mm: loosen MADV_NOHUGEPAGE to enable Qemu postcopy on s390
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
345c905d
JK
127static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128{
129#ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131#else
132 return false;
133#endif
134}
135
81819f0f
CL
136/*
137 * Issues still to be resolved:
138 *
81819f0f
CL
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
81819f0f
CL
141 * - Variable sizing of the per node arrays
142 */
143
144/* Enable to test recovery from slab corruption on boot */
145#undef SLUB_RESILIENCY_TEST
146
b789ef51
CL
147/* Enable to log cmpxchg failures */
148#undef SLUB_DEBUG_CMPXCHG
149
2086d26a
CL
150/*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
76be8950 154#define MIN_PARTIAL 5
e95eed57 155
2086d26a
CL
156/*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 159 * sort the partial list by the number of objects in use.
2086d26a
CL
160 */
161#define MAX_PARTIAL 10
162
81819f0f
CL
163#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
672bba3a 165
fa5ec8a1 166/*
3de47213
DR
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
fa5ec8a1 170 */
3de47213 171#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 172
210b5c06
CG
173#define OO_SHIFT 16
174#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 175#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 176
81819f0f 177/* Internal SLUB flags */
f90ec390 178#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 179#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 180
81819f0f
CL
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
d6543e39 188#define TRACK_ADDRS_COUNT 16
02cbc874 189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
d6543e39
BG
191#ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193#endif
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 204static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
107dab5c 209static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
210#endif
211
4fdccdfb 212static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
213{
214#ifdef CONFIG_SLUB_STATS
88da03a6
CL
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
220#endif
221}
222
81819f0f
CL
223/********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
6446faa2 227/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
228static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230{
231 void *base;
232
a973e9dd 233 if (!object)
02cbc874
CL
234 return 1;
235
a973e9dd 236 base = page_address(page);
39b26464 237 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243}
244
7656c72b
CL
245static inline void *get_freepointer(struct kmem_cache *s, void *object)
246{
247 return *(void **)(object + s->offset);
248}
249
0ad9500e
ED
250static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251{
252 prefetch(object + s->offset);
253}
254
1393d9a1
CL
255static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256{
257 void *p;
258
259#ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261#else
262 p = get_freepointer(s, object);
263#endif
264 return p;
265}
266
7656c72b
CL
267static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268{
269 *(void **)(object + s->offset) = fp;
270}
271
272/* Loop over all objects in a slab */
224a88be
CL
273#define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
275 __p += (__s)->size)
276
54266640
WY
277#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
d71f606f
MK
287static inline size_t slab_ksize(const struct kmem_cache *s)
288{
289#ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 295 return s->object_size;
d71f606f
MK
296
297#endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309}
310
ab9a0f19
LJ
311static inline int order_objects(int order, unsigned long size, int reserved)
312{
313 return ((PAGE_SIZE << order) - reserved) / size;
314}
315
834f3d11 316static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 317 unsigned long size, int reserved)
834f3d11
CL
318{
319 struct kmem_cache_order_objects x = {
ab9a0f19 320 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
321 };
322
323 return x;
324}
325
326static inline int oo_order(struct kmem_cache_order_objects x)
327{
210b5c06 328 return x.x >> OO_SHIFT;
834f3d11
CL
329}
330
331static inline int oo_objects(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x & OO_MASK;
834f3d11
CL
334}
335
881db7fb
CL
336/*
337 * Per slab locking using the pagelock
338 */
339static __always_inline void slab_lock(struct page *page)
340{
341 bit_spin_lock(PG_locked, &page->flags);
342}
343
344static __always_inline void slab_unlock(struct page *page)
345{
346 __bit_spin_unlock(PG_locked, &page->flags);
347}
348
a0320865
DH
349static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350{
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362}
363
1d07171c
CL
364/* Interrupts must be disabled (for the fallback code to work right) */
365static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369{
370 VM_BUG_ON(!irqs_disabled());
2565409f
HC
371#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 373 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 374 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
375 freelist_old, counters_old,
376 freelist_new, counters_new))
6f6528a1 377 return true;
1d07171c
CL
378 } else
379#endif
380 {
381 slab_lock(page);
d0e0ac97
CG
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
1d07171c 384 page->freelist = freelist_new;
a0320865 385 set_page_slub_counters(page, counters_new);
1d07171c 386 slab_unlock(page);
6f6528a1 387 return true;
1d07171c
CL
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
397#endif
398
6f6528a1 399 return false;
1d07171c
CL
400}
401
b789ef51
CL
402static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406{
2565409f
HC
407#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 409 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 410 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
411 freelist_old, counters_old,
412 freelist_new, counters_new))
6f6528a1 413 return true;
b789ef51
CL
414 } else
415#endif
416 {
1d07171c
CL
417 unsigned long flags;
418
419 local_irq_save(flags);
881db7fb 420 slab_lock(page);
d0e0ac97
CG
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
b789ef51 423 page->freelist = freelist_new;
a0320865 424 set_page_slub_counters(page, counters_new);
881db7fb 425 slab_unlock(page);
1d07171c 426 local_irq_restore(flags);
6f6528a1 427 return true;
b789ef51 428 }
881db7fb 429 slab_unlock(page);
1d07171c 430 local_irq_restore(flags);
b789ef51
CL
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
438#endif
439
6f6528a1 440 return false;
b789ef51
CL
441}
442
41ecc55b 443#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
444/*
445 * Determine a map of object in use on a page.
446 *
881db7fb 447 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
448 * not vanish from under us.
449 */
450static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451{
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457}
458
41ecc55b
CL
459/*
460 * Debug settings:
461 */
89d3c87e 462#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff 463static int slub_debug = DEBUG_DEFAULT_FLAGS;
89d3c87e
AR
464#elif defined(CONFIG_KASAN)
465static int slub_debug = SLAB_STORE_USER;
f0630fff 466#else
41ecc55b 467static int slub_debug;
f0630fff 468#endif
41ecc55b
CL
469
470static char *slub_debug_slabs;
fa5ec8a1 471static int disable_higher_order_debug;
41ecc55b 472
a79316c6
AR
473/*
474 * slub is about to manipulate internal object metadata. This memory lies
475 * outside the range of the allocated object, so accessing it would normally
476 * be reported by kasan as a bounds error. metadata_access_enable() is used
477 * to tell kasan that these accesses are OK.
478 */
479static inline void metadata_access_enable(void)
480{
481 kasan_disable_current();
482}
483
484static inline void metadata_access_disable(void)
485{
486 kasan_enable_current();
487}
488
81819f0f
CL
489/*
490 * Object debugging
491 */
492static void print_section(char *text, u8 *addr, unsigned int length)
493{
a79316c6 494 metadata_access_enable();
ffc79d28
SAS
495 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
496 length, 1);
a79316c6 497 metadata_access_disable();
81819f0f
CL
498}
499
81819f0f
CL
500static struct track *get_track(struct kmem_cache *s, void *object,
501 enum track_item alloc)
502{
503 struct track *p;
504
505 if (s->offset)
506 p = object + s->offset + sizeof(void *);
507 else
508 p = object + s->inuse;
509
510 return p + alloc;
511}
512
513static void set_track(struct kmem_cache *s, void *object,
ce71e27c 514 enum track_item alloc, unsigned long addr)
81819f0f 515{
1a00df4a 516 struct track *p = get_track(s, object, alloc);
81819f0f 517
81819f0f 518 if (addr) {
d6543e39
BG
519#ifdef CONFIG_STACKTRACE
520 struct stack_trace trace;
521 int i;
522
523 trace.nr_entries = 0;
524 trace.max_entries = TRACK_ADDRS_COUNT;
525 trace.entries = p->addrs;
526 trace.skip = 3;
a79316c6 527 metadata_access_enable();
d6543e39 528 save_stack_trace(&trace);
a79316c6 529 metadata_access_disable();
d6543e39
BG
530
531 /* See rant in lockdep.c */
532 if (trace.nr_entries != 0 &&
533 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
534 trace.nr_entries--;
535
536 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
537 p->addrs[i] = 0;
538#endif
81819f0f
CL
539 p->addr = addr;
540 p->cpu = smp_processor_id();
88e4ccf2 541 p->pid = current->pid;
81819f0f
CL
542 p->when = jiffies;
543 } else
544 memset(p, 0, sizeof(struct track));
545}
546
81819f0f
CL
547static void init_tracking(struct kmem_cache *s, void *object)
548{
24922684
CL
549 if (!(s->flags & SLAB_STORE_USER))
550 return;
551
ce71e27c
EGM
552 set_track(s, object, TRACK_FREE, 0UL);
553 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
554}
555
556static void print_track(const char *s, struct track *t)
557{
558 if (!t->addr)
559 return;
560
f9f58285
FF
561 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
562 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
563#ifdef CONFIG_STACKTRACE
564 {
565 int i;
566 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
567 if (t->addrs[i])
f9f58285 568 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
569 else
570 break;
571 }
572#endif
24922684
CL
573}
574
575static void print_tracking(struct kmem_cache *s, void *object)
576{
577 if (!(s->flags & SLAB_STORE_USER))
578 return;
579
580 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
581 print_track("Freed", get_track(s, object, TRACK_FREE));
582}
583
584static void print_page_info(struct page *page)
585{
f9f58285 586 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 587 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
588
589}
590
591static void slab_bug(struct kmem_cache *s, char *fmt, ...)
592{
ecc42fbe 593 struct va_format vaf;
24922684 594 va_list args;
24922684
CL
595
596 va_start(args, fmt);
ecc42fbe
FF
597 vaf.fmt = fmt;
598 vaf.va = &args;
f9f58285 599 pr_err("=============================================================================\n");
ecc42fbe 600 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 601 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 602
373d4d09 603 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 604 va_end(args);
81819f0f
CL
605}
606
24922684
CL
607static void slab_fix(struct kmem_cache *s, char *fmt, ...)
608{
ecc42fbe 609 struct va_format vaf;
24922684 610 va_list args;
24922684
CL
611
612 va_start(args, fmt);
ecc42fbe
FF
613 vaf.fmt = fmt;
614 vaf.va = &args;
615 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 616 va_end(args);
24922684
CL
617}
618
619static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
620{
621 unsigned int off; /* Offset of last byte */
a973e9dd 622 u8 *addr = page_address(page);
24922684
CL
623
624 print_tracking(s, p);
625
626 print_page_info(page);
627
f9f58285
FF
628 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
629 p, p - addr, get_freepointer(s, p));
24922684
CL
630
631 if (p > addr + 16)
ffc79d28 632 print_section("Bytes b4 ", p - 16, 16);
81819f0f 633
3b0efdfa 634 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 635 PAGE_SIZE));
81819f0f 636 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
637 print_section("Redzone ", p + s->object_size,
638 s->inuse - s->object_size);
81819f0f 639
81819f0f
CL
640 if (s->offset)
641 off = s->offset + sizeof(void *);
642 else
643 off = s->inuse;
644
24922684 645 if (s->flags & SLAB_STORE_USER)
81819f0f 646 off += 2 * sizeof(struct track);
81819f0f
CL
647
648 if (off != s->size)
649 /* Beginning of the filler is the free pointer */
ffc79d28 650 print_section("Padding ", p + off, s->size - off);
24922684
CL
651
652 dump_stack();
81819f0f
CL
653}
654
75c66def 655void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
656 u8 *object, char *reason)
657{
3dc50637 658 slab_bug(s, "%s", reason);
24922684 659 print_trailer(s, page, object);
81819f0f
CL
660}
661
d0e0ac97
CG
662static void slab_err(struct kmem_cache *s, struct page *page,
663 const char *fmt, ...)
81819f0f
CL
664{
665 va_list args;
666 char buf[100];
667
24922684
CL
668 va_start(args, fmt);
669 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 670 va_end(args);
3dc50637 671 slab_bug(s, "%s", buf);
24922684 672 print_page_info(page);
81819f0f
CL
673 dump_stack();
674}
675
f7cb1933 676static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
677{
678 u8 *p = object;
679
680 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
681 memset(p, POISON_FREE, s->object_size - 1);
682 p[s->object_size - 1] = POISON_END;
81819f0f
CL
683 }
684
685 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 686 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
687}
688
24922684
CL
689static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
690 void *from, void *to)
691{
692 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
693 memset(from, data, to - from);
694}
695
696static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
697 u8 *object, char *what,
06428780 698 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
699{
700 u8 *fault;
701 u8 *end;
702
a79316c6 703 metadata_access_enable();
79824820 704 fault = memchr_inv(start, value, bytes);
a79316c6 705 metadata_access_disable();
24922684
CL
706 if (!fault)
707 return 1;
708
709 end = start + bytes;
710 while (end > fault && end[-1] == value)
711 end--;
712
713 slab_bug(s, "%s overwritten", what);
f9f58285 714 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
715 fault, end - 1, fault[0], value);
716 print_trailer(s, page, object);
717
718 restore_bytes(s, what, value, fault, end);
719 return 0;
81819f0f
CL
720}
721
81819f0f
CL
722/*
723 * Object layout:
724 *
725 * object address
726 * Bytes of the object to be managed.
727 * If the freepointer may overlay the object then the free
728 * pointer is the first word of the object.
672bba3a 729 *
81819f0f
CL
730 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
731 * 0xa5 (POISON_END)
732 *
3b0efdfa 733 * object + s->object_size
81819f0f 734 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 735 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 736 * object_size == inuse.
672bba3a 737 *
81819f0f
CL
738 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
739 * 0xcc (RED_ACTIVE) for objects in use.
740 *
741 * object + s->inuse
672bba3a
CL
742 * Meta data starts here.
743 *
81819f0f
CL
744 * A. Free pointer (if we cannot overwrite object on free)
745 * B. Tracking data for SLAB_STORE_USER
672bba3a 746 * C. Padding to reach required alignment boundary or at mininum
6446faa2 747 * one word if debugging is on to be able to detect writes
672bba3a
CL
748 * before the word boundary.
749 *
750 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
751 *
752 * object + s->size
672bba3a 753 * Nothing is used beyond s->size.
81819f0f 754 *
3b0efdfa 755 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 756 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
757 * may be used with merged slabcaches.
758 */
759
81819f0f
CL
760static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
761{
762 unsigned long off = s->inuse; /* The end of info */
763
764 if (s->offset)
765 /* Freepointer is placed after the object. */
766 off += sizeof(void *);
767
768 if (s->flags & SLAB_STORE_USER)
769 /* We also have user information there */
770 off += 2 * sizeof(struct track);
771
772 if (s->size == off)
773 return 1;
774
24922684
CL
775 return check_bytes_and_report(s, page, p, "Object padding",
776 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
777}
778
39b26464 779/* Check the pad bytes at the end of a slab page */
81819f0f
CL
780static int slab_pad_check(struct kmem_cache *s, struct page *page)
781{
24922684
CL
782 u8 *start;
783 u8 *fault;
784 u8 *end;
785 int length;
786 int remainder;
81819f0f
CL
787
788 if (!(s->flags & SLAB_POISON))
789 return 1;
790
a973e9dd 791 start = page_address(page);
ab9a0f19 792 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
793 end = start + length;
794 remainder = length % s->size;
81819f0f
CL
795 if (!remainder)
796 return 1;
797
a79316c6 798 metadata_access_enable();
79824820 799 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 800 metadata_access_disable();
24922684
CL
801 if (!fault)
802 return 1;
803 while (end > fault && end[-1] == POISON_INUSE)
804 end--;
805
806 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 807 print_section("Padding ", end - remainder, remainder);
24922684 808
8a3d271d 809 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 810 return 0;
81819f0f
CL
811}
812
813static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 814 void *object, u8 val)
81819f0f
CL
815{
816 u8 *p = object;
3b0efdfa 817 u8 *endobject = object + s->object_size;
81819f0f
CL
818
819 if (s->flags & SLAB_RED_ZONE) {
24922684 820 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 821 endobject, val, s->inuse - s->object_size))
81819f0f 822 return 0;
81819f0f 823 } else {
3b0efdfa 824 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 825 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
826 endobject, POISON_INUSE,
827 s->inuse - s->object_size);
3adbefee 828 }
81819f0f
CL
829 }
830
831 if (s->flags & SLAB_POISON) {
f7cb1933 832 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 833 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 834 POISON_FREE, s->object_size - 1) ||
24922684 835 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 836 p + s->object_size - 1, POISON_END, 1)))
81819f0f 837 return 0;
81819f0f
CL
838 /*
839 * check_pad_bytes cleans up on its own.
840 */
841 check_pad_bytes(s, page, p);
842 }
843
f7cb1933 844 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
845 /*
846 * Object and freepointer overlap. Cannot check
847 * freepointer while object is allocated.
848 */
849 return 1;
850
851 /* Check free pointer validity */
852 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
853 object_err(s, page, p, "Freepointer corrupt");
854 /*
9f6c708e 855 * No choice but to zap it and thus lose the remainder
81819f0f 856 * of the free objects in this slab. May cause
672bba3a 857 * another error because the object count is now wrong.
81819f0f 858 */
a973e9dd 859 set_freepointer(s, p, NULL);
81819f0f
CL
860 return 0;
861 }
862 return 1;
863}
864
865static int check_slab(struct kmem_cache *s, struct page *page)
866{
39b26464
CL
867 int maxobj;
868
81819f0f
CL
869 VM_BUG_ON(!irqs_disabled());
870
871 if (!PageSlab(page)) {
24922684 872 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
873 return 0;
874 }
39b26464 875
ab9a0f19 876 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
877 if (page->objects > maxobj) {
878 slab_err(s, page, "objects %u > max %u",
f6edde9c 879 page->objects, maxobj);
39b26464
CL
880 return 0;
881 }
882 if (page->inuse > page->objects) {
24922684 883 slab_err(s, page, "inuse %u > max %u",
f6edde9c 884 page->inuse, page->objects);
81819f0f
CL
885 return 0;
886 }
887 /* Slab_pad_check fixes things up after itself */
888 slab_pad_check(s, page);
889 return 1;
890}
891
892/*
672bba3a
CL
893 * Determine if a certain object on a page is on the freelist. Must hold the
894 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
895 */
896static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
897{
898 int nr = 0;
881db7fb 899 void *fp;
81819f0f 900 void *object = NULL;
f6edde9c 901 int max_objects;
81819f0f 902
881db7fb 903 fp = page->freelist;
39b26464 904 while (fp && nr <= page->objects) {
81819f0f
CL
905 if (fp == search)
906 return 1;
907 if (!check_valid_pointer(s, page, fp)) {
908 if (object) {
909 object_err(s, page, object,
910 "Freechain corrupt");
a973e9dd 911 set_freepointer(s, object, NULL);
81819f0f 912 } else {
24922684 913 slab_err(s, page, "Freepointer corrupt");
a973e9dd 914 page->freelist = NULL;
39b26464 915 page->inuse = page->objects;
24922684 916 slab_fix(s, "Freelist cleared");
81819f0f
CL
917 return 0;
918 }
919 break;
920 }
921 object = fp;
922 fp = get_freepointer(s, object);
923 nr++;
924 }
925
ab9a0f19 926 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
927 if (max_objects > MAX_OBJS_PER_PAGE)
928 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
929
930 if (page->objects != max_objects) {
931 slab_err(s, page, "Wrong number of objects. Found %d but "
932 "should be %d", page->objects, max_objects);
933 page->objects = max_objects;
934 slab_fix(s, "Number of objects adjusted.");
935 }
39b26464 936 if (page->inuse != page->objects - nr) {
70d71228 937 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
938 "counted were %d", page->inuse, page->objects - nr);
939 page->inuse = page->objects - nr;
24922684 940 slab_fix(s, "Object count adjusted.");
81819f0f
CL
941 }
942 return search == NULL;
943}
944
0121c619
CL
945static void trace(struct kmem_cache *s, struct page *page, void *object,
946 int alloc)
3ec09742
CL
947{
948 if (s->flags & SLAB_TRACE) {
f9f58285 949 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
950 s->name,
951 alloc ? "alloc" : "free",
952 object, page->inuse,
953 page->freelist);
954
955 if (!alloc)
d0e0ac97
CG
956 print_section("Object ", (void *)object,
957 s->object_size);
3ec09742
CL
958
959 dump_stack();
960 }
961}
962
643b1138 963/*
672bba3a 964 * Tracking of fully allocated slabs for debugging purposes.
