page *page)
801{
24922684
CL
802 u8 *start;
803 u8 *fault;
804 u8 *end;
805 int length;
806 int remainder;
81819f0f
CL
807
808 if (!(s->flags & SLAB_POISON))
809 return 1;
810
a973e9dd 811 start = page_address(page);
ab9a0f19 812 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
813 end = start + length;
814 remainder = length % s->size;
81819f0f
CL
815 if (!remainder)
816 return 1;
817
a79316c6 818 metadata_access_enable();
79824820 819 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 820 metadata_access_disable();
24922684
CL
821 if (!fault)
822 return 1;
823 while (end > fault && end[-1] == POISON_INUSE)
824 end--;
825
826 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 827 print_section("Padding ", end - remainder, remainder);
24922684 828
8a3d271d 829 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 830 return 0;
81819f0f
CL
831}
832
833static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 834 void *object, u8 val)
81819f0f
CL
835{
836 u8 *p = object;
3b0efdfa 837 u8 *endobject = object + s->object_size;
81819f0f
CL
838
839 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
840 if (!check_bytes_and_report(s, page, object, "Redzone",
841 object - s->red_left_pad, val, s->red_left_pad))
842 return 0;
843
24922684 844 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 845 endobject, val, s->inuse - s->object_size))
81819f0f 846 return 0;
81819f0f 847 } else {
3b0efdfa 848 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 849 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
850 endobject, POISON_INUSE,
851 s->inuse - s->object_size);
3adbefee 852 }
81819f0f
CL
853 }
854
855 if (s->flags & SLAB_POISON) {
f7cb1933 856 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 857 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 858 POISON_FREE, s->object_size - 1) ||
24922684 859 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 860 p + s->object_size - 1, POISON_END, 1)))
81819f0f 861 return 0;
81819f0f
CL
862 /*
863 * check_pad_bytes cleans up on its own.
864 */
865 check_pad_bytes(s, page, p);
866 }
867
f7cb1933 868 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
869 /*
870 * Object and freepointer overlap. Cannot check
871 * freepointer while object is allocated.
872 */
873 return 1;
874
875 /* Check free pointer validity */
876 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
877 object_err(s, page, p, "Freepointer corrupt");
878 /*
9f6c708e 879 * No choice but to zap it and thus lose the remainder
81819f0f 880 * of the free objects in this slab. May cause
672bba3a 881 * another error because the object count is now wrong.
81819f0f 882 */
a973e9dd 883 set_freepointer(s, p, NULL);
81819f0f
CL
884 return 0;
885 }
886 return 1;
887}
888
889static int check_slab(struct kmem_cache *s, struct page *page)
890{
39b26464
CL
891 int maxobj;
892
81819f0f
CL
893 VM_BUG_ON(!irqs_disabled());
894
895 if (!PageSlab(page)) {
24922684 896 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
897 return 0;
898 }
39b26464 899
ab9a0f19 900 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
901 if (page->objects > maxobj) {
902 slab_err(s, page, "objects %u > max %u",
f6edde9c 903 page->objects, maxobj);
39b26464
CL
904 return 0;
905 }
906 if (page->inuse > page->objects) {
24922684 907 slab_err(s, page, "inuse %u > max %u",
f6edde9c 908 page->inuse, page->objects);
81819f0f
CL
909 return 0;
910 }
911 /* Slab_pad_check fixes things up after itself */
912 slab_pad_check(s, page);
913 return 1;
914}
915
916/*
672bba3a
CL
917 * Determine if a certain object on a page is on the freelist. Must hold the
918 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
919 */
920static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
921{
922 int nr = 0;
881db7fb 923 void *fp;
81819f0f 924 void *object = NULL;
f6edde9c 925 int max_objects;
81819f0f 926
881db7fb 927 fp = page->freelist;
39b26464 928 while (fp && nr <= page->objects) {
81819f0f
CL
929 if (fp == search)
930 return 1;
931 if (!check_valid_pointer(s, page, fp)) {
932 if (object) {
933 object_err(s, page, object,
934 "Freechain corrupt");
a973e9dd 935 set_freepointer(s, object, NULL);
81819f0f 936 } else {
24922684 937 slab_err(s, page, "Freepointer corrupt");
a973e9dd 938 page->freelist = NULL;
39b26464 939 page->inuse = page->objects;
24922684 940 slab_fix(s, "Freelist cleared");
81819f0f
CL
941 return 0;
942 }
943 break;
944 }
945 object = fp;
946 fp = get_freepointer(s, object);
947 nr++;
948 }
949
ab9a0f19 950 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
951 if (max_objects > MAX_OBJS_PER_PAGE)
952 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
953
954 if (page->objects != max_objects) {
756a025f
JP
955 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
956 page->objects, max_objects);
224a88be
CL
957 page->objects = max_objects;
958 slab_fix(s, "Number of objects adjusted.");
959 }
39b26464 960 if (page->inuse != page->objects - nr) {
756a025f
JP
961 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
962 page->inuse, page->objects - nr);
39b26464 963 page->inuse = page->objects - nr;
24922684 964 slab_fix(s, "Object count adjusted.");
81819f0f
CL
965 }
966 return search == NULL;
967}
968
0121c619
CL
969static void trace(struct kmem_cache *s, struct page *page, void *object,
970 int alloc)
3ec09742
CL
971{
972 if (s->flags & SLAB_TRACE) {
f9f58285 973 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
974 s->name,
975 alloc ? "alloc" : "free",
976 object, page->inuse,
977 page->freelist);
978
979 if (!alloc)
d0e0ac97
CG
980 print_section("Object ", (void *)object,
981 s->object_size);
3ec09742
CL
982
983 dump_stack();
984 }
985}
986
643b1138 987/*
672bba3a 988 * Tracking of fully allocated slabs for debugging purposes.
643b1138 989 */
5cc6eee8
CL
990static void add_full(struct kmem_cache *s,
991 struct kmem_cache_node *n, struct page *page)
643b1138 992{
5cc6eee8
CL
993 if (!(s->flags & SLAB_STORE_USER))
994 return;
995
255d0884 996 lockdep_assert_held(&n->list_lock);
643b1138 997 list_add(&page->lru, &n->full);
643b1138
CL
998}
999
c65c1877 1000static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1001{
643b1138
CL
1002 if (!(s->flags & SLAB_STORE_USER))
1003 return;
1004
255d0884 1005 lockdep_assert_held(&n->list_lock);
643b1138 1006 list_del(&page->lru);
643b1138
CL
1007}
1008
0f389ec6
CL
1009/* Tracking of the number of slabs for debugging purposes */
1010static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1011{
1012 struct kmem_cache_node *n = get_node(s, node);
1013
1014 return atomic_long_read(&n->nr_slabs);
1015}
1016
26c02cf0
AB
1017static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1018{
1019 return atomic_long_read(&n->nr_slabs);
1020}
1021
205ab99d 1022static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1023{
1024 struct kmem_cache_node *n = get_node(s, node);
1025
1026 /*
1027 * May be called early in order to allocate a slab for the
1028 * kmem_cache_node structure. Solve the chicken-egg
1029 * dilemma by deferring the increment of the count during
1030 * bootstrap (see early_kmem_cache_node_alloc).
1031 */
338b2642 1032 if (likely(n)) {
0f389ec6 1033 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1034 atomic_long_add(objects, &n->total_objects);
1035 }
0f389ec6 1036}
205ab99d 1037static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1038{
1039 struct kmem_cache_node *n = get_node(s, node);
1040
1041 atomic_long_dec(&n->nr_slabs);
205ab99d 1042 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1043}
1044
1045/* Object debug checks for alloc/free paths */
3ec09742
CL
1046static void setup_object_debug(struct kmem_cache *s, struct page *page,
1047 void *object)
1048{
1049 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1050 return;
1051
f7cb1933 1052 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1053 init_tracking(s, object);
1054}
1055
becfda68 1056static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1057 struct page *page,
ce71e27c 1058 void *object, unsigned long addr)
81819f0f
CL
1059{
1060 if (!check_slab(s, page))
becfda68 1061 return 0;
81819f0f 1062
81819f0f
CL
1063 if (!check_valid_pointer(s, page, object)) {
1064 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1065 return 0;
81819f0f
CL
1066 }
1067
f7cb1933 1068 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1069 return 0;
1070
1071 return 1;
1072}
1073
1074static noinline int alloc_debug_processing(struct kmem_cache *s,
1075 struct page *page,
1076 void *object, unsigned long addr)
1077{
1078 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1079 if (!alloc_consistency_checks(s, page, object, addr))
1080 goto bad;
1081 }
81819f0f 1082
3ec09742
CL
1083 /* Success perform special debug activities for allocs */
1084 if (s->flags & SLAB_STORE_USER)
1085 set_track(s, object, TRACK_ALLOC, addr);
1086 trace(s, page, object, 1);
f7cb1933 1087 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1088 return 1;
3ec09742 1089
81819f0f
CL
1090bad:
1091 if (PageSlab(page)) {
1092 /*
1093 * If this is a slab page then lets do the best we can
1094 * to avoid issues in the future. Marking all objects
672bba3a 1095 * as used avoids touching the remaining objects.
81819f0f 1096 */
24922684 1097 slab_fix(s, "Marking all objects used");
39b26464 1098 page->inuse = page->objects;
a973e9dd 1099 page->freelist = NULL;
81819f0f
CL
1100 }
1101 return 0;
1102}
1103
becfda68
LA
1104static inline int free_consistency_checks(struct kmem_cache *s,
1105 struct page *page, void *object, unsigned long addr)
81819f0f 1106{
81819f0f 1107 if (!check_valid_pointer(s, page, object)) {
70d71228 1108 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1109 return 0;
81819f0f
CL
1110 }
1111
1112 if (on_freelist(s, page, object)) {
24922684 1113 object_err(s, page, object, "Object already free");
becfda68 1114 return 0;
81819f0f
CL
1115 }
1116
f7cb1933 1117 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1118 return 0;
81819f0f 1119
1b4f59e3 1120 if (unlikely(s != page->slab_cache)) {
3adbefee 1121 if (!PageSlab(page)) {
756a025f
JP
1122 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1123 object);
1b4f59e3 1124 } else if (!page->slab_cache) {
f9f58285
FF
1125 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1126 object);
70d71228 1127 dump_stack();
06428780 1128 } else
24922684
CL
1129 object_err(s, page, object,
1130 "page slab pointer corrupt.");
becfda68
LA
1131 return 0;
1132 }
1133 return 1;
1134}
1135
1136/* Supports checking bulk free of a constructed freelist */
1137static noinline int free_debug_processing(
1138 struct kmem_cache *s, struct page *page,
1139 void *head, void *tail, int bulk_cnt,
1140 unsigned long addr)
1141{
1142 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1143 void *object = head;
1144 int cnt = 0;
1145 unsigned long uninitialized_var(flags);
1146 int ret = 0;
1147
1148 spin_lock_irqsave(&n->list_lock, flags);
1149 slab_lock(page);
1150
1151 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1152 if (!check_slab(s, page))
1153 goto out;
1154 }
1155
1156next_object:
1157 cnt++;
1158
1159 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1160 if (!free_consistency_checks(s, page, object, addr))
1161 goto out;
81819f0f 1162 }
3ec09742 1163
3ec09742
CL
1164 if (s->flags & SLAB_STORE_USER)
1165 set_track(s, object, TRACK_FREE, addr);
1166 trace(s, page, object, 0);
81084651 1167 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1168 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1169
1170 /* Reached end of constructed freelist yet? */
1171 if (object != tail) {
1172 object = get_freepointer(s, object);
1173 goto next_object;
1174 }
804aa132
LA
1175 ret = 1;
1176
5c2e4bbb 1177out:
81084651
JDB
1178 if (cnt != bulk_cnt)
1179 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1180 bulk_cnt, cnt);
1181
881db7fb 1182 slab_unlock(page);
282acb43 1183 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1184 if (!ret)
1185 slab_fix(s, "Object at 0x%p not freed", object);
1186 return ret;
81819f0f
CL
1187}
1188
41ecc55b
CL
1189static int __init setup_slub_debug(char *str)
1190{
f0630fff
CL
1191 slub_debug = DEBUG_DEFAULT_FLAGS;
1192 if (*str++ != '=' || !*str)
1193 /*
1194 * No options specified. Switch on full debugging.
1195 */
1196 goto out;
1197
1198 if (*str == ',')
1199 /*
1200 * No options but restriction on slabs. This means full
1201 * debugging for slabs matching a pattern.
1202 */
1203 goto check_slabs;
1204
1205 slub_debug = 0;
1206 if (*str == '-')
1207 /*
1208 * Switch off all debugging measures.
1209 */
1210 goto out;
1211
1212 /*
1213 * Determine which debug features should be switched on
1214 */
06428780 1215 for (; *str && *str != ','; str++) {
f0630fff
CL
1216 switch (tolower(*str)) {
1217 case 'f':
becfda68 1218 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1219 break;
1220 case 'z':
1221 slub_debug |= SLAB_RED_ZONE;
1222 break;
1223 case 'p':
1224 slub_debug |= SLAB_POISON;
1225 break;
1226 case 'u':
1227 slub_debug |= SLAB_STORE_USER;
1228 break;
1229 case 't':
1230 slub_debug |= SLAB_TRACE;
1231 break;
4c13dd3b
DM
1232 case 'a':
1233 slub_debug |= SLAB_FAILSLAB;
1234 break;
08303a73
CA
1235 case 'o':
1236 /*
1237 * Avoid enabling debugging on caches if its minimum
1238 * order would increase as a result.
1239 */
1240 disable_higher_order_debug = 1;
1241 break;
f0630fff 1242 default:
f9f58285
FF
1243 pr_err("slub_debug option '%c' unknown. skipped\n",
1244 *str);
f0630fff 1245 }
41ecc55b
CL
1246 }
1247
f0630fff 1248check_slabs:
41ecc55b
CL
1249 if (*str == ',')
1250 slub_debug_slabs = str + 1;
f0630fff 1251out:
41ecc55b
CL
1252 return 1;
1253}
1254
1255__setup("slub_debug", setup_slub_debug);
1256
423c929c 1257unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1258 unsigned long flags, const char *name,
51cc5068 1259 void (*ctor)(void *))
41ecc55b
CL
1260{
1261 /*
e153362a 1262 * Enable debugging if selected on the kernel commandline.
41ecc55b 1263 */
c6f58d9b
CL
1264 if (slub_debug && (!slub_debug_slabs || (name &&
1265 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1266 flags |= slub_debug;
ba0268a8
CL
1267
1268 return flags;
41ecc55b 1269}
b4a64718 1270#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1271static inline void setup_object_debug(struct kmem_cache *s,
1272 struct page *page, void *object) {}
41ecc55b 1273
3ec09742 1274static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1275 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1276
282acb43 1277static inline int free_debug_processing(
81084651
JDB
1278 struct kmem_cache *s, struct page *page,
1279 void *head, void *tail, int bulk_cnt,
282acb43 1280 unsigned long addr) { return 0; }
41ecc55b 1281
41ecc55b
CL
1282static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1283 { return 1; }
1284static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1285 void *object, u8 val) { return 1; }
5cc6eee8
CL
1286static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1287 struct page *page) {}
c65c1877
PZ
1288static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1289 struct page *page) {}
423c929c 1290unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1291 unsigned long flags, const char *name,
51cc5068 1292 void (*ctor)(void *))
ba0268a8
CL
1293{
1294 return flags;
1295}
41ecc55b 1296#define slub_debug 0
0f389ec6 1297
fdaa45e9
IM
1298#define disable_higher_order_debug 0
1299
0f389ec6
CL
1300static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1301 { return 0; }
26c02cf0
AB
1302static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1303 { return 0; }
205ab99d
CL
1304static inline void inc_slabs_node(struct kmem_cache *s, int node,
1305 int objects) {}
1306static inline void dec_slabs_node(struct kmem_cache *s, int node,
1307 int objects) {}
7d550c56 1308
02e72cc6
AR
1309#endif /* CONFIG_SLUB_DEBUG */
1310
1311/*
1312 * Hooks for other subsystems that check memory allocations. In a typical
1313 * production configuration these hooks all should produce no code at all.
1314 */
d56791b3
RB
1315static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1316{
1317 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1318 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1319}
1320
1321static inline void kfree_hook(const void *x)
1322{
1323 kmemleak_free(x);
0316bec2 1324 kasan_kfree_large(x);
d56791b3
RB
1325}
1326
80a9201a 1327static inline void *slab_free_hook(struct kmem_cache *s, void *x)
d56791b3 1328{
80a9201a
AP
1329 void *freeptr;
1330
d56791b3 1331 kmemleak_free_recursive(x, s->flags);
7d550c56 1332
02e72cc6
AR
1333 /*
1334 * Trouble is that we may no longer disable interrupts in the fast path
1335 * So in order to make the debug calls that expect irqs to be
1336 * disabled we need to disable interrupts temporarily.
1337 */
1338#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1339 {
1340 unsigned long flags;
1341
1342 local_irq_save(flags);
1343 kmemcheck_slab_free(s, x, s->object_size);
1344 debug_check_no_locks_freed(x, s->object_size);
1345 local_irq_restore(flags);
1346 }
1347#endif
1348 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1349 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1350
80a9201a
AP
1351 freeptr = get_freepointer(s, x);
1352 /*
1353 * kasan_slab_free() may put x into memory quarantine, delaying its
1354 * reuse. In this case the object's freelist pointer is changed.
1355 */
0316bec2 1356 kasan_slab_free(s, x);
80a9201a 1357 return freeptr;
02e72cc6 1358}
205ab99d 1359
81084651
JDB
1360static inline void slab_free_freelist_hook(struct kmem_cache *s,
1361 void *head, void *tail)
1362{
1363/*
1364 * Compiler cannot detect this function can be removed if slab_free_hook()
1365 * evaluates to nothing. Thus, catch all relevant config debug options here.
1366 */
1367#if defined(CONFIG_KMEMCHECK) || \
1368 defined(CONFIG_LOCKDEP) || \
1369 defined(CONFIG_DEBUG_KMEMLEAK) || \
1370 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1371 defined(CONFIG_KASAN)
1372
1373 void *object = head;
1374 void *tail_obj = tail ? : head;
80a9201a 1375 void *freeptr;
81084651
JDB
1376
1377 do {
80a9201a
AP
1378 freeptr = slab_free_hook(s, object);
1379 } while ((object != tail_obj) && (object = freeptr));
81084651
JDB
1380#endif
1381}
1382
588f8ba9
TG
1383static void setup_object(struct kmem_cache *s, struct page *page,
1384 void *object)
1385{
1386 setup_object_debug(s, page, object);
b3cbd9bf 1387 kasan_init_slab_obj(s, object);
588f8ba9
TG
1388 if (unlikely(s->ctor)) {
1389 kasan_unpoison_object_data(s, object);
1390 s->ctor(object);
1391 kasan_poison_object_data(s, object);
1392 }
1393}
1394
81819f0f
CL
1395/*
1396 * Slab allocation and freeing
1397 */
5dfb4175
VD
1398static inline struct page *alloc_slab_page(struct kmem_cache *s,
1399 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1400{
5dfb4175 1401 struct page *page;
65c3376a
CL
1402 int order = oo_order(oo);
1403
b1eeab67
VN
1404 flags |= __GFP_NOTRACK;
1405
2154a336 1406 if (node == NUMA_NO_NODE)
5dfb4175 1407 page = alloc_pages(flags, order);
65c3376a 1408 else
96db800f 1409 page = __alloc_pages_node(node, flags, order);
5dfb4175 1410
f3ccb2c4
VD
1411 if (page && memcg_charge_slab(page, flags, order, s)) {
1412 __free_pages(page, order);
1413 page = NULL;
1414 }
5dfb4175
VD
1415
1416 return page;
65c3376a
CL
1417}
1418
210e7a43
TG
1419#ifdef CONFIG_SLAB_FREELIST_RANDOM
1420/* Pre-initialize the random sequence cache */
1421static int init_cache_random_seq(struct kmem_cache *s)
1422{
1423 int err;
1424 unsigned long i, count = oo_objects(s->oo);
1425
1426 err = cache_random_seq_create(s, count, GFP_KERNEL);
1427 if (err) {
1428 pr_err("SLUB: Unable to initialize free list for %s\n",
1429 s->name);
1430 return err;
1431 }
1432
1433 /* Transform to an offset on the set of pages */
1434 if (s->random_seq) {
1435 for (i = 0; i < count; i++)
1436 s->random_seq[i] *= s->size;
1437 }
1438 return 0;
1439}
1440
1441/* Initialize each random sequence freelist per cache */
1442static void __init init_freelist_randomization(void)
1443{
1444 struct kmem_cache *s;
1445
1446 mutex_lock(&slab_mutex);
1447
1448 list_for_each_entry(s, &slab_caches, list)
1449 init_cache_random_seq(s);
1450
1451 mutex_unlock(&slab_mutex);
1452}
1453
1454/* Get the next entry on the pre-computed freelist randomized */
1455static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1456 unsigned long *pos, void *start,
1457 unsigned long page_limit,
1458 unsigned long freelist_count)
1459{
1460 unsigned int idx;
1461
1462 /*
1463 * If the target page allocation failed, the number of objects on the
1464 * page might be smaller than the usual size defined by the cache.
