x86/asm: Change all ENTRY+ENDPROC to SYM_FUNC_*
[linux-2.6-block.git] / mm / slub.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
81819f0f
CL
2/*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
881db7fb
CL
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 8 *
cde53535 9 * (C) 2007 SGI, Christoph Lameter
881db7fb 10 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
11 */
12
13#include <linux/mm.h>
1eb5ac64 14#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
15#include <linux/module.h>
16#include <linux/bit_spinlock.h>
17#include <linux/interrupt.h>
18#include <linux/bitops.h>
19#include <linux/slab.h>
97d06609 20#include "slab.h"
7b3c3a50 21#include <linux/proc_fs.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
81819f0f
CL
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/mempolicy.h>
27#include <linux/ctype.h>
3ac7fe5a 28#include <linux/debugobjects.h>
81819f0f 29#include <linux/kallsyms.h>
b9049e23 30#include <linux/memory.h>
f8bd2258 31#include <linux/math64.h>
773ff60e 32#include <linux/fault-inject.h>
bfa71457 33#include <linux/stacktrace.h>
4de900b4 34#include <linux/prefetch.h>
2633d7a0 35#include <linux/memcontrol.h>
2482ddec 36#include <linux/random.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
b7ccc7f8 54 * have the ability to do a cmpxchg_double. It only protects:
881db7fb 55 * A. page->freelist -> List of object free in a page
b7ccc7f8
MW
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
881db7fb
CL
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
632b2ef0
LX
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
81819f0f
CL
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
81819f0f
CL
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
672bba3a
CL
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 88 * freed then the slab will show up again on the partial lists.
672bba3a
CL
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
81819f0f
CL
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
4b6f0750
CL
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
dfb4f096 110 * freelist that allows lockless access to
894b8788
CL
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
81819f0f
CL
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
894b8788 116 * the fast path and disables lockless freelists.
81819f0f
CL
117 */
118
af537b0a
CL
119static inline int kmem_cache_debug(struct kmem_cache *s)
120{
5577bd8a 121#ifdef CONFIG_SLUB_DEBUG
af537b0a 122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 123#else
af537b0a 124 return 0;
5577bd8a 125#endif
af537b0a 126}
5577bd8a 127
117d54df 128void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
129{
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134}
135
345c905d
JK
136static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137{
138#ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140#else
141 return false;
142#endif
143}
144
81819f0f
CL
145/*
146 * Issues still to be resolved:
147 *
81819f0f
CL
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
81819f0f
CL
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
b789ef51
CL
156/* Enable to log cmpxchg failures */
157#undef SLUB_DEBUG_CMPXCHG
158
2086d26a
CL
159/*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
76be8950 163#define MIN_PARTIAL 5
e95eed57 164
2086d26a
CL
165/*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 168 * sort the partial list by the number of objects in use.
2086d26a
CL
169 */
170#define MAX_PARTIAL 10
171
becfda68 172#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 173 SLAB_POISON | SLAB_STORE_USER)
672bba3a 174
149daaf3
LA
175/*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
fa5ec8a1 183/*
3de47213
DR
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
fa5ec8a1 187 */
3de47213 188#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 189
210b5c06
CG
190#define OO_SHIFT 16
191#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 192#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 193
81819f0f 194/* Internal SLUB flags */
d50112ed 195/* Poison object */
4fd0b46e 196#define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
d50112ed 197/* Use cmpxchg_double */
4fd0b46e 198#define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
81819f0f 199
02cbc874
CL
200/*
201 * Tracking user of a slab.
202 */
d6543e39 203#define TRACK_ADDRS_COUNT 16
02cbc874 204struct track {
ce71e27c 205 unsigned long addr; /* Called from address */
d6543e39
BG
206#ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208#endif
02cbc874
CL
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212};
213
214enum track_item { TRACK_ALLOC, TRACK_FREE };
215
ab4d5ed5 216#ifdef CONFIG_SYSFS
81819f0f
CL
217static int sysfs_slab_add(struct kmem_cache *);
218static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 219static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 220static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 221#else
0c710013
CL
222static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
107dab5c 225static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 226static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
227#endif
228
4fdccdfb 229static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
230{
231#ifdef CONFIG_SLUB_STATS
88da03a6
CL
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
237#endif
238}
239
81819f0f
CL
240/********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
2482ddec
KC
244/*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251{
252#ifdef CONFIG_SLAB_FREELIST_HARDENED
d36a63a9
AK
253 /*
254 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
255 * Normally, this doesn't cause any issues, as both set_freepointer()
256 * and get_freepointer() are called with a pointer with the same tag.
257 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
258 * example, when __free_slub() iterates over objects in a cache, it
259 * passes untagged pointers to check_object(). check_object() in turns
260 * calls get_freepointer() with an untagged pointer, which causes the
261 * freepointer to be restored incorrectly.
262 */
263 return (void *)((unsigned long)ptr ^ s->random ^
264 (unsigned long)kasan_reset_tag((void *)ptr_addr));
2482ddec
KC
265#else
266 return ptr;
267#endif
268}
269
270/* Returns the freelist pointer recorded at location ptr_addr. */
271static inline void *freelist_dereference(const struct kmem_cache *s,
272 void *ptr_addr)
273{
274 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
275 (unsigned long)ptr_addr);
276}
277
7656c72b
CL
278static inline void *get_freepointer(struct kmem_cache *s, void *object)
279{
2482ddec 280 return freelist_dereference(s, object + s->offset);
7656c72b
CL
281}
282
0ad9500e
ED
283static void prefetch_freepointer(const struct kmem_cache *s, void *object)
284{
0882ff91 285 prefetch(object + s->offset);
0ad9500e
ED
286}
287
1393d9a1
CL
288static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
289{
2482ddec 290 unsigned long freepointer_addr;
1393d9a1
CL
291 void *p;
292
922d566c
JK
293 if (!debug_pagealloc_enabled())
294 return get_freepointer(s, object);
295
2482ddec
KC
296 freepointer_addr = (unsigned long)object + s->offset;
297 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
298 return freelist_ptr(s, p, freepointer_addr);
1393d9a1
CL
299}
300
7656c72b
CL
301static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
302{
2482ddec
KC
303 unsigned long freeptr_addr = (unsigned long)object + s->offset;
304
ce6fa91b
AP
305#ifdef CONFIG_SLAB_FREELIST_HARDENED
306 BUG_ON(object == fp); /* naive detection of double free or corruption */
307#endif
308
2482ddec 309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
7656c72b
CL
310}
311
312/* Loop over all objects in a slab */
224a88be 313#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
314 for (__p = fixup_red_left(__s, __addr); \
315 __p < (__addr) + (__objects) * (__s)->size; \
316 __p += (__s)->size)
7656c72b 317
7656c72b 318/* Determine object index from a given position */
284b50dd 319static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
7656c72b 320{
6373dca1 321 return (kasan_reset_tag(p) - addr) / s->size;
7656c72b
CL
322}
323
9736d2a9 324static inline unsigned int order_objects(unsigned int order, unsigned int size)
ab9a0f19 325{
9736d2a9 326 return ((unsigned int)PAGE_SIZE << order) / size;
ab9a0f19
LJ
327}
328
19af27af 329static inline struct kmem_cache_order_objects oo_make(unsigned int order,
9736d2a9 330 unsigned int size)
834f3d11
CL
331{
332 struct kmem_cache_order_objects x = {
9736d2a9 333 (order << OO_SHIFT) + order_objects(order, size)
834f3d11
CL
334 };
335
336 return x;
337}
338
19af27af 339static inline unsigned int oo_order(struct kmem_cache_order_objects x)
834f3d11 340{
210b5c06 341 return x.x >> OO_SHIFT;
834f3d11
CL
342}
343
19af27af 344static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
834f3d11 345{
210b5c06 346 return x.x & OO_MASK;
834f3d11
CL
347}
348
881db7fb
CL
349/*
350 * Per slab locking using the pagelock
351 */
352static __always_inline void slab_lock(struct page *page)
353{
48c935ad 354 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
355 bit_spin_lock(PG_locked, &page->flags);
356}
357
358static __always_inline void slab_unlock(struct page *page)
359{
48c935ad 360 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
361 __bit_spin_unlock(PG_locked, &page->flags);
362}
363
1d07171c
CL
364/* Interrupts must be disabled (for the fallback code to work right) */
365static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369{
370 VM_BUG_ON(!irqs_disabled());
2565409f
HC
371#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 373 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 374 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
375 freelist_old, counters_old,
376 freelist_new, counters_new))
6f6528a1 377 return true;
1d07171c
CL
378 } else
379#endif
380 {
381 slab_lock(page);
d0e0ac97
CG
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
1d07171c 384 page->freelist = freelist_new;
7d27a04b 385 page->counters = counters_new;
1d07171c 386 slab_unlock(page);
6f6528a1 387 return true;
1d07171c
CL
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
397#endif
398
6f6528a1 399 return false;
1d07171c
CL
400}
401
b789ef51
CL
402static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406{
2565409f
HC
407#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 409 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 410 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
411 freelist_old, counters_old,
412 freelist_new, counters_new))
6f6528a1 413 return true;
b789ef51
CL
414 } else
415#endif
416 {
1d07171c
CL
417 unsigned long flags;
418
419 local_irq_save(flags);
881db7fb 420 slab_lock(page);
d0e0ac97
CG
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
b789ef51 423 page->freelist = freelist_new;
7d27a04b 424 page->counters = counters_new;
881db7fb 425 slab_unlock(page);
1d07171c 426 local_irq_restore(flags);
6f6528a1 427 return true;
b789ef51 428 }
881db7fb 429 slab_unlock(page);
1d07171c 430 local_irq_restore(flags);
b789ef51
CL
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
438#endif
439
6f6528a1 440 return false;
b789ef51
CL
441}
442
41ecc55b 443#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
444/*
445 * Determine a map of object in use on a page.
446 *
881db7fb 447 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
448 * not vanish from under us.
449 */
450static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451{
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457}
458
870b1fbb 459static inline unsigned int size_from_object(struct kmem_cache *s)
d86bd1be
JK
460{
461 if (s->flags & SLAB_RED_ZONE)
462 return s->size - s->red_left_pad;
463
464 return s->size;
465}
466
467static inline void *restore_red_left(struct kmem_cache *s, void *p)
468{
469 if (s->flags & SLAB_RED_ZONE)
470 p -= s->red_left_pad;
471
472 return p;
473}
474
41ecc55b
CL
475/*
476 * Debug settings:
477 */
89d3c87e 478#if defined(CONFIG_SLUB_DEBUG_ON)
d50112ed 479static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
f0630fff 480#else
d50112ed 481static slab_flags_t slub_debug;
f0630fff 482#endif
41ecc55b
CL
483
484static char *slub_debug_slabs;
fa5ec8a1 485static int disable_higher_order_debug;
41ecc55b 486
a79316c6
AR
487/*
488 * slub is about to manipulate internal object metadata. This memory lies
489 * outside the range of the allocated object, so accessing it would normally
490 * be reported by kasan as a bounds error. metadata_access_enable() is used
491 * to tell kasan that these accesses are OK.
492 */
493static inline void metadata_access_enable(void)
494{
495 kasan_disable_current();
496}
497
498static inline void metadata_access_disable(void)
499{
500 kasan_enable_current();
501}
502
81819f0f
CL
503/*
504 * Object debugging
505 */
d86bd1be
JK
506
507/* Verify that a pointer has an address that is valid within a slab page */
508static inline int check_valid_pointer(struct kmem_cache *s,
509 struct page *page, void *object)
510{
511 void *base;
512
513 if (!object)
514 return 1;
515
516 base = page_address(page);
338cfaad 517 object = kasan_reset_tag(object);
d86bd1be
JK
518 object = restore_red_left(s, object);
519 if (object < base || object >= base + page->objects * s->size ||
520 (object - base) % s->size) {
521 return 0;
522 }
523
524 return 1;
525}
526
aa2efd5e
DT
527static void print_section(char *level, char *text, u8 *addr,
528 unsigned int length)
81819f0f 529{
a79316c6 530 metadata_access_enable();
aa2efd5e 531 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 532 length, 1);
a79316c6 533 metadata_access_disable();
81819f0f
CL
534}
535
81819f0f
CL
536static struct track *get_track(struct kmem_cache *s, void *object,
537 enum track_item alloc)
538{
539 struct track *p;
540
541 if (s->offset)
542 p = object + s->offset + sizeof(void *);
543 else
544 p = object + s->inuse;
545
546 return p + alloc;
547}
548
549static void set_track(struct kmem_cache *s, void *object,
ce71e27c 550 enum track_item alloc, unsigned long addr)
81819f0f 551{
1a00df4a 552 struct track *p = get_track(s, object, alloc);
81819f0f 553
81819f0f 554 if (addr) {
d6543e39 555#ifdef CONFIG_STACKTRACE
79716799 556 unsigned int nr_entries;
d6543e39 557
a79316c6 558 metadata_access_enable();
79716799 559 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
a79316c6 560 metadata_access_disable();
d6543e39 561
79716799
TG
562 if (nr_entries < TRACK_ADDRS_COUNT)
563 p->addrs[nr_entries] = 0;
d6543e39 564#endif
81819f0f
CL
565 p->addr = addr;
566 p->cpu = smp_processor_id();
88e4ccf2 567 p->pid = current->pid;
81819f0f 568 p->when = jiffies;
b8ca7ff7 569 } else {
81819f0f 570 memset(p, 0, sizeof(struct track));
b8ca7ff7 571 }
81819f0f
CL
572}
573
81819f0f
CL
574static void init_tracking(struct kmem_cache *s, void *object)
575{
24922684
CL
576 if (!(s->flags & SLAB_STORE_USER))
577 return;
578
ce71e27c
EGM
579 set_track(s, object, TRACK_FREE, 0UL);
580 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
581}
582
86609d33 583static void print_track(const char *s, struct track *t, unsigned long pr_time)
81819f0f
CL
584{
585 if (!t->addr)
586 return;
587
f9f58285 588 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
86609d33 589 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
d6543e39
BG
590#ifdef CONFIG_STACKTRACE
591 {
592 int i;
593 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
594 if (t->addrs[i])
f9f58285 595 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
596 else
597 break;
598 }
599#endif
24922684
CL
600}
601
602static void print_tracking(struct kmem_cache *s, void *object)
603{
86609d33 604 unsigned long pr_time = jiffies;
24922684
CL
605 if (!(s->flags & SLAB_STORE_USER))
606 return;
607
86609d33
CP
608 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
609 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
24922684
CL
610}
611
612static void print_page_info(struct page *page)
613{
f9f58285 614 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 615 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
616
617}
618
619static void slab_bug(struct kmem_cache *s, char *fmt, ...)
620{
ecc42fbe 621 struct va_format vaf;
24922684 622 va_list args;
24922684
CL
623
624 va_start(args, fmt);
ecc42fbe
FF
625 vaf.fmt = fmt;
626 vaf.va = &args;
f9f58285 627 pr_err("=============================================================================\n");
ecc42fbe 628 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 629 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 630
373d4d09 631 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 632 va_end(args);
81819f0f
CL
633}
634
24922684
CL
635static void slab_fix(struct kmem_cache *s, char *fmt, ...)
636{
ecc42fbe 637 struct va_format vaf;
24922684 638 va_list args;
24922684
CL
639
640 va_start(args, fmt);
ecc42fbe
FF
641 vaf.fmt = fmt;
642 vaf.va = &args;
643 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 644 va_end(args);
24922684
CL
645}
646
647static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
648{
649 unsigned int off; /* Offset of last byte */
a973e9dd 650 u8 *addr = page_address(page);
24922684
CL
651
652 print_tracking(s, p);
653
654 print_page_info(page);
655
f9f58285
FF
656 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
657 p, p - addr, get_freepointer(s, p));
24922684 658
d86bd1be 659 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
660 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
661 s->red_left_pad);
d86bd1be 662 else if (p > addr + 16)
aa2efd5e 663 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 664
aa2efd5e 665 print_section(KERN_ERR, "Object ", p,
1b473f29 666 min_t(unsigned int, s->object_size, PAGE_SIZE));
81819f0f 667 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 668 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 669 s->inuse - s->object_size);
81819f0f 670
81819f0f
CL
671 if (s->offset)
672 off = s->offset + sizeof(void *);
673 else
674 off = s->inuse;
675
24922684 676 if (s->flags & SLAB_STORE_USER)
81819f0f 677 off += 2 * sizeof(struct track);
81819f0f 678
80a9201a
AP
679 off += kasan_metadata_size(s);
680
d86bd1be 681 if (off != size_from_object(s))
81819f0f 682 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
683 print_section(KERN_ERR, "Padding ", p + off,
684 size_from_object(s) - off);
24922684
CL
685
686 dump_stack();
81819f0f
CL
687}
688
75c66def 689void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
690 u8 *object, char *reason)
691{
3dc50637 692 slab_bug(s, "%s", reason);
24922684 693 print_trailer(s, page, object);
81819f0f
CL
694}
695
a38965bf 696static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
d0e0ac97 697 const char *fmt, ...)
81819f0f
CL
698{
699 va_list args;
700 char buf[100];
701
24922684
CL
702 va_start(args, fmt);
703 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 704 va_end(args);
3dc50637 705 slab_bug(s, "%s", buf);
24922684 706 print_page_info(page);
81819f0f
CL
707 dump_stack();
708}
709
f7cb1933 710static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
711{
712 u8 *p = object;
713
d86bd1be
JK
714 if (s->flags & SLAB_RED_ZONE)
715 memset(p - s->red_left_pad, val, s->red_left_pad);
716
81819f0f 717 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
718 memset(p, POISON_FREE, s->object_size - 1);
719 p[s->object_size - 1] = POISON_END;
81819f0f
CL
720 }
721
722 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 723 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
724}
725
24922684
CL
726static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
727 void *from, void *to)
728{
729 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
730 memset(from, data, to - from);
731}
732
733static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
734 u8 *object, char *what,
06428780 735 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
736{
737 u8 *fault;
738 u8 *end;
739
a79316c6 740 metadata_access_enable();
79824820 741 fault = memchr_inv(start, value, bytes);
a79316c6 742 metadata_access_disable();
24922684
CL
743 if (!fault)
744 return 1;
745
746 end = start + bytes;
747 while (end > fault && end[-1] == value)
748 end--;
749
750 slab_bug(s, "%s overwritten", what);
f9f58285 751 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
752 fault, end - 1, fault[0], value);
753 print_trailer(s, page, object);
754
755 restore_bytes(s, what, value, fault, end);
756 return 0;
81819f0f
CL
757}
758
81819f0f
CL
759/*
760 * Object layout:
761 *
762 * object address
763 * Bytes of the object to be managed.
764 * If the freepointer may overlay the object then the free
765 * pointer is the first word of the object.
672bba3a 766 *
81819f0f
CL
767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
768 * 0xa5 (POISON_END)
769 *
3b0efdfa 770 * object + s->object_size
81819f0f 771 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 772 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 773 * object_size == inuse.
672bba3a 774 *
81819f0f
CL
775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776 * 0xcc (RED_ACTIVE) for objects in use.
777 *
778 * object + s->inuse
672bba3a
CL
779 * Meta data starts here.
780 *
81819f0f
CL
781 * A. Free pointer (if we cannot overwrite object on free)
782 * B. Tracking data for SLAB_STORE_USER
672bba3a 783 * C. Padding to reach required alignment boundary or at mininum
6446faa2 784 * one word if debugging is on to be able to detect writes
672bba3a
CL
785 * before the word boundary.
786 *
787 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
788 *
789 * object + s->size
672bba3a 790 * Nothing is used beyond s->size.
81819f0f 791 *
3b0efdfa 792 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 793 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
794 * may be used with merged slabcaches.
795 */
796
81819f0f
CL
797static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798{
799 unsigned long off = s->inuse; /* The end of info */
800
801 if (s->offset)
802 /* Freepointer is placed after the object. */
803 off += sizeof(void *);
804
805 if (s->flags & SLAB_STORE_USER)
806 /* We also have user information there */
807 off += 2 * sizeof(struct track);
808
80a9201a
AP
809 off += kasan_metadata_size(s);
810
d86bd1be 811 if (size_from_object(s) == off)
81819f0f
CL
812 return 1;
813
24922684 814 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 815 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
816}
817
39b26464 818/* Check the pad bytes at the end of a slab page */
81819f0f
CL
819static int slab_pad_check(struct kmem_cache *s, struct page *page)
820{
24922684
CL
821 u8 *start;
822 u8 *fault;
823 u8 *end;
5d682681 824 u8 *pad;
24922684
CL
825 int length;
826 int remainder;
81819f0f
CL
827
828 if (!(s->flags & SLAB_POISON))
829 return 1;
830
a973e9dd 831 start = page_address(page);
a50b854e 832 length = page_size(page);
39b26464
CL
833 end = start + length;
834 remainder = length % s->size;
81819f0f
CL
835 if (!remainder)
836 return 1;
837
5d682681 838 pad = end - remainder;
a79316c6 839 metadata_access_enable();
5d682681 840 fault = memchr_inv(pad, POISON_INUSE, remainder);
a79316c6 841 metadata_access_disable();
24922684
CL
842 if (!fault)
843 return 1;
844 while (end > fault && end[-1] == POISON_INUSE)
845 end--;
846
847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
5d682681 848 print_section(KERN_ERR, "Padding ", pad, remainder);
24922684 849
5d682681 850 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
24922684 851 return 0;
81819f0f
CL
852}
853
854static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 855 void *object, u8 val)
81819f0f
CL
856{
857 u8 *p = object;
3b0efdfa 858 u8 *endobject = object + s->object_size;
81819f0f
CL
859
860 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
861 if (!check_bytes_and_report(s, page, object, "Redzone",
862 object - s->red_left_pad, val, s->red_left_pad))
863 return 0;
864
24922684 865 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 866 endobject, val, s->inuse - s->object_size))
81819f0f 867 return 0;
81819f0f 868 } else {
3b0efdfa 869 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 870 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
871 endobject, POISON_INUSE,
872 s->inuse - s->object_size);
3adbefee 873 }
81819f0f
CL
874 }
875
876 if (s->flags & SLAB_POISON) {
f7cb1933 877 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 878 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 879 POISON_FREE, s->object_size - 1) ||
24922684 880 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 881 p + s->object_size - 1, POISON_END, 1)))
81819f0f 882 return 0;
81819f0f
CL
883 /*
884 * check_pad_bytes cleans up on its own.
885 */
886 check_pad_bytes(s, page, p);
887 }
888
f7cb1933 889 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
890 /*
891 * Object and freepointer overlap. Cannot check
892 * freepointer while object is allocated.
893 */
894 return 1;
895
896 /* Check free pointer validity */
897 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
898 object_err(s, page, p, "Freepointer corrupt");
899 /*
9f6c708e 900 * No choice but to zap it and thus lose the remainder
81819f0f 901 * of the free objects in this slab. May cause
672bba3a 902 * another error because the object count is now wrong.