643b1138 965 */
5cc6eee8
CL
966static void add_full(struct kmem_cache *s,
967 struct kmem_cache_node *n, struct page *page)
643b1138 968{
5cc6eee8
CL
969 if (!(s->flags & SLAB_STORE_USER))
970 return;
971
255d0884 972 lockdep_assert_held(&n->list_lock);
643b1138 973 list_add(&page->lru, &n->full);
643b1138
CL
974}
975
c65c1877 976static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 977{
643b1138
CL
978 if (!(s->flags & SLAB_STORE_USER))
979 return;
980
255d0884 981 lockdep_assert_held(&n->list_lock);
643b1138 982 list_del(&page->lru);
643b1138
CL
983}
984
0f389ec6
CL
985/* Tracking of the number of slabs for debugging purposes */
986static inline unsigned long slabs_node(struct kmem_cache *s, int node)
987{
988 struct kmem_cache_node *n = get_node(s, node);
989
990 return atomic_long_read(&n->nr_slabs);
991}
992
26c02cf0
AB
993static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
994{
995 return atomic_long_read(&n->nr_slabs);
996}
997
205ab99d 998static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
999{
1000 struct kmem_cache_node *n = get_node(s, node);
1001
1002 /*
1003 * May be called early in order to allocate a slab for the
1004 * kmem_cache_node structure. Solve the chicken-egg
1005 * dilemma by deferring the increment of the count during
1006 * bootstrap (see early_kmem_cache_node_alloc).
1007 */
338b2642 1008 if (likely(n)) {
0f389ec6 1009 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1010 atomic_long_add(objects, &n->total_objects);
1011 }
0f389ec6 1012}
205ab99d 1013static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1014{
1015 struct kmem_cache_node *n = get_node(s, node);
1016
1017 atomic_long_dec(&n->nr_slabs);
205ab99d 1018 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1019}
1020
1021/* Object debug checks for alloc/free paths */
3ec09742
CL
1022static void setup_object_debug(struct kmem_cache *s, struct page *page,
1023 void *object)
1024{
1025 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1026 return;
1027
f7cb1933 1028 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1029 init_tracking(s, object);
1030}
1031
d0e0ac97
CG
1032static noinline int alloc_debug_processing(struct kmem_cache *s,
1033 struct page *page,
ce71e27c 1034 void *object, unsigned long addr)
81819f0f
CL
1035{
1036 if (!check_slab(s, page))
1037 goto bad;
1038
81819f0f
CL
1039 if (!check_valid_pointer(s, page, object)) {
1040 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1041 goto bad;
81819f0f
CL
1042 }
1043
f7cb1933 1044 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1045 goto bad;
81819f0f 1046
3ec09742
CL
1047 /* Success perform special debug activities for allocs */
1048 if (s->flags & SLAB_STORE_USER)
1049 set_track(s, object, TRACK_ALLOC, addr);
1050 trace(s, page, object, 1);
f7cb1933 1051 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1052 return 1;
3ec09742 1053
81819f0f
CL
1054bad:
1055 if (PageSlab(page)) {
1056 /*
1057 * If this is a slab page then lets do the best we can
1058 * to avoid issues in the future. Marking all objects
672bba3a 1059 * as used avoids touching the remaining objects.
81819f0f 1060 */
24922684 1061 slab_fix(s, "Marking all objects used");
39b26464 1062 page->inuse = page->objects;
a973e9dd 1063 page->freelist = NULL;
81819f0f
CL
1064 }
1065 return 0;
1066}
1067
19c7ff9e
CL
1068static noinline struct kmem_cache_node *free_debug_processing(
1069 struct kmem_cache *s, struct page *page, void *object,
1070 unsigned long addr, unsigned long *flags)
81819f0f 1071{
19c7ff9e 1072 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
5c2e4bbb 1073
19c7ff9e 1074 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1075 slab_lock(page);
1076
81819f0f
CL
1077 if (!check_slab(s, page))
1078 goto fail;
1079
1080 if (!check_valid_pointer(s, page, object)) {
70d71228 1081 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1082 goto fail;
1083 }
1084
1085 if (on_freelist(s, page, object)) {
24922684 1086 object_err(s, page, object, "Object already free");
81819f0f
CL
1087 goto fail;
1088 }
1089
f7cb1933 1090 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1091 goto out;
81819f0f 1092
1b4f59e3 1093 if (unlikely(s != page->slab_cache)) {
3adbefee 1094 if (!PageSlab(page)) {
70d71228
CL
1095 slab_err(s, page, "Attempt to free object(0x%p) "
1096 "outside of slab", object);
1b4f59e3 1097 } else if (!page->slab_cache) {
f9f58285
FF
1098 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1099 object);
70d71228 1100 dump_stack();
06428780 1101 } else
24922684
CL
1102 object_err(s, page, object,
1103 "page slab pointer corrupt.");
81819f0f
CL
1104 goto fail;
1105 }
3ec09742 1106
3ec09742
CL
1107 if (s->flags & SLAB_STORE_USER)
1108 set_track(s, object, TRACK_FREE, addr);
1109 trace(s, page, object, 0);
f7cb1933 1110 init_object(s, object, SLUB_RED_INACTIVE);
5c2e4bbb 1111out:
881db7fb 1112 slab_unlock(page);
19c7ff9e
CL
1113 /*
1114 * Keep node_lock to preserve integrity
1115 * until the object is actually freed
1116 */
1117 return n;
3ec09742 1118
81819f0f 1119fail:
19c7ff9e
CL
1120 slab_unlock(page);
1121 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1122 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1123 return NULL;
81819f0f
CL
1124}
1125
41ecc55b
CL
1126static int __init setup_slub_debug(char *str)
1127{
f0630fff
CL
1128 slub_debug = DEBUG_DEFAULT_FLAGS;
1129 if (*str++ != '=' || !*str)
1130 /*
1131 * No options specified. Switch on full debugging.
1132 */
1133 goto out;
1134
1135 if (*str == ',')
1136 /*
1137 * No options but restriction on slabs. This means full
1138 * debugging for slabs matching a pattern.
1139 */
1140 goto check_slabs;
1141
1142 slub_debug = 0;
1143 if (*str == '-')
1144 /*
1145 * Switch off all debugging measures.
1146 */
1147 goto out;
1148
1149 /*
1150 * Determine which debug features should be switched on
1151 */
06428780 1152 for (; *str && *str != ','; str++) {
f0630fff
CL
1153 switch (tolower(*str)) {
1154 case 'f':
1155 slub_debug |= SLAB_DEBUG_FREE;
1156 break;
1157 case 'z':
1158 slub_debug |= SLAB_RED_ZONE;
1159 break;
1160 case 'p':
1161 slub_debug |= SLAB_POISON;
1162 break;
1163 case 'u':
1164 slub_debug |= SLAB_STORE_USER;
1165 break;
1166 case 't':
1167 slub_debug |= SLAB_TRACE;
1168 break;
4c13dd3b
DM
1169 case 'a':
1170 slub_debug |= SLAB_FAILSLAB;
1171 break;
08303a73
CA
1172 case 'o':
1173 /*
1174 * Avoid enabling debugging on caches if its minimum
1175 * order would increase as a result.
1176 */
1177 disable_higher_order_debug = 1;
1178 break;
f0630fff 1179 default:
f9f58285
FF
1180 pr_err("slub_debug option '%c' unknown. skipped\n",
1181 *str);
f0630fff 1182 }
41ecc55b
CL
1183 }
1184
f0630fff 1185check_slabs:
41ecc55b
CL
1186 if (*str == ',')
1187 slub_debug_slabs = str + 1;
f0630fff 1188out:
41ecc55b
CL
1189 return 1;
1190}
1191
1192__setup("slub_debug", setup_slub_debug);
1193
423c929c 1194unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1195 unsigned long flags, const char *name,
51cc5068 1196 void (*ctor)(void *))
41ecc55b
CL
1197{
1198 /*
e153362a 1199 * Enable debugging if selected on the kernel commandline.
41ecc55b 1200 */
c6f58d9b
CL
1201 if (slub_debug && (!slub_debug_slabs || (name &&
1202 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1203 flags |= slub_debug;
ba0268a8
CL
1204
1205 return flags;
41ecc55b
CL
1206}
1207#else
3ec09742
CL
1208static inline void setup_object_debug(struct kmem_cache *s,
1209 struct page *page, void *object) {}
41ecc55b 1210
3ec09742 1211static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1212 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1213
19c7ff9e
CL
1214static inline struct kmem_cache_node *free_debug_processing(
1215 struct kmem_cache *s, struct page *page, void *object,
1216 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1217
41ecc55b
CL
1218static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1219 { return 1; }
1220static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1221 void *object, u8 val) { return 1; }
5cc6eee8
CL
1222static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 struct page *page) {}
c65c1877
PZ
1224static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
423c929c 1226unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1227 unsigned long flags, const char *name,
51cc5068 1228 void (*ctor)(void *))
ba0268a8
CL
1229{
1230 return flags;
1231}
41ecc55b 1232#define slub_debug 0
0f389ec6 1233
fdaa45e9
IM
1234#define disable_higher_order_debug 0
1235
0f389ec6
CL
1236static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1237 { return 0; }
26c02cf0
AB
1238static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 { return 0; }
205ab99d
CL
1240static inline void inc_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242static inline void dec_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
7d550c56 1244
02e72cc6
AR
1245#endif /* CONFIG_SLUB_DEBUG */
1246
1247/*
1248 * Hooks for other subsystems that check memory allocations. In a typical
1249 * production configuration these hooks all should produce no code at all.
1250 */
d56791b3
RB
1251static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1252{
1253 kmemleak_alloc(ptr, size, 1, flags);
0316bec2 1254 kasan_kmalloc_large(ptr, size);
d56791b3
RB
1255}
1256
1257static inline void kfree_hook(const void *x)
1258{
1259 kmemleak_free(x);
0316bec2 1260 kasan_kfree_large(x);
d56791b3
RB
1261}
1262
8135be5a
VD
1263static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1264 gfp_t flags)
02e72cc6
AR
1265{
1266 flags &= gfp_allowed_mask;
1267 lockdep_trace_alloc(flags);
d0164adc 1268 might_sleep_if(gfpflags_allow_blocking(flags));
7d550c56 1269
8135be5a
VD
1270 if (should_failslab(s->object_size, flags, s->flags))
1271 return NULL;
1272
1273 return memcg_kmem_get_cache(s, flags);
02e72cc6
AR
1274}
1275
1276static inline void slab_post_alloc_hook(struct kmem_cache *s,
1277 gfp_t flags, void *object)
d56791b3 1278{
02e72cc6
AR
1279 flags &= gfp_allowed_mask;
1280 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1281 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
8135be5a 1282 memcg_kmem_put_cache(s);
0316bec2 1283 kasan_slab_alloc(s, object);
d56791b3 1284}
7d550c56 1285
d56791b3
RB
1286static inline void slab_free_hook(struct kmem_cache *s, void *x)
1287{
1288 kmemleak_free_recursive(x, s->flags);
7d550c56 1289
02e72cc6
AR
1290 /*
1291 * Trouble is that we may no longer disable interrupts in the fast path
1292 * So in order to make the debug calls that expect irqs to be
1293 * disabled we need to disable interrupts temporarily.
1294 */
1295#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1296 {
1297 unsigned long flags;
1298
1299 local_irq_save(flags);
1300 kmemcheck_slab_free(s, x, s->object_size);
1301 debug_check_no_locks_freed(x, s->object_size);
1302 local_irq_restore(flags);
1303 }
1304#endif
1305 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1306 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1307
1308 kasan_slab_free(s, x);
02e72cc6 1309}
205ab99d 1310
588f8ba9
TG
1311static void setup_object(struct kmem_cache *s, struct page *page,
1312 void *object)
1313{
1314 setup_object_debug(s, page, object);
1315 if (unlikely(s->ctor)) {
1316 kasan_unpoison_object_data(s, object);
1317 s->ctor(object);
1318 kasan_poison_object_data(s, object);
1319 }
1320}
1321
81819f0f
CL
1322/*
1323 * Slab allocation and freeing
1324 */
5dfb4175
VD
1325static inline struct page *alloc_slab_page(struct kmem_cache *s,
1326 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1327{
5dfb4175 1328 struct page *page;
65c3376a
CL
1329 int order = oo_order(oo);
1330
b1eeab67
VN
1331 flags |= __GFP_NOTRACK;
1332
2154a336 1333 if (node == NUMA_NO_NODE)
5dfb4175 1334 page = alloc_pages(flags, order);
65c3376a 1335 else
96db800f 1336 page = __alloc_pages_node(node, flags, order);
5dfb4175 1337
f3ccb2c4
VD
1338 if (page && memcg_charge_slab(page, flags, order, s)) {
1339 __free_pages(page, order);
1340 page = NULL;
1341 }
5dfb4175
VD
1342
1343 return page;
65c3376a
CL
1344}
1345
81819f0f
CL
1346static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1347{
06428780 1348 struct page *page;
834f3d11 1349 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1350 gfp_t alloc_gfp;
588f8ba9
TG
1351 void *start, *p;
1352 int idx, order;
81819f0f 1353
7e0528da
CL
1354 flags &= gfp_allowed_mask;
1355
d0164adc 1356 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1357 local_irq_enable();
1358
b7a49f0d 1359 flags |= s->allocflags;
e12ba74d 1360
ba52270d
PE
1361 /*
1362 * Let the initial higher-order allocation fail under memory pressure
1363 * so we fall-back to the minimum order allocation.
1364 */
1365 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc
MG
1366 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1367 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
ba52270d 1368
5dfb4175 1369 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1370 if (unlikely(!page)) {
1371 oo = s->min;
80c3a998 1372 alloc_gfp = flags;
65c3376a
CL
1373 /*
1374 * Allocation may have failed due to fragmentation.
1375 * Try a lower order alloc if possible
1376 */
5dfb4175 1377 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1378 if (unlikely(!page))
1379 goto out;
1380 stat(s, ORDER_FALLBACK);
65c3376a 1381 }
5a896d9e 1382
588f8ba9
TG
1383 if (kmemcheck_enabled &&
1384 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1385 int pages = 1 << oo_order(oo);
1386
80c3a998 1387 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1388
1389 /*
1390 * Objects from caches that have a constructor don't get
1391 * cleared when they're allocated, so we need to do it here.
1392 */
1393 if (s->ctor)
1394 kmemcheck_mark_uninitialized_pages(page, pages);
1395 else
1396 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1397 }
1398
834f3d11 1399 page->objects = oo_objects(oo);
81819f0f 1400
1f458cbf 1401 order = compound_order(page);
1b4f59e3 1402 page->slab_cache = s;
c03f94cc 1403 __SetPageSlab(page);
2f064f34 1404 if (page_is_pfmemalloc(page))
072bb0aa 1405 SetPageSlabPfmemalloc(page);
81819f0f
CL
1406
1407 start = page_address(page);
81819f0f
CL
1408
1409 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1410 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1411
0316bec2
AR
1412 kasan_poison_slab(page);
1413
54266640
WY
1414 for_each_object_idx(p, idx, s, start, page->objects) {
1415 setup_object(s, page, p);
1416 if (likely(idx < page->objects))
1417 set_freepointer(s, p, p + s->size);
1418 else
1419 set_freepointer(s, p, NULL);
81819f0f 1420 }
81819f0f
CL
1421
1422 page->freelist = start;
e6e82ea1 1423 page->inuse = page->objects;
8cb0a506 1424 page->frozen = 1;
588f8ba9 1425
81819f0f 1426out:
d0164adc 1427 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1428 local_irq_disable();
1429 if (!page)
1430 return NULL;
1431
1432 mod_zone_page_state(page_zone(page),
1433 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1434 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1435 1 << oo_order(oo));
1436
1437 inc_slabs_node(s, page_to_nid(page), page->objects);
1438
81819f0f
CL
1439 return page;
1440}
1441
588f8ba9
TG
1442static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1443{
1444 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1445 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1446 BUG();
1447 }
1448
1449 return allocate_slab(s,
1450 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1451}
1452
81819f0f
CL
1453static void __free_slab(struct kmem_cache *s, struct page *page)
1454{
834f3d11
CL
1455 int order = compound_order(page);
1456 int pages = 1 << order;
81819f0f 1457
af537b0a 1458 if (kmem_cache_debug(s)) {
81819f0f
CL
1459 void *p;
1460
1461 slab_pad_check(s, page);
224a88be
CL
1462 for_each_object(p, s, page_address(page),
1463 page->objects)
f7cb1933 1464 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1465 }
1466
b1eeab67 1467 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1468
81819f0f
CL
1469 mod_zone_page_state(page_zone(page),
1470 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1471 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1472 -pages);
81819f0f 1473
072bb0aa 1474 __ClearPageSlabPfmemalloc(page);
49bd5221 1475 __ClearPageSlab(page);
1f458cbf 1476
22b751c3 1477 page_mapcount_reset(page);
1eb5ac64
NP
1478 if (current->reclaim_state)
1479 current->reclaim_state->reclaimed_slab += pages;
f3ccb2c4 1480 __free_kmem_pages(page, order);
81819f0f
CL
1481}
1482
da9a638c
LJ
1483#define need_reserve_slab_rcu \
1484 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1485
81819f0f
CL
1486static void rcu_free_slab(struct rcu_head *h)
1487{
1488 struct page *page;
1489
da9a638c
LJ
1490 if (need_reserve_slab_rcu)
1491 page = virt_to_head_page(h);
1492 else
1493 page = container_of((struct list_head *)h, struct page, lru);
1494
1b4f59e3 1495 __free_slab(page->slab_cache, page);
81819f0f
CL
1496}
1497
1498static void free_slab(struct kmem_cache *s, struct page *page)
1499{
1500 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1501 struct rcu_head *head;
1502
1503 if (need_reserve_slab_rcu) {
1504 int order = compound_order(page);
1505 int offset = (PAGE_SIZE << order) - s->reserved;
1506
1507 VM_BUG_ON(s->reserved != sizeof(*head));
1508 head = page_address(page) + offset;
1509 } else {
bc4f610d 1510 head = &page->rcu_head;
da9a638c 1511 }
81819f0f
CL
1512
1513 call_rcu(head, rcu_free_slab);
1514 } else
1515 __free_slab(s, page);
1516}
1517
1518static void discard_slab(struct kmem_cache *s, struct page *page)
1519{
205ab99d 1520 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1521 free_slab(s, page);
1522}
1523
1524/*
5cc6eee8 1525 * Management of partially allocated slabs.
81819f0f 1526 */
1e4dd946
SR
1527static inline void
1528__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1529{
e95eed57 1530 n->nr_partial++;
136333d1 1531 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1532 list_add_tail(&page->lru, &n->partial);
1533 else
1534 list_add(&page->lru, &n->partial);
81819f0f
CL
1535}
1536
1e4dd946
SR
1537static inline void add_partial(struct kmem_cache_node *n,
1538 struct page *page, int tail)
62e346a8 1539{
c65c1877 1540 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1541 __add_partial(n, page, tail);
1542}
c65c1877 1543
1e4dd946
SR
1544static inline void
1545__remove_partial(struct kmem_cache_node *n, struct page *page)
1546{
62e346a8
CL
1547 list_del(&page->lru);
1548 n->nr_partial--;
1549}
1550
1e4dd946
SR
1551static inline void remove_partial(struct kmem_cache_node *n,
1552 struct page *page)
1553{
1554 lockdep_assert_held(&n->list_lock);
1555 __remove_partial(n, page);
1556}
1557
81819f0f 1558/*
7ced3719
CL
1559 * Remove slab from the partial list, freeze it and
1560 * return the pointer to the freelist.
81819f0f 1561 *
497b66f2 1562 * Returns a list of objects or NULL if it fails.
81819f0f 1563 */
497b66f2 1564static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1565 struct kmem_cache_node *n, struct page *page,
633b0764 1566 int mode, int *objects)
81819f0f 1567{
2cfb7455
CL
1568 void *freelist;
1569 unsigned long counters;
1570 struct page new;
1571
c65c1877
PZ
1572 lockdep_assert_held(&n->list_lock);
1573
2cfb7455
CL
1574 /*
1575 * Zap the freelist and set the frozen bit.