1465 */
1466 do {
1467 idx = s->random_seq[*pos];
1468 *pos += 1;
1469 if (*pos >= freelist_count)
1470 *pos = 0;
1471 } while (unlikely(idx >= page_limit));
1472
1473 return (char *)start + idx;
1474}
1475
1476/* Shuffle the single linked freelist based on a random pre-computed sequence */
1477static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1478{
1479 void *start;
1480 void *cur;
1481 void *next;
1482 unsigned long idx, pos, page_limit, freelist_count;
1483
1484 if (page->objects < 2 || !s->random_seq)
1485 return false;
1486
1487 freelist_count = oo_objects(s->oo);
1488 pos = get_random_int() % freelist_count;
1489
1490 page_limit = page->objects * s->size;
1491 start = fixup_red_left(s, page_address(page));
1492
1493 /* First entry is used as the base of the freelist */
1494 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1495 freelist_count);
1496 page->freelist = cur;
1497
1498 for (idx = 1; idx < page->objects; idx++) {
1499 setup_object(s, page, cur);
1500 next = next_freelist_entry(s, page, &pos, start, page_limit,
1501 freelist_count);
1502 set_freepointer(s, cur, next);
1503 cur = next;
1504 }
1505 setup_object(s, page, cur);
1506 set_freepointer(s, cur, NULL);
1507
1508 return true;
1509}
1510#else
1511static inline int init_cache_random_seq(struct kmem_cache *s)
1512{
1513 return 0;
1514}
1515static inline void init_freelist_randomization(void) { }
1516static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1517{
1518 return false;
1519}
1520#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1521
81819f0f
CL
1522static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1523{
06428780 1524 struct page *page;
834f3d11 1525 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1526 gfp_t alloc_gfp;
588f8ba9
TG
1527 void *start, *p;
1528 int idx, order;
210e7a43 1529 bool shuffle;
81819f0f 1530
7e0528da
CL
1531 flags &= gfp_allowed_mask;
1532
d0164adc 1533 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1534 local_irq_enable();
1535
b7a49f0d 1536 flags |= s->allocflags;
e12ba74d 1537
ba52270d
PE
1538 /*
1539 * Let the initial higher-order allocation fail under memory pressure
1540 * so we fall-back to the minimum order allocation.
1541 */
1542 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1543 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1544 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1545
5dfb4175 1546 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1547 if (unlikely(!page)) {
1548 oo = s->min;
80c3a998 1549 alloc_gfp = flags;
65c3376a
CL
1550 /*
1551 * Allocation may have failed due to fragmentation.
1552 * Try a lower order alloc if possible
1553 */
5dfb4175 1554 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1555 if (unlikely(!page))
1556 goto out;
1557 stat(s, ORDER_FALLBACK);
65c3376a 1558 }
5a896d9e 1559
588f8ba9
TG
1560 if (kmemcheck_enabled &&
1561 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1562 int pages = 1 << oo_order(oo);
1563
80c3a998 1564 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1565
1566 /*
1567 * Objects from caches that have a constructor don't get
1568 * cleared when they're allocated, so we need to do it here.
1569 */
1570 if (s->ctor)
1571 kmemcheck_mark_uninitialized_pages(page, pages);
1572 else
1573 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1574 }
1575
834f3d11 1576 page->objects = oo_objects(oo);
81819f0f 1577
1f458cbf 1578 order = compound_order(page);
1b4f59e3 1579 page->slab_cache = s;
c03f94cc 1580 __SetPageSlab(page);
2f064f34 1581 if (page_is_pfmemalloc(page))
072bb0aa 1582 SetPageSlabPfmemalloc(page);
81819f0f
CL
1583
1584 start = page_address(page);
81819f0f
CL
1585
1586 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1587 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1588
0316bec2
AR
1589 kasan_poison_slab(page);
1590
210e7a43
TG
1591 shuffle = shuffle_freelist(s, page);
1592
1593 if (!shuffle) {
1594 for_each_object_idx(p, idx, s, start, page->objects) {
1595 setup_object(s, page, p);
1596 if (likely(idx < page->objects))
1597 set_freepointer(s, p, p + s->size);
1598 else
1599 set_freepointer(s, p, NULL);
1600 }
1601 page->freelist = fixup_red_left(s, start);
81819f0f 1602 }
81819f0f 1603
e6e82ea1 1604 page->inuse = page->objects;
8cb0a506 1605 page->frozen = 1;
588f8ba9 1606
81819f0f 1607out:
d0164adc 1608 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1609 local_irq_disable();
1610 if (!page)
1611 return NULL;
1612
1613 mod_zone_page_state(page_zone(page),
1614 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1615 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1616 1 << oo_order(oo));
1617
1618 inc_slabs_node(s, page_to_nid(page), page->objects);
1619
81819f0f
CL
1620 return page;
1621}
1622
588f8ba9
TG
1623static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1624{
1625 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1626 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1627 flags &= ~GFP_SLAB_BUG_MASK;
1628 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1629 invalid_mask, &invalid_mask, flags, &flags);
588f8ba9
TG
1630 }
1631
1632 return allocate_slab(s,
1633 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1634}
1635
81819f0f
CL
1636static void __free_slab(struct kmem_cache *s, struct page *page)
1637{
834f3d11
CL
1638 int order = compound_order(page);
1639 int pages = 1 << order;
81819f0f 1640
becfda68 1641 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1642 void *p;
1643
1644 slab_pad_check(s, page);
224a88be
CL
1645 for_each_object(p, s, page_address(page),
1646 page->objects)
f7cb1933 1647 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1648 }
1649
b1eeab67 1650 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1651
81819f0f
CL
1652 mod_zone_page_state(page_zone(page),
1653 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1654 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1655 -pages);
81819f0f 1656
072bb0aa 1657 __ClearPageSlabPfmemalloc(page);
49bd5221 1658 __ClearPageSlab(page);
1f458cbf 1659
22b751c3 1660 page_mapcount_reset(page);
1eb5ac64
NP
1661 if (current->reclaim_state)
1662 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1663 memcg_uncharge_slab(page, order, s);
1664 __free_pages(page, order);
81819f0f
CL
1665}
1666
da9a638c
LJ
1667#define need_reserve_slab_rcu \
1668 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1669
81819f0f
CL
1670static void rcu_free_slab(struct rcu_head *h)
1671{
1672 struct page *page;
1673
da9a638c
LJ
1674 if (need_reserve_slab_rcu)
1675 page = virt_to_head_page(h);
1676 else
1677 page = container_of((struct list_head *)h, struct page, lru);
1678
1b4f59e3 1679 __free_slab(page->slab_cache, page);
81819f0f
CL
1680}
1681
1682static void free_slab(struct kmem_cache *s, struct page *page)
1683{
1684 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1685 struct rcu_head *head;
1686
1687 if (need_reserve_slab_rcu) {
1688 int order = compound_order(page);
1689 int offset = (PAGE_SIZE << order) - s->reserved;
1690
1691 VM_BUG_ON(s->reserved != sizeof(*head));
1692 head = page_address(page) + offset;
1693 } else {
bc4f610d 1694 head = &page->rcu_head;
da9a638c 1695 }
81819f0f
CL
1696
1697 call_rcu(head, rcu_free_slab);
1698 } else
1699 __free_slab(s, page);
1700}
1701
1702static void discard_slab(struct kmem_cache *s, struct page *page)
1703{
205ab99d 1704 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1705 free_slab(s, page);
1706}
1707
1708/*
5cc6eee8 1709 * Management of partially allocated slabs.
81819f0f 1710 */
1e4dd946
SR
1711static inline void
1712__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1713{
e95eed57 1714 n->nr_partial++;
136333d1 1715 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1716 list_add_tail(&page->lru, &n->partial);
1717 else
1718 list_add(&page->lru, &n->partial);
81819f0f
CL
1719}
1720
1e4dd946
SR
1721static inline void add_partial(struct kmem_cache_node *n,
1722 struct page *page, int tail)
62e346a8 1723{
c65c1877 1724 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1725 __add_partial(n, page, tail);
1726}
c65c1877 1727
1e4dd946
SR
1728static inline void remove_partial(struct kmem_cache_node *n,
1729 struct page *page)
1730{
1731 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1732 list_del(&page->lru);
1733 n->nr_partial--;
1e4dd946
SR
1734}
1735
81819f0f 1736/*
7ced3719
CL
1737 * Remove slab from the partial list, freeze it and
1738 * return the pointer to the freelist.
81819f0f 1739 *
497b66f2 1740 * Returns a list of objects or NULL if it fails.
81819f0f 1741 */
497b66f2 1742static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1743 struct kmem_cache_node *n, struct page *page,
633b0764 1744 int mode, int *objects)
81819f0f 1745{
2cfb7455
CL
1746 void *freelist;
1747 unsigned long counters;
1748 struct page new;
1749
c65c1877
PZ
1750 lockdep_assert_held(&n->list_lock);
1751
2cfb7455
CL
1752 /*
1753 * Zap the freelist and set the frozen bit.
1754 * The old freelist is the list of objects for the
1755 * per cpu allocation list.
1756 */
7ced3719
CL
1757 freelist = page->freelist;
1758 counters = page->counters;
1759 new.counters = counters;
633b0764 1760 *objects = new.objects - new.inuse;
23910c50 1761 if (mode) {
7ced3719 1762 new.inuse = page->objects;
23910c50
PE
1763 new.freelist = NULL;
1764 } else {
1765 new.freelist = freelist;
1766 }
2cfb7455 1767
a0132ac0 1768 VM_BUG_ON(new.frozen);
7ced3719 1769 new.frozen = 1;
2cfb7455 1770
7ced3719 1771 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1772 freelist, counters,
02d7633f 1773 new.freelist, new.counters,
7ced3719 1774 "acquire_slab"))
7ced3719 1775 return NULL;
2cfb7455
CL
1776
1777 remove_partial(n, page);
7ced3719 1778 WARN_ON(!freelist);
49e22585 1779 return freelist;
81819f0f
CL
1780}
1781
633b0764 1782static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1783static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1784
81819f0f 1785/*
672bba3a 1786 * Try to allocate a partial slab from a specific node.
81819f0f 1787 */
8ba00bb6
JK
1788static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1789 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1790{
49e22585
CL
1791 struct page *page, *page2;
1792 void *object = NULL;
633b0764
JK
1793 int available = 0;
1794 int objects;
81819f0f
CL
1795
1796 /*
1797 * Racy check. If we mistakenly see no partial slabs then we
1798 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1799 * partial slab and there is none available then get_partials()
1800 * will return NULL.
81819f0f
CL
1801 */
1802 if (!n || !n->nr_partial)
1803 return NULL;
1804
1805 spin_lock(&n->list_lock);
49e22585 1806 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1807 void *t;
49e22585 1808
8ba00bb6
JK
1809 if (!pfmemalloc_match(page, flags))
1810 continue;
1811
633b0764 1812 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1813 if (!t)
1814 break;
1815
633b0764 1816 available += objects;
12d79634 1817 if (!object) {
49e22585 1818 c->page = page;
49e22585 1819 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1820 object = t;
49e22585 1821 } else {
633b0764 1822 put_cpu_partial(s, page, 0);
8028dcea 1823 stat(s, CPU_PARTIAL_NODE);
49e22585 1824 }
345c905d
JK
1825 if (!kmem_cache_has_cpu_partial(s)
1826 || available > s->cpu_partial / 2)
49e22585
CL
1827 break;
1828
497b66f2 1829 }
81819f0f 1830 spin_unlock(&n->list_lock);
497b66f2 1831 return object;
81819f0f
CL
1832}
1833
1834/*
672bba3a 1835 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1836 */
de3ec035 1837static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1838 struct kmem_cache_cpu *c)
81819f0f
CL
1839{
1840#ifdef CONFIG_NUMA
1841 struct zonelist *zonelist;
dd1a239f 1842 struct zoneref *z;
54a6eb5c
MG
1843 struct zone *zone;
1844 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1845 void *object;
cc9a6c87 1846 unsigned int cpuset_mems_cookie;
81819f0f
CL
1847
1848 /*
672bba3a
CL
1849 * The defrag ratio allows a configuration of the tradeoffs between
1850 * inter node defragmentation and node local allocations. A lower
1851 * defrag_ratio increases the tendency to do local allocations
1852 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1853 *
672bba3a
CL
1854 * If the defrag_ratio is set to 0 then kmalloc() always
1855 * returns node local objects. If the ratio is higher then kmalloc()
1856 * may return off node objects because partial slabs are obtained
1857 * from other nodes and filled up.
81819f0f 1858 *
43efd3ea
LP
1859 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1860 * (which makes defrag_ratio = 1000) then every (well almost)
1861 * allocation will first attempt to defrag slab caches on other nodes.
1862 * This means scanning over all nodes to look for partial slabs which
1863 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1864 * with available objects.
81819f0f 1865 */
9824601e
CL
1866 if (!s->remote_node_defrag_ratio ||
1867 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1868 return NULL;
1869
cc9a6c87 1870 do {
d26914d1 1871 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1872 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1873 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1874 struct kmem_cache_node *n;
1875
1876 n = get_node(s, zone_to_nid(zone));
1877
dee2f8aa 1878 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1879 n->nr_partial > s->min_partial) {
8ba00bb6 1880 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1881 if (object) {
1882 /*
d26914d1
MG
1883 * Don't check read_mems_allowed_retry()
1884 * here - if mems_allowed was updated in
1885 * parallel, that was a harmless race
1886 * between allocation and the cpuset
1887 * update
cc9a6c87 1888 */
cc9a6c87
MG
1889 return object;
1890 }
c0ff7453 1891 }
81819f0f 1892 }
d26914d1 1893 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1894#endif
1895 return NULL;
1896}
1897
1898/*
1899 * Get a partial page, lock it and return it.
1900 */
497b66f2 1901static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1902 struct kmem_cache_cpu *c)
81819f0f 1903{
497b66f2 1904 void *object;
a561ce00
JK
1905 int searchnode = node;
1906
1907 if (node == NUMA_NO_NODE)
1908 searchnode = numa_mem_id();
1909 else if (!node_present_pages(node))
1910 searchnode = node_to_mem_node(node);
81819f0f 1911
8ba00bb6 1912 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1913 if (object || node != NUMA_NO_NODE)
1914 return object;
81819f0f 1915
acd19fd1 1916 return get_any_partial(s, flags, c);
81819f0f
CL
1917}
1918
8a5ec0ba
CL
1919#ifdef CONFIG_PREEMPT
1920/*
1921 * Calculate the next globally unique transaction for disambiguiation
1922 * during cmpxchg. The transactions start with the cpu number and are then
1923 * incremented by CONFIG_NR_CPUS.
1924 */
1925#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1926#else
1927/*
1928 * No preemption supported therefore also no need to check for
1929 * different cpus.
1930 */
1931#define TID_STEP 1
1932#endif
1933
1934static inline unsigned long next_tid(unsigned long tid)
1935{
1936 return tid + TID_STEP;
1937}
1938
1939static inline unsigned int tid_to_cpu(unsigned long tid)
1940{
1941 return tid % TID_STEP;
1942}
1943
1944static inline unsigned long tid_to_event(unsigned long tid)
1945{
1946 return tid / TID_STEP;
1947}
1948
1949static inline unsigned int init_tid(int cpu)
1950{
1951 return cpu;
1952}
1953
1954static inline void note_cmpxchg_failure(const char *n,
1955 const struct kmem_cache *s, unsigned long tid)
1956{
1957#ifdef SLUB_DEBUG_CMPXCHG
1958 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1959
f9f58285 1960 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1961
1962#ifdef CONFIG_PREEMPT
1963 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1964 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1965 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1966 else
1967#endif
1968 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1969 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1970 tid_to_event(tid), tid_to_event(actual_tid));
1971 else
f9f58285 1972 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1973 actual_tid, tid, next_tid(tid));
1974#endif
4fdccdfb 1975 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1976}
1977
788e1aad 1978static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1979{
8a5ec0ba
CL
1980 int cpu;
1981
1982 for_each_possible_cpu(cpu)
1983 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1984}
2cfb7455 1985
81819f0f
CL
1986/*
1987 * Remove the cpu slab
1988 */
d0e0ac97
CG
1989static void deactivate_slab(struct kmem_cache *s, struct page *page,
1990 void *freelist)
81819f0f 1991{
2cfb7455 1992 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1993 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1994 int lock = 0;
1995 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1996 void *nextfree;
136333d1 1997 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1998 struct page new;
1999 struct page old;
2000
2001 if (page->freelist) {
84e554e6 2002 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2003 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2004 }
2005
894b8788 2006 /*
2cfb7455
CL
2007 * Stage one: Free all available per cpu objects back
2008 * to the page freelist while it is still frozen. Leave the
2009 * last one.
2010 *
2011 * There is no need to take the list->lock because the page
2012 * is still frozen.
2013 */
2014 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2015 void *prior;
2016 unsigned long counters;
2017
2018 do {
2019 prior = page->freelist;
2020 counters = page->counters;
2021 set_freepointer(s, freelist, prior);
2022 new.counters = counters;
2023 new.inuse--;
a0132ac0 2024 VM_BUG_ON(!new.frozen);
2cfb7455 2025
1d07171c 2026 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2027 prior, counters,
2028 freelist, new.counters,
2029 "drain percpu freelist"));
2030
2031 freelist = nextfree;
2032 }
2033
894b8788 2034 /*
2cfb7455
CL
2035 * Stage two: Ensure that the page is unfrozen while the
2036 * list presence reflects the actual number of objects
2037 * during unfreeze.
2038 *
2039 * We setup the list membership and then perform a cmpxchg
2040 * with the count. If there is a mismatch then the page
2041 * is not unfrozen but the page is on the wrong list.
2042 *
2043 * Then we restart the process which may have to remove
2044 * the page from the list that we just put it on again
2045 * because the number of objects in the slab may have
2046 * changed.
