Merge remote-tracking branch 'mkp-scsi/4.5/scsi-fixes' into fixes
[linux-2.6-block.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
345c905d
JK
127static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128{
129#ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131#else
132 return false;
133#endif
134}
135
81819f0f
CL
136/*
137 * Issues still to be resolved:
138 *
81819f0f
CL
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
81819f0f
CL
141 * - Variable sizing of the per node arrays
142 */
143
144/* Enable to test recovery from slab corruption on boot */
145#undef SLUB_RESILIENCY_TEST
146
b789ef51
CL
147/* Enable to log cmpxchg failures */
148#undef SLUB_DEBUG_CMPXCHG
149
2086d26a
CL
150/*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
76be8950 154#define MIN_PARTIAL 5
e95eed57 155
2086d26a
CL
156/*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 159 * sort the partial list by the number of objects in use.
2086d26a
CL
160 */
161#define MAX_PARTIAL 10
162
81819f0f
CL
163#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
672bba3a 165
fa5ec8a1 166/*
3de47213
DR
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
fa5ec8a1 170 */
3de47213 171#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 172
210b5c06
CG
173#define OO_SHIFT 16
174#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 175#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 176
81819f0f 177/* Internal SLUB flags */
f90ec390 178#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 179#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 180
81819f0f
CL
181#ifdef CONFIG_SMP
182static struct notifier_block slab_notifier;
183#endif
184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
d6543e39 188#define TRACK_ADDRS_COUNT 16
02cbc874 189struct track {
ce71e27c 190 unsigned long addr; /* Called from address */
d6543e39
BG
191#ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193#endif
02cbc874
CL
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197};
198
199enum track_item { TRACK_ALLOC, TRACK_FREE };
200
ab4d5ed5 201#ifdef CONFIG_SYSFS
81819f0f
CL
202static int sysfs_slab_add(struct kmem_cache *);
203static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 204static void memcg_propagate_slab_attrs(struct kmem_cache *s);
81819f0f 205#else
0c710013
CL
206static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
107dab5c 209static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
81819f0f
CL
210#endif
211
4fdccdfb 212static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
213{
214#ifdef CONFIG_SLUB_STATS
88da03a6
CL
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
220#endif
221}
222
81819f0f
CL
223/********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
6446faa2 227/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
228static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230{
231 void *base;
232
a973e9dd 233 if (!object)
02cbc874
CL
234 return 1;
235
a973e9dd 236 base = page_address(page);
39b26464 237 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243}
244
7656c72b
CL
245static inline void *get_freepointer(struct kmem_cache *s, void *object)
246{
247 return *(void **)(object + s->offset);
248}
249
0ad9500e
ED
250static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251{
252 prefetch(object + s->offset);
253}
254
1393d9a1
CL
255static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256{
257 void *p;
258
259#ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261#else
262 p = get_freepointer(s, object);
263#endif
264 return p;
265}
266
7656c72b
CL
267static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268{
269 *(void **)(object + s->offset) = fp;
270}
271
272/* Loop over all objects in a slab */
224a88be
CL
273#define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
275 __p += (__s)->size)
276
54266640
WY
277#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
7656c72b
CL
281/* Determine object index from a given position */
282static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283{
284 return (p - addr) / s->size;
285}
286
d71f606f
MK
287static inline size_t slab_ksize(const struct kmem_cache *s)
288{
289#ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
3b0efdfa 295 return s->object_size;
d71f606f
MK
296
297#endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309}
310
ab9a0f19
LJ
311static inline int order_objects(int order, unsigned long size, int reserved)
312{
313 return ((PAGE_SIZE << order) - reserved) / size;
314}
315
834f3d11 316static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 317 unsigned long size, int reserved)
834f3d11
CL
318{
319 struct kmem_cache_order_objects x = {
ab9a0f19 320 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
321 };
322
323 return x;
324}
325
326static inline int oo_order(struct kmem_cache_order_objects x)
327{
210b5c06 328 return x.x >> OO_SHIFT;
834f3d11
CL
329}
330
331static inline int oo_objects(struct kmem_cache_order_objects x)
332{
210b5c06 333 return x.x & OO_MASK;
834f3d11
CL
334}
335
881db7fb
CL
336/*
337 * Per slab locking using the pagelock
338 */
339static __always_inline void slab_lock(struct page *page)
340{
48c935ad 341 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
342 bit_spin_lock(PG_locked, &page->flags);
343}
344
345static __always_inline void slab_unlock(struct page *page)
346{
48c935ad 347 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
348 __bit_spin_unlock(PG_locked, &page->flags);
349}
350
a0320865
DH
351static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
352{
353 struct page tmp;
354 tmp.counters = counters_new;
355 /*
356 * page->counters can cover frozen/inuse/objects as well
357 * as page->_count. If we assign to ->counters directly
358 * we run the risk of losing updates to page->_count, so
359 * be careful and only assign to the fields we need.
360 */
361 page->frozen = tmp.frozen;
362 page->inuse = tmp.inuse;
363 page->objects = tmp.objects;
364}
365
1d07171c
CL
366/* Interrupts must be disabled (for the fallback code to work right) */
367static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
368 void *freelist_old, unsigned long counters_old,
369 void *freelist_new, unsigned long counters_new,
370 const char *n)
371{
372 VM_BUG_ON(!irqs_disabled());
2565409f
HC
373#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
374 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 375 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 376 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
377 freelist_old, counters_old,
378 freelist_new, counters_new))
6f6528a1 379 return true;
1d07171c
CL
380 } else
381#endif
382 {
383 slab_lock(page);
d0e0ac97
CG
384 if (page->freelist == freelist_old &&
385 page->counters == counters_old) {
1d07171c 386 page->freelist = freelist_new;
a0320865 387 set_page_slub_counters(page, counters_new);
1d07171c 388 slab_unlock(page);
6f6528a1 389 return true;
1d07171c
CL
390 }
391 slab_unlock(page);
392 }
393
394 cpu_relax();
395 stat(s, CMPXCHG_DOUBLE_FAIL);
396
397#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 398 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
399#endif
400
6f6528a1 401 return false;
1d07171c
CL
402}
403
b789ef51
CL
404static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
405 void *freelist_old, unsigned long counters_old,
406 void *freelist_new, unsigned long counters_new,
407 const char *n)
408{
2565409f
HC
409#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
410 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 411 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 412 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
413 freelist_old, counters_old,
414 freelist_new, counters_new))
6f6528a1 415 return true;
b789ef51
CL
416 } else
417#endif
418 {
1d07171c
CL
419 unsigned long flags;
420
421 local_irq_save(flags);
881db7fb 422 slab_lock(page);
d0e0ac97
CG
423 if (page->freelist == freelist_old &&
424 page->counters == counters_old) {
b789ef51 425 page->freelist = freelist_new;
a0320865 426 set_page_slub_counters(page, counters_new);
881db7fb 427 slab_unlock(page);
1d07171c 428 local_irq_restore(flags);
6f6528a1 429 return true;
b789ef51 430 }
881db7fb 431 slab_unlock(page);
1d07171c 432 local_irq_restore(flags);
b789ef51
CL
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 439 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
440#endif
441
6f6528a1 442 return false;
b789ef51
CL
443}
444
41ecc55b 445#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
446/*
447 * Determine a map of object in use on a page.
448 *
881db7fb 449 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
450 * not vanish from under us.
451 */
452static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453{
454 void *p;
455 void *addr = page_address(page);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
459}
460
41ecc55b
CL
461/*
462 * Debug settings:
463 */
89d3c87e 464#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff 465static int slub_debug = DEBUG_DEFAULT_FLAGS;
89d3c87e
AR
466#elif defined(CONFIG_KASAN)
467static int slub_debug = SLAB_STORE_USER;
f0630fff 468#else
41ecc55b 469static int slub_debug;
f0630fff 470#endif
41ecc55b
CL
471
472static char *slub_debug_slabs;
fa5ec8a1 473static int disable_higher_order_debug;
41ecc55b 474
a79316c6
AR
475/*
476 * slub is about to manipulate internal object metadata. This memory lies
477 * outside the range of the allocated object, so accessing it would normally
478 * be reported by kasan as a bounds error. metadata_access_enable() is used
479 * to tell kasan that these accesses are OK.
480 */
481static inline void metadata_access_enable(void)
482{
483 kasan_disable_current();
484}
485
486static inline void metadata_access_disable(void)
487{
488 kasan_enable_current();
489}
490
81819f0f
CL
491/*
492 * Object debugging
493 */
494static void print_section(char *text, u8 *addr, unsigned int length)
495{
a79316c6 496 metadata_access_enable();
ffc79d28
SAS
497 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
498 length, 1);
a79316c6 499 metadata_access_disable();
81819f0f
CL
500}
501
81819f0f
CL
502static struct track *get_track(struct kmem_cache *s, void *object,
503 enum track_item alloc)
504{
505 struct track *p;
506
507 if (s->offset)
508 p = object + s->offset + sizeof(void *);
509 else
510 p = object + s->inuse;
511
512 return p + alloc;
513}
514
515static void set_track(struct kmem_cache *s, void *object,
ce71e27c 516 enum track_item alloc, unsigned long addr)
81819f0f 517{
1a00df4a 518 struct track *p = get_track(s, object, alloc);
81819f0f 519
81819f0f 520 if (addr) {
d6543e39
BG
521#ifdef CONFIG_STACKTRACE
522 struct stack_trace trace;
523 int i;
524
525 trace.nr_entries = 0;
526 trace.max_entries = TRACK_ADDRS_COUNT;
527 trace.entries = p->addrs;
528 trace.skip = 3;
a79316c6 529 metadata_access_enable();
d6543e39 530 save_stack_trace(&trace);
a79316c6 531 metadata_access_disable();
d6543e39
BG
532
533 /* See rant in lockdep.c */
534 if (trace.nr_entries != 0 &&
535 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
536 trace.nr_entries--;
537
538 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
539 p->addrs[i] = 0;
540#endif
81819f0f
CL
541 p->addr = addr;
542 p->cpu = smp_processor_id();
88e4ccf2 543 p->pid = current->pid;
81819f0f
CL
544 p->when = jiffies;
545 } else
546 memset(p, 0, sizeof(struct track));
547}
548
81819f0f
CL
549static void init_tracking(struct kmem_cache *s, void *object)
550{
24922684
CL
551 if (!(s->flags & SLAB_STORE_USER))
552 return;
553
ce71e27c
EGM
554 set_track(s, object, TRACK_FREE, 0UL);
555 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
556}
557
558static void print_track(const char *s, struct track *t)
559{
560 if (!t->addr)
561 return;
562
f9f58285
FF
563 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
564 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
565#ifdef CONFIG_STACKTRACE
566 {
567 int i;
568 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
569 if (t->addrs[i])
f9f58285 570 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
571 else
572 break;
573 }
574#endif
24922684
CL
575}
576
577static void print_tracking(struct kmem_cache *s, void *object)
578{
579 if (!(s->flags & SLAB_STORE_USER))
580 return;
581
582 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
583 print_track("Freed", get_track(s, object, TRACK_FREE));
584}
585
586static void print_page_info(struct page *page)
587{
f9f58285 588 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 589 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
590
591}
592
593static void slab_bug(struct kmem_cache *s, char *fmt, ...)
594{
ecc42fbe 595 struct va_format vaf;
24922684 596 va_list args;
24922684
CL
597
598 va_start(args, fmt);
ecc42fbe
FF
599 vaf.fmt = fmt;
600 vaf.va = &args;
f9f58285 601 pr_err("=============================================================================\n");
ecc42fbe 602 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 603 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 604
373d4d09 605 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 606 va_end(args);
81819f0f
CL
607}
608
24922684
CL
609static void slab_fix(struct kmem_cache *s, char *fmt, ...)
610{
ecc42fbe 611 struct va_format vaf;
24922684 612 va_list args;
24922684
CL
613
614 va_start(args, fmt);
ecc42fbe
FF
615 vaf.fmt = fmt;
616 vaf.va = &args;
617 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 618 va_end(args);
24922684
CL
619}
620
621static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
622{
623 unsigned int off; /* Offset of last byte */
a973e9dd 624 u8 *addr = page_address(page);
24922684
CL
625
626 print_tracking(s, p);
627
628 print_page_info(page);
629
f9f58285
FF
630 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
631 p, p - addr, get_freepointer(s, p));
24922684
CL
632
633 if (p > addr + 16)
ffc79d28 634 print_section("Bytes b4 ", p - 16, 16);
81819f0f 635
3b0efdfa 636 print_section("Object ", p, min_t(unsigned long, s->object_size,
ffc79d28 637 PAGE_SIZE));
81819f0f 638 if (s->flags & SLAB_RED_ZONE)
3b0efdfa
CL
639 print_section("Redzone ", p + s->object_size,
640 s->inuse - s->object_size);
81819f0f 641
81819f0f
CL
642 if (s->offset)
643 off = s->offset + sizeof(void *);
644 else
645 off = s->inuse;
646
24922684 647 if (s->flags & SLAB_STORE_USER)
81819f0f 648 off += 2 * sizeof(struct track);
81819f0f
CL
649
650 if (off != s->size)
651 /* Beginning of the filler is the free pointer */
ffc79d28 652 print_section("Padding ", p + off, s->size - off);
24922684
CL
653
654 dump_stack();
81819f0f
CL
655}
656
75c66def 657void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
658 u8 *object, char *reason)
659{
3dc50637 660 slab_bug(s, "%s", reason);
24922684 661 print_trailer(s, page, object);
81819f0f
CL
662}
663
d0e0ac97
CG
664static void slab_err(struct kmem_cache *s, struct page *page,
665 const char *fmt, ...)
81819f0f
CL
666{
667 va_list args;
668 char buf[100];
669
24922684
CL
670 va_start(args, fmt);
671 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 672 va_end(args);
3dc50637 673 slab_bug(s, "%s", buf);
24922684 674 print_page_info(page);
81819f0f
CL
675 dump_stack();
676}
677
f7cb1933 678static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
679{
680 u8 *p = object;
681
682 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
683 memset(p, POISON_FREE, s->object_size - 1);
684 p[s->object_size - 1] = POISON_END;
81819f0f
CL
685 }
686
687 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 688 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
689}
690
24922684
CL
691static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
692 void *from, void *to)
693{
694 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
695 memset(from, data, to - from);
696}
697
698static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
699 u8 *object, char *what,
06428780 700 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
701{
702 u8 *fault;
703 u8 *end;
704
a79316c6 705 metadata_access_enable();
79824820 706 fault = memchr_inv(start, value, bytes);
a79316c6 707 metadata_access_disable();
24922684
CL
708 if (!fault)
709 return 1;
710
711 end = start + bytes;
712 while (end > fault && end[-1] == value)
713 end--;
714
715 slab_bug(s, "%s overwritten", what);
f9f58285 716 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
717 fault, end - 1, fault[0], value);
718 print_trailer(s, page, object);
719
720 restore_bytes(s, what, value, fault, end);
721 return 0;
81819f0f
CL
722}
723
81819f0f
CL
724/*
725 * Object layout:
726 *
727 * object address
728 * Bytes of the object to be managed.
729 * If the freepointer may overlay the object then the free
730 * pointer is the first word of the object.
672bba3a 731 *
81819f0f
CL
732 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
733 * 0xa5 (POISON_END)
734 *
3b0efdfa 735 * object + s->object_size
81819f0f 736 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 737 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 738 * object_size == inuse.
672bba3a 739 *
81819f0f
CL
740 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
741 * 0xcc (RED_ACTIVE) for objects in use.
742 *
743 * object + s->inuse
672bba3a
CL
744 * Meta data starts here.
745 *
81819f0f
CL
746 * A. Free pointer (if we cannot overwrite object on free)
747 * B. Tracking data for SLAB_STORE_USER
672bba3a 748 * C. Padding to reach required alignment boundary or at mininum
6446faa2 749 * one word if debugging is on to be able to detect writes
672bba3a
CL
750 * before the word boundary.
751 *
752 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
753 *
754 * object + s->size
672bba3a 755 * Nothing is used beyond s->size.
81819f0f 756 *
3b0efdfa 757 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 758 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
759 * may be used with merged slabcaches.