1576 * The old freelist is the list of objects for the
1577 * per cpu allocation list.
1578 */
7ced3719
CL
1579 freelist = page->freelist;
1580 counters = page->counters;
1581 new.counters = counters;
633b0764 1582 *objects = new.objects - new.inuse;
23910c50 1583 if (mode) {
7ced3719 1584 new.inuse = page->objects;
23910c50
PE
1585 new.freelist = NULL;
1586 } else {
1587 new.freelist = freelist;
1588 }
2cfb7455 1589
a0132ac0 1590 VM_BUG_ON(new.frozen);
7ced3719 1591 new.frozen = 1;
2cfb7455 1592
7ced3719 1593 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1594 freelist, counters,
02d7633f 1595 new.freelist, new.counters,
7ced3719 1596 "acquire_slab"))
7ced3719 1597 return NULL;
2cfb7455
CL
1598
1599 remove_partial(n, page);
7ced3719 1600 WARN_ON(!freelist);
49e22585 1601 return freelist;
81819f0f
CL
1602}
1603
633b0764 1604static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1605static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1606
81819f0f 1607/*
672bba3a 1608 * Try to allocate a partial slab from a specific node.
81819f0f 1609 */
8ba00bb6
JK
1610static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1611 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1612{
49e22585
CL
1613 struct page *page, *page2;
1614 void *object = NULL;
633b0764
JK
1615 int available = 0;
1616 int objects;
81819f0f
CL
1617
1618 /*
1619 * Racy check. If we mistakenly see no partial slabs then we
1620 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1621 * partial slab and there is none available then get_partials()
1622 * will return NULL.
81819f0f
CL
1623 */
1624 if (!n || !n->nr_partial)
1625 return NULL;
1626
1627 spin_lock(&n->list_lock);
49e22585 1628 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1629 void *t;
49e22585 1630
8ba00bb6
JK
1631 if (!pfmemalloc_match(page, flags))
1632 continue;
1633
633b0764 1634 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1635 if (!t)
1636 break;
1637
633b0764 1638 available += objects;
12d79634 1639 if (!object) {
49e22585 1640 c->page = page;
49e22585 1641 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1642 object = t;
49e22585 1643 } else {
633b0764 1644 put_cpu_partial(s, page, 0);
8028dcea 1645 stat(s, CPU_PARTIAL_NODE);
49e22585 1646 }
345c905d
JK
1647 if (!kmem_cache_has_cpu_partial(s)
1648 || available > s->cpu_partial / 2)
49e22585
CL
1649 break;
1650
497b66f2 1651 }
81819f0f 1652 spin_unlock(&n->list_lock);
497b66f2 1653 return object;
81819f0f
CL
1654}
1655
1656/*
672bba3a 1657 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1658 */
de3ec035 1659static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1660 struct kmem_cache_cpu *c)
81819f0f
CL
1661{
1662#ifdef CONFIG_NUMA
1663 struct zonelist *zonelist;
dd1a239f 1664 struct zoneref *z;
54a6eb5c
MG
1665 struct zone *zone;
1666 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1667 void *object;
cc9a6c87 1668 unsigned int cpuset_mems_cookie;
81819f0f
CL
1669
1670 /*
672bba3a
CL
1671 * The defrag ratio allows a configuration of the tradeoffs between
1672 * inter node defragmentation and node local allocations. A lower
1673 * defrag_ratio increases the tendency to do local allocations
1674 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1675 *
672bba3a
CL
1676 * If the defrag_ratio is set to 0 then kmalloc() always
1677 * returns node local objects. If the ratio is higher then kmalloc()
1678 * may return off node objects because partial slabs are obtained
1679 * from other nodes and filled up.
81819f0f 1680 *
6446faa2 1681 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1682 * defrag_ratio = 1000) then every (well almost) allocation will
1683 * first attempt to defrag slab caches on other nodes. This means
1684 * scanning over all nodes to look for partial slabs which may be
1685 * expensive if we do it every time we are trying to find a slab
1686 * with available objects.
81819f0f 1687 */
9824601e
CL
1688 if (!s->remote_node_defrag_ratio ||
1689 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1690 return NULL;
1691
cc9a6c87 1692 do {
d26914d1 1693 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1694 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1695 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1696 struct kmem_cache_node *n;
1697
1698 n = get_node(s, zone_to_nid(zone));
1699
dee2f8aa 1700 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1701 n->nr_partial > s->min_partial) {
8ba00bb6 1702 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1703 if (object) {
1704 /*
d26914d1
MG
1705 * Don't check read_mems_allowed_retry()
1706 * here - if mems_allowed was updated in
1707 * parallel, that was a harmless race
1708 * between allocation and the cpuset
1709 * update
cc9a6c87 1710 */
cc9a6c87
MG
1711 return object;
1712 }
c0ff7453 1713 }
81819f0f 1714 }
d26914d1 1715 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1716#endif
1717 return NULL;
1718}
1719
1720/*
1721 * Get a partial page, lock it and return it.
1722 */
497b66f2 1723static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1724 struct kmem_cache_cpu *c)
81819f0f 1725{
497b66f2 1726 void *object;
a561ce00
JK
1727 int searchnode = node;
1728
1729 if (node == NUMA_NO_NODE)
1730 searchnode = numa_mem_id();
1731 else if (!node_present_pages(node))
1732 searchnode = node_to_mem_node(node);
81819f0f 1733
8ba00bb6 1734 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1735 if (object || node != NUMA_NO_NODE)
1736 return object;
81819f0f 1737
acd19fd1 1738 return get_any_partial(s, flags, c);
81819f0f
CL
1739}
1740
8a5ec0ba
CL
1741#ifdef CONFIG_PREEMPT
1742/*
1743 * Calculate the next globally unique transaction for disambiguiation
1744 * during cmpxchg. The transactions start with the cpu number and are then
1745 * incremented by CONFIG_NR_CPUS.
1746 */
1747#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1748#else
1749/*
1750 * No preemption supported therefore also no need to check for
1751 * different cpus.
1752 */
1753#define TID_STEP 1
1754#endif
1755
1756static inline unsigned long next_tid(unsigned long tid)
1757{
1758 return tid + TID_STEP;
1759}
1760
1761static inline unsigned int tid_to_cpu(unsigned long tid)
1762{
1763 return tid % TID_STEP;
1764}
1765
1766static inline unsigned long tid_to_event(unsigned long tid)
1767{
1768 return tid / TID_STEP;
1769}
1770
1771static inline unsigned int init_tid(int cpu)
1772{
1773 return cpu;
1774}
1775
1776static inline void note_cmpxchg_failure(const char *n,
1777 const struct kmem_cache *s, unsigned long tid)
1778{
1779#ifdef SLUB_DEBUG_CMPXCHG
1780 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1781
f9f58285 1782 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1783
1784#ifdef CONFIG_PREEMPT
1785 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1786 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1787 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1788 else
1789#endif
1790 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1791 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1792 tid_to_event(tid), tid_to_event(actual_tid));
1793 else
f9f58285 1794 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1795 actual_tid, tid, next_tid(tid));
1796#endif
4fdccdfb 1797 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1798}
1799
788e1aad 1800static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1801{
8a5ec0ba
CL
1802 int cpu;
1803
1804 for_each_possible_cpu(cpu)
1805 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1806}
2cfb7455 1807
81819f0f
CL
1808/*
1809 * Remove the cpu slab
1810 */
d0e0ac97
CG
1811static void deactivate_slab(struct kmem_cache *s, struct page *page,
1812 void *freelist)
81819f0f 1813{
2cfb7455 1814 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1815 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1816 int lock = 0;
1817 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1818 void *nextfree;
136333d1 1819 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1820 struct page new;
1821 struct page old;
1822
1823 if (page->freelist) {
84e554e6 1824 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1825 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1826 }
1827
894b8788 1828 /*
2cfb7455
CL
1829 * Stage one: Free all available per cpu objects back
1830 * to the page freelist while it is still frozen. Leave the
1831 * last one.
1832 *
1833 * There is no need to take the list->lock because the page
1834 * is still frozen.
1835 */
1836 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1837 void *prior;
1838 unsigned long counters;
1839
1840 do {
1841 prior = page->freelist;
1842 counters = page->counters;
1843 set_freepointer(s, freelist, prior);
1844 new.counters = counters;
1845 new.inuse--;
a0132ac0 1846 VM_BUG_ON(!new.frozen);
2cfb7455 1847
1d07171c 1848 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1849 prior, counters,
1850 freelist, new.counters,
1851 "drain percpu freelist"));
1852
1853 freelist = nextfree;
1854 }
1855
894b8788 1856 /*
2cfb7455
CL
1857 * Stage two: Ensure that the page is unfrozen while the
1858 * list presence reflects the actual number of objects
1859 * during unfreeze.
1860 *
1861 * We setup the list membership and then perform a cmpxchg
1862 * with the count. If there is a mismatch then the page
1863 * is not unfrozen but the page is on the wrong list.
1864 *
1865 * Then we restart the process which may have to remove
1866 * the page from the list that we just put it on again
1867 * because the number of objects in the slab may have
1868 * changed.
894b8788 1869 */
2cfb7455 1870redo:
894b8788 1871
2cfb7455
CL
1872 old.freelist = page->freelist;
1873 old.counters = page->counters;
a0132ac0 1874 VM_BUG_ON(!old.frozen);
7c2e132c 1875
2cfb7455
CL
1876 /* Determine target state of the slab */
1877 new.counters = old.counters;
1878 if (freelist) {
1879 new.inuse--;
1880 set_freepointer(s, freelist, old.freelist);
1881 new.freelist = freelist;
1882 } else
1883 new.freelist = old.freelist;
1884
1885 new.frozen = 0;
1886
8a5b20ae 1887 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1888 m = M_FREE;
1889 else if (new.freelist) {
1890 m = M_PARTIAL;
1891 if (!lock) {
1892 lock = 1;
1893 /*
1894 * Taking the spinlock removes the possiblity
1895 * that acquire_slab() will see a slab page that
1896 * is frozen
1897 */
1898 spin_lock(&n->list_lock);
1899 }
1900 } else {
1901 m = M_FULL;
1902 if (kmem_cache_debug(s) && !lock) {
1903 lock = 1;
1904 /*
1905 * This also ensures that the scanning of full
1906 * slabs from diagnostic functions will not see
1907 * any frozen slabs.
1908 */
1909 spin_lock(&n->list_lock);
1910 }
1911 }
1912
1913 if (l != m) {
1914
1915 if (l == M_PARTIAL)
1916
1917 remove_partial(n, page);
1918
1919 else if (l == M_FULL)
894b8788 1920
c65c1877 1921 remove_full(s, n, page);
2cfb7455
CL
1922
1923 if (m == M_PARTIAL) {
1924
1925 add_partial(n, page, tail);
136333d1 1926 stat(s, tail);
2cfb7455
CL
1927
1928 } else if (m == M_FULL) {
894b8788 1929
2cfb7455
CL
1930 stat(s, DEACTIVATE_FULL);
1931 add_full(s, n, page);
1932
1933 }
1934 }
1935
1936 l = m;
1d07171c 1937 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1938 old.freelist, old.counters,
1939 new.freelist, new.counters,
1940 "unfreezing slab"))
1941 goto redo;
1942
2cfb7455
CL
1943 if (lock)
1944 spin_unlock(&n->list_lock);
1945
1946 if (m == M_FREE) {
1947 stat(s, DEACTIVATE_EMPTY);
1948 discard_slab(s, page);
1949 stat(s, FREE_SLAB);
894b8788 1950 }
81819f0f
CL
1951}
1952
d24ac77f
JK
1953/*
1954 * Unfreeze all the cpu partial slabs.
1955 *
59a09917
CL
1956 * This function must be called with interrupts disabled
1957 * for the cpu using c (or some other guarantee must be there
1958 * to guarantee no concurrent accesses).
d24ac77f 1959 */
59a09917
CL
1960static void unfreeze_partials(struct kmem_cache *s,
1961 struct kmem_cache_cpu *c)
49e22585 1962{
345c905d 1963#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 1964 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 1965 struct page *page, *discard_page = NULL;
49e22585
CL
1966
1967 while ((page = c->partial)) {
49e22585
CL
1968 struct page new;
1969 struct page old;
1970
1971 c->partial = page->next;
43d77867
JK
1972
1973 n2 = get_node(s, page_to_nid(page));
1974 if (n != n2) {
1975 if (n)
1976 spin_unlock(&n->list_lock);
1977
1978 n = n2;
1979 spin_lock(&n->list_lock);
1980 }
49e22585
CL
1981
1982 do {
1983
1984 old.freelist = page->freelist;
1985 old.counters = page->counters;
a0132ac0 1986 VM_BUG_ON(!old.frozen);
49e22585
CL
1987
1988 new.counters = old.counters;
1989 new.freelist = old.freelist;
1990
1991 new.frozen = 0;
1992
d24ac77f 1993 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
1994 old.freelist, old.counters,
1995 new.freelist, new.counters,
1996 "unfreezing slab"));
1997
8a5b20ae 1998 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
1999 page->next = discard_page;
2000 discard_page = page;
43d77867
JK
2001 } else {
2002 add_partial(n, page, DEACTIVATE_TO_TAIL);
2003 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2004 }
2005 }
2006
2007 if (n)
2008 spin_unlock(&n->list_lock);
9ada1934
SL
2009
2010 while (discard_page) {
2011 page = discard_page;
2012 discard_page = discard_page->next;
2013
2014 stat(s, DEACTIVATE_EMPTY);
2015 discard_slab(s, page);
2016 stat(s, FREE_SLAB);
2017 }
345c905d 2018#endif
49e22585
CL
2019}
2020
2021/*
2022 * Put a page that was just frozen (in __slab_free) into a partial page
2023 * slot if available. This is done without interrupts disabled and without
2024 * preemption disabled. The cmpxchg is racy and may put the partial page
2025 * onto a random cpus partial slot.
2026 *
2027 * If we did not find a slot then simply move all the partials to the
2028 * per node partial list.
2029 */
633b0764 2030static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2031{
345c905d 2032#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2033 struct page *oldpage;
2034 int pages;
2035 int pobjects;
2036
d6e0b7fa 2037 preempt_disable();
49e22585
CL
2038 do {
2039 pages = 0;
2040 pobjects = 0;
2041 oldpage = this_cpu_read(s->cpu_slab->partial);
2042
2043 if (oldpage) {
2044 pobjects = oldpage->pobjects;
2045 pages = oldpage->pages;
2046 if (drain && pobjects > s->cpu_partial) {
2047 unsigned long flags;
2048 /*
2049 * partial array is full. Move the existing
2050 * set to the per node partial list.
2051 */
2052 local_irq_save(flags);
59a09917 2053 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2054 local_irq_restore(flags);
e24fc410 2055 oldpage = NULL;
49e22585
CL
2056 pobjects = 0;
2057 pages = 0;
8028dcea 2058 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2059 }
2060 }
2061
2062 pages++;
2063 pobjects += page->objects - page->inuse;
2064
2065 page->pages = pages;
2066 page->pobjects = pobjects;
2067 page->next = oldpage;
2068
d0e0ac97
CG
2069 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2070 != oldpage);
d6e0b7fa
VD
2071 if (unlikely(!s->cpu_partial)) {
2072 unsigned long flags;
2073
2074 local_irq_save(flags);
2075 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2076 local_irq_restore(flags);
2077 }
2078 preempt_enable();
345c905d 2079#endif
49e22585
CL
2080}
2081
dfb4f096 2082static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2083{
84e554e6 2084 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2085 deactivate_slab(s, c->page, c->freelist);
2086
2087 c->tid = next_tid(c->tid);
2088 c->page = NULL;
2089 c->freelist = NULL;
81819f0f
CL
2090}
2091
2092/*
2093 * Flush cpu slab.
6446faa2 2094 *
81819f0f
CL
2095 * Called from IPI handler with interrupts disabled.
2096 */
0c710013 2097static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2098{
9dfc6e68 2099 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2100
49e22585
CL
2101 if (likely(c)) {
2102 if (c->page)
2103 flush_slab(s, c);
2104
59a09917 2105 unfreeze_partials(s, c);
49e22585 2106 }
81819f0f
CL
2107}
2108
2109static void flush_cpu_slab(void *d)
2110{
2111 struct kmem_cache *s = d;
81819f0f 2112
dfb4f096 2113 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2114}
2115
a8364d55
GBY
2116static bool has_cpu_slab(int cpu, void *info)
2117{
2118 struct kmem_cache *s = info;
2119 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2120
02e1a9cd 2121 return c->page || c->partial;
a8364d55
GBY
2122}
2123
81819f0f
CL
2124static void flush_all(struct kmem_cache *s)
2125{
a8364d55 2126 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2127}
2128
dfb4f096
CL
2129/*
2130 * Check if the objects in a per cpu structure fit numa
2131 * locality expectations.
2132 */
57d437d2 2133static inline int node_match(struct page *page, int node)
dfb4f096
CL
2134{
2135#ifdef CONFIG_NUMA
4d7868e6 2136 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2137 return 0;
2138#endif
2139 return 1;
2140}
2141
9a02d699 2142#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2143static int count_free(struct page *page)
2144{
2145 return page->objects - page->inuse;
2146}
2147
9a02d699
DR
2148static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2149{
2150 return atomic_long_read(&n->total_objects);
2151}
2152#endif /* CONFIG_SLUB_DEBUG */
2153
2154#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2155static unsigned long count_partial(struct kmem_cache_node *n,
2156 int (*get_count)(struct page *))
2157{
2158 unsigned long flags;
2159 unsigned long x = 0;
2160 struct page *page;
2161
2162 spin_lock_irqsave(&n->list_lock, flags);
2163 list_for_each_entry(page, &n->partial, lru)
2164 x += get_count(page);
2165 spin_unlock_irqrestore(&n->list_lock, flags);
2166 return x;
2167}
9a02d699 2168#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2169
781b2ba6
PE
2170static noinline void
2171slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2172{
9a02d699
DR
2173#ifdef CONFIG_SLUB_DEBUG
2174 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2175 DEFAULT_RATELIMIT_BURST);
781b2ba6 2176 int node;
fa45dc25 2177 struct kmem_cache_node *n;
781b2ba6 2178
9a02d699
DR
2179 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2180 return;
2181
f9f58285 2182 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2183 nid, gfpflags);
f9f58285
FF
2184 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2185 s->name, s->object_size, s->size, oo_order(s->oo),
2186 oo_order(s->min));
781b2ba6 2187
3b0efdfa 2188 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2189 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2190 s->name);
fa5ec8a1 2191
fa45dc25 2192 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2193 unsigned long nr_slabs;
2194 unsigned long nr_objs;
2195 unsigned long nr_free;
2196
26c02cf0
AB
2197 nr_free = count_partial(n, count_free);
2198 nr_slabs = node_nr_slabs(n);
2199 nr_objs = node_nr_objs(n);
781b2ba6 2200
f9f58285 2201 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2202 node, nr_slabs, nr_objs, nr_free);
2203 }
9a02d699 2204#endif
781b2ba6
PE
2205}
2206
497b66f2
CL
2207static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2208 int node, struct kmem_cache_cpu **pc)
2209{
6faa6833 2210 void *freelist;
188fd063
CL
2211 struct kmem_cache_cpu *c = *pc;
2212 struct page *page;
497b66f2 2213
188fd063 2214 freelist = get_partial(s, flags, node, c);
497b66f2 2215
188fd063
CL
2216 if (freelist)
2217 return freelist;
2218
2219 page = new_slab(s, flags, node);
497b66f2 2220 if (page) {
7c8e0181 2221 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2222 if (c->page)
2223 flush_slab(s, c);
2224
2225 /*
2226 * No other reference to the page yet so we can
2227 * muck around with it freely without cmpxchg
2228 */
6faa6833 2229 freelist = page->freelist;
497b66f2
CL
2230 page->freelist = NULL;
2231
2232 stat(s, ALLOC_SLAB);
497b66f2
CL
2233 c->page = page;
2234 *pc = c;
2235 } else
6faa6833 2236 freelist = NULL;
497b66f2 2237
6faa6833 2238 return freelist;
497b66f2
CL
2239}
2240
072bb0aa
MG
2241static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2242{
2243 if (unlikely(PageSlabPfmemalloc(page)))
2244 return gfp_pfmemalloc_allowed(gfpflags);
2245
2246 return true;
2247}
2248
213eeb9f 2249/*
d0e0ac97
CG
2250 * Check the page->freelist of a page and either transfer the freelist to the
2251 * per cpu freelist or deactivate the page.