894b8788 2047 */
2cfb7455 2048redo:
894b8788 2049
2cfb7455
CL
2050 old.freelist = page->freelist;
2051 old.counters = page->counters;
a0132ac0 2052 VM_BUG_ON(!old.frozen);
7c2e132c 2053
2cfb7455
CL
2054 /* Determine target state of the slab */
2055 new.counters = old.counters;
2056 if (freelist) {
2057 new.inuse--;
2058 set_freepointer(s, freelist, old.freelist);
2059 new.freelist = freelist;
2060 } else
2061 new.freelist = old.freelist;
2062
2063 new.frozen = 0;
2064
8a5b20ae 2065 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2066 m = M_FREE;
2067 else if (new.freelist) {
2068 m = M_PARTIAL;
2069 if (!lock) {
2070 lock = 1;
2071 /*
2072 * Taking the spinlock removes the possiblity
2073 * that acquire_slab() will see a slab page that
2074 * is frozen
2075 */
2076 spin_lock(&n->list_lock);
2077 }
2078 } else {
2079 m = M_FULL;
2080 if (kmem_cache_debug(s) && !lock) {
2081 lock = 1;
2082 /*
2083 * This also ensures that the scanning of full
2084 * slabs from diagnostic functions will not see
2085 * any frozen slabs.
2086 */
2087 spin_lock(&n->list_lock);
2088 }
2089 }
2090
2091 if (l != m) {
2092
2093 if (l == M_PARTIAL)
2094
2095 remove_partial(n, page);
2096
2097 else if (l == M_FULL)
894b8788 2098
c65c1877 2099 remove_full(s, n, page);
2cfb7455
CL
2100
2101 if (m == M_PARTIAL) {
2102
2103 add_partial(n, page, tail);
136333d1 2104 stat(s, tail);
2cfb7455
CL
2105
2106 } else if (m == M_FULL) {
894b8788 2107
2cfb7455
CL
2108 stat(s, DEACTIVATE_FULL);
2109 add_full(s, n, page);
2110
2111 }
2112 }
2113
2114 l = m;
1d07171c 2115 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2116 old.freelist, old.counters,
2117 new.freelist, new.counters,
2118 "unfreezing slab"))
2119 goto redo;
2120
2cfb7455
CL
2121 if (lock)
2122 spin_unlock(&n->list_lock);
2123
2124 if (m == M_FREE) {
2125 stat(s, DEACTIVATE_EMPTY);
2126 discard_slab(s, page);
2127 stat(s, FREE_SLAB);
894b8788 2128 }
81819f0f
CL
2129}
2130
d24ac77f
JK
2131/*
2132 * Unfreeze all the cpu partial slabs.
2133 *
59a09917
CL
2134 * This function must be called with interrupts disabled
2135 * for the cpu using c (or some other guarantee must be there
2136 * to guarantee no concurrent accesses).
d24ac77f 2137 */
59a09917
CL
2138static void unfreeze_partials(struct kmem_cache *s,
2139 struct kmem_cache_cpu *c)
49e22585 2140{
345c905d 2141#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2142 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2143 struct page *page, *discard_page = NULL;
49e22585
CL
2144
2145 while ((page = c->partial)) {
49e22585
CL
2146 struct page new;
2147 struct page old;
2148
2149 c->partial = page->next;
43d77867
JK
2150
2151 n2 = get_node(s, page_to_nid(page));
2152 if (n != n2) {
2153 if (n)
2154 spin_unlock(&n->list_lock);
2155
2156 n = n2;
2157 spin_lock(&n->list_lock);
2158 }
49e22585
CL
2159
2160 do {
2161
2162 old.freelist = page->freelist;
2163 old.counters = page->counters;
a0132ac0 2164 VM_BUG_ON(!old.frozen);
49e22585
CL
2165
2166 new.counters = old.counters;
2167 new.freelist = old.freelist;
2168
2169 new.frozen = 0;
2170
d24ac77f 2171 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2172 old.freelist, old.counters,
2173 new.freelist, new.counters,
2174 "unfreezing slab"));
2175
8a5b20ae 2176 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2177 page->next = discard_page;
2178 discard_page = page;
43d77867
JK
2179 } else {
2180 add_partial(n, page, DEACTIVATE_TO_TAIL);
2181 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2182 }
2183 }
2184
2185 if (n)
2186 spin_unlock(&n->list_lock);
9ada1934
SL
2187
2188 while (discard_page) {
2189 page = discard_page;
2190 discard_page = discard_page->next;
2191
2192 stat(s, DEACTIVATE_EMPTY);
2193 discard_slab(s, page);
2194 stat(s, FREE_SLAB);
2195 }
345c905d 2196#endif
49e22585
CL
2197}
2198
2199/*
2200 * Put a page that was just frozen (in __slab_free) into a partial page
2201 * slot if available. This is done without interrupts disabled and without
2202 * preemption disabled. The cmpxchg is racy and may put the partial page
2203 * onto a random cpus partial slot.
2204 *
2205 * If we did not find a slot then simply move all the partials to the
2206 * per node partial list.
2207 */
633b0764 2208static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2209{
345c905d 2210#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2211 struct page *oldpage;
2212 int pages;
2213 int pobjects;
2214
d6e0b7fa 2215 preempt_disable();
49e22585
CL
2216 do {
2217 pages = 0;
2218 pobjects = 0;
2219 oldpage = this_cpu_read(s->cpu_slab->partial);
2220
2221 if (oldpage) {
2222 pobjects = oldpage->pobjects;
2223 pages = oldpage->pages;
2224 if (drain && pobjects > s->cpu_partial) {
2225 unsigned long flags;
2226 /*
2227 * partial array is full. Move the existing
2228 * set to the per node partial list.
2229 */
2230 local_irq_save(flags);
59a09917 2231 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2232 local_irq_restore(flags);
e24fc410 2233 oldpage = NULL;
49e22585
CL
2234 pobjects = 0;
2235 pages = 0;
8028dcea 2236 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2237 }
2238 }
2239
2240 pages++;
2241 pobjects += page->objects - page->inuse;
2242
2243 page->pages = pages;
2244 page->pobjects = pobjects;
2245 page->next = oldpage;
2246
d0e0ac97
CG
2247 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2248 != oldpage);
d6e0b7fa
VD
2249 if (unlikely(!s->cpu_partial)) {
2250 unsigned long flags;
2251
2252 local_irq_save(flags);
2253 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2254 local_irq_restore(flags);
2255 }
2256 preempt_enable();
345c905d 2257#endif
49e22585
CL
2258}
2259
dfb4f096 2260static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2261{
84e554e6 2262 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2263 deactivate_slab(s, c->page, c->freelist);
2264
2265 c->tid = next_tid(c->tid);
2266 c->page = NULL;
2267 c->freelist = NULL;
81819f0f
CL
2268}
2269
2270/*
2271 * Flush cpu slab.
6446faa2 2272 *
81819f0f
CL
2273 * Called from IPI handler with interrupts disabled.
2274 */
0c710013 2275static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2276{
9dfc6e68 2277 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2278
49e22585
CL
2279 if (likely(c)) {
2280 if (c->page)
2281 flush_slab(s, c);
2282
59a09917 2283 unfreeze_partials(s, c);
49e22585 2284 }
81819f0f
CL
2285}
2286
2287static void flush_cpu_slab(void *d)
2288{
2289 struct kmem_cache *s = d;
81819f0f 2290
dfb4f096 2291 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2292}
2293
a8364d55
GBY
2294static bool has_cpu_slab(int cpu, void *info)
2295{
2296 struct kmem_cache *s = info;
2297 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2298
02e1a9cd 2299 return c->page || c->partial;
a8364d55
GBY
2300}
2301
81819f0f
CL
2302static void flush_all(struct kmem_cache *s)
2303{
a8364d55 2304 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2305}
2306
dfb4f096
CL
2307/*
2308 * Check if the objects in a per cpu structure fit numa
2309 * locality expectations.
2310 */
57d437d2 2311static inline int node_match(struct page *page, int node)
dfb4f096
CL
2312{
2313#ifdef CONFIG_NUMA
4d7868e6 2314 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2315 return 0;
2316#endif
2317 return 1;
2318}
2319
9a02d699 2320#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2321static int count_free(struct page *page)
2322{
2323 return page->objects - page->inuse;
2324}
2325
9a02d699
DR
2326static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2327{
2328 return atomic_long_read(&n->total_objects);
2329}
2330#endif /* CONFIG_SLUB_DEBUG */
2331
2332#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2333static unsigned long count_partial(struct kmem_cache_node *n,
2334 int (*get_count)(struct page *))
2335{
2336 unsigned long flags;
2337 unsigned long x = 0;
2338 struct page *page;
2339
2340 spin_lock_irqsave(&n->list_lock, flags);
2341 list_for_each_entry(page, &n->partial, lru)
2342 x += get_count(page);
2343 spin_unlock_irqrestore(&n->list_lock, flags);
2344 return x;
2345}
9a02d699 2346#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2347
781b2ba6
PE
2348static noinline void
2349slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2350{
9a02d699
DR
2351#ifdef CONFIG_SLUB_DEBUG
2352 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2353 DEFAULT_RATELIMIT_BURST);
781b2ba6 2354 int node;
fa45dc25 2355 struct kmem_cache_node *n;
781b2ba6 2356
9a02d699
DR
2357 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2358 return;
2359
5b3810e5
VB
2360 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2361 nid, gfpflags, &gfpflags);
f9f58285
FF
2362 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2363 s->name, s->object_size, s->size, oo_order(s->oo),
2364 oo_order(s->min));
781b2ba6 2365
3b0efdfa 2366 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2367 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2368 s->name);
fa5ec8a1 2369
fa45dc25 2370 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2371 unsigned long nr_slabs;
2372 unsigned long nr_objs;
2373 unsigned long nr_free;
2374
26c02cf0
AB
2375 nr_free = count_partial(n, count_free);
2376 nr_slabs = node_nr_slabs(n);
2377 nr_objs = node_nr_objs(n);
781b2ba6 2378
f9f58285 2379 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2380 node, nr_slabs, nr_objs, nr_free);
2381 }
9a02d699 2382#endif
781b2ba6
PE
2383}
2384
497b66f2
CL
2385static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2386 int node, struct kmem_cache_cpu **pc)
2387{
6faa6833 2388 void *freelist;
188fd063
CL
2389 struct kmem_cache_cpu *c = *pc;
2390 struct page *page;
497b66f2 2391
188fd063 2392 freelist = get_partial(s, flags, node, c);
497b66f2 2393
188fd063
CL
2394 if (freelist)
2395 return freelist;
2396
2397 page = new_slab(s, flags, node);
497b66f2 2398 if (page) {
7c8e0181 2399 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2400 if (c->page)
2401 flush_slab(s, c);
2402
2403 /*
2404 * No other reference to the page yet so we can
2405 * muck around with it freely without cmpxchg
2406 */
6faa6833 2407 freelist = page->freelist;
497b66f2
CL
2408 page->freelist = NULL;
2409
2410 stat(s, ALLOC_SLAB);
497b66f2
CL
2411 c->page = page;
2412 *pc = c;
2413 } else
6faa6833 2414 freelist = NULL;
497b66f2 2415
6faa6833 2416 return freelist;
497b66f2
CL
2417}
2418
072bb0aa
MG
2419static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2420{
2421 if (unlikely(PageSlabPfmemalloc(page)))
2422 return gfp_pfmemalloc_allowed(gfpflags);
2423
2424 return true;
2425}
2426
213eeb9f 2427/*
d0e0ac97
CG
2428 * Check the page->freelist of a page and either transfer the freelist to the
2429 * per cpu freelist or deactivate the page.
213eeb9f
CL
2430 *
2431 * The page is still frozen if the return value is not NULL.
2432 *
2433 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2434 *
2435 * This function must be called with interrupt disabled.
213eeb9f
CL
2436 */
2437static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2438{
2439 struct page new;
2440 unsigned long counters;
2441 void *freelist;
2442
2443 do {
2444 freelist = page->freelist;
2445 counters = page->counters;
6faa6833 2446
213eeb9f 2447 new.counters = counters;
a0132ac0 2448 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2449
2450 new.inuse = page->objects;
2451 new.frozen = freelist != NULL;
2452
d24ac77f 2453 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2454 freelist, counters,
2455 NULL, new.counters,
2456 "get_freelist"));
2457
2458 return freelist;
2459}
2460
81819f0f 2461/*
894b8788
CL
2462 * Slow path. The lockless freelist is empty or we need to perform
2463 * debugging duties.
2464 *
894b8788
CL
2465 * Processing is still very fast if new objects have been freed to the
2466 * regular freelist. In that case we simply take over the regular freelist
2467 * as the lockless freelist and zap the regular freelist.
81819f0f 2468 *
894b8788
CL
2469 * If that is not working then we fall back to the partial lists. We take the
2470 * first element of the freelist as the object to allocate now and move the
2471 * rest of the freelist to the lockless freelist.
81819f0f 2472 *
894b8788 2473 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2474 * we need to allocate a new slab. This is the slowest path since it involves
2475 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2476 *
2477 * Version of __slab_alloc to use when we know that interrupts are
2478 * already disabled (which is the case for bulk allocation).
81819f0f 2479 */
a380a3c7 2480static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2481 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2482{
6faa6833 2483 void *freelist;
f6e7def7 2484 struct page *page;
81819f0f 2485
f6e7def7
CL
2486 page = c->page;
2487 if (!page)
81819f0f 2488 goto new_slab;
49e22585 2489redo:
6faa6833 2490
57d437d2 2491 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2492 int searchnode = node;
2493
2494 if (node != NUMA_NO_NODE && !node_present_pages(node))
2495 searchnode = node_to_mem_node(node);
2496
2497 if (unlikely(!node_match(page, searchnode))) {
2498 stat(s, ALLOC_NODE_MISMATCH);
2499 deactivate_slab(s, page, c->freelist);
2500 c->page = NULL;
2501 c->freelist = NULL;
2502 goto new_slab;
2503 }
fc59c053 2504 }
6446faa2 2505
072bb0aa
MG
2506 /*
2507 * By rights, we should be searching for a slab page that was
2508 * PFMEMALLOC but right now, we are losing the pfmemalloc
2509 * information when the page leaves the per-cpu allocator
2510 */
2511 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2512 deactivate_slab(s, page, c->freelist);
2513 c->page = NULL;
2514 c->freelist = NULL;
2515 goto new_slab;
2516 }
2517
73736e03 2518 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2519 freelist = c->freelist;
2520 if (freelist)
73736e03 2521 goto load_freelist;
03e404af 2522
f6e7def7 2523 freelist = get_freelist(s, page);
6446faa2 2524
6faa6833 2525 if (!freelist) {
03e404af
CL
2526 c->page = NULL;
2527 stat(s, DEACTIVATE_BYPASS);
fc59c053 2528 goto new_slab;
03e404af 2529 }
6446faa2 2530
84e554e6 2531 stat(s, ALLOC_REFILL);
6446faa2 2532
894b8788 2533load_freelist:
507effea
CL
2534 /*
2535 * freelist is pointing to the list of objects to be used.
2536 * page is pointing to the page from which the objects are obtained.
2537 * That page must be frozen for per cpu allocations to work.
2538 */
a0132ac0 2539 VM_BUG_ON(!c->page->frozen);
6faa6833 2540 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2541 c->tid = next_tid(c->tid);
6faa6833 2542 return freelist;
81819f0f 2543
81819f0f 2544new_slab:
2cfb7455 2545
49e22585 2546 if (c->partial) {
f6e7def7
CL
2547 page = c->page = c->partial;
2548 c->partial = page->next;
49e22585
CL
2549 stat(s, CPU_PARTIAL_ALLOC);
2550 c->freelist = NULL;
2551 goto redo;
81819f0f
CL
2552 }
2553
188fd063 2554 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2555
f4697436 2556 if (unlikely(!freelist)) {
9a02d699 2557 slab_out_of_memory(s, gfpflags, node);
f4697436 2558 return NULL;
81819f0f 2559 }
2cfb7455 2560
f6e7def7 2561 page = c->page;
5091b74a 2562 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2563 goto load_freelist;
2cfb7455 2564
497b66f2 2565 /* Only entered in the debug case */
d0e0ac97
CG
2566 if (kmem_cache_debug(s) &&
2567 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2568 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2569
f6e7def7 2570 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2571 c->page = NULL;
2572 c->freelist = NULL;
6faa6833 2573 return freelist;
894b8788
CL
2574}
2575
a380a3c7
CL
2576/*
2577 * Another one that disabled interrupt and compensates for possible
2578 * cpu changes by refetching the per cpu area pointer.
2579 */
2580static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2581 unsigned long addr, struct kmem_cache_cpu *c)
2582{
2583 void *p;
2584 unsigned long flags;
2585
2586 local_irq_save(flags);
2587#ifdef CONFIG_PREEMPT
2588 /*
2589 * We may have been preempted and rescheduled on a different
2590 * cpu before disabling interrupts. Need to reload cpu area
2591 * pointer.
2592 */
2593 c = this_cpu_ptr(s->cpu_slab);
2594#endif
2595
2596 p = ___slab_alloc(s, gfpflags, node, addr, c);
2597 local_irq_restore(flags);
2598 return p;
2599}
2600
894b8788
CL
2601/*
2602 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2603 * have the fastpath folded into their functions. So no function call
2604 * overhead for requests that can be satisfied on the fastpath.
2605 *
2606 * The fastpath works by first checking if the lockless freelist can be used.
2607 * If not then __slab_alloc is called for slow processing.
2608 *
2609 * Otherwise we can simply pick the next object from the lockless free list.
2610 */
2b847c3c 2611static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2612 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2613{
03ec0ed5 2614 void *object;
dfb4f096 2615 struct kmem_cache_cpu *c;
57d437d2 2616 struct page *page;
8a5ec0ba 2617 unsigned long tid;
1f84260c 2618
8135be5a
VD
2619 s = slab_pre_alloc_hook(s, gfpflags);
2620 if (!s)
773ff60e 2621 return NULL;
8a5ec0ba 2622redo:
8a5ec0ba
CL
2623 /*
2624 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2625 * enabled. We may switch back and forth between cpus while
2626 * reading from one cpu area. That does not matter as long
2627 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2628 *
9aabf810
JK
2629 * We should guarantee that tid and kmem_cache are retrieved on
2630 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2631 * to check if it is matched or not.
8a5ec0ba 2632 */
9aabf810
JK
2633 do {
2634 tid = this_cpu_read(s->cpu_slab->tid);
2635 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2636 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2637 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2638
2639 /*
2640 * Irqless object alloc/free algorithm used here depends on sequence
2641 * of fetching cpu_slab's data. tid should be fetched before anything
2642 * on c to guarantee that object and page associated with previous tid
2643 * won't be used with current tid. If we fetch tid first, object and
2644 * page could be one associated with next tid and our alloc/free
2645 * request will be failed. In this case, we will retry. So, no problem.
2646 */
2647 barrier();
8a5ec0ba 2648
8a5ec0ba
CL
2649 /*
2650 * The transaction ids are globally unique per cpu and per operation on
2651 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2652 * occurs on the right processor and that there was no operation on the
2653 * linked list in between.
2654 */
8a5ec0ba 2655
9dfc6e68 2656 object = c->freelist;
57d437d2 2657 page = c->page;
8eae1492 2658 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2659 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2660 stat(s, ALLOC_SLOWPATH);
2661 } else {
0ad9500e
ED
2662 void *next_object = get_freepointer_safe(s, object);
2663
8a5ec0ba 2664 /*
25985edc 2665 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2666 * operation and if we are on the right processor.
2667 *
d0e0ac97
CG
2668 * The cmpxchg does the following atomically (without lock
2669 * semantics!)