760 */
761
81819f0f
CL
762static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
763{
764 unsigned long off = s->inuse; /* The end of info */
765
766 if (s->offset)
767 /* Freepointer is placed after the object. */
768 off += sizeof(void *);
769
770 if (s->flags & SLAB_STORE_USER)
771 /* We also have user information there */
772 off += 2 * sizeof(struct track);
773
774 if (s->size == off)
775 return 1;
776
24922684
CL
777 return check_bytes_and_report(s, page, p, "Object padding",
778 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
779}
780
39b26464 781/* Check the pad bytes at the end of a slab page */
81819f0f
CL
782static int slab_pad_check(struct kmem_cache *s, struct page *page)
783{
24922684
CL
784 u8 *start;
785 u8 *fault;
786 u8 *end;
787 int length;
788 int remainder;
81819f0f
CL
789
790 if (!(s->flags & SLAB_POISON))
791 return 1;
792
a973e9dd 793 start = page_address(page);
ab9a0f19 794 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
795 end = start + length;
796 remainder = length % s->size;
81819f0f
CL
797 if (!remainder)
798 return 1;
799
a79316c6 800 metadata_access_enable();
79824820 801 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 802 metadata_access_disable();
24922684
CL
803 if (!fault)
804 return 1;
805 while (end > fault && end[-1] == POISON_INUSE)
806 end--;
807
808 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
ffc79d28 809 print_section("Padding ", end - remainder, remainder);
24922684 810
8a3d271d 811 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 812 return 0;
81819f0f
CL
813}
814
815static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 816 void *object, u8 val)
81819f0f
CL
817{
818 u8 *p = object;
3b0efdfa 819 u8 *endobject = object + s->object_size;
81819f0f
CL
820
821 if (s->flags & SLAB_RED_ZONE) {
24922684 822 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 823 endobject, val, s->inuse - s->object_size))
81819f0f 824 return 0;
81819f0f 825 } else {
3b0efdfa 826 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 827 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
828 endobject, POISON_INUSE,
829 s->inuse - s->object_size);
3adbefee 830 }
81819f0f
CL
831 }
832
833 if (s->flags & SLAB_POISON) {
f7cb1933 834 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 835 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 836 POISON_FREE, s->object_size - 1) ||
24922684 837 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 838 p + s->object_size - 1, POISON_END, 1)))
81819f0f 839 return 0;
81819f0f
CL
840 /*
841 * check_pad_bytes cleans up on its own.
842 */
843 check_pad_bytes(s, page, p);
844 }
845
f7cb1933 846 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
847 /*
848 * Object and freepointer overlap. Cannot check
849 * freepointer while object is allocated.
850 */
851 return 1;
852
853 /* Check free pointer validity */
854 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
855 object_err(s, page, p, "Freepointer corrupt");
856 /*
9f6c708e 857 * No choice but to zap it and thus lose the remainder
81819f0f 858 * of the free objects in this slab. May cause
672bba3a 859 * another error because the object count is now wrong.
81819f0f 860 */
a973e9dd 861 set_freepointer(s, p, NULL);
81819f0f
CL
862 return 0;
863 }
864 return 1;
865}
866
867static int check_slab(struct kmem_cache *s, struct page *page)
868{
39b26464
CL
869 int maxobj;
870
81819f0f
CL
871 VM_BUG_ON(!irqs_disabled());
872
873 if (!PageSlab(page)) {
24922684 874 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
875 return 0;
876 }
39b26464 877
ab9a0f19 878 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
879 if (page->objects > maxobj) {
880 slab_err(s, page, "objects %u > max %u",
f6edde9c 881 page->objects, maxobj);
39b26464
CL
882 return 0;
883 }
884 if (page->inuse > page->objects) {
24922684 885 slab_err(s, page, "inuse %u > max %u",
f6edde9c 886 page->inuse, page->objects);
81819f0f
CL
887 return 0;
888 }
889 /* Slab_pad_check fixes things up after itself */
890 slab_pad_check(s, page);
891 return 1;
892}
893
894/*
672bba3a
CL
895 * Determine if a certain object on a page is on the freelist. Must hold the
896 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
897 */
898static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
899{
900 int nr = 0;
881db7fb 901 void *fp;
81819f0f 902 void *object = NULL;
f6edde9c 903 int max_objects;
81819f0f 904
881db7fb 905 fp = page->freelist;
39b26464 906 while (fp && nr <= page->objects) {
81819f0f
CL
907 if (fp == search)
908 return 1;
909 if (!check_valid_pointer(s, page, fp)) {
910 if (object) {
911 object_err(s, page, object,
912 "Freechain corrupt");
a973e9dd 913 set_freepointer(s, object, NULL);
81819f0f 914 } else {
24922684 915 slab_err(s, page, "Freepointer corrupt");
a973e9dd 916 page->freelist = NULL;
39b26464 917 page->inuse = page->objects;
24922684 918 slab_fix(s, "Freelist cleared");
81819f0f
CL
919 return 0;
920 }
921 break;
922 }
923 object = fp;
924 fp = get_freepointer(s, object);
925 nr++;
926 }
927
ab9a0f19 928 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
929 if (max_objects > MAX_OBJS_PER_PAGE)
930 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
931
932 if (page->objects != max_objects) {
933 slab_err(s, page, "Wrong number of objects. Found %d but "
934 "should be %d", page->objects, max_objects);
935 page->objects = max_objects;
936 slab_fix(s, "Number of objects adjusted.");
937 }
39b26464 938 if (page->inuse != page->objects - nr) {
70d71228 939 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
940 "counted were %d", page->inuse, page->objects - nr);
941 page->inuse = page->objects - nr;
24922684 942 slab_fix(s, "Object count adjusted.");
81819f0f
CL
943 }
944 return search == NULL;
945}
946
0121c619
CL
947static void trace(struct kmem_cache *s, struct page *page, void *object,
948 int alloc)
3ec09742
CL
949{
950 if (s->flags & SLAB_TRACE) {
f9f58285 951 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
952 s->name,
953 alloc ? "alloc" : "free",
954 object, page->inuse,
955 page->freelist);
956
957 if (!alloc)
d0e0ac97
CG
958 print_section("Object ", (void *)object,
959 s->object_size);
3ec09742
CL
960
961 dump_stack();
962 }
963}
964
643b1138 965/*
672bba3a 966 * Tracking of fully allocated slabs for debugging purposes.
643b1138 967 */
5cc6eee8
CL
968static void add_full(struct kmem_cache *s,
969 struct kmem_cache_node *n, struct page *page)
643b1138 970{
5cc6eee8
CL
971 if (!(s->flags & SLAB_STORE_USER))
972 return;
973
255d0884 974 lockdep_assert_held(&n->list_lock);
643b1138 975 list_add(&page->lru, &n->full);
643b1138
CL
976}
977
c65c1877 978static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 979{
643b1138
CL
980 if (!(s->flags & SLAB_STORE_USER))
981 return;
982
255d0884 983 lockdep_assert_held(&n->list_lock);
643b1138 984 list_del(&page->lru);
643b1138
CL
985}
986
0f389ec6
CL
987/* Tracking of the number of slabs for debugging purposes */
988static inline unsigned long slabs_node(struct kmem_cache *s, int node)
989{
990 struct kmem_cache_node *n = get_node(s, node);
991
992 return atomic_long_read(&n->nr_slabs);
993}
994
26c02cf0
AB
995static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
996{
997 return atomic_long_read(&n->nr_slabs);
998}
999
205ab99d 1000static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1001{
1002 struct kmem_cache_node *n = get_node(s, node);
1003
1004 /*
1005 * May be called early in order to allocate a slab for the
1006 * kmem_cache_node structure. Solve the chicken-egg
1007 * dilemma by deferring the increment of the count during
1008 * bootstrap (see early_kmem_cache_node_alloc).
1009 */
338b2642 1010 if (likely(n)) {
0f389ec6 1011 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1012 atomic_long_add(objects, &n->total_objects);
1013 }
0f389ec6 1014}
205ab99d 1015static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1016{
1017 struct kmem_cache_node *n = get_node(s, node);
1018
1019 atomic_long_dec(&n->nr_slabs);
205ab99d 1020 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1021}
1022
1023/* Object debug checks for alloc/free paths */
3ec09742
CL
1024static void setup_object_debug(struct kmem_cache *s, struct page *page,
1025 void *object)
1026{
1027 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1028 return;
1029
f7cb1933 1030 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1031 init_tracking(s, object);
1032}
1033
d0e0ac97
CG
1034static noinline int alloc_debug_processing(struct kmem_cache *s,
1035 struct page *page,
ce71e27c 1036 void *object, unsigned long addr)
81819f0f
CL
1037{
1038 if (!check_slab(s, page))
1039 goto bad;
1040
81819f0f
CL
1041 if (!check_valid_pointer(s, page, object)) {
1042 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1043 goto bad;
81819f0f
CL
1044 }
1045
f7cb1933 1046 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1047 goto bad;
81819f0f 1048
3ec09742
CL
1049 /* Success perform special debug activities for allocs */
1050 if (s->flags & SLAB_STORE_USER)
1051 set_track(s, object, TRACK_ALLOC, addr);
1052 trace(s, page, object, 1);
f7cb1933 1053 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1054 return 1;
3ec09742 1055
81819f0f
CL
1056bad:
1057 if (PageSlab(page)) {
1058 /*
1059 * If this is a slab page then lets do the best we can
1060 * to avoid issues in the future. Marking all objects
672bba3a 1061 * as used avoids touching the remaining objects.
81819f0f 1062 */
24922684 1063 slab_fix(s, "Marking all objects used");
39b26464 1064 page->inuse = page->objects;
a973e9dd 1065 page->freelist = NULL;
81819f0f
CL
1066 }
1067 return 0;
1068}
1069
81084651 1070/* Supports checking bulk free of a constructed freelist */
19c7ff9e 1071static noinline struct kmem_cache_node *free_debug_processing(
81084651
JDB
1072 struct kmem_cache *s, struct page *page,
1073 void *head, void *tail, int bulk_cnt,
19c7ff9e 1074 unsigned long addr, unsigned long *flags)
81819f0f 1075{
19c7ff9e 1076 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
81084651
JDB
1077 void *object = head;
1078 int cnt = 0;
5c2e4bbb 1079
19c7ff9e 1080 spin_lock_irqsave(&n->list_lock, *flags);
881db7fb
CL
1081 slab_lock(page);
1082
81819f0f
CL
1083 if (!check_slab(s, page))
1084 goto fail;
1085
81084651
JDB
1086next_object:
1087 cnt++;
1088
81819f0f 1089 if (!check_valid_pointer(s, page, object)) {
70d71228 1090 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1091 goto fail;
1092 }
1093
1094 if (on_freelist(s, page, object)) {
24922684 1095 object_err(s, page, object, "Object already free");
81819f0f
CL
1096 goto fail;
1097 }
1098
f7cb1933 1099 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
5c2e4bbb 1100 goto out;
81819f0f 1101
1b4f59e3 1102 if (unlikely(s != page->slab_cache)) {
3adbefee 1103 if (!PageSlab(page)) {
70d71228
CL
1104 slab_err(s, page, "Attempt to free object(0x%p) "
1105 "outside of slab", object);
1b4f59e3 1106 } else if (!page->slab_cache) {
f9f58285
FF
1107 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1108 object);
70d71228 1109 dump_stack();
06428780 1110 } else
24922684
CL
1111 object_err(s, page, object,
1112 "page slab pointer corrupt.");
81819f0f
CL
1113 goto fail;
1114 }
3ec09742 1115
3ec09742
CL
1116 if (s->flags & SLAB_STORE_USER)
1117 set_track(s, object, TRACK_FREE, addr);
1118 trace(s, page, object, 0);
81084651 1119 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1120 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1121
1122 /* Reached end of constructed freelist yet? */
1123 if (object != tail) {
1124 object = get_freepointer(s, object);
1125 goto next_object;
1126 }
5c2e4bbb 1127out:
81084651
JDB
1128 if (cnt != bulk_cnt)
1129 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1130 bulk_cnt, cnt);
1131
881db7fb 1132 slab_unlock(page);
19c7ff9e
CL
1133 /*
1134 * Keep node_lock to preserve integrity
1135 * until the object is actually freed
1136 */
1137 return n;
3ec09742 1138
81819f0f 1139fail:
19c7ff9e
CL
1140 slab_unlock(page);
1141 spin_unlock_irqrestore(&n->list_lock, *flags);
24922684 1142 slab_fix(s, "Object at 0x%p not freed", object);
19c7ff9e 1143 return NULL;
81819f0f
CL
1144}
1145
41ecc55b
CL
1146static int __init setup_slub_debug(char *str)
1147{
f0630fff
CL
1148 slub_debug = DEBUG_DEFAULT_FLAGS;
1149 if (*str++ != '=' || !*str)
1150 /*
1151 * No options specified. Switch on full debugging.
1152 */
1153 goto out;
1154
1155 if (*str == ',')
1156 /*
1157 * No options but restriction on slabs. This means full
1158 * debugging for slabs matching a pattern.
1159 */
1160 goto check_slabs;
1161
1162 slub_debug = 0;
1163 if (*str == '-')
1164 /*
1165 * Switch off all debugging measures.
1166 */
1167 goto out;
1168
1169 /*
1170 * Determine which debug features should be switched on
1171 */
06428780 1172 for (; *str && *str != ','; str++) {
f0630fff
CL
1173 switch (tolower(*str)) {
1174 case 'f':
1175 slub_debug |= SLAB_DEBUG_FREE;
1176 break;
1177 case 'z':
1178 slub_debug |= SLAB_RED_ZONE;
1179 break;
1180 case 'p':
1181 slub_debug |= SLAB_POISON;
1182 break;
1183 case 'u':
1184 slub_debug |= SLAB_STORE_USER;
1185 break;
1186 case 't':
1187 slub_debug |= SLAB_TRACE;
1188 break;
4c13dd3b
DM
1189 case 'a':
1190 slub_debug |= SLAB_FAILSLAB;
1191 break;
08303a73
CA
1192 case 'o':
1193 /*
1194 * Avoid enabling debugging on caches if its minimum
1195 * order would increase as a result.
1196 */
1197 disable_higher_order_debug = 1;
1198 break;
f0630fff 1199 default:
f9f58285
FF
1200 pr_err("slub_debug option '%c' unknown. skipped\n",
1201 *str);
f0630fff 1202 }
41ecc55b
CL
1203 }
1204
f0630fff 1205check_slabs:
41ecc55b
CL
1206 if (*str == ',')
1207 slub_debug_slabs = str + 1;
f0630fff 1208out:
41ecc55b
CL
1209 return 1;
1210}
1211
1212__setup("slub_debug", setup_slub_debug);
1213
423c929c 1214unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1215 unsigned long flags, const char *name,
51cc5068 1216 void (*ctor)(void *))
41ecc55b
CL
1217{
1218 /*
e153362a 1219 * Enable debugging if selected on the kernel commandline.
41ecc55b 1220 */
c6f58d9b
CL
1221 if (slub_debug && (!slub_debug_slabs || (name &&
1222 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1223 flags |= slub_debug;
ba0268a8
CL
1224
1225 return flags;
41ecc55b 1226}
b4a64718 1227#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1228static inline void setup_object_debug(struct kmem_cache *s,
1229 struct page *page, void *object) {}
41ecc55b 1230
3ec09742 1231static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1232 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1233
19c7ff9e 1234static inline struct kmem_cache_node *free_debug_processing(
81084651
JDB
1235 struct kmem_cache *s, struct page *page,
1236 void *head, void *tail, int bulk_cnt,
19c7ff9e 1237 unsigned long addr, unsigned long *flags) { return NULL; }
41ecc55b 1238
41ecc55b
CL
1239static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1240 { return 1; }
1241static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1242 void *object, u8 val) { return 1; }
5cc6eee8
CL
1243static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1244 struct page *page) {}
c65c1877
PZ
1245static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1246 struct page *page) {}
423c929c 1247unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1248 unsigned long flags, const char *name,
51cc5068 1249 void (*ctor)(void *))
ba0268a8
CL
1250{
1251 return flags;
1252}
41ecc55b 1253#define slub_debug 0
0f389ec6 1254
fdaa45e9
IM
1255#define disable_higher_order_debug 0
1256
0f389ec6
CL
1257static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1258 { return 0; }
26c02cf0
AB
1259static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1260 { return 0; }
205ab99d
CL
1261static inline void inc_slabs_node(struct kmem_cache *s, int node,
1262 int objects) {}
1263static inline void dec_slabs_node(struct kmem_cache *s, int node,
1264 int objects) {}
7d550c56 1265
02e72cc6
AR
1266#endif /* CONFIG_SLUB_DEBUG */
1267
1268/*
1269 * Hooks for other subsystems that check memory allocations. In a typical
1270 * production configuration these hooks all should produce no code at all.