213eeb9f
CL
2252 *
2253 * The page is still frozen if the return value is not NULL.
2254 *
2255 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2256 *
2257 * This function must be called with interrupt disabled.
213eeb9f
CL
2258 */
2259static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2260{
2261 struct page new;
2262 unsigned long counters;
2263 void *freelist;
2264
2265 do {
2266 freelist = page->freelist;
2267 counters = page->counters;
6faa6833 2268
213eeb9f 2269 new.counters = counters;
a0132ac0 2270 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2271
2272 new.inuse = page->objects;
2273 new.frozen = freelist != NULL;
2274
d24ac77f 2275 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2276 freelist, counters,
2277 NULL, new.counters,
2278 "get_freelist"));
2279
2280 return freelist;
2281}
2282
81819f0f 2283/*
894b8788
CL
2284 * Slow path. The lockless freelist is empty or we need to perform
2285 * debugging duties.
2286 *
894b8788
CL
2287 * Processing is still very fast if new objects have been freed to the
2288 * regular freelist. In that case we simply take over the regular freelist
2289 * as the lockless freelist and zap the regular freelist.
81819f0f 2290 *
894b8788
CL
2291 * If that is not working then we fall back to the partial lists. We take the
2292 * first element of the freelist as the object to allocate now and move the
2293 * rest of the freelist to the lockless freelist.
81819f0f 2294 *
894b8788 2295 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2296 * we need to allocate a new slab. This is the slowest path since it involves
2297 * a call to the page allocator and the setup of a new slab.
81819f0f 2298 */
ce71e27c
EGM
2299static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2300 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2301{
6faa6833 2302 void *freelist;
f6e7def7 2303 struct page *page;
8a5ec0ba
CL
2304 unsigned long flags;
2305
2306 local_irq_save(flags);
2307#ifdef CONFIG_PREEMPT
2308 /*
2309 * We may have been preempted and rescheduled on a different
2310 * cpu before disabling interrupts. Need to reload cpu area
2311 * pointer.
2312 */
2313 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 2314#endif
81819f0f 2315
f6e7def7
CL
2316 page = c->page;
2317 if (!page)
81819f0f 2318 goto new_slab;
49e22585 2319redo:
6faa6833 2320
57d437d2 2321 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2322 int searchnode = node;
2323
2324 if (node != NUMA_NO_NODE && !node_present_pages(node))
2325 searchnode = node_to_mem_node(node);
2326
2327 if (unlikely(!node_match(page, searchnode))) {
2328 stat(s, ALLOC_NODE_MISMATCH);
2329 deactivate_slab(s, page, c->freelist);
2330 c->page = NULL;
2331 c->freelist = NULL;
2332 goto new_slab;
2333 }
fc59c053 2334 }
6446faa2 2335
072bb0aa
MG
2336 /*
2337 * By rights, we should be searching for a slab page that was
2338 * PFMEMALLOC but right now, we are losing the pfmemalloc
2339 * information when the page leaves the per-cpu allocator
2340 */
2341 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2342 deactivate_slab(s, page, c->freelist);
2343 c->page = NULL;
2344 c->freelist = NULL;
2345 goto new_slab;
2346 }
2347
73736e03 2348 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2349 freelist = c->freelist;
2350 if (freelist)
73736e03 2351 goto load_freelist;
03e404af 2352
f6e7def7 2353 freelist = get_freelist(s, page);
6446faa2 2354
6faa6833 2355 if (!freelist) {
03e404af
CL
2356 c->page = NULL;
2357 stat(s, DEACTIVATE_BYPASS);
fc59c053 2358 goto new_slab;
03e404af 2359 }
6446faa2 2360
84e554e6 2361 stat(s, ALLOC_REFILL);
6446faa2 2362
894b8788 2363load_freelist:
507effea
CL
2364 /*
2365 * freelist is pointing to the list of objects to be used.
2366 * page is pointing to the page from which the objects are obtained.
2367 * That page must be frozen for per cpu allocations to work.
2368 */
a0132ac0 2369 VM_BUG_ON(!c->page->frozen);
6faa6833 2370 c->freelist = get_freepointer(s, freelist);
8a5ec0ba
CL
2371 c->tid = next_tid(c->tid);
2372 local_irq_restore(flags);
6faa6833 2373 return freelist;
81819f0f 2374
81819f0f 2375new_slab:
2cfb7455 2376
49e22585 2377 if (c->partial) {
f6e7def7
CL
2378 page = c->page = c->partial;
2379 c->partial = page->next;
49e22585
CL
2380 stat(s, CPU_PARTIAL_ALLOC);
2381 c->freelist = NULL;
2382 goto redo;
81819f0f
CL
2383 }
2384
188fd063 2385 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2386
f4697436 2387 if (unlikely(!freelist)) {
9a02d699 2388 slab_out_of_memory(s, gfpflags, node);
f4697436
CL
2389 local_irq_restore(flags);
2390 return NULL;
81819f0f 2391 }
2cfb7455 2392
f6e7def7 2393 page = c->page;
5091b74a 2394 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2395 goto load_freelist;
2cfb7455 2396
497b66f2 2397 /* Only entered in the debug case */
d0e0ac97
CG
2398 if (kmem_cache_debug(s) &&
2399 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2400 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2401
f6e7def7 2402 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2403 c->page = NULL;
2404 c->freelist = NULL;
a71ae47a 2405 local_irq_restore(flags);
6faa6833 2406 return freelist;
894b8788
CL
2407}
2408
2409/*
2410 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2411 * have the fastpath folded into their functions. So no function call
2412 * overhead for requests that can be satisfied on the fastpath.
2413 *
2414 * The fastpath works by first checking if the lockless freelist can be used.
2415 * If not then __slab_alloc is called for slow processing.
2416 *
2417 * Otherwise we can simply pick the next object from the lockless free list.
2418 */
2b847c3c 2419static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2420 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2421{
894b8788 2422 void **object;
dfb4f096 2423 struct kmem_cache_cpu *c;
57d437d2 2424 struct page *page;
8a5ec0ba 2425 unsigned long tid;
1f84260c 2426
8135be5a
VD
2427 s = slab_pre_alloc_hook(s, gfpflags);
2428 if (!s)
773ff60e 2429 return NULL;
8a5ec0ba 2430redo:
8a5ec0ba
CL
2431 /*
2432 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2433 * enabled. We may switch back and forth between cpus while
2434 * reading from one cpu area. That does not matter as long
2435 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2436 *
9aabf810
JK
2437 * We should guarantee that tid and kmem_cache are retrieved on
2438 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2439 * to check if it is matched or not.
8a5ec0ba 2440 */
9aabf810
JK
2441 do {
2442 tid = this_cpu_read(s->cpu_slab->tid);
2443 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2444 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2445 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2446
2447 /*
2448 * Irqless object alloc/free algorithm used here depends on sequence
2449 * of fetching cpu_slab's data. tid should be fetched before anything
2450 * on c to guarantee that object and page associated with previous tid
2451 * won't be used with current tid. If we fetch tid first, object and
2452 * page could be one associated with next tid and our alloc/free
2453 * request will be failed. In this case, we will retry. So, no problem.
2454 */
2455 barrier();
8a5ec0ba 2456
8a5ec0ba
CL
2457 /*
2458 * The transaction ids are globally unique per cpu and per operation on
2459 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2460 * occurs on the right processor and that there was no operation on the
2461 * linked list in between.
2462 */
8a5ec0ba 2463
9dfc6e68 2464 object = c->freelist;
57d437d2 2465 page = c->page;
8eae1492 2466 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2467 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2468 stat(s, ALLOC_SLOWPATH);
2469 } else {
0ad9500e
ED
2470 void *next_object = get_freepointer_safe(s, object);
2471
8a5ec0ba 2472 /*
25985edc 2473 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2474 * operation and if we are on the right processor.
2475 *
d0e0ac97
CG
2476 * The cmpxchg does the following atomically (without lock
2477 * semantics!)
8a5ec0ba
CL
2478 * 1. Relocate first pointer to the current per cpu area.
2479 * 2. Verify that tid and freelist have not been changed
2480 * 3. If they were not changed replace tid and freelist
2481 *
d0e0ac97
CG
2482 * Since this is without lock semantics the protection is only
2483 * against code executing on this cpu *not* from access by
2484 * other cpus.
8a5ec0ba 2485 */
933393f5 2486 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2487 s->cpu_slab->freelist, s->cpu_slab->tid,
2488 object, tid,
0ad9500e 2489 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2490
2491 note_cmpxchg_failure("slab_alloc", s, tid);
2492 goto redo;
2493 }
0ad9500e 2494 prefetch_freepointer(s, next_object);
84e554e6 2495 stat(s, ALLOC_FASTPATH);
894b8788 2496 }
8a5ec0ba 2497
74e2134f 2498 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2499 memset(object, 0, s->object_size);
d07dbea4 2500
c016b0bd 2501 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2502
894b8788 2503 return object;
81819f0f
CL
2504}
2505
2b847c3c
EG
2506static __always_inline void *slab_alloc(struct kmem_cache *s,
2507 gfp_t gfpflags, unsigned long addr)
2508{
2509 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2510}
2511
81819f0f
CL
2512void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2513{
2b847c3c 2514 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2515
d0e0ac97
CG
2516 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2517 s->size, gfpflags);
5b882be4
EGM
2518
2519 return ret;
81819f0f
CL
2520}
2521EXPORT_SYMBOL(kmem_cache_alloc);
2522
0f24f128 2523#ifdef CONFIG_TRACING
4a92379b
RK
2524void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2525{
2b847c3c 2526 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2527 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0316bec2 2528 kasan_kmalloc(s, ret, size);
4a92379b
RK
2529 return ret;
2530}
2531EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2532#endif
2533
81819f0f
CL
2534#ifdef CONFIG_NUMA
2535void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2536{
2b847c3c 2537 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2538
ca2b84cb 2539 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2540 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2541
2542 return ret;
81819f0f
CL
2543}
2544EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2545
0f24f128 2546#ifdef CONFIG_TRACING
4a92379b 2547void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2548 gfp_t gfpflags,
4a92379b 2549 int node, size_t size)
5b882be4 2550{
2b847c3c 2551 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2552
2553 trace_kmalloc_node(_RET_IP_, ret,
2554 size, s->size, gfpflags, node);
0316bec2
AR
2555
2556 kasan_kmalloc(s, ret, size);
4a92379b 2557 return ret;
5b882be4 2558}
4a92379b 2559EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2560#endif
5d1f57e4 2561#endif
5b882be4 2562
81819f0f 2563/*
94e4d712 2564 * Slow path handling. This may still be called frequently since objects
894b8788 2565 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2566 *
894b8788
CL
2567 * So we still attempt to reduce cache line usage. Just take the slab
2568 * lock and free the item. If there is no additional partial page
2569 * handling required then we can return immediately.
81819f0f 2570 */
894b8788 2571static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2572 void *x, unsigned long addr)
81819f0f
CL
2573{
2574 void *prior;
2575 void **object = (void *)x;
2cfb7455 2576 int was_frozen;
2cfb7455
CL
2577 struct page new;
2578 unsigned long counters;
2579 struct kmem_cache_node *n = NULL;
61728d1e 2580 unsigned long uninitialized_var(flags);
81819f0f 2581
8a5ec0ba 2582 stat(s, FREE_SLOWPATH);
81819f0f 2583
19c7ff9e
CL
2584 if (kmem_cache_debug(s) &&
2585 !(n = free_debug_processing(s, page, x, addr, &flags)))
80f08c19 2586 return;
6446faa2 2587
2cfb7455 2588 do {
837d678d
JK
2589 if (unlikely(n)) {
2590 spin_unlock_irqrestore(&n->list_lock, flags);
2591 n = NULL;
2592 }
2cfb7455
CL
2593 prior = page->freelist;
2594 counters = page->counters;
2595 set_freepointer(s, object, prior);
2596 new.counters = counters;
2597 was_frozen = new.frozen;
2598 new.inuse--;
837d678d 2599 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2600
c65c1877 2601 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2602
2603 /*
d0e0ac97
CG
2604 * Slab was on no list before and will be
2605 * partially empty
2606 * We can defer the list move and instead
2607 * freeze it.
49e22585
CL
2608 */
2609 new.frozen = 1;
2610
c65c1877 2611 } else { /* Needs to be taken off a list */
49e22585 2612
b455def2 2613 n = get_node(s, page_to_nid(page));
49e22585
CL
2614 /*
2615 * Speculatively acquire the list_lock.
2616 * If the cmpxchg does not succeed then we may
2617 * drop the list_lock without any processing.
2618 *
2619 * Otherwise the list_lock will synchronize with
2620 * other processors updating the list of slabs.
2621 */
2622 spin_lock_irqsave(&n->list_lock, flags);
2623
2624 }
2cfb7455 2625 }
81819f0f 2626
2cfb7455
CL
2627 } while (!cmpxchg_double_slab(s, page,
2628 prior, counters,
2629 object, new.counters,
2630 "__slab_free"));
81819f0f 2631
2cfb7455 2632 if (likely(!n)) {
49e22585
CL
2633
2634 /*
2635 * If we just froze the page then put it onto the
2636 * per cpu partial list.
2637 */
8028dcea 2638 if (new.frozen && !was_frozen) {
49e22585 2639 put_cpu_partial(s, page, 1);
8028dcea
AS
2640 stat(s, CPU_PARTIAL_FREE);
2641 }
49e22585 2642 /*
2cfb7455
CL
2643 * The list lock was not taken therefore no list
2644 * activity can be necessary.
2645 */
b455def2
L
2646 if (was_frozen)
2647 stat(s, FREE_FROZEN);
2648 return;
2649 }
81819f0f 2650
8a5b20ae 2651 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2652 goto slab_empty;
2653
81819f0f 2654 /*
837d678d
JK
2655 * Objects left in the slab. If it was not on the partial list before
2656 * then add it.
81819f0f 2657 */
345c905d
JK
2658 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2659 if (kmem_cache_debug(s))
c65c1877 2660 remove_full(s, n, page);
837d678d
JK
2661 add_partial(n, page, DEACTIVATE_TO_TAIL);
2662 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2663 }
80f08c19 2664 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2665 return;
2666
2667slab_empty:
a973e9dd 2668 if (prior) {
81819f0f 2669 /*
6fbabb20 2670 * Slab on the partial list.
81819f0f 2671 */
5cc6eee8 2672 remove_partial(n, page);
84e554e6 2673 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2674 } else {
6fbabb20 2675 /* Slab must be on the full list */
c65c1877
PZ
2676 remove_full(s, n, page);
2677 }
2cfb7455 2678
80f08c19 2679 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2680 stat(s, FREE_SLAB);
81819f0f 2681 discard_slab(s, page);
81819f0f
CL
2682}
2683
894b8788
CL
2684/*
2685 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2686 * can perform fastpath freeing without additional function calls.
2687 *
2688 * The fastpath is only possible if we are freeing to the current cpu slab
2689 * of this processor. This typically the case if we have just allocated
2690 * the item before.
2691 *
2692 * If fastpath is not possible then fall back to __slab_free where we deal
2693 * with all sorts of special processing.
2694 */
06428780 2695static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2696 struct page *page, void *x, unsigned long addr)
894b8788
CL
2697{
2698 void **object = (void *)x;
dfb4f096 2699 struct kmem_cache_cpu *c;
8a5ec0ba 2700 unsigned long tid;
1f84260c 2701
c016b0bd
CL
2702 slab_free_hook(s, x);
2703
8a5ec0ba
CL
2704redo:
2705 /*
2706 * Determine the currently cpus per cpu slab.
2707 * The cpu may change afterward. However that does not matter since
2708 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2709 * during the cmpxchg then the free will succeed.
8a5ec0ba 2710 */
9aabf810
JK
2711 do {
2712 tid = this_cpu_read(s->cpu_slab->tid);
2713 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2714 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2715 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2716
9aabf810
JK
2717 /* Same with comment on barrier() in slab_alloc_node() */
2718 barrier();
c016b0bd 2719
442b06bc 2720 if (likely(page == c->page)) {
ff12059e 2721 set_freepointer(s, object, c->freelist);
8a5ec0ba 2722
933393f5 2723 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2724 s->cpu_slab->freelist, s->cpu_slab->tid,
2725 c->freelist, tid,
2726 object, next_tid(tid)))) {
2727
2728 note_cmpxchg_failure("slab_free", s, tid);
2729 goto redo;
2730 }
84e554e6 2731 stat(s, FREE_FASTPATH);
894b8788 2732 } else
ff12059e 2733 __slab_free(s, page, x, addr);
894b8788 2734
894b8788
CL
2735}
2736
81819f0f
CL
2737void kmem_cache_free(struct kmem_cache *s, void *x)
2738{
b9ce5ef4
GC
2739 s = cache_from_obj(s, x);
2740 if (!s)
79576102 2741 return;
b9ce5ef4 2742 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
ca2b84cb 2743 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2744}
2745EXPORT_SYMBOL(kmem_cache_free);
2746
994eb764 2747/* Note that interrupts must be enabled when calling this function. */
484748f0
CL
2748void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
2749{
fbd02630
JDB
2750 struct kmem_cache_cpu *c;
2751 struct page *page;
2752 int i;
2753
fbd02630
JDB
2754 local_irq_disable();
2755 c = this_cpu_ptr(s->cpu_slab);
2756
2757 for (i = 0; i < size; i++) {
2758 void *object = p[i];
2759
2760 BUG_ON(!object);
3eed034d
JDB
2761 /* kmem cache debug support */
2762 s = cache_from_obj(s, object);
2763 if (unlikely(!s))
2764 goto exit;
2765 slab_free_hook(s, object);
2766
fbd02630 2767 page = virt_to_head_page(object);
fbd02630
JDB
2768
2769 if (c->page == page) {
2770 /* Fastpath: local CPU free */
2771 set_freepointer(s, object, c->freelist);
2772 c->freelist = object;
2773 } else {
2774 c->tid = next_tid(c->tid);
2775 local_irq_enable();
2776 /* Slowpath: overhead locked cmpxchg_double_slab */
2777 __slab_free(s, page, object, _RET_IP_);
2778 local_irq_disable();
2779 c = this_cpu_ptr(s->cpu_slab);
2780 }
2781 }
3eed034d 2782exit:
fbd02630
JDB
2783 c->tid = next_tid(c->tid);
2784 local_irq_enable();
484748f0
CL
2785}
2786EXPORT_SYMBOL(kmem_cache_free_bulk);
2787
994eb764 2788/* Note that interrupts must be enabled when calling this function. */
484748f0 2789bool kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
994eb764 2790 void **p)
484748f0 2791{
994eb764
JDB
2792 struct kmem_cache_cpu *c;
2793 int i;
2794
994eb764
JDB
2795 /*
2796 * Drain objects in the per cpu slab, while disabling local
2797 * IRQs, which protects against PREEMPT and interrupts
2798 * handlers invoking normal fastpath.
2799 */
2800 local_irq_disable();
2801 c = this_cpu_ptr(s->cpu_slab);
2802
2803 for (i = 0; i < size; i++) {
2804 void *object = c->freelist;
2805
ebe909e0
JDB
2806 if (unlikely(!object)) {
2807 local_irq_enable();
2808 /*
2809 * Invoking slow path likely have side-effect
2810 * of re-populating per CPU c->freelist
2811 */
2812 p[i] = __slab_alloc(s, flags, NUMA_NO_NODE,
2813 _RET_IP_, c);
2814 if (unlikely(!p[i])) {
2815 __kmem_cache_free_bulk(s, i, p);
2816 return false;
2817 }
2818 local_irq_disable();
2819 c = this_cpu_ptr(s->cpu_slab);
2820 continue; /* goto for-loop */
2821 }
994eb764 2822
3eed034d
JDB
2823 /* kmem_cache debug support */
2824 s = slab_pre_alloc_hook(s, flags);
2825 if (unlikely(!s)) {
2826 __kmem_cache_free_bulk(s, i, p);
2827 c->tid = next_tid(c->tid);
2828 local_irq_enable();
2829 return false;
2830 }
2831
994eb764
JDB
2832 c->freelist = get_freepointer(s, object);
2833 p[i] = object;
3eed034d
JDB
2834
2835 /* kmem_cache debug support */
2836 slab_post_alloc_hook(s, flags, object);
994eb764
JDB
2837 }
2838 c->tid = next_tid(c->tid);
2839 local_irq_enable();
2840
2841 /* Clear memory outside IRQ disabled fastpath loop */
2842 if (unlikely(flags & __GFP_ZERO)) {
2843 int j;
2844
2845 for (j = 0; j < i; j++)
2846 memset(p[j], 0, s->object_size);
2847 }
2848
994eb764 2849 return true;
484748f0
CL
2850}
2851EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2852
2853
81819f0f 2854/*
672bba3a
CL
2855 * Object placement in a slab is made very easy because we always start at
2856 * offset 0. If we tune the size of the object to the alignment then we can
2857 * get the required alignment by putting one properly sized object after
2858 * another.