81819f0f 903 */
a973e9dd 904 set_freepointer(s, p, NULL);
81819f0f
CL
905 return 0;
906 }
907 return 1;
908}
909
910static int check_slab(struct kmem_cache *s, struct page *page)
911{
39b26464
CL
912 int maxobj;
913
81819f0f
CL
914 VM_BUG_ON(!irqs_disabled());
915
916 if (!PageSlab(page)) {
24922684 917 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
918 return 0;
919 }
39b26464 920
9736d2a9 921 maxobj = order_objects(compound_order(page), s->size);
39b26464
CL
922 if (page->objects > maxobj) {
923 slab_err(s, page, "objects %u > max %u",
f6edde9c 924 page->objects, maxobj);
39b26464
CL
925 return 0;
926 }
927 if (page->inuse > page->objects) {
24922684 928 slab_err(s, page, "inuse %u > max %u",
f6edde9c 929 page->inuse, page->objects);
81819f0f
CL
930 return 0;
931 }
932 /* Slab_pad_check fixes things up after itself */
933 slab_pad_check(s, page);
934 return 1;
935}
936
937/*
672bba3a
CL
938 * Determine if a certain object on a page is on the freelist. Must hold the
939 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
940 */
941static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
942{
943 int nr = 0;
881db7fb 944 void *fp;
81819f0f 945 void *object = NULL;
f6edde9c 946 int max_objects;
81819f0f 947
881db7fb 948 fp = page->freelist;
39b26464 949 while (fp && nr <= page->objects) {
81819f0f
CL
950 if (fp == search)
951 return 1;
952 if (!check_valid_pointer(s, page, fp)) {
953 if (object) {
954 object_err(s, page, object,
955 "Freechain corrupt");
a973e9dd 956 set_freepointer(s, object, NULL);
81819f0f 957 } else {
24922684 958 slab_err(s, page, "Freepointer corrupt");
a973e9dd 959 page->freelist = NULL;
39b26464 960 page->inuse = page->objects;
24922684 961 slab_fix(s, "Freelist cleared");
81819f0f
CL
962 return 0;
963 }
964 break;
965 }
966 object = fp;
967 fp = get_freepointer(s, object);
968 nr++;
969 }
970
9736d2a9 971 max_objects = order_objects(compound_order(page), s->size);
210b5c06
CG
972 if (max_objects > MAX_OBJS_PER_PAGE)
973 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
974
975 if (page->objects != max_objects) {
756a025f
JP
976 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
977 page->objects, max_objects);
224a88be
CL
978 page->objects = max_objects;
979 slab_fix(s, "Number of objects adjusted.");
980 }
39b26464 981 if (page->inuse != page->objects - nr) {
756a025f
JP
982 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
983 page->inuse, page->objects - nr);
39b26464 984 page->inuse = page->objects - nr;
24922684 985 slab_fix(s, "Object count adjusted.");
81819f0f
CL
986 }
987 return search == NULL;
988}
989
0121c619
CL
990static void trace(struct kmem_cache *s, struct page *page, void *object,
991 int alloc)
3ec09742
CL
992{
993 if (s->flags & SLAB_TRACE) {
f9f58285 994 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
995 s->name,
996 alloc ? "alloc" : "free",
997 object, page->inuse,
998 page->freelist);
999
1000 if (!alloc)
aa2efd5e 1001 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 1002 s->object_size);
3ec09742
CL
1003
1004 dump_stack();
1005 }
1006}
1007
643b1138 1008/*
672bba3a 1009 * Tracking of fully allocated slabs for debugging purposes.
643b1138 1010 */
5cc6eee8
CL
1011static void add_full(struct kmem_cache *s,
1012 struct kmem_cache_node *n, struct page *page)
643b1138 1013{
5cc6eee8
CL
1014 if (!(s->flags & SLAB_STORE_USER))
1015 return;
1016
255d0884 1017 lockdep_assert_held(&n->list_lock);
916ac052 1018 list_add(&page->slab_list, &n->full);
643b1138
CL
1019}
1020
c65c1877 1021static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1022{
643b1138
CL
1023 if (!(s->flags & SLAB_STORE_USER))
1024 return;
1025
255d0884 1026 lockdep_assert_held(&n->list_lock);
916ac052 1027 list_del(&page->slab_list);
643b1138
CL
1028}
1029
0f389ec6
CL
1030/* Tracking of the number of slabs for debugging purposes */
1031static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1032{
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 return atomic_long_read(&n->nr_slabs);
1036}
1037
26c02cf0
AB
1038static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1039{
1040 return atomic_long_read(&n->nr_slabs);
1041}
1042
205ab99d 1043static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1044{
1045 struct kmem_cache_node *n = get_node(s, node);
1046
1047 /*
1048 * May be called early in order to allocate a slab for the
1049 * kmem_cache_node structure. Solve the chicken-egg
1050 * dilemma by deferring the increment of the count during
1051 * bootstrap (see early_kmem_cache_node_alloc).
1052 */
338b2642 1053 if (likely(n)) {
0f389ec6 1054 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1055 atomic_long_add(objects, &n->total_objects);
1056 }
0f389ec6 1057}
205ab99d 1058static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1059{
1060 struct kmem_cache_node *n = get_node(s, node);
1061
1062 atomic_long_dec(&n->nr_slabs);
205ab99d 1063 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1064}
1065
1066/* Object debug checks for alloc/free paths */
3ec09742
CL
1067static void setup_object_debug(struct kmem_cache *s, struct page *page,
1068 void *object)
1069{
1070 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1071 return;
1072
f7cb1933 1073 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1074 init_tracking(s, object);
1075}
1076
a50b854e
MWO
1077static
1078void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
a7101224
AK
1079{
1080 if (!(s->flags & SLAB_POISON))
1081 return;
1082
1083 metadata_access_enable();
a50b854e 1084 memset(addr, POISON_INUSE, page_size(page));
a7101224
AK
1085 metadata_access_disable();
1086}
1087
becfda68 1088static inline int alloc_consistency_checks(struct kmem_cache *s,
278d7756 1089 struct page *page, void *object)
81819f0f
CL
1090{
1091 if (!check_slab(s, page))
becfda68 1092 return 0;
81819f0f 1093
81819f0f
CL
1094 if (!check_valid_pointer(s, page, object)) {
1095 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1096 return 0;
81819f0f
CL
1097 }
1098
f7cb1933 1099 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1100 return 0;
1101
1102 return 1;
1103}
1104
1105static noinline int alloc_debug_processing(struct kmem_cache *s,
1106 struct page *page,
1107 void *object, unsigned long addr)
1108{
1109 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
278d7756 1110 if (!alloc_consistency_checks(s, page, object))
becfda68
LA
1111 goto bad;
1112 }
81819f0f 1113
3ec09742
CL
1114 /* Success perform special debug activities for allocs */
1115 if (s->flags & SLAB_STORE_USER)
1116 set_track(s, object, TRACK_ALLOC, addr);
1117 trace(s, page, object, 1);
f7cb1933 1118 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1119 return 1;
3ec09742 1120
81819f0f
CL
1121bad:
1122 if (PageSlab(page)) {
1123 /*
1124 * If this is a slab page then lets do the best we can
1125 * to avoid issues in the future. Marking all objects
672bba3a 1126 * as used avoids touching the remaining objects.
81819f0f 1127 */
24922684 1128 slab_fix(s, "Marking all objects used");
39b26464 1129 page->inuse = page->objects;
a973e9dd 1130 page->freelist = NULL;
81819f0f
CL
1131 }
1132 return 0;
1133}
1134
becfda68
LA
1135static inline int free_consistency_checks(struct kmem_cache *s,
1136 struct page *page, void *object, unsigned long addr)
81819f0f 1137{
81819f0f 1138 if (!check_valid_pointer(s, page, object)) {
70d71228 1139 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1140 return 0;
81819f0f
CL
1141 }
1142
1143 if (on_freelist(s, page, object)) {
24922684 1144 object_err(s, page, object, "Object already free");
becfda68 1145 return 0;
81819f0f
CL
1146 }
1147
f7cb1933 1148 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1149 return 0;
81819f0f 1150
1b4f59e3 1151 if (unlikely(s != page->slab_cache)) {
3adbefee 1152 if (!PageSlab(page)) {
756a025f
JP
1153 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1154 object);
1b4f59e3 1155 } else if (!page->slab_cache) {
f9f58285
FF
1156 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1157 object);
70d71228 1158 dump_stack();
06428780 1159 } else
24922684
CL
1160 object_err(s, page, object,
1161 "page slab pointer corrupt.");
becfda68
LA
1162 return 0;
1163 }
1164 return 1;
1165}
1166
1167/* Supports checking bulk free of a constructed freelist */
1168static noinline int free_debug_processing(
1169 struct kmem_cache *s, struct page *page,
1170 void *head, void *tail, int bulk_cnt,
1171 unsigned long addr)
1172{
1173 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1174 void *object = head;
1175 int cnt = 0;
1176 unsigned long uninitialized_var(flags);
1177 int ret = 0;
1178
1179 spin_lock_irqsave(&n->list_lock, flags);
1180 slab_lock(page);
1181
1182 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1183 if (!check_slab(s, page))
1184 goto out;
1185 }
1186
1187next_object:
1188 cnt++;
1189
1190 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 if (!free_consistency_checks(s, page, object, addr))
1192 goto out;
81819f0f 1193 }
3ec09742 1194
3ec09742
CL
1195 if (s->flags & SLAB_STORE_USER)
1196 set_track(s, object, TRACK_FREE, addr);
1197 trace(s, page, object, 0);
81084651 1198 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1199 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1200
1201 /* Reached end of constructed freelist yet? */
1202 if (object != tail) {
1203 object = get_freepointer(s, object);
1204 goto next_object;
1205 }
804aa132
LA
1206 ret = 1;
1207
5c2e4bbb 1208out:
81084651
JDB
1209 if (cnt != bulk_cnt)
1210 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1211 bulk_cnt, cnt);
1212
881db7fb 1213 slab_unlock(page);
282acb43 1214 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1215 if (!ret)
1216 slab_fix(s, "Object at 0x%p not freed", object);
1217 return ret;
81819f0f
CL
1218}
1219
41ecc55b
CL
1220static int __init setup_slub_debug(char *str)
1221{
f0630fff
CL
1222 slub_debug = DEBUG_DEFAULT_FLAGS;
1223 if (*str++ != '=' || !*str)
1224 /*
1225 * No options specified. Switch on full debugging.
1226 */
1227 goto out;
1228
1229 if (*str == ',')
1230 /*
1231 * No options but restriction on slabs. This means full
1232 * debugging for slabs matching a pattern.
1233 */
1234 goto check_slabs;
1235
1236 slub_debug = 0;
1237 if (*str == '-')
1238 /*
1239 * Switch off all debugging measures.
1240 */
1241 goto out;
1242
1243 /*
1244 * Determine which debug features should be switched on
1245 */
06428780 1246 for (; *str && *str != ','; str++) {
f0630fff
CL
1247 switch (tolower(*str)) {
1248 case 'f':
becfda68 1249 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1250 break;
1251 case 'z':
1252 slub_debug |= SLAB_RED_ZONE;
1253 break;
1254 case 'p':
1255 slub_debug |= SLAB_POISON;
1256 break;
1257 case 'u':
1258 slub_debug |= SLAB_STORE_USER;
1259 break;
1260 case 't':
1261 slub_debug |= SLAB_TRACE;
1262 break;
4c13dd3b
DM
1263 case 'a':
1264 slub_debug |= SLAB_FAILSLAB;
1265 break;
08303a73
CA
1266 case 'o':
1267 /*
1268 * Avoid enabling debugging on caches if its minimum
1269 * order would increase as a result.
1270 */
1271 disable_higher_order_debug = 1;
1272 break;
f0630fff 1273 default:
f9f58285
FF
1274 pr_err("slub_debug option '%c' unknown. skipped\n",
1275 *str);
f0630fff 1276 }
41ecc55b
CL
1277 }
1278
f0630fff 1279check_slabs:
41ecc55b
CL
1280 if (*str == ',')
1281 slub_debug_slabs = str + 1;
f0630fff 1282out:
6471384a
AP
1283 if ((static_branch_unlikely(&init_on_alloc) ||
1284 static_branch_unlikely(&init_on_free)) &&
1285 (slub_debug & SLAB_POISON))
1286 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
41ecc55b
CL
1287 return 1;
1288}
1289
1290__setup("slub_debug", setup_slub_debug);
1291
c5fd3ca0
AT
1292/*
1293 * kmem_cache_flags - apply debugging options to the cache
1294 * @object_size: the size of an object without meta data
1295 * @flags: flags to set
1296 * @name: name of the cache
1297 * @ctor: constructor function
1298 *
1299 * Debug option(s) are applied to @flags. In addition to the debug
1300 * option(s), if a slab name (or multiple) is specified i.e.
1301 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1302 * then only the select slabs will receive the debug option(s).
1303 */
0293d1fd 1304slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1305 slab_flags_t flags, const char *name,
51cc5068 1306 void (*ctor)(void *))
41ecc55b 1307{
c5fd3ca0
AT
1308 char *iter;
1309 size_t len;
1310
1311 /* If slub_debug = 0, it folds into the if conditional. */
1312 if (!slub_debug_slabs)
1313 return flags | slub_debug;
1314
1315 len = strlen(name);
1316 iter = slub_debug_slabs;
1317 while (*iter) {
1318 char *end, *glob;
1319 size_t cmplen;
1320
9cf3a8d8 1321 end = strchrnul(iter, ',');
c5fd3ca0
AT
1322
1323 glob = strnchr(iter, end - iter, '*');
1324 if (glob)
1325 cmplen = glob - iter;
1326 else
1327 cmplen = max_t(size_t, len, (end - iter));
1328
1329 if (!strncmp(name, iter, cmplen)) {
1330 flags |= slub_debug;
1331 break;
1332 }
1333
1334 if (!*end)
1335 break;
1336 iter = end + 1;
1337 }
ba0268a8
CL
1338
1339 return flags;
41ecc55b 1340}
b4a64718 1341#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1342static inline void setup_object_debug(struct kmem_cache *s,
1343 struct page *page, void *object) {}
a50b854e
MWO
1344static inline
1345void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
41ecc55b 1346
3ec09742 1347static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1348 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1349
282acb43 1350static inline int free_debug_processing(
81084651
JDB
1351 struct kmem_cache *s, struct page *page,
1352 void *head, void *tail, int bulk_cnt,
282acb43 1353 unsigned long addr) { return 0; }
41ecc55b 1354
41ecc55b
CL
1355static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1356 { return 1; }
1357static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1358 void *object, u8 val) { return 1; }
5cc6eee8
CL
1359static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1360 struct page *page) {}
c65c1877
PZ
1361static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1362 struct page *page) {}
0293d1fd 1363slab_flags_t kmem_cache_flags(unsigned int object_size,
d50112ed 1364 slab_flags_t flags, const char *name,
51cc5068 1365 void (*ctor)(void *))
ba0268a8
CL
1366{
1367 return flags;
1368}
41ecc55b 1369#define slub_debug 0
0f389ec6 1370
fdaa45e9
IM
1371#define disable_higher_order_debug 0
1372
0f389ec6
CL
1373static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1374 { return 0; }
26c02cf0
AB
1375static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1376 { return 0; }
205ab99d
CL
1377static inline void inc_slabs_node(struct kmem_cache *s, int node,
1378 int objects) {}
1379static inline void dec_slabs_node(struct kmem_cache *s, int node,
1380 int objects) {}
7d550c56 1381
02e72cc6
AR
1382#endif /* CONFIG_SLUB_DEBUG */
1383
1384/*
1385 * Hooks for other subsystems that check memory allocations. In a typical
1386 * production configuration these hooks all should produce no code at all.
1387 */
0116523c 1388static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
d56791b3 1389{
53128245 1390 ptr = kasan_kmalloc_large(ptr, size, flags);
a2f77575 1391 /* As ptr might get tagged, call kmemleak hook after KASAN. */
d56791b3 1392 kmemleak_alloc(ptr, size, 1, flags);
53128245 1393 return ptr;
d56791b3
RB
1394}
1395
ee3ce779 1396static __always_inline void kfree_hook(void *x)
d56791b3
RB
1397{
1398 kmemleak_free(x);
ee3ce779 1399 kasan_kfree_large(x, _RET_IP_);
d56791b3
RB
1400}
1401
c3895391 1402static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
d56791b3
RB
1403{
1404 kmemleak_free_recursive(x, s->flags);
7d550c56 1405
02e72cc6
AR
1406 /*
1407 * Trouble is that we may no longer disable interrupts in the fast path
1408 * So in order to make the debug calls that expect irqs to be
1409 * disabled we need to disable interrupts temporarily.
1410 */
4675ff05 1411#ifdef CONFIG_LOCKDEP
02e72cc6
AR
1412 {
1413 unsigned long flags;
1414
1415 local_irq_save(flags);
02e72cc6
AR
1416 debug_check_no_locks_freed(x, s->object_size);
1417 local_irq_restore(flags);
1418 }
1419#endif
1420 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1421 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1422
c3895391
AK
1423 /* KASAN might put x into memory quarantine, delaying its reuse */
1424 return kasan_slab_free(s, x, _RET_IP_);
02e72cc6 1425}
205ab99d 1426
c3895391
AK
1427static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1428 void **head, void **tail)
81084651 1429{
6471384a
AP
1430
1431 void *object;
1432 void *next = *head;
1433 void *old_tail = *tail ? *tail : *head;
1434 int rsize;
1435
1b7e816f
LA
1436 if (slab_want_init_on_free(s)) {
1437 void *p = NULL;
1438
6471384a
AP
1439 do {
1440 object = next;
1441 next = get_freepointer(s, object);
1442 /*
1443 * Clear the object and the metadata, but don't touch
1444 * the redzone.
1445 */
1446 memset(object, 0, s->object_size);
1447 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1448 : 0;
1449 memset((char *)object + s->inuse, 0,
1450 s->size - s->inuse - rsize);
1b7e816f
LA
1451 set_freepointer(s, object, p);
1452 p = object;
6471384a 1453 } while (object != old_tail);
1b7e816f 1454 }
6471384a 1455
81084651
JDB
1456/*
1457 * Compiler cannot detect this function can be removed if slab_free_hook()
1458 * evaluates to nothing. Thus, catch all relevant config debug options here.
1459 */
4675ff05 1460#if defined(CONFIG_LOCKDEP) || \
81084651
JDB
1461 defined(CONFIG_DEBUG_KMEMLEAK) || \
1462 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1463 defined(CONFIG_KASAN)
1464
6471384a 1465 next = *head;
c3895391
AK
1466
1467 /* Head and tail of the reconstructed freelist */
1468 *head = NULL;
1469 *tail = NULL;
81084651
JDB
1470
1471 do {
c3895391
AK
1472 object = next;
1473 next = get_freepointer(s, object);
1474 /* If object's reuse doesn't have to be delayed */
1475 if (!slab_free_hook(s, object)) {
1476 /* Move object to the new freelist */
1477 set_freepointer(s, object, *head);
1478 *head = object;
1479 if (!*tail)
1480 *tail = object;
1481 }
1482 } while (object != old_tail);
1483
1484 if (*head == *tail)
1485 *tail = NULL;
1486
1487 return *head != NULL;
1488#else
1489 return true;
81084651
JDB
1490#endif
1491}
1492
4d176711 1493static void *setup_object(struct kmem_cache *s, struct page *page,
588f8ba9
TG
1494 void *object)
1495{
1496 setup_object_debug(s, page, object);
4d176711 1497 object = kasan_init_slab_obj(s, object);
588f8ba9
TG
1498 if (unlikely(s->ctor)) {
1499 kasan_unpoison_object_data(s, object);
1500 s->ctor(object);
1501 kasan_poison_object_data(s, object);
1502 }
4d176711 1503 return object;
588f8ba9
TG
1504}
1505
81819f0f
CL
1506/*
1507 * Slab allocation and freeing
1508 */
5dfb4175
VD
1509static inline struct page *alloc_slab_page(struct kmem_cache *s,
1510 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1511{
5dfb4175 1512 struct page *page;
19af27af 1513 unsigned int order = oo_order(oo);
65c3376a 1514
2154a336 1515 if (node == NUMA_NO_NODE)
5dfb4175 1516 page = alloc_pages(flags, order);
65c3376a 1517 else
96db800f 1518 page = __alloc_pages_node(node, flags, order);
5dfb4175 1519
6cea1d56 1520 if (page && charge_slab_page(page, flags, order, s)) {
f3ccb2c4
VD
1521 __free_pages(page, order);
1522 page = NULL;
1523 }
5dfb4175
VD
1524
1525 return page;
65c3376a
CL
1526}
1527
210e7a43
TG
1528#ifdef CONFIG_SLAB_FREELIST_RANDOM
1529/* Pre-initialize the random sequence cache */
1530static int init_cache_random_seq(struct kmem_cache *s)
1531{
19af27af 1532 unsigned int count = oo_objects(s->oo);
210e7a43 1533 int err;
210e7a43 1534
a810007a
SR
1535 /* Bailout if already initialised */
1536 if (s->random_seq)
1537 return 0;
1538
210e7a43
TG
1539 err = cache_random_seq_create(s, count, GFP_KERNEL);
1540 if (err) {
1541 pr_err("SLUB: Unable to initialize free list for %s\n",
1542 s->name);
1543 return err;
1544 }
1545
1546 /* Transform to an offset on the set of pages */
1547 if (s->random_seq) {
19af27af
AD
1548 unsigned int i;
1549
210e7a43
TG
1550 for (i = 0; i < count; i++)
1551 s->random_seq[i] *= s->size;
1552 }
1553 return 0;
1554}
1555
1556/* Initialize each random sequence freelist per cache */
1557static void __init init_freelist_randomization(void)
1558{
1559 struct kmem_cache *s;
1560
1561 mutex_lock(&slab_mutex);
1562
1563 list_for_each_entry(s, &slab_caches, list)
1564 init_cache_random_seq(s);
1565
1566 mutex_unlock(&slab_mutex);
1567}
1568
1569/* Get the next entry on the pre-computed freelist randomized */
1570static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1571 unsigned long *pos, void *start,
1572 unsigned long page_limit,
1573 unsigned long freelist_count)
1574{
1575 unsigned int idx;
1576
1577 /*
1578 * If the target page allocation failed, the number of objects on the
1579 * page might be smaller than the usual size defined by the cache.
1580 */
1581 do {
1582 idx = s->random_seq[*pos];
1583 *pos += 1;
1584 if (*pos >= freelist_count)
1585 *pos = 0;
1586 } while (unlikely(idx >= page_limit));
1587
1588 return (char *)start + idx;
1589}
1590
1591/* Shuffle the single linked freelist based on a random pre-computed sequence */
1592static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1593{
1594 void *start;
1595 void *cur;
1596 void *next;
1597 unsigned long idx, pos, page_limit, freelist_count;
1598
1599 if (page->objects < 2 || !s->random_seq)
1600 return false;
1601
1602 freelist_count = oo_objects(s->oo);
1603 pos = get_random_int() % freelist_count;
1604
1605 page_limit = page->objects * s->size;
1606 start = fixup_red_left(s, page_address(page));
1607
1608 /* First entry is used as the base of the freelist */
1609 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1610 freelist_count);
4d176711 1611 cur = setup_object(s, page, cur);
210e7a43
TG
1612 page->freelist = cur;
1613
1614 for (idx = 1; idx < page->objects; idx++) {
210e7a43
TG
1615 next = next_freelist_entry(s, page, &pos, start, page_limit,
1616 freelist_count);
4d176711 1617 next = setup_object(s, page, next);
210e7a43
TG
1618 set_freepointer(s, cur, next);
1619 cur = next;
1620 }
210e7a43
TG
1621 set_freepointer(s, cur, NULL);
1622
1623 return true;
1624}
1625#else
1626static inline int init_cache_random_seq(struct kmem_cache *s)
1627{
1628 return 0;
1629}
1630static inline void init_freelist_randomization(void) { }
1631static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1632{
1633 return false;
1634}
1635#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1636
81819f0f
CL
1637static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1638{
06428780 1639 struct page *page;
834f3d11 1640 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1641 gfp_t alloc_gfp;
4d176711 1642 void *start, *p, *next;
a50b854e 1643 int idx;
210e7a43 1644 bool shuffle;
81819f0f 1645
7e0528da
CL
1646 flags &= gfp_allowed_mask;
1647
d0164adc 1648 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1649 local_irq_enable();
1650
b7a49f0d 1651 flags |= s->allocflags;
e12ba74d 1652
ba52270d
PE
1653 /*
1654 * Let the initial higher-order allocation fail under memory pressure
1655 * so we fall-back to the minimum order allocation.