1271 */
d56791b3
RB
1272static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1273{
1274 kmemleak_alloc(ptr, size, 1, flags);
0316bec2 1275 kasan_kmalloc_large(ptr, size);
d56791b3
RB
1276}
1277
1278static inline void kfree_hook(const void *x)
1279{
1280 kmemleak_free(x);
0316bec2 1281 kasan_kfree_large(x);
d56791b3
RB
1282}
1283
8135be5a
VD
1284static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1285 gfp_t flags)
02e72cc6
AR
1286{
1287 flags &= gfp_allowed_mask;
1288 lockdep_trace_alloc(flags);
d0164adc 1289 might_sleep_if(gfpflags_allow_blocking(flags));
7d550c56 1290
8135be5a
VD
1291 if (should_failslab(s->object_size, flags, s->flags))
1292 return NULL;
1293
1294 return memcg_kmem_get_cache(s, flags);
02e72cc6
AR
1295}
1296
03ec0ed5
JDB
1297static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1298 size_t size, void **p)
d56791b3 1299{
03ec0ed5
JDB
1300 size_t i;
1301
02e72cc6 1302 flags &= gfp_allowed_mask;
03ec0ed5
JDB
1303 for (i = 0; i < size; i++) {
1304 void *object = p[i];
1305
1306 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1307 kmemleak_alloc_recursive(object, s->object_size, 1,
1308 s->flags, flags);
1309 kasan_slab_alloc(s, object);
1310 }
8135be5a 1311 memcg_kmem_put_cache(s);
d56791b3 1312}
7d550c56 1313
d56791b3
RB
1314static inline void slab_free_hook(struct kmem_cache *s, void *x)
1315{
1316 kmemleak_free_recursive(x, s->flags);
7d550c56 1317
02e72cc6
AR
1318 /*
1319 * Trouble is that we may no longer disable interrupts in the fast path
1320 * So in order to make the debug calls that expect irqs to be
1321 * disabled we need to disable interrupts temporarily.
1322 */
1323#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1324 {
1325 unsigned long flags;
1326
1327 local_irq_save(flags);
1328 kmemcheck_slab_free(s, x, s->object_size);
1329 debug_check_no_locks_freed(x, s->object_size);
1330 local_irq_restore(flags);
1331 }
1332#endif
1333 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1334 debug_check_no_obj_freed(x, s->object_size);
0316bec2
AR
1335
1336 kasan_slab_free(s, x);
02e72cc6 1337}
205ab99d 1338
81084651
JDB
1339static inline void slab_free_freelist_hook(struct kmem_cache *s,
1340 void *head, void *tail)
1341{
1342/*
1343 * Compiler cannot detect this function can be removed if slab_free_hook()
1344 * evaluates to nothing. Thus, catch all relevant config debug options here.
1345 */
1346#if defined(CONFIG_KMEMCHECK) || \
1347 defined(CONFIG_LOCKDEP) || \
1348 defined(CONFIG_DEBUG_KMEMLEAK) || \
1349 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1350 defined(CONFIG_KASAN)
1351
1352 void *object = head;
1353 void *tail_obj = tail ? : head;
1354
1355 do {
1356 slab_free_hook(s, object);
1357 } while ((object != tail_obj) &&
1358 (object = get_freepointer(s, object)));
1359#endif
1360}
1361
588f8ba9
TG
1362static void setup_object(struct kmem_cache *s, struct page *page,
1363 void *object)
1364{
1365 setup_object_debug(s, page, object);
1366 if (unlikely(s->ctor)) {
1367 kasan_unpoison_object_data(s, object);
1368 s->ctor(object);
1369 kasan_poison_object_data(s, object);
1370 }
1371}
1372
81819f0f
CL
1373/*
1374 * Slab allocation and freeing
1375 */
5dfb4175
VD
1376static inline struct page *alloc_slab_page(struct kmem_cache *s,
1377 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1378{
5dfb4175 1379 struct page *page;
65c3376a
CL
1380 int order = oo_order(oo);
1381
b1eeab67
VN
1382 flags |= __GFP_NOTRACK;
1383
2154a336 1384 if (node == NUMA_NO_NODE)
5dfb4175 1385 page = alloc_pages(flags, order);
65c3376a 1386 else
96db800f 1387 page = __alloc_pages_node(node, flags, order);
5dfb4175 1388
f3ccb2c4
VD
1389 if (page && memcg_charge_slab(page, flags, order, s)) {
1390 __free_pages(page, order);
1391 page = NULL;
1392 }
5dfb4175
VD
1393
1394 return page;
65c3376a
CL
1395}
1396
81819f0f
CL
1397static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1398{
06428780 1399 struct page *page;
834f3d11 1400 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1401 gfp_t alloc_gfp;
588f8ba9
TG
1402 void *start, *p;
1403 int idx, order;
81819f0f 1404
7e0528da
CL
1405 flags &= gfp_allowed_mask;
1406
d0164adc 1407 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1408 local_irq_enable();
1409
b7a49f0d 1410 flags |= s->allocflags;
e12ba74d 1411
ba52270d
PE
1412 /*
1413 * Let the initial higher-order allocation fail under memory pressure
1414 * so we fall-back to the minimum order allocation.
1415 */
1416 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc
MG
1417 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1418 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
ba52270d 1419
5dfb4175 1420 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1421 if (unlikely(!page)) {
1422 oo = s->min;
80c3a998 1423 alloc_gfp = flags;
65c3376a
CL
1424 /*
1425 * Allocation may have failed due to fragmentation.
1426 * Try a lower order alloc if possible
1427 */
5dfb4175 1428 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1429 if (unlikely(!page))
1430 goto out;
1431 stat(s, ORDER_FALLBACK);
65c3376a 1432 }
5a896d9e 1433
588f8ba9
TG
1434 if (kmemcheck_enabled &&
1435 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1436 int pages = 1 << oo_order(oo);
1437
80c3a998 1438 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1439
1440 /*
1441 * Objects from caches that have a constructor don't get
1442 * cleared when they're allocated, so we need to do it here.
1443 */
1444 if (s->ctor)
1445 kmemcheck_mark_uninitialized_pages(page, pages);
1446 else
1447 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1448 }
1449
834f3d11 1450 page->objects = oo_objects(oo);
81819f0f 1451
1f458cbf 1452 order = compound_order(page);
1b4f59e3 1453 page->slab_cache = s;
c03f94cc 1454 __SetPageSlab(page);
2f064f34 1455 if (page_is_pfmemalloc(page))
072bb0aa 1456 SetPageSlabPfmemalloc(page);
81819f0f
CL
1457
1458 start = page_address(page);
81819f0f
CL
1459
1460 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1461 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1462
0316bec2
AR
1463 kasan_poison_slab(page);
1464
54266640
WY
1465 for_each_object_idx(p, idx, s, start, page->objects) {
1466 setup_object(s, page, p);
1467 if (likely(idx < page->objects))
1468 set_freepointer(s, p, p + s->size);
1469 else
1470 set_freepointer(s, p, NULL);
81819f0f 1471 }
81819f0f
CL
1472
1473 page->freelist = start;
e6e82ea1 1474 page->inuse = page->objects;
8cb0a506 1475 page->frozen = 1;
588f8ba9 1476
81819f0f 1477out:
d0164adc 1478 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1479 local_irq_disable();
1480 if (!page)
1481 return NULL;
1482
1483 mod_zone_page_state(page_zone(page),
1484 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1485 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1486 1 << oo_order(oo));
1487
1488 inc_slabs_node(s, page_to_nid(page), page->objects);
1489
81819f0f
CL
1490 return page;
1491}
1492
588f8ba9
TG
1493static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1494{
1495 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1496 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1497 BUG();
1498 }
1499
1500 return allocate_slab(s,
1501 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1502}
1503
81819f0f
CL
1504static void __free_slab(struct kmem_cache *s, struct page *page)
1505{
834f3d11
CL
1506 int order = compound_order(page);
1507 int pages = 1 << order;
81819f0f 1508
af537b0a 1509 if (kmem_cache_debug(s)) {
81819f0f
CL
1510 void *p;
1511
1512 slab_pad_check(s, page);
224a88be
CL
1513 for_each_object(p, s, page_address(page),
1514 page->objects)
f7cb1933 1515 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1516 }
1517
b1eeab67 1518 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1519
81819f0f
CL
1520 mod_zone_page_state(page_zone(page),
1521 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1522 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1523 -pages);
81819f0f 1524
072bb0aa 1525 __ClearPageSlabPfmemalloc(page);
49bd5221 1526 __ClearPageSlab(page);
1f458cbf 1527
22b751c3 1528 page_mapcount_reset(page);
1eb5ac64
NP
1529 if (current->reclaim_state)
1530 current->reclaim_state->reclaimed_slab += pages;
f3ccb2c4 1531 __free_kmem_pages(page, order);
81819f0f
CL
1532}
1533
da9a638c
LJ
1534#define need_reserve_slab_rcu \
1535 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1536
81819f0f
CL
1537static void rcu_free_slab(struct rcu_head *h)
1538{
1539 struct page *page;
1540
da9a638c
LJ
1541 if (need_reserve_slab_rcu)
1542 page = virt_to_head_page(h);
1543 else
1544 page = container_of((struct list_head *)h, struct page, lru);
1545
1b4f59e3 1546 __free_slab(page->slab_cache, page);
81819f0f
CL
1547}
1548
1549static void free_slab(struct kmem_cache *s, struct page *page)
1550{
1551 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1552 struct rcu_head *head;
1553
1554 if (need_reserve_slab_rcu) {
1555 int order = compound_order(page);
1556 int offset = (PAGE_SIZE << order) - s->reserved;
1557
1558 VM_BUG_ON(s->reserved != sizeof(*head));
1559 head = page_address(page) + offset;
1560 } else {
bc4f610d 1561 head = &page->rcu_head;
da9a638c 1562 }
81819f0f
CL
1563
1564 call_rcu(head, rcu_free_slab);
1565 } else
1566 __free_slab(s, page);
1567}
1568
1569static void discard_slab(struct kmem_cache *s, struct page *page)
1570{
205ab99d 1571 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1572 free_slab(s, page);
1573}
1574
1575/*
5cc6eee8 1576 * Management of partially allocated slabs.
81819f0f 1577 */
1e4dd946
SR
1578static inline void
1579__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1580{
e95eed57 1581 n->nr_partial++;
136333d1 1582 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1583 list_add_tail(&page->lru, &n->partial);
1584 else
1585 list_add(&page->lru, &n->partial);
81819f0f
CL
1586}
1587
1e4dd946
SR
1588static inline void add_partial(struct kmem_cache_node *n,
1589 struct page *page, int tail)
62e346a8 1590{
c65c1877 1591 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1592 __add_partial(n, page, tail);
1593}
c65c1877 1594
1e4dd946
SR
1595static inline void
1596__remove_partial(struct kmem_cache_node *n, struct page *page)
1597{
62e346a8
CL
1598 list_del(&page->lru);
1599 n->nr_partial--;
1600}
1601
1e4dd946
SR
1602static inline void remove_partial(struct kmem_cache_node *n,
1603 struct page *page)
1604{
1605 lockdep_assert_held(&n->list_lock);
1606 __remove_partial(n, page);
1607}
1608
81819f0f 1609/*
7ced3719
CL
1610 * Remove slab from the partial list, freeze it and
1611 * return the pointer to the freelist.
81819f0f 1612 *
497b66f2 1613 * Returns a list of objects or NULL if it fails.
81819f0f 1614 */
497b66f2 1615static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1616 struct kmem_cache_node *n, struct page *page,
633b0764 1617 int mode, int *objects)
81819f0f 1618{
2cfb7455
CL
1619 void *freelist;
1620 unsigned long counters;
1621 struct page new;
1622
c65c1877
PZ
1623 lockdep_assert_held(&n->list_lock);
1624
2cfb7455
CL
1625 /*
1626 * Zap the freelist and set the frozen bit.
1627 * The old freelist is the list of objects for the
1628 * per cpu allocation list.
1629 */
7ced3719
CL
1630 freelist = page->freelist;
1631 counters = page->counters;
1632 new.counters = counters;
633b0764 1633 *objects = new.objects - new.inuse;
23910c50 1634 if (mode) {
7ced3719 1635 new.inuse = page->objects;
23910c50
PE
1636 new.freelist = NULL;
1637 } else {
1638 new.freelist = freelist;
1639 }
2cfb7455 1640
a0132ac0 1641 VM_BUG_ON(new.frozen);
7ced3719 1642 new.frozen = 1;
2cfb7455 1643
7ced3719 1644 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1645 freelist, counters,
02d7633f 1646 new.freelist, new.counters,
7ced3719 1647 "acquire_slab"))
7ced3719 1648 return NULL;
2cfb7455
CL
1649
1650 remove_partial(n, page);
7ced3719 1651 WARN_ON(!freelist);
49e22585 1652 return freelist;
81819f0f
CL
1653}
1654
633b0764 1655static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1656static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1657
81819f0f 1658/*
672bba3a 1659 * Try to allocate a partial slab from a specific node.
81819f0f 1660 */
8ba00bb6
JK
1661static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1662 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1663{
49e22585
CL
1664 struct page *page, *page2;
1665 void *object = NULL;
633b0764
JK
1666 int available = 0;
1667 int objects;
81819f0f
CL
1668
1669 /*
1670 * Racy check. If we mistakenly see no partial slabs then we
1671 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1672 * partial slab and there is none available then get_partials()
1673 * will return NULL.
81819f0f
CL
1674 */
1675 if (!n || !n->nr_partial)
1676 return NULL;
1677
1678 spin_lock(&n->list_lock);
49e22585 1679 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1680 void *t;
49e22585 1681
8ba00bb6
JK
1682 if (!pfmemalloc_match(page, flags))
1683 continue;
1684
633b0764 1685 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1686 if (!t)
1687 break;
1688
633b0764 1689 available += objects;
12d79634 1690 if (!object) {
49e22585 1691 c->page = page;
49e22585 1692 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1693 object = t;
49e22585 1694 } else {
633b0764 1695 put_cpu_partial(s, page, 0);
8028dcea 1696 stat(s, CPU_PARTIAL_NODE);
49e22585 1697 }
345c905d
JK
1698 if (!kmem_cache_has_cpu_partial(s)
1699 || available > s->cpu_partial / 2)
49e22585
CL
1700 break;
1701
497b66f2 1702 }
81819f0f 1703 spin_unlock(&n->list_lock);
497b66f2 1704 return object;
81819f0f
CL
1705}
1706
1707/*
672bba3a 1708 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1709 */
de3ec035 1710static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1711 struct kmem_cache_cpu *c)
81819f0f
CL
1712{
1713#ifdef CONFIG_NUMA
1714 struct zonelist *zonelist;
dd1a239f 1715 struct zoneref *z;
54a6eb5c
MG
1716 struct zone *zone;
1717 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1718 void *object;
cc9a6c87 1719 unsigned int cpuset_mems_cookie;
81819f0f
CL
1720
1721 /*
672bba3a
CL
1722 * The defrag ratio allows a configuration of the tradeoffs between
1723 * inter node defragmentation and node local allocations. A lower
1724 * defrag_ratio increases the tendency to do local allocations
1725 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1726 *
672bba3a
CL
1727 * If the defrag_ratio is set to 0 then kmalloc() always
1728 * returns node local objects. If the ratio is higher then kmalloc()
1729 * may return off node objects because partial slabs are obtained
1730 * from other nodes and filled up.
81819f0f 1731 *
6446faa2 1732 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1733 * defrag_ratio = 1000) then every (well almost) allocation will
1734 * first attempt to defrag slab caches on other nodes. This means
1735 * scanning over all nodes to look for partial slabs which may be
1736 * expensive if we do it every time we are trying to find a slab
1737 * with available objects.
81819f0f 1738 */
9824601e
CL
1739 if (!s->remote_node_defrag_ratio ||
1740 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1741 return NULL;
1742
cc9a6c87 1743 do {
d26914d1 1744 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1745 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1746 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1747 struct kmem_cache_node *n;
1748
1749 n = get_node(s, zone_to_nid(zone));
1750
dee2f8aa 1751 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1752 n->nr_partial > s->min_partial) {
8ba00bb6 1753 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1754 if (object) {
1755 /*
d26914d1
MG
1756 * Don't check read_mems_allowed_retry()
1757 * here - if mems_allowed was updated in
1758 * parallel, that was a harmless race
1759 * between allocation and the cpuset
1760 * update
cc9a6c87 1761 */
cc9a6c87
MG
1762 return object;
1763 }
c0ff7453 1764 }
81819f0f 1765 }
d26914d1 1766 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1767#endif
1768 return NULL;
1769}
1770
1771/*
1772 * Get a partial page, lock it and return it.
1773 */
497b66f2 1774static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1775 struct kmem_cache_cpu *c)
81819f0f 1776{
497b66f2 1777 void *object;
a561ce00
JK
1778 int searchnode = node;
1779
1780 if (node == NUMA_NO_NODE)
1781 searchnode = numa_mem_id();
1782 else if (!node_present_pages(node))
1783 searchnode = node_to_mem_node(node);
81819f0f 1784
8ba00bb6 1785 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1786 if (object || node != NUMA_NO_NODE)
1787 return object;
81819f0f 1788
acd19fd1 1789 return get_any_partial(s, flags, c);
81819f0f
CL
1790}
1791
8a5ec0ba
CL
1792#ifdef CONFIG_PREEMPT
1793/*
1794 * Calculate the next globally unique transaction for disambiguiation
1795 * during cmpxchg. The transactions start with the cpu number and are then
1796 * incremented by CONFIG_NR_CPUS.