8a5ec0ba
CL
2670 * 1. Relocate first pointer to the current per cpu area.
2671 * 2. Verify that tid and freelist have not been changed
2672 * 3. If they were not changed replace tid and freelist
2673 *
d0e0ac97
CG
2674 * Since this is without lock semantics the protection is only
2675 * against code executing on this cpu *not* from access by
2676 * other cpus.
8a5ec0ba 2677 */
933393f5 2678 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2679 s->cpu_slab->freelist, s->cpu_slab->tid,
2680 object, tid,
0ad9500e 2681 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2682
2683 note_cmpxchg_failure("slab_alloc", s, tid);
2684 goto redo;
2685 }
0ad9500e 2686 prefetch_freepointer(s, next_object);
84e554e6 2687 stat(s, ALLOC_FASTPATH);
894b8788 2688 }
8a5ec0ba 2689
74e2134f 2690 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2691 memset(object, 0, s->object_size);
d07dbea4 2692
03ec0ed5 2693 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2694
894b8788 2695 return object;
81819f0f
CL
2696}
2697
2b847c3c
EG
2698static __always_inline void *slab_alloc(struct kmem_cache *s,
2699 gfp_t gfpflags, unsigned long addr)
2700{
2701 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2702}
2703
81819f0f
CL
2704void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2705{
2b847c3c 2706 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2707
d0e0ac97
CG
2708 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2709 s->size, gfpflags);
5b882be4
EGM
2710
2711 return ret;
81819f0f
CL
2712}
2713EXPORT_SYMBOL(kmem_cache_alloc);
2714
0f24f128 2715#ifdef CONFIG_TRACING
4a92379b
RK
2716void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2717{
2b847c3c 2718 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2719 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2720 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2721 return ret;
2722}
2723EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2724#endif
2725
81819f0f
CL
2726#ifdef CONFIG_NUMA
2727void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2728{
2b847c3c 2729 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2730
ca2b84cb 2731 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2732 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2733
2734 return ret;
81819f0f
CL
2735}
2736EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2737
0f24f128 2738#ifdef CONFIG_TRACING
4a92379b 2739void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2740 gfp_t gfpflags,
4a92379b 2741 int node, size_t size)
5b882be4 2742{
2b847c3c 2743 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2744
2745 trace_kmalloc_node(_RET_IP_, ret,
2746 size, s->size, gfpflags, node);
0316bec2 2747
505f5dcb 2748 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2749 return ret;
5b882be4 2750}
4a92379b 2751EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2752#endif
5d1f57e4 2753#endif
5b882be4 2754
81819f0f 2755/*
94e4d712 2756 * Slow path handling. This may still be called frequently since objects
894b8788 2757 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2758 *
894b8788
CL
2759 * So we still attempt to reduce cache line usage. Just take the slab
2760 * lock and free the item. If there is no additional partial page
2761 * handling required then we can return immediately.
81819f0f 2762 */
894b8788 2763static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2764 void *head, void *tail, int cnt,
2765 unsigned long addr)
2766
81819f0f
CL
2767{
2768 void *prior;
2cfb7455 2769 int was_frozen;
2cfb7455
CL
2770 struct page new;
2771 unsigned long counters;
2772 struct kmem_cache_node *n = NULL;
61728d1e 2773 unsigned long uninitialized_var(flags);
81819f0f 2774
8a5ec0ba 2775 stat(s, FREE_SLOWPATH);
81819f0f 2776
19c7ff9e 2777 if (kmem_cache_debug(s) &&
282acb43 2778 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2779 return;
6446faa2 2780
2cfb7455 2781 do {
837d678d
JK
2782 if (unlikely(n)) {
2783 spin_unlock_irqrestore(&n->list_lock, flags);
2784 n = NULL;
2785 }
2cfb7455
CL
2786 prior = page->freelist;
2787 counters = page->counters;
81084651 2788 set_freepointer(s, tail, prior);
2cfb7455
CL
2789 new.counters = counters;
2790 was_frozen = new.frozen;
81084651 2791 new.inuse -= cnt;
837d678d 2792 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2793
c65c1877 2794 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2795
2796 /*
d0e0ac97
CG
2797 * Slab was on no list before and will be
2798 * partially empty
2799 * We can defer the list move and instead
2800 * freeze it.
49e22585
CL
2801 */
2802 new.frozen = 1;
2803
c65c1877 2804 } else { /* Needs to be taken off a list */
49e22585 2805
b455def2 2806 n = get_node(s, page_to_nid(page));
49e22585
CL
2807 /*
2808 * Speculatively acquire the list_lock.
2809 * If the cmpxchg does not succeed then we may
2810 * drop the list_lock without any processing.
2811 *
2812 * Otherwise the list_lock will synchronize with
2813 * other processors updating the list of slabs.
2814 */
2815 spin_lock_irqsave(&n->list_lock, flags);
2816
2817 }
2cfb7455 2818 }
81819f0f 2819
2cfb7455
CL
2820 } while (!cmpxchg_double_slab(s, page,
2821 prior, counters,
81084651 2822 head, new.counters,
2cfb7455 2823 "__slab_free"));
81819f0f 2824
2cfb7455 2825 if (likely(!n)) {
49e22585
CL
2826
2827 /*
2828 * If we just froze the page then put it onto the
2829 * per cpu partial list.
2830 */
8028dcea 2831 if (new.frozen && !was_frozen) {
49e22585 2832 put_cpu_partial(s, page, 1);
8028dcea
AS
2833 stat(s, CPU_PARTIAL_FREE);
2834 }
49e22585 2835 /*
2cfb7455
CL
2836 * The list lock was not taken therefore no list
2837 * activity can be necessary.
2838 */
b455def2
L
2839 if (was_frozen)
2840 stat(s, FREE_FROZEN);
2841 return;
2842 }
81819f0f 2843
8a5b20ae 2844 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2845 goto slab_empty;
2846
81819f0f 2847 /*
837d678d
JK
2848 * Objects left in the slab. If it was not on the partial list before
2849 * then add it.
81819f0f 2850 */
345c905d
JK
2851 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2852 if (kmem_cache_debug(s))
c65c1877 2853 remove_full(s, n, page);
837d678d
JK
2854 add_partial(n, page, DEACTIVATE_TO_TAIL);
2855 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2856 }
80f08c19 2857 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2858 return;
2859
2860slab_empty:
a973e9dd 2861 if (prior) {
81819f0f 2862 /*
6fbabb20 2863 * Slab on the partial list.
81819f0f 2864 */
5cc6eee8 2865 remove_partial(n, page);
84e554e6 2866 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2867 } else {
6fbabb20 2868 /* Slab must be on the full list */
c65c1877
PZ
2869 remove_full(s, n, page);
2870 }
2cfb7455 2871
80f08c19 2872 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2873 stat(s, FREE_SLAB);
81819f0f 2874 discard_slab(s, page);
81819f0f
CL
2875}
2876
894b8788
CL
2877/*
2878 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2879 * can perform fastpath freeing without additional function calls.
2880 *
2881 * The fastpath is only possible if we are freeing to the current cpu slab
2882 * of this processor. This typically the case if we have just allocated
2883 * the item before.
2884 *
2885 * If fastpath is not possible then fall back to __slab_free where we deal
2886 * with all sorts of special processing.
81084651
JDB
2887 *
2888 * Bulk free of a freelist with several objects (all pointing to the
2889 * same page) possible by specifying head and tail ptr, plus objects
2890 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2891 */
80a9201a
AP
2892static __always_inline void do_slab_free(struct kmem_cache *s,
2893 struct page *page, void *head, void *tail,
2894 int cnt, unsigned long addr)
894b8788 2895{
81084651 2896 void *tail_obj = tail ? : head;
dfb4f096 2897 struct kmem_cache_cpu *c;
8a5ec0ba 2898 unsigned long tid;
8a5ec0ba
CL
2899redo:
2900 /*
2901 * Determine the currently cpus per cpu slab.
2902 * The cpu may change afterward. However that does not matter since
2903 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2904 * during the cmpxchg then the free will succeed.
8a5ec0ba 2905 */
9aabf810
JK
2906 do {
2907 tid = this_cpu_read(s->cpu_slab->tid);
2908 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2909 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2910 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2911
9aabf810
JK
2912 /* Same with comment on barrier() in slab_alloc_node() */
2913 barrier();
c016b0bd 2914
442b06bc 2915 if (likely(page == c->page)) {
81084651 2916 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2917
933393f5 2918 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2919 s->cpu_slab->freelist, s->cpu_slab->tid,
2920 c->freelist, tid,
81084651 2921 head, next_tid(tid)))) {
8a5ec0ba
CL
2922
2923 note_cmpxchg_failure("slab_free", s, tid);
2924 goto redo;
2925 }
84e554e6 2926 stat(s, FREE_FASTPATH);
894b8788 2927 } else
81084651 2928 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2929
894b8788
CL
2930}
2931
80a9201a
AP
2932static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2933 void *head, void *tail, int cnt,
2934 unsigned long addr)
2935{
2936 slab_free_freelist_hook(s, head, tail);
2937 /*
2938 * slab_free_freelist_hook() could have put the items into quarantine.
2939 * If so, no need to free them.
2940 */
2941 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
2942 return;
2943 do_slab_free(s, page, head, tail, cnt, addr);
2944}
2945
2946#ifdef CONFIG_KASAN
2947void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2948{
2949 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2950}
2951#endif
2952
81819f0f
CL
2953void kmem_cache_free(struct kmem_cache *s, void *x)
2954{
b9ce5ef4
GC
2955 s = cache_from_obj(s, x);
2956 if (!s)
79576102 2957 return;
81084651 2958 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2959 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2960}
2961EXPORT_SYMBOL(kmem_cache_free);
2962
d0ecd894 2963struct detached_freelist {
fbd02630 2964 struct page *page;
d0ecd894
JDB
2965 void *tail;
2966 void *freelist;
2967 int cnt;
376bf125 2968 struct kmem_cache *s;
d0ecd894 2969};
fbd02630 2970
d0ecd894
JDB
2971/*
2972 * This function progressively scans the array with free objects (with
2973 * a limited look ahead) and extract objects belonging to the same
2974 * page. It builds a detached freelist directly within the given
2975 * page/objects. This can happen without any need for
2976 * synchronization, because the objects are owned by running process.
2977 * The freelist is build up as a single linked list in the objects.
2978 * The idea is, that this detached freelist can then be bulk
2979 * transferred to the real freelist(s), but only requiring a single
2980 * synchronization primitive. Look ahead in the array is limited due
2981 * to performance reasons.
2982 */
376bf125
JDB
2983static inline
2984int build_detached_freelist(struct kmem_cache *s, size_t size,
2985 void **p, struct detached_freelist *df)
d0ecd894
JDB
2986{
2987 size_t first_skipped_index = 0;
2988 int lookahead = 3;
2989 void *object;
ca257195 2990 struct page *page;
fbd02630 2991
d0ecd894
JDB
2992 /* Always re-init detached_freelist */
2993 df->page = NULL;
fbd02630 2994
d0ecd894
JDB
2995 do {
2996 object = p[--size];
ca257195 2997 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 2998 } while (!object && size);
3eed034d 2999
d0ecd894
JDB
3000 if (!object)
3001 return 0;
fbd02630 3002
ca257195
JDB
3003 page = virt_to_head_page(object);
3004 if (!s) {
3005 /* Handle kalloc'ed objects */
3006 if (unlikely(!PageSlab(page))) {
3007 BUG_ON(!PageCompound(page));
3008 kfree_hook(object);
4949148a 3009 __free_pages(page, compound_order(page));
ca257195
JDB
3010 p[size] = NULL; /* mark object processed */
3011 return size;
3012 }
3013 /* Derive kmem_cache from object */
3014 df->s = page->slab_cache;
3015 } else {
3016 df->s = cache_from_obj(s, object); /* Support for memcg */
3017 }
376bf125 3018
d0ecd894 3019 /* Start new detached freelist */
ca257195 3020 df->page = page;
376bf125 3021 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3022 df->tail = object;
3023 df->freelist = object;
3024 p[size] = NULL; /* mark object processed */
3025 df->cnt = 1;
3026
3027 while (size) {
3028 object = p[--size];
3029 if (!object)
3030 continue; /* Skip processed objects */
3031
3032 /* df->page is always set at this point */
3033 if (df->page == virt_to_head_page(object)) {
3034 /* Opportunity build freelist */
376bf125 3035 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3036 df->freelist = object;
3037 df->cnt++;
3038 p[size] = NULL; /* mark object processed */
3039
3040 continue;
fbd02630 3041 }
d0ecd894
JDB
3042
3043 /* Limit look ahead search */
3044 if (!--lookahead)
3045 break;
3046
3047 if (!first_skipped_index)
3048 first_skipped_index = size + 1;
fbd02630 3049 }
d0ecd894
JDB
3050
3051 return first_skipped_index;
3052}
3053
d0ecd894 3054/* Note that interrupts must be enabled when calling this function. */
376bf125 3055void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3056{
3057 if (WARN_ON(!size))
3058 return;
3059
3060 do {
3061 struct detached_freelist df;
3062
3063 size = build_detached_freelist(s, size, p, &df);
3064 if (unlikely(!df.page))
3065 continue;
3066
376bf125 3067 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3068 } while (likely(size));
484748f0
CL
3069}
3070EXPORT_SYMBOL(kmem_cache_free_bulk);
3071
994eb764 3072/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3073int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3074 void **p)
484748f0 3075{
994eb764
JDB
3076 struct kmem_cache_cpu *c;
3077 int i;
3078
03ec0ed5
JDB
3079 /* memcg and kmem_cache debug support */
3080 s = slab_pre_alloc_hook(s, flags);
3081 if (unlikely(!s))
3082 return false;
994eb764
JDB
3083 /*
3084 * Drain objects in the per cpu slab, while disabling local
3085 * IRQs, which protects against PREEMPT and interrupts
3086 * handlers invoking normal fastpath.
3087 */
3088 local_irq_disable();
3089 c = this_cpu_ptr(s->cpu_slab);
3090
3091 for (i = 0; i < size; i++) {
3092 void *object = c->freelist;
3093
ebe909e0 3094 if (unlikely(!object)) {
ebe909e0
JDB
3095 /*
3096 * Invoking slow path likely have side-effect
3097 * of re-populating per CPU c->freelist
3098 */
87098373 3099 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3100 _RET_IP_, c);
87098373
CL
3101 if (unlikely(!p[i]))
3102 goto error;
3103
ebe909e0
JDB
3104 c = this_cpu_ptr(s->cpu_slab);
3105 continue; /* goto for-loop */
3106 }
994eb764
JDB
3107 c->freelist = get_freepointer(s, object);
3108 p[i] = object;
3109 }
3110 c->tid = next_tid(c->tid);
3111 local_irq_enable();
3112
3113 /* Clear memory outside IRQ disabled fastpath loop */
3114 if (unlikely(flags & __GFP_ZERO)) {
3115 int j;
3116
3117 for (j = 0; j < i; j++)
3118 memset(p[j], 0, s->object_size);
3119 }
3120
03ec0ed5
JDB
3121 /* memcg and kmem_cache debug support */
3122 slab_post_alloc_hook(s, flags, size, p);
865762a8 3123 return i;
87098373 3124error:
87098373 3125 local_irq_enable();
03ec0ed5
JDB
3126 slab_post_alloc_hook(s, flags, i, p);
3127 __kmem_cache_free_bulk(s, i, p);
865762a8 3128 return 0;
484748f0
CL
3129}
3130EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3131
3132
81819f0f 3133/*
672bba3a
CL
3134 * Object placement in a slab is made very easy because we always start at
3135 * offset 0. If we tune the size of the object to the alignment then we can
3136 * get the required alignment by putting one properly sized object after
3137 * another.
81819f0f
CL
3138 *
3139 * Notice that the allocation order determines the sizes of the per cpu
3140 * caches. Each processor has always one slab available for allocations.
3141 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3142 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3143 * locking overhead.
81819f0f
CL
3144 */
3145
3146/*
3147 * Mininum / Maximum order of slab pages. This influences locking overhead
3148 * and slab fragmentation. A higher order reduces the number of partial slabs
3149 * and increases the number of allocations possible without having to
3150 * take the list_lock.
3151 */
3152static int slub_min_order;
114e9e89 3153static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 3154static int slub_min_objects;
81819f0f 3155
81819f0f
CL
3156/*
3157 * Calculate the order of allocation given an slab object size.
3158 *
672bba3a
CL
3159 * The order of allocation has significant impact on performance and other
3160 * system components. Generally order 0 allocations should be preferred since
3161 * order 0 does not cause fragmentation in the page allocator. Larger objects
3162 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3163 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3164 * would be wasted.
3165 *
3166 * In order to reach satisfactory performance we must ensure that a minimum
3167 * number of objects is in one slab. Otherwise we may generate too much
3168 * activity on the partial lists which requires taking the list_lock. This is
3169 * less a concern for large slabs though which are rarely used.
81819f0f 3170 *
672bba3a
CL
3171 * slub_max_order specifies the order where we begin to stop considering the
3172 * number of objects in a slab as critical. If we reach slub_max_order then
3173 * we try to keep the page order as low as possible. So we accept more waste
3174 * of space in favor of a small page order.
81819f0f 3175 *
672bba3a
CL
3176 * Higher order allocations also allow the placement of more objects in a
3177 * slab and thereby reduce object handling overhead. If the user has
3178 * requested a higher mininum order then we start with that one instead of
3179 * the smallest order which will fit the object.
81819f0f 3180 */
5e6d444e 3181static inline int slab_order(int size, int min_objects,
ab9a0f19 3182 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3183{
3184 int order;
3185 int rem;
6300ea75 3186 int min_order = slub_min_order;
81819f0f 3187
ab9a0f19 3188 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3189 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3190
9f835703 3191 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3192 order <= max_order; order++) {
81819f0f 3193
5e6d444e 3194 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3195
ab9a0f19 3196 rem = (slab_size - reserved) % size;
81819f0f 3197
5e6d444e 3198 if (rem <= slab_size / fract_leftover)
81819f0f 3199 break;
81819f0f 3200 }
672bba3a 3201
81819f0f
CL
3202 return order;
3203}
3204
ab9a0f19 3205static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3206{
3207 int order;
3208 int min_objects;
3209 int fraction;
e8120ff1 3210 int max_objects;
5e6d444e
CL
3211
3212 /*
3213 * Attempt to find best configuration for a slab. This
3214 * works by first attempting to generate a layout with
3215 * the best configuration and backing off gradually.
3216 *
422ff4d7 3217 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3218 * we reduce the minimum objects required in a slab.
3219 */
3220 min_objects = slub_min_objects;
9b2cd506
CL
3221 if (!min_objects)
3222 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3223 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3224 min_objects = min(min_objects, max_objects);
3225
5e6d444e 3226 while (min_objects > 1) {
c124f5b5 3227 fraction = 16;
5e6d444e
CL
3228 while (fraction >= 4) {
3229 order = slab_order(size, min_objects,
ab9a0f19 3230 slub_max_order, fraction, reserved);
5e6d444e
CL
3231 if (order <= slub_max_order)
3232 return order;
3233 fraction /= 2;
3234 }
5086c389 3235 min_objects--;
5e6d444e
CL
3236 }
3237
3238 /*
3239 * We were unable to place multiple objects in a slab. Now
3240 * lets see if we can place a single object there.
3241 */
ab9a0f19 3242 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3243 if (order <= slub_max_order)
3244 return order;
3245
3246 /*
3247 * Doh this slab cannot be placed using slub_max_order.