81819f0f
CL
2859 *
2860 * Notice that the allocation order determines the sizes of the per cpu
2861 * caches. Each processor has always one slab available for allocations.
2862 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2863 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2864 * locking overhead.
81819f0f
CL
2865 */
2866
2867/*
2868 * Mininum / Maximum order of slab pages. This influences locking overhead
2869 * and slab fragmentation. A higher order reduces the number of partial slabs
2870 * and increases the number of allocations possible without having to
2871 * take the list_lock.
2872 */
2873static int slub_min_order;
114e9e89 2874static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2875static int slub_min_objects;
81819f0f 2876
81819f0f
CL
2877/*
2878 * Calculate the order of allocation given an slab object size.
2879 *
672bba3a
CL
2880 * The order of allocation has significant impact on performance and other
2881 * system components. Generally order 0 allocations should be preferred since
2882 * order 0 does not cause fragmentation in the page allocator. Larger objects
2883 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2884 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2885 * would be wasted.
2886 *
2887 * In order to reach satisfactory performance we must ensure that a minimum
2888 * number of objects is in one slab. Otherwise we may generate too much
2889 * activity on the partial lists which requires taking the list_lock. This is
2890 * less a concern for large slabs though which are rarely used.
81819f0f 2891 *
672bba3a
CL
2892 * slub_max_order specifies the order where we begin to stop considering the
2893 * number of objects in a slab as critical. If we reach slub_max_order then
2894 * we try to keep the page order as low as possible. So we accept more waste
2895 * of space in favor of a small page order.
81819f0f 2896 *
672bba3a
CL
2897 * Higher order allocations also allow the placement of more objects in a
2898 * slab and thereby reduce object handling overhead. If the user has
2899 * requested a higher mininum order then we start with that one instead of
2900 * the smallest order which will fit the object.
81819f0f 2901 */
5e6d444e 2902static inline int slab_order(int size, int min_objects,
ab9a0f19 2903 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2904{
2905 int order;
2906 int rem;
6300ea75 2907 int min_order = slub_min_order;
81819f0f 2908
ab9a0f19 2909 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2910 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2911
9f835703 2912 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 2913 order <= max_order; order++) {
81819f0f 2914
5e6d444e 2915 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2916
ab9a0f19 2917 rem = (slab_size - reserved) % size;
81819f0f 2918
5e6d444e 2919 if (rem <= slab_size / fract_leftover)
81819f0f 2920 break;
81819f0f 2921 }
672bba3a 2922
81819f0f
CL
2923 return order;
2924}
2925
ab9a0f19 2926static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2927{
2928 int order;
2929 int min_objects;
2930 int fraction;
e8120ff1 2931 int max_objects;
5e6d444e
CL
2932
2933 /*
2934 * Attempt to find best configuration for a slab. This
2935 * works by first attempting to generate a layout with
2936 * the best configuration and backing off gradually.
2937 *
422ff4d7 2938 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
2939 * we reduce the minimum objects required in a slab.
2940 */
2941 min_objects = slub_min_objects;
9b2cd506
CL
2942 if (!min_objects)
2943 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2944 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2945 min_objects = min(min_objects, max_objects);
2946
5e6d444e 2947 while (min_objects > 1) {
c124f5b5 2948 fraction = 16;
5e6d444e
CL
2949 while (fraction >= 4) {
2950 order = slab_order(size, min_objects,
ab9a0f19 2951 slub_max_order, fraction, reserved);
5e6d444e
CL
2952 if (order <= slub_max_order)
2953 return order;
2954 fraction /= 2;
2955 }
5086c389 2956 min_objects--;
5e6d444e
CL
2957 }
2958
2959 /*
2960 * We were unable to place multiple objects in a slab. Now
2961 * lets see if we can place a single object there.
2962 */
ab9a0f19 2963 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2964 if (order <= slub_max_order)
2965 return order;
2966
2967 /*
2968 * Doh this slab cannot be placed using slub_max_order.
2969 */
ab9a0f19 2970 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2971 if (order < MAX_ORDER)
5e6d444e
CL
2972 return order;
2973 return -ENOSYS;
2974}
2975
5595cffc 2976static void
4053497d 2977init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
2978{
2979 n->nr_partial = 0;
81819f0f
CL
2980 spin_lock_init(&n->list_lock);
2981 INIT_LIST_HEAD(&n->partial);
8ab1372f 2982#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2983 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2984 atomic_long_set(&n->total_objects, 0);
643b1138 2985 INIT_LIST_HEAD(&n->full);
8ab1372f 2986#endif
81819f0f
CL
2987}
2988
55136592 2989static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2990{
6c182dc0 2991 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 2992 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 2993
8a5ec0ba 2994 /*
d4d84fef
CM
2995 * Must align to double word boundary for the double cmpxchg
2996 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2997 */
d4d84fef
CM
2998 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2999 2 * sizeof(void *));
8a5ec0ba
CL
3000
3001 if (!s->cpu_slab)
3002 return 0;
3003
3004 init_kmem_cache_cpus(s);
4c93c355 3005
8a5ec0ba 3006 return 1;
4c93c355 3007}
4c93c355 3008
51df1142
CL
3009static struct kmem_cache *kmem_cache_node;
3010
81819f0f
CL
3011/*
3012 * No kmalloc_node yet so do it by hand. We know that this is the first
3013 * slab on the node for this slabcache. There are no concurrent accesses
3014 * possible.
3015 *
721ae22a
ZYW
3016 * Note that this function only works on the kmem_cache_node
3017 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3018 * memory on a fresh node that has no slab structures yet.
81819f0f 3019 */
55136592 3020static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3021{
3022 struct page *page;
3023 struct kmem_cache_node *n;
3024
51df1142 3025 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3026
51df1142 3027 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3028
3029 BUG_ON(!page);
a2f92ee7 3030 if (page_to_nid(page) != node) {
f9f58285
FF
3031 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3032 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3033 }
3034
81819f0f
CL
3035 n = page->freelist;
3036 BUG_ON(!n);
51df1142 3037 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3038 page->inuse = 1;
8cb0a506 3039 page->frozen = 0;
51df1142 3040 kmem_cache_node->node[node] = n;
8ab1372f 3041#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3042 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3043 init_tracking(kmem_cache_node, n);
8ab1372f 3044#endif
0316bec2 3045 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
4053497d 3046 init_kmem_cache_node(n);
51df1142 3047 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3048
67b6c900 3049 /*
1e4dd946
SR
3050 * No locks need to be taken here as it has just been
3051 * initialized and there is no concurrent access.
67b6c900 3052 */
1e4dd946 3053 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3054}
3055
3056static void free_kmem_cache_nodes(struct kmem_cache *s)
3057{
3058 int node;
fa45dc25 3059 struct kmem_cache_node *n;
81819f0f 3060
fa45dc25
CL
3061 for_each_kmem_cache_node(s, node, n) {
3062 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3063 s->node[node] = NULL;
3064 }
3065}
3066
55136592 3067static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3068{
3069 int node;
81819f0f 3070
f64dc58c 3071 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3072 struct kmem_cache_node *n;
3073
73367bd8 3074 if (slab_state == DOWN) {
55136592 3075 early_kmem_cache_node_alloc(node);
73367bd8
AD
3076 continue;
3077 }
51df1142 3078 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3079 GFP_KERNEL, node);
81819f0f 3080
73367bd8
AD
3081 if (!n) {
3082 free_kmem_cache_nodes(s);
3083 return 0;
81819f0f 3084 }
73367bd8 3085
81819f0f 3086 s->node[node] = n;
4053497d 3087 init_kmem_cache_node(n);
81819f0f
CL
3088 }
3089 return 1;
3090}
81819f0f 3091
c0bdb232 3092static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3093{
3094 if (min < MIN_PARTIAL)
3095 min = MIN_PARTIAL;
3096 else if (min > MAX_PARTIAL)
3097 min = MAX_PARTIAL;
3098 s->min_partial = min;
3099}
3100
81819f0f
CL
3101/*
3102 * calculate_sizes() determines the order and the distribution of data within
3103 * a slab object.
3104 */
06b285dc 3105static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3106{
3107 unsigned long flags = s->flags;
3b0efdfa 3108 unsigned long size = s->object_size;
834f3d11 3109 int order;
81819f0f 3110
d8b42bf5
CL
3111 /*
3112 * Round up object size to the next word boundary. We can only
3113 * place the free pointer at word boundaries and this determines
3114 * the possible location of the free pointer.
3115 */
3116 size = ALIGN(size, sizeof(void *));
3117
3118#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3119 /*
3120 * Determine if we can poison the object itself. If the user of
3121 * the slab may touch the object after free or before allocation
3122 * then we should never poison the object itself.
3123 */
3124 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3125 !s->ctor)
81819f0f
CL
3126 s->flags |= __OBJECT_POISON;
3127 else
3128 s->flags &= ~__OBJECT_POISON;
3129
81819f0f
CL
3130
3131 /*
672bba3a 3132 * If we are Redzoning then check if there is some space between the
81819f0f 3133 * end of the object and the free pointer. If not then add an
672bba3a 3134 * additional word to have some bytes to store Redzone information.
81819f0f 3135 */
3b0efdfa 3136 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3137 size += sizeof(void *);
41ecc55b 3138#endif
81819f0f
CL
3139
3140 /*
672bba3a
CL
3141 * With that we have determined the number of bytes in actual use
3142 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3143 */
3144 s->inuse = size;
3145
3146 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3147 s->ctor)) {
81819f0f
CL
3148 /*
3149 * Relocate free pointer after the object if it is not
3150 * permitted to overwrite the first word of the object on
3151 * kmem_cache_free.
3152 *
3153 * This is the case if we do RCU, have a constructor or
3154 * destructor or are poisoning the objects.
3155 */
3156 s->offset = size;
3157 size += sizeof(void *);
3158 }
3159
c12b3c62 3160#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3161 if (flags & SLAB_STORE_USER)
3162 /*
3163 * Need to store information about allocs and frees after
3164 * the object.
3165 */
3166 size += 2 * sizeof(struct track);
3167
be7b3fbc 3168 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3169 /*
3170 * Add some empty padding so that we can catch
3171 * overwrites from earlier objects rather than let
3172 * tracking information or the free pointer be
0211a9c8 3173 * corrupted if a user writes before the start
81819f0f
CL
3174 * of the object.
3175 */
3176 size += sizeof(void *);
41ecc55b 3177#endif
672bba3a 3178
81819f0f
CL
3179 /*
3180 * SLUB stores one object immediately after another beginning from
3181 * offset 0. In order to align the objects we have to simply size
3182 * each object to conform to the alignment.
3183 */
45906855 3184 size = ALIGN(size, s->align);
81819f0f 3185 s->size = size;
06b285dc
CL
3186 if (forced_order >= 0)
3187 order = forced_order;
3188 else
ab9a0f19 3189 order = calculate_order(size, s->reserved);
81819f0f 3190
834f3d11 3191 if (order < 0)
81819f0f
CL
3192 return 0;
3193
b7a49f0d 3194 s->allocflags = 0;
834f3d11 3195 if (order)
b7a49f0d
CL
3196 s->allocflags |= __GFP_COMP;
3197
3198 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3199 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3200
3201 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3202 s->allocflags |= __GFP_RECLAIMABLE;
3203
81819f0f
CL
3204 /*
3205 * Determine the number of objects per slab
3206 */
ab9a0f19
LJ
3207 s->oo = oo_make(order, size, s->reserved);
3208 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3209 if (oo_objects(s->oo) > oo_objects(s->max))
3210 s->max = s->oo;
81819f0f 3211
834f3d11 3212 return !!oo_objects(s->oo);
81819f0f
CL
3213}
3214
8a13a4cc 3215static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3216{
8a13a4cc 3217 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3218 s->reserved = 0;
81819f0f 3219
da9a638c
LJ
3220 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3221 s->reserved = sizeof(struct rcu_head);
81819f0f 3222
06b285dc 3223 if (!calculate_sizes(s, -1))
81819f0f 3224 goto error;
3de47213
DR
3225 if (disable_higher_order_debug) {
3226 /*
3227 * Disable debugging flags that store metadata if the min slab
3228 * order increased.
3229 */
3b0efdfa 3230 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3231 s->flags &= ~DEBUG_METADATA_FLAGS;
3232 s->offset = 0;
3233 if (!calculate_sizes(s, -1))
3234 goto error;
3235 }
3236 }
81819f0f 3237
2565409f
HC
3238#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3239 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3240 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3241 /* Enable fast mode */
3242 s->flags |= __CMPXCHG_DOUBLE;
3243#endif
3244
3b89d7d8
DR
3245 /*
3246 * The larger the object size is, the more pages we want on the partial
3247 * list to avoid pounding the page allocator excessively.
3248 */
49e22585
CL
3249 set_min_partial(s, ilog2(s->size) / 2);
3250
3251 /*
3252 * cpu_partial determined the maximum number of objects kept in the
3253 * per cpu partial lists of a processor.
3254 *
3255 * Per cpu partial lists mainly contain slabs that just have one
3256 * object freed. If they are used for allocation then they can be
3257 * filled up again with minimal effort. The slab will never hit the
3258 * per node partial lists and therefore no locking will be required.
3259 *
3260 * This setting also determines
3261 *
3262 * A) The number of objects from per cpu partial slabs dumped to the
3263 * per node list when we reach the limit.
9f264904 3264 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3265 * per node list when we run out of per cpu objects. We only fetch
3266 * 50% to keep some capacity around for frees.
49e22585 3267 */
345c905d 3268 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3269 s->cpu_partial = 0;
3270 else if (s->size >= PAGE_SIZE)
49e22585
CL
3271 s->cpu_partial = 2;
3272 else if (s->size >= 1024)
3273 s->cpu_partial = 6;
3274 else if (s->size >= 256)
3275 s->cpu_partial = 13;
3276 else
3277 s->cpu_partial = 30;
3278
81819f0f 3279#ifdef CONFIG_NUMA
e2cb96b7 3280 s->remote_node_defrag_ratio = 1000;
81819f0f 3281#endif
55136592 3282 if (!init_kmem_cache_nodes(s))
dfb4f096 3283 goto error;
81819f0f 3284
55136592 3285 if (alloc_kmem_cache_cpus(s))
278b1bb1 3286 return 0;
ff12059e 3287
4c93c355 3288 free_kmem_cache_nodes(s);
81819f0f
CL
3289error:
3290 if (flags & SLAB_PANIC)
3291 panic("Cannot create slab %s size=%lu realsize=%u "
3292 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3293 s->name, (unsigned long)s->size, s->size,
3294 oo_order(s->oo), s->offset, flags);
278b1bb1 3295 return -EINVAL;
81819f0f 3296}
81819f0f 3297
33b12c38
CL
3298static void list_slab_objects(struct kmem_cache *s, struct page *page,
3299 const char *text)
3300{
3301#ifdef CONFIG_SLUB_DEBUG
3302 void *addr = page_address(page);
3303 void *p;
a5dd5c11
NK
3304 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3305 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3306 if (!map)
3307 return;
945cf2b6 3308 slab_err(s, page, text, s->name);
33b12c38 3309 slab_lock(page);
33b12c38 3310
5f80b13a 3311 get_map(s, page, map);
33b12c38
CL
3312 for_each_object(p, s, addr, page->objects) {
3313
3314 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3315 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3316 print_tracking(s, p);
3317 }
3318 }
3319 slab_unlock(page);
bbd7d57b 3320 kfree(map);
33b12c38
CL
3321#endif
3322}
3323
81819f0f 3324/*
599870b1 3325 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3326 * This is called from kmem_cache_close(). We must be the last thread
3327 * using the cache and therefore we do not need to lock anymore.
81819f0f 3328 */
599870b1 3329static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3330{
81819f0f
CL
3331 struct page *page, *h;
3332
33b12c38 3333 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3334 if (!page->inuse) {
1e4dd946 3335 __remove_partial(n, page);
81819f0f 3336 discard_slab(s, page);
33b12c38
CL
3337 } else {
3338 list_slab_objects(s, page,
945cf2b6 3339 "Objects remaining in %s on kmem_cache_close()");
599870b1 3340 }
33b12c38 3341 }
81819f0f
CL
3342}
3343
3344/*
672bba3a 3345 * Release all resources used by a slab cache.
81819f0f 3346 */
0c710013 3347static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3348{
3349 int node;
fa45dc25 3350 struct kmem_cache_node *n;
81819f0f
CL
3351
3352 flush_all(s);
81819f0f 3353 /* Attempt to free all objects */
fa45dc25 3354 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3355 free_partial(s, n);
3356 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3357 return 1;
3358 }
945cf2b6 3359 free_percpu(s->cpu_slab);
81819f0f
CL
3360 free_kmem_cache_nodes(s);
3361 return 0;
3362}
3363
945cf2b6 3364int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3365{
41a21285 3366 return kmem_cache_close(s);
81819f0f 3367}
81819f0f
CL
3368
3369/********************************************************************
3370 * Kmalloc subsystem
3371 *******************************************************************/
3372
81819f0f
CL
3373static int __init setup_slub_min_order(char *str)
3374{
06428780 3375 get_option(&str, &slub_min_order);
81819f0f
CL
3376
3377 return 1;
3378}
3379
3380__setup("slub_min_order=", setup_slub_min_order);
3381
3382static int __init setup_slub_max_order(char *str)
3383{
06428780 3384 get_option(&str, &slub_max_order);
818cf590 3385 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3386
3387 return 1;
3388}
3389
3390__setup("slub_max_order=", setup_slub_max_order);
3391
3392static int __init setup_slub_min_objects(char *str)
3393{
06428780 3394 get_option(&str, &slub_min_objects);
81819f0f
CL
3395
3396 return 1;
3397}
3398
3399__setup("slub_min_objects=", setup_slub_min_objects);
3400
81819f0f
CL
3401void *__kmalloc(size_t size, gfp_t flags)
3402{
aadb4bc4 3403 struct kmem_cache *s;
5b882be4 3404 void *ret;
81819f0f 3405
95a05b42 3406 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3407 return kmalloc_large(size, flags);
aadb4bc4 3408
2c59dd65 3409 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3410
3411 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3412 return s;
3413
2b847c3c 3414 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3415
ca2b84cb 3416 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3417
0316bec2
AR
3418 kasan_kmalloc(s, ret, size);
3419
5b882be4 3420 return ret;
81819f0f
CL
3421}
3422EXPORT_SYMBOL(__kmalloc);
3423
5d1f57e4 3424#ifdef CONFIG_NUMA
f619cfe1
CL
3425static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3426{
b1eeab67 3427 struct page *page;
e4f7c0b4 3428 void *ptr = NULL;
f619cfe1 3429
52383431
VD
3430 flags |= __GFP_COMP | __GFP_NOTRACK;
3431 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3432 if (page)
e4f7c0b4
CM
3433 ptr = page_address(page);
3434
d56791b3 3435 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3436 return ptr;
f619cfe1
CL
3437}
3438
81819f0f
CL
3439void *__kmalloc_node(size_t size, gfp_t flags, int node)
3440{
aadb4bc4 3441 struct kmem_cache *s;
5b882be4 3442 void *ret;
81819f0f 3443
95a05b42 3444 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3445 ret = kmalloc_large_node(size, flags, node);
3446
ca2b84cb
EGM
3447 trace_kmalloc_node(_RET_IP_, ret,
3448 size, PAGE_SIZE << get_order(size),
3449 flags, node);
5b882be4
EGM
3450
3451 return ret;
3452 }
aadb4bc4 3453
2c59dd65 3454 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3455
3456 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3457 return s;
3458
2b847c3c 3459 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3460
ca2b84cb 3461 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3462
0316bec2
AR
3463 kasan_kmalloc(s, ret, size);
3464
5b882be4 3465 return ret;
81819f0f
CL
3466}
3467EXPORT_SYMBOL(__kmalloc_node);
3468#endif
3469
0316bec2 3470static size_t __ksize(const void *object)
81819f0f 3471{
272c1d21 3472 struct page *page;
81819f0f 3473
ef8b4520 3474 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3475 return 0;
3476
294a80a8 3477 page = virt_to_head_page(object);
294a80a8 3478
76994412
PE
3479 if (unlikely(!PageSlab(page))) {
3480 WARN_ON(!PageCompound(page));
294a80a8 3481 return PAGE_SIZE << compound_order(page);
76994412 3482 }
81819f0f 3483
1b4f59e3 3484 return slab_ksize(page->slab_cache);
81819f0f 3485}
0316bec2
AR
3486
3487size_t ksize(const void *object)
3488{
3489 size_t size = __ksize(object);
3490 /* We assume that ksize callers could use whole allocated area,
3491 so we need unpoison this area. */
3492 kasan_krealloc(object, size);
3493 return size;
3494}
b1aabecd 3495EXPORT_SYMBOL(ksize);
81819f0f
CL
3496
3497void kfree(const void *x)
3498{
81819f0f 3499 struct page *page;
5bb983b0 3500 void *object = (void *)x;
81819f0f 3501
2121db74
PE
3502 trace_kfree(_RET_IP_, x);
3503
2408c550 3504 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3505 return;
3506
b49af68f 3507 page = virt_to_head_page(x);
aadb4bc4 3508 if (unlikely(!PageSlab(page))) {
0937502a 3509 BUG_ON(!PageCompound(page));
d56791b3 3510 kfree_hook(x);
52383431 3511 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3512 return;
3513 }
1b4f59e3 3514 slab_free(page->slab_cache, page, object, _RET_IP_);
81819f0f
CL
3515}
3516EXPORT_SYMBOL(kfree);
3517
832f37f5
VD
3518#define SHRINK_PROMOTE_MAX 32
3519
2086d26a 3520/*
832f37f5
VD
3521 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3522 * up most to the head of the partial lists. New allocations will then
3523 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3524 *
3525 * The slabs with the least items are placed last. This results in them
3526 * being allocated from last increasing the chance that the last objects
3527 * are freed in them.