1797 */
1798#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1799#else
1800/*
1801 * No preemption supported therefore also no need to check for
1802 * different cpus.
1803 */
1804#define TID_STEP 1
1805#endif
1806
1807static inline unsigned long next_tid(unsigned long tid)
1808{
1809 return tid + TID_STEP;
1810}
1811
1812static inline unsigned int tid_to_cpu(unsigned long tid)
1813{
1814 return tid % TID_STEP;
1815}
1816
1817static inline unsigned long tid_to_event(unsigned long tid)
1818{
1819 return tid / TID_STEP;
1820}
1821
1822static inline unsigned int init_tid(int cpu)
1823{
1824 return cpu;
1825}
1826
1827static inline void note_cmpxchg_failure(const char *n,
1828 const struct kmem_cache *s, unsigned long tid)
1829{
1830#ifdef SLUB_DEBUG_CMPXCHG
1831 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1832
f9f58285 1833 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1834
1835#ifdef CONFIG_PREEMPT
1836 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1837 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1838 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1839 else
1840#endif
1841 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1842 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1843 tid_to_event(tid), tid_to_event(actual_tid));
1844 else
f9f58285 1845 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1846 actual_tid, tid, next_tid(tid));
1847#endif
4fdccdfb 1848 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1849}
1850
788e1aad 1851static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1852{
8a5ec0ba
CL
1853 int cpu;
1854
1855 for_each_possible_cpu(cpu)
1856 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1857}
2cfb7455 1858
81819f0f
CL
1859/*
1860 * Remove the cpu slab
1861 */
d0e0ac97
CG
1862static void deactivate_slab(struct kmem_cache *s, struct page *page,
1863 void *freelist)
81819f0f 1864{
2cfb7455 1865 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1866 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1867 int lock = 0;
1868 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 1869 void *nextfree;
136333d1 1870 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
1871 struct page new;
1872 struct page old;
1873
1874 if (page->freelist) {
84e554e6 1875 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 1876 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
1877 }
1878
894b8788 1879 /*
2cfb7455
CL
1880 * Stage one: Free all available per cpu objects back
1881 * to the page freelist while it is still frozen. Leave the
1882 * last one.
1883 *
1884 * There is no need to take the list->lock because the page
1885 * is still frozen.
1886 */
1887 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1888 void *prior;
1889 unsigned long counters;
1890
1891 do {
1892 prior = page->freelist;
1893 counters = page->counters;
1894 set_freepointer(s, freelist, prior);
1895 new.counters = counters;
1896 new.inuse--;
a0132ac0 1897 VM_BUG_ON(!new.frozen);
2cfb7455 1898
1d07171c 1899 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1900 prior, counters,
1901 freelist, new.counters,
1902 "drain percpu freelist"));
1903
1904 freelist = nextfree;
1905 }
1906
894b8788 1907 /*
2cfb7455
CL
1908 * Stage two: Ensure that the page is unfrozen while the
1909 * list presence reflects the actual number of objects
1910 * during unfreeze.
1911 *
1912 * We setup the list membership and then perform a cmpxchg
1913 * with the count. If there is a mismatch then the page
1914 * is not unfrozen but the page is on the wrong list.
1915 *
1916 * Then we restart the process which may have to remove
1917 * the page from the list that we just put it on again
1918 * because the number of objects in the slab may have
1919 * changed.
894b8788 1920 */
2cfb7455 1921redo:
894b8788 1922
2cfb7455
CL
1923 old.freelist = page->freelist;
1924 old.counters = page->counters;
a0132ac0 1925 VM_BUG_ON(!old.frozen);
7c2e132c 1926
2cfb7455
CL
1927 /* Determine target state of the slab */
1928 new.counters = old.counters;
1929 if (freelist) {
1930 new.inuse--;
1931 set_freepointer(s, freelist, old.freelist);
1932 new.freelist = freelist;
1933 } else
1934 new.freelist = old.freelist;
1935
1936 new.frozen = 0;
1937
8a5b20ae 1938 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
1939 m = M_FREE;
1940 else if (new.freelist) {
1941 m = M_PARTIAL;
1942 if (!lock) {
1943 lock = 1;
1944 /*
1945 * Taking the spinlock removes the possiblity
1946 * that acquire_slab() will see a slab page that
1947 * is frozen
1948 */
1949 spin_lock(&n->list_lock);
1950 }
1951 } else {
1952 m = M_FULL;
1953 if (kmem_cache_debug(s) && !lock) {
1954 lock = 1;
1955 /*
1956 * This also ensures that the scanning of full
1957 * slabs from diagnostic functions will not see
1958 * any frozen slabs.
1959 */
1960 spin_lock(&n->list_lock);
1961 }
1962 }
1963
1964 if (l != m) {
1965
1966 if (l == M_PARTIAL)
1967
1968 remove_partial(n, page);
1969
1970 else if (l == M_FULL)
894b8788 1971
c65c1877 1972 remove_full(s, n, page);
2cfb7455
CL
1973
1974 if (m == M_PARTIAL) {
1975
1976 add_partial(n, page, tail);
136333d1 1977 stat(s, tail);
2cfb7455
CL
1978
1979 } else if (m == M_FULL) {
894b8788 1980
2cfb7455
CL
1981 stat(s, DEACTIVATE_FULL);
1982 add_full(s, n, page);
1983
1984 }
1985 }
1986
1987 l = m;
1d07171c 1988 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
1989 old.freelist, old.counters,
1990 new.freelist, new.counters,
1991 "unfreezing slab"))
1992 goto redo;
1993
2cfb7455
CL
1994 if (lock)
1995 spin_unlock(&n->list_lock);
1996
1997 if (m == M_FREE) {
1998 stat(s, DEACTIVATE_EMPTY);
1999 discard_slab(s, page);
2000 stat(s, FREE_SLAB);
894b8788 2001 }
81819f0f
CL
2002}
2003
d24ac77f
JK
2004/*
2005 * Unfreeze all the cpu partial slabs.
2006 *
59a09917
CL
2007 * This function must be called with interrupts disabled
2008 * for the cpu using c (or some other guarantee must be there
2009 * to guarantee no concurrent accesses).
d24ac77f 2010 */
59a09917
CL
2011static void unfreeze_partials(struct kmem_cache *s,
2012 struct kmem_cache_cpu *c)
49e22585 2013{
345c905d 2014#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2015 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2016 struct page *page, *discard_page = NULL;
49e22585
CL
2017
2018 while ((page = c->partial)) {
49e22585
CL
2019 struct page new;
2020 struct page old;
2021
2022 c->partial = page->next;
43d77867
JK
2023
2024 n2 = get_node(s, page_to_nid(page));
2025 if (n != n2) {
2026 if (n)
2027 spin_unlock(&n->list_lock);
2028
2029 n = n2;
2030 spin_lock(&n->list_lock);
2031 }
49e22585
CL
2032
2033 do {
2034
2035 old.freelist = page->freelist;
2036 old.counters = page->counters;
a0132ac0 2037 VM_BUG_ON(!old.frozen);
49e22585
CL
2038
2039 new.counters = old.counters;
2040 new.freelist = old.freelist;
2041
2042 new.frozen = 0;
2043
d24ac77f 2044 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2045 old.freelist, old.counters,
2046 new.freelist, new.counters,
2047 "unfreezing slab"));
2048
8a5b20ae 2049 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2050 page->next = discard_page;
2051 discard_page = page;
43d77867
JK
2052 } else {
2053 add_partial(n, page, DEACTIVATE_TO_TAIL);
2054 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2055 }
2056 }
2057
2058 if (n)
2059 spin_unlock(&n->list_lock);
9ada1934
SL
2060
2061 while (discard_page) {
2062 page = discard_page;
2063 discard_page = discard_page->next;
2064
2065 stat(s, DEACTIVATE_EMPTY);
2066 discard_slab(s, page);
2067 stat(s, FREE_SLAB);
2068 }
345c905d 2069#endif
49e22585
CL
2070}
2071
2072/*
2073 * Put a page that was just frozen (in __slab_free) into a partial page
2074 * slot if available. This is done without interrupts disabled and without
2075 * preemption disabled. The cmpxchg is racy and may put the partial page
2076 * onto a random cpus partial slot.
2077 *
2078 * If we did not find a slot then simply move all the partials to the
2079 * per node partial list.
2080 */
633b0764 2081static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2082{
345c905d 2083#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2084 struct page *oldpage;
2085 int pages;
2086 int pobjects;
2087
d6e0b7fa 2088 preempt_disable();
49e22585
CL
2089 do {
2090 pages = 0;
2091 pobjects = 0;
2092 oldpage = this_cpu_read(s->cpu_slab->partial);
2093
2094 if (oldpage) {
2095 pobjects = oldpage->pobjects;
2096 pages = oldpage->pages;
2097 if (drain && pobjects > s->cpu_partial) {
2098 unsigned long flags;
2099 /*
2100 * partial array is full. Move the existing
2101 * set to the per node partial list.
2102 */
2103 local_irq_save(flags);
59a09917 2104 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2105 local_irq_restore(flags);
e24fc410 2106 oldpage = NULL;
49e22585
CL
2107 pobjects = 0;
2108 pages = 0;
8028dcea 2109 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2110 }
2111 }
2112
2113 pages++;
2114 pobjects += page->objects - page->inuse;
2115
2116 page->pages = pages;
2117 page->pobjects = pobjects;
2118 page->next = oldpage;
2119
d0e0ac97
CG
2120 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2121 != oldpage);
d6e0b7fa
VD
2122 if (unlikely(!s->cpu_partial)) {
2123 unsigned long flags;
2124
2125 local_irq_save(flags);
2126 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2127 local_irq_restore(flags);
2128 }
2129 preempt_enable();
345c905d 2130#endif
49e22585
CL
2131}
2132
dfb4f096 2133static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2134{
84e554e6 2135 stat(s, CPUSLAB_FLUSH);
c17dda40
CL
2136 deactivate_slab(s, c->page, c->freelist);
2137
2138 c->tid = next_tid(c->tid);
2139 c->page = NULL;
2140 c->freelist = NULL;
81819f0f
CL
2141}
2142
2143/*
2144 * Flush cpu slab.
6446faa2 2145 *
81819f0f
CL
2146 * Called from IPI handler with interrupts disabled.
2147 */
0c710013 2148static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2149{
9dfc6e68 2150 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2151
49e22585
CL
2152 if (likely(c)) {
2153 if (c->page)
2154 flush_slab(s, c);
2155
59a09917 2156 unfreeze_partials(s, c);
49e22585 2157 }
81819f0f
CL
2158}
2159
2160static void flush_cpu_slab(void *d)
2161{
2162 struct kmem_cache *s = d;
81819f0f 2163
dfb4f096 2164 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2165}
2166
a8364d55
GBY
2167static bool has_cpu_slab(int cpu, void *info)
2168{
2169 struct kmem_cache *s = info;
2170 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2171
02e1a9cd 2172 return c->page || c->partial;
a8364d55
GBY
2173}
2174
81819f0f
CL
2175static void flush_all(struct kmem_cache *s)
2176{
a8364d55 2177 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2178}
2179
dfb4f096
CL
2180/*
2181 * Check if the objects in a per cpu structure fit numa
2182 * locality expectations.
2183 */
57d437d2 2184static inline int node_match(struct page *page, int node)
dfb4f096
CL
2185{
2186#ifdef CONFIG_NUMA
4d7868e6 2187 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2188 return 0;
2189#endif
2190 return 1;
2191}
2192
9a02d699 2193#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2194static int count_free(struct page *page)
2195{
2196 return page->objects - page->inuse;
2197}
2198
9a02d699
DR
2199static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2200{
2201 return atomic_long_read(&n->total_objects);
2202}
2203#endif /* CONFIG_SLUB_DEBUG */
2204
2205#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2206static unsigned long count_partial(struct kmem_cache_node *n,
2207 int (*get_count)(struct page *))
2208{
2209 unsigned long flags;
2210 unsigned long x = 0;
2211 struct page *page;
2212
2213 spin_lock_irqsave(&n->list_lock, flags);
2214 list_for_each_entry(page, &n->partial, lru)
2215 x += get_count(page);
2216 spin_unlock_irqrestore(&n->list_lock, flags);
2217 return x;
2218}
9a02d699 2219#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2220
781b2ba6
PE
2221static noinline void
2222slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2223{
9a02d699
DR
2224#ifdef CONFIG_SLUB_DEBUG
2225 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2226 DEFAULT_RATELIMIT_BURST);
781b2ba6 2227 int node;
fa45dc25 2228 struct kmem_cache_node *n;
781b2ba6 2229
9a02d699
DR
2230 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2231 return;
2232
f9f58285 2233 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
781b2ba6 2234 nid, gfpflags);
f9f58285
FF
2235 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2236 s->name, s->object_size, s->size, oo_order(s->oo),
2237 oo_order(s->min));
781b2ba6 2238
3b0efdfa 2239 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2240 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2241 s->name);
fa5ec8a1 2242
fa45dc25 2243 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2244 unsigned long nr_slabs;
2245 unsigned long nr_objs;
2246 unsigned long nr_free;
2247
26c02cf0
AB
2248 nr_free = count_partial(n, count_free);
2249 nr_slabs = node_nr_slabs(n);
2250 nr_objs = node_nr_objs(n);
781b2ba6 2251
f9f58285 2252 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2253 node, nr_slabs, nr_objs, nr_free);
2254 }
9a02d699 2255#endif
781b2ba6
PE
2256}
2257
497b66f2
CL
2258static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2259 int node, struct kmem_cache_cpu **pc)
2260{
6faa6833 2261 void *freelist;
188fd063
CL
2262 struct kmem_cache_cpu *c = *pc;
2263 struct page *page;
497b66f2 2264
188fd063 2265 freelist = get_partial(s, flags, node, c);
497b66f2 2266
188fd063
CL
2267 if (freelist)
2268 return freelist;
2269
2270 page = new_slab(s, flags, node);
497b66f2 2271 if (page) {
7c8e0181 2272 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2273 if (c->page)
2274 flush_slab(s, c);
2275
2276 /*
2277 * No other reference to the page yet so we can
2278 * muck around with it freely without cmpxchg
2279 */
6faa6833 2280 freelist = page->freelist;
497b66f2
CL
2281 page->freelist = NULL;
2282
2283 stat(s, ALLOC_SLAB);
497b66f2
CL
2284 c->page = page;
2285 *pc = c;
2286 } else
6faa6833 2287 freelist = NULL;
497b66f2 2288
6faa6833 2289 return freelist;
497b66f2
CL
2290}
2291
072bb0aa
MG
2292static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2293{
2294 if (unlikely(PageSlabPfmemalloc(page)))
2295 return gfp_pfmemalloc_allowed(gfpflags);
2296
2297 return true;
2298}
2299
213eeb9f 2300/*
d0e0ac97
CG
2301 * Check the page->freelist of a page and either transfer the freelist to the
2302 * per cpu freelist or deactivate the page.
213eeb9f
CL
2303 *
2304 * The page is still frozen if the return value is not NULL.
2305 *
2306 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2307 *
2308 * This function must be called with interrupt disabled.
213eeb9f
CL
2309 */
2310static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2311{
2312 struct page new;
2313 unsigned long counters;
2314 void *freelist;
2315
2316 do {
2317 freelist = page->freelist;
2318 counters = page->counters;
6faa6833 2319
213eeb9f 2320 new.counters = counters;
a0132ac0 2321 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2322
2323 new.inuse = page->objects;
2324 new.frozen = freelist != NULL;
2325
d24ac77f 2326 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2327 freelist, counters,
2328 NULL, new.counters,
2329 "get_freelist"));
2330
2331 return freelist;
2332}
2333
81819f0f 2334/*
894b8788
CL
2335 * Slow path. The lockless freelist is empty or we need to perform
2336 * debugging duties.
2337 *
894b8788
CL
2338 * Processing is still very fast if new objects have been freed to the
2339 * regular freelist. In that case we simply take over the regular freelist
2340 * as the lockless freelist and zap the regular freelist.
81819f0f 2341 *
894b8788
CL
2342 * If that is not working then we fall back to the partial lists. We take the
2343 * first element of the freelist as the object to allocate now and move the
2344 * rest of the freelist to the lockless freelist.
81819f0f 2345 *
894b8788 2346 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2347 * we need to allocate a new slab. This is the slowest path since it involves
2348 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2349 *
2350 * Version of __slab_alloc to use when we know that interrupts are
2351 * already disabled (which is the case for bulk allocation).