3248 */
ab9a0f19 3249 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3250 if (order < MAX_ORDER)
5e6d444e
CL
3251 return order;
3252 return -ENOSYS;
3253}
3254
5595cffc 3255static void
4053497d 3256init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3257{
3258 n->nr_partial = 0;
81819f0f
CL
3259 spin_lock_init(&n->list_lock);
3260 INIT_LIST_HEAD(&n->partial);
8ab1372f 3261#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3262 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3263 atomic_long_set(&n->total_objects, 0);
643b1138 3264 INIT_LIST_HEAD(&n->full);
8ab1372f 3265#endif
81819f0f
CL
3266}
3267
55136592 3268static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3269{
6c182dc0 3270 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3271 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3272
8a5ec0ba 3273 /*
d4d84fef
CM
3274 * Must align to double word boundary for the double cmpxchg
3275 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3276 */
d4d84fef
CM
3277 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3278 2 * sizeof(void *));
8a5ec0ba
CL
3279
3280 if (!s->cpu_slab)
3281 return 0;
3282
3283 init_kmem_cache_cpus(s);
4c93c355 3284
8a5ec0ba 3285 return 1;
4c93c355 3286}
4c93c355 3287
51df1142
CL
3288static struct kmem_cache *kmem_cache_node;
3289
81819f0f
CL
3290/*
3291 * No kmalloc_node yet so do it by hand. We know that this is the first
3292 * slab on the node for this slabcache. There are no concurrent accesses
3293 * possible.
3294 *
721ae22a
ZYW
3295 * Note that this function only works on the kmem_cache_node
3296 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3297 * memory on a fresh node that has no slab structures yet.
81819f0f 3298 */
55136592 3299static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3300{
3301 struct page *page;
3302 struct kmem_cache_node *n;
3303
51df1142 3304 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3305
51df1142 3306 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3307
3308 BUG_ON(!page);
a2f92ee7 3309 if (page_to_nid(page) != node) {
f9f58285
FF
3310 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3311 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3312 }
3313
81819f0f
CL
3314 n = page->freelist;
3315 BUG_ON(!n);
51df1142 3316 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3317 page->inuse = 1;
8cb0a506 3318 page->frozen = 0;
51df1142 3319 kmem_cache_node->node[node] = n;
8ab1372f 3320#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3321 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3322 init_tracking(kmem_cache_node, n);
8ab1372f 3323#endif
505f5dcb
AP
3324 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3325 GFP_KERNEL);
4053497d 3326 init_kmem_cache_node(n);
51df1142 3327 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3328
67b6c900 3329 /*
1e4dd946
SR
3330 * No locks need to be taken here as it has just been
3331 * initialized and there is no concurrent access.
67b6c900 3332 */
1e4dd946 3333 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3334}
3335
3336static void free_kmem_cache_nodes(struct kmem_cache *s)
3337{
3338 int node;
fa45dc25 3339 struct kmem_cache_node *n;
81819f0f 3340
fa45dc25
CL
3341 for_each_kmem_cache_node(s, node, n) {
3342 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3343 s->node[node] = NULL;
3344 }
3345}
3346
52b4b950
DS
3347void __kmem_cache_release(struct kmem_cache *s)
3348{
210e7a43 3349 cache_random_seq_destroy(s);
52b4b950
DS
3350 free_percpu(s->cpu_slab);
3351 free_kmem_cache_nodes(s);
3352}
3353
55136592 3354static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3355{
3356 int node;
81819f0f 3357
f64dc58c 3358 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3359 struct kmem_cache_node *n;
3360
73367bd8 3361 if (slab_state == DOWN) {
55136592 3362 early_kmem_cache_node_alloc(node);
73367bd8
AD
3363 continue;
3364 }
51df1142 3365 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3366 GFP_KERNEL, node);
81819f0f 3367
73367bd8
AD
3368 if (!n) {
3369 free_kmem_cache_nodes(s);
3370 return 0;
81819f0f 3371 }
73367bd8 3372
81819f0f 3373 s->node[node] = n;
4053497d 3374 init_kmem_cache_node(n);
81819f0f
CL
3375 }
3376 return 1;
3377}
81819f0f 3378
c0bdb232 3379static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3380{
3381 if (min < MIN_PARTIAL)
3382 min = MIN_PARTIAL;
3383 else if (min > MAX_PARTIAL)
3384 min = MAX_PARTIAL;
3385 s->min_partial = min;
3386}
3387
81819f0f
CL
3388/*
3389 * calculate_sizes() determines the order and the distribution of data within
3390 * a slab object.
3391 */
06b285dc 3392static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3393{
3394 unsigned long flags = s->flags;
80a9201a 3395 size_t size = s->object_size;
834f3d11 3396 int order;
81819f0f 3397
d8b42bf5
CL
3398 /*
3399 * Round up object size to the next word boundary. We can only
3400 * place the free pointer at word boundaries and this determines
3401 * the possible location of the free pointer.
3402 */
3403 size = ALIGN(size, sizeof(void *));
3404
3405#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3406 /*
3407 * Determine if we can poison the object itself. If the user of
3408 * the slab may touch the object after free or before allocation
3409 * then we should never poison the object itself.
3410 */
3411 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3412 !s->ctor)
81819f0f
CL
3413 s->flags |= __OBJECT_POISON;
3414 else
3415 s->flags &= ~__OBJECT_POISON;
3416
81819f0f
CL
3417
3418 /*
672bba3a 3419 * If we are Redzoning then check if there is some space between the
81819f0f 3420 * end of the object and the free pointer. If not then add an
672bba3a 3421 * additional word to have some bytes to store Redzone information.
81819f0f 3422 */
3b0efdfa 3423 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3424 size += sizeof(void *);
41ecc55b 3425#endif
81819f0f
CL
3426
3427 /*
672bba3a
CL
3428 * With that we have determined the number of bytes in actual use
3429 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3430 */
3431 s->inuse = size;
3432
3433 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3434 s->ctor)) {
81819f0f
CL
3435 /*
3436 * Relocate free pointer after the object if it is not
3437 * permitted to overwrite the first word of the object on
3438 * kmem_cache_free.
3439 *
3440 * This is the case if we do RCU, have a constructor or
3441 * destructor or are poisoning the objects.
3442 */
3443 s->offset = size;
3444 size += sizeof(void *);
3445 }
3446
c12b3c62 3447#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3448 if (flags & SLAB_STORE_USER)
3449 /*
3450 * Need to store information about allocs and frees after
3451 * the object.
3452 */
3453 size += 2 * sizeof(struct track);
80a9201a 3454#endif
81819f0f 3455
80a9201a
AP
3456 kasan_cache_create(s, &size, &s->flags);
3457#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3458 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3459 /*
3460 * Add some empty padding so that we can catch
3461 * overwrites from earlier objects rather than let
3462 * tracking information or the free pointer be
0211a9c8 3463 * corrupted if a user writes before the start
81819f0f
CL
3464 * of the object.
3465 */
3466 size += sizeof(void *);
d86bd1be
JK
3467
3468 s->red_left_pad = sizeof(void *);
3469 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3470 size += s->red_left_pad;
3471 }
41ecc55b 3472#endif
672bba3a 3473
81819f0f
CL
3474 /*
3475 * SLUB stores one object immediately after another beginning from
3476 * offset 0. In order to align the objects we have to simply size
3477 * each object to conform to the alignment.
3478 */
45906855 3479 size = ALIGN(size, s->align);
81819f0f 3480 s->size = size;
06b285dc
CL
3481 if (forced_order >= 0)
3482 order = forced_order;
3483 else
ab9a0f19 3484 order = calculate_order(size, s->reserved);
81819f0f 3485
834f3d11 3486 if (order < 0)
81819f0f
CL
3487 return 0;
3488
b7a49f0d 3489 s->allocflags = 0;
834f3d11 3490 if (order)
b7a49f0d
CL
3491 s->allocflags |= __GFP_COMP;
3492
3493 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3494 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3495
3496 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3497 s->allocflags |= __GFP_RECLAIMABLE;
3498
81819f0f
CL
3499 /*
3500 * Determine the number of objects per slab
3501 */
ab9a0f19
LJ
3502 s->oo = oo_make(order, size, s->reserved);
3503 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3504 if (oo_objects(s->oo) > oo_objects(s->max))
3505 s->max = s->oo;
81819f0f 3506
834f3d11 3507 return !!oo_objects(s->oo);
81819f0f
CL
3508}
3509
8a13a4cc 3510static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3511{
8a13a4cc 3512 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3513 s->reserved = 0;
81819f0f 3514
da9a638c
LJ
3515 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3516 s->reserved = sizeof(struct rcu_head);
81819f0f 3517
06b285dc 3518 if (!calculate_sizes(s, -1))
81819f0f 3519 goto error;
3de47213
DR
3520 if (disable_higher_order_debug) {
3521 /*
3522 * Disable debugging flags that store metadata if the min slab
3523 * order increased.
3524 */
3b0efdfa 3525 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3526 s->flags &= ~DEBUG_METADATA_FLAGS;
3527 s->offset = 0;
3528 if (!calculate_sizes(s, -1))
3529 goto error;
3530 }
3531 }
81819f0f 3532
2565409f
HC
3533#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3534 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3535 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3536 /* Enable fast mode */
3537 s->flags |= __CMPXCHG_DOUBLE;
3538#endif
3539
3b89d7d8
DR
3540 /*
3541 * The larger the object size is, the more pages we want on the partial
3542 * list to avoid pounding the page allocator excessively.
3543 */
49e22585
CL
3544 set_min_partial(s, ilog2(s->size) / 2);
3545
3546 /*
3547 * cpu_partial determined the maximum number of objects kept in the
3548 * per cpu partial lists of a processor.
3549 *
3550 * Per cpu partial lists mainly contain slabs that just have one
3551 * object freed. If they are used for allocation then they can be
3552 * filled up again with minimal effort. The slab will never hit the
3553 * per node partial lists and therefore no locking will be required.
3554 *
3555 * This setting also determines
3556 *
3557 * A) The number of objects from per cpu partial slabs dumped to the
3558 * per node list when we reach the limit.
9f264904 3559 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3560 * per node list when we run out of per cpu objects. We only fetch
3561 * 50% to keep some capacity around for frees.
49e22585 3562 */
345c905d 3563 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3564 s->cpu_partial = 0;
3565 else if (s->size >= PAGE_SIZE)
49e22585
CL
3566 s->cpu_partial = 2;
3567 else if (s->size >= 1024)
3568 s->cpu_partial = 6;
3569 else if (s->size >= 256)
3570 s->cpu_partial = 13;
3571 else
3572 s->cpu_partial = 30;
3573
81819f0f 3574#ifdef CONFIG_NUMA
e2cb96b7 3575 s->remote_node_defrag_ratio = 1000;
81819f0f 3576#endif
210e7a43
TG
3577
3578 /* Initialize the pre-computed randomized freelist if slab is up */
3579 if (slab_state >= UP) {
3580 if (init_cache_random_seq(s))
3581 goto error;
3582 }
3583
55136592 3584 if (!init_kmem_cache_nodes(s))
dfb4f096 3585 goto error;
81819f0f 3586
55136592 3587 if (alloc_kmem_cache_cpus(s))
278b1bb1 3588 return 0;
ff12059e 3589
4c93c355 3590 free_kmem_cache_nodes(s);
81819f0f
CL
3591error:
3592 if (flags & SLAB_PANIC)
756a025f
JP
3593 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3594 s->name, (unsigned long)s->size, s->size,
3595 oo_order(s->oo), s->offset, flags);
278b1bb1 3596 return -EINVAL;
81819f0f 3597}
81819f0f 3598
33b12c38
CL
3599static void list_slab_objects(struct kmem_cache *s, struct page *page,
3600 const char *text)
3601{
3602#ifdef CONFIG_SLUB_DEBUG
3603 void *addr = page_address(page);
3604 void *p;
a5dd5c11
NK
3605 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3606 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3607 if (!map)
3608 return;
945cf2b6 3609 slab_err(s, page, text, s->name);
33b12c38 3610 slab_lock(page);
33b12c38 3611
5f80b13a 3612 get_map(s, page, map);
33b12c38
CL
3613 for_each_object(p, s, addr, page->objects) {
3614
3615 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3616 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3617 print_tracking(s, p);
3618 }
3619 }
3620 slab_unlock(page);
bbd7d57b 3621 kfree(map);
33b12c38
CL
3622#endif
3623}
3624
81819f0f 3625/*
599870b1 3626 * Attempt to free all partial slabs on a node.
52b4b950
DS
3627 * This is called from __kmem_cache_shutdown(). We must take list_lock
3628 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3629 */
599870b1 3630static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3631{
60398923 3632 LIST_HEAD(discard);
81819f0f
CL
3633 struct page *page, *h;
3634
52b4b950
DS
3635 BUG_ON(irqs_disabled());
3636 spin_lock_irq(&n->list_lock);
33b12c38 3637 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3638 if (!page->inuse) {
52b4b950 3639 remove_partial(n, page);
60398923 3640 list_add(&page->lru, &discard);
33b12c38
CL
3641 } else {
3642 list_slab_objects(s, page,
52b4b950 3643 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3644 }
33b12c38 3645 }
52b4b950 3646 spin_unlock_irq(&n->list_lock);
60398923
CW
3647
3648 list_for_each_entry_safe(page, h, &discard, lru)
3649 discard_slab(s, page);
81819f0f
CL
3650}
3651
3652/*
672bba3a 3653 * Release all resources used by a slab cache.
81819f0f 3654 */
52b4b950 3655int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3656{
3657 int node;
fa45dc25 3658 struct kmem_cache_node *n;
81819f0f
CL
3659
3660 flush_all(s);
81819f0f 3661 /* Attempt to free all objects */
fa45dc25 3662 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3663 free_partial(s, n);
3664 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3665 return 1;
3666 }
81819f0f
CL
3667 return 0;
3668}
3669
81819f0f
CL
3670/********************************************************************
3671 * Kmalloc subsystem
3672 *******************************************************************/
3673
81819f0f
CL
3674static int __init setup_slub_min_order(char *str)
3675{
06428780 3676 get_option(&str, &slub_min_order);
81819f0f
CL
3677
3678 return 1;
3679}
3680
3681__setup("slub_min_order=", setup_slub_min_order);
3682
3683static int __init setup_slub_max_order(char *str)
3684{
06428780 3685 get_option(&str, &slub_max_order);
818cf590 3686 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3687
3688 return 1;
3689}
3690
3691__setup("slub_max_order=", setup_slub_max_order);
3692
3693static int __init setup_slub_min_objects(char *str)
3694{
06428780 3695 get_option(&str, &slub_min_objects);
81819f0f
CL
3696
3697 return 1;
3698}
3699
3700__setup("slub_min_objects=", setup_slub_min_objects);
3701
81819f0f
CL
3702void *__kmalloc(size_t size, gfp_t flags)
3703{
aadb4bc4 3704 struct kmem_cache *s;
5b882be4 3705 void *ret;
81819f0f 3706
95a05b42 3707 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3708 return kmalloc_large(size, flags);
aadb4bc4 3709
2c59dd65 3710 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3711
3712 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3713 return s;
3714
2b847c3c 3715 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3716
ca2b84cb 3717 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3718
505f5dcb 3719 kasan_kmalloc(s, ret, size, flags);
0316bec2 3720
5b882be4 3721 return ret;
81819f0f
CL
3722}
3723EXPORT_SYMBOL(__kmalloc);
3724
5d1f57e4 3725#ifdef CONFIG_NUMA
f619cfe1
CL
3726static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3727{
b1eeab67 3728 struct page *page;
e4f7c0b4 3729 void *ptr = NULL;
f619cfe1 3730
52383431 3731 flags |= __GFP_COMP | __GFP_NOTRACK;
4949148a 3732 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3733 if (page)
e4f7c0b4
CM
3734 ptr = page_address(page);
3735
d56791b3 3736 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3737 return ptr;
f619cfe1
CL
3738}
3739
81819f0f
CL
3740void *__kmalloc_node(size_t size, gfp_t flags, int node)
3741{
aadb4bc4 3742 struct kmem_cache *s;
5b882be4 3743 void *ret;
81819f0f 3744
95a05b42 3745 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3746 ret = kmalloc_large_node(size, flags, node);
3747
ca2b84cb
EGM
3748 trace_kmalloc_node(_RET_IP_, ret,
3749 size, PAGE_SIZE << get_order(size),
3750 flags, node);
5b882be4
EGM
3751
3752 return ret;
3753 }
aadb4bc4 3754
2c59dd65 3755 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3756
3757 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3758 return s;
3759
2b847c3c 3760 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3761
ca2b84cb 3762 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3763
505f5dcb 3764 kasan_kmalloc(s, ret, size, flags);
0316bec2 3765
5b882be4 3766 return ret;
81819f0f
CL
3767}
3768EXPORT_SYMBOL(__kmalloc_node);
3769#endif
3770
ed18adc1
KC
3771#ifdef CONFIG_HARDENED_USERCOPY
3772/*
3773 * Rejects objects that are incorrectly sized.
3774 *
3775 * Returns NULL if check passes, otherwise const char * to name of cache
3776 * to indicate an error.
3777 */
3778const char *__check_heap_object(const void *ptr, unsigned long n,
3779 struct page *page)
3780{
3781 struct kmem_cache *s;
3782 unsigned long offset;
3783 size_t object_size;
3784
3785 /* Find object and usable object size. */
3786 s = page->slab_cache;
3787 object_size = slab_ksize(s);
3788
3789 /* Reject impossible pointers. */
3790 if (ptr < page_address(page))
3791 return s->name;
3792
3793 /* Find offset within object. */
3794 offset = (ptr - page_address(page)) % s->size;
3795
3796 /* Adjust for redzone and reject if within the redzone. */
3797 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3798 if (offset < s->red_left_pad)
3799 return s->name;
3800 offset -= s->red_left_pad;
3801 }
3802
3803 /* Allow address range falling entirely within object size. */
3804 if (offset <= object_size && n <= object_size - offset)
3805 return NULL;
3806
3807 return s->name;
3808}
3809#endif /* CONFIG_HARDENED_USERCOPY */
3810
0316bec2 3811static size_t __ksize(const void *object)
81819f0f 3812{
272c1d21 3813 struct page *page;
81819f0f 3814
ef8b4520 3815 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3816 return 0;
3817
294a80a8 3818 page = virt_to_head_page(object);
294a80a8 3819
76994412
PE
3820 if (unlikely(!PageSlab(page))) {
3821 WARN_ON(!PageCompound(page));
294a80a8 3822 return PAGE_SIZE << compound_order(page);
76994412 3823 }
81819f0f 3824
1b4f59e3 3825 return slab_ksize(page->slab_cache);
81819f0f 3826}
0316bec2
AR
3827
3828size_t ksize(const void *object)
3829{
3830 size_t size = __ksize(object);
3831 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3832 * so we need to unpoison this area.
3833 */
3834 kasan_unpoison_shadow(object, size);
0316bec2
AR
3835 return size;
3836}
b1aabecd 3837EXPORT_SYMBOL(ksize);
81819f0f
CL
3838
3839void kfree(const void *x)
3840{
81819f0f 3841 struct page *page;
5bb983b0 3842 void *object = (void *)x;
81819f0f 3843
2121db74
PE
3844 trace_kfree(_RET_IP_, x);
3845
2408c550 3846 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3847 return;
3848
b49af68f 3849 page = virt_to_head_page(x);
aadb4bc4 3850 if (unlikely(!PageSlab(page))) {
0937502a 3851 BUG_ON(!PageCompound(page));
d56791b3 3852 kfree_hook(x);
4949148a 3853 __free_pages(page, compound_order(page));
aadb4bc4
CL
3854 return;
3855 }
81084651 3856 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3857}
3858EXPORT_SYMBOL(kfree);
3859
832f37f5
VD
3860#define SHRINK_PROMOTE_MAX 32
3861
2086d26a 3862/*
832f37f5
VD
3863 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3864 * up most to the head of the partial lists. New allocations will then
3865 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3866 *
3867 * The slabs with the least items are placed last. This results in them
3868 * being allocated from last increasing the chance that the last objects
3869 * are freed in them.