1656 */
1657 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1658 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1659 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1660
5dfb4175 1661 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1662 if (unlikely(!page)) {
1663 oo = s->min;
80c3a998 1664 alloc_gfp = flags;
65c3376a
CL
1665 /*
1666 * Allocation may have failed due to fragmentation.
1667 * Try a lower order alloc if possible
1668 */
5dfb4175 1669 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1670 if (unlikely(!page))
1671 goto out;
1672 stat(s, ORDER_FALLBACK);
65c3376a 1673 }
5a896d9e 1674
834f3d11 1675 page->objects = oo_objects(oo);
81819f0f 1676
1b4f59e3 1677 page->slab_cache = s;
c03f94cc 1678 __SetPageSlab(page);
2f064f34 1679 if (page_is_pfmemalloc(page))
072bb0aa 1680 SetPageSlabPfmemalloc(page);
81819f0f 1681
a7101224 1682 kasan_poison_slab(page);
81819f0f 1683
a7101224 1684 start = page_address(page);
81819f0f 1685
a50b854e 1686 setup_page_debug(s, page, start);
0316bec2 1687
210e7a43
TG
1688 shuffle = shuffle_freelist(s, page);
1689
1690 if (!shuffle) {
4d176711
AK
1691 start = fixup_red_left(s, start);
1692 start = setup_object(s, page, start);
1693 page->freelist = start;
18e50661
AK
1694 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1695 next = p + s->size;
1696 next = setup_object(s, page, next);
1697 set_freepointer(s, p, next);
1698 p = next;
1699 }
1700 set_freepointer(s, p, NULL);
81819f0f 1701 }
81819f0f 1702
e6e82ea1 1703 page->inuse = page->objects;
8cb0a506 1704 page->frozen = 1;
588f8ba9 1705
81819f0f 1706out:
d0164adc 1707 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1708 local_irq_disable();
1709 if (!page)
1710 return NULL;
1711
588f8ba9
TG
1712 inc_slabs_node(s, page_to_nid(page), page->objects);
1713
81819f0f
CL
1714 return page;
1715}
1716
588f8ba9
TG
1717static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1718{
1719 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1720 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1721 flags &= ~GFP_SLAB_BUG_MASK;
1722 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1723 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1724 dump_stack();
588f8ba9
TG
1725 }
1726
1727 return allocate_slab(s,
1728 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1729}
1730
81819f0f
CL
1731static void __free_slab(struct kmem_cache *s, struct page *page)
1732{
834f3d11
CL
1733 int order = compound_order(page);
1734 int pages = 1 << order;
81819f0f 1735
becfda68 1736 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1737 void *p;
1738
1739 slab_pad_check(s, page);
224a88be
CL
1740 for_each_object(p, s, page_address(page),
1741 page->objects)
f7cb1933 1742 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1743 }
1744
072bb0aa 1745 __ClearPageSlabPfmemalloc(page);
49bd5221 1746 __ClearPageSlab(page);
1f458cbf 1747
d4fc5069 1748 page->mapping = NULL;
1eb5ac64
NP
1749 if (current->reclaim_state)
1750 current->reclaim_state->reclaimed_slab += pages;
6cea1d56 1751 uncharge_slab_page(page, order, s);
27ee57c9 1752 __free_pages(page, order);
81819f0f
CL
1753}
1754
1755static void rcu_free_slab(struct rcu_head *h)
1756{
bf68c214 1757 struct page *page = container_of(h, struct page, rcu_head);
da9a638c 1758
1b4f59e3 1759 __free_slab(page->slab_cache, page);
81819f0f
CL
1760}
1761
1762static void free_slab(struct kmem_cache *s, struct page *page)
1763{
5f0d5a3a 1764 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
bf68c214 1765 call_rcu(&page->rcu_head, rcu_free_slab);
81819f0f
CL
1766 } else
1767 __free_slab(s, page);
1768}
1769
1770static void discard_slab(struct kmem_cache *s, struct page *page)
1771{
205ab99d 1772 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1773 free_slab(s, page);
1774}
1775
1776/*
5cc6eee8 1777 * Management of partially allocated slabs.
81819f0f 1778 */
1e4dd946
SR
1779static inline void
1780__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1781{
e95eed57 1782 n->nr_partial++;
136333d1 1783 if (tail == DEACTIVATE_TO_TAIL)
916ac052 1784 list_add_tail(&page->slab_list, &n->partial);
7c2e132c 1785 else
916ac052 1786 list_add(&page->slab_list, &n->partial);
81819f0f
CL
1787}
1788
1e4dd946
SR
1789static inline void add_partial(struct kmem_cache_node *n,
1790 struct page *page, int tail)
62e346a8 1791{
c65c1877 1792 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1793 __add_partial(n, page, tail);
1794}
c65c1877 1795
1e4dd946
SR
1796static inline void remove_partial(struct kmem_cache_node *n,
1797 struct page *page)
1798{
1799 lockdep_assert_held(&n->list_lock);
916ac052 1800 list_del(&page->slab_list);
52b4b950 1801 n->nr_partial--;
1e4dd946
SR
1802}
1803
81819f0f 1804/*
7ced3719
CL
1805 * Remove slab from the partial list, freeze it and
1806 * return the pointer to the freelist.
81819f0f 1807 *
497b66f2 1808 * Returns a list of objects or NULL if it fails.
81819f0f 1809 */
497b66f2 1810static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1811 struct kmem_cache_node *n, struct page *page,
633b0764 1812 int mode, int *objects)
81819f0f 1813{
2cfb7455
CL
1814 void *freelist;
1815 unsigned long counters;
1816 struct page new;
1817
c65c1877
PZ
1818 lockdep_assert_held(&n->list_lock);
1819
2cfb7455
CL
1820 /*
1821 * Zap the freelist and set the frozen bit.
1822 * The old freelist is the list of objects for the
1823 * per cpu allocation list.
1824 */
7ced3719
CL
1825 freelist = page->freelist;
1826 counters = page->counters;
1827 new.counters = counters;
633b0764 1828 *objects = new.objects - new.inuse;
23910c50 1829 if (mode) {
7ced3719 1830 new.inuse = page->objects;
23910c50
PE
1831 new.freelist = NULL;
1832 } else {
1833 new.freelist = freelist;
1834 }
2cfb7455 1835
a0132ac0 1836 VM_BUG_ON(new.frozen);
7ced3719 1837 new.frozen = 1;
2cfb7455 1838
7ced3719 1839 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1840 freelist, counters,
02d7633f 1841 new.freelist, new.counters,
7ced3719 1842 "acquire_slab"))
7ced3719 1843 return NULL;
2cfb7455
CL
1844
1845 remove_partial(n, page);
7ced3719 1846 WARN_ON(!freelist);
49e22585 1847 return freelist;
81819f0f
CL
1848}
1849
633b0764 1850static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1851static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1852
81819f0f 1853/*
672bba3a 1854 * Try to allocate a partial slab from a specific node.
81819f0f 1855 */
8ba00bb6
JK
1856static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1857 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1858{
49e22585
CL
1859 struct page *page, *page2;
1860 void *object = NULL;
e5d9998f 1861 unsigned int available = 0;
633b0764 1862 int objects;
81819f0f
CL
1863
1864 /*
1865 * Racy check. If we mistakenly see no partial slabs then we
1866 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1867 * partial slab and there is none available then get_partials()
1868 * will return NULL.
81819f0f
CL
1869 */
1870 if (!n || !n->nr_partial)
1871 return NULL;
1872
1873 spin_lock(&n->list_lock);
916ac052 1874 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
8ba00bb6 1875 void *t;
49e22585 1876
8ba00bb6
JK
1877 if (!pfmemalloc_match(page, flags))
1878 continue;
1879
633b0764 1880 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1881 if (!t)
1882 break;
1883
633b0764 1884 available += objects;
12d79634 1885 if (!object) {
49e22585 1886 c->page = page;
49e22585 1887 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1888 object = t;
49e22585 1889 } else {
633b0764 1890 put_cpu_partial(s, page, 0);
8028dcea 1891 stat(s, CPU_PARTIAL_NODE);
49e22585 1892 }
345c905d 1893 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1894 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1895 break;
1896
497b66f2 1897 }
81819f0f 1898 spin_unlock(&n->list_lock);
497b66f2 1899 return object;
81819f0f
CL
1900}
1901
1902/*
672bba3a 1903 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1904 */
de3ec035 1905static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1906 struct kmem_cache_cpu *c)
81819f0f
CL
1907{
1908#ifdef CONFIG_NUMA
1909 struct zonelist *zonelist;
dd1a239f 1910 struct zoneref *z;
54a6eb5c
MG
1911 struct zone *zone;
1912 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1913 void *object;
cc9a6c87 1914 unsigned int cpuset_mems_cookie;
81819f0f
CL
1915
1916 /*
672bba3a
CL
1917 * The defrag ratio allows a configuration of the tradeoffs between
1918 * inter node defragmentation and node local allocations. A lower
1919 * defrag_ratio increases the tendency to do local allocations
1920 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1921 *
672bba3a
CL
1922 * If the defrag_ratio is set to 0 then kmalloc() always
1923 * returns node local objects. If the ratio is higher then kmalloc()
1924 * may return off node objects because partial slabs are obtained
1925 * from other nodes and filled up.
81819f0f 1926 *
43efd3ea
LP
1927 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1928 * (which makes defrag_ratio = 1000) then every (well almost)
1929 * allocation will first attempt to defrag slab caches on other nodes.
1930 * This means scanning over all nodes to look for partial slabs which
1931 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1932 * with available objects.
81819f0f 1933 */
9824601e
CL
1934 if (!s->remote_node_defrag_ratio ||
1935 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1936 return NULL;
1937
cc9a6c87 1938 do {
d26914d1 1939 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1940 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1941 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1942 struct kmem_cache_node *n;
1943
1944 n = get_node(s, zone_to_nid(zone));
1945
dee2f8aa 1946 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1947 n->nr_partial > s->min_partial) {
8ba00bb6 1948 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1949 if (object) {
1950 /*
d26914d1
MG
1951 * Don't check read_mems_allowed_retry()
1952 * here - if mems_allowed was updated in
1953 * parallel, that was a harmless race
1954 * between allocation and the cpuset
1955 * update
cc9a6c87 1956 */
cc9a6c87
MG
1957 return object;
1958 }
c0ff7453 1959 }
81819f0f 1960 }
d26914d1 1961 } while (read_mems_allowed_retry(cpuset_mems_cookie));
6dfd1b65 1962#endif /* CONFIG_NUMA */
81819f0f
CL
1963 return NULL;
1964}
1965
1966/*
1967 * Get a partial page, lock it and return it.
1968 */
497b66f2 1969static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1970 struct kmem_cache_cpu *c)
81819f0f 1971{
497b66f2 1972 void *object;
a561ce00
JK
1973 int searchnode = node;
1974
1975 if (node == NUMA_NO_NODE)
1976 searchnode = numa_mem_id();
1977 else if (!node_present_pages(node))
1978 searchnode = node_to_mem_node(node);
81819f0f 1979
8ba00bb6 1980 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1981 if (object || node != NUMA_NO_NODE)
1982 return object;
81819f0f 1983
acd19fd1 1984 return get_any_partial(s, flags, c);
81819f0f
CL
1985}
1986
8a5ec0ba
CL
1987#ifdef CONFIG_PREEMPT
1988/*
1989 * Calculate the next globally unique transaction for disambiguiation
1990 * during cmpxchg. The transactions start with the cpu number and are then
1991 * incremented by CONFIG_NR_CPUS.
1992 */
1993#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1994#else
1995/*
1996 * No preemption supported therefore also no need to check for
1997 * different cpus.
1998 */
1999#define TID_STEP 1
2000#endif
2001
2002static inline unsigned long next_tid(unsigned long tid)
2003{
2004 return tid + TID_STEP;
2005}
2006
9d5f0be0 2007#ifdef SLUB_DEBUG_CMPXCHG
8a5ec0ba
CL
2008static inline unsigned int tid_to_cpu(unsigned long tid)
2009{
2010 return tid % TID_STEP;
2011}
2012
2013static inline unsigned long tid_to_event(unsigned long tid)
2014{
2015 return tid / TID_STEP;
2016}
9d5f0be0 2017#endif
8a5ec0ba
CL
2018
2019static inline unsigned int init_tid(int cpu)
2020{
2021 return cpu;
2022}
2023
2024static inline void note_cmpxchg_failure(const char *n,
2025 const struct kmem_cache *s, unsigned long tid)
2026{
2027#ifdef SLUB_DEBUG_CMPXCHG
2028 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2029
f9f58285 2030 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
2031
2032#ifdef CONFIG_PREEMPT
2033 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 2034 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
2035 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2036 else
2037#endif
2038 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 2039 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
2040 tid_to_event(tid), tid_to_event(actual_tid));
2041 else
f9f58285 2042 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
2043 actual_tid, tid, next_tid(tid));
2044#endif
4fdccdfb 2045 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
2046}
2047
788e1aad 2048static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 2049{
8a5ec0ba
CL
2050 int cpu;
2051
2052 for_each_possible_cpu(cpu)
2053 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 2054}
2cfb7455 2055
81819f0f
CL
2056/*
2057 * Remove the cpu slab
2058 */
d0e0ac97 2059static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 2060 void *freelist, struct kmem_cache_cpu *c)
81819f0f 2061{
2cfb7455 2062 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
2063 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2064 int lock = 0;
2065 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2066 void *nextfree;
136333d1 2067 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2068 struct page new;
2069 struct page old;
2070
2071 if (page->freelist) {
84e554e6 2072 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2073 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2074 }
2075
894b8788 2076 /*
2cfb7455
CL
2077 * Stage one: Free all available per cpu objects back
2078 * to the page freelist while it is still frozen. Leave the
2079 * last one.
2080 *
2081 * There is no need to take the list->lock because the page
2082 * is still frozen.
2083 */
2084 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2085 void *prior;
2086 unsigned long counters;
2087
2088 do {
2089 prior = page->freelist;
2090 counters = page->counters;
2091 set_freepointer(s, freelist, prior);
2092 new.counters = counters;
2093 new.inuse--;
a0132ac0 2094 VM_BUG_ON(!new.frozen);
2cfb7455 2095
1d07171c 2096 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2097 prior, counters,
2098 freelist, new.counters,
2099 "drain percpu freelist"));
2100
2101 freelist = nextfree;
2102 }
2103
894b8788 2104 /*
2cfb7455
CL
2105 * Stage two: Ensure that the page is unfrozen while the
2106 * list presence reflects the actual number of objects
2107 * during unfreeze.
2108 *
2109 * We setup the list membership and then perform a cmpxchg
2110 * with the count. If there is a mismatch then the page
2111 * is not unfrozen but the page is on the wrong list.
2112 *
2113 * Then we restart the process which may have to remove
2114 * the page from the list that we just put it on again
2115 * because the number of objects in the slab may have
2116 * changed.
894b8788 2117 */
2cfb7455 2118redo:
894b8788 2119
2cfb7455
CL
2120 old.freelist = page->freelist;
2121 old.counters = page->counters;
a0132ac0 2122 VM_BUG_ON(!old.frozen);
7c2e132c 2123
2cfb7455
CL
2124 /* Determine target state of the slab */
2125 new.counters = old.counters;
2126 if (freelist) {
2127 new.inuse--;
2128 set_freepointer(s, freelist, old.freelist);
2129 new.freelist = freelist;
2130 } else
2131 new.freelist = old.freelist;
2132
2133 new.frozen = 0;
2134
8a5b20ae 2135 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2136 m = M_FREE;
2137 else if (new.freelist) {
2138 m = M_PARTIAL;
2139 if (!lock) {
2140 lock = 1;
2141 /*
8bb4e7a2 2142 * Taking the spinlock removes the possibility
2cfb7455
CL
2143 * that acquire_slab() will see a slab page that
2144 * is frozen
2145 */
2146 spin_lock(&n->list_lock);
2147 }
2148 } else {
2149 m = M_FULL;
2150 if (kmem_cache_debug(s) && !lock) {
2151 lock = 1;
2152 /*
2153 * This also ensures that the scanning of full
2154 * slabs from diagnostic functions will not see
2155 * any frozen slabs.
2156 */
2157 spin_lock(&n->list_lock);
2158 }
2159 }
2160
2161 if (l != m) {
2cfb7455 2162 if (l == M_PARTIAL)
2cfb7455 2163 remove_partial(n, page);
2cfb7455 2164 else if (l == M_FULL)
c65c1877 2165 remove_full(s, n, page);
2cfb7455 2166
88349a28 2167 if (m == M_PARTIAL)
2cfb7455 2168 add_partial(n, page, tail);
88349a28 2169 else if (m == M_FULL)
2cfb7455 2170 add_full(s, n, page);
2cfb7455
CL
2171 }
2172
2173 l = m;
1d07171c 2174 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2175 old.freelist, old.counters,
2176 new.freelist, new.counters,
2177 "unfreezing slab"))
2178 goto redo;
2179
2cfb7455
CL
2180 if (lock)
2181 spin_unlock(&n->list_lock);
2182
88349a28
WY
2183 if (m == M_PARTIAL)
2184 stat(s, tail);
2185 else if (m == M_FULL)
2186 stat(s, DEACTIVATE_FULL);
2187 else if (m == M_FREE) {
2cfb7455
CL
2188 stat(s, DEACTIVATE_EMPTY);
2189 discard_slab(s, page);
2190 stat(s, FREE_SLAB);
894b8788 2191 }
d4ff6d35
WY
2192
2193 c->page = NULL;
2194 c->freelist = NULL;
81819f0f
CL
2195}
2196
d24ac77f
JK
2197/*
2198 * Unfreeze all the cpu partial slabs.
2199 *
59a09917
CL
2200 * This function must be called with interrupts disabled
2201 * for the cpu using c (or some other guarantee must be there
2202 * to guarantee no concurrent accesses).
d24ac77f 2203 */
59a09917
CL
2204static void unfreeze_partials(struct kmem_cache *s,
2205 struct kmem_cache_cpu *c)
49e22585 2206{
345c905d 2207#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2208 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2209 struct page *page, *discard_page = NULL;
49e22585
CL
2210
2211 while ((page = c->partial)) {
49e22585
CL
2212 struct page new;
2213 struct page old;
2214
2215 c->partial = page->next;
43d77867
JK
2216
2217 n2 = get_node(s, page_to_nid(page));
2218 if (n != n2) {
2219 if (n)
2220 spin_unlock(&n->list_lock);
2221
2222 n = n2;
2223 spin_lock(&n->list_lock);
2224 }
49e22585
CL
2225
2226 do {
2227
2228 old.freelist = page->freelist;
2229 old.counters = page->counters;
a0132ac0 2230 VM_BUG_ON(!old.frozen);
49e22585
CL
2231
2232 new.counters = old.counters;
2233 new.freelist = old.freelist;
2234
2235 new.frozen = 0;
2236
d24ac77f 2237 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2238 old.freelist, old.counters,
2239 new.freelist, new.counters,
2240 "unfreezing slab"));
2241
8a5b20ae 2242 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2243 page->next = discard_page;
2244 discard_page = page;
43d77867
JK
2245 } else {
2246 add_partial(n, page, DEACTIVATE_TO_TAIL);
2247 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2248 }
2249 }
2250
2251 if (n)
2252 spin_unlock(&n->list_lock);
9ada1934
SL
2253
2254 while (discard_page) {
2255 page = discard_page;
2256 discard_page = discard_page->next;
2257
2258 stat(s, DEACTIVATE_EMPTY);
2259 discard_slab(s, page);
2260 stat(s, FREE_SLAB);
2261 }
6dfd1b65 2262#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2263}
2264
2265/*
9234bae9
WY
2266 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2267 * partial page slot if available.
49e22585
CL
2268 *
2269 * If we did not find a slot then simply move all the partials to the
2270 * per node partial list.
2271 */
633b0764 2272static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2273{
345c905d 2274#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2275 struct page *oldpage;
2276 int pages;
2277 int pobjects;
2278
d6e0b7fa 2279 preempt_disable();
49e22585
CL
2280 do {
2281 pages = 0;
2282 pobjects = 0;
2283 oldpage = this_cpu_read(s->cpu_slab->partial);
2284
2285 if (oldpage) {
2286 pobjects = oldpage->pobjects;
2287 pages = oldpage->pages;
2288 if (drain && pobjects > s->cpu_partial) {
2289 unsigned long flags;
2290 /*
2291 * partial array is full. Move the existing
2292 * set to the per node partial list.
2293 */
2294 local_irq_save(flags);
59a09917 2295 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2296 local_irq_restore(flags);
e24fc410 2297 oldpage = NULL;
49e22585
CL
2298 pobjects = 0;
2299 pages = 0;
8028dcea 2300 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2301 }
2302 }
2303
2304 pages++;
2305 pobjects += page->objects - page->inuse;
2306
2307 page->pages = pages;
2308 page->pobjects = pobjects;
2309 page->next = oldpage;
2310
d0e0ac97
CG
2311 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2312 != oldpage);
d6e0b7fa
VD
2313 if (unlikely(!s->cpu_partial)) {
2314 unsigned long flags;
2315
2316 local_irq_save(flags);
2317 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2318 local_irq_restore(flags);
2319 }
2320 preempt_enable();
6dfd1b65 2321#endif /* CONFIG_SLUB_CPU_PARTIAL */
49e22585
CL
2322}
2323
dfb4f096 2324static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2325{
84e554e6 2326 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2327 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2328
2329 c->tid = next_tid(c->tid);
81819f0f
CL
2330}
2331
2332/*
2333 * Flush cpu slab.
6446faa2 2334 *
81819f0f
CL
2335 * Called from IPI handler with interrupts disabled.
2336 */
0c710013 2337static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2338{
9dfc6e68 2339 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2340
1265ef2d
WY
2341 if (c->page)
2342 flush_slab(s, c);
49e22585 2343
1265ef2d 2344 unfreeze_partials(s, c);
81819f0f
CL
2345}
2346
2347static void flush_cpu_slab(void *d)
2348{
2349 struct kmem_cache *s = d;
81819f0f 2350
dfb4f096 2351 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2352}
2353
a8364d55
GBY
2354static bool has_cpu_slab(int cpu, void *info)
2355{
2356 struct kmem_cache *s = info;
2357 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2358
a93cf07b 2359 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2360}
2361
81819f0f
CL
2362static void flush_all(struct kmem_cache *s)
2363{
a8364d55 2364 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2365}
2366
a96a87bf
SAS
2367/*
2368 * Use the cpu notifier to insure that the cpu slabs are flushed when
2369 * necessary.