81819f0f 2352 */
a380a3c7 2353static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2354 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2355{
6faa6833 2356 void *freelist;
f6e7def7 2357 struct page *page;
81819f0f 2358
f6e7def7
CL
2359 page = c->page;
2360 if (!page)
81819f0f 2361 goto new_slab;
49e22585 2362redo:
6faa6833 2363
57d437d2 2364 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2365 int searchnode = node;
2366
2367 if (node != NUMA_NO_NODE && !node_present_pages(node))
2368 searchnode = node_to_mem_node(node);
2369
2370 if (unlikely(!node_match(page, searchnode))) {
2371 stat(s, ALLOC_NODE_MISMATCH);
2372 deactivate_slab(s, page, c->freelist);
2373 c->page = NULL;
2374 c->freelist = NULL;
2375 goto new_slab;
2376 }
fc59c053 2377 }
6446faa2 2378
072bb0aa
MG
2379 /*
2380 * By rights, we should be searching for a slab page that was
2381 * PFMEMALLOC but right now, we are losing the pfmemalloc
2382 * information when the page leaves the per-cpu allocator
2383 */
2384 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2385 deactivate_slab(s, page, c->freelist);
2386 c->page = NULL;
2387 c->freelist = NULL;
2388 goto new_slab;
2389 }
2390
73736e03 2391 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2392 freelist = c->freelist;
2393 if (freelist)
73736e03 2394 goto load_freelist;
03e404af 2395
f6e7def7 2396 freelist = get_freelist(s, page);
6446faa2 2397
6faa6833 2398 if (!freelist) {
03e404af
CL
2399 c->page = NULL;
2400 stat(s, DEACTIVATE_BYPASS);
fc59c053 2401 goto new_slab;
03e404af 2402 }
6446faa2 2403
84e554e6 2404 stat(s, ALLOC_REFILL);
6446faa2 2405
894b8788 2406load_freelist:
507effea
CL
2407 /*
2408 * freelist is pointing to the list of objects to be used.
2409 * page is pointing to the page from which the objects are obtained.
2410 * That page must be frozen for per cpu allocations to work.
2411 */
a0132ac0 2412 VM_BUG_ON(!c->page->frozen);
6faa6833 2413 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2414 c->tid = next_tid(c->tid);
6faa6833 2415 return freelist;
81819f0f 2416
81819f0f 2417new_slab:
2cfb7455 2418
49e22585 2419 if (c->partial) {
f6e7def7
CL
2420 page = c->page = c->partial;
2421 c->partial = page->next;
49e22585
CL
2422 stat(s, CPU_PARTIAL_ALLOC);
2423 c->freelist = NULL;
2424 goto redo;
81819f0f
CL
2425 }
2426
188fd063 2427 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2428
f4697436 2429 if (unlikely(!freelist)) {
9a02d699 2430 slab_out_of_memory(s, gfpflags, node);
f4697436 2431 return NULL;
81819f0f 2432 }
2cfb7455 2433
f6e7def7 2434 page = c->page;
5091b74a 2435 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2436 goto load_freelist;
2cfb7455 2437
497b66f2 2438 /* Only entered in the debug case */
d0e0ac97
CG
2439 if (kmem_cache_debug(s) &&
2440 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2441 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2442
f6e7def7 2443 deactivate_slab(s, page, get_freepointer(s, freelist));
c17dda40
CL
2444 c->page = NULL;
2445 c->freelist = NULL;
6faa6833 2446 return freelist;
894b8788
CL
2447}
2448
a380a3c7
CL
2449/*
2450 * Another one that disabled interrupt and compensates for possible
2451 * cpu changes by refetching the per cpu area pointer.
2452 */
2453static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2454 unsigned long addr, struct kmem_cache_cpu *c)
2455{
2456 void *p;
2457 unsigned long flags;
2458
2459 local_irq_save(flags);
2460#ifdef CONFIG_PREEMPT
2461 /*
2462 * We may have been preempted and rescheduled on a different
2463 * cpu before disabling interrupts. Need to reload cpu area
2464 * pointer.
2465 */
2466 c = this_cpu_ptr(s->cpu_slab);
2467#endif
2468
2469 p = ___slab_alloc(s, gfpflags, node, addr, c);
2470 local_irq_restore(flags);
2471 return p;
2472}
2473
894b8788
CL
2474/*
2475 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2476 * have the fastpath folded into their functions. So no function call
2477 * overhead for requests that can be satisfied on the fastpath.
2478 *
2479 * The fastpath works by first checking if the lockless freelist can be used.
2480 * If not then __slab_alloc is called for slow processing.
2481 *
2482 * Otherwise we can simply pick the next object from the lockless free list.
2483 */
2b847c3c 2484static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2485 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2486{
03ec0ed5 2487 void *object;
dfb4f096 2488 struct kmem_cache_cpu *c;
57d437d2 2489 struct page *page;
8a5ec0ba 2490 unsigned long tid;
1f84260c 2491
8135be5a
VD
2492 s = slab_pre_alloc_hook(s, gfpflags);
2493 if (!s)
773ff60e 2494 return NULL;
8a5ec0ba 2495redo:
8a5ec0ba
CL
2496 /*
2497 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2498 * enabled. We may switch back and forth between cpus while
2499 * reading from one cpu area. That does not matter as long
2500 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2501 *
9aabf810
JK
2502 * We should guarantee that tid and kmem_cache are retrieved on
2503 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2504 * to check if it is matched or not.
8a5ec0ba 2505 */
9aabf810
JK
2506 do {
2507 tid = this_cpu_read(s->cpu_slab->tid);
2508 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2509 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2510 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2511
2512 /*
2513 * Irqless object alloc/free algorithm used here depends on sequence
2514 * of fetching cpu_slab's data. tid should be fetched before anything
2515 * on c to guarantee that object and page associated with previous tid
2516 * won't be used with current tid. If we fetch tid first, object and
2517 * page could be one associated with next tid and our alloc/free
2518 * request will be failed. In this case, we will retry. So, no problem.
2519 */
2520 barrier();
8a5ec0ba 2521
8a5ec0ba
CL
2522 /*
2523 * The transaction ids are globally unique per cpu and per operation on
2524 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2525 * occurs on the right processor and that there was no operation on the
2526 * linked list in between.
2527 */
8a5ec0ba 2528
9dfc6e68 2529 object = c->freelist;
57d437d2 2530 page = c->page;
8eae1492 2531 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2532 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2533 stat(s, ALLOC_SLOWPATH);
2534 } else {
0ad9500e
ED
2535 void *next_object = get_freepointer_safe(s, object);
2536
8a5ec0ba 2537 /*
25985edc 2538 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2539 * operation and if we are on the right processor.
2540 *
d0e0ac97
CG
2541 * The cmpxchg does the following atomically (without lock
2542 * semantics!)
8a5ec0ba
CL
2543 * 1. Relocate first pointer to the current per cpu area.
2544 * 2. Verify that tid and freelist have not been changed
2545 * 3. If they were not changed replace tid and freelist
2546 *
d0e0ac97
CG
2547 * Since this is without lock semantics the protection is only
2548 * against code executing on this cpu *not* from access by
2549 * other cpus.
8a5ec0ba 2550 */
933393f5 2551 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2552 s->cpu_slab->freelist, s->cpu_slab->tid,
2553 object, tid,
0ad9500e 2554 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2555
2556 note_cmpxchg_failure("slab_alloc", s, tid);
2557 goto redo;
2558 }
0ad9500e 2559 prefetch_freepointer(s, next_object);
84e554e6 2560 stat(s, ALLOC_FASTPATH);
894b8788 2561 }
8a5ec0ba 2562
74e2134f 2563 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2564 memset(object, 0, s->object_size);
d07dbea4 2565
03ec0ed5 2566 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2567
894b8788 2568 return object;
81819f0f
CL
2569}
2570
2b847c3c
EG
2571static __always_inline void *slab_alloc(struct kmem_cache *s,
2572 gfp_t gfpflags, unsigned long addr)
2573{
2574 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2575}
2576
81819f0f
CL
2577void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2578{
2b847c3c 2579 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2580
d0e0ac97
CG
2581 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2582 s->size, gfpflags);
5b882be4
EGM
2583
2584 return ret;
81819f0f
CL
2585}
2586EXPORT_SYMBOL(kmem_cache_alloc);
2587
0f24f128 2588#ifdef CONFIG_TRACING
4a92379b
RK
2589void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2590{
2b847c3c 2591 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2592 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
0316bec2 2593 kasan_kmalloc(s, ret, size);
4a92379b
RK
2594 return ret;
2595}
2596EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2597#endif
2598
81819f0f
CL
2599#ifdef CONFIG_NUMA
2600void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2601{
2b847c3c 2602 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2603
ca2b84cb 2604 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2605 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2606
2607 return ret;
81819f0f
CL
2608}
2609EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2610
0f24f128 2611#ifdef CONFIG_TRACING
4a92379b 2612void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2613 gfp_t gfpflags,
4a92379b 2614 int node, size_t size)
5b882be4 2615{
2b847c3c 2616 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2617
2618 trace_kmalloc_node(_RET_IP_, ret,
2619 size, s->size, gfpflags, node);
0316bec2
AR
2620
2621 kasan_kmalloc(s, ret, size);
4a92379b 2622 return ret;
5b882be4 2623}
4a92379b 2624EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2625#endif
5d1f57e4 2626#endif
5b882be4 2627
81819f0f 2628/*
94e4d712 2629 * Slow path handling. This may still be called frequently since objects
894b8788 2630 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2631 *
894b8788
CL
2632 * So we still attempt to reduce cache line usage. Just take the slab
2633 * lock and free the item. If there is no additional partial page
2634 * handling required then we can return immediately.
81819f0f 2635 */
894b8788 2636static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2637 void *head, void *tail, int cnt,
2638 unsigned long addr)
2639
81819f0f
CL
2640{
2641 void *prior;
2cfb7455 2642 int was_frozen;
2cfb7455
CL
2643 struct page new;
2644 unsigned long counters;
2645 struct kmem_cache_node *n = NULL;
61728d1e 2646 unsigned long uninitialized_var(flags);
81819f0f 2647
8a5ec0ba 2648 stat(s, FREE_SLOWPATH);
81819f0f 2649
19c7ff9e 2650 if (kmem_cache_debug(s) &&
81084651
JDB
2651 !(n = free_debug_processing(s, page, head, tail, cnt,
2652 addr, &flags)))
80f08c19 2653 return;
6446faa2 2654
2cfb7455 2655 do {
837d678d
JK
2656 if (unlikely(n)) {
2657 spin_unlock_irqrestore(&n->list_lock, flags);
2658 n = NULL;
2659 }
2cfb7455
CL
2660 prior = page->freelist;
2661 counters = page->counters;
81084651 2662 set_freepointer(s, tail, prior);
2cfb7455
CL
2663 new.counters = counters;
2664 was_frozen = new.frozen;
81084651 2665 new.inuse -= cnt;
837d678d 2666 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2667
c65c1877 2668 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2669
2670 /*
d0e0ac97
CG
2671 * Slab was on no list before and will be
2672 * partially empty
2673 * We can defer the list move and instead
2674 * freeze it.
49e22585
CL
2675 */
2676 new.frozen = 1;
2677
c65c1877 2678 } else { /* Needs to be taken off a list */
49e22585 2679
b455def2 2680 n = get_node(s, page_to_nid(page));
49e22585
CL
2681 /*
2682 * Speculatively acquire the list_lock.
2683 * If the cmpxchg does not succeed then we may
2684 * drop the list_lock without any processing.
2685 *
2686 * Otherwise the list_lock will synchronize with
2687 * other processors updating the list of slabs.
2688 */
2689 spin_lock_irqsave(&n->list_lock, flags);
2690
2691 }
2cfb7455 2692 }
81819f0f 2693
2cfb7455
CL
2694 } while (!cmpxchg_double_slab(s, page,
2695 prior, counters,
81084651 2696 head, new.counters,
2cfb7455 2697 "__slab_free"));
81819f0f 2698
2cfb7455 2699 if (likely(!n)) {
49e22585
CL
2700
2701 /*
2702 * If we just froze the page then put it onto the
2703 * per cpu partial list.
2704 */
8028dcea 2705 if (new.frozen && !was_frozen) {
49e22585 2706 put_cpu_partial(s, page, 1);
8028dcea
AS
2707 stat(s, CPU_PARTIAL_FREE);
2708 }
49e22585 2709 /*
2cfb7455
CL
2710 * The list lock was not taken therefore no list
2711 * activity can be necessary.
2712 */
b455def2
L
2713 if (was_frozen)
2714 stat(s, FREE_FROZEN);
2715 return;
2716 }
81819f0f 2717
8a5b20ae 2718 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2719 goto slab_empty;
2720
81819f0f 2721 /*
837d678d
JK
2722 * Objects left in the slab. If it was not on the partial list before
2723 * then add it.
81819f0f 2724 */
345c905d
JK
2725 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2726 if (kmem_cache_debug(s))
c65c1877 2727 remove_full(s, n, page);
837d678d
JK
2728 add_partial(n, page, DEACTIVATE_TO_TAIL);
2729 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2730 }
80f08c19 2731 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2732 return;
2733
2734slab_empty:
a973e9dd 2735 if (prior) {
81819f0f 2736 /*
6fbabb20 2737 * Slab on the partial list.
81819f0f 2738 */
5cc6eee8 2739 remove_partial(n, page);
84e554e6 2740 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2741 } else {
6fbabb20 2742 /* Slab must be on the full list */
c65c1877
PZ
2743 remove_full(s, n, page);
2744 }
2cfb7455 2745
80f08c19 2746 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2747 stat(s, FREE_SLAB);
81819f0f 2748 discard_slab(s, page);
81819f0f
CL
2749}
2750
894b8788
CL
2751/*
2752 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2753 * can perform fastpath freeing without additional function calls.
2754 *
2755 * The fastpath is only possible if we are freeing to the current cpu slab
2756 * of this processor. This typically the case if we have just allocated
2757 * the item before.
2758 *
2759 * If fastpath is not possible then fall back to __slab_free where we deal
2760 * with all sorts of special processing.
81084651
JDB
2761 *
2762 * Bulk free of a freelist with several objects (all pointing to the
2763 * same page) possible by specifying head and tail ptr, plus objects
2764 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2765 */
81084651
JDB
2766static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2767 void *head, void *tail, int cnt,
2768 unsigned long addr)
894b8788 2769{
81084651 2770 void *tail_obj = tail ? : head;
dfb4f096 2771 struct kmem_cache_cpu *c;
8a5ec0ba 2772 unsigned long tid;
1f84260c 2773
81084651 2774 slab_free_freelist_hook(s, head, tail);
c016b0bd 2775
8a5ec0ba
CL
2776redo:
2777 /*
2778 * Determine the currently cpus per cpu slab.
2779 * The cpu may change afterward. However that does not matter since
2780 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2781 * during the cmpxchg then the free will succeed.
8a5ec0ba 2782 */
9aabf810
JK
2783 do {
2784 tid = this_cpu_read(s->cpu_slab->tid);
2785 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2786 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2787 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2788
9aabf810
JK
2789 /* Same with comment on barrier() in slab_alloc_node() */
2790 barrier();
c016b0bd 2791
442b06bc 2792 if (likely(page == c->page)) {
81084651 2793 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2794
933393f5 2795 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2796 s->cpu_slab->freelist, s->cpu_slab->tid,
2797 c->freelist, tid,
81084651 2798 head, next_tid(tid)))) {
8a5ec0ba
CL
2799
2800 note_cmpxchg_failure("slab_free", s, tid);
2801 goto redo;
2802 }
84e554e6 2803 stat(s, FREE_FASTPATH);
894b8788 2804 } else
81084651 2805 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2806
894b8788
CL
2807}
2808
81819f0f
CL
2809void kmem_cache_free(struct kmem_cache *s, void *x)
2810{
b9ce5ef4
GC
2811 s = cache_from_obj(s, x);
2812 if (!s)
79576102 2813 return;
81084651 2814 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2815 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2816}
2817EXPORT_SYMBOL(kmem_cache_free);
2818
d0ecd894 2819struct detached_freelist {
fbd02630 2820 struct page *page;
d0ecd894
JDB
2821 void *tail;
2822 void *freelist;
2823 int cnt;
2824};
fbd02630 2825
d0ecd894
JDB
2826/*
2827 * This function progressively scans the array with free objects (with
2828 * a limited look ahead) and extract objects belonging to the same
2829 * page. It builds a detached freelist directly within the given
2830 * page/objects. This can happen without any need for
2831 * synchronization, because the objects are owned by running process.
2832 * The freelist is build up as a single linked list in the objects.
2833 * The idea is, that this detached freelist can then be bulk
2834 * transferred to the real freelist(s), but only requiring a single
2835 * synchronization primitive. Look ahead in the array is limited due
2836 * to performance reasons.