2086d26a 3870 */
d6e0b7fa 3871int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3872{
3873 int node;
3874 int i;
3875 struct kmem_cache_node *n;
3876 struct page *page;
3877 struct page *t;
832f37f5
VD
3878 struct list_head discard;
3879 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3880 unsigned long flags;
ce3712d7 3881 int ret = 0;
2086d26a 3882
d6e0b7fa
VD
3883 if (deactivate) {
3884 /*
3885 * Disable empty slabs caching. Used to avoid pinning offline
3886 * memory cgroups by kmem pages that can be freed.
3887 */
3888 s->cpu_partial = 0;
3889 s->min_partial = 0;
3890
3891 /*
3892 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3893 * so we have to make sure the change is visible.
3894 */
81ae6d03 3895 synchronize_sched();
d6e0b7fa
VD
3896 }
3897
2086d26a 3898 flush_all(s);
fa45dc25 3899 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3900 INIT_LIST_HEAD(&discard);
3901 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3902 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3903
3904 spin_lock_irqsave(&n->list_lock, flags);
3905
3906 /*
832f37f5 3907 * Build lists of slabs to discard or promote.
2086d26a 3908 *
672bba3a
CL
3909 * Note that concurrent frees may occur while we hold the
3910 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3911 */
3912 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3913 int free = page->objects - page->inuse;
3914
3915 /* Do not reread page->inuse */
3916 barrier();
3917
3918 /* We do not keep full slabs on the list */
3919 BUG_ON(free <= 0);
3920
3921 if (free == page->objects) {
3922 list_move(&page->lru, &discard);
69cb8e6b 3923 n->nr_partial--;
832f37f5
VD
3924 } else if (free <= SHRINK_PROMOTE_MAX)
3925 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3926 }
3927
2086d26a 3928 /*
832f37f5
VD
3929 * Promote the slabs filled up most to the head of the
3930 * partial list.
2086d26a 3931 */
832f37f5
VD
3932 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3933 list_splice(promote + i, &n->partial);
2086d26a 3934
2086d26a 3935 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3936
3937 /* Release empty slabs */
832f37f5 3938 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3939 discard_slab(s, page);
ce3712d7
VD
3940
3941 if (slabs_node(s, node))
3942 ret = 1;
2086d26a
CL
3943 }
3944
ce3712d7 3945 return ret;
2086d26a 3946}
2086d26a 3947
b9049e23
YG
3948static int slab_mem_going_offline_callback(void *arg)
3949{
3950 struct kmem_cache *s;
3951
18004c5d 3952 mutex_lock(&slab_mutex);
b9049e23 3953 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3954 __kmem_cache_shrink(s, false);
18004c5d 3955 mutex_unlock(&slab_mutex);
b9049e23
YG
3956
3957 return 0;
3958}
3959
3960static void slab_mem_offline_callback(void *arg)
3961{
3962 struct kmem_cache_node *n;
3963 struct kmem_cache *s;
3964 struct memory_notify *marg = arg;
3965 int offline_node;
3966
b9d5ab25 3967 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3968
3969 /*
3970 * If the node still has available memory. we need kmem_cache_node
3971 * for it yet.
3972 */
3973 if (offline_node < 0)
3974 return;
3975
18004c5d 3976 mutex_lock(&slab_mutex);
b9049e23
YG
3977 list_for_each_entry(s, &slab_caches, list) {
3978 n = get_node(s, offline_node);
3979 if (n) {
3980 /*
3981 * if n->nr_slabs > 0, slabs still exist on the node
3982 * that is going down. We were unable to free them,
c9404c9c 3983 * and offline_pages() function shouldn't call this
b9049e23
YG
3984 * callback. So, we must fail.
3985 */
0f389ec6 3986 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3987
3988 s->node[offline_node] = NULL;
8de66a0c 3989 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3990 }
3991 }
18004c5d 3992 mutex_unlock(&slab_mutex);
b9049e23
YG
3993}
3994
3995static int slab_mem_going_online_callback(void *arg)
3996{
3997 struct kmem_cache_node *n;
3998 struct kmem_cache *s;
3999 struct memory_notify *marg = arg;
b9d5ab25 4000 int nid = marg->status_change_nid_normal;
b9049e23
YG
4001 int ret = 0;
4002
4003 /*
4004 * If the node's memory is already available, then kmem_cache_node is
4005 * already created. Nothing to do.
4006 */
4007 if (nid < 0)
4008 return 0;
4009
4010 /*
0121c619 4011 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4012 * allocate a kmem_cache_node structure in order to bring the node
4013 * online.
4014 */
18004c5d 4015 mutex_lock(&slab_mutex);
b9049e23
YG
4016 list_for_each_entry(s, &slab_caches, list) {
4017 /*
4018 * XXX: kmem_cache_alloc_node will fallback to other nodes
4019 * since memory is not yet available from the node that
4020 * is brought up.
4021 */
8de66a0c 4022 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4023 if (!n) {
4024 ret = -ENOMEM;
4025 goto out;
4026 }
4053497d 4027 init_kmem_cache_node(n);
b9049e23
YG
4028 s->node[nid] = n;
4029 }
4030out:
18004c5d 4031 mutex_unlock(&slab_mutex);
b9049e23
YG
4032 return ret;
4033}
4034
4035static int slab_memory_callback(struct notifier_block *self,
4036 unsigned long action, void *arg)
4037{
4038 int ret = 0;
4039
4040 switch (action) {
4041 case MEM_GOING_ONLINE:
4042 ret = slab_mem_going_online_callback(arg);
4043 break;
4044 case MEM_GOING_OFFLINE:
4045 ret = slab_mem_going_offline_callback(arg);
4046 break;
4047 case MEM_OFFLINE:
4048 case MEM_CANCEL_ONLINE:
4049 slab_mem_offline_callback(arg);
4050 break;
4051 case MEM_ONLINE:
4052 case MEM_CANCEL_OFFLINE:
4053 break;
4054 }
dc19f9db
KH
4055 if (ret)
4056 ret = notifier_from_errno(ret);
4057 else
4058 ret = NOTIFY_OK;
b9049e23
YG
4059 return ret;
4060}
4061
3ac38faa
AM
4062static struct notifier_block slab_memory_callback_nb = {
4063 .notifier_call = slab_memory_callback,
4064 .priority = SLAB_CALLBACK_PRI,
4065};
b9049e23 4066
81819f0f
CL
4067/********************************************************************
4068 * Basic setup of slabs
4069 *******************************************************************/
4070
51df1142
CL
4071/*
4072 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4073 * the page allocator. Allocate them properly then fix up the pointers
4074 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4075 */
4076
dffb4d60 4077static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4078{
4079 int node;
dffb4d60 4080 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4081 struct kmem_cache_node *n;
51df1142 4082
dffb4d60 4083 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4084
7d557b3c
GC
4085 /*
4086 * This runs very early, and only the boot processor is supposed to be
4087 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4088 * IPIs around.
4089 */
4090 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4091 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4092 struct page *p;
4093
fa45dc25
CL
4094 list_for_each_entry(p, &n->partial, lru)
4095 p->slab_cache = s;
51df1142 4096
607bf324 4097#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4098 list_for_each_entry(p, &n->full, lru)
4099 p->slab_cache = s;
51df1142 4100#endif
51df1142 4101 }
f7ce3190 4102 slab_init_memcg_params(s);
dffb4d60
CL
4103 list_add(&s->list, &slab_caches);
4104 return s;
51df1142
CL
4105}
4106
81819f0f
CL
4107void __init kmem_cache_init(void)
4108{
dffb4d60
CL
4109 static __initdata struct kmem_cache boot_kmem_cache,
4110 boot_kmem_cache_node;
51df1142 4111
fc8d8620
SG
4112 if (debug_guardpage_minorder())
4113 slub_max_order = 0;
4114
dffb4d60
CL
4115 kmem_cache_node = &boot_kmem_cache_node;
4116 kmem_cache = &boot_kmem_cache;
51df1142 4117
dffb4d60
CL
4118 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4119 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 4120
3ac38faa 4121 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4122
4123 /* Able to allocate the per node structures */
4124 slab_state = PARTIAL;
4125
dffb4d60
CL
4126 create_boot_cache(kmem_cache, "kmem_cache",
4127 offsetof(struct kmem_cache, node) +
4128 nr_node_ids * sizeof(struct kmem_cache_node *),
4129 SLAB_HWCACHE_ALIGN);
8a13a4cc 4130
dffb4d60 4131 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 4132
51df1142
CL
4133 /*
4134 * Allocate kmem_cache_node properly from the kmem_cache slab.
4135 * kmem_cache_node is separately allocated so no need to
4136 * update any list pointers.
4137 */
dffb4d60 4138 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4139
4140 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4141 setup_kmalloc_cache_index_table();
f97d5f63 4142 create_kmalloc_caches(0);
81819f0f 4143
210e7a43
TG
4144 /* Setup random freelists for each cache */
4145 init_freelist_randomization();
4146
81819f0f
CL
4147#ifdef CONFIG_SMP
4148 register_cpu_notifier(&slab_notifier);
9dfc6e68 4149#endif
81819f0f 4150
f9f58285 4151 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 4152 cache_line_size(),
81819f0f
CL
4153 slub_min_order, slub_max_order, slub_min_objects,
4154 nr_cpu_ids, nr_node_ids);
4155}
4156
7e85ee0c
PE
4157void __init kmem_cache_init_late(void)
4158{
7e85ee0c
PE
4159}
4160
2633d7a0 4161struct kmem_cache *
a44cb944
VD
4162__kmem_cache_alias(const char *name, size_t size, size_t align,
4163 unsigned long flags, void (*ctor)(void *))
81819f0f 4164{
426589f5 4165 struct kmem_cache *s, *c;
81819f0f 4166
a44cb944 4167 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4168 if (s) {
4169 s->refcount++;
84d0ddd6 4170
81819f0f
CL
4171 /*
4172 * Adjust the object sizes so that we clear
4173 * the complete object on kzalloc.
4174 */
3b0efdfa 4175 s->object_size = max(s->object_size, (int)size);
81819f0f 4176 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4177
426589f5 4178 for_each_memcg_cache(c, s) {
84d0ddd6
VD
4179 c->object_size = s->object_size;
4180 c->inuse = max_t(int, c->inuse,
4181 ALIGN(size, sizeof(void *)));
4182 }
4183
7b8f3b66 4184 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4185 s->refcount--;
cbb79694 4186 s = NULL;
7b8f3b66 4187 }
a0e1d1be 4188 }
6446faa2 4189
cbb79694
CL
4190 return s;
4191}
84c1cf62 4192
8a13a4cc 4193int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 4194{
aac3a166
PE
4195 int err;
4196
4197 err = kmem_cache_open(s, flags);
4198 if (err)
4199 return err;
20cea968 4200
45530c44
CL
4201 /* Mutex is not taken during early boot */
4202 if (slab_state <= UP)
4203 return 0;
4204
107dab5c 4205 memcg_propagate_slab_attrs(s);
aac3a166 4206 err = sysfs_slab_add(s);
aac3a166 4207 if (err)
52b4b950 4208 __kmem_cache_release(s);
20cea968 4209
aac3a166 4210 return err;
81819f0f 4211}
81819f0f 4212
81819f0f 4213#ifdef CONFIG_SMP
81819f0f 4214/*
672bba3a
CL
4215 * Use the cpu notifier to insure that the cpu slabs are flushed when
4216 * necessary.
81819f0f 4217 */
0db0628d 4218static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
4219 unsigned long action, void *hcpu)
4220{
4221 long cpu = (long)hcpu;
5b95a4ac
CL
4222 struct kmem_cache *s;
4223 unsigned long flags;
81819f0f
CL
4224
4225 switch (action) {
4226 case CPU_UP_CANCELED:
8bb78442 4227 case CPU_UP_CANCELED_FROZEN:
81819f0f 4228 case CPU_DEAD:
8bb78442 4229 case CPU_DEAD_FROZEN:
18004c5d 4230 mutex_lock(&slab_mutex);
5b95a4ac
CL
4231 list_for_each_entry(s, &slab_caches, list) {
4232 local_irq_save(flags);
4233 __flush_cpu_slab(s, cpu);
4234 local_irq_restore(flags);
4235 }
18004c5d 4236 mutex_unlock(&slab_mutex);
81819f0f
CL
4237 break;
4238 default:
4239 break;
4240 }
4241 return NOTIFY_OK;
4242}
4243
0db0628d 4244static struct notifier_block slab_notifier = {
3adbefee 4245 .notifier_call = slab_cpuup_callback
06428780 4246};
81819f0f
CL
4247
4248#endif
4249
ce71e27c 4250void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4251{
aadb4bc4 4252 struct kmem_cache *s;
94b528d0 4253 void *ret;
aadb4bc4 4254
95a05b42 4255 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4256 return kmalloc_large(size, gfpflags);
4257
2c59dd65 4258 s = kmalloc_slab(size, gfpflags);
81819f0f 4259
2408c550 4260 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4261 return s;
81819f0f 4262
2b847c3c 4263 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4264
25985edc 4265 /* Honor the call site pointer we received. */
ca2b84cb 4266 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4267
4268 return ret;
81819f0f
CL
4269}
4270
5d1f57e4 4271#ifdef CONFIG_NUMA
81819f0f 4272void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4273 int node, unsigned long caller)
81819f0f 4274{
aadb4bc4 4275 struct kmem_cache *s;
94b528d0 4276 void *ret;
aadb4bc4 4277
95a05b42 4278 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4279 ret = kmalloc_large_node(size, gfpflags, node);
4280
4281 trace_kmalloc_node(caller, ret,
4282 size, PAGE_SIZE << get_order(size),
4283 gfpflags, node);
4284
4285 return ret;
4286 }
eada35ef 4287
2c59dd65 4288 s = kmalloc_slab(size, gfpflags);
81819f0f 4289
2408c550 4290 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4291 return s;
81819f0f 4292
2b847c3c 4293 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4294
25985edc 4295 /* Honor the call site pointer we received. */
ca2b84cb 4296 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4297
4298 return ret;
81819f0f 4299}
5d1f57e4 4300#endif
81819f0f 4301
ab4d5ed5 4302#ifdef CONFIG_SYSFS
205ab99d
CL
4303static int count_inuse(struct page *page)
4304{
4305 return page->inuse;
4306}
4307
4308static int count_total(struct page *page)
4309{
4310 return page->objects;
4311}
ab4d5ed5 4312#endif
205ab99d 4313
ab4d5ed5 4314#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4315static int validate_slab(struct kmem_cache *s, struct page *page,
4316 unsigned long *map)
53e15af0
CL
4317{
4318 void *p;
a973e9dd 4319 void *addr = page_address(page);
53e15af0
CL
4320
4321 if (!check_slab(s, page) ||
4322 !on_freelist(s, page, NULL))
4323 return 0;
4324
4325 /* Now we know that a valid freelist exists */
39b26464 4326 bitmap_zero(map, page->objects);
53e15af0 4327
5f80b13a
CL
4328 get_map(s, page, map);
4329 for_each_object(p, s, addr, page->objects) {
4330 if (test_bit(slab_index(p, s, addr), map))
4331 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4332 return 0;
53e15af0
CL
4333 }
4334
224a88be 4335 for_each_object(p, s, addr, page->objects)
7656c72b 4336 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4337 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4338 return 0;
4339 return 1;
4340}
4341
434e245d
CL
4342static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4343 unsigned long *map)
53e15af0 4344{
881db7fb
CL
4345 slab_lock(page);
4346 validate_slab(s, page, map);
4347 slab_unlock(page);
53e15af0
CL
4348}
4349
434e245d
CL
4350static int validate_slab_node(struct kmem_cache *s,
4351 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4352{
4353 unsigned long count = 0;
4354 struct page *page;
4355 unsigned long flags;
4356
4357 spin_lock_irqsave(&n->list_lock, flags);
4358
4359 list_for_each_entry(page, &n->partial, lru) {
434e245d 4360 validate_slab_slab(s, page, map);
53e15af0
CL
4361 count++;
4362 }
4363 if (count != n->nr_partial)
f9f58285
FF
4364 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4365 s->name, count, n->nr_partial);
53e15af0
CL
4366
4367 if (!(s->flags & SLAB_STORE_USER))
4368 goto out;
4369
4370 list_for_each_entry(page, &n->full, lru) {
434e245d 4371 validate_slab_slab(s, page, map);
53e15af0
CL
4372 count++;
4373 }
4374 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4375 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4376 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4377
4378out:
4379 spin_unlock_irqrestore(&n->list_lock, flags);
4380 return count;
4381}
4382
434e245d 4383static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4384{
4385 int node;
4386 unsigned long count = 0;
205ab99d 4387 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4388 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4389 struct kmem_cache_node *n;
434e245d
CL
4390
4391 if (!map)
4392 return -ENOMEM;
53e15af0
CL
4393
4394 flush_all(s);
fa45dc25 4395 for_each_kmem_cache_node(s, node, n)
434e245d 4396 count += validate_slab_node(s, n, map);
434e245d 4397 kfree(map);
53e15af0
CL
4398 return count;
4399}
88a420e4 4400/*
672bba3a 4401 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4402 * and freed.
4403 */
4404
4405struct location {
4406 unsigned long count;
ce71e27c 4407 unsigned long addr;
45edfa58
CL
4408 long long sum_time;
4409 long min_time;
4410 long max_time;
4411 long min_pid;
4412 long max_pid;
174596a0 4413 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4414 nodemask_t nodes;
88a420e4
CL
4415};
4416
4417struct loc_track {
4418 unsigned long max;
4419 unsigned long count;
4420 struct location *loc;
4421};
4422
4423static void free_loc_track(struct loc_track *t)
4424{
4425 if (t->max)
4426 free_pages((unsigned long)t->loc,
4427 get_order(sizeof(struct location) * t->max));
4428}
4429
68dff6a9 4430static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4431{
4432 struct location *l;
4433 int order;
4434
88a420e4
CL
4435 order = get_order(sizeof(struct location) * max);
4436
68dff6a9 4437 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4438 if (!l)
4439 return 0;
4440
4441 if (t->count) {
4442 memcpy(l, t->loc, sizeof(struct location) * t->count);
4443 free_loc_track(t);
4444 }
4445 t->max = max;
4446 t->loc = l;
4447 return 1;
4448}
4449
4450static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4451 const struct track *track)
88a420e4
CL
4452{
4453 long start, end, pos;
4454 struct location *l;
ce71e27c 4455 unsigned long caddr;
45edfa58 4456 unsigned long age = jiffies - track->when;
88a420e4
CL
4457
4458 start = -1;
4459 end = t->count;
4460
4461 for ( ; ; ) {
4462 pos = start + (end - start + 1) / 2;
4463
4464 /*
4465 * There is nothing at "end". If we end up there
4466 * we need to add something to before end.