2370 */
2371static int slub_cpu_dead(unsigned int cpu)
2372{
2373 struct kmem_cache *s;
2374 unsigned long flags;
2375
2376 mutex_lock(&slab_mutex);
2377 list_for_each_entry(s, &slab_caches, list) {
2378 local_irq_save(flags);
2379 __flush_cpu_slab(s, cpu);
2380 local_irq_restore(flags);
2381 }
2382 mutex_unlock(&slab_mutex);
2383 return 0;
2384}
2385
dfb4f096
CL
2386/*
2387 * Check if the objects in a per cpu structure fit numa
2388 * locality expectations.
2389 */
57d437d2 2390static inline int node_match(struct page *page, int node)
dfb4f096
CL
2391{
2392#ifdef CONFIG_NUMA
6159d0f5 2393 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
dfb4f096
CL
2394 return 0;
2395#endif
2396 return 1;
2397}
2398
9a02d699 2399#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2400static int count_free(struct page *page)
2401{
2402 return page->objects - page->inuse;
2403}
2404
9a02d699
DR
2405static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2406{
2407 return atomic_long_read(&n->total_objects);
2408}
2409#endif /* CONFIG_SLUB_DEBUG */
2410
2411#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2412static unsigned long count_partial(struct kmem_cache_node *n,
2413 int (*get_count)(struct page *))
2414{
2415 unsigned long flags;
2416 unsigned long x = 0;
2417 struct page *page;
2418
2419 spin_lock_irqsave(&n->list_lock, flags);
916ac052 2420 list_for_each_entry(page, &n->partial, slab_list)
781b2ba6
PE
2421 x += get_count(page);
2422 spin_unlock_irqrestore(&n->list_lock, flags);
2423 return x;
2424}
9a02d699 2425#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2426
781b2ba6
PE
2427static noinline void
2428slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2429{
9a02d699
DR
2430#ifdef CONFIG_SLUB_DEBUG
2431 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2432 DEFAULT_RATELIMIT_BURST);
781b2ba6 2433 int node;
fa45dc25 2434 struct kmem_cache_node *n;
781b2ba6 2435
9a02d699
DR
2436 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2437 return;
2438
5b3810e5
VB
2439 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2440 nid, gfpflags, &gfpflags);
19af27af 2441 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
f9f58285
FF
2442 s->name, s->object_size, s->size, oo_order(s->oo),
2443 oo_order(s->min));
781b2ba6 2444
3b0efdfa 2445 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2446 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2447 s->name);
fa5ec8a1 2448
fa45dc25 2449 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2450 unsigned long nr_slabs;
2451 unsigned long nr_objs;
2452 unsigned long nr_free;
2453
26c02cf0
AB
2454 nr_free = count_partial(n, count_free);
2455 nr_slabs = node_nr_slabs(n);
2456 nr_objs = node_nr_objs(n);
781b2ba6 2457
f9f58285 2458 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2459 node, nr_slabs, nr_objs, nr_free);
2460 }
9a02d699 2461#endif
781b2ba6
PE
2462}
2463
497b66f2
CL
2464static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2465 int node, struct kmem_cache_cpu **pc)
2466{
6faa6833 2467 void *freelist;
188fd063
CL
2468 struct kmem_cache_cpu *c = *pc;
2469 struct page *page;
497b66f2 2470
128227e7
MW
2471 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2472
188fd063 2473 freelist = get_partial(s, flags, node, c);
497b66f2 2474
188fd063
CL
2475 if (freelist)
2476 return freelist;
2477
2478 page = new_slab(s, flags, node);
497b66f2 2479 if (page) {
7c8e0181 2480 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2481 if (c->page)
2482 flush_slab(s, c);
2483
2484 /*
2485 * No other reference to the page yet so we can
2486 * muck around with it freely without cmpxchg
2487 */
6faa6833 2488 freelist = page->freelist;
497b66f2
CL
2489 page->freelist = NULL;
2490
2491 stat(s, ALLOC_SLAB);
497b66f2
CL
2492 c->page = page;
2493 *pc = c;
edde82b6 2494 }
497b66f2 2495
6faa6833 2496 return freelist;
497b66f2
CL
2497}
2498
072bb0aa
MG
2499static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2500{
2501 if (unlikely(PageSlabPfmemalloc(page)))
2502 return gfp_pfmemalloc_allowed(gfpflags);
2503
2504 return true;
2505}
2506
213eeb9f 2507/*
d0e0ac97
CG
2508 * Check the page->freelist of a page and either transfer the freelist to the
2509 * per cpu freelist or deactivate the page.
213eeb9f
CL
2510 *
2511 * The page is still frozen if the return value is not NULL.
2512 *
2513 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2514 *
2515 * This function must be called with interrupt disabled.
213eeb9f
CL
2516 */
2517static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2518{
2519 struct page new;
2520 unsigned long counters;
2521 void *freelist;
2522
2523 do {
2524 freelist = page->freelist;
2525 counters = page->counters;
6faa6833 2526
213eeb9f 2527 new.counters = counters;
a0132ac0 2528 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2529
2530 new.inuse = page->objects;
2531 new.frozen = freelist != NULL;
2532
d24ac77f 2533 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2534 freelist, counters,
2535 NULL, new.counters,
2536 "get_freelist"));
2537
2538 return freelist;
2539}
2540
81819f0f 2541/*
894b8788
CL
2542 * Slow path. The lockless freelist is empty or we need to perform
2543 * debugging duties.
2544 *
894b8788
CL
2545 * Processing is still very fast if new objects have been freed to the
2546 * regular freelist. In that case we simply take over the regular freelist
2547 * as the lockless freelist and zap the regular freelist.
81819f0f 2548 *
894b8788
CL
2549 * If that is not working then we fall back to the partial lists. We take the
2550 * first element of the freelist as the object to allocate now and move the
2551 * rest of the freelist to the lockless freelist.
81819f0f 2552 *
894b8788 2553 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2554 * we need to allocate a new slab. This is the slowest path since it involves
2555 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2556 *
2557 * Version of __slab_alloc to use when we know that interrupts are
2558 * already disabled (which is the case for bulk allocation).
81819f0f 2559 */
a380a3c7 2560static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2561 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2562{
6faa6833 2563 void *freelist;
f6e7def7 2564 struct page *page;
81819f0f 2565
f6e7def7
CL
2566 page = c->page;
2567 if (!page)
81819f0f 2568 goto new_slab;
49e22585 2569redo:
6faa6833 2570
57d437d2 2571 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2572 int searchnode = node;
2573
2574 if (node != NUMA_NO_NODE && !node_present_pages(node))
2575 searchnode = node_to_mem_node(node);
2576
2577 if (unlikely(!node_match(page, searchnode))) {
2578 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2579 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2580 goto new_slab;
2581 }
fc59c053 2582 }
6446faa2 2583
072bb0aa
MG
2584 /*
2585 * By rights, we should be searching for a slab page that was
2586 * PFMEMALLOC but right now, we are losing the pfmemalloc
2587 * information when the page leaves the per-cpu allocator
2588 */
2589 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2590 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2591 goto new_slab;
2592 }
2593
73736e03 2594 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2595 freelist = c->freelist;
2596 if (freelist)
73736e03 2597 goto load_freelist;
03e404af 2598
f6e7def7 2599 freelist = get_freelist(s, page);
6446faa2 2600
6faa6833 2601 if (!freelist) {
03e404af
CL
2602 c->page = NULL;
2603 stat(s, DEACTIVATE_BYPASS);
fc59c053 2604 goto new_slab;
03e404af 2605 }
6446faa2 2606
84e554e6 2607 stat(s, ALLOC_REFILL);
6446faa2 2608
894b8788 2609load_freelist:
507effea
CL
2610 /*
2611 * freelist is pointing to the list of objects to be used.
2612 * page is pointing to the page from which the objects are obtained.
2613 * That page must be frozen for per cpu allocations to work.
2614 */
a0132ac0 2615 VM_BUG_ON(!c->page->frozen);
6faa6833 2616 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2617 c->tid = next_tid(c->tid);
6faa6833 2618 return freelist;
81819f0f 2619
81819f0f 2620new_slab:
2cfb7455 2621
a93cf07b
WY
2622 if (slub_percpu_partial(c)) {
2623 page = c->page = slub_percpu_partial(c);
2624 slub_set_percpu_partial(c, page);
49e22585 2625 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2626 goto redo;
81819f0f
CL
2627 }
2628
188fd063 2629 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2630
f4697436 2631 if (unlikely(!freelist)) {
9a02d699 2632 slab_out_of_memory(s, gfpflags, node);
f4697436 2633 return NULL;
81819f0f 2634 }
2cfb7455 2635
f6e7def7 2636 page = c->page;
5091b74a 2637 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2638 goto load_freelist;
2cfb7455 2639
497b66f2 2640 /* Only entered in the debug case */
d0e0ac97
CG
2641 if (kmem_cache_debug(s) &&
2642 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2643 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2644
d4ff6d35 2645 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2646 return freelist;
894b8788
CL
2647}
2648
a380a3c7
CL
2649/*
2650 * Another one that disabled interrupt and compensates for possible
2651 * cpu changes by refetching the per cpu area pointer.
2652 */
2653static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2654 unsigned long addr, struct kmem_cache_cpu *c)
2655{
2656 void *p;
2657 unsigned long flags;
2658
2659 local_irq_save(flags);
2660#ifdef CONFIG_PREEMPT
2661 /*
2662 * We may have been preempted and rescheduled on a different
2663 * cpu before disabling interrupts. Need to reload cpu area
2664 * pointer.
2665 */
2666 c = this_cpu_ptr(s->cpu_slab);
2667#endif
2668
2669 p = ___slab_alloc(s, gfpflags, node, addr, c);
2670 local_irq_restore(flags);
2671 return p;
2672}
2673
894b8788
CL
2674/*
2675 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2676 * have the fastpath folded into their functions. So no function call
2677 * overhead for requests that can be satisfied on the fastpath.
2678 *
2679 * The fastpath works by first checking if the lockless freelist can be used.
2680 * If not then __slab_alloc is called for slow processing.
2681 *
2682 * Otherwise we can simply pick the next object from the lockless free list.
2683 */
2b847c3c 2684static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2685 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2686{
03ec0ed5 2687 void *object;
dfb4f096 2688 struct kmem_cache_cpu *c;
57d437d2 2689 struct page *page;
8a5ec0ba 2690 unsigned long tid;
1f84260c 2691
8135be5a
VD
2692 s = slab_pre_alloc_hook(s, gfpflags);
2693 if (!s)
773ff60e 2694 return NULL;
8a5ec0ba 2695redo:
8a5ec0ba
CL
2696 /*
2697 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2698 * enabled. We may switch back and forth between cpus while
2699 * reading from one cpu area. That does not matter as long
2700 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2701 *
9aabf810
JK
2702 * We should guarantee that tid and kmem_cache are retrieved on
2703 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2704 * to check if it is matched or not.
8a5ec0ba 2705 */
9aabf810
JK
2706 do {
2707 tid = this_cpu_read(s->cpu_slab->tid);
2708 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2709 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2710 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2711
2712 /*
2713 * Irqless object alloc/free algorithm used here depends on sequence
2714 * of fetching cpu_slab's data. tid should be fetched before anything
2715 * on c to guarantee that object and page associated with previous tid
2716 * won't be used with current tid. If we fetch tid first, object and
2717 * page could be one associated with next tid and our alloc/free
2718 * request will be failed. In this case, we will retry. So, no problem.
2719 */
2720 barrier();
8a5ec0ba 2721
8a5ec0ba
CL
2722 /*
2723 * The transaction ids are globally unique per cpu and per operation on
2724 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2725 * occurs on the right processor and that there was no operation on the
2726 * linked list in between.
2727 */
8a5ec0ba 2728
9dfc6e68 2729 object = c->freelist;
57d437d2 2730 page = c->page;
8eae1492 2731 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2732 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2733 stat(s, ALLOC_SLOWPATH);
2734 } else {
0ad9500e
ED
2735 void *next_object = get_freepointer_safe(s, object);
2736
8a5ec0ba 2737 /*
25985edc 2738 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2739 * operation and if we are on the right processor.
2740 *
d0e0ac97
CG
2741 * The cmpxchg does the following atomically (without lock
2742 * semantics!)
8a5ec0ba
CL
2743 * 1. Relocate first pointer to the current per cpu area.
2744 * 2. Verify that tid and freelist have not been changed
2745 * 3. If they were not changed replace tid and freelist
2746 *
d0e0ac97
CG
2747 * Since this is without lock semantics the protection is only
2748 * against code executing on this cpu *not* from access by
2749 * other cpus.
8a5ec0ba 2750 */
933393f5 2751 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2752 s->cpu_slab->freelist, s->cpu_slab->tid,
2753 object, tid,
0ad9500e 2754 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2755
2756 note_cmpxchg_failure("slab_alloc", s, tid);
2757 goto redo;
2758 }
0ad9500e 2759 prefetch_freepointer(s, next_object);
84e554e6 2760 stat(s, ALLOC_FASTPATH);
894b8788 2761 }
6471384a
AP
2762 /*
2763 * If the object has been wiped upon free, make sure it's fully
2764 * initialized by zeroing out freelist pointer.
2765 */
2766 if (unlikely(slab_want_init_on_free(s)) && object)
2767 memset(object + s->offset, 0, sizeof(void *));
8a5ec0ba 2768
6471384a 2769 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
3b0efdfa 2770 memset(object, 0, s->object_size);
d07dbea4 2771
03ec0ed5 2772 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2773
894b8788 2774 return object;
81819f0f
CL
2775}
2776
2b847c3c
EG
2777static __always_inline void *slab_alloc(struct kmem_cache *s,
2778 gfp_t gfpflags, unsigned long addr)
2779{
2780 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2781}
2782
81819f0f
CL
2783void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2784{
2b847c3c 2785 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2786
d0e0ac97
CG
2787 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2788 s->size, gfpflags);
5b882be4
EGM
2789
2790 return ret;
81819f0f
CL
2791}
2792EXPORT_SYMBOL(kmem_cache_alloc);
2793
0f24f128 2794#ifdef CONFIG_TRACING
4a92379b
RK
2795void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2796{
2b847c3c 2797 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2798 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0116523c 2799 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2800 return ret;
2801}
2802EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2803#endif
2804
81819f0f
CL
2805#ifdef CONFIG_NUMA
2806void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2807{
2b847c3c 2808 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2809
ca2b84cb 2810 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2811 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2812
2813 return ret;
81819f0f
CL
2814}
2815EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2816
0f24f128 2817#ifdef CONFIG_TRACING
4a92379b 2818void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2819 gfp_t gfpflags,
4a92379b 2820 int node, size_t size)
5b882be4 2821{
2b847c3c 2822 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2823
2824 trace_kmalloc_node(_RET_IP_, ret,
2825 size, s->size, gfpflags, node);
0316bec2 2826
0116523c 2827 ret = kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2828 return ret;
5b882be4 2829}
4a92379b 2830EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2831#endif
6dfd1b65 2832#endif /* CONFIG_NUMA */
5b882be4 2833
81819f0f 2834/*
94e4d712 2835 * Slow path handling. This may still be called frequently since objects
894b8788 2836 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2837 *
894b8788
CL
2838 * So we still attempt to reduce cache line usage. Just take the slab
2839 * lock and free the item. If there is no additional partial page
2840 * handling required then we can return immediately.
81819f0f 2841 */
894b8788 2842static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2843 void *head, void *tail, int cnt,
2844 unsigned long addr)
2845
81819f0f
CL
2846{
2847 void *prior;
2cfb7455 2848 int was_frozen;
2cfb7455
CL
2849 struct page new;
2850 unsigned long counters;
2851 struct kmem_cache_node *n = NULL;
61728d1e 2852 unsigned long uninitialized_var(flags);
81819f0f 2853
8a5ec0ba 2854 stat(s, FREE_SLOWPATH);
81819f0f 2855
19c7ff9e 2856 if (kmem_cache_debug(s) &&
282acb43 2857 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2858 return;
6446faa2 2859
2cfb7455 2860 do {
837d678d
JK
2861 if (unlikely(n)) {
2862 spin_unlock_irqrestore(&n->list_lock, flags);
2863 n = NULL;
2864 }
2cfb7455
CL
2865 prior = page->freelist;
2866 counters = page->counters;
81084651 2867 set_freepointer(s, tail, prior);
2cfb7455
CL
2868 new.counters = counters;
2869 was_frozen = new.frozen;
81084651 2870 new.inuse -= cnt;
837d678d 2871 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2872
c65c1877 2873 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2874
2875 /*
d0e0ac97
CG
2876 * Slab was on no list before and will be
2877 * partially empty
2878 * We can defer the list move and instead
2879 * freeze it.
49e22585
CL
2880 */
2881 new.frozen = 1;
2882
c65c1877 2883 } else { /* Needs to be taken off a list */
49e22585 2884
b455def2 2885 n = get_node(s, page_to_nid(page));
49e22585
CL
2886 /*
2887 * Speculatively acquire the list_lock.
2888 * If the cmpxchg does not succeed then we may
2889 * drop the list_lock without any processing.
2890 *
2891 * Otherwise the list_lock will synchronize with
2892 * other processors updating the list of slabs.
2893 */
2894 spin_lock_irqsave(&n->list_lock, flags);
2895
2896 }
2cfb7455 2897 }
81819f0f 2898
2cfb7455
CL
2899 } while (!cmpxchg_double_slab(s, page,
2900 prior, counters,
81084651 2901 head, new.counters,
2cfb7455 2902 "__slab_free"));
81819f0f 2903
2cfb7455 2904 if (likely(!n)) {
49e22585
CL
2905
2906 /*
2907 * If we just froze the page then put it onto the
2908 * per cpu partial list.
2909 */
8028dcea 2910 if (new.frozen && !was_frozen) {
49e22585 2911 put_cpu_partial(s, page, 1);
8028dcea
AS
2912 stat(s, CPU_PARTIAL_FREE);
2913 }
49e22585 2914 /*
2cfb7455
CL
2915 * The list lock was not taken therefore no list
2916 * activity can be necessary.
2917 */
b455def2
L
2918 if (was_frozen)
2919 stat(s, FREE_FROZEN);
2920 return;
2921 }
81819f0f 2922
8a5b20ae 2923 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2924 goto slab_empty;
2925
81819f0f 2926 /*
837d678d
JK
2927 * Objects left in the slab. If it was not on the partial list before
2928 * then add it.
81819f0f 2929 */
345c905d 2930 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
a4d3f891 2931 remove_full(s, n, page);
837d678d
JK
2932 add_partial(n, page, DEACTIVATE_TO_TAIL);
2933 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2934 }
80f08c19 2935 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2936 return;
2937
2938slab_empty:
a973e9dd 2939 if (prior) {
81819f0f 2940 /*
6fbabb20 2941 * Slab on the partial list.
81819f0f 2942 */
5cc6eee8 2943 remove_partial(n, page);
84e554e6 2944 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2945 } else {
6fbabb20 2946 /* Slab must be on the full list */
c65c1877
PZ
2947 remove_full(s, n, page);
2948 }
2cfb7455 2949
80f08c19 2950 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2951 stat(s, FREE_SLAB);
81819f0f 2952 discard_slab(s, page);
81819f0f
CL
2953}
2954
894b8788
CL
2955/*
2956 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2957 * can perform fastpath freeing without additional function calls.
2958 *
2959 * The fastpath is only possible if we are freeing to the current cpu slab
2960 * of this processor. This typically the case if we have just allocated
2961 * the item before.
2962 *
2963 * If fastpath is not possible then fall back to __slab_free where we deal
2964 * with all sorts of special processing.
81084651
JDB
2965 *
2966 * Bulk free of a freelist with several objects (all pointing to the
2967 * same page) possible by specifying head and tail ptr, plus objects
2968 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2969 */
80a9201a
AP
2970static __always_inline void do_slab_free(struct kmem_cache *s,
2971 struct page *page, void *head, void *tail,
2972 int cnt, unsigned long addr)
894b8788 2973{
81084651 2974 void *tail_obj = tail ? : head;
dfb4f096 2975 struct kmem_cache_cpu *c;
8a5ec0ba 2976 unsigned long tid;
8a5ec0ba
CL
2977redo:
2978 /*
2979 * Determine the currently cpus per cpu slab.
2980 * The cpu may change afterward. However that does not matter since
2981 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2982 * during the cmpxchg then the free will succeed.
8a5ec0ba 2983 */
9aabf810
JK
2984 do {
2985 tid = this_cpu_read(s->cpu_slab->tid);
2986 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2987 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2988 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2989
9aabf810
JK
2990 /* Same with comment on barrier() in slab_alloc_node() */
2991 barrier();
c016b0bd 2992
442b06bc 2993 if (likely(page == c->page)) {
81084651 2994 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2995
933393f5 2996 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2997 s->cpu_slab->freelist, s->cpu_slab->tid,
2998 c->freelist, tid,
81084651 2999 head, next_tid(tid)))) {
8a5ec0ba
CL
3000
3001 note_cmpxchg_failure("slab_free", s, tid);
3002 goto redo;
3003 }
84e554e6 3004 stat(s, FREE_FASTPATH);
894b8788 3005 } else
81084651 3006 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 3007
894b8788
CL
3008}
3009
80a9201a
AP
3010static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3011 void *head, void *tail, int cnt,
3012 unsigned long addr)
3013{
80a9201a 3014 /*
c3895391
AK
3015 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3016 * to remove objects, whose reuse must be delayed.
80a9201a 3017 */
c3895391
AK
3018 if (slab_free_freelist_hook(s, &head, &tail))
3019 do_slab_free(s, page, head, tail, cnt, addr);
80a9201a
AP
3020}
3021
2bd926b4 3022#ifdef CONFIG_KASAN_GENERIC
80a9201a
AP
3023void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3024{
3025 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3026}
3027#endif
3028
81819f0f
CL
3029void kmem_cache_free(struct kmem_cache *s, void *x)
3030{
b9ce5ef4
GC
3031 s = cache_from_obj(s, x);
3032 if (!s)
79576102 3033 return;
81084651 3034 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 3035 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
3036}
3037EXPORT_SYMBOL(kmem_cache_free);
3038
d0ecd894 3039struct detached_freelist {
fbd02630 3040 struct page *page;
d0ecd894
JDB
3041 void *tail;
3042 void *freelist;
3043 int cnt;
376bf125 3044 struct kmem_cache *s;
d0ecd894 3045};
fbd02630 3046
d0ecd894
JDB
3047/*
3048 * This function progressively scans the array with free objects (with
3049 * a limited look ahead) and extract objects belonging to the same
3050 * page. It builds a detached freelist directly within the given
3051 * page/objects. This can happen without any need for
3052 * synchronization, because the objects are owned by running process.
3053 * The freelist is build up as a single linked list in the objects.
3054 * The idea is, that this detached freelist can then be bulk
3055 * transferred to the real freelist(s), but only requiring a single
3056 * synchronization primitive. Look ahead in the array is limited due
3057 * to performance reasons.