2837 */
2838static int build_detached_freelist(struct kmem_cache *s, size_t size,
2839 void **p, struct detached_freelist *df)
2840{
2841 size_t first_skipped_index = 0;
2842 int lookahead = 3;
2843 void *object;
fbd02630 2844
d0ecd894
JDB
2845 /* Always re-init detached_freelist */
2846 df->page = NULL;
fbd02630 2847
d0ecd894
JDB
2848 do {
2849 object = p[--size];
2850 } while (!object && size);
3eed034d 2851
d0ecd894
JDB
2852 if (!object)
2853 return 0;
fbd02630 2854
d0ecd894
JDB
2855 /* Start new detached freelist */
2856 set_freepointer(s, object, NULL);
2857 df->page = virt_to_head_page(object);
2858 df->tail = object;
2859 df->freelist = object;
2860 p[size] = NULL; /* mark object processed */
2861 df->cnt = 1;
2862
2863 while (size) {
2864 object = p[--size];
2865 if (!object)
2866 continue; /* Skip processed objects */
2867
2868 /* df->page is always set at this point */
2869 if (df->page == virt_to_head_page(object)) {
2870 /* Opportunity build freelist */
2871 set_freepointer(s, object, df->freelist);
2872 df->freelist = object;
2873 df->cnt++;
2874 p[size] = NULL; /* mark object processed */
2875
2876 continue;
fbd02630 2877 }
d0ecd894
JDB
2878
2879 /* Limit look ahead search */
2880 if (!--lookahead)
2881 break;
2882
2883 if (!first_skipped_index)
2884 first_skipped_index = size + 1;
fbd02630 2885 }
d0ecd894
JDB
2886
2887 return first_skipped_index;
2888}
2889
2890
2891/* Note that interrupts must be enabled when calling this function. */
03374518 2892void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
d0ecd894
JDB
2893{
2894 if (WARN_ON(!size))
2895 return;
2896
2897 do {
2898 struct detached_freelist df;
03374518
JDB
2899 struct kmem_cache *s;
2900
2901 /* Support for memcg */
2902 s = cache_from_obj(orig_s, p[size - 1]);
d0ecd894
JDB
2903
2904 size = build_detached_freelist(s, size, p, &df);
2905 if (unlikely(!df.page))
2906 continue;
2907
2908 slab_free(s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
2909 } while (likely(size));
484748f0
CL
2910}
2911EXPORT_SYMBOL(kmem_cache_free_bulk);
2912
994eb764 2913/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
2914int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2915 void **p)
484748f0 2916{
994eb764
JDB
2917 struct kmem_cache_cpu *c;
2918 int i;
2919
03ec0ed5
JDB
2920 /* memcg and kmem_cache debug support */
2921 s = slab_pre_alloc_hook(s, flags);
2922 if (unlikely(!s))
2923 return false;
994eb764
JDB
2924 /*
2925 * Drain objects in the per cpu slab, while disabling local
2926 * IRQs, which protects against PREEMPT and interrupts
2927 * handlers invoking normal fastpath.
2928 */
2929 local_irq_disable();
2930 c = this_cpu_ptr(s->cpu_slab);
2931
2932 for (i = 0; i < size; i++) {
2933 void *object = c->freelist;
2934
ebe909e0 2935 if (unlikely(!object)) {
ebe909e0
JDB
2936 /*
2937 * Invoking slow path likely have side-effect
2938 * of re-populating per CPU c->freelist
2939 */
87098373 2940 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 2941 _RET_IP_, c);
87098373
CL
2942 if (unlikely(!p[i]))
2943 goto error;
2944
ebe909e0
JDB
2945 c = this_cpu_ptr(s->cpu_slab);
2946 continue; /* goto for-loop */
2947 }
994eb764
JDB
2948 c->freelist = get_freepointer(s, object);
2949 p[i] = object;
2950 }
2951 c->tid = next_tid(c->tid);
2952 local_irq_enable();
2953
2954 /* Clear memory outside IRQ disabled fastpath loop */
2955 if (unlikely(flags & __GFP_ZERO)) {
2956 int j;
2957
2958 for (j = 0; j < i; j++)
2959 memset(p[j], 0, s->object_size);
2960 }
2961
03ec0ed5
JDB
2962 /* memcg and kmem_cache debug support */
2963 slab_post_alloc_hook(s, flags, size, p);
865762a8 2964 return i;
87098373 2965error:
87098373 2966 local_irq_enable();
03ec0ed5
JDB
2967 slab_post_alloc_hook(s, flags, i, p);
2968 __kmem_cache_free_bulk(s, i, p);
865762a8 2969 return 0;
484748f0
CL
2970}
2971EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2972
2973
81819f0f 2974/*
672bba3a
CL
2975 * Object placement in a slab is made very easy because we always start at
2976 * offset 0. If we tune the size of the object to the alignment then we can
2977 * get the required alignment by putting one properly sized object after
2978 * another.
81819f0f
CL
2979 *
2980 * Notice that the allocation order determines the sizes of the per cpu
2981 * caches. Each processor has always one slab available for allocations.
2982 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2983 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2984 * locking overhead.
81819f0f
CL
2985 */
2986
2987/*
2988 * Mininum / Maximum order of slab pages. This influences locking overhead
2989 * and slab fragmentation. A higher order reduces the number of partial slabs
2990 * and increases the number of allocations possible without having to
2991 * take the list_lock.
2992 */
2993static int slub_min_order;
114e9e89 2994static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2995static int slub_min_objects;
81819f0f 2996
81819f0f
CL
2997/*
2998 * Calculate the order of allocation given an slab object size.
2999 *
672bba3a
CL
3000 * The order of allocation has significant impact on performance and other
3001 * system components. Generally order 0 allocations should be preferred since
3002 * order 0 does not cause fragmentation in the page allocator. Larger objects
3003 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3004 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3005 * would be wasted.
3006 *
3007 * In order to reach satisfactory performance we must ensure that a minimum
3008 * number of objects is in one slab. Otherwise we may generate too much
3009 * activity on the partial lists which requires taking the list_lock. This is
3010 * less a concern for large slabs though which are rarely used.
81819f0f 3011 *
672bba3a
CL
3012 * slub_max_order specifies the order where we begin to stop considering the
3013 * number of objects in a slab as critical. If we reach slub_max_order then
3014 * we try to keep the page order as low as possible. So we accept more waste
3015 * of space in favor of a small page order.
81819f0f 3016 *
672bba3a
CL
3017 * Higher order allocations also allow the placement of more objects in a
3018 * slab and thereby reduce object handling overhead. If the user has
3019 * requested a higher mininum order then we start with that one instead of
3020 * the smallest order which will fit the object.
81819f0f 3021 */
5e6d444e 3022static inline int slab_order(int size, int min_objects,
ab9a0f19 3023 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3024{
3025 int order;
3026 int rem;
6300ea75 3027 int min_order = slub_min_order;
81819f0f 3028
ab9a0f19 3029 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3030 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3031
9f835703 3032 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3033 order <= max_order; order++) {
81819f0f 3034
5e6d444e 3035 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3036
ab9a0f19 3037 rem = (slab_size - reserved) % size;
81819f0f 3038
5e6d444e 3039 if (rem <= slab_size / fract_leftover)
81819f0f 3040 break;
81819f0f 3041 }
672bba3a 3042
81819f0f
CL
3043 return order;
3044}
3045
ab9a0f19 3046static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3047{
3048 int order;
3049 int min_objects;
3050 int fraction;
e8120ff1 3051 int max_objects;
5e6d444e
CL
3052
3053 /*
3054 * Attempt to find best configuration for a slab. This
3055 * works by first attempting to generate a layout with
3056 * the best configuration and backing off gradually.
3057 *
422ff4d7 3058 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3059 * we reduce the minimum objects required in a slab.
3060 */
3061 min_objects = slub_min_objects;
9b2cd506
CL
3062 if (!min_objects)
3063 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3064 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3065 min_objects = min(min_objects, max_objects);
3066
5e6d444e 3067 while (min_objects > 1) {
c124f5b5 3068 fraction = 16;
5e6d444e
CL
3069 while (fraction >= 4) {
3070 order = slab_order(size, min_objects,
ab9a0f19 3071 slub_max_order, fraction, reserved);
5e6d444e
CL
3072 if (order <= slub_max_order)
3073 return order;
3074 fraction /= 2;
3075 }
5086c389 3076 min_objects--;
5e6d444e
CL
3077 }
3078
3079 /*
3080 * We were unable to place multiple objects in a slab. Now
3081 * lets see if we can place a single object there.
3082 */
ab9a0f19 3083 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3084 if (order <= slub_max_order)
3085 return order;
3086
3087 /*
3088 * Doh this slab cannot be placed using slub_max_order.
3089 */
ab9a0f19 3090 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3091 if (order < MAX_ORDER)
5e6d444e
CL
3092 return order;
3093 return -ENOSYS;
3094}
3095
5595cffc 3096static void
4053497d 3097init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3098{
3099 n->nr_partial = 0;
81819f0f
CL
3100 spin_lock_init(&n->list_lock);
3101 INIT_LIST_HEAD(&n->partial);
8ab1372f 3102#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3103 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3104 atomic_long_set(&n->total_objects, 0);
643b1138 3105 INIT_LIST_HEAD(&n->full);
8ab1372f 3106#endif
81819f0f
CL
3107}
3108
55136592 3109static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3110{
6c182dc0 3111 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3112 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3113
8a5ec0ba 3114 /*
d4d84fef
CM
3115 * Must align to double word boundary for the double cmpxchg
3116 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3117 */
d4d84fef
CM
3118 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3119 2 * sizeof(void *));
8a5ec0ba
CL
3120
3121 if (!s->cpu_slab)
3122 return 0;
3123
3124 init_kmem_cache_cpus(s);
4c93c355 3125
8a5ec0ba 3126 return 1;
4c93c355 3127}
4c93c355 3128
51df1142
CL
3129static struct kmem_cache *kmem_cache_node;
3130
81819f0f
CL
3131/*
3132 * No kmalloc_node yet so do it by hand. We know that this is the first
3133 * slab on the node for this slabcache. There are no concurrent accesses
3134 * possible.
3135 *
721ae22a
ZYW
3136 * Note that this function only works on the kmem_cache_node
3137 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3138 * memory on a fresh node that has no slab structures yet.
81819f0f 3139 */
55136592 3140static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3141{
3142 struct page *page;
3143 struct kmem_cache_node *n;
3144
51df1142 3145 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3146
51df1142 3147 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3148
3149 BUG_ON(!page);
a2f92ee7 3150 if (page_to_nid(page) != node) {
f9f58285
FF
3151 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3152 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3153 }
3154
81819f0f
CL
3155 n = page->freelist;
3156 BUG_ON(!n);
51df1142 3157 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3158 page->inuse = 1;
8cb0a506 3159 page->frozen = 0;
51df1142 3160 kmem_cache_node->node[node] = n;
8ab1372f 3161#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3162 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3163 init_tracking(kmem_cache_node, n);
8ab1372f 3164#endif
0316bec2 3165 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
4053497d 3166 init_kmem_cache_node(n);
51df1142 3167 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3168
67b6c900 3169 /*
1e4dd946
SR
3170 * No locks need to be taken here as it has just been
3171 * initialized and there is no concurrent access.
67b6c900 3172 */
1e4dd946 3173 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3174}
3175
3176static void free_kmem_cache_nodes(struct kmem_cache *s)
3177{
3178 int node;
fa45dc25 3179 struct kmem_cache_node *n;
81819f0f 3180
fa45dc25
CL
3181 for_each_kmem_cache_node(s, node, n) {
3182 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3183 s->node[node] = NULL;
3184 }
3185}
3186
55136592 3187static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3188{
3189 int node;
81819f0f 3190
f64dc58c 3191 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3192 struct kmem_cache_node *n;
3193
73367bd8 3194 if (slab_state == DOWN) {
55136592 3195 early_kmem_cache_node_alloc(node);
73367bd8
AD
3196 continue;
3197 }
51df1142 3198 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3199 GFP_KERNEL, node);
81819f0f 3200
73367bd8
AD
3201 if (!n) {
3202 free_kmem_cache_nodes(s);
3203 return 0;
81819f0f 3204 }
73367bd8 3205
81819f0f 3206 s->node[node] = n;
4053497d 3207 init_kmem_cache_node(n);
81819f0f
CL
3208 }
3209 return 1;
3210}
81819f0f 3211
c0bdb232 3212static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3213{
3214 if (min < MIN_PARTIAL)
3215 min = MIN_PARTIAL;
3216 else if (min > MAX_PARTIAL)
3217 min = MAX_PARTIAL;
3218 s->min_partial = min;
3219}
3220
81819f0f
CL
3221/*
3222 * calculate_sizes() determines the order and the distribution of data within
3223 * a slab object.
3224 */
06b285dc 3225static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3226{
3227 unsigned long flags = s->flags;
3b0efdfa 3228 unsigned long size = s->object_size;
834f3d11 3229 int order;
81819f0f 3230
d8b42bf5
CL
3231 /*
3232 * Round up object size to the next word boundary. We can only
3233 * place the free pointer at word boundaries and this determines
3234 * the possible location of the free pointer.
3235 */
3236 size = ALIGN(size, sizeof(void *));
3237
3238#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3239 /*
3240 * Determine if we can poison the object itself. If the user of
3241 * the slab may touch the object after free or before allocation
3242 * then we should never poison the object itself.
3243 */
3244 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 3245 !s->ctor)
81819f0f
CL
3246 s->flags |= __OBJECT_POISON;
3247 else
3248 s->flags &= ~__OBJECT_POISON;
3249
81819f0f
CL
3250
3251 /*
672bba3a 3252 * If we are Redzoning then check if there is some space between the
81819f0f 3253 * end of the object and the free pointer. If not then add an
672bba3a 3254 * additional word to have some bytes to store Redzone information.
81819f0f 3255 */
3b0efdfa 3256 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3257 size += sizeof(void *);
41ecc55b 3258#endif
81819f0f
CL
3259
3260 /*
672bba3a
CL
3261 * With that we have determined the number of bytes in actual use
3262 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3263 */
3264 s->inuse = size;
3265
3266 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 3267 s->ctor)) {
81819f0f
CL
3268 /*
3269 * Relocate free pointer after the object if it is not
3270 * permitted to overwrite the first word of the object on
3271 * kmem_cache_free.
3272 *
3273 * This is the case if we do RCU, have a constructor or
3274 * destructor or are poisoning the objects.
3275 */
3276 s->offset = size;
3277 size += sizeof(void *);
3278 }
3279
c12b3c62 3280#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3281 if (flags & SLAB_STORE_USER)
3282 /*
3283 * Need to store information about allocs and frees after
3284 * the object.
3285 */
3286 size += 2 * sizeof(struct track);
3287
be7b3fbc 3288 if (flags & SLAB_RED_ZONE)
81819f0f
CL
3289 /*
3290 * Add some empty padding so that we can catch
3291 * overwrites from earlier objects rather than let
3292 * tracking information or the free pointer be
0211a9c8 3293 * corrupted if a user writes before the start
81819f0f
CL
3294 * of the object.
3295 */
3296 size += sizeof(void *);
41ecc55b 3297#endif
672bba3a 3298
81819f0f
CL
3299 /*
3300 * SLUB stores one object immediately after another beginning from
3301 * offset 0. In order to align the objects we have to simply size
3302 * each object to conform to the alignment.
3303 */
45906855 3304 size = ALIGN(size, s->align);
81819f0f 3305 s->size = size;
06b285dc
CL
3306 if (forced_order >= 0)
3307 order = forced_order;
3308 else
ab9a0f19 3309 order = calculate_order(size, s->reserved);
81819f0f 3310
834f3d11 3311 if (order < 0)
81819f0f
CL
3312 return 0;
3313
b7a49f0d 3314 s->allocflags = 0;
834f3d11 3315 if (order)
b7a49f0d
CL
3316 s->allocflags |= __GFP_COMP;
3317
3318 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3319 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3320
3321 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3322 s->allocflags |= __GFP_RECLAIMABLE;
3323
81819f0f
CL
3324 /*
3325 * Determine the number of objects per slab
3326 */
ab9a0f19
LJ
3327 s->oo = oo_make(order, size, s->reserved);
3328 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3329 if (oo_objects(s->oo) > oo_objects(s->max))
3330 s->max = s->oo;
81819f0f 3331
834f3d11 3332 return !!oo_objects(s->oo);
81819f0f
CL
3333}
3334
8a13a4cc 3335static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3336{
8a13a4cc 3337 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3338 s->reserved = 0;
81819f0f 3339
da9a638c
LJ
3340 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3341 s->reserved = sizeof(struct rcu_head);
81819f0f 3342
06b285dc 3343 if (!calculate_sizes(s, -1))
81819f0f 3344 goto error;
3de47213
DR
3345 if (disable_higher_order_debug) {
3346 /*
3347 * Disable debugging flags that store metadata if the min slab
3348 * order increased.
3349 */
3b0efdfa 3350 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3351 s->flags &= ~DEBUG_METADATA_FLAGS;
3352 s->offset = 0;
3353 if (!calculate_sizes(s, -1))
3354 goto error;
3355 }
3356 }
81819f0f 3357
2565409f
HC
3358#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3359 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51
CL
3360 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3361 /* Enable fast mode */
3362 s->flags |= __CMPXCHG_DOUBLE;
3363#endif
3364
3b89d7d8
DR
3365 /*
3366 * The larger the object size is, the more pages we want on the partial
3367 * list to avoid pounding the page allocator excessively.