2086d26a 3528 */
d6e0b7fa 3529int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3530{
3531 int node;
3532 int i;
3533 struct kmem_cache_node *n;
3534 struct page *page;
3535 struct page *t;
832f37f5
VD
3536 struct list_head discard;
3537 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3538 unsigned long flags;
ce3712d7 3539 int ret = 0;
2086d26a 3540
d6e0b7fa
VD
3541 if (deactivate) {
3542 /*
3543 * Disable empty slabs caching. Used to avoid pinning offline
3544 * memory cgroups by kmem pages that can be freed.
3545 */
3546 s->cpu_partial = 0;
3547 s->min_partial = 0;
3548
3549 /*
3550 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3551 * so we have to make sure the change is visible.
3552 */
3553 kick_all_cpus_sync();
3554 }
3555
2086d26a 3556 flush_all(s);
fa45dc25 3557 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3558 INIT_LIST_HEAD(&discard);
3559 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3560 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3561
3562 spin_lock_irqsave(&n->list_lock, flags);
3563
3564 /*
832f37f5 3565 * Build lists of slabs to discard or promote.
2086d26a 3566 *
672bba3a
CL
3567 * Note that concurrent frees may occur while we hold the
3568 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3569 */
3570 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3571 int free = page->objects - page->inuse;
3572
3573 /* Do not reread page->inuse */
3574 barrier();
3575
3576 /* We do not keep full slabs on the list */
3577 BUG_ON(free <= 0);
3578
3579 if (free == page->objects) {
3580 list_move(&page->lru, &discard);
69cb8e6b 3581 n->nr_partial--;
832f37f5
VD
3582 } else if (free <= SHRINK_PROMOTE_MAX)
3583 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3584 }
3585
2086d26a 3586 /*
832f37f5
VD
3587 * Promote the slabs filled up most to the head of the
3588 * partial list.
2086d26a 3589 */
832f37f5
VD
3590 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3591 list_splice(promote + i, &n->partial);
2086d26a 3592
2086d26a 3593 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3594
3595 /* Release empty slabs */
832f37f5 3596 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3597 discard_slab(s, page);
ce3712d7
VD
3598
3599 if (slabs_node(s, node))
3600 ret = 1;
2086d26a
CL
3601 }
3602
ce3712d7 3603 return ret;
2086d26a 3604}
2086d26a 3605
b9049e23
YG
3606static int slab_mem_going_offline_callback(void *arg)
3607{
3608 struct kmem_cache *s;
3609
18004c5d 3610 mutex_lock(&slab_mutex);
b9049e23 3611 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3612 __kmem_cache_shrink(s, false);
18004c5d 3613 mutex_unlock(&slab_mutex);
b9049e23
YG
3614
3615 return 0;
3616}
3617
3618static void slab_mem_offline_callback(void *arg)
3619{
3620 struct kmem_cache_node *n;
3621 struct kmem_cache *s;
3622 struct memory_notify *marg = arg;
3623 int offline_node;
3624
b9d5ab25 3625 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3626
3627 /*
3628 * If the node still has available memory. we need kmem_cache_node
3629 * for it yet.
3630 */
3631 if (offline_node < 0)
3632 return;
3633
18004c5d 3634 mutex_lock(&slab_mutex);
b9049e23
YG
3635 list_for_each_entry(s, &slab_caches, list) {
3636 n = get_node(s, offline_node);
3637 if (n) {
3638 /*
3639 * if n->nr_slabs > 0, slabs still exist on the node
3640 * that is going down. We were unable to free them,
c9404c9c 3641 * and offline_pages() function shouldn't call this
b9049e23
YG
3642 * callback. So, we must fail.
3643 */
0f389ec6 3644 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3645
3646 s->node[offline_node] = NULL;
8de66a0c 3647 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3648 }
3649 }
18004c5d 3650 mutex_unlock(&slab_mutex);
b9049e23
YG
3651}
3652
3653static int slab_mem_going_online_callback(void *arg)
3654{
3655 struct kmem_cache_node *n;
3656 struct kmem_cache *s;
3657 struct memory_notify *marg = arg;
b9d5ab25 3658 int nid = marg->status_change_nid_normal;
b9049e23
YG
3659 int ret = 0;
3660
3661 /*
3662 * If the node's memory is already available, then kmem_cache_node is
3663 * already created. Nothing to do.
3664 */
3665 if (nid < 0)
3666 return 0;
3667
3668 /*
0121c619 3669 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3670 * allocate a kmem_cache_node structure in order to bring the node
3671 * online.
3672 */
18004c5d 3673 mutex_lock(&slab_mutex);
b9049e23
YG
3674 list_for_each_entry(s, &slab_caches, list) {
3675 /*
3676 * XXX: kmem_cache_alloc_node will fallback to other nodes
3677 * since memory is not yet available from the node that
3678 * is brought up.
3679 */
8de66a0c 3680 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3681 if (!n) {
3682 ret = -ENOMEM;
3683 goto out;
3684 }
4053497d 3685 init_kmem_cache_node(n);
b9049e23
YG
3686 s->node[nid] = n;
3687 }
3688out:
18004c5d 3689 mutex_unlock(&slab_mutex);
b9049e23
YG
3690 return ret;
3691}
3692
3693static int slab_memory_callback(struct notifier_block *self,
3694 unsigned long action, void *arg)
3695{
3696 int ret = 0;
3697
3698 switch (action) {
3699 case MEM_GOING_ONLINE:
3700 ret = slab_mem_going_online_callback(arg);
3701 break;
3702 case MEM_GOING_OFFLINE:
3703 ret = slab_mem_going_offline_callback(arg);
3704 break;
3705 case MEM_OFFLINE:
3706 case MEM_CANCEL_ONLINE:
3707 slab_mem_offline_callback(arg);
3708 break;
3709 case MEM_ONLINE:
3710 case MEM_CANCEL_OFFLINE:
3711 break;
3712 }
dc19f9db
KH
3713 if (ret)
3714 ret = notifier_from_errno(ret);
3715 else
3716 ret = NOTIFY_OK;
b9049e23
YG
3717 return ret;
3718}
3719
3ac38faa
AM
3720static struct notifier_block slab_memory_callback_nb = {
3721 .notifier_call = slab_memory_callback,
3722 .priority = SLAB_CALLBACK_PRI,
3723};
b9049e23 3724
81819f0f
CL
3725/********************************************************************
3726 * Basic setup of slabs
3727 *******************************************************************/
3728
51df1142
CL
3729/*
3730 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3731 * the page allocator. Allocate them properly then fix up the pointers
3732 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3733 */
3734
dffb4d60 3735static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3736{
3737 int node;
dffb4d60 3738 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3739 struct kmem_cache_node *n;
51df1142 3740
dffb4d60 3741 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3742
7d557b3c
GC
3743 /*
3744 * This runs very early, and only the boot processor is supposed to be
3745 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3746 * IPIs around.
3747 */
3748 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3749 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3750 struct page *p;
3751
fa45dc25
CL
3752 list_for_each_entry(p, &n->partial, lru)
3753 p->slab_cache = s;
51df1142 3754
607bf324 3755#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3756 list_for_each_entry(p, &n->full, lru)
3757 p->slab_cache = s;
51df1142 3758#endif
51df1142 3759 }
f7ce3190 3760 slab_init_memcg_params(s);
dffb4d60
CL
3761 list_add(&s->list, &slab_caches);
3762 return s;
51df1142
CL
3763}
3764
81819f0f
CL
3765void __init kmem_cache_init(void)
3766{
dffb4d60
CL
3767 static __initdata struct kmem_cache boot_kmem_cache,
3768 boot_kmem_cache_node;
51df1142 3769
fc8d8620
SG
3770 if (debug_guardpage_minorder())
3771 slub_max_order = 0;
3772
dffb4d60
CL
3773 kmem_cache_node = &boot_kmem_cache_node;
3774 kmem_cache = &boot_kmem_cache;
51df1142 3775
dffb4d60
CL
3776 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3777 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3778
3ac38faa 3779 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3780
3781 /* Able to allocate the per node structures */
3782 slab_state = PARTIAL;
3783
dffb4d60
CL
3784 create_boot_cache(kmem_cache, "kmem_cache",
3785 offsetof(struct kmem_cache, node) +
3786 nr_node_ids * sizeof(struct kmem_cache_node *),
3787 SLAB_HWCACHE_ALIGN);
8a13a4cc 3788
dffb4d60 3789 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3790
51df1142
CL
3791 /*
3792 * Allocate kmem_cache_node properly from the kmem_cache slab.
3793 * kmem_cache_node is separately allocated so no need to
3794 * update any list pointers.
3795 */
dffb4d60 3796 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3797
3798 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 3799 setup_kmalloc_cache_index_table();
f97d5f63 3800 create_kmalloc_caches(0);
81819f0f
CL
3801
3802#ifdef CONFIG_SMP
3803 register_cpu_notifier(&slab_notifier);
9dfc6e68 3804#endif
81819f0f 3805
f9f58285 3806 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3807 cache_line_size(),
81819f0f
CL
3808 slub_min_order, slub_max_order, slub_min_objects,
3809 nr_cpu_ids, nr_node_ids);
3810}
3811
7e85ee0c
PE
3812void __init kmem_cache_init_late(void)
3813{
7e85ee0c
PE
3814}
3815
2633d7a0 3816struct kmem_cache *
a44cb944
VD
3817__kmem_cache_alias(const char *name, size_t size, size_t align,
3818 unsigned long flags, void (*ctor)(void *))
81819f0f 3819{
426589f5 3820 struct kmem_cache *s, *c;
81819f0f 3821
a44cb944 3822 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3823 if (s) {
3824 s->refcount++;
84d0ddd6 3825
81819f0f
CL
3826 /*
3827 * Adjust the object sizes so that we clear
3828 * the complete object on kzalloc.
3829 */
3b0efdfa 3830 s->object_size = max(s->object_size, (int)size);
81819f0f 3831 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3832
426589f5 3833 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3834 c->object_size = s->object_size;
3835 c->inuse = max_t(int, c->inuse,
3836 ALIGN(size, sizeof(void *)));
3837 }
3838
7b8f3b66 3839 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3840 s->refcount--;
cbb79694 3841 s = NULL;
7b8f3b66 3842 }
a0e1d1be 3843 }
6446faa2 3844
cbb79694
CL
3845 return s;
3846}
84c1cf62 3847
8a13a4cc 3848int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3849{
aac3a166
PE
3850 int err;
3851
3852 err = kmem_cache_open(s, flags);
3853 if (err)
3854 return err;
20cea968 3855
45530c44
CL
3856 /* Mutex is not taken during early boot */
3857 if (slab_state <= UP)
3858 return 0;
3859
107dab5c 3860 memcg_propagate_slab_attrs(s);
aac3a166 3861 err = sysfs_slab_add(s);
aac3a166
PE
3862 if (err)
3863 kmem_cache_close(s);
20cea968 3864
aac3a166 3865 return err;
81819f0f 3866}
81819f0f 3867
81819f0f 3868#ifdef CONFIG_SMP
81819f0f 3869/*
672bba3a
CL
3870 * Use the cpu notifier to insure that the cpu slabs are flushed when
3871 * necessary.
81819f0f 3872 */
0db0628d 3873static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3874 unsigned long action, void *hcpu)
3875{
3876 long cpu = (long)hcpu;
5b95a4ac
CL
3877 struct kmem_cache *s;
3878 unsigned long flags;
81819f0f
CL
3879
3880 switch (action) {
3881 case CPU_UP_CANCELED:
8bb78442 3882 case CPU_UP_CANCELED_FROZEN:
81819f0f 3883 case CPU_DEAD:
8bb78442 3884 case CPU_DEAD_FROZEN:
18004c5d 3885 mutex_lock(&slab_mutex);
5b95a4ac
CL
3886 list_for_each_entry(s, &slab_caches, list) {
3887 local_irq_save(flags);
3888 __flush_cpu_slab(s, cpu);
3889 local_irq_restore(flags);
3890 }
18004c5d 3891 mutex_unlock(&slab_mutex);
81819f0f
CL
3892 break;
3893 default:
3894 break;
3895 }
3896 return NOTIFY_OK;
3897}
3898
0db0628d 3899static struct notifier_block slab_notifier = {
3adbefee 3900 .notifier_call = slab_cpuup_callback
06428780 3901};
81819f0f
CL
3902
3903#endif
3904
ce71e27c 3905void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3906{
aadb4bc4 3907 struct kmem_cache *s;
94b528d0 3908 void *ret;
aadb4bc4 3909
95a05b42 3910 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
3911 return kmalloc_large(size, gfpflags);
3912
2c59dd65 3913 s = kmalloc_slab(size, gfpflags);
81819f0f 3914
2408c550 3915 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3916 return s;
81819f0f 3917
2b847c3c 3918 ret = slab_alloc(s, gfpflags, caller);
94b528d0 3919
25985edc 3920 /* Honor the call site pointer we received. */
ca2b84cb 3921 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3922
3923 return ret;
81819f0f
CL
3924}
3925
5d1f57e4 3926#ifdef CONFIG_NUMA
81819f0f 3927void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3928 int node, unsigned long caller)
81819f0f 3929{
aadb4bc4 3930 struct kmem_cache *s;
94b528d0 3931 void *ret;
aadb4bc4 3932
95a05b42 3933 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
3934 ret = kmalloc_large_node(size, gfpflags, node);
3935
3936 trace_kmalloc_node(caller, ret,
3937 size, PAGE_SIZE << get_order(size),
3938 gfpflags, node);
3939
3940 return ret;
3941 }
eada35ef 3942
2c59dd65 3943 s = kmalloc_slab(size, gfpflags);
81819f0f 3944
2408c550 3945 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3946 return s;
81819f0f 3947
2b847c3c 3948 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 3949
25985edc 3950 /* Honor the call site pointer we received. */
ca2b84cb 3951 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3952
3953 return ret;
81819f0f 3954}
5d1f57e4 3955#endif
81819f0f 3956
ab4d5ed5 3957#ifdef CONFIG_SYSFS
205ab99d
CL
3958static int count_inuse(struct page *page)
3959{
3960 return page->inuse;
3961}
3962
3963static int count_total(struct page *page)
3964{
3965 return page->objects;
3966}
ab4d5ed5 3967#endif
205ab99d 3968
ab4d5ed5 3969#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3970static int validate_slab(struct kmem_cache *s, struct page *page,
3971 unsigned long *map)
53e15af0
CL
3972{
3973 void *p;
a973e9dd 3974 void *addr = page_address(page);
53e15af0
CL
3975
3976 if (!check_slab(s, page) ||
3977 !on_freelist(s, page, NULL))
3978 return 0;
3979
3980 /* Now we know that a valid freelist exists */
39b26464 3981 bitmap_zero(map, page->objects);
53e15af0 3982
5f80b13a
CL
3983 get_map(s, page, map);
3984 for_each_object(p, s, addr, page->objects) {
3985 if (test_bit(slab_index(p, s, addr), map))
3986 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3987 return 0;
53e15af0
CL
3988 }
3989
224a88be 3990 for_each_object(p, s, addr, page->objects)
7656c72b 3991 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3992 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3993 return 0;
3994 return 1;
3995}
3996
434e245d
CL
3997static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3998 unsigned long *map)
53e15af0 3999{
881db7fb
CL
4000 slab_lock(page);
4001 validate_slab(s, page, map);
4002 slab_unlock(page);
53e15af0
CL
4003}
4004
434e245d
CL
4005static int validate_slab_node(struct kmem_cache *s,
4006 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4007{
4008 unsigned long count = 0;
4009 struct page *page;
4010 unsigned long flags;
4011
4012 spin_lock_irqsave(&n->list_lock, flags);
4013
4014 list_for_each_entry(page, &n->partial, lru) {
434e245d 4015 validate_slab_slab(s, page, map);
53e15af0
CL
4016 count++;
4017 }
4018 if (count != n->nr_partial)
f9f58285
FF
4019 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4020 s->name, count, n->nr_partial);
53e15af0
CL
4021
4022 if (!(s->flags & SLAB_STORE_USER))
4023 goto out;
4024
4025 list_for_each_entry(page, &n->full, lru) {
434e245d 4026 validate_slab_slab(s, page, map);
53e15af0
CL
4027 count++;
4028 }
4029 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4030 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4031 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4032
4033out:
4034 spin_unlock_irqrestore(&n->list_lock, flags);
4035 return count;
4036}
4037
434e245d 4038static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4039{
4040 int node;
4041 unsigned long count = 0;
205ab99d 4042 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4043 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4044 struct kmem_cache_node *n;
434e245d
CL
4045
4046 if (!map)
4047 return -ENOMEM;
53e15af0
CL
4048
4049 flush_all(s);
fa45dc25 4050 for_each_kmem_cache_node(s, node, n)
434e245d 4051 count += validate_slab_node(s, n, map);
434e245d 4052 kfree(map);
53e15af0
CL
4053 return count;
4054}
88a420e4 4055/*
672bba3a 4056 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4057 * and freed.