3058 */
376bf125
JDB
3059static inline
3060int build_detached_freelist(struct kmem_cache *s, size_t size,
3061 void **p, struct detached_freelist *df)
d0ecd894
JDB
3062{
3063 size_t first_skipped_index = 0;
3064 int lookahead = 3;
3065 void *object;
ca257195 3066 struct page *page;
fbd02630 3067
d0ecd894
JDB
3068 /* Always re-init detached_freelist */
3069 df->page = NULL;
fbd02630 3070
d0ecd894
JDB
3071 do {
3072 object = p[--size];
ca257195 3073 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3074 } while (!object && size);
3eed034d 3075
d0ecd894
JDB
3076 if (!object)
3077 return 0;
fbd02630 3078
ca257195
JDB
3079 page = virt_to_head_page(object);
3080 if (!s) {
3081 /* Handle kalloc'ed objects */
3082 if (unlikely(!PageSlab(page))) {
3083 BUG_ON(!PageCompound(page));
3084 kfree_hook(object);
4949148a 3085 __free_pages(page, compound_order(page));
ca257195
JDB
3086 p[size] = NULL; /* mark object processed */
3087 return size;
3088 }
3089 /* Derive kmem_cache from object */
3090 df->s = page->slab_cache;
3091 } else {
3092 df->s = cache_from_obj(s, object); /* Support for memcg */
3093 }
376bf125 3094
d0ecd894 3095 /* Start new detached freelist */
ca257195 3096 df->page = page;
376bf125 3097 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3098 df->tail = object;
3099 df->freelist = object;
3100 p[size] = NULL; /* mark object processed */
3101 df->cnt = 1;
3102
3103 while (size) {
3104 object = p[--size];
3105 if (!object)
3106 continue; /* Skip processed objects */
3107
3108 /* df->page is always set at this point */
3109 if (df->page == virt_to_head_page(object)) {
3110 /* Opportunity build freelist */
376bf125 3111 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3112 df->freelist = object;
3113 df->cnt++;
3114 p[size] = NULL; /* mark object processed */
3115
3116 continue;
fbd02630 3117 }
d0ecd894
JDB
3118
3119 /* Limit look ahead search */
3120 if (!--lookahead)
3121 break;
3122
3123 if (!first_skipped_index)
3124 first_skipped_index = size + 1;
fbd02630 3125 }
d0ecd894
JDB
3126
3127 return first_skipped_index;
3128}
3129
d0ecd894 3130/* Note that interrupts must be enabled when calling this function. */
376bf125 3131void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3132{
3133 if (WARN_ON(!size))
3134 return;
3135
3136 do {
3137 struct detached_freelist df;
3138
3139 size = build_detached_freelist(s, size, p, &df);
84582c8a 3140 if (!df.page)
d0ecd894
JDB
3141 continue;
3142
376bf125 3143 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3144 } while (likely(size));
484748f0
CL
3145}
3146EXPORT_SYMBOL(kmem_cache_free_bulk);
3147
994eb764 3148/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3149int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3150 void **p)
484748f0 3151{
994eb764
JDB
3152 struct kmem_cache_cpu *c;
3153 int i;
3154
03ec0ed5
JDB
3155 /* memcg and kmem_cache debug support */
3156 s = slab_pre_alloc_hook(s, flags);
3157 if (unlikely(!s))
3158 return false;
994eb764
JDB
3159 /*
3160 * Drain objects in the per cpu slab, while disabling local
3161 * IRQs, which protects against PREEMPT and interrupts
3162 * handlers invoking normal fastpath.
3163 */
3164 local_irq_disable();
3165 c = this_cpu_ptr(s->cpu_slab);
3166
3167 for (i = 0; i < size; i++) {
3168 void *object = c->freelist;
3169
ebe909e0 3170 if (unlikely(!object)) {
ebe909e0
JDB
3171 /*
3172 * Invoking slow path likely have side-effect
3173 * of re-populating per CPU c->freelist
3174 */
87098373 3175 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3176 _RET_IP_, c);
87098373
CL
3177 if (unlikely(!p[i]))
3178 goto error;
3179
ebe909e0
JDB
3180 c = this_cpu_ptr(s->cpu_slab);
3181 continue; /* goto for-loop */
3182 }
994eb764
JDB
3183 c->freelist = get_freepointer(s, object);
3184 p[i] = object;
3185 }
3186 c->tid = next_tid(c->tid);
3187 local_irq_enable();
3188
3189 /* Clear memory outside IRQ disabled fastpath loop */
6471384a 3190 if (unlikely(slab_want_init_on_alloc(flags, s))) {
994eb764
JDB
3191 int j;
3192
3193 for (j = 0; j < i; j++)
3194 memset(p[j], 0, s->object_size);
3195 }
3196
03ec0ed5
JDB
3197 /* memcg and kmem_cache debug support */
3198 slab_post_alloc_hook(s, flags, size, p);
865762a8 3199 return i;
87098373 3200error:
87098373 3201 local_irq_enable();
03ec0ed5
JDB
3202 slab_post_alloc_hook(s, flags, i, p);
3203 __kmem_cache_free_bulk(s, i, p);
865762a8 3204 return 0;
484748f0
CL
3205}
3206EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3207
3208
81819f0f 3209/*
672bba3a
CL
3210 * Object placement in a slab is made very easy because we always start at
3211 * offset 0. If we tune the size of the object to the alignment then we can
3212 * get the required alignment by putting one properly sized object after
3213 * another.
81819f0f
CL
3214 *
3215 * Notice that the allocation order determines the sizes of the per cpu
3216 * caches. Each processor has always one slab available for allocations.
3217 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3218 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3219 * locking overhead.
81819f0f
CL
3220 */
3221
3222/*
3223 * Mininum / Maximum order of slab pages. This influences locking overhead
3224 * and slab fragmentation. A higher order reduces the number of partial slabs
3225 * and increases the number of allocations possible without having to
3226 * take the list_lock.
3227 */
19af27af
AD
3228static unsigned int slub_min_order;
3229static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3230static unsigned int slub_min_objects;
81819f0f 3231
81819f0f
CL
3232/*
3233 * Calculate the order of allocation given an slab object size.
3234 *
672bba3a
CL
3235 * The order of allocation has significant impact on performance and other
3236 * system components. Generally order 0 allocations should be preferred since
3237 * order 0 does not cause fragmentation in the page allocator. Larger objects
3238 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3239 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3240 * would be wasted.
3241 *
3242 * In order to reach satisfactory performance we must ensure that a minimum
3243 * number of objects is in one slab. Otherwise we may generate too much
3244 * activity on the partial lists which requires taking the list_lock. This is
3245 * less a concern for large slabs though which are rarely used.
81819f0f 3246 *
672bba3a
CL
3247 * slub_max_order specifies the order where we begin to stop considering the
3248 * number of objects in a slab as critical. If we reach slub_max_order then
3249 * we try to keep the page order as low as possible. So we accept more waste
3250 * of space in favor of a small page order.
81819f0f 3251 *
672bba3a
CL
3252 * Higher order allocations also allow the placement of more objects in a
3253 * slab and thereby reduce object handling overhead. If the user has
3254 * requested a higher mininum order then we start with that one instead of
3255 * the smallest order which will fit the object.
81819f0f 3256 */
19af27af
AD
3257static inline unsigned int slab_order(unsigned int size,
3258 unsigned int min_objects, unsigned int max_order,
9736d2a9 3259 unsigned int fract_leftover)
81819f0f 3260{
19af27af
AD
3261 unsigned int min_order = slub_min_order;
3262 unsigned int order;
81819f0f 3263
9736d2a9 3264 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
210b5c06 3265 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3266
9736d2a9 3267 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
5e6d444e 3268 order <= max_order; order++) {
81819f0f 3269
19af27af
AD
3270 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3271 unsigned int rem;
81819f0f 3272
9736d2a9 3273 rem = slab_size % size;
81819f0f 3274
5e6d444e 3275 if (rem <= slab_size / fract_leftover)
81819f0f 3276 break;
81819f0f 3277 }
672bba3a 3278
81819f0f
CL
3279 return order;
3280}
3281
9736d2a9 3282static inline int calculate_order(unsigned int size)
5e6d444e 3283{
19af27af
AD
3284 unsigned int order;
3285 unsigned int min_objects;
3286 unsigned int max_objects;
5e6d444e
CL
3287
3288 /*
3289 * Attempt to find best configuration for a slab. This
3290 * works by first attempting to generate a layout with
3291 * the best configuration and backing off gradually.
3292 *
422ff4d7 3293 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3294 * we reduce the minimum objects required in a slab.
3295 */
3296 min_objects = slub_min_objects;
9b2cd506
CL
3297 if (!min_objects)
3298 min_objects = 4 * (fls(nr_cpu_ids) + 1);
9736d2a9 3299 max_objects = order_objects(slub_max_order, size);
e8120ff1
ZY
3300 min_objects = min(min_objects, max_objects);
3301
5e6d444e 3302 while (min_objects > 1) {
19af27af
AD
3303 unsigned int fraction;
3304
c124f5b5 3305 fraction = 16;
5e6d444e
CL
3306 while (fraction >= 4) {
3307 order = slab_order(size, min_objects,
9736d2a9 3308 slub_max_order, fraction);
5e6d444e
CL
3309 if (order <= slub_max_order)
3310 return order;
3311 fraction /= 2;
3312 }
5086c389 3313 min_objects--;
5e6d444e
CL
3314 }
3315
3316 /*
3317 * We were unable to place multiple objects in a slab. Now
3318 * lets see if we can place a single object there.
3319 */
9736d2a9 3320 order = slab_order(size, 1, slub_max_order, 1);
5e6d444e
CL
3321 if (order <= slub_max_order)
3322 return order;
3323
3324 /*
3325 * Doh this slab cannot be placed using slub_max_order.
3326 */
9736d2a9 3327 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 3328 if (order < MAX_ORDER)
5e6d444e
CL
3329 return order;
3330 return -ENOSYS;
3331}
3332
5595cffc 3333static void
4053497d 3334init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3335{
3336 n->nr_partial = 0;
81819f0f
CL
3337 spin_lock_init(&n->list_lock);
3338 INIT_LIST_HEAD(&n->partial);
8ab1372f 3339#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3340 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3341 atomic_long_set(&n->total_objects, 0);
643b1138 3342 INIT_LIST_HEAD(&n->full);
8ab1372f 3343#endif
81819f0f
CL
3344}
3345
55136592 3346static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3347{
6c182dc0 3348 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3349 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3350
8a5ec0ba 3351 /*
d4d84fef
CM
3352 * Must align to double word boundary for the double cmpxchg
3353 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3354 */
d4d84fef
CM
3355 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3356 2 * sizeof(void *));
8a5ec0ba
CL
3357
3358 if (!s->cpu_slab)
3359 return 0;
3360
3361 init_kmem_cache_cpus(s);
4c93c355 3362
8a5ec0ba 3363 return 1;
4c93c355 3364}
4c93c355 3365
51df1142
CL
3366static struct kmem_cache *kmem_cache_node;
3367
81819f0f
CL
3368/*
3369 * No kmalloc_node yet so do it by hand. We know that this is the first
3370 * slab on the node for this slabcache. There are no concurrent accesses
3371 * possible.
3372 *
721ae22a
ZYW
3373 * Note that this function only works on the kmem_cache_node
3374 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3375 * memory on a fresh node that has no slab structures yet.
81819f0f 3376 */
55136592 3377static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3378{
3379 struct page *page;
3380 struct kmem_cache_node *n;
3381
51df1142 3382 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3383
51df1142 3384 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3385
3386 BUG_ON(!page);
a2f92ee7 3387 if (page_to_nid(page) != node) {
f9f58285
FF
3388 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3389 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3390 }
3391
81819f0f
CL
3392 n = page->freelist;
3393 BUG_ON(!n);
8ab1372f 3394#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3395 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3396 init_tracking(kmem_cache_node, n);
8ab1372f 3397#endif
12b22386 3398 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
505f5dcb 3399 GFP_KERNEL);
12b22386
AK
3400 page->freelist = get_freepointer(kmem_cache_node, n);
3401 page->inuse = 1;
3402 page->frozen = 0;
3403 kmem_cache_node->node[node] = n;
4053497d 3404 init_kmem_cache_node(n);
51df1142 3405 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3406
67b6c900 3407 /*
1e4dd946
SR
3408 * No locks need to be taken here as it has just been
3409 * initialized and there is no concurrent access.
67b6c900 3410 */
1e4dd946 3411 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3412}
3413
3414static void free_kmem_cache_nodes(struct kmem_cache *s)
3415{
3416 int node;
fa45dc25 3417 struct kmem_cache_node *n;
81819f0f 3418
fa45dc25 3419 for_each_kmem_cache_node(s, node, n) {
81819f0f 3420 s->node[node] = NULL;
ea37df54 3421 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3422 }
3423}
3424
52b4b950
DS
3425void __kmem_cache_release(struct kmem_cache *s)
3426{
210e7a43 3427 cache_random_seq_destroy(s);
52b4b950
DS
3428 free_percpu(s->cpu_slab);
3429 free_kmem_cache_nodes(s);
3430}
3431
55136592 3432static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3433{
3434 int node;
81819f0f 3435
f64dc58c 3436 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3437 struct kmem_cache_node *n;
3438
73367bd8 3439 if (slab_state == DOWN) {
55136592 3440 early_kmem_cache_node_alloc(node);
73367bd8
AD
3441 continue;
3442 }
51df1142 3443 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3444 GFP_KERNEL, node);
81819f0f 3445
73367bd8
AD
3446 if (!n) {
3447 free_kmem_cache_nodes(s);
3448 return 0;
81819f0f 3449 }
73367bd8 3450
4053497d 3451 init_kmem_cache_node(n);
ea37df54 3452 s->node[node] = n;
81819f0f
CL
3453 }
3454 return 1;
3455}
81819f0f 3456
c0bdb232 3457static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3458{
3459 if (min < MIN_PARTIAL)
3460 min = MIN_PARTIAL;
3461 else if (min > MAX_PARTIAL)
3462 min = MAX_PARTIAL;
3463 s->min_partial = min;
3464}
3465
e6d0e1dc
WY
3466static void set_cpu_partial(struct kmem_cache *s)
3467{
3468#ifdef CONFIG_SLUB_CPU_PARTIAL
3469 /*
3470 * cpu_partial determined the maximum number of objects kept in the
3471 * per cpu partial lists of a processor.
3472 *
3473 * Per cpu partial lists mainly contain slabs that just have one
3474 * object freed. If they are used for allocation then they can be
3475 * filled up again with minimal effort. The slab will never hit the
3476 * per node partial lists and therefore no locking will be required.
3477 *
3478 * This setting also determines
3479 *
3480 * A) The number of objects from per cpu partial slabs dumped to the
3481 * per node list when we reach the limit.
3482 * B) The number of objects in cpu partial slabs to extract from the
3483 * per node list when we run out of per cpu objects. We only fetch
3484 * 50% to keep some capacity around for frees.
3485 */
3486 if (!kmem_cache_has_cpu_partial(s))
3487 s->cpu_partial = 0;
3488 else if (s->size >= PAGE_SIZE)
3489 s->cpu_partial = 2;
3490 else if (s->size >= 1024)
3491 s->cpu_partial = 6;
3492 else if (s->size >= 256)
3493 s->cpu_partial = 13;
3494 else
3495 s->cpu_partial = 30;
3496#endif
3497}
3498
81819f0f
CL
3499/*
3500 * calculate_sizes() determines the order and the distribution of data within
3501 * a slab object.
3502 */
06b285dc 3503static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f 3504{
d50112ed 3505 slab_flags_t flags = s->flags;
be4a7988 3506 unsigned int size = s->object_size;
19af27af 3507 unsigned int order;
81819f0f 3508
d8b42bf5
CL
3509 /*
3510 * Round up object size to the next word boundary. We can only
3511 * place the free pointer at word boundaries and this determines
3512 * the possible location of the free pointer.
3513 */
3514 size = ALIGN(size, sizeof(void *));
3515
3516#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3517 /*
3518 * Determine if we can poison the object itself. If the user of
3519 * the slab may touch the object after free or before allocation
3520 * then we should never poison the object itself.
3521 */
5f0d5a3a 3522 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3523 !s->ctor)
81819f0f
CL
3524 s->flags |= __OBJECT_POISON;
3525 else
3526 s->flags &= ~__OBJECT_POISON;
3527
81819f0f
CL
3528
3529 /*
672bba3a 3530 * If we are Redzoning then check if there is some space between the
81819f0f 3531 * end of the object and the free pointer. If not then add an
672bba3a 3532 * additional word to have some bytes to store Redzone information.
81819f0f 3533 */
3b0efdfa 3534 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3535 size += sizeof(void *);
41ecc55b 3536#endif
81819f0f
CL
3537
3538 /*
672bba3a
CL
3539 * With that we have determined the number of bytes in actual use
3540 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3541 */
3542 s->inuse = size;
3543
5f0d5a3a 3544 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3545 s->ctor)) {
81819f0f
CL
3546 /*
3547 * Relocate free pointer after the object if it is not
3548 * permitted to overwrite the first word of the object on
3549 * kmem_cache_free.
3550 *
3551 * This is the case if we do RCU, have a constructor or
3552 * destructor or are poisoning the objects.
3553 */
3554 s->offset = size;
3555 size += sizeof(void *);
3556 }
3557
c12b3c62 3558#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3559 if (flags & SLAB_STORE_USER)
3560 /*
3561 * Need to store information about allocs and frees after
3562 * the object.
3563 */
3564 size += 2 * sizeof(struct track);
80a9201a 3565#endif
81819f0f 3566
80a9201a
AP
3567 kasan_cache_create(s, &size, &s->flags);
3568#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3569 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3570 /*
3571 * Add some empty padding so that we can catch
3572 * overwrites from earlier objects rather than let
3573 * tracking information or the free pointer be
0211a9c8 3574 * corrupted if a user writes before the start
81819f0f
CL
3575 * of the object.
3576 */
3577 size += sizeof(void *);
d86bd1be
JK
3578
3579 s->red_left_pad = sizeof(void *);
3580 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3581 size += s->red_left_pad;
3582 }
41ecc55b 3583#endif
672bba3a 3584
81819f0f
CL
3585 /*
3586 * SLUB stores one object immediately after another beginning from
3587 * offset 0. In order to align the objects we have to simply size
3588 * each object to conform to the alignment.
3589 */
45906855 3590 size = ALIGN(size, s->align);
81819f0f 3591 s->size = size;
06b285dc
CL
3592 if (forced_order >= 0)
3593 order = forced_order;
3594 else
9736d2a9 3595 order = calculate_order(size);
81819f0f 3596
19af27af 3597 if ((int)order < 0)
81819f0f
CL
3598 return 0;
3599
b7a49f0d 3600 s->allocflags = 0;
834f3d11 3601 if (order)
b7a49f0d
CL
3602 s->allocflags |= __GFP_COMP;
3603
3604 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3605 s->allocflags |= GFP_DMA;
b7a49f0d 3606
6d6ea1e9
NB
3607 if (s->flags & SLAB_CACHE_DMA32)
3608 s->allocflags |= GFP_DMA32;
3609
b7a49f0d
CL
3610 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3611 s->allocflags |= __GFP_RECLAIMABLE;
3612
81819f0f
CL
3613 /*
3614 * Determine the number of objects per slab
3615 */
9736d2a9
MW
3616 s->oo = oo_make(order, size);
3617 s->min = oo_make(get_order(size), size);
205ab99d
CL
3618 if (oo_objects(s->oo) > oo_objects(s->max))
3619 s->max = s->oo;
81819f0f 3620
834f3d11 3621 return !!oo_objects(s->oo);
81819f0f
CL
3622}
3623
d50112ed 3624static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
81819f0f 3625{
8a13a4cc 3626 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
2482ddec
KC
3627#ifdef CONFIG_SLAB_FREELIST_HARDENED
3628 s->random = get_random_long();
3629#endif
81819f0f 3630
06b285dc 3631 if (!calculate_sizes(s, -1))
81819f0f 3632 goto error;
3de47213
DR
3633 if (disable_higher_order_debug) {
3634 /*
3635 * Disable debugging flags that store metadata if the min slab
3636 * order increased.
3637 */
3b0efdfa 3638 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3639 s->flags &= ~DEBUG_METADATA_FLAGS;
3640 s->offset = 0;
3641 if (!calculate_sizes(s, -1))
3642 goto error;
3643 }
3644 }
81819f0f 3645
2565409f
HC
3646#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3647 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3648 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3649 /* Enable fast mode */
3650 s->flags |= __CMPXCHG_DOUBLE;
3651#endif
3652
3b89d7d8
DR
3653 /*
3654 * The larger the object size is, the more pages we want on the partial
3655 * list to avoid pounding the page allocator excessively.
3656 */
49e22585
CL
3657 set_min_partial(s, ilog2(s->size) / 2);
3658
e6d0e1dc 3659 set_cpu_partial(s);
49e22585 3660
81819f0f 3661#ifdef CONFIG_NUMA
e2cb96b7 3662 s->remote_node_defrag_ratio = 1000;
81819f0f 3663#endif
210e7a43
TG
3664
3665 /* Initialize the pre-computed randomized freelist if slab is up */
3666 if (slab_state >= UP) {
3667 if (init_cache_random_seq(s))
3668 goto error;
3669 }
3670
55136592 3671 if (!init_kmem_cache_nodes(s))
dfb4f096 3672 goto error;
81819f0f 3673
55136592 3674 if (alloc_kmem_cache_cpus(s))
278b1bb1 3675 return 0;
ff12059e 3676
4c93c355 3677 free_kmem_cache_nodes(s);
81819f0f 3678error:
278b1bb1 3679 return -EINVAL;
81819f0f 3680}
81819f0f 3681
33b12c38
CL
3682static void list_slab_objects(struct kmem_cache *s, struct page *page,
3683 const char *text)
3684{
3685#ifdef CONFIG_SLUB_DEBUG
3686 void *addr = page_address(page);
3687 void *p;
0684e652 3688 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
bbd7d57b
ED
3689 if (!map)
3690 return;
945cf2b6 3691 slab_err(s, page, text, s->name);
33b12c38 3692 slab_lock(page);
33b12c38 3693
5f80b13a 3694 get_map(s, page, map);
33b12c38
CL
3695 for_each_object(p, s, addr, page->objects) {
3696
3697 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3698 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3699 print_tracking(s, p);
3700 }
3701 }
3702 slab_unlock(page);
0684e652 3703 bitmap_free(map);
33b12c38
CL
3704#endif
3705}
3706
81819f0f 3707/*
599870b1 3708 * Attempt to free all partial slabs on a node.
52b4b950
DS
3709 * This is called from __kmem_cache_shutdown(). We must take list_lock
3710 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3711 */
599870b1 3712static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3713{
60398923 3714 LIST_HEAD(discard);
81819f0f
CL
3715 struct page *page, *h;
3716
52b4b950
DS
3717 BUG_ON(irqs_disabled());
3718 spin_lock_irq(&n->list_lock);
916ac052 3719 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
81819f0f 3720 if (!page->inuse) {
52b4b950 3721 remove_partial(n, page);
916ac052 3722 list_add(&page->slab_list, &discard);
33b12c38
CL
3723 } else {
3724 list_slab_objects(s, page,
52b4b950 3725 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3726 }
33b12c38 3727 }
52b4b950 3728 spin_unlock_irq(&n->list_lock);
60398923 3729
916ac052 3730 list_for_each_entry_safe(page, h, &discard, slab_list)
60398923 3731 discard_slab(s, page);
81819f0f
CL
3732}
3733
f9e13c0a
SB
3734bool __kmem_cache_empty(struct kmem_cache *s)
3735{
3736 int node;
3737 struct kmem_cache_node *n;
3738
3739 for_each_kmem_cache_node(s, node, n)
3740 if (n->nr_partial || slabs_node(s, node))
3741 return false;
3742 return true;
3743}
3744
81819f0f 3745/*
672bba3a 3746 * Release all resources used by a slab cache.