3368 */
49e22585
CL
3369 set_min_partial(s, ilog2(s->size) / 2);
3370
3371 /*
3372 * cpu_partial determined the maximum number of objects kept in the
3373 * per cpu partial lists of a processor.
3374 *
3375 * Per cpu partial lists mainly contain slabs that just have one
3376 * object freed. If they are used for allocation then they can be
3377 * filled up again with minimal effort. The slab will never hit the
3378 * per node partial lists and therefore no locking will be required.
3379 *
3380 * This setting also determines
3381 *
3382 * A) The number of objects from per cpu partial slabs dumped to the
3383 * per node list when we reach the limit.
9f264904 3384 * B) The number of objects in cpu partial slabs to extract from the
d0e0ac97
CG
3385 * per node list when we run out of per cpu objects. We only fetch
3386 * 50% to keep some capacity around for frees.
49e22585 3387 */
345c905d 3388 if (!kmem_cache_has_cpu_partial(s))
8f1e33da
CL
3389 s->cpu_partial = 0;
3390 else if (s->size >= PAGE_SIZE)
49e22585
CL
3391 s->cpu_partial = 2;
3392 else if (s->size >= 1024)
3393 s->cpu_partial = 6;
3394 else if (s->size >= 256)
3395 s->cpu_partial = 13;
3396 else
3397 s->cpu_partial = 30;
3398
81819f0f 3399#ifdef CONFIG_NUMA
e2cb96b7 3400 s->remote_node_defrag_ratio = 1000;
81819f0f 3401#endif
55136592 3402 if (!init_kmem_cache_nodes(s))
dfb4f096 3403 goto error;
81819f0f 3404
55136592 3405 if (alloc_kmem_cache_cpus(s))
278b1bb1 3406 return 0;
ff12059e 3407
4c93c355 3408 free_kmem_cache_nodes(s);
81819f0f
CL
3409error:
3410 if (flags & SLAB_PANIC)
3411 panic("Cannot create slab %s size=%lu realsize=%u "
3412 "order=%u offset=%u flags=%lx\n",
d0e0ac97
CG
3413 s->name, (unsigned long)s->size, s->size,
3414 oo_order(s->oo), s->offset, flags);
278b1bb1 3415 return -EINVAL;
81819f0f 3416}
81819f0f 3417
33b12c38
CL
3418static void list_slab_objects(struct kmem_cache *s, struct page *page,
3419 const char *text)
3420{
3421#ifdef CONFIG_SLUB_DEBUG
3422 void *addr = page_address(page);
3423 void *p;
a5dd5c11
NK
3424 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3425 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3426 if (!map)
3427 return;
945cf2b6 3428 slab_err(s, page, text, s->name);
33b12c38 3429 slab_lock(page);
33b12c38 3430
5f80b13a 3431 get_map(s, page, map);
33b12c38
CL
3432 for_each_object(p, s, addr, page->objects) {
3433
3434 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3435 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3436 print_tracking(s, p);
3437 }
3438 }
3439 slab_unlock(page);
bbd7d57b 3440 kfree(map);
33b12c38
CL
3441#endif
3442}
3443
81819f0f 3444/*
599870b1 3445 * Attempt to free all partial slabs on a node.
69cb8e6b
CL
3446 * This is called from kmem_cache_close(). We must be the last thread
3447 * using the cache and therefore we do not need to lock anymore.
81819f0f 3448 */
599870b1 3449static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3450{
81819f0f
CL
3451 struct page *page, *h;
3452
33b12c38 3453 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3454 if (!page->inuse) {
1e4dd946 3455 __remove_partial(n, page);
81819f0f 3456 discard_slab(s, page);
33b12c38
CL
3457 } else {
3458 list_slab_objects(s, page,
945cf2b6 3459 "Objects remaining in %s on kmem_cache_close()");
599870b1 3460 }
33b12c38 3461 }
81819f0f
CL
3462}
3463
3464/*
672bba3a 3465 * Release all resources used by a slab cache.
81819f0f 3466 */
0c710013 3467static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
3468{
3469 int node;
fa45dc25 3470 struct kmem_cache_node *n;
81819f0f
CL
3471
3472 flush_all(s);
81819f0f 3473 /* Attempt to free all objects */
fa45dc25 3474 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3475 free_partial(s, n);
3476 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3477 return 1;
3478 }
945cf2b6 3479 free_percpu(s->cpu_slab);
81819f0f
CL
3480 free_kmem_cache_nodes(s);
3481 return 0;
3482}
3483
945cf2b6 3484int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f 3485{
41a21285 3486 return kmem_cache_close(s);
81819f0f 3487}
81819f0f
CL
3488
3489/********************************************************************
3490 * Kmalloc subsystem
3491 *******************************************************************/
3492
81819f0f
CL
3493static int __init setup_slub_min_order(char *str)
3494{
06428780 3495 get_option(&str, &slub_min_order);
81819f0f
CL
3496
3497 return 1;
3498}
3499
3500__setup("slub_min_order=", setup_slub_min_order);
3501
3502static int __init setup_slub_max_order(char *str)
3503{
06428780 3504 get_option(&str, &slub_max_order);
818cf590 3505 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3506
3507 return 1;
3508}
3509
3510__setup("slub_max_order=", setup_slub_max_order);
3511
3512static int __init setup_slub_min_objects(char *str)
3513{
06428780 3514 get_option(&str, &slub_min_objects);
81819f0f
CL
3515
3516 return 1;
3517}
3518
3519__setup("slub_min_objects=", setup_slub_min_objects);
3520
81819f0f
CL
3521void *__kmalloc(size_t size, gfp_t flags)
3522{
aadb4bc4 3523 struct kmem_cache *s;
5b882be4 3524 void *ret;
81819f0f 3525
95a05b42 3526 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3527 return kmalloc_large(size, flags);
aadb4bc4 3528
2c59dd65 3529 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3530
3531 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3532 return s;
3533
2b847c3c 3534 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3535
ca2b84cb 3536 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3537
0316bec2
AR
3538 kasan_kmalloc(s, ret, size);
3539
5b882be4 3540 return ret;
81819f0f
CL
3541}
3542EXPORT_SYMBOL(__kmalloc);
3543
5d1f57e4 3544#ifdef CONFIG_NUMA
f619cfe1
CL
3545static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3546{
b1eeab67 3547 struct page *page;
e4f7c0b4 3548 void *ptr = NULL;
f619cfe1 3549
52383431
VD
3550 flags |= __GFP_COMP | __GFP_NOTRACK;
3551 page = alloc_kmem_pages_node(node, flags, get_order(size));
f619cfe1 3552 if (page)
e4f7c0b4
CM
3553 ptr = page_address(page);
3554
d56791b3 3555 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3556 return ptr;
f619cfe1
CL
3557}
3558
81819f0f
CL
3559void *__kmalloc_node(size_t size, gfp_t flags, int node)
3560{
aadb4bc4 3561 struct kmem_cache *s;
5b882be4 3562 void *ret;
81819f0f 3563
95a05b42 3564 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3565 ret = kmalloc_large_node(size, flags, node);
3566
ca2b84cb
EGM
3567 trace_kmalloc_node(_RET_IP_, ret,
3568 size, PAGE_SIZE << get_order(size),
3569 flags, node);
5b882be4
EGM
3570
3571 return ret;
3572 }
aadb4bc4 3573
2c59dd65 3574 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3575
3576 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3577 return s;
3578
2b847c3c 3579 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3580
ca2b84cb 3581 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3582
0316bec2
AR
3583 kasan_kmalloc(s, ret, size);
3584
5b882be4 3585 return ret;
81819f0f
CL
3586}
3587EXPORT_SYMBOL(__kmalloc_node);
3588#endif
3589
0316bec2 3590static size_t __ksize(const void *object)
81819f0f 3591{
272c1d21 3592 struct page *page;
81819f0f 3593
ef8b4520 3594 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3595 return 0;
3596
294a80a8 3597 page = virt_to_head_page(object);
294a80a8 3598
76994412
PE
3599 if (unlikely(!PageSlab(page))) {
3600 WARN_ON(!PageCompound(page));
294a80a8 3601 return PAGE_SIZE << compound_order(page);
76994412 3602 }
81819f0f 3603
1b4f59e3 3604 return slab_ksize(page->slab_cache);
81819f0f 3605}
0316bec2
AR
3606
3607size_t ksize(const void *object)
3608{
3609 size_t size = __ksize(object);
3610 /* We assume that ksize callers could use whole allocated area,
3611 so we need unpoison this area. */
3612 kasan_krealloc(object, size);
3613 return size;
3614}
b1aabecd 3615EXPORT_SYMBOL(ksize);
81819f0f
CL
3616
3617void kfree(const void *x)
3618{
81819f0f 3619 struct page *page;
5bb983b0 3620 void *object = (void *)x;
81819f0f 3621
2121db74
PE
3622 trace_kfree(_RET_IP_, x);
3623
2408c550 3624 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3625 return;
3626
b49af68f 3627 page = virt_to_head_page(x);
aadb4bc4 3628 if (unlikely(!PageSlab(page))) {
0937502a 3629 BUG_ON(!PageCompound(page));
d56791b3 3630 kfree_hook(x);
52383431 3631 __free_kmem_pages(page, compound_order(page));
aadb4bc4
CL
3632 return;
3633 }
81084651 3634 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3635}
3636EXPORT_SYMBOL(kfree);
3637
832f37f5
VD
3638#define SHRINK_PROMOTE_MAX 32
3639
2086d26a 3640/*
832f37f5
VD
3641 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3642 * up most to the head of the partial lists. New allocations will then
3643 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3644 *
3645 * The slabs with the least items are placed last. This results in them
3646 * being allocated from last increasing the chance that the last objects
3647 * are freed in them.
2086d26a 3648 */
d6e0b7fa 3649int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
2086d26a
CL
3650{
3651 int node;
3652 int i;
3653 struct kmem_cache_node *n;
3654 struct page *page;
3655 struct page *t;
832f37f5
VD
3656 struct list_head discard;
3657 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3658 unsigned long flags;
ce3712d7 3659 int ret = 0;
2086d26a 3660
d6e0b7fa
VD
3661 if (deactivate) {
3662 /*
3663 * Disable empty slabs caching. Used to avoid pinning offline
3664 * memory cgroups by kmem pages that can be freed.
3665 */
3666 s->cpu_partial = 0;
3667 s->min_partial = 0;
3668
3669 /*
3670 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3671 * so we have to make sure the change is visible.
3672 */
3673 kick_all_cpus_sync();
3674 }
3675
2086d26a 3676 flush_all(s);
fa45dc25 3677 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3678 INIT_LIST_HEAD(&discard);
3679 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3680 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3681
3682 spin_lock_irqsave(&n->list_lock, flags);
3683
3684 /*
832f37f5 3685 * Build lists of slabs to discard or promote.
2086d26a 3686 *
672bba3a
CL
3687 * Note that concurrent frees may occur while we hold the
3688 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3689 */
3690 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3691 int free = page->objects - page->inuse;
3692
3693 /* Do not reread page->inuse */
3694 barrier();
3695
3696 /* We do not keep full slabs on the list */
3697 BUG_ON(free <= 0);
3698
3699 if (free == page->objects) {
3700 list_move(&page->lru, &discard);
69cb8e6b 3701 n->nr_partial--;
832f37f5
VD
3702 } else if (free <= SHRINK_PROMOTE_MAX)
3703 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3704 }
3705
2086d26a 3706 /*
832f37f5
VD
3707 * Promote the slabs filled up most to the head of the
3708 * partial list.
2086d26a 3709 */
832f37f5
VD
3710 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3711 list_splice(promote + i, &n->partial);
2086d26a 3712
2086d26a 3713 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3714
3715 /* Release empty slabs */
832f37f5 3716 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3717 discard_slab(s, page);
ce3712d7
VD
3718
3719 if (slabs_node(s, node))
3720 ret = 1;
2086d26a
CL
3721 }
3722
ce3712d7 3723 return ret;
2086d26a 3724}
2086d26a 3725
b9049e23
YG
3726static int slab_mem_going_offline_callback(void *arg)
3727{
3728 struct kmem_cache *s;
3729
18004c5d 3730 mutex_lock(&slab_mutex);
b9049e23 3731 list_for_each_entry(s, &slab_caches, list)
d6e0b7fa 3732 __kmem_cache_shrink(s, false);
18004c5d 3733 mutex_unlock(&slab_mutex);
b9049e23
YG
3734
3735 return 0;
3736}
3737
3738static void slab_mem_offline_callback(void *arg)
3739{
3740 struct kmem_cache_node *n;
3741 struct kmem_cache *s;
3742 struct memory_notify *marg = arg;
3743 int offline_node;
3744
b9d5ab25 3745 offline_node = marg->status_change_nid_normal;
b9049e23
YG
3746
3747 /*
3748 * If the node still has available memory. we need kmem_cache_node
3749 * for it yet.
3750 */
3751 if (offline_node < 0)
3752 return;
3753
18004c5d 3754 mutex_lock(&slab_mutex);
b9049e23
YG
3755 list_for_each_entry(s, &slab_caches, list) {
3756 n = get_node(s, offline_node);
3757 if (n) {
3758 /*
3759 * if n->nr_slabs > 0, slabs still exist on the node
3760 * that is going down. We were unable to free them,
c9404c9c 3761 * and offline_pages() function shouldn't call this
b9049e23
YG
3762 * callback. So, we must fail.
3763 */
0f389ec6 3764 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3765
3766 s->node[offline_node] = NULL;
8de66a0c 3767 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3768 }
3769 }
18004c5d 3770 mutex_unlock(&slab_mutex);
b9049e23
YG
3771}
3772
3773static int slab_mem_going_online_callback(void *arg)
3774{
3775 struct kmem_cache_node *n;
3776 struct kmem_cache *s;
3777 struct memory_notify *marg = arg;
b9d5ab25 3778 int nid = marg->status_change_nid_normal;
b9049e23
YG
3779 int ret = 0;
3780
3781 /*
3782 * If the node's memory is already available, then kmem_cache_node is
3783 * already created. Nothing to do.
3784 */
3785 if (nid < 0)
3786 return 0;
3787
3788 /*
0121c619 3789 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3790 * allocate a kmem_cache_node structure in order to bring the node
3791 * online.
3792 */
18004c5d 3793 mutex_lock(&slab_mutex);
b9049e23
YG
3794 list_for_each_entry(s, &slab_caches, list) {
3795 /*
3796 * XXX: kmem_cache_alloc_node will fallback to other nodes
3797 * since memory is not yet available from the node that
3798 * is brought up.
3799 */
8de66a0c 3800 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3801 if (!n) {
3802 ret = -ENOMEM;
3803 goto out;
3804 }
4053497d 3805 init_kmem_cache_node(n);
b9049e23
YG
3806 s->node[nid] = n;
3807 }
3808out:
18004c5d 3809 mutex_unlock(&slab_mutex);
b9049e23
YG
3810 return ret;
3811}
3812
3813static int slab_memory_callback(struct notifier_block *self,
3814 unsigned long action, void *arg)
3815{
3816 int ret = 0;
3817
3818 switch (action) {
3819 case MEM_GOING_ONLINE:
3820 ret = slab_mem_going_online_callback(arg);
3821 break;
3822 case MEM_GOING_OFFLINE:
3823 ret = slab_mem_going_offline_callback(arg);
3824 break;
3825 case MEM_OFFLINE:
3826 case MEM_CANCEL_ONLINE:
3827 slab_mem_offline_callback(arg);
3828 break;
3829 case MEM_ONLINE:
3830 case MEM_CANCEL_OFFLINE:
3831 break;
3832 }
dc19f9db
KH
3833 if (ret)
3834 ret = notifier_from_errno(ret);
3835 else
3836 ret = NOTIFY_OK;
b9049e23
YG
3837 return ret;
3838}
3839
3ac38faa
AM
3840static struct notifier_block slab_memory_callback_nb = {
3841 .notifier_call = slab_memory_callback,
3842 .priority = SLAB_CALLBACK_PRI,
3843};
b9049e23 3844
81819f0f
CL
3845/********************************************************************
3846 * Basic setup of slabs
3847 *******************************************************************/
3848
51df1142
CL
3849/*
3850 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
3851 * the page allocator. Allocate them properly then fix up the pointers
3852 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
3853 */
3854
dffb4d60 3855static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
3856{
3857 int node;
dffb4d60 3858 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 3859 struct kmem_cache_node *n;
51df1142 3860
dffb4d60 3861 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 3862
7d557b3c
GC
3863 /*
3864 * This runs very early, and only the boot processor is supposed to be
3865 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3866 * IPIs around.