4467 */
4468 if (pos == end)
4469 break;
4470
4471 caddr = t->loc[pos].addr;
45edfa58
CL
4472 if (track->addr == caddr) {
4473
4474 l = &t->loc[pos];
4475 l->count++;
4476 if (track->when) {
4477 l->sum_time += age;
4478 if (age < l->min_time)
4479 l->min_time = age;
4480 if (age > l->max_time)
4481 l->max_time = age;
4482
4483 if (track->pid < l->min_pid)
4484 l->min_pid = track->pid;
4485 if (track->pid > l->max_pid)
4486 l->max_pid = track->pid;
4487
174596a0
RR
4488 cpumask_set_cpu(track->cpu,
4489 to_cpumask(l->cpus));
45edfa58
CL
4490 }
4491 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4492 return 1;
4493 }
4494
45edfa58 4495 if (track->addr < caddr)
88a420e4
CL
4496 end = pos;
4497 else
4498 start = pos;
4499 }
4500
4501 /*
672bba3a 4502 * Not found. Insert new tracking element.
88a420e4 4503 */
68dff6a9 4504 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4505 return 0;
4506
4507 l = t->loc + pos;
4508 if (pos < t->count)
4509 memmove(l + 1, l,
4510 (t->count - pos) * sizeof(struct location));
4511 t->count++;
4512 l->count = 1;
45edfa58
CL
4513 l->addr = track->addr;
4514 l->sum_time = age;
4515 l->min_time = age;
4516 l->max_time = age;
4517 l->min_pid = track->pid;
4518 l->max_pid = track->pid;
174596a0
RR
4519 cpumask_clear(to_cpumask(l->cpus));
4520 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4521 nodes_clear(l->nodes);
4522 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4523 return 1;
4524}
4525
4526static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4527 struct page *page, enum track_item alloc,
a5dd5c11 4528 unsigned long *map)
88a420e4 4529{
a973e9dd 4530 void *addr = page_address(page);
88a420e4
CL
4531 void *p;
4532
39b26464 4533 bitmap_zero(map, page->objects);
5f80b13a 4534 get_map(s, page, map);
88a420e4 4535
224a88be 4536 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4537 if (!test_bit(slab_index(p, s, addr), map))
4538 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4539}
4540
4541static int list_locations(struct kmem_cache *s, char *buf,
4542 enum track_item alloc)
4543{
e374d483 4544 int len = 0;
88a420e4 4545 unsigned long i;
68dff6a9 4546 struct loc_track t = { 0, 0, NULL };
88a420e4 4547 int node;
bbd7d57b
ED
4548 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4549 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4550 struct kmem_cache_node *n;
88a420e4 4551
bbd7d57b
ED
4552 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4553 GFP_TEMPORARY)) {
4554 kfree(map);
68dff6a9 4555 return sprintf(buf, "Out of memory\n");
bbd7d57b 4556 }
88a420e4
CL
4557 /* Push back cpu slabs */
4558 flush_all(s);
4559
fa45dc25 4560 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4561 unsigned long flags;
4562 struct page *page;
4563
9e86943b 4564 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4565 continue;
4566
4567 spin_lock_irqsave(&n->list_lock, flags);
4568 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4569 process_slab(&t, s, page, alloc, map);
88a420e4 4570 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4571 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4572 spin_unlock_irqrestore(&n->list_lock, flags);
4573 }
4574
4575 for (i = 0; i < t.count; i++) {
45edfa58 4576 struct location *l = &t.loc[i];
88a420e4 4577
9c246247 4578 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4579 break;
e374d483 4580 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4581
4582 if (l->addr)
62c70bce 4583 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4584 else
e374d483 4585 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4586
4587 if (l->sum_time != l->min_time) {
e374d483 4588 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4589 l->min_time,
4590 (long)div_u64(l->sum_time, l->count),
4591 l->max_time);
45edfa58 4592 } else
e374d483 4593 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4594 l->min_time);
4595
4596 if (l->min_pid != l->max_pid)
e374d483 4597 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4598 l->min_pid, l->max_pid);
4599 else
e374d483 4600 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4601 l->min_pid);
4602
174596a0
RR
4603 if (num_online_cpus() > 1 &&
4604 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4605 len < PAGE_SIZE - 60)
4606 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4607 " cpus=%*pbl",
4608 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4609
62bc62a8 4610 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4611 len < PAGE_SIZE - 60)
4612 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4613 " nodes=%*pbl",
4614 nodemask_pr_args(&l->nodes));
45edfa58 4615
e374d483 4616 len += sprintf(buf + len, "\n");
88a420e4
CL
4617 }
4618
4619 free_loc_track(&t);
bbd7d57b 4620 kfree(map);
88a420e4 4621 if (!t.count)
e374d483
HH
4622 len += sprintf(buf, "No data\n");
4623 return len;
88a420e4 4624}
ab4d5ed5 4625#endif
88a420e4 4626
a5a84755 4627#ifdef SLUB_RESILIENCY_TEST
c07b8183 4628static void __init resiliency_test(void)
a5a84755
CL
4629{
4630 u8 *p;
4631
95a05b42 4632 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4633
f9f58285
FF
4634 pr_err("SLUB resiliency testing\n");
4635 pr_err("-----------------------\n");
4636 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4637
4638 p = kzalloc(16, GFP_KERNEL);
4639 p[16] = 0x12;
f9f58285
FF
4640 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4641 p + 16);
a5a84755
CL
4642
4643 validate_slab_cache(kmalloc_caches[4]);
4644
4645 /* Hmmm... The next two are dangerous */
4646 p = kzalloc(32, GFP_KERNEL);
4647 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4648 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4649 p);
4650 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4651
4652 validate_slab_cache(kmalloc_caches[5]);
4653 p = kzalloc(64, GFP_KERNEL);
4654 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4655 *p = 0x56;
f9f58285
FF
4656 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4657 p);
4658 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4659 validate_slab_cache(kmalloc_caches[6]);
4660
f9f58285 4661 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4662 p = kzalloc(128, GFP_KERNEL);
4663 kfree(p);
4664 *p = 0x78;
f9f58285 4665 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4666 validate_slab_cache(kmalloc_caches[7]);
4667
4668 p = kzalloc(256, GFP_KERNEL);
4669 kfree(p);
4670 p[50] = 0x9a;
f9f58285 4671 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4672 validate_slab_cache(kmalloc_caches[8]);
4673
4674 p = kzalloc(512, GFP_KERNEL);
4675 kfree(p);
4676 p[512] = 0xab;
f9f58285 4677 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4678 validate_slab_cache(kmalloc_caches[9]);
4679}
4680#else
4681#ifdef CONFIG_SYSFS
4682static void resiliency_test(void) {};
4683#endif
4684#endif
4685
ab4d5ed5 4686#ifdef CONFIG_SYSFS
81819f0f 4687enum slab_stat_type {
205ab99d
CL
4688 SL_ALL, /* All slabs */
4689 SL_PARTIAL, /* Only partially allocated slabs */
4690 SL_CPU, /* Only slabs used for cpu caches */
4691 SL_OBJECTS, /* Determine allocated objects not slabs */
4692 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4693};
4694
205ab99d 4695#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4696#define SO_PARTIAL (1 << SL_PARTIAL)
4697#define SO_CPU (1 << SL_CPU)
4698#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4699#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4700
62e5c4b4
CG
4701static ssize_t show_slab_objects(struct kmem_cache *s,
4702 char *buf, unsigned long flags)
81819f0f
CL
4703{
4704 unsigned long total = 0;
81819f0f
CL
4705 int node;
4706 int x;
4707 unsigned long *nodes;
81819f0f 4708
e35e1a97 4709 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4710 if (!nodes)
4711 return -ENOMEM;
81819f0f 4712
205ab99d
CL
4713 if (flags & SO_CPU) {
4714 int cpu;
81819f0f 4715
205ab99d 4716 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4717 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4718 cpu);
ec3ab083 4719 int node;
49e22585 4720 struct page *page;
dfb4f096 4721
4db0c3c2 4722 page = READ_ONCE(c->page);
ec3ab083
CL
4723 if (!page)
4724 continue;
205ab99d 4725
ec3ab083
CL
4726 node = page_to_nid(page);
4727 if (flags & SO_TOTAL)
4728 x = page->objects;
4729 else if (flags & SO_OBJECTS)
4730 x = page->inuse;
4731 else
4732 x = 1;
49e22585 4733
ec3ab083
CL
4734 total += x;
4735 nodes[node] += x;
4736
4db0c3c2 4737 page = READ_ONCE(c->partial);
49e22585 4738 if (page) {
8afb1474
LZ
4739 node = page_to_nid(page);
4740 if (flags & SO_TOTAL)
4741 WARN_ON_ONCE(1);
4742 else if (flags & SO_OBJECTS)
4743 WARN_ON_ONCE(1);
4744 else
4745 x = page->pages;
bc6697d8
ED
4746 total += x;
4747 nodes[node] += x;
49e22585 4748 }
81819f0f
CL
4749 }
4750 }
4751
bfc8c901 4752 get_online_mems();
ab4d5ed5 4753#ifdef CONFIG_SLUB_DEBUG
205ab99d 4754 if (flags & SO_ALL) {
fa45dc25
CL
4755 struct kmem_cache_node *n;
4756
4757 for_each_kmem_cache_node(s, node, n) {
205ab99d 4758
d0e0ac97
CG
4759 if (flags & SO_TOTAL)
4760 x = atomic_long_read(&n->total_objects);
4761 else if (flags & SO_OBJECTS)
4762 x = atomic_long_read(&n->total_objects) -
4763 count_partial(n, count_free);
81819f0f 4764 else
205ab99d 4765 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4766 total += x;
4767 nodes[node] += x;
4768 }
4769
ab4d5ed5
CL
4770 } else
4771#endif
4772 if (flags & SO_PARTIAL) {
fa45dc25 4773 struct kmem_cache_node *n;
81819f0f 4774
fa45dc25 4775 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4776 if (flags & SO_TOTAL)
4777 x = count_partial(n, count_total);
4778 else if (flags & SO_OBJECTS)
4779 x = count_partial(n, count_inuse);
81819f0f 4780 else
205ab99d 4781 x = n->nr_partial;
81819f0f
CL
4782 total += x;
4783 nodes[node] += x;
4784 }
4785 }
81819f0f
CL
4786 x = sprintf(buf, "%lu", total);
4787#ifdef CONFIG_NUMA
fa45dc25 4788 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4789 if (nodes[node])
4790 x += sprintf(buf + x, " N%d=%lu",
4791 node, nodes[node]);
4792#endif
bfc8c901 4793 put_online_mems();
81819f0f
CL
4794 kfree(nodes);
4795 return x + sprintf(buf + x, "\n");
4796}
4797
ab4d5ed5 4798#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4799static int any_slab_objects(struct kmem_cache *s)
4800{
4801 int node;
fa45dc25 4802 struct kmem_cache_node *n;
81819f0f 4803
fa45dc25 4804 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4805 if (atomic_long_read(&n->total_objects))
81819f0f 4806 return 1;
fa45dc25 4807
81819f0f
CL
4808 return 0;
4809}
ab4d5ed5 4810#endif
81819f0f
CL
4811
4812#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4813#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4814
4815struct slab_attribute {
4816 struct attribute attr;
4817 ssize_t (*show)(struct kmem_cache *s, char *buf);
4818 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4819};
4820
4821#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4822 static struct slab_attribute _name##_attr = \
4823 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4824
4825#define SLAB_ATTR(_name) \
4826 static struct slab_attribute _name##_attr = \
ab067e99 4827 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4828
81819f0f
CL
4829static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4830{
4831 return sprintf(buf, "%d\n", s->size);
4832}
4833SLAB_ATTR_RO(slab_size);
4834
4835static ssize_t align_show(struct kmem_cache *s, char *buf)
4836{
4837 return sprintf(buf, "%d\n", s->align);
4838}
4839SLAB_ATTR_RO(align);
4840
4841static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4842{
3b0efdfa 4843 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4844}
4845SLAB_ATTR_RO(object_size);
4846
4847static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4848{
834f3d11 4849 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4850}
4851SLAB_ATTR_RO(objs_per_slab);
4852
06b285dc
CL
4853static ssize_t order_store(struct kmem_cache *s,
4854 const char *buf, size_t length)
4855{
0121c619
CL
4856 unsigned long order;
4857 int err;
4858
3dbb95f7 4859 err = kstrtoul(buf, 10, &order);
0121c619
CL
4860 if (err)
4861 return err;
06b285dc
CL
4862
4863 if (order > slub_max_order || order < slub_min_order)
4864 return -EINVAL;
4865
4866 calculate_sizes(s, order);
4867 return length;
4868}
4869
81819f0f
CL
4870static ssize_t order_show(struct kmem_cache *s, char *buf)
4871{
834f3d11 4872 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4873}
06b285dc 4874SLAB_ATTR(order);
81819f0f 4875
73d342b1
DR
4876static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4877{
4878 return sprintf(buf, "%lu\n", s->min_partial);
4879}
4880
4881static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4882 size_t length)
4883{
4884 unsigned long min;
4885 int err;
4886
3dbb95f7 4887 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4888 if (err)
4889 return err;
4890
c0bdb232 4891 set_min_partial(s, min);
73d342b1
DR
4892 return length;
4893}
4894SLAB_ATTR(min_partial);
4895
49e22585
CL
4896static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4897{
4898 return sprintf(buf, "%u\n", s->cpu_partial);
4899}
4900
4901static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4902 size_t length)
4903{
4904 unsigned long objects;
4905 int err;
4906
3dbb95f7 4907 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4908 if (err)
4909 return err;
345c905d 4910 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4911 return -EINVAL;
49e22585
CL
4912
4913 s->cpu_partial = objects;
4914 flush_all(s);
4915 return length;
4916}
4917SLAB_ATTR(cpu_partial);
4918
81819f0f
CL
4919static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4920{
62c70bce
JP
4921 if (!s->ctor)
4922 return 0;
4923 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4924}
4925SLAB_ATTR_RO(ctor);
4926
81819f0f
CL
4927static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4928{
4307c14f 4929 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4930}
4931SLAB_ATTR_RO(aliases);
4932
81819f0f
CL
4933static ssize_t partial_show(struct kmem_cache *s, char *buf)
4934{
d9acf4b7 4935 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4936}
4937SLAB_ATTR_RO(partial);
4938
4939static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4940{
d9acf4b7 4941 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4942}
4943SLAB_ATTR_RO(cpu_slabs);
4944
4945static ssize_t objects_show(struct kmem_cache *s, char *buf)
4946{
205ab99d 4947 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4948}
4949SLAB_ATTR_RO(objects);
4950
205ab99d
CL
4951static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4952{
4953 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4954}
4955SLAB_ATTR_RO(objects_partial);
4956
49e22585
CL
4957static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4958{
4959 int objects = 0;
4960 int pages = 0;
4961 int cpu;
4962 int len;
4963
4964 for_each_online_cpu(cpu) {
4965 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4966
4967 if (page) {
4968 pages += page->pages;
4969 objects += page->pobjects;
4970 }
4971 }
4972
4973 len = sprintf(buf, "%d(%d)", objects, pages);
4974
4975#ifdef CONFIG_SMP
4976 for_each_online_cpu(cpu) {
4977 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4978
4979 if (page && len < PAGE_SIZE - 20)
4980 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4981 page->pobjects, page->pages);
4982 }
4983#endif
4984 return len + sprintf(buf + len, "\n");
4985}
4986SLAB_ATTR_RO(slabs_cpu_partial);
4987
a5a84755
CL
4988static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4989{
4990 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4991}
4992
4993static ssize_t reclaim_account_store(struct kmem_cache *s,
4994 const char *buf, size_t length)
4995{
4996 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4997 if (buf[0] == '1')
4998 s->flags |= SLAB_RECLAIM_ACCOUNT;
4999 return length;
5000}
5001SLAB_ATTR(reclaim_account);
5002
5003static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5004{
5005 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5006}
5007SLAB_ATTR_RO(hwcache_align);
5008
5009#ifdef CONFIG_ZONE_DMA
5010static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5011{
5012 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5013}
5014SLAB_ATTR_RO(cache_dma);
5015#endif
5016
5017static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5018{
5019 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
5020}
5021SLAB_ATTR_RO(destroy_by_rcu);
5022
ab9a0f19
LJ
5023static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5024{
5025 return sprintf(buf, "%d\n", s->reserved);
5026}
5027SLAB_ATTR_RO(reserved);
5028
ab4d5ed5 5029#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5030static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5031{
5032 return show_slab_objects(s, buf, SO_ALL);
5033}
5034SLAB_ATTR_RO(slabs);
5035
205ab99d
CL
5036static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5037{
5038 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5039}
5040SLAB_ATTR_RO(total_objects);
5041
81819f0f
CL
5042static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5043{
becfda68 5044 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5045}
5046
5047static ssize_t sanity_checks_store(struct kmem_cache *s,
5048 const char *buf, size_t length)
5049{
becfda68 5050 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5051 if (buf[0] == '1') {
5052 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5053 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5054 }
81819f0f
CL
5055 return length;
5056}
5057SLAB_ATTR(sanity_checks);
5058
5059static ssize_t trace_show(struct kmem_cache *s, char *buf)
5060{
5061 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5062}
5063
5064static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5065 size_t length)
5066{
c9e16131
CL
5067 /*
5068 * Tracing a merged cache is going to give confusing results
5069 * as well as cause other issues like converting a mergeable
5070 * cache into an umergeable one.