81819f0f 3747 */
52b4b950 3748int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3749{
3750 int node;
fa45dc25 3751 struct kmem_cache_node *n;
81819f0f
CL
3752
3753 flush_all(s);
81819f0f 3754 /* Attempt to free all objects */
fa45dc25 3755 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3756 free_partial(s, n);
3757 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3758 return 1;
3759 }
bf5eb3de 3760 sysfs_slab_remove(s);
81819f0f
CL
3761 return 0;
3762}
3763
81819f0f
CL
3764/********************************************************************
3765 * Kmalloc subsystem
3766 *******************************************************************/
3767
81819f0f
CL
3768static int __init setup_slub_min_order(char *str)
3769{
19af27af 3770 get_option(&str, (int *)&slub_min_order);
81819f0f
CL
3771
3772 return 1;
3773}
3774
3775__setup("slub_min_order=", setup_slub_min_order);
3776
3777static int __init setup_slub_max_order(char *str)
3778{
19af27af
AD
3779 get_option(&str, (int *)&slub_max_order);
3780 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
81819f0f
CL
3781
3782 return 1;
3783}
3784
3785__setup("slub_max_order=", setup_slub_max_order);
3786
3787static int __init setup_slub_min_objects(char *str)
3788{
19af27af 3789 get_option(&str, (int *)&slub_min_objects);
81819f0f
CL
3790
3791 return 1;
3792}
3793
3794__setup("slub_min_objects=", setup_slub_min_objects);
3795
81819f0f
CL
3796void *__kmalloc(size_t size, gfp_t flags)
3797{
aadb4bc4 3798 struct kmem_cache *s;
5b882be4 3799 void *ret;
81819f0f 3800
95a05b42 3801 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3802 return kmalloc_large(size, flags);
aadb4bc4 3803
2c59dd65 3804 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3805
3806 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3807 return s;
3808
2b847c3c 3809 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3810
ca2b84cb 3811 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3812
0116523c 3813 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3814
5b882be4 3815 return ret;
81819f0f
CL
3816}
3817EXPORT_SYMBOL(__kmalloc);
3818
5d1f57e4 3819#ifdef CONFIG_NUMA
f619cfe1
CL
3820static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3821{
b1eeab67 3822 struct page *page;
e4f7c0b4 3823 void *ptr = NULL;
f619cfe1 3824
75f296d9 3825 flags |= __GFP_COMP;
4949148a 3826 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3827 if (page)
e4f7c0b4
CM
3828 ptr = page_address(page);
3829
0116523c 3830 return kmalloc_large_node_hook(ptr, size, flags);
f619cfe1
CL
3831}
3832
81819f0f
CL
3833void *__kmalloc_node(size_t size, gfp_t flags, int node)
3834{
aadb4bc4 3835 struct kmem_cache *s;
5b882be4 3836 void *ret;
81819f0f 3837
95a05b42 3838 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3839 ret = kmalloc_large_node(size, flags, node);
3840
ca2b84cb
EGM
3841 trace_kmalloc_node(_RET_IP_, ret,
3842 size, PAGE_SIZE << get_order(size),
3843 flags, node);
5b882be4
EGM
3844
3845 return ret;
3846 }
aadb4bc4 3847
2c59dd65 3848 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3849
3850 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3851 return s;
3852
2b847c3c 3853 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3854
ca2b84cb 3855 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3856
0116523c 3857 ret = kasan_kmalloc(s, ret, size, flags);
0316bec2 3858
5b882be4 3859 return ret;
81819f0f
CL
3860}
3861EXPORT_SYMBOL(__kmalloc_node);
6dfd1b65 3862#endif /* CONFIG_NUMA */
81819f0f 3863
ed18adc1
KC
3864#ifdef CONFIG_HARDENED_USERCOPY
3865/*
afcc90f8
KC
3866 * Rejects incorrectly sized objects and objects that are to be copied
3867 * to/from userspace but do not fall entirely within the containing slab
3868 * cache's usercopy region.
ed18adc1
KC
3869 *
3870 * Returns NULL if check passes, otherwise const char * to name of cache
3871 * to indicate an error.
3872 */
f4e6e289
KC
3873void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3874 bool to_user)
ed18adc1
KC
3875{
3876 struct kmem_cache *s;
44065b2e 3877 unsigned int offset;
ed18adc1
KC
3878 size_t object_size;
3879
96fedce2
AK
3880 ptr = kasan_reset_tag(ptr);
3881
ed18adc1
KC
3882 /* Find object and usable object size. */
3883 s = page->slab_cache;
ed18adc1
KC
3884
3885 /* Reject impossible pointers. */
3886 if (ptr < page_address(page))
f4e6e289
KC
3887 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3888 to_user, 0, n);
ed18adc1
KC
3889
3890 /* Find offset within object. */
3891 offset = (ptr - page_address(page)) % s->size;
3892
3893 /* Adjust for redzone and reject if within the redzone. */
3894 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3895 if (offset < s->red_left_pad)
f4e6e289
KC
3896 usercopy_abort("SLUB object in left red zone",
3897 s->name, to_user, offset, n);
ed18adc1
KC
3898 offset -= s->red_left_pad;
3899 }
3900
afcc90f8
KC
3901 /* Allow address range falling entirely within usercopy region. */
3902 if (offset >= s->useroffset &&
3903 offset - s->useroffset <= s->usersize &&
3904 n <= s->useroffset - offset + s->usersize)
f4e6e289 3905 return;
ed18adc1 3906
afcc90f8
KC
3907 /*
3908 * If the copy is still within the allocated object, produce
3909 * a warning instead of rejecting the copy. This is intended
3910 * to be a temporary method to find any missing usercopy
3911 * whitelists.
3912 */
3913 object_size = slab_ksize(s);
2d891fbc
KC
3914 if (usercopy_fallback &&
3915 offset <= object_size && n <= object_size - offset) {
afcc90f8
KC
3916 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3917 return;
3918 }
ed18adc1 3919
f4e6e289 3920 usercopy_abort("SLUB object", s->name, to_user, offset, n);
ed18adc1
KC
3921}
3922#endif /* CONFIG_HARDENED_USERCOPY */
3923
10d1f8cb 3924size_t __ksize(const void *object)
81819f0f 3925{
272c1d21 3926 struct page *page;
81819f0f 3927
ef8b4520 3928 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3929 return 0;
3930
294a80a8 3931 page = virt_to_head_page(object);
294a80a8 3932
76994412
PE
3933 if (unlikely(!PageSlab(page))) {
3934 WARN_ON(!PageCompound(page));
a50b854e 3935 return page_size(page);
76994412 3936 }
81819f0f 3937
1b4f59e3 3938 return slab_ksize(page->slab_cache);
81819f0f 3939}
10d1f8cb 3940EXPORT_SYMBOL(__ksize);
81819f0f
CL
3941
3942void kfree(const void *x)
3943{
81819f0f 3944 struct page *page;
5bb983b0 3945 void *object = (void *)x;
81819f0f 3946
2121db74
PE
3947 trace_kfree(_RET_IP_, x);
3948
2408c550 3949 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3950 return;
3951
b49af68f 3952 page = virt_to_head_page(x);
aadb4bc4 3953 if (unlikely(!PageSlab(page))) {
0937502a 3954 BUG_ON(!PageCompound(page));
47adccce 3955 kfree_hook(object);
4949148a 3956 __free_pages(page, compound_order(page));
aadb4bc4
CL
3957 return;
3958 }
81084651 3959 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3960}
3961EXPORT_SYMBOL(kfree);
3962
832f37f5
VD
3963#define SHRINK_PROMOTE_MAX 32
3964
2086d26a 3965/*
832f37f5
VD
3966 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3967 * up most to the head of the partial lists. New allocations will then
3968 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3969 *
3970 * The slabs with the least items are placed last. This results in them
3971 * being allocated from last increasing the chance that the last objects
3972 * are freed in them.
2086d26a 3973 */
c9fc5864 3974int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3975{
3976 int node;
3977 int i;
3978 struct kmem_cache_node *n;
3979 struct page *page;
3980 struct page *t;
832f37f5
VD
3981 struct list_head discard;
3982 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3983 unsigned long flags;
ce3712d7 3984 int ret = 0;
2086d26a 3985
2086d26a 3986 flush_all(s);
fa45dc25 3987 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3988 INIT_LIST_HEAD(&discard);
3989 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3990 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3991
3992 spin_lock_irqsave(&n->list_lock, flags);
3993
3994 /*
832f37f5 3995 * Build lists of slabs to discard or promote.
2086d26a 3996 *
672bba3a
CL
3997 * Note that concurrent frees may occur while we hold the
3998 * list_lock. page->inuse here is the upper limit.
2086d26a 3999 */
916ac052 4000 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
832f37f5
VD
4001 int free = page->objects - page->inuse;
4002
4003 /* Do not reread page->inuse */
4004 barrier();
4005
4006 /* We do not keep full slabs on the list */
4007 BUG_ON(free <= 0);
4008
4009 if (free == page->objects) {
916ac052 4010 list_move(&page->slab_list, &discard);
69cb8e6b 4011 n->nr_partial--;
832f37f5 4012 } else if (free <= SHRINK_PROMOTE_MAX)
916ac052 4013 list_move(&page->slab_list, promote + free - 1);
2086d26a
CL
4014 }
4015
2086d26a 4016 /*
832f37f5
VD
4017 * Promote the slabs filled up most to the head of the
4018 * partial list.
2086d26a 4019 */
832f37f5
VD
4020 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4021 list_splice(promote + i, &n->partial);
2086d26a 4022
2086d26a 4023 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
4024
4025 /* Release empty slabs */
916ac052 4026 list_for_each_entry_safe(page, t, &discard, slab_list)
69cb8e6b 4027 discard_slab(s, page);
ce3712d7
VD
4028
4029 if (slabs_node(s, node))
4030 ret = 1;
2086d26a
CL
4031 }
4032
ce3712d7 4033 return ret;
2086d26a 4034}
2086d26a 4035
c9fc5864 4036#ifdef CONFIG_MEMCG
43486694 4037void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
01fb58bc 4038{
50862ce7
TH
4039 /*
4040 * Called with all the locks held after a sched RCU grace period.
4041 * Even if @s becomes empty after shrinking, we can't know that @s
4042 * doesn't have allocations already in-flight and thus can't
4043 * destroy @s until the associated memcg is released.
4044 *
4045 * However, let's remove the sysfs files for empty caches here.
4046 * Each cache has a lot of interface files which aren't
4047 * particularly useful for empty draining caches; otherwise, we can
4048 * easily end up with millions of unnecessary sysfs files on
4049 * systems which have a lot of memory and transient cgroups.
4050 */
4051 if (!__kmem_cache_shrink(s))
4052 sysfs_slab_remove(s);
01fb58bc
TH
4053}
4054
c9fc5864
TH
4055void __kmemcg_cache_deactivate(struct kmem_cache *s)
4056{
4057 /*
4058 * Disable empty slabs caching. Used to avoid pinning offline
4059 * memory cgroups by kmem pages that can be freed.
4060 */
e6d0e1dc 4061 slub_set_cpu_partial(s, 0);
c9fc5864 4062 s->min_partial = 0;
c9fc5864 4063}
6dfd1b65 4064#endif /* CONFIG_MEMCG */
c9fc5864 4065
b9049e23
YG
4066static int slab_mem_going_offline_callback(void *arg)
4067{
4068 struct kmem_cache *s;
4069
18004c5d 4070 mutex_lock(&slab_mutex);
b9049e23 4071 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4072 __kmem_cache_shrink(s);
18004c5d 4073 mutex_unlock(&slab_mutex);
b9049e23
YG
4074
4075 return 0;
4076}
4077
4078static void slab_mem_offline_callback(void *arg)
4079{
4080 struct kmem_cache_node *n;
4081 struct kmem_cache *s;
4082 struct memory_notify *marg = arg;
4083 int offline_node;
4084
b9d5ab25 4085 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4086
4087 /*
4088 * If the node still has available memory. we need kmem_cache_node
4089 * for it yet.
4090 */
4091 if (offline_node < 0)
4092 return;
4093
18004c5d 4094 mutex_lock(&slab_mutex);
b9049e23
YG
4095 list_for_each_entry(s, &slab_caches, list) {
4096 n = get_node(s, offline_node);
4097 if (n) {
4098 /*
4099 * if n->nr_slabs > 0, slabs still exist on the node
4100 * that is going down. We were unable to free them,
c9404c9c 4101 * and offline_pages() function shouldn't call this
b9049e23
YG
4102 * callback. So, we must fail.
4103 */
0f389ec6 4104 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4105
4106 s->node[offline_node] = NULL;
8de66a0c 4107 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4108 }
4109 }
18004c5d 4110 mutex_unlock(&slab_mutex);
b9049e23
YG
4111}
4112
4113static int slab_mem_going_online_callback(void *arg)
4114{
4115 struct kmem_cache_node *n;
4116 struct kmem_cache *s;
4117 struct memory_notify *marg = arg;
b9d5ab25 4118 int nid = marg->status_change_nid_normal;
b9049e23
YG
4119 int ret = 0;
4120
4121 /*
4122 * If the node's memory is already available, then kmem_cache_node is
4123 * already created. Nothing to do.
4124 */
4125 if (nid < 0)
4126 return 0;
4127
4128 /*
0121c619 4129 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4130 * allocate a kmem_cache_node structure in order to bring the node
4131 * online.
4132 */
18004c5d 4133 mutex_lock(&slab_mutex);
b9049e23
YG
4134 list_for_each_entry(s, &slab_caches, list) {
4135 /*
4136 * XXX: kmem_cache_alloc_node will fallback to other nodes
4137 * since memory is not yet available from the node that
4138 * is brought up.
4139 */
8de66a0c 4140 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4141 if (!n) {
4142 ret = -ENOMEM;
4143 goto out;
4144 }
4053497d 4145 init_kmem_cache_node(n);
b9049e23
YG
4146 s->node[nid] = n;
4147 }
4148out:
18004c5d 4149 mutex_unlock(&slab_mutex);
b9049e23
YG
4150 return ret;
4151}
4152
4153static int slab_memory_callback(struct notifier_block *self,
4154 unsigned long action, void *arg)
4155{
4156 int ret = 0;
4157
4158 switch (action) {
4159 case MEM_GOING_ONLINE:
4160 ret = slab_mem_going_online_callback(arg);
4161 break;
4162 case MEM_GOING_OFFLINE:
4163 ret = slab_mem_going_offline_callback(arg);
4164 break;
4165 case MEM_OFFLINE:
4166 case MEM_CANCEL_ONLINE:
4167 slab_mem_offline_callback(arg);
4168 break;
4169 case MEM_ONLINE:
4170 case MEM_CANCEL_OFFLINE:
4171 break;
4172 }
dc19f9db
KH
4173 if (ret)
4174 ret = notifier_from_errno(ret);
4175 else
4176 ret = NOTIFY_OK;
b9049e23
YG
4177 return ret;
4178}
4179
3ac38faa
AM
4180static struct notifier_block slab_memory_callback_nb = {
4181 .notifier_call = slab_memory_callback,
4182 .priority = SLAB_CALLBACK_PRI,
4183};
b9049e23 4184
81819f0f
CL
4185/********************************************************************
4186 * Basic setup of slabs
4187 *******************************************************************/
4188
51df1142
CL
4189/*
4190 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4191 * the page allocator. Allocate them properly then fix up the pointers
4192 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4193 */
4194
dffb4d60 4195static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4196{
4197 int node;
dffb4d60 4198 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4199 struct kmem_cache_node *n;
51df1142 4200
dffb4d60 4201 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4202
7d557b3c
GC
4203 /*
4204 * This runs very early, and only the boot processor is supposed to be
4205 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4206 * IPIs around.
4207 */
4208 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4209 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4210 struct page *p;
4211
916ac052 4212 list_for_each_entry(p, &n->partial, slab_list)
fa45dc25 4213 p->slab_cache = s;
51df1142 4214
607bf324 4215#ifdef CONFIG_SLUB_DEBUG
916ac052 4216 list_for_each_entry(p, &n->full, slab_list)
fa45dc25 4217 p->slab_cache = s;
51df1142 4218#endif
51df1142 4219 }
f7ce3190 4220 slab_init_memcg_params(s);
dffb4d60 4221 list_add(&s->list, &slab_caches);
c03914b7 4222 memcg_link_cache(s, NULL);
dffb4d60 4223 return s;
51df1142
CL
4224}
4225
81819f0f
CL
4226void __init kmem_cache_init(void)
4227{
dffb4d60
CL
4228 static __initdata struct kmem_cache boot_kmem_cache,
4229 boot_kmem_cache_node;
51df1142 4230
fc8d8620
SG
4231 if (debug_guardpage_minorder())
4232 slub_max_order = 0;
4233
dffb4d60
CL
4234 kmem_cache_node = &boot_kmem_cache_node;
4235 kmem_cache = &boot_kmem_cache;
51df1142 4236
dffb4d60 4237 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8eb8284b 4238 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
b9049e23 4239
3ac38faa 4240 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4241
4242 /* Able to allocate the per node structures */
4243 slab_state = PARTIAL;
4244
dffb4d60
CL
4245 create_boot_cache(kmem_cache, "kmem_cache",
4246 offsetof(struct kmem_cache, node) +
4247 nr_node_ids * sizeof(struct kmem_cache_node *),
8eb8284b 4248 SLAB_HWCACHE_ALIGN, 0, 0);
8a13a4cc 4249
dffb4d60 4250 kmem_cache = bootstrap(&boot_kmem_cache);
dffb4d60 4251 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4252
4253 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4254 setup_kmalloc_cache_index_table();
f97d5f63 4255 create_kmalloc_caches(0);
81819f0f 4256
210e7a43
TG
4257 /* Setup random freelists for each cache */
4258 init_freelist_randomization();
4259
a96a87bf
SAS
4260 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4261 slub_cpu_dead);
81819f0f 4262
b9726c26 4263 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
f97d5f63 4264 cache_line_size(),
81819f0f
CL
4265 slub_min_order, slub_max_order, slub_min_objects,
4266 nr_cpu_ids, nr_node_ids);
4267}
4268
7e85ee0c
PE
4269void __init kmem_cache_init_late(void)
4270{
7e85ee0c
PE
4271}
4272
2633d7a0 4273struct kmem_cache *
f4957d5b 4274__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 4275 slab_flags_t flags, void (*ctor)(void *))
81819f0f 4276{
426589f5 4277 struct kmem_cache *s, *c;
81819f0f 4278
a44cb944 4279 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4280 if (s) {
4281 s->refcount++;
84d0ddd6 4282
81819f0f
CL
4283 /*
4284 * Adjust the object sizes so that we clear
4285 * the complete object on kzalloc.
4286 */
1b473f29 4287 s->object_size = max(s->object_size, size);
52ee6d74 4288 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4289
426589f5 4290 for_each_memcg_cache(c, s) {
84d0ddd6 4291 c->object_size = s->object_size;
52ee6d74 4292 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
84d0ddd6
VD
4293 }
4294
7b8f3b66 4295 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4296 s->refcount--;
cbb79694 4297 s = NULL;
7b8f3b66 4298 }
a0e1d1be 4299 }
6446faa2 4300
cbb79694
CL
4301 return s;
4302}
84c1cf62 4303
d50112ed 4304int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
cbb79694 4305{
aac3a166
PE
4306 int err;
4307
4308 err = kmem_cache_open(s, flags);
4309 if (err)
4310 return err;
20cea968 4311
45530c44
CL
4312 /* Mutex is not taken during early boot */
4313 if (slab_state <= UP)
4314 return 0;
4315
107dab5c 4316 memcg_propagate_slab_attrs(s);
aac3a166 4317 err = sysfs_slab_add(s);
aac3a166 4318 if (err)
52b4b950 4319 __kmem_cache_release(s);
20cea968 4320
aac3a166 4321 return err;
81819f0f 4322}
81819f0f 4323
ce71e27c 4324void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4325{
aadb4bc4 4326 struct kmem_cache *s;
94b528d0 4327 void *ret;
aadb4bc4 4328
95a05b42 4329 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4330 return kmalloc_large(size, gfpflags);
4331
2c59dd65 4332 s = kmalloc_slab(size, gfpflags);
81819f0f 4333
2408c550 4334 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4335 return s;
81819f0f 4336
2b847c3c 4337 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4338
25985edc 4339 /* Honor the call site pointer we received. */
ca2b84cb 4340 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4341
4342 return ret;
81819f0f
CL
4343}
4344
5d1f57e4 4345#ifdef CONFIG_NUMA
81819f0f 4346void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4347 int node, unsigned long caller)
81819f0f 4348{
aadb4bc4 4349 struct kmem_cache *s;
94b528d0 4350 void *ret;
aadb4bc4 4351
95a05b42 4352 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4353 ret = kmalloc_large_node(size, gfpflags, node);
4354
4355 trace_kmalloc_node(caller, ret,
4356 size, PAGE_SIZE << get_order(size),
4357 gfpflags, node);
4358
4359 return ret;
4360 }
eada35ef 4361
2c59dd65 4362 s = kmalloc_slab(size, gfpflags);
81819f0f 4363
2408c550 4364 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4365 return s;
81819f0f 4366
2b847c3c 4367 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4368
25985edc 4369 /* Honor the call site pointer we received. */
ca2b84cb 4370 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4371
4372 return ret;
81819f0f 4373}
5d1f57e4 4374#endif
81819f0f 4375
ab4d5ed5 4376#ifdef CONFIG_SYSFS
205ab99d
CL
4377static int count_inuse(struct page *page)
4378{
4379 return page->inuse;
4380}
4381
4382static int count_total(struct page *page)
4383{
4384 return page->objects;
4385}
ab4d5ed5 4386#endif
205ab99d 4387
ab4d5ed5 4388#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4389static int validate_slab(struct kmem_cache *s, struct page *page,
4390 unsigned long *map)
53e15af0
CL
4391{
4392 void *p;
a973e9dd 4393 void *addr = page_address(page);
53e15af0
CL
4394
4395 if (!check_slab(s, page) ||
4396 !on_freelist(s, page, NULL))
4397 return 0;
4398
4399 /* Now we know that a valid freelist exists */
39b26464 4400 bitmap_zero(map, page->objects);
53e15af0 4401
5f80b13a
CL
4402 get_map(s, page, map);
4403 for_each_object(p, s, addr, page->objects) {
4404 if (test_bit(slab_index(p, s, addr), map))
4405 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4406 return 0;
53e15af0
CL
4407 }
4408
224a88be 4409 for_each_object(p, s, addr, page->objects)
7656c72b 4410 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4411 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4412 return 0;
4413 return 1;
4414}
4415
434e245d
CL
4416static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4417 unsigned long *map)
53e15af0 4418{
881db7fb
CL
4419 slab_lock(page);
4420 validate_slab(s, page, map);
4421 slab_unlock(page);
53e15af0
CL
4422}
4423
434e245d
CL
4424static int validate_slab_node(struct kmem_cache *s,
4425 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4426{
4427 unsigned long count = 0;
4428 struct page *page;
4429 unsigned long flags;
4430
4431 spin_lock_irqsave(&n->list_lock, flags);
4432
916ac052 4433 list_for_each_entry(page, &n->partial, slab_list) {
434e245d 4434 validate_slab_slab(s, page, map);
53e15af0
CL
4435 count++;
4436 }
4437 if (count != n->nr_partial)
f9f58285
FF
4438 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4439 s->name, count, n->nr_partial);
53e15af0
CL
4440
4441 if (!(s->flags & SLAB_STORE_USER))
4442 goto out;
4443
916ac052 4444 list_for_each_entry(page, &n->full, slab_list) {
434e245d 4445 validate_slab_slab(s, page, map);
53e15af0
CL
4446 count++;
4447 }
4448 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4449 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4450 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4451
4452out:
4453 spin_unlock_irqrestore(&n->list_lock, flags);
4454 return count;
4455}
4456
434e245d 4457static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4458{
4459 int node;
4460 unsigned long count = 0;
fa45dc25 4461 struct kmem_cache_node *n;
0684e652 4462 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
434e245d
CL
4463
4464 if (!map)
4465 return -ENOMEM;
53e15af0
CL
4466
4467 flush_all(s);
fa45dc25 4468 for_each_kmem_cache_node(s, node, n)
434e245d 4469 count += validate_slab_node(s, n, map);
0684e652 4470 bitmap_free(map);
53e15af0
CL
4471 return count;
4472}
88a420e4 4473/*
672bba3a 4474 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4475 * and freed.