4058 */
4059
4060struct location {
4061 unsigned long count;
ce71e27c 4062 unsigned long addr;
45edfa58
CL
4063 long long sum_time;
4064 long min_time;
4065 long max_time;
4066 long min_pid;
4067 long max_pid;
174596a0 4068 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4069 nodemask_t nodes;
88a420e4
CL
4070};
4071
4072struct loc_track {
4073 unsigned long max;
4074 unsigned long count;
4075 struct location *loc;
4076};
4077
4078static void free_loc_track(struct loc_track *t)
4079{
4080 if (t->max)
4081 free_pages((unsigned long)t->loc,
4082 get_order(sizeof(struct location) * t->max));
4083}
4084
68dff6a9 4085static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4086{
4087 struct location *l;
4088 int order;
4089
88a420e4
CL
4090 order = get_order(sizeof(struct location) * max);
4091
68dff6a9 4092 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4093 if (!l)
4094 return 0;
4095
4096 if (t->count) {
4097 memcpy(l, t->loc, sizeof(struct location) * t->count);
4098 free_loc_track(t);
4099 }
4100 t->max = max;
4101 t->loc = l;
4102 return 1;
4103}
4104
4105static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4106 const struct track *track)
88a420e4
CL
4107{
4108 long start, end, pos;
4109 struct location *l;
ce71e27c 4110 unsigned long caddr;
45edfa58 4111 unsigned long age = jiffies - track->when;
88a420e4
CL
4112
4113 start = -1;
4114 end = t->count;
4115
4116 for ( ; ; ) {
4117 pos = start + (end - start + 1) / 2;
4118
4119 /*
4120 * There is nothing at "end". If we end up there
4121 * we need to add something to before end.
4122 */
4123 if (pos == end)
4124 break;
4125
4126 caddr = t->loc[pos].addr;
45edfa58
CL
4127 if (track->addr == caddr) {
4128
4129 l = &t->loc[pos];
4130 l->count++;
4131 if (track->when) {
4132 l->sum_time += age;
4133 if (age < l->min_time)
4134 l->min_time = age;
4135 if (age > l->max_time)
4136 l->max_time = age;
4137
4138 if (track->pid < l->min_pid)
4139 l->min_pid = track->pid;
4140 if (track->pid > l->max_pid)
4141 l->max_pid = track->pid;
4142
174596a0
RR
4143 cpumask_set_cpu(track->cpu,
4144 to_cpumask(l->cpus));
45edfa58
CL
4145 }
4146 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4147 return 1;
4148 }
4149
45edfa58 4150 if (track->addr < caddr)
88a420e4
CL
4151 end = pos;
4152 else
4153 start = pos;
4154 }
4155
4156 /*
672bba3a 4157 * Not found. Insert new tracking element.
88a420e4 4158 */
68dff6a9 4159 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4160 return 0;
4161
4162 l = t->loc + pos;
4163 if (pos < t->count)
4164 memmove(l + 1, l,
4165 (t->count - pos) * sizeof(struct location));
4166 t->count++;
4167 l->count = 1;
45edfa58
CL
4168 l->addr = track->addr;
4169 l->sum_time = age;
4170 l->min_time = age;
4171 l->max_time = age;
4172 l->min_pid = track->pid;
4173 l->max_pid = track->pid;
174596a0
RR
4174 cpumask_clear(to_cpumask(l->cpus));
4175 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4176 nodes_clear(l->nodes);
4177 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4178 return 1;
4179}
4180
4181static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4182 struct page *page, enum track_item alloc,
a5dd5c11 4183 unsigned long *map)
88a420e4 4184{
a973e9dd 4185 void *addr = page_address(page);
88a420e4
CL
4186 void *p;
4187
39b26464 4188 bitmap_zero(map, page->objects);
5f80b13a 4189 get_map(s, page, map);
88a420e4 4190
224a88be 4191 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4192 if (!test_bit(slab_index(p, s, addr), map))
4193 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4194}
4195
4196static int list_locations(struct kmem_cache *s, char *buf,
4197 enum track_item alloc)
4198{
e374d483 4199 int len = 0;
88a420e4 4200 unsigned long i;
68dff6a9 4201 struct loc_track t = { 0, 0, NULL };
88a420e4 4202 int node;
bbd7d57b
ED
4203 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4204 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4205 struct kmem_cache_node *n;
88a420e4 4206
bbd7d57b
ED
4207 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4208 GFP_TEMPORARY)) {
4209 kfree(map);
68dff6a9 4210 return sprintf(buf, "Out of memory\n");
bbd7d57b 4211 }
88a420e4
CL
4212 /* Push back cpu slabs */
4213 flush_all(s);
4214
fa45dc25 4215 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4216 unsigned long flags;
4217 struct page *page;
4218
9e86943b 4219 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4220 continue;
4221
4222 spin_lock_irqsave(&n->list_lock, flags);
4223 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4224 process_slab(&t, s, page, alloc, map);
88a420e4 4225 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4226 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4227 spin_unlock_irqrestore(&n->list_lock, flags);
4228 }
4229
4230 for (i = 0; i < t.count; i++) {
45edfa58 4231 struct location *l = &t.loc[i];
88a420e4 4232
9c246247 4233 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4234 break;
e374d483 4235 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4236
4237 if (l->addr)
62c70bce 4238 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4239 else
e374d483 4240 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4241
4242 if (l->sum_time != l->min_time) {
e374d483 4243 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4244 l->min_time,
4245 (long)div_u64(l->sum_time, l->count),
4246 l->max_time);
45edfa58 4247 } else
e374d483 4248 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4249 l->min_time);
4250
4251 if (l->min_pid != l->max_pid)
e374d483 4252 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4253 l->min_pid, l->max_pid);
4254 else
e374d483 4255 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4256 l->min_pid);
4257
174596a0
RR
4258 if (num_online_cpus() > 1 &&
4259 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4260 len < PAGE_SIZE - 60)
4261 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4262 " cpus=%*pbl",
4263 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4264
62bc62a8 4265 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4266 len < PAGE_SIZE - 60)
4267 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4268 " nodes=%*pbl",
4269 nodemask_pr_args(&l->nodes));
45edfa58 4270
e374d483 4271 len += sprintf(buf + len, "\n");
88a420e4
CL
4272 }
4273
4274 free_loc_track(&t);
bbd7d57b 4275 kfree(map);
88a420e4 4276 if (!t.count)
e374d483
HH
4277 len += sprintf(buf, "No data\n");
4278 return len;
88a420e4 4279}
ab4d5ed5 4280#endif
88a420e4 4281
a5a84755 4282#ifdef SLUB_RESILIENCY_TEST
c07b8183 4283static void __init resiliency_test(void)
a5a84755
CL
4284{
4285 u8 *p;
4286
95a05b42 4287 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4288
f9f58285
FF
4289 pr_err("SLUB resiliency testing\n");
4290 pr_err("-----------------------\n");
4291 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4292
4293 p = kzalloc(16, GFP_KERNEL);
4294 p[16] = 0x12;
f9f58285
FF
4295 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4296 p + 16);
a5a84755
CL
4297
4298 validate_slab_cache(kmalloc_caches[4]);
4299
4300 /* Hmmm... The next two are dangerous */
4301 p = kzalloc(32, GFP_KERNEL);
4302 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4303 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4304 p);
4305 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4306
4307 validate_slab_cache(kmalloc_caches[5]);
4308 p = kzalloc(64, GFP_KERNEL);
4309 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4310 *p = 0x56;
f9f58285
FF
4311 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4312 p);
4313 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4314 validate_slab_cache(kmalloc_caches[6]);
4315
f9f58285 4316 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4317 p = kzalloc(128, GFP_KERNEL);
4318 kfree(p);
4319 *p = 0x78;
f9f58285 4320 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4321 validate_slab_cache(kmalloc_caches[7]);
4322
4323 p = kzalloc(256, GFP_KERNEL);
4324 kfree(p);
4325 p[50] = 0x9a;
f9f58285 4326 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4327 validate_slab_cache(kmalloc_caches[8]);
4328
4329 p = kzalloc(512, GFP_KERNEL);
4330 kfree(p);
4331 p[512] = 0xab;
f9f58285 4332 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4333 validate_slab_cache(kmalloc_caches[9]);
4334}
4335#else
4336#ifdef CONFIG_SYSFS
4337static void resiliency_test(void) {};
4338#endif
4339#endif
4340
ab4d5ed5 4341#ifdef CONFIG_SYSFS
81819f0f 4342enum slab_stat_type {
205ab99d
CL
4343 SL_ALL, /* All slabs */
4344 SL_PARTIAL, /* Only partially allocated slabs */
4345 SL_CPU, /* Only slabs used for cpu caches */
4346 SL_OBJECTS, /* Determine allocated objects not slabs */
4347 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4348};
4349
205ab99d 4350#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4351#define SO_PARTIAL (1 << SL_PARTIAL)
4352#define SO_CPU (1 << SL_CPU)
4353#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4354#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4355
62e5c4b4
CG
4356static ssize_t show_slab_objects(struct kmem_cache *s,
4357 char *buf, unsigned long flags)
81819f0f
CL
4358{
4359 unsigned long total = 0;
81819f0f
CL
4360 int node;
4361 int x;
4362 unsigned long *nodes;
81819f0f 4363
e35e1a97 4364 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4365 if (!nodes)
4366 return -ENOMEM;
81819f0f 4367
205ab99d
CL
4368 if (flags & SO_CPU) {
4369 int cpu;
81819f0f 4370
205ab99d 4371 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4372 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4373 cpu);
ec3ab083 4374 int node;
49e22585 4375 struct page *page;
dfb4f096 4376
4db0c3c2 4377 page = READ_ONCE(c->page);
ec3ab083
CL
4378 if (!page)
4379 continue;
205ab99d 4380
ec3ab083
CL
4381 node = page_to_nid(page);
4382 if (flags & SO_TOTAL)
4383 x = page->objects;
4384 else if (flags & SO_OBJECTS)
4385 x = page->inuse;
4386 else
4387 x = 1;
49e22585 4388
ec3ab083
CL
4389 total += x;
4390 nodes[node] += x;
4391
4db0c3c2 4392 page = READ_ONCE(c->partial);
49e22585 4393 if (page) {
8afb1474
LZ
4394 node = page_to_nid(page);
4395 if (flags & SO_TOTAL)
4396 WARN_ON_ONCE(1);
4397 else if (flags & SO_OBJECTS)
4398 WARN_ON_ONCE(1);
4399 else
4400 x = page->pages;
bc6697d8
ED
4401 total += x;
4402 nodes[node] += x;
49e22585 4403 }
81819f0f
CL
4404 }
4405 }
4406
bfc8c901 4407 get_online_mems();
ab4d5ed5 4408#ifdef CONFIG_SLUB_DEBUG
205ab99d 4409 if (flags & SO_ALL) {
fa45dc25
CL
4410 struct kmem_cache_node *n;
4411
4412 for_each_kmem_cache_node(s, node, n) {
205ab99d 4413
d0e0ac97
CG
4414 if (flags & SO_TOTAL)
4415 x = atomic_long_read(&n->total_objects);
4416 else if (flags & SO_OBJECTS)
4417 x = atomic_long_read(&n->total_objects) -
4418 count_partial(n, count_free);
81819f0f 4419 else
205ab99d 4420 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4421 total += x;
4422 nodes[node] += x;
4423 }
4424
ab4d5ed5
CL
4425 } else
4426#endif
4427 if (flags & SO_PARTIAL) {
fa45dc25 4428 struct kmem_cache_node *n;
81819f0f 4429
fa45dc25 4430 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4431 if (flags & SO_TOTAL)
4432 x = count_partial(n, count_total);
4433 else if (flags & SO_OBJECTS)
4434 x = count_partial(n, count_inuse);
81819f0f 4435 else
205ab99d 4436 x = n->nr_partial;
81819f0f
CL
4437 total += x;
4438 nodes[node] += x;
4439 }
4440 }
81819f0f
CL
4441 x = sprintf(buf, "%lu", total);
4442#ifdef CONFIG_NUMA
fa45dc25 4443 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4444 if (nodes[node])
4445 x += sprintf(buf + x, " N%d=%lu",
4446 node, nodes[node]);
4447#endif
bfc8c901 4448 put_online_mems();
81819f0f
CL
4449 kfree(nodes);
4450 return x + sprintf(buf + x, "\n");
4451}
4452
ab4d5ed5 4453#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4454static int any_slab_objects(struct kmem_cache *s)
4455{
4456 int node;
fa45dc25 4457 struct kmem_cache_node *n;
81819f0f 4458
fa45dc25 4459 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4460 if (atomic_long_read(&n->total_objects))
81819f0f 4461 return 1;
fa45dc25 4462
81819f0f
CL
4463 return 0;
4464}
ab4d5ed5 4465#endif
81819f0f
CL
4466
4467#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4468#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4469
4470struct slab_attribute {
4471 struct attribute attr;
4472 ssize_t (*show)(struct kmem_cache *s, char *buf);
4473 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4474};
4475
4476#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4477 static struct slab_attribute _name##_attr = \
4478 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4479
4480#define SLAB_ATTR(_name) \
4481 static struct slab_attribute _name##_attr = \
ab067e99 4482 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4483
81819f0f
CL
4484static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4485{
4486 return sprintf(buf, "%d\n", s->size);
4487}
4488SLAB_ATTR_RO(slab_size);
4489
4490static ssize_t align_show(struct kmem_cache *s, char *buf)
4491{
4492 return sprintf(buf, "%d\n", s->align);
4493}
4494SLAB_ATTR_RO(align);
4495
4496static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4497{
3b0efdfa 4498 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4499}
4500SLAB_ATTR_RO(object_size);
4501
4502static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4503{
834f3d11 4504 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4505}
4506SLAB_ATTR_RO(objs_per_slab);
4507
06b285dc
CL
4508static ssize_t order_store(struct kmem_cache *s,
4509 const char *buf, size_t length)
4510{
0121c619
CL
4511 unsigned long order;
4512 int err;
4513
3dbb95f7 4514 err = kstrtoul(buf, 10, &order);
0121c619
CL
4515 if (err)
4516 return err;
06b285dc
CL
4517
4518 if (order > slub_max_order || order < slub_min_order)
4519 return -EINVAL;
4520
4521 calculate_sizes(s, order);
4522 return length;
4523}
4524
81819f0f
CL
4525static ssize_t order_show(struct kmem_cache *s, char *buf)
4526{
834f3d11 4527 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4528}
06b285dc 4529SLAB_ATTR(order);
81819f0f 4530
73d342b1
DR
4531static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4532{
4533 return sprintf(buf, "%lu\n", s->min_partial);
4534}
4535
4536static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4537 size_t length)
4538{
4539 unsigned long min;
4540 int err;
4541
3dbb95f7 4542 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4543 if (err)
4544 return err;
4545
c0bdb232 4546 set_min_partial(s, min);
73d342b1
DR
4547 return length;
4548}
4549SLAB_ATTR(min_partial);
4550
49e22585
CL
4551static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4552{
4553 return sprintf(buf, "%u\n", s->cpu_partial);
4554}
4555
4556static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4557 size_t length)
4558{
4559 unsigned long objects;
4560 int err;
4561
3dbb95f7 4562 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4563 if (err)
4564 return err;
345c905d 4565 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4566 return -EINVAL;
49e22585
CL
4567
4568 s->cpu_partial = objects;
4569 flush_all(s);
4570 return length;
4571}
4572SLAB_ATTR(cpu_partial);
4573
81819f0f
CL
4574static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4575{
62c70bce
JP
4576 if (!s->ctor)
4577 return 0;
4578 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4579}
4580SLAB_ATTR_RO(ctor);
4581
81819f0f
CL
4582static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4583{
4307c14f 4584 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4585}
4586SLAB_ATTR_RO(aliases);
4587
81819f0f
CL
4588static ssize_t partial_show(struct kmem_cache *s, char *buf)
4589{
d9acf4b7 4590 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4591}
4592SLAB_ATTR_RO(partial);
4593
4594static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4595{
d9acf4b7 4596 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4597}
4598SLAB_ATTR_RO(cpu_slabs);
4599
4600static ssize_t objects_show(struct kmem_cache *s, char *buf)
4601{
205ab99d 4602 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4603}
4604SLAB_ATTR_RO(objects);
4605
205ab99d
CL
4606static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4607{
4608 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4609}
4610SLAB_ATTR_RO(objects_partial);
4611
49e22585
CL
4612static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4613{
4614 int objects = 0;
4615 int pages = 0;
4616 int cpu;
4617 int len;
4618
4619 for_each_online_cpu(cpu) {
4620 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4621
4622 if (page) {
4623 pages += page->pages;
4624 objects += page->pobjects;
4625 }
4626 }
4627
4628 len = sprintf(buf, "%d(%d)", objects, pages);
4629
4630#ifdef CONFIG_SMP
4631 for_each_online_cpu(cpu) {
4632 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4633
4634 if (page && len < PAGE_SIZE - 20)
4635 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4636 page->pobjects, page->pages);
4637 }
4638#endif
4639 return len + sprintf(buf + len, "\n");
4640}
4641SLAB_ATTR_RO(slabs_cpu_partial);
4642
a5a84755
CL
4643static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4644{
4645 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4646}
4647
4648static ssize_t reclaim_account_store(struct kmem_cache *s,
4649 const char *buf, size_t length)
4650{
4651 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4652 if (buf[0] == '1')
4653 s->flags |= SLAB_RECLAIM_ACCOUNT;
4654 return length;
4655}
4656SLAB_ATTR(reclaim_account);
4657
4658static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4659{
4660 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4661}
4662SLAB_ATTR_RO(hwcache_align);
4663
4664#ifdef CONFIG_ZONE_DMA
4665static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4666{
4667 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4668}
4669SLAB_ATTR_RO(cache_dma);
4670#endif
4671
4672static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4673{
4674 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4675}
4676SLAB_ATTR_RO(destroy_by_rcu);
4677
ab9a0f19
LJ
4678static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4679{
4680 return sprintf(buf, "%d\n", s->reserved);
4681}
4682SLAB_ATTR_RO(reserved);
4683
ab4d5ed5 4684#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4685static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4686{
4687 return show_slab_objects(s, buf, SO_ALL);
4688}
4689SLAB_ATTR_RO(slabs);
4690
205ab99d
CL
4691static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4692{
4693 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4694}
4695SLAB_ATTR_RO(total_objects);
4696
81819f0f
CL
4697static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4698{
4699 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4700}
4701
4702static ssize_t sanity_checks_store(struct kmem_cache *s,
4703 const char *buf, size_t length)
4704{
4705 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4706 if (buf[0] == '1') {
4707 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4708 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4709 }
81819f0f
CL
4710 return length;
4711}
4712SLAB_ATTR(sanity_checks);
4713
4714static ssize_t trace_show(struct kmem_cache *s, char *buf)
4715{
4716 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4717}
4718
4719static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4720 size_t length)
4721{
c9e16131
CL
4722 /*
4723 * Tracing a merged cache is going to give confusing results
4724 * as well as cause other issues like converting a mergeable
4725 * cache into an umergeable one.