5071 */
5072 if (s->refcount > 1)
5073 return -EINVAL;
5074
81819f0f 5075 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5076 if (buf[0] == '1') {
5077 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5078 s->flags |= SLAB_TRACE;
b789ef51 5079 }
81819f0f
CL
5080 return length;
5081}
5082SLAB_ATTR(trace);
5083
81819f0f
CL
5084static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5085{
5086 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5087}
5088
5089static ssize_t red_zone_store(struct kmem_cache *s,
5090 const char *buf, size_t length)
5091{
5092 if (any_slab_objects(s))
5093 return -EBUSY;
5094
5095 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5096 if (buf[0] == '1') {
81819f0f 5097 s->flags |= SLAB_RED_ZONE;
b789ef51 5098 }
06b285dc 5099 calculate_sizes(s, -1);
81819f0f
CL
5100 return length;
5101}
5102SLAB_ATTR(red_zone);
5103
5104static ssize_t poison_show(struct kmem_cache *s, char *buf)
5105{
5106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5107}
5108
5109static ssize_t poison_store(struct kmem_cache *s,
5110 const char *buf, size_t length)
5111{
5112 if (any_slab_objects(s))
5113 return -EBUSY;
5114
5115 s->flags &= ~SLAB_POISON;
b789ef51 5116 if (buf[0] == '1') {
81819f0f 5117 s->flags |= SLAB_POISON;
b789ef51 5118 }
06b285dc 5119 calculate_sizes(s, -1);
81819f0f
CL
5120 return length;
5121}
5122SLAB_ATTR(poison);
5123
5124static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5125{
5126 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5127}
5128
5129static ssize_t store_user_store(struct kmem_cache *s,
5130 const char *buf, size_t length)
5131{
5132 if (any_slab_objects(s))
5133 return -EBUSY;
5134
5135 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5136 if (buf[0] == '1') {
5137 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5138 s->flags |= SLAB_STORE_USER;
b789ef51 5139 }
06b285dc 5140 calculate_sizes(s, -1);
81819f0f
CL
5141 return length;
5142}
5143SLAB_ATTR(store_user);
5144
53e15af0
CL
5145static ssize_t validate_show(struct kmem_cache *s, char *buf)
5146{
5147 return 0;
5148}
5149
5150static ssize_t validate_store(struct kmem_cache *s,
5151 const char *buf, size_t length)
5152{
434e245d
CL
5153 int ret = -EINVAL;
5154
5155 if (buf[0] == '1') {
5156 ret = validate_slab_cache(s);
5157 if (ret >= 0)
5158 ret = length;
5159 }
5160 return ret;
53e15af0
CL
5161}
5162SLAB_ATTR(validate);
a5a84755
CL
5163
5164static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5165{
5166 if (!(s->flags & SLAB_STORE_USER))
5167 return -ENOSYS;
5168 return list_locations(s, buf, TRACK_ALLOC);
5169}
5170SLAB_ATTR_RO(alloc_calls);
5171
5172static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5173{
5174 if (!(s->flags & SLAB_STORE_USER))
5175 return -ENOSYS;
5176 return list_locations(s, buf, TRACK_FREE);
5177}
5178SLAB_ATTR_RO(free_calls);
5179#endif /* CONFIG_SLUB_DEBUG */
5180
5181#ifdef CONFIG_FAILSLAB
5182static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5183{
5184 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5185}
5186
5187static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5188 size_t length)
5189{
c9e16131
CL
5190 if (s->refcount > 1)
5191 return -EINVAL;
5192
a5a84755
CL
5193 s->flags &= ~SLAB_FAILSLAB;
5194 if (buf[0] == '1')
5195 s->flags |= SLAB_FAILSLAB;
5196 return length;
5197}
5198SLAB_ATTR(failslab);
ab4d5ed5 5199#endif
53e15af0 5200
2086d26a
CL
5201static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5202{
5203 return 0;
5204}
5205
5206static ssize_t shrink_store(struct kmem_cache *s,
5207 const char *buf, size_t length)
5208{
832f37f5
VD
5209 if (buf[0] == '1')
5210 kmem_cache_shrink(s);
5211 else
2086d26a
CL
5212 return -EINVAL;
5213 return length;
5214}
5215SLAB_ATTR(shrink);
5216
81819f0f 5217#ifdef CONFIG_NUMA
9824601e 5218static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5219{
9824601e 5220 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5221}
5222
9824601e 5223static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5224 const char *buf, size_t length)
5225{
0121c619
CL
5226 unsigned long ratio;
5227 int err;
5228
3dbb95f7 5229 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5230 if (err)
5231 return err;
5232
e2cb96b7 5233 if (ratio <= 100)
0121c619 5234 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5235
81819f0f
CL
5236 return length;
5237}
9824601e 5238SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5239#endif
5240
8ff12cfc 5241#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5242static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5243{
5244 unsigned long sum = 0;
5245 int cpu;
5246 int len;
5247 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5248
5249 if (!data)
5250 return -ENOMEM;
5251
5252 for_each_online_cpu(cpu) {
9dfc6e68 5253 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5254
5255 data[cpu] = x;
5256 sum += x;
5257 }
5258
5259 len = sprintf(buf, "%lu", sum);
5260
50ef37b9 5261#ifdef CONFIG_SMP
8ff12cfc
CL
5262 for_each_online_cpu(cpu) {
5263 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5264 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5265 }
50ef37b9 5266#endif
8ff12cfc
CL
5267 kfree(data);
5268 return len + sprintf(buf + len, "\n");
5269}
5270
78eb00cc
DR
5271static void clear_stat(struct kmem_cache *s, enum stat_item si)
5272{
5273 int cpu;
5274
5275 for_each_online_cpu(cpu)
9dfc6e68 5276 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5277}
5278
8ff12cfc
CL
5279#define STAT_ATTR(si, text) \
5280static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5281{ \
5282 return show_stat(s, buf, si); \
5283} \
78eb00cc
DR
5284static ssize_t text##_store(struct kmem_cache *s, \
5285 const char *buf, size_t length) \
5286{ \
5287 if (buf[0] != '0') \
5288 return -EINVAL; \
5289 clear_stat(s, si); \
5290 return length; \
5291} \
5292SLAB_ATTR(text); \
8ff12cfc
CL
5293
5294STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5295STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5296STAT_ATTR(FREE_FASTPATH, free_fastpath);
5297STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5298STAT_ATTR(FREE_FROZEN, free_frozen);
5299STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5300STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5301STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5302STAT_ATTR(ALLOC_SLAB, alloc_slab);
5303STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5304STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5305STAT_ATTR(FREE_SLAB, free_slab);
5306STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5307STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5308STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5309STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5310STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5311STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5312STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5313STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5314STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5315STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5316STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5317STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5318STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5319STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5320#endif
5321
06428780 5322static struct attribute *slab_attrs[] = {
81819f0f
CL
5323 &slab_size_attr.attr,
5324 &object_size_attr.attr,
5325 &objs_per_slab_attr.attr,
5326 &order_attr.attr,
73d342b1 5327 &min_partial_attr.attr,
49e22585 5328 &cpu_partial_attr.attr,
81819f0f 5329 &objects_attr.attr,
205ab99d 5330 &objects_partial_attr.attr,
81819f0f
CL
5331 &partial_attr.attr,
5332 &cpu_slabs_attr.attr,
5333 &ctor_attr.attr,
81819f0f
CL
5334 &aliases_attr.attr,
5335 &align_attr.attr,
81819f0f
CL
5336 &hwcache_align_attr.attr,
5337 &reclaim_account_attr.attr,
5338 &destroy_by_rcu_attr.attr,
a5a84755 5339 &shrink_attr.attr,
ab9a0f19 5340 &reserved_attr.attr,
49e22585 5341 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5342#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5343 &total_objects_attr.attr,
5344 &slabs_attr.attr,
5345 &sanity_checks_attr.attr,
5346 &trace_attr.attr,
81819f0f
CL
5347 &red_zone_attr.attr,
5348 &poison_attr.attr,
5349 &store_user_attr.attr,
53e15af0 5350 &validate_attr.attr,
88a420e4
CL
5351 &alloc_calls_attr.attr,
5352 &free_calls_attr.attr,
ab4d5ed5 5353#endif
81819f0f
CL
5354#ifdef CONFIG_ZONE_DMA
5355 &cache_dma_attr.attr,
5356#endif
5357#ifdef CONFIG_NUMA
9824601e 5358 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5359#endif
5360#ifdef CONFIG_SLUB_STATS
5361 &alloc_fastpath_attr.attr,
5362 &alloc_slowpath_attr.attr,
5363 &free_fastpath_attr.attr,
5364 &free_slowpath_attr.attr,
5365 &free_frozen_attr.attr,
5366 &free_add_partial_attr.attr,
5367 &free_remove_partial_attr.attr,
5368 &alloc_from_partial_attr.attr,
5369 &alloc_slab_attr.attr,
5370 &alloc_refill_attr.attr,
e36a2652 5371 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5372 &free_slab_attr.attr,
5373 &cpuslab_flush_attr.attr,
5374 &deactivate_full_attr.attr,
5375 &deactivate_empty_attr.attr,
5376 &deactivate_to_head_attr.attr,
5377 &deactivate_to_tail_attr.attr,
5378 &deactivate_remote_frees_attr.attr,
03e404af 5379 &deactivate_bypass_attr.attr,
65c3376a 5380 &order_fallback_attr.attr,
b789ef51
CL
5381 &cmpxchg_double_fail_attr.attr,
5382 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5383 &cpu_partial_alloc_attr.attr,
5384 &cpu_partial_free_attr.attr,
8028dcea
AS
5385 &cpu_partial_node_attr.attr,
5386 &cpu_partial_drain_attr.attr,
81819f0f 5387#endif
4c13dd3b
DM
5388#ifdef CONFIG_FAILSLAB
5389 &failslab_attr.attr,
5390#endif
5391
81819f0f
CL
5392 NULL
5393};
5394
5395static struct attribute_group slab_attr_group = {
5396 .attrs = slab_attrs,
5397};
5398
5399static ssize_t slab_attr_show(struct kobject *kobj,
5400 struct attribute *attr,
5401 char *buf)
5402{
5403 struct slab_attribute *attribute;
5404 struct kmem_cache *s;
5405 int err;
5406
5407 attribute = to_slab_attr(attr);
5408 s = to_slab(kobj);
5409
5410 if (!attribute->show)
5411 return -EIO;
5412
5413 err = attribute->show(s, buf);
5414
5415 return err;
5416}
5417
5418static ssize_t slab_attr_store(struct kobject *kobj,
5419 struct attribute *attr,
5420 const char *buf, size_t len)
5421{
5422 struct slab_attribute *attribute;
5423 struct kmem_cache *s;
5424 int err;
5425
5426 attribute = to_slab_attr(attr);
5427 s = to_slab(kobj);
5428
5429 if (!attribute->store)
5430 return -EIO;
5431
5432 err = attribute->store(s, buf, len);
127424c8 5433#ifdef CONFIG_MEMCG
107dab5c 5434 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5435 struct kmem_cache *c;
81819f0f 5436
107dab5c
GC
5437 mutex_lock(&slab_mutex);
5438 if (s->max_attr_size < len)
5439 s->max_attr_size = len;
5440
ebe945c2
GC
5441 /*
5442 * This is a best effort propagation, so this function's return
5443 * value will be determined by the parent cache only. This is
5444 * basically because not all attributes will have a well
5445 * defined semantics for rollbacks - most of the actions will
5446 * have permanent effects.
5447 *
5448 * Returning the error value of any of the children that fail
5449 * is not 100 % defined, in the sense that users seeing the
5450 * error code won't be able to know anything about the state of
5451 * the cache.
5452 *
5453 * Only returning the error code for the parent cache at least
5454 * has well defined semantics. The cache being written to
5455 * directly either failed or succeeded, in which case we loop
5456 * through the descendants with best-effort propagation.
5457 */
426589f5
VD
5458 for_each_memcg_cache(c, s)
5459 attribute->store(c, buf, len);
107dab5c
GC
5460 mutex_unlock(&slab_mutex);
5461 }
5462#endif
81819f0f
CL
5463 return err;
5464}
5465
107dab5c
GC
5466static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5467{
127424c8 5468#ifdef CONFIG_MEMCG
107dab5c
GC
5469 int i;
5470 char *buffer = NULL;
93030d83 5471 struct kmem_cache *root_cache;
107dab5c 5472
93030d83 5473 if (is_root_cache(s))
107dab5c
GC
5474 return;
5475
f7ce3190 5476 root_cache = s->memcg_params.root_cache;
93030d83 5477
107dab5c
GC
5478 /*
5479 * This mean this cache had no attribute written. Therefore, no point
5480 * in copying default values around
5481 */
93030d83 5482 if (!root_cache->max_attr_size)
107dab5c
GC
5483 return;
5484
5485 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5486 char mbuf[64];
5487 char *buf;
5488 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5489
5490 if (!attr || !attr->store || !attr->show)
5491 continue;
5492
5493 /*
5494 * It is really bad that we have to allocate here, so we will
5495 * do it only as a fallback. If we actually allocate, though,
5496 * we can just use the allocated buffer until the end.
5497 *
5498 * Most of the slub attributes will tend to be very small in
5499 * size, but sysfs allows buffers up to a page, so they can
5500 * theoretically happen.
5501 */
5502 if (buffer)
5503 buf = buffer;
93030d83 5504 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5505 buf = mbuf;
5506 else {
5507 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5508 if (WARN_ON(!buffer))
5509 continue;
5510 buf = buffer;
5511 }
5512
93030d83 5513 attr->show(root_cache, buf);
107dab5c
GC
5514 attr->store(s, buf, strlen(buf));
5515 }
5516
5517 if (buffer)
5518 free_page((unsigned long)buffer);
5519#endif
5520}
5521
41a21285
CL
5522static void kmem_cache_release(struct kobject *k)
5523{
5524 slab_kmem_cache_release(to_slab(k));
5525}
5526
52cf25d0 5527static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5528 .show = slab_attr_show,
5529 .store = slab_attr_store,
5530};
5531
5532static struct kobj_type slab_ktype = {
5533 .sysfs_ops = &slab_sysfs_ops,
41a21285 5534 .release = kmem_cache_release,
81819f0f
CL
5535};
5536
5537static int uevent_filter(struct kset *kset, struct kobject *kobj)
5538{
5539 struct kobj_type *ktype = get_ktype(kobj);
5540
5541 if (ktype == &slab_ktype)
5542 return 1;
5543 return 0;
5544}
5545
9cd43611 5546static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5547 .filter = uevent_filter,
5548};
5549
27c3a314 5550static struct kset *slab_kset;
81819f0f 5551
9a41707b
VD
5552static inline struct kset *cache_kset(struct kmem_cache *s)
5553{
127424c8 5554#ifdef CONFIG_MEMCG
9a41707b 5555 if (!is_root_cache(s))
f7ce3190 5556 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5557#endif
5558 return slab_kset;
5559}
5560
81819f0f
CL
5561#define ID_STR_LENGTH 64
5562
5563/* Create a unique string id for a slab cache:
6446faa2
CL
5564 *
5565 * Format :[flags-]size
81819f0f
CL
5566 */
5567static char *create_unique_id(struct kmem_cache *s)
5568{
5569 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5570 char *p = name;
5571
5572 BUG_ON(!name);
5573
5574 *p++ = ':';
5575 /*
5576 * First flags affecting slabcache operations. We will only
5577 * get here for aliasable slabs so we do not need to support
5578 * too many flags. The flags here must cover all flags that
5579 * are matched during merging to guarantee that the id is
5580 * unique.
5581 */
5582 if (s->flags & SLAB_CACHE_DMA)
5583 *p++ = 'd';
5584 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5585 *p++ = 'a';
becfda68 5586 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5587 *p++ = 'F';
5a896d9e
VN
5588 if (!(s->flags & SLAB_NOTRACK))
5589 *p++ = 't';
230e9fc2
VD
5590 if (s->flags & SLAB_ACCOUNT)
5591 *p++ = 'A';
81819f0f
CL
5592 if (p != name + 1)
5593 *p++ = '-';
5594 p += sprintf(p, "%07d", s->size);
2633d7a0 5595
81819f0f
CL
5596 BUG_ON(p > name + ID_STR_LENGTH - 1);
5597 return name;
5598}
5599
5600static int sysfs_slab_add(struct kmem_cache *s)
5601{
5602 int err;
5603 const char *name;
45530c44 5604 int unmergeable = slab_unmergeable(s);
81819f0f 5605
81819f0f
CL
5606 if (unmergeable) {
5607 /*
5608 * Slabcache can never be merged so we can use the name proper.
5609 * This is typically the case for debug situations. In that
5610 * case we can catch duplicate names easily.
5611 */
27c3a314 5612 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5613 name = s->name;
5614 } else {
5615 /*
5616 * Create a unique name for the slab as a target
5617 * for the symlinks.
5618 */
5619 name = create_unique_id(s);
5620 }
5621
9a41707b 5622 s->kobj.kset = cache_kset(s);
26e4f205 5623 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5624 if (err)
80da026a 5625 goto out;
81819f0f
CL
5626
5627 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5628 if (err)
5629 goto out_del_kobj;
9a41707b 5630
127424c8 5631#ifdef CONFIG_MEMCG
9a41707b
VD
5632 if (is_root_cache(s)) {
5633 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5634 if (!s->memcg_kset) {
54b6a731
DJ
5635 err = -ENOMEM;
5636 goto out_del_kobj;
9a41707b
VD
5637 }
5638 }
5639#endif
5640
81819f0f
CL
5641 kobject_uevent(&s->kobj, KOBJ_ADD);
5642 if (!unmergeable) {
5643 /* Setup first alias */
5644 sysfs_slab_alias(s, s->name);
81819f0f 5645 }
54b6a731
DJ
5646out:
5647 if (!unmergeable)
5648 kfree(name);
5649 return err;
5650out_del_kobj:
5651 kobject_del(&s->kobj);
54b6a731 5652 goto out;
81819f0f
CL
5653}
5654
41a21285 5655void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5656{
97d06609 5657 if (slab_state < FULL)
2bce6485
CL
5658 /*
5659 * Sysfs has not been setup yet so no need to remove the
5660 * cache from sysfs.
5661 */
5662 return;
5663
127424c8 5664#ifdef CONFIG_MEMCG
9a41707b
VD
5665 kset_unregister(s->memcg_kset);
5666#endif
81819f0f
CL
5667 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5668 kobject_del(&s->kobj);
151c602f 5669 kobject_put(&s->kobj);
81819f0f
CL
5670}
5671
5672/*
5673 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5674 * available lest we lose that information.
81819f0f
CL
5675 */
5676struct saved_alias {
5677 struct kmem_cache *s;
5678 const char *name;
5679 struct saved_alias *next;
5680};
5681
5af328a5 5682static struct saved_alias *alias_list;
81819f0f
CL
5683
5684static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5685{
5686 struct saved_alias *al;
5687
97d06609 5688 if (slab_state == FULL) {
81819f0f
CL
5689 /*
5690 * If we have a leftover link then remove it.
5691 */
27c3a314
GKH
5692 sysfs_remove_link(&slab_kset->kobj, name);
5693 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5694 }
5695
5696 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5697 if (!al)
5698 return -ENOMEM;
5699
5700 al->s = s;
5701 al->name = name;
5702 al->next = alias_list;
5703 alias_list = al;
5704 return 0;
5705}
5706
5707static int __init slab_sysfs_init(void)
5708{
5b95a4ac 5709 struct kmem_cache *s;
81819f0f
CL
5710 int err;
5711
18004c5d 5712 mutex_lock(&slab_mutex);
2bce6485 5713
0ff21e46 5714 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5715 if (!slab_kset) {
18004c5d 5716 mutex_unlock(&slab_mutex);
f9f58285 5717 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5718 return -ENOSYS;
5719 }
5720
97d06609 5721 slab_state = FULL;
26a7bd03 5722
5b95a4ac 5723 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5724 err = sysfs_slab_add(s);
5d540fb7 5725 if (err)
f9f58285
FF
5726 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5727 s->name);
26a7bd03 5728 }
81819f0f
CL
5729
5730 while (alias_list) {
5731 struct saved_alias *al = alias_list;
5732
5733 alias_list = alias_list->next;
5734 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5735 if (err)
f9f58285
FF
5736 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5737 al->name);
81819f0f
CL
5738 kfree(al);
5739 }
5740
18004c5d 5741 mutex_unlock(&slab_mutex);
81819f0f
CL
5742 resiliency_test();
5743 return 0;
5744}
5745
5746__initcall(slab_sysfs_init);
ab4d5ed5 5747#endif /* CONFIG_SYSFS */
57ed3eda
PE
5748
5749/*
5750 * The /proc/slabinfo ABI
5751 */
158a9624 5752#ifdef CONFIG_SLABINFO
0d7561c6 5753void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5754{
57ed3eda 5755 unsigned long nr_slabs = 0;
205ab99d
CL
5756 unsigned long nr_objs = 0;
5757 unsigned long nr_free = 0;
57ed3eda 5758 int node;
fa45dc25 5759 struct kmem_cache_node *n;
57ed3eda 5760
fa45dc25 5761 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5762 nr_slabs += node_nr_slabs(n);
5763 nr_objs += node_nr_objs(n);
205ab99d 5764 nr_free += count_partial(n, count_free);
57ed3eda
PE
5765 }
5766
0d7561c6
GC
5767 sinfo->active_objs = nr_objs - nr_free;
5768 sinfo->num_objs = nr_objs;
5769 sinfo->active_slabs = nr_slabs;
5770 sinfo->num_slabs = nr_slabs;
5771 sinfo->objects_per_slab = oo_objects(s->oo);
5772 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5773}
5774
0d7561c6 5775void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5776{
7b3c3a50
AD
5777}
5778
b7454ad3
GC
5779ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5780 size_t count, loff_t *ppos)
7b3c3a50 5781{
b7454ad3 5782 return -EIO;
7b3c3a50 5783}
158a9624 5784#endif /* CONFIG_SLABINFO */