4476 */
4477
4478struct location {
4479 unsigned long count;
ce71e27c 4480 unsigned long addr;
45edfa58
CL
4481 long long sum_time;
4482 long min_time;
4483 long max_time;
4484 long min_pid;
4485 long max_pid;
174596a0 4486 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4487 nodemask_t nodes;
88a420e4
CL
4488};
4489
4490struct loc_track {
4491 unsigned long max;
4492 unsigned long count;
4493 struct location *loc;
4494};
4495
4496static void free_loc_track(struct loc_track *t)
4497{
4498 if (t->max)
4499 free_pages((unsigned long)t->loc,
4500 get_order(sizeof(struct location) * t->max));
4501}
4502
68dff6a9 4503static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4504{
4505 struct location *l;
4506 int order;
4507
88a420e4
CL
4508 order = get_order(sizeof(struct location) * max);
4509
68dff6a9 4510 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4511 if (!l)
4512 return 0;
4513
4514 if (t->count) {
4515 memcpy(l, t->loc, sizeof(struct location) * t->count);
4516 free_loc_track(t);
4517 }
4518 t->max = max;
4519 t->loc = l;
4520 return 1;
4521}
4522
4523static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4524 const struct track *track)
88a420e4
CL
4525{
4526 long start, end, pos;
4527 struct location *l;
ce71e27c 4528 unsigned long caddr;
45edfa58 4529 unsigned long age = jiffies - track->when;
88a420e4
CL
4530
4531 start = -1;
4532 end = t->count;
4533
4534 for ( ; ; ) {
4535 pos = start + (end - start + 1) / 2;
4536
4537 /*
4538 * There is nothing at "end". If we end up there
4539 * we need to add something to before end.
4540 */
4541 if (pos == end)
4542 break;
4543
4544 caddr = t->loc[pos].addr;
45edfa58
CL
4545 if (track->addr == caddr) {
4546
4547 l = &t->loc[pos];
4548 l->count++;
4549 if (track->when) {
4550 l->sum_time += age;
4551 if (age < l->min_time)
4552 l->min_time = age;
4553 if (age > l->max_time)
4554 l->max_time = age;
4555
4556 if (track->pid < l->min_pid)
4557 l->min_pid = track->pid;
4558 if (track->pid > l->max_pid)
4559 l->max_pid = track->pid;
4560
174596a0
RR
4561 cpumask_set_cpu(track->cpu,
4562 to_cpumask(l->cpus));
45edfa58
CL
4563 }
4564 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4565 return 1;
4566 }
4567
45edfa58 4568 if (track->addr < caddr)
88a420e4
CL
4569 end = pos;
4570 else
4571 start = pos;
4572 }
4573
4574 /*
672bba3a 4575 * Not found. Insert new tracking element.
88a420e4 4576 */
68dff6a9 4577 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4578 return 0;
4579
4580 l = t->loc + pos;
4581 if (pos < t->count)
4582 memmove(l + 1, l,
4583 (t->count - pos) * sizeof(struct location));
4584 t->count++;
4585 l->count = 1;
45edfa58
CL
4586 l->addr = track->addr;
4587 l->sum_time = age;
4588 l->min_time = age;
4589 l->max_time = age;
4590 l->min_pid = track->pid;
4591 l->max_pid = track->pid;
174596a0
RR
4592 cpumask_clear(to_cpumask(l->cpus));
4593 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4594 nodes_clear(l->nodes);
4595 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4596 return 1;
4597}
4598
4599static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4600 struct page *page, enum track_item alloc,
a5dd5c11 4601 unsigned long *map)
88a420e4 4602{
a973e9dd 4603 void *addr = page_address(page);
88a420e4
CL
4604 void *p;
4605
39b26464 4606 bitmap_zero(map, page->objects);
5f80b13a 4607 get_map(s, page, map);
88a420e4 4608
224a88be 4609 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4610 if (!test_bit(slab_index(p, s, addr), map))
4611 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4612}
4613
4614static int list_locations(struct kmem_cache *s, char *buf,
4615 enum track_item alloc)
4616{
e374d483 4617 int len = 0;
88a420e4 4618 unsigned long i;
68dff6a9 4619 struct loc_track t = { 0, 0, NULL };
88a420e4 4620 int node;
fa45dc25 4621 struct kmem_cache_node *n;
0684e652 4622 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
88a420e4 4623
bbd7d57b 4624 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
0ee931c4 4625 GFP_KERNEL)) {
0684e652 4626 bitmap_free(map);
68dff6a9 4627 return sprintf(buf, "Out of memory\n");
bbd7d57b 4628 }
88a420e4
CL
4629 /* Push back cpu slabs */
4630 flush_all(s);
4631
fa45dc25 4632 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4633 unsigned long flags;
4634 struct page *page;
4635
9e86943b 4636 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4637 continue;
4638
4639 spin_lock_irqsave(&n->list_lock, flags);
916ac052 4640 list_for_each_entry(page, &n->partial, slab_list)
bbd7d57b 4641 process_slab(&t, s, page, alloc, map);
916ac052 4642 list_for_each_entry(page, &n->full, slab_list)
bbd7d57b 4643 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4644 spin_unlock_irqrestore(&n->list_lock, flags);
4645 }
4646
4647 for (i = 0; i < t.count; i++) {
45edfa58 4648 struct location *l = &t.loc[i];
88a420e4 4649
9c246247 4650 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4651 break;
e374d483 4652 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4653
4654 if (l->addr)
62c70bce 4655 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4656 else
e374d483 4657 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4658
4659 if (l->sum_time != l->min_time) {
e374d483 4660 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4661 l->min_time,
4662 (long)div_u64(l->sum_time, l->count),
4663 l->max_time);
45edfa58 4664 } else
e374d483 4665 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4666 l->min_time);
4667
4668 if (l->min_pid != l->max_pid)
e374d483 4669 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4670 l->min_pid, l->max_pid);
4671 else
e374d483 4672 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4673 l->min_pid);
4674
174596a0
RR
4675 if (num_online_cpus() > 1 &&
4676 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4677 len < PAGE_SIZE - 60)
4678 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4679 " cpus=%*pbl",
4680 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4681
62bc62a8 4682 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4683 len < PAGE_SIZE - 60)
4684 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4685 " nodes=%*pbl",
4686 nodemask_pr_args(&l->nodes));
45edfa58 4687
e374d483 4688 len += sprintf(buf + len, "\n");
88a420e4
CL
4689 }
4690
4691 free_loc_track(&t);
0684e652 4692 bitmap_free(map);
88a420e4 4693 if (!t.count)
e374d483
HH
4694 len += sprintf(buf, "No data\n");
4695 return len;
88a420e4 4696}
6dfd1b65 4697#endif /* CONFIG_SLUB_DEBUG */
88a420e4 4698
a5a84755 4699#ifdef SLUB_RESILIENCY_TEST
c07b8183 4700static void __init resiliency_test(void)
a5a84755
CL
4701{
4702 u8 *p;
cc252eae 4703 int type = KMALLOC_NORMAL;
a5a84755 4704
95a05b42 4705 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4706
f9f58285
FF
4707 pr_err("SLUB resiliency testing\n");
4708 pr_err("-----------------------\n");
4709 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4710
4711 p = kzalloc(16, GFP_KERNEL);
4712 p[16] = 0x12;
f9f58285
FF
4713 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4714 p + 16);
a5a84755 4715
cc252eae 4716 validate_slab_cache(kmalloc_caches[type][4]);
a5a84755
CL
4717
4718 /* Hmmm... The next two are dangerous */
4719 p = kzalloc(32, GFP_KERNEL);
4720 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4721 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4722 p);
4723 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755 4724
cc252eae 4725 validate_slab_cache(kmalloc_caches[type][5]);
a5a84755
CL
4726 p = kzalloc(64, GFP_KERNEL);
4727 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4728 *p = 0x56;
f9f58285
FF
4729 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4730 p);
4731 pr_err("If allocated object is overwritten then not detectable\n\n");
cc252eae 4732 validate_slab_cache(kmalloc_caches[type][6]);
a5a84755 4733
f9f58285 4734 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4735 p = kzalloc(128, GFP_KERNEL);
4736 kfree(p);
4737 *p = 0x78;
f9f58285 4738 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
cc252eae 4739 validate_slab_cache(kmalloc_caches[type][7]);
a5a84755
CL
4740
4741 p = kzalloc(256, GFP_KERNEL);
4742 kfree(p);
4743 p[50] = 0x9a;
f9f58285 4744 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
cc252eae 4745 validate_slab_cache(kmalloc_caches[type][8]);
a5a84755
CL
4746
4747 p = kzalloc(512, GFP_KERNEL);
4748 kfree(p);
4749 p[512] = 0xab;
f9f58285 4750 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
cc252eae 4751 validate_slab_cache(kmalloc_caches[type][9]);
a5a84755
CL
4752}
4753#else
4754#ifdef CONFIG_SYSFS
4755static void resiliency_test(void) {};
4756#endif
6dfd1b65 4757#endif /* SLUB_RESILIENCY_TEST */
a5a84755 4758
ab4d5ed5 4759#ifdef CONFIG_SYSFS
81819f0f 4760enum slab_stat_type {
205ab99d
CL
4761 SL_ALL, /* All slabs */
4762 SL_PARTIAL, /* Only partially allocated slabs */
4763 SL_CPU, /* Only slabs used for cpu caches */
4764 SL_OBJECTS, /* Determine allocated objects not slabs */
4765 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4766};
4767
205ab99d 4768#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4769#define SO_PARTIAL (1 << SL_PARTIAL)
4770#define SO_CPU (1 << SL_CPU)
4771#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4772#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4773
1663f26d
TH
4774#ifdef CONFIG_MEMCG
4775static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4776
4777static int __init setup_slub_memcg_sysfs(char *str)
4778{
4779 int v;
4780
4781 if (get_option(&str, &v) > 0)
4782 memcg_sysfs_enabled = v;
4783
4784 return 1;
4785}
4786
4787__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4788#endif
4789
62e5c4b4
CG
4790static ssize_t show_slab_objects(struct kmem_cache *s,
4791 char *buf, unsigned long flags)
81819f0f
CL
4792{
4793 unsigned long total = 0;
81819f0f
CL
4794 int node;
4795 int x;
4796 unsigned long *nodes;
81819f0f 4797
6396bb22 4798 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
62e5c4b4
CG
4799 if (!nodes)
4800 return -ENOMEM;
81819f0f 4801
205ab99d
CL
4802 if (flags & SO_CPU) {
4803 int cpu;
81819f0f 4804
205ab99d 4805 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4806 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4807 cpu);
ec3ab083 4808 int node;
49e22585 4809 struct page *page;
dfb4f096 4810
4db0c3c2 4811 page = READ_ONCE(c->page);
ec3ab083
CL
4812 if (!page)
4813 continue;
205ab99d 4814
ec3ab083
CL
4815 node = page_to_nid(page);
4816 if (flags & SO_TOTAL)
4817 x = page->objects;
4818 else if (flags & SO_OBJECTS)
4819 x = page->inuse;
4820 else
4821 x = 1;
49e22585 4822
ec3ab083
CL
4823 total += x;
4824 nodes[node] += x;
4825
a93cf07b 4826 page = slub_percpu_partial_read_once(c);
49e22585 4827 if (page) {
8afb1474
LZ
4828 node = page_to_nid(page);
4829 if (flags & SO_TOTAL)
4830 WARN_ON_ONCE(1);
4831 else if (flags & SO_OBJECTS)
4832 WARN_ON_ONCE(1);
4833 else
4834 x = page->pages;
bc6697d8
ED
4835 total += x;
4836 nodes[node] += x;
49e22585 4837 }
81819f0f
CL
4838 }
4839 }
4840
bfc8c901 4841 get_online_mems();
ab4d5ed5 4842#ifdef CONFIG_SLUB_DEBUG
205ab99d 4843 if (flags & SO_ALL) {
fa45dc25
CL
4844 struct kmem_cache_node *n;
4845
4846 for_each_kmem_cache_node(s, node, n) {
205ab99d 4847
d0e0ac97
CG
4848 if (flags & SO_TOTAL)
4849 x = atomic_long_read(&n->total_objects);
4850 else if (flags & SO_OBJECTS)
4851 x = atomic_long_read(&n->total_objects) -
4852 count_partial(n, count_free);
81819f0f 4853 else
205ab99d 4854 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4855 total += x;
4856 nodes[node] += x;
4857 }
4858
ab4d5ed5
CL
4859 } else
4860#endif
4861 if (flags & SO_PARTIAL) {
fa45dc25 4862 struct kmem_cache_node *n;
81819f0f 4863
fa45dc25 4864 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4865 if (flags & SO_TOTAL)
4866 x = count_partial(n, count_total);
4867 else if (flags & SO_OBJECTS)
4868 x = count_partial(n, count_inuse);
81819f0f 4869 else
205ab99d 4870 x = n->nr_partial;
81819f0f
CL
4871 total += x;
4872 nodes[node] += x;
4873 }
4874 }
81819f0f
CL
4875 x = sprintf(buf, "%lu", total);
4876#ifdef CONFIG_NUMA
fa45dc25 4877 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4878 if (nodes[node])
4879 x += sprintf(buf + x, " N%d=%lu",
4880 node, nodes[node]);
4881#endif
bfc8c901 4882 put_online_mems();
81819f0f
CL
4883 kfree(nodes);
4884 return x + sprintf(buf + x, "\n");
4885}
4886
ab4d5ed5 4887#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4888static int any_slab_objects(struct kmem_cache *s)
4889{
4890 int node;
fa45dc25 4891 struct kmem_cache_node *n;
81819f0f 4892
fa45dc25 4893 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4894 if (atomic_long_read(&n->total_objects))
81819f0f 4895 return 1;
fa45dc25 4896
81819f0f
CL
4897 return 0;
4898}
ab4d5ed5 4899#endif
81819f0f
CL
4900
4901#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4902#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4903
4904struct slab_attribute {
4905 struct attribute attr;
4906 ssize_t (*show)(struct kmem_cache *s, char *buf);
4907 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4908};
4909
4910#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4911 static struct slab_attribute _name##_attr = \
4912 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4913
4914#define SLAB_ATTR(_name) \
4915 static struct slab_attribute _name##_attr = \
ab067e99 4916 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4917
81819f0f
CL
4918static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4919{
44065b2e 4920 return sprintf(buf, "%u\n", s->size);
81819f0f
CL
4921}
4922SLAB_ATTR_RO(slab_size);
4923
4924static ssize_t align_show(struct kmem_cache *s, char *buf)
4925{
3a3791ec 4926 return sprintf(buf, "%u\n", s->align);
81819f0f
CL
4927}
4928SLAB_ATTR_RO(align);
4929
4930static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4931{
1b473f29 4932 return sprintf(buf, "%u\n", s->object_size);
81819f0f
CL
4933}
4934SLAB_ATTR_RO(object_size);
4935
4936static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4937{
19af27af 4938 return sprintf(buf, "%u\n", oo_objects(s->oo));
81819f0f
CL
4939}
4940SLAB_ATTR_RO(objs_per_slab);
4941
06b285dc
CL
4942static ssize_t order_store(struct kmem_cache *s,
4943 const char *buf, size_t length)
4944{
19af27af 4945 unsigned int order;
0121c619
CL
4946 int err;
4947
19af27af 4948 err = kstrtouint(buf, 10, &order);
0121c619
CL
4949 if (err)
4950 return err;
06b285dc
CL
4951
4952 if (order > slub_max_order || order < slub_min_order)
4953 return -EINVAL;
4954
4955 calculate_sizes(s, order);
4956 return length;
4957}
4958
81819f0f
CL
4959static ssize_t order_show(struct kmem_cache *s, char *buf)
4960{
19af27af 4961 return sprintf(buf, "%u\n", oo_order(s->oo));
81819f0f 4962}
06b285dc 4963SLAB_ATTR(order);
81819f0f 4964
73d342b1
DR
4965static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4966{
4967 return sprintf(buf, "%lu\n", s->min_partial);
4968}
4969
4970static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4971 size_t length)
4972{
4973 unsigned long min;
4974 int err;
4975
3dbb95f7 4976 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4977 if (err)
4978 return err;
4979
c0bdb232 4980 set_min_partial(s, min);
73d342b1
DR
4981 return length;
4982}
4983SLAB_ATTR(min_partial);
4984
49e22585
CL
4985static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4986{
e6d0e1dc 4987 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4988}
4989
4990static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4991 size_t length)
4992{
e5d9998f 4993 unsigned int objects;
49e22585
CL
4994 int err;
4995
e5d9998f 4996 err = kstrtouint(buf, 10, &objects);
49e22585
CL
4997 if (err)
4998 return err;
345c905d 4999 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 5000 return -EINVAL;
49e22585 5001
e6d0e1dc 5002 slub_set_cpu_partial(s, objects);
49e22585
CL
5003 flush_all(s);
5004 return length;
5005}
5006SLAB_ATTR(cpu_partial);
5007
81819f0f
CL
5008static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5009{
62c70bce
JP
5010 if (!s->ctor)
5011 return 0;
5012 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
5013}
5014SLAB_ATTR_RO(ctor);
5015
81819f0f
CL
5016static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5017{
4307c14f 5018 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
5019}
5020SLAB_ATTR_RO(aliases);
5021
81819f0f
CL
5022static ssize_t partial_show(struct kmem_cache *s, char *buf)
5023{
d9acf4b7 5024 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
5025}
5026SLAB_ATTR_RO(partial);
5027
5028static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5029{
d9acf4b7 5030 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
5031}
5032SLAB_ATTR_RO(cpu_slabs);
5033
5034static ssize_t objects_show(struct kmem_cache *s, char *buf)
5035{
205ab99d 5036 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
5037}
5038SLAB_ATTR_RO(objects);
5039
205ab99d
CL
5040static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5041{
5042 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5043}
5044SLAB_ATTR_RO(objects_partial);
5045
49e22585
CL
5046static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5047{
5048 int objects = 0;
5049 int pages = 0;
5050 int cpu;
5051 int len;
5052
5053 for_each_online_cpu(cpu) {
a93cf07b
WY
5054 struct page *page;
5055
5056 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5057
5058 if (page) {
5059 pages += page->pages;
5060 objects += page->pobjects;
5061 }
5062 }
5063
5064 len = sprintf(buf, "%d(%d)", objects, pages);
5065
5066#ifdef CONFIG_SMP
5067 for_each_online_cpu(cpu) {
a93cf07b
WY
5068 struct page *page;
5069
5070 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5071
5072 if (page && len < PAGE_SIZE - 20)
5073 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5074 page->pobjects, page->pages);
5075 }
5076#endif
5077 return len + sprintf(buf + len, "\n");
5078}
5079SLAB_ATTR_RO(slabs_cpu_partial);
5080
a5a84755
CL
5081static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5082{
5083 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5084}
5085
5086static ssize_t reclaim_account_store(struct kmem_cache *s,
5087 const char *buf, size_t length)
5088{
5089 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5090 if (buf[0] == '1')
5091 s->flags |= SLAB_RECLAIM_ACCOUNT;
5092 return length;
5093}
5094SLAB_ATTR(reclaim_account);
5095
5096static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5097{
5098 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5099}
5100SLAB_ATTR_RO(hwcache_align);
5101
5102#ifdef CONFIG_ZONE_DMA
5103static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5104{
5105 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5106}
5107SLAB_ATTR_RO(cache_dma);
5108#endif
5109
8eb8284b
DW
5110static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5111{
7bbdb81e 5112 return sprintf(buf, "%u\n", s->usersize);
8eb8284b
DW
5113}
5114SLAB_ATTR_RO(usersize);
5115
a5a84755
CL
5116static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5117{
5f0d5a3a 5118 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5119}
5120SLAB_ATTR_RO(destroy_by_rcu);
5121
ab4d5ed5 5122#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5123static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5124{
5125 return show_slab_objects(s, buf, SO_ALL);
5126}
5127SLAB_ATTR_RO(slabs);
5128
205ab99d
CL
5129static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5130{
5131 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5132}
5133SLAB_ATTR_RO(total_objects);
5134
81819f0f
CL
5135static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5136{
becfda68 5137 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5138}
5139
5140static ssize_t sanity_checks_store(struct kmem_cache *s,
5141 const char *buf, size_t length)
5142{
becfda68 5143 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5144 if (buf[0] == '1') {
5145 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5146 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5147 }
81819f0f
CL
5148 return length;
5149}
5150SLAB_ATTR(sanity_checks);
5151
5152static ssize_t trace_show(struct kmem_cache *s, char *buf)
5153{
5154 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5155}
5156
5157static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5158 size_t length)
5159{
c9e16131
CL
5160 /*
5161 * Tracing a merged cache is going to give confusing results
5162 * as well as cause other issues like converting a mergeable
5163 * cache into an umergeable one.