4726 */
4727 if (s->refcount > 1)
4728 return -EINVAL;
4729
81819f0f 4730 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4731 if (buf[0] == '1') {
4732 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4733 s->flags |= SLAB_TRACE;
b789ef51 4734 }
81819f0f
CL
4735 return length;
4736}
4737SLAB_ATTR(trace);
4738
81819f0f
CL
4739static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4740{
4741 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4742}
4743
4744static ssize_t red_zone_store(struct kmem_cache *s,
4745 const char *buf, size_t length)
4746{
4747 if (any_slab_objects(s))
4748 return -EBUSY;
4749
4750 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4751 if (buf[0] == '1') {
4752 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4753 s->flags |= SLAB_RED_ZONE;
b789ef51 4754 }
06b285dc 4755 calculate_sizes(s, -1);
81819f0f
CL
4756 return length;
4757}
4758SLAB_ATTR(red_zone);
4759
4760static ssize_t poison_show(struct kmem_cache *s, char *buf)
4761{
4762 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4763}
4764
4765static ssize_t poison_store(struct kmem_cache *s,
4766 const char *buf, size_t length)
4767{
4768 if (any_slab_objects(s))
4769 return -EBUSY;
4770
4771 s->flags &= ~SLAB_POISON;
b789ef51
CL
4772 if (buf[0] == '1') {
4773 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4774 s->flags |= SLAB_POISON;
b789ef51 4775 }
06b285dc 4776 calculate_sizes(s, -1);
81819f0f
CL
4777 return length;
4778}
4779SLAB_ATTR(poison);
4780
4781static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4782{
4783 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4784}
4785
4786static ssize_t store_user_store(struct kmem_cache *s,
4787 const char *buf, size_t length)
4788{
4789 if (any_slab_objects(s))
4790 return -EBUSY;
4791
4792 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4793 if (buf[0] == '1') {
4794 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4795 s->flags |= SLAB_STORE_USER;
b789ef51 4796 }
06b285dc 4797 calculate_sizes(s, -1);
81819f0f
CL
4798 return length;
4799}
4800SLAB_ATTR(store_user);
4801
53e15af0
CL
4802static ssize_t validate_show(struct kmem_cache *s, char *buf)
4803{
4804 return 0;
4805}
4806
4807static ssize_t validate_store(struct kmem_cache *s,
4808 const char *buf, size_t length)
4809{
434e245d
CL
4810 int ret = -EINVAL;
4811
4812 if (buf[0] == '1') {
4813 ret = validate_slab_cache(s);
4814 if (ret >= 0)
4815 ret = length;
4816 }
4817 return ret;
53e15af0
CL
4818}
4819SLAB_ATTR(validate);
a5a84755
CL
4820
4821static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4822{
4823 if (!(s->flags & SLAB_STORE_USER))
4824 return -ENOSYS;
4825 return list_locations(s, buf, TRACK_ALLOC);
4826}
4827SLAB_ATTR_RO(alloc_calls);
4828
4829static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4830{
4831 if (!(s->flags & SLAB_STORE_USER))
4832 return -ENOSYS;
4833 return list_locations(s, buf, TRACK_FREE);
4834}
4835SLAB_ATTR_RO(free_calls);
4836#endif /* CONFIG_SLUB_DEBUG */
4837
4838#ifdef CONFIG_FAILSLAB
4839static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4840{
4841 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4842}
4843
4844static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4845 size_t length)
4846{
c9e16131
CL
4847 if (s->refcount > 1)
4848 return -EINVAL;
4849
a5a84755
CL
4850 s->flags &= ~SLAB_FAILSLAB;
4851 if (buf[0] == '1')
4852 s->flags |= SLAB_FAILSLAB;
4853 return length;
4854}
4855SLAB_ATTR(failslab);
ab4d5ed5 4856#endif
53e15af0 4857
2086d26a
CL
4858static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4859{
4860 return 0;
4861}
4862
4863static ssize_t shrink_store(struct kmem_cache *s,
4864 const char *buf, size_t length)
4865{
832f37f5
VD
4866 if (buf[0] == '1')
4867 kmem_cache_shrink(s);
4868 else
2086d26a
CL
4869 return -EINVAL;
4870 return length;
4871}
4872SLAB_ATTR(shrink);
4873
81819f0f 4874#ifdef CONFIG_NUMA
9824601e 4875static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4876{
9824601e 4877 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4878}
4879
9824601e 4880static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4881 const char *buf, size_t length)
4882{
0121c619
CL
4883 unsigned long ratio;
4884 int err;
4885
3dbb95f7 4886 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
4887 if (err)
4888 return err;
4889
e2cb96b7 4890 if (ratio <= 100)
0121c619 4891 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4892
81819f0f
CL
4893 return length;
4894}
9824601e 4895SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4896#endif
4897
8ff12cfc 4898#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4899static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4900{
4901 unsigned long sum = 0;
4902 int cpu;
4903 int len;
4904 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4905
4906 if (!data)
4907 return -ENOMEM;
4908
4909 for_each_online_cpu(cpu) {
9dfc6e68 4910 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4911
4912 data[cpu] = x;
4913 sum += x;
4914 }
4915
4916 len = sprintf(buf, "%lu", sum);
4917
50ef37b9 4918#ifdef CONFIG_SMP
8ff12cfc
CL
4919 for_each_online_cpu(cpu) {
4920 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4921 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4922 }
50ef37b9 4923#endif
8ff12cfc
CL
4924 kfree(data);
4925 return len + sprintf(buf + len, "\n");
4926}
4927
78eb00cc
DR
4928static void clear_stat(struct kmem_cache *s, enum stat_item si)
4929{
4930 int cpu;
4931
4932 for_each_online_cpu(cpu)
9dfc6e68 4933 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4934}
4935
8ff12cfc
CL
4936#define STAT_ATTR(si, text) \
4937static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4938{ \
4939 return show_stat(s, buf, si); \
4940} \
78eb00cc
DR
4941static ssize_t text##_store(struct kmem_cache *s, \
4942 const char *buf, size_t length) \
4943{ \
4944 if (buf[0] != '0') \
4945 return -EINVAL; \
4946 clear_stat(s, si); \
4947 return length; \
4948} \
4949SLAB_ATTR(text); \
8ff12cfc
CL
4950
4951STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4952STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4953STAT_ATTR(FREE_FASTPATH, free_fastpath);
4954STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4955STAT_ATTR(FREE_FROZEN, free_frozen);
4956STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4957STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4958STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4959STAT_ATTR(ALLOC_SLAB, alloc_slab);
4960STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 4961STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
4962STAT_ATTR(FREE_SLAB, free_slab);
4963STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4964STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4965STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4966STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4967STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4968STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 4969STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 4970STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
4971STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4972STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
4973STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4974STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
4975STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4976STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
4977#endif
4978
06428780 4979static struct attribute *slab_attrs[] = {
81819f0f
CL
4980 &slab_size_attr.attr,
4981 &object_size_attr.attr,
4982 &objs_per_slab_attr.attr,
4983 &order_attr.attr,
73d342b1 4984 &min_partial_attr.attr,
49e22585 4985 &cpu_partial_attr.attr,
81819f0f 4986 &objects_attr.attr,
205ab99d 4987 &objects_partial_attr.attr,
81819f0f
CL
4988 &partial_attr.attr,
4989 &cpu_slabs_attr.attr,
4990 &ctor_attr.attr,
81819f0f
CL
4991 &aliases_attr.attr,
4992 &align_attr.attr,
81819f0f
CL
4993 &hwcache_align_attr.attr,
4994 &reclaim_account_attr.attr,
4995 &destroy_by_rcu_attr.attr,
a5a84755 4996 &shrink_attr.attr,
ab9a0f19 4997 &reserved_attr.attr,
49e22585 4998 &slabs_cpu_partial_attr.attr,
ab4d5ed5 4999#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5000 &total_objects_attr.attr,
5001 &slabs_attr.attr,
5002 &sanity_checks_attr.attr,
5003 &trace_attr.attr,
81819f0f
CL
5004 &red_zone_attr.attr,
5005 &poison_attr.attr,
5006 &store_user_attr.attr,
53e15af0 5007 &validate_attr.attr,
88a420e4
CL
5008 &alloc_calls_attr.attr,
5009 &free_calls_attr.attr,
ab4d5ed5 5010#endif
81819f0f
CL
5011#ifdef CONFIG_ZONE_DMA
5012 &cache_dma_attr.attr,
5013#endif
5014#ifdef CONFIG_NUMA
9824601e 5015 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5016#endif
5017#ifdef CONFIG_SLUB_STATS
5018 &alloc_fastpath_attr.attr,
5019 &alloc_slowpath_attr.attr,
5020 &free_fastpath_attr.attr,
5021 &free_slowpath_attr.attr,
5022 &free_frozen_attr.attr,
5023 &free_add_partial_attr.attr,
5024 &free_remove_partial_attr.attr,
5025 &alloc_from_partial_attr.attr,
5026 &alloc_slab_attr.attr,
5027 &alloc_refill_attr.attr,
e36a2652 5028 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5029 &free_slab_attr.attr,
5030 &cpuslab_flush_attr.attr,
5031 &deactivate_full_attr.attr,
5032 &deactivate_empty_attr.attr,
5033 &deactivate_to_head_attr.attr,
5034 &deactivate_to_tail_attr.attr,
5035 &deactivate_remote_frees_attr.attr,
03e404af 5036 &deactivate_bypass_attr.attr,
65c3376a 5037 &order_fallback_attr.attr,
b789ef51
CL
5038 &cmpxchg_double_fail_attr.attr,
5039 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5040 &cpu_partial_alloc_attr.attr,
5041 &cpu_partial_free_attr.attr,
8028dcea
AS
5042 &cpu_partial_node_attr.attr,
5043 &cpu_partial_drain_attr.attr,
81819f0f 5044#endif
4c13dd3b
DM
5045#ifdef CONFIG_FAILSLAB
5046 &failslab_attr.attr,
5047#endif
5048
81819f0f
CL
5049 NULL
5050};
5051
5052static struct attribute_group slab_attr_group = {
5053 .attrs = slab_attrs,
5054};
5055
5056static ssize_t slab_attr_show(struct kobject *kobj,
5057 struct attribute *attr,
5058 char *buf)
5059{
5060 struct slab_attribute *attribute;
5061 struct kmem_cache *s;
5062 int err;
5063
5064 attribute = to_slab_attr(attr);
5065 s = to_slab(kobj);
5066
5067 if (!attribute->show)
5068 return -EIO;
5069
5070 err = attribute->show(s, buf);
5071
5072 return err;
5073}
5074
5075static ssize_t slab_attr_store(struct kobject *kobj,
5076 struct attribute *attr,
5077 const char *buf, size_t len)
5078{
5079 struct slab_attribute *attribute;
5080 struct kmem_cache *s;
5081 int err;
5082
5083 attribute = to_slab_attr(attr);
5084 s = to_slab(kobj);
5085
5086 if (!attribute->store)
5087 return -EIO;
5088
5089 err = attribute->store(s, buf, len);
107dab5c
GC
5090#ifdef CONFIG_MEMCG_KMEM
5091 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5092 struct kmem_cache *c;
81819f0f 5093
107dab5c
GC
5094 mutex_lock(&slab_mutex);
5095 if (s->max_attr_size < len)
5096 s->max_attr_size = len;
5097
ebe945c2
GC
5098 /*
5099 * This is a best effort propagation, so this function's return
5100 * value will be determined by the parent cache only. This is
5101 * basically because not all attributes will have a well
5102 * defined semantics for rollbacks - most of the actions will
5103 * have permanent effects.
5104 *
5105 * Returning the error value of any of the children that fail
5106 * is not 100 % defined, in the sense that users seeing the
5107 * error code won't be able to know anything about the state of
5108 * the cache.
5109 *
5110 * Only returning the error code for the parent cache at least
5111 * has well defined semantics. The cache being written to
5112 * directly either failed or succeeded, in which case we loop
5113 * through the descendants with best-effort propagation.
5114 */
426589f5
VD
5115 for_each_memcg_cache(c, s)
5116 attribute->store(c, buf, len);
107dab5c
GC
5117 mutex_unlock(&slab_mutex);
5118 }
5119#endif
81819f0f
CL
5120 return err;
5121}
5122
107dab5c
GC
5123static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5124{
5125#ifdef CONFIG_MEMCG_KMEM
5126 int i;
5127 char *buffer = NULL;
93030d83 5128 struct kmem_cache *root_cache;
107dab5c 5129
93030d83 5130 if (is_root_cache(s))
107dab5c
GC
5131 return;
5132
f7ce3190 5133 root_cache = s->memcg_params.root_cache;
93030d83 5134
107dab5c
GC
5135 /*
5136 * This mean this cache had no attribute written. Therefore, no point
5137 * in copying default values around
5138 */
93030d83 5139 if (!root_cache->max_attr_size)
107dab5c
GC
5140 return;
5141
5142 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5143 char mbuf[64];
5144 char *buf;
5145 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5146
5147 if (!attr || !attr->store || !attr->show)
5148 continue;
5149
5150 /*
5151 * It is really bad that we have to allocate here, so we will
5152 * do it only as a fallback. If we actually allocate, though,
5153 * we can just use the allocated buffer until the end.
5154 *
5155 * Most of the slub attributes will tend to be very small in
5156 * size, but sysfs allows buffers up to a page, so they can
5157 * theoretically happen.
5158 */
5159 if (buffer)
5160 buf = buffer;
93030d83 5161 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5162 buf = mbuf;
5163 else {
5164 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5165 if (WARN_ON(!buffer))
5166 continue;
5167 buf = buffer;
5168 }
5169
93030d83 5170 attr->show(root_cache, buf);
107dab5c
GC
5171 attr->store(s, buf, strlen(buf));
5172 }
5173
5174 if (buffer)
5175 free_page((unsigned long)buffer);
5176#endif
5177}
5178
41a21285
CL
5179static void kmem_cache_release(struct kobject *k)
5180{
5181 slab_kmem_cache_release(to_slab(k));
5182}
5183
52cf25d0 5184static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5185 .show = slab_attr_show,
5186 .store = slab_attr_store,
5187};
5188
5189static struct kobj_type slab_ktype = {
5190 .sysfs_ops = &slab_sysfs_ops,
41a21285 5191 .release = kmem_cache_release,
81819f0f
CL
5192};
5193
5194static int uevent_filter(struct kset *kset, struct kobject *kobj)
5195{
5196 struct kobj_type *ktype = get_ktype(kobj);
5197
5198 if (ktype == &slab_ktype)
5199 return 1;
5200 return 0;
5201}
5202
9cd43611 5203static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5204 .filter = uevent_filter,
5205};
5206
27c3a314 5207static struct kset *slab_kset;
81819f0f 5208
9a41707b
VD
5209static inline struct kset *cache_kset(struct kmem_cache *s)
5210{
5211#ifdef CONFIG_MEMCG_KMEM
5212 if (!is_root_cache(s))
f7ce3190 5213 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5214#endif
5215 return slab_kset;
5216}
5217
81819f0f
CL
5218#define ID_STR_LENGTH 64
5219
5220/* Create a unique string id for a slab cache:
6446faa2
CL
5221 *
5222 * Format :[flags-]size
81819f0f
CL
5223 */
5224static char *create_unique_id(struct kmem_cache *s)
5225{
5226 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5227 char *p = name;
5228
5229 BUG_ON(!name);
5230
5231 *p++ = ':';
5232 /*
5233 * First flags affecting slabcache operations. We will only
5234 * get here for aliasable slabs so we do not need to support
5235 * too many flags. The flags here must cover all flags that
5236 * are matched during merging to guarantee that the id is
5237 * unique.
5238 */
5239 if (s->flags & SLAB_CACHE_DMA)
5240 *p++ = 'd';
5241 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5242 *p++ = 'a';
5243 if (s->flags & SLAB_DEBUG_FREE)
5244 *p++ = 'F';
5a896d9e
VN
5245 if (!(s->flags & SLAB_NOTRACK))
5246 *p++ = 't';
81819f0f
CL
5247 if (p != name + 1)
5248 *p++ = '-';
5249 p += sprintf(p, "%07d", s->size);
2633d7a0 5250
81819f0f
CL
5251 BUG_ON(p > name + ID_STR_LENGTH - 1);
5252 return name;
5253}
5254
5255static int sysfs_slab_add(struct kmem_cache *s)
5256{
5257 int err;
5258 const char *name;
45530c44 5259 int unmergeable = slab_unmergeable(s);
81819f0f 5260
81819f0f
CL
5261 if (unmergeable) {
5262 /*
5263 * Slabcache can never be merged so we can use the name proper.
5264 * This is typically the case for debug situations. In that
5265 * case we can catch duplicate names easily.
5266 */
27c3a314 5267 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5268 name = s->name;
5269 } else {
5270 /*
5271 * Create a unique name for the slab as a target
5272 * for the symlinks.
5273 */
5274 name = create_unique_id(s);
5275 }
5276
9a41707b 5277 s->kobj.kset = cache_kset(s);
26e4f205 5278 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5279 if (err)
80da026a 5280 goto out;
81819f0f
CL
5281
5282 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5283 if (err)
5284 goto out_del_kobj;
9a41707b
VD
5285
5286#ifdef CONFIG_MEMCG_KMEM
5287 if (is_root_cache(s)) {
5288 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5289 if (!s->memcg_kset) {
54b6a731
DJ
5290 err = -ENOMEM;
5291 goto out_del_kobj;
9a41707b
VD
5292 }
5293 }
5294#endif
5295
81819f0f
CL
5296 kobject_uevent(&s->kobj, KOBJ_ADD);
5297 if (!unmergeable) {
5298 /* Setup first alias */
5299 sysfs_slab_alias(s, s->name);
81819f0f 5300 }
54b6a731
DJ
5301out:
5302 if (!unmergeable)
5303 kfree(name);
5304 return err;
5305out_del_kobj:
5306 kobject_del(&s->kobj);
54b6a731 5307 goto out;
81819f0f
CL
5308}
5309
41a21285 5310void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5311{
97d06609 5312 if (slab_state < FULL)
2bce6485
CL
5313 /*
5314 * Sysfs has not been setup yet so no need to remove the
5315 * cache from sysfs.
5316 */
5317 return;
5318
9a41707b
VD
5319#ifdef CONFIG_MEMCG_KMEM
5320 kset_unregister(s->memcg_kset);
5321#endif
81819f0f
CL
5322 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5323 kobject_del(&s->kobj);
151c602f 5324 kobject_put(&s->kobj);
81819f0f
CL
5325}
5326
5327/*
5328 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5329 * available lest we lose that information.
81819f0f
CL
5330 */
5331struct saved_alias {
5332 struct kmem_cache *s;
5333 const char *name;
5334 struct saved_alias *next;
5335};
5336
5af328a5 5337static struct saved_alias *alias_list;
81819f0f
CL
5338
5339static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5340{
5341 struct saved_alias *al;
5342
97d06609 5343 if (slab_state == FULL) {
81819f0f
CL
5344 /*
5345 * If we have a leftover link then remove it.
5346 */
27c3a314
GKH
5347 sysfs_remove_link(&slab_kset->kobj, name);
5348 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5349 }
5350
5351 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5352 if (!al)
5353 return -ENOMEM;
5354
5355 al->s = s;
5356 al->name = name;
5357 al->next = alias_list;
5358 alias_list = al;
5359 return 0;
5360}
5361
5362static int __init slab_sysfs_init(void)
5363{
5b95a4ac 5364 struct kmem_cache *s;
81819f0f
CL
5365 int err;
5366
18004c5d 5367 mutex_lock(&slab_mutex);
2bce6485 5368
0ff21e46 5369 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5370 if (!slab_kset) {
18004c5d 5371 mutex_unlock(&slab_mutex);
f9f58285 5372 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5373 return -ENOSYS;
5374 }
5375
97d06609 5376 slab_state = FULL;
26a7bd03 5377
5b95a4ac 5378 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5379 err = sysfs_slab_add(s);
5d540fb7 5380 if (err)
f9f58285
FF
5381 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5382 s->name);
26a7bd03 5383 }
81819f0f
CL
5384
5385 while (alias_list) {
5386 struct saved_alias *al = alias_list;
5387
5388 alias_list = alias_list->next;
5389 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5390 if (err)
f9f58285
FF
5391 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5392 al->name);
81819f0f
CL
5393 kfree(al);
5394 }
5395
18004c5d 5396 mutex_unlock(&slab_mutex);
81819f0f
CL
5397 resiliency_test();
5398 return 0;
5399}
5400
5401__initcall(slab_sysfs_init);
ab4d5ed5 5402#endif /* CONFIG_SYSFS */
57ed3eda
PE
5403
5404/*
5405 * The /proc/slabinfo ABI
5406 */
158a9624 5407#ifdef CONFIG_SLABINFO
0d7561c6 5408void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5409{
57ed3eda 5410 unsigned long nr_slabs = 0;
205ab99d
CL
5411 unsigned long nr_objs = 0;
5412 unsigned long nr_free = 0;
57ed3eda 5413 int node;
fa45dc25 5414 struct kmem_cache_node *n;
57ed3eda 5415
fa45dc25 5416 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5417 nr_slabs += node_nr_slabs(n);
5418 nr_objs += node_nr_objs(n);
205ab99d 5419 nr_free += count_partial(n, count_free);
57ed3eda
PE
5420 }
5421
0d7561c6
GC
5422 sinfo->active_objs = nr_objs - nr_free;
5423 sinfo->num_objs = nr_objs;
5424 sinfo->active_slabs = nr_slabs;
5425 sinfo->num_slabs = nr_slabs;
5426 sinfo->objects_per_slab = oo_objects(s->oo);
5427 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5428}
5429
0d7561c6 5430void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5431{
7b3c3a50
AD
5432}
5433
b7454ad3
GC
5434ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5435 size_t count, loff_t *ppos)
7b3c3a50 5436{
b7454ad3 5437 return -EIO;
7b3c3a50 5438}
158a9624 5439#endif /* CONFIG_SLABINFO */