5164 */
5165 if (s->refcount > 1)
5166 return -EINVAL;
5167
81819f0f 5168 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5169 if (buf[0] == '1') {
5170 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5171 s->flags |= SLAB_TRACE;
b789ef51 5172 }
81819f0f
CL
5173 return length;
5174}
5175SLAB_ATTR(trace);
5176
81819f0f
CL
5177static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5178{
5179 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5180}
5181
5182static ssize_t red_zone_store(struct kmem_cache *s,
5183 const char *buf, size_t length)
5184{
5185 if (any_slab_objects(s))
5186 return -EBUSY;
5187
5188 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5189 if (buf[0] == '1') {
81819f0f 5190 s->flags |= SLAB_RED_ZONE;
b789ef51 5191 }
06b285dc 5192 calculate_sizes(s, -1);
81819f0f
CL
5193 return length;
5194}
5195SLAB_ATTR(red_zone);
5196
5197static ssize_t poison_show(struct kmem_cache *s, char *buf)
5198{
5199 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5200}
5201
5202static ssize_t poison_store(struct kmem_cache *s,
5203 const char *buf, size_t length)
5204{
5205 if (any_slab_objects(s))
5206 return -EBUSY;
5207
5208 s->flags &= ~SLAB_POISON;
b789ef51 5209 if (buf[0] == '1') {
81819f0f 5210 s->flags |= SLAB_POISON;
b789ef51 5211 }
06b285dc 5212 calculate_sizes(s, -1);
81819f0f
CL
5213 return length;
5214}
5215SLAB_ATTR(poison);
5216
5217static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5218{
5219 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5220}
5221
5222static ssize_t store_user_store(struct kmem_cache *s,
5223 const char *buf, size_t length)
5224{
5225 if (any_slab_objects(s))
5226 return -EBUSY;
5227
5228 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5229 if (buf[0] == '1') {
5230 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5231 s->flags |= SLAB_STORE_USER;
b789ef51 5232 }
06b285dc 5233 calculate_sizes(s, -1);
81819f0f
CL
5234 return length;
5235}
5236SLAB_ATTR(store_user);
5237
53e15af0
CL
5238static ssize_t validate_show(struct kmem_cache *s, char *buf)
5239{
5240 return 0;
5241}
5242
5243static ssize_t validate_store(struct kmem_cache *s,
5244 const char *buf, size_t length)
5245{
434e245d
CL
5246 int ret = -EINVAL;
5247
5248 if (buf[0] == '1') {
5249 ret = validate_slab_cache(s);
5250 if (ret >= 0)
5251 ret = length;
5252 }
5253 return ret;
53e15af0
CL
5254}
5255SLAB_ATTR(validate);
a5a84755
CL
5256
5257static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5258{
5259 if (!(s->flags & SLAB_STORE_USER))
5260 return -ENOSYS;
5261 return list_locations(s, buf, TRACK_ALLOC);
5262}
5263SLAB_ATTR_RO(alloc_calls);
5264
5265static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5266{
5267 if (!(s->flags & SLAB_STORE_USER))
5268 return -ENOSYS;
5269 return list_locations(s, buf, TRACK_FREE);
5270}
5271SLAB_ATTR_RO(free_calls);
5272#endif /* CONFIG_SLUB_DEBUG */
5273
5274#ifdef CONFIG_FAILSLAB
5275static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5276{
5277 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5278}
5279
5280static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5281 size_t length)
5282{
c9e16131
CL
5283 if (s->refcount > 1)
5284 return -EINVAL;
5285
a5a84755
CL
5286 s->flags &= ~SLAB_FAILSLAB;
5287 if (buf[0] == '1')
5288 s->flags |= SLAB_FAILSLAB;
5289 return length;
5290}
5291SLAB_ATTR(failslab);
ab4d5ed5 5292#endif
53e15af0 5293
2086d26a
CL
5294static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5295{
5296 return 0;
5297}
5298
5299static ssize_t shrink_store(struct kmem_cache *s,
5300 const char *buf, size_t length)
5301{
832f37f5 5302 if (buf[0] == '1')
04f768a3 5303 kmem_cache_shrink_all(s);
832f37f5 5304 else
2086d26a
CL
5305 return -EINVAL;
5306 return length;
5307}
5308SLAB_ATTR(shrink);
5309
81819f0f 5310#ifdef CONFIG_NUMA
9824601e 5311static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5312{
eb7235eb 5313 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5314}
5315
9824601e 5316static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5317 const char *buf, size_t length)
5318{
eb7235eb 5319 unsigned int ratio;
0121c619
CL
5320 int err;
5321
eb7235eb 5322 err = kstrtouint(buf, 10, &ratio);
0121c619
CL
5323 if (err)
5324 return err;
eb7235eb
AD
5325 if (ratio > 100)
5326 return -ERANGE;
0121c619 5327
eb7235eb 5328 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5329
81819f0f
CL
5330 return length;
5331}
9824601e 5332SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5333#endif
5334
8ff12cfc 5335#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5336static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5337{
5338 unsigned long sum = 0;
5339 int cpu;
5340 int len;
6da2ec56 5341 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
8ff12cfc
CL
5342
5343 if (!data)
5344 return -ENOMEM;
5345
5346 for_each_online_cpu(cpu) {
9dfc6e68 5347 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5348
5349 data[cpu] = x;
5350 sum += x;
5351 }
5352
5353 len = sprintf(buf, "%lu", sum);
5354
50ef37b9 5355#ifdef CONFIG_SMP
8ff12cfc
CL
5356 for_each_online_cpu(cpu) {
5357 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5358 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5359 }
50ef37b9 5360#endif
8ff12cfc
CL
5361 kfree(data);
5362 return len + sprintf(buf + len, "\n");
5363}
5364
78eb00cc
DR
5365static void clear_stat(struct kmem_cache *s, enum stat_item si)
5366{
5367 int cpu;
5368
5369 for_each_online_cpu(cpu)
9dfc6e68 5370 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5371}
5372
8ff12cfc
CL
5373#define STAT_ATTR(si, text) \
5374static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5375{ \
5376 return show_stat(s, buf, si); \
5377} \
78eb00cc
DR
5378static ssize_t text##_store(struct kmem_cache *s, \
5379 const char *buf, size_t length) \
5380{ \
5381 if (buf[0] != '0') \
5382 return -EINVAL; \
5383 clear_stat(s, si); \
5384 return length; \
5385} \
5386SLAB_ATTR(text); \
8ff12cfc
CL
5387
5388STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5389STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5390STAT_ATTR(FREE_FASTPATH, free_fastpath);
5391STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5392STAT_ATTR(FREE_FROZEN, free_frozen);
5393STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5394STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5395STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5396STAT_ATTR(ALLOC_SLAB, alloc_slab);
5397STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5398STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5399STAT_ATTR(FREE_SLAB, free_slab);
5400STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5401STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5402STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5403STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5404STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5405STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5406STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5407STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5408STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5409STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5410STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5411STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5412STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5413STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
6dfd1b65 5414#endif /* CONFIG_SLUB_STATS */
8ff12cfc 5415
06428780 5416static struct attribute *slab_attrs[] = {
81819f0f
CL
5417 &slab_size_attr.attr,
5418 &object_size_attr.attr,
5419 &objs_per_slab_attr.attr,
5420 &order_attr.attr,
73d342b1 5421 &min_partial_attr.attr,
49e22585 5422 &cpu_partial_attr.attr,
81819f0f 5423 &objects_attr.attr,
205ab99d 5424 &objects_partial_attr.attr,
81819f0f
CL
5425 &partial_attr.attr,
5426 &cpu_slabs_attr.attr,
5427 &ctor_attr.attr,
81819f0f
CL
5428 &aliases_attr.attr,
5429 &align_attr.attr,
81819f0f
CL
5430 &hwcache_align_attr.attr,
5431 &reclaim_account_attr.attr,
5432 &destroy_by_rcu_attr.attr,
a5a84755 5433 &shrink_attr.attr,
49e22585 5434 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5435#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5436 &total_objects_attr.attr,
5437 &slabs_attr.attr,
5438 &sanity_checks_attr.attr,
5439 &trace_attr.attr,
81819f0f
CL
5440 &red_zone_attr.attr,
5441 &poison_attr.attr,
5442 &store_user_attr.attr,
53e15af0 5443 &validate_attr.attr,
88a420e4
CL
5444 &alloc_calls_attr.attr,
5445 &free_calls_attr.attr,
ab4d5ed5 5446#endif
81819f0f
CL
5447#ifdef CONFIG_ZONE_DMA
5448 &cache_dma_attr.attr,
5449#endif
5450#ifdef CONFIG_NUMA
9824601e 5451 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5452#endif
5453#ifdef CONFIG_SLUB_STATS
5454 &alloc_fastpath_attr.attr,
5455 &alloc_slowpath_attr.attr,
5456 &free_fastpath_attr.attr,
5457 &free_slowpath_attr.attr,
5458 &free_frozen_attr.attr,
5459 &free_add_partial_attr.attr,
5460 &free_remove_partial_attr.attr,
5461 &alloc_from_partial_attr.attr,
5462 &alloc_slab_attr.attr,
5463 &alloc_refill_attr.attr,
e36a2652 5464 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5465 &free_slab_attr.attr,
5466 &cpuslab_flush_attr.attr,
5467 &deactivate_full_attr.attr,
5468 &deactivate_empty_attr.attr,
5469 &deactivate_to_head_attr.attr,
5470 &deactivate_to_tail_attr.attr,
5471 &deactivate_remote_frees_attr.attr,
03e404af 5472 &deactivate_bypass_attr.attr,
65c3376a 5473 &order_fallback_attr.attr,
b789ef51
CL
5474 &cmpxchg_double_fail_attr.attr,
5475 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5476 &cpu_partial_alloc_attr.attr,
5477 &cpu_partial_free_attr.attr,
8028dcea
AS
5478 &cpu_partial_node_attr.attr,
5479 &cpu_partial_drain_attr.attr,
81819f0f 5480#endif
4c13dd3b
DM
5481#ifdef CONFIG_FAILSLAB
5482 &failslab_attr.attr,
5483#endif
8eb8284b 5484 &usersize_attr.attr,
4c13dd3b 5485
81819f0f
CL
5486 NULL
5487};
5488
1fdaaa23 5489static const struct attribute_group slab_attr_group = {
81819f0f
CL
5490 .attrs = slab_attrs,
5491};
5492
5493static ssize_t slab_attr_show(struct kobject *kobj,
5494 struct attribute *attr,
5495 char *buf)
5496{
5497 struct slab_attribute *attribute;
5498 struct kmem_cache *s;
5499 int err;
5500
5501 attribute = to_slab_attr(attr);
5502 s = to_slab(kobj);
5503
5504 if (!attribute->show)
5505 return -EIO;
5506
5507 err = attribute->show(s, buf);
5508
5509 return err;
5510}
5511
5512static ssize_t slab_attr_store(struct kobject *kobj,
5513 struct attribute *attr,
5514 const char *buf, size_t len)
5515{
5516 struct slab_attribute *attribute;
5517 struct kmem_cache *s;
5518 int err;
5519
5520 attribute = to_slab_attr(attr);
5521 s = to_slab(kobj);
5522
5523 if (!attribute->store)
5524 return -EIO;
5525
5526 err = attribute->store(s, buf, len);
127424c8 5527#ifdef CONFIG_MEMCG
107dab5c 5528 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5529 struct kmem_cache *c;
81819f0f 5530
107dab5c
GC
5531 mutex_lock(&slab_mutex);
5532 if (s->max_attr_size < len)
5533 s->max_attr_size = len;
5534
ebe945c2
GC
5535 /*
5536 * This is a best effort propagation, so this function's return
5537 * value will be determined by the parent cache only. This is
5538 * basically because not all attributes will have a well
5539 * defined semantics for rollbacks - most of the actions will
5540 * have permanent effects.
5541 *
5542 * Returning the error value of any of the children that fail
5543 * is not 100 % defined, in the sense that users seeing the
5544 * error code won't be able to know anything about the state of
5545 * the cache.
5546 *
5547 * Only returning the error code for the parent cache at least
5548 * has well defined semantics. The cache being written to
5549 * directly either failed or succeeded, in which case we loop
5550 * through the descendants with best-effort propagation.
5551 */
426589f5
VD
5552 for_each_memcg_cache(c, s)
5553 attribute->store(c, buf, len);
107dab5c
GC
5554 mutex_unlock(&slab_mutex);
5555 }
5556#endif
81819f0f
CL
5557 return err;
5558}
5559
107dab5c
GC
5560static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5561{
127424c8 5562#ifdef CONFIG_MEMCG
107dab5c
GC
5563 int i;
5564 char *buffer = NULL;
93030d83 5565 struct kmem_cache *root_cache;
107dab5c 5566
93030d83 5567 if (is_root_cache(s))
107dab5c
GC
5568 return;
5569
f7ce3190 5570 root_cache = s->memcg_params.root_cache;
93030d83 5571
107dab5c
GC
5572 /*
5573 * This mean this cache had no attribute written. Therefore, no point
5574 * in copying default values around
5575 */
93030d83 5576 if (!root_cache->max_attr_size)
107dab5c
GC
5577 return;
5578
5579 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5580 char mbuf[64];
5581 char *buf;
5582 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5583 ssize_t len;
107dab5c
GC
5584
5585 if (!attr || !attr->store || !attr->show)
5586 continue;
5587
5588 /*
5589 * It is really bad that we have to allocate here, so we will
5590 * do it only as a fallback. If we actually allocate, though,
5591 * we can just use the allocated buffer until the end.
5592 *
5593 * Most of the slub attributes will tend to be very small in
5594 * size, but sysfs allows buffers up to a page, so they can
5595 * theoretically happen.
5596 */
5597 if (buffer)
5598 buf = buffer;
93030d83 5599 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5600 buf = mbuf;
5601 else {
5602 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5603 if (WARN_ON(!buffer))
5604 continue;
5605 buf = buffer;
5606 }
5607
478fe303
TG
5608 len = attr->show(root_cache, buf);
5609 if (len > 0)
5610 attr->store(s, buf, len);
107dab5c
GC
5611 }
5612
5613 if (buffer)
5614 free_page((unsigned long)buffer);
6dfd1b65 5615#endif /* CONFIG_MEMCG */
107dab5c
GC
5616}
5617
41a21285
CL
5618static void kmem_cache_release(struct kobject *k)
5619{
5620 slab_kmem_cache_release(to_slab(k));
5621}
5622
52cf25d0 5623static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5624 .show = slab_attr_show,
5625 .store = slab_attr_store,
5626};
5627
5628static struct kobj_type slab_ktype = {
5629 .sysfs_ops = &slab_sysfs_ops,
41a21285 5630 .release = kmem_cache_release,
81819f0f
CL
5631};
5632
5633static int uevent_filter(struct kset *kset, struct kobject *kobj)
5634{
5635 struct kobj_type *ktype = get_ktype(kobj);
5636
5637 if (ktype == &slab_ktype)
5638 return 1;
5639 return 0;
5640}
5641
9cd43611 5642static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5643 .filter = uevent_filter,
5644};
5645
27c3a314 5646static struct kset *slab_kset;
81819f0f 5647
9a41707b
VD
5648static inline struct kset *cache_kset(struct kmem_cache *s)
5649{
127424c8 5650#ifdef CONFIG_MEMCG
9a41707b 5651 if (!is_root_cache(s))
f7ce3190 5652 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5653#endif
5654 return slab_kset;
5655}
5656
81819f0f
CL
5657#define ID_STR_LENGTH 64
5658
5659/* Create a unique string id for a slab cache:
6446faa2
CL
5660 *
5661 * Format :[flags-]size
81819f0f
CL
5662 */
5663static char *create_unique_id(struct kmem_cache *s)
5664{
5665 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5666 char *p = name;
5667
5668 BUG_ON(!name);
5669
5670 *p++ = ':';
5671 /*
5672 * First flags affecting slabcache operations. We will only
5673 * get here for aliasable slabs so we do not need to support
5674 * too many flags. The flags here must cover all flags that
5675 * are matched during merging to guarantee that the id is
5676 * unique.
5677 */
5678 if (s->flags & SLAB_CACHE_DMA)
5679 *p++ = 'd';
6d6ea1e9
NB
5680 if (s->flags & SLAB_CACHE_DMA32)
5681 *p++ = 'D';
81819f0f
CL
5682 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5683 *p++ = 'a';
becfda68 5684 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5685 *p++ = 'F';
230e9fc2
VD
5686 if (s->flags & SLAB_ACCOUNT)
5687 *p++ = 'A';
81819f0f
CL
5688 if (p != name + 1)
5689 *p++ = '-';
44065b2e 5690 p += sprintf(p, "%07u", s->size);
2633d7a0 5691
81819f0f
CL
5692 BUG_ON(p > name + ID_STR_LENGTH - 1);
5693 return name;
5694}
5695
3b7b3140
TH
5696static void sysfs_slab_remove_workfn(struct work_struct *work)
5697{
5698 struct kmem_cache *s =
5699 container_of(work, struct kmem_cache, kobj_remove_work);
5700
5701 if (!s->kobj.state_in_sysfs)
5702 /*
5703 * For a memcg cache, this may be called during
5704 * deactivation and again on shutdown. Remove only once.
5705 * A cache is never shut down before deactivation is
5706 * complete, so no need to worry about synchronization.
5707 */
f6ba4880 5708 goto out;
3b7b3140
TH
5709
5710#ifdef CONFIG_MEMCG
5711 kset_unregister(s->memcg_kset);
5712#endif
5713 kobject_uevent(&s->kobj, KOBJ_REMOVE);
f6ba4880 5714out:
3b7b3140
TH
5715 kobject_put(&s->kobj);
5716}
5717
81819f0f
CL
5718static int sysfs_slab_add(struct kmem_cache *s)
5719{
5720 int err;
5721 const char *name;
1663f26d 5722 struct kset *kset = cache_kset(s);
45530c44 5723 int unmergeable = slab_unmergeable(s);
81819f0f 5724
3b7b3140
TH
5725 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5726
1663f26d
TH
5727 if (!kset) {
5728 kobject_init(&s->kobj, &slab_ktype);
5729 return 0;
5730 }
5731
11066386
MC
5732 if (!unmergeable && disable_higher_order_debug &&
5733 (slub_debug & DEBUG_METADATA_FLAGS))
5734 unmergeable = 1;
5735
81819f0f
CL
5736 if (unmergeable) {
5737 /*
5738 * Slabcache can never be merged so we can use the name proper.
5739 * This is typically the case for debug situations. In that
5740 * case we can catch duplicate names easily.
5741 */
27c3a314 5742 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5743 name = s->name;
5744 } else {
5745 /*
5746 * Create a unique name for the slab as a target
5747 * for the symlinks.
5748 */
5749 name = create_unique_id(s);
5750 }
5751
1663f26d 5752 s->kobj.kset = kset;
26e4f205 5753 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5754 if (err)
80da026a 5755 goto out;
81819f0f
CL
5756
5757 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5758 if (err)
5759 goto out_del_kobj;
9a41707b 5760
127424c8 5761#ifdef CONFIG_MEMCG
1663f26d 5762 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5763 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5764 if (!s->memcg_kset) {
54b6a731
DJ
5765 err = -ENOMEM;
5766 goto out_del_kobj;
9a41707b
VD
5767 }
5768 }
5769#endif
5770
81819f0f
CL
5771 kobject_uevent(&s->kobj, KOBJ_ADD);
5772 if (!unmergeable) {
5773 /* Setup first alias */
5774 sysfs_slab_alias(s, s->name);
81819f0f 5775 }
54b6a731
DJ
5776out:
5777 if (!unmergeable)
5778 kfree(name);
5779 return err;
5780out_del_kobj:
5781 kobject_del(&s->kobj);
54b6a731 5782 goto out;
81819f0f
CL
5783}
5784
bf5eb3de 5785static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5786{
97d06609 5787 if (slab_state < FULL)
2bce6485
CL
5788 /*
5789 * Sysfs has not been setup yet so no need to remove the
5790 * cache from sysfs.
5791 */
5792 return;
5793
3b7b3140
TH
5794 kobject_get(&s->kobj);
5795 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5796}
5797
d50d82fa
MP
5798void sysfs_slab_unlink(struct kmem_cache *s)
5799{
5800 if (slab_state >= FULL)
5801 kobject_del(&s->kobj);
5802}
5803
bf5eb3de
TH
5804void sysfs_slab_release(struct kmem_cache *s)
5805{
5806 if (slab_state >= FULL)
5807 kobject_put(&s->kobj);
81819f0f
CL
5808}
5809
5810/*
5811 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5812 * available lest we lose that information.
81819f0f
CL
5813 */
5814struct saved_alias {
5815 struct kmem_cache *s;
5816 const char *name;
5817 struct saved_alias *next;
5818};
5819
5af328a5 5820static struct saved_alias *alias_list;
81819f0f
CL
5821
5822static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5823{
5824 struct saved_alias *al;
5825
97d06609 5826 if (slab_state == FULL) {
81819f0f
CL
5827 /*
5828 * If we have a leftover link then remove it.
5829 */
27c3a314
GKH
5830 sysfs_remove_link(&slab_kset->kobj, name);
5831 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5832 }
5833
5834 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5835 if (!al)
5836 return -ENOMEM;
5837
5838 al->s = s;
5839 al->name = name;
5840 al->next = alias_list;
5841 alias_list = al;
5842 return 0;
5843}
5844
5845static int __init slab_sysfs_init(void)
5846{
5b95a4ac 5847 struct kmem_cache *s;
81819f0f
CL
5848 int err;
5849
18004c5d 5850 mutex_lock(&slab_mutex);
2bce6485 5851
0ff21e46 5852 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5853 if (!slab_kset) {
18004c5d 5854 mutex_unlock(&slab_mutex);
f9f58285 5855 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5856 return -ENOSYS;
5857 }
5858
97d06609 5859 slab_state = FULL;
26a7bd03 5860
5b95a4ac 5861 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5862 err = sysfs_slab_add(s);
5d540fb7 5863 if (err)
f9f58285
FF
5864 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5865 s->name);
26a7bd03 5866 }
81819f0f
CL
5867
5868 while (alias_list) {
5869 struct saved_alias *al = alias_list;
5870
5871 alias_list = alias_list->next;
5872 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5873 if (err)
f9f58285
FF
5874 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5875 al->name);
81819f0f
CL
5876 kfree(al);
5877 }
5878
18004c5d 5879 mutex_unlock(&slab_mutex);
81819f0f
CL
5880 resiliency_test();
5881 return 0;
5882}
5883
5884__initcall(slab_sysfs_init);
ab4d5ed5 5885#endif /* CONFIG_SYSFS */
57ed3eda
PE
5886
5887/*
5888 * The /proc/slabinfo ABI
5889 */
5b365771 5890#ifdef CONFIG_SLUB_DEBUG
0d7561c6 5891void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5892{
57ed3eda 5893 unsigned long nr_slabs = 0;
205ab99d
CL
5894 unsigned long nr_objs = 0;
5895 unsigned long nr_free = 0;
57ed3eda 5896 int node;
fa45dc25 5897 struct kmem_cache_node *n;
57ed3eda 5898
fa45dc25 5899 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5900 nr_slabs += node_nr_slabs(n);
5901 nr_objs += node_nr_objs(n);
205ab99d 5902 nr_free += count_partial(n, count_free);
57ed3eda
PE
5903 }
5904
0d7561c6
GC
5905 sinfo->active_objs = nr_objs - nr_free;
5906 sinfo->num_objs = nr_objs;
5907 sinfo->active_slabs = nr_slabs;
5908 sinfo->num_slabs = nr_slabs;
5909 sinfo->objects_per_slab = oo_objects(s->oo);
5910 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5911}
5912
0d7561c6 5913void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5914{
7b3c3a50
AD
5915}
5916
b7454ad3
GC
5917ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5918 size_t count, loff_t *ppos)
7b3c3a50 5919{
b7454ad3 5920 return -EIO;
7b3c3a50 5921}
5b365771 5922#endif /* CONFIG_SLUB_DEBUG */