3867 */
3868 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 3869 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
3870 struct page *p;
3871
fa45dc25
CL
3872 list_for_each_entry(p, &n->partial, lru)
3873 p->slab_cache = s;
51df1142 3874
607bf324 3875#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
3876 list_for_each_entry(p, &n->full, lru)
3877 p->slab_cache = s;
51df1142 3878#endif
51df1142 3879 }
f7ce3190 3880 slab_init_memcg_params(s);
dffb4d60
CL
3881 list_add(&s->list, &slab_caches);
3882 return s;
51df1142
CL
3883}
3884
81819f0f
CL
3885void __init kmem_cache_init(void)
3886{
dffb4d60
CL
3887 static __initdata struct kmem_cache boot_kmem_cache,
3888 boot_kmem_cache_node;
51df1142 3889
fc8d8620
SG
3890 if (debug_guardpage_minorder())
3891 slub_max_order = 0;
3892
dffb4d60
CL
3893 kmem_cache_node = &boot_kmem_cache_node;
3894 kmem_cache = &boot_kmem_cache;
51df1142 3895
dffb4d60
CL
3896 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3897 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 3898
3ac38faa 3899 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
3900
3901 /* Able to allocate the per node structures */
3902 slab_state = PARTIAL;
3903
dffb4d60
CL
3904 create_boot_cache(kmem_cache, "kmem_cache",
3905 offsetof(struct kmem_cache, node) +
3906 nr_node_ids * sizeof(struct kmem_cache_node *),
3907 SLAB_HWCACHE_ALIGN);
8a13a4cc 3908
dffb4d60 3909 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 3910
51df1142
CL
3911 /*
3912 * Allocate kmem_cache_node properly from the kmem_cache slab.
3913 * kmem_cache_node is separately allocated so no need to
3914 * update any list pointers.
3915 */
dffb4d60 3916 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
3917
3918 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 3919 setup_kmalloc_cache_index_table();
f97d5f63 3920 create_kmalloc_caches(0);
81819f0f
CL
3921
3922#ifdef CONFIG_SMP
3923 register_cpu_notifier(&slab_notifier);
9dfc6e68 3924#endif
81819f0f 3925
f9f58285 3926 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 3927 cache_line_size(),
81819f0f
CL
3928 slub_min_order, slub_max_order, slub_min_objects,
3929 nr_cpu_ids, nr_node_ids);
3930}
3931
7e85ee0c
PE
3932void __init kmem_cache_init_late(void)
3933{
7e85ee0c
PE
3934}
3935
2633d7a0 3936struct kmem_cache *
a44cb944
VD
3937__kmem_cache_alias(const char *name, size_t size, size_t align,
3938 unsigned long flags, void (*ctor)(void *))
81819f0f 3939{
426589f5 3940 struct kmem_cache *s, *c;
81819f0f 3941
a44cb944 3942 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3943 if (s) {
3944 s->refcount++;
84d0ddd6 3945
81819f0f
CL
3946 /*
3947 * Adjust the object sizes so that we clear
3948 * the complete object on kzalloc.
3949 */
3b0efdfa 3950 s->object_size = max(s->object_size, (int)size);
81819f0f 3951 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3952
426589f5 3953 for_each_memcg_cache(c, s) {
84d0ddd6
VD
3954 c->object_size = s->object_size;
3955 c->inuse = max_t(int, c->inuse,
3956 ALIGN(size, sizeof(void *)));
3957 }
3958
7b8f3b66 3959 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3960 s->refcount--;
cbb79694 3961 s = NULL;
7b8f3b66 3962 }
a0e1d1be 3963 }
6446faa2 3964
cbb79694
CL
3965 return s;
3966}
84c1cf62 3967
8a13a4cc 3968int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 3969{
aac3a166
PE
3970 int err;
3971
3972 err = kmem_cache_open(s, flags);
3973 if (err)
3974 return err;
20cea968 3975
45530c44
CL
3976 /* Mutex is not taken during early boot */
3977 if (slab_state <= UP)
3978 return 0;
3979
107dab5c 3980 memcg_propagate_slab_attrs(s);
aac3a166 3981 err = sysfs_slab_add(s);
aac3a166
PE
3982 if (err)
3983 kmem_cache_close(s);
20cea968 3984
aac3a166 3985 return err;
81819f0f 3986}
81819f0f 3987
81819f0f 3988#ifdef CONFIG_SMP
81819f0f 3989/*
672bba3a
CL
3990 * Use the cpu notifier to insure that the cpu slabs are flushed when
3991 * necessary.
81819f0f 3992 */
0db0628d 3993static int slab_cpuup_callback(struct notifier_block *nfb,
81819f0f
CL
3994 unsigned long action, void *hcpu)
3995{
3996 long cpu = (long)hcpu;
5b95a4ac
CL
3997 struct kmem_cache *s;
3998 unsigned long flags;
81819f0f
CL
3999
4000 switch (action) {
4001 case CPU_UP_CANCELED:
8bb78442 4002 case CPU_UP_CANCELED_FROZEN:
81819f0f 4003 case CPU_DEAD:
8bb78442 4004 case CPU_DEAD_FROZEN:
18004c5d 4005 mutex_lock(&slab_mutex);
5b95a4ac
CL
4006 list_for_each_entry(s, &slab_caches, list) {
4007 local_irq_save(flags);
4008 __flush_cpu_slab(s, cpu);
4009 local_irq_restore(flags);
4010 }
18004c5d 4011 mutex_unlock(&slab_mutex);
81819f0f
CL
4012 break;
4013 default:
4014 break;
4015 }
4016 return NOTIFY_OK;
4017}
4018
0db0628d 4019static struct notifier_block slab_notifier = {
3adbefee 4020 .notifier_call = slab_cpuup_callback
06428780 4021};
81819f0f
CL
4022
4023#endif
4024
ce71e27c 4025void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4026{
aadb4bc4 4027 struct kmem_cache *s;
94b528d0 4028 void *ret;
aadb4bc4 4029
95a05b42 4030 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4031 return kmalloc_large(size, gfpflags);
4032
2c59dd65 4033 s = kmalloc_slab(size, gfpflags);
81819f0f 4034
2408c550 4035 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4036 return s;
81819f0f 4037
2b847c3c 4038 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4039
25985edc 4040 /* Honor the call site pointer we received. */
ca2b84cb 4041 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4042
4043 return ret;
81819f0f
CL
4044}
4045
5d1f57e4 4046#ifdef CONFIG_NUMA
81819f0f 4047void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4048 int node, unsigned long caller)
81819f0f 4049{
aadb4bc4 4050 struct kmem_cache *s;
94b528d0 4051 void *ret;
aadb4bc4 4052
95a05b42 4053 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4054 ret = kmalloc_large_node(size, gfpflags, node);
4055
4056 trace_kmalloc_node(caller, ret,
4057 size, PAGE_SIZE << get_order(size),
4058 gfpflags, node);
4059
4060 return ret;
4061 }
eada35ef 4062
2c59dd65 4063 s = kmalloc_slab(size, gfpflags);
81819f0f 4064
2408c550 4065 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4066 return s;
81819f0f 4067
2b847c3c 4068 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4069
25985edc 4070 /* Honor the call site pointer we received. */
ca2b84cb 4071 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4072
4073 return ret;
81819f0f 4074}
5d1f57e4 4075#endif
81819f0f 4076
ab4d5ed5 4077#ifdef CONFIG_SYSFS
205ab99d
CL
4078static int count_inuse(struct page *page)
4079{
4080 return page->inuse;
4081}
4082
4083static int count_total(struct page *page)
4084{
4085 return page->objects;
4086}
ab4d5ed5 4087#endif
205ab99d 4088
ab4d5ed5 4089#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4090static int validate_slab(struct kmem_cache *s, struct page *page,
4091 unsigned long *map)
53e15af0
CL
4092{
4093 void *p;
a973e9dd 4094 void *addr = page_address(page);
53e15af0
CL
4095
4096 if (!check_slab(s, page) ||
4097 !on_freelist(s, page, NULL))
4098 return 0;
4099
4100 /* Now we know that a valid freelist exists */
39b26464 4101 bitmap_zero(map, page->objects);
53e15af0 4102
5f80b13a
CL
4103 get_map(s, page, map);
4104 for_each_object(p, s, addr, page->objects) {
4105 if (test_bit(slab_index(p, s, addr), map))
4106 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4107 return 0;
53e15af0
CL
4108 }
4109
224a88be 4110 for_each_object(p, s, addr, page->objects)
7656c72b 4111 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4112 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4113 return 0;
4114 return 1;
4115}
4116
434e245d
CL
4117static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4118 unsigned long *map)
53e15af0 4119{
881db7fb
CL
4120 slab_lock(page);
4121 validate_slab(s, page, map);
4122 slab_unlock(page);
53e15af0
CL
4123}
4124
434e245d
CL
4125static int validate_slab_node(struct kmem_cache *s,
4126 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4127{
4128 unsigned long count = 0;
4129 struct page *page;
4130 unsigned long flags;
4131
4132 spin_lock_irqsave(&n->list_lock, flags);
4133
4134 list_for_each_entry(page, &n->partial, lru) {
434e245d 4135 validate_slab_slab(s, page, map);
53e15af0
CL
4136 count++;
4137 }
4138 if (count != n->nr_partial)
f9f58285
FF
4139 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4140 s->name, count, n->nr_partial);
53e15af0
CL
4141
4142 if (!(s->flags & SLAB_STORE_USER))
4143 goto out;
4144
4145 list_for_each_entry(page, &n->full, lru) {
434e245d 4146 validate_slab_slab(s, page, map);
53e15af0
CL
4147 count++;
4148 }
4149 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4150 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4151 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4152
4153out:
4154 spin_unlock_irqrestore(&n->list_lock, flags);
4155 return count;
4156}
4157
434e245d 4158static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4159{
4160 int node;
4161 unsigned long count = 0;
205ab99d 4162 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4163 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4164 struct kmem_cache_node *n;
434e245d
CL
4165
4166 if (!map)
4167 return -ENOMEM;
53e15af0
CL
4168
4169 flush_all(s);
fa45dc25 4170 for_each_kmem_cache_node(s, node, n)
434e245d 4171 count += validate_slab_node(s, n, map);
434e245d 4172 kfree(map);
53e15af0
CL
4173 return count;
4174}
88a420e4 4175/*
672bba3a 4176 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4177 * and freed.
4178 */
4179
4180struct location {
4181 unsigned long count;
ce71e27c 4182 unsigned long addr;
45edfa58
CL
4183 long long sum_time;
4184 long min_time;
4185 long max_time;
4186 long min_pid;
4187 long max_pid;
174596a0 4188 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4189 nodemask_t nodes;
88a420e4
CL
4190};
4191
4192struct loc_track {
4193 unsigned long max;
4194 unsigned long count;
4195 struct location *loc;
4196};
4197
4198static void free_loc_track(struct loc_track *t)
4199{
4200 if (t->max)
4201 free_pages((unsigned long)t->loc,
4202 get_order(sizeof(struct location) * t->max));
4203}
4204
68dff6a9 4205static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4206{
4207 struct location *l;
4208 int order;
4209
88a420e4
CL
4210 order = get_order(sizeof(struct location) * max);
4211
68dff6a9 4212 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4213 if (!l)
4214 return 0;
4215
4216 if (t->count) {
4217 memcpy(l, t->loc, sizeof(struct location) * t->count);
4218 free_loc_track(t);
4219 }
4220 t->max = max;
4221 t->loc = l;
4222 return 1;
4223}
4224
4225static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4226 const struct track *track)
88a420e4
CL
4227{
4228 long start, end, pos;
4229 struct location *l;
ce71e27c 4230 unsigned long caddr;
45edfa58 4231 unsigned long age = jiffies - track->when;
88a420e4
CL
4232
4233 start = -1;
4234 end = t->count;
4235
4236 for ( ; ; ) {
4237 pos = start + (end - start + 1) / 2;
4238
4239 /*
4240 * There is nothing at "end". If we end up there
4241 * we need to add something to before end.
4242 */
4243 if (pos == end)
4244 break;
4245
4246 caddr = t->loc[pos].addr;
45edfa58
CL
4247 if (track->addr == caddr) {
4248
4249 l = &t->loc[pos];
4250 l->count++;
4251 if (track->when) {
4252 l->sum_time += age;
4253 if (age < l->min_time)
4254 l->min_time = age;
4255 if (age > l->max_time)
4256 l->max_time = age;
4257
4258 if (track->pid < l->min_pid)
4259 l->min_pid = track->pid;
4260 if (track->pid > l->max_pid)
4261 l->max_pid = track->pid;
4262
174596a0
RR
4263 cpumask_set_cpu(track->cpu,
4264 to_cpumask(l->cpus));
45edfa58
CL
4265 }
4266 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4267 return 1;
4268 }
4269
45edfa58 4270 if (track->addr < caddr)
88a420e4
CL
4271 end = pos;
4272 else
4273 start = pos;
4274 }
4275
4276 /*
672bba3a 4277 * Not found. Insert new tracking element.
88a420e4 4278 */
68dff6a9 4279 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4280 return 0;
4281
4282 l = t->loc + pos;
4283 if (pos < t->count)
4284 memmove(l + 1, l,
4285 (t->count - pos) * sizeof(struct location));
4286 t->count++;
4287 l->count = 1;
45edfa58
CL
4288 l->addr = track->addr;
4289 l->sum_time = age;
4290 l->min_time = age;
4291 l->max_time = age;
4292 l->min_pid = track->pid;
4293 l->max_pid = track->pid;
174596a0
RR
4294 cpumask_clear(to_cpumask(l->cpus));
4295 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4296 nodes_clear(l->nodes);
4297 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4298 return 1;
4299}
4300
4301static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4302 struct page *page, enum track_item alloc,
a5dd5c11 4303 unsigned long *map)
88a420e4 4304{
a973e9dd 4305 void *addr = page_address(page);
88a420e4
CL
4306 void *p;
4307
39b26464 4308 bitmap_zero(map, page->objects);
5f80b13a 4309 get_map(s, page, map);
88a420e4 4310
224a88be 4311 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4312 if (!test_bit(slab_index(p, s, addr), map))
4313 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4314}
4315
4316static int list_locations(struct kmem_cache *s, char *buf,
4317 enum track_item alloc)
4318{
e374d483 4319 int len = 0;
88a420e4 4320 unsigned long i;
68dff6a9 4321 struct loc_track t = { 0, 0, NULL };
88a420e4 4322 int node;
bbd7d57b
ED
4323 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4324 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4325 struct kmem_cache_node *n;
88a420e4 4326
bbd7d57b
ED
4327 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4328 GFP_TEMPORARY)) {
4329 kfree(map);
68dff6a9 4330 return sprintf(buf, "Out of memory\n");
bbd7d57b 4331 }
88a420e4
CL
4332 /* Push back cpu slabs */
4333 flush_all(s);
4334
fa45dc25 4335 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4336 unsigned long flags;
4337 struct page *page;
4338
9e86943b 4339 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4340 continue;
4341
4342 spin_lock_irqsave(&n->list_lock, flags);
4343 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4344 process_slab(&t, s, page, alloc, map);
88a420e4 4345 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4346 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4347 spin_unlock_irqrestore(&n->list_lock, flags);
4348 }
4349
4350 for (i = 0; i < t.count; i++) {
45edfa58 4351 struct location *l = &t.loc[i];
88a420e4 4352
9c246247 4353 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4354 break;
e374d483 4355 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4356
4357 if (l->addr)
62c70bce 4358 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4359 else
e374d483 4360 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4361
4362 if (l->sum_time != l->min_time) {
e374d483 4363 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4364 l->min_time,
4365 (long)div_u64(l->sum_time, l->count),
4366 l->max_time);
45edfa58 4367 } else
e374d483 4368 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4369 l->min_time);
4370
4371 if (l->min_pid != l->max_pid)
e374d483 4372 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4373 l->min_pid, l->max_pid);
4374 else
e374d483 4375 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4376 l->min_pid);
4377
174596a0
RR
4378 if (num_online_cpus() > 1 &&
4379 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4380 len < PAGE_SIZE - 60)
4381 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4382 " cpus=%*pbl",
4383 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4384
62bc62a8 4385 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4386 len < PAGE_SIZE - 60)
4387 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4388 " nodes=%*pbl",
4389 nodemask_pr_args(&l->nodes));
45edfa58 4390
e374d483 4391 len += sprintf(buf + len, "\n");
88a420e4
CL
4392 }
4393
4394 free_loc_track(&t);
bbd7d57b 4395 kfree(map);
88a420e4 4396 if (!t.count)
e374d483
HH
4397 len += sprintf(buf, "No data\n");
4398 return len;
88a420e4 4399}
ab4d5ed5 4400#endif
88a420e4 4401
a5a84755 4402#ifdef SLUB_RESILIENCY_TEST
c07b8183 4403static void __init resiliency_test(void)
a5a84755
CL
4404{
4405 u8 *p;
4406
95a05b42 4407 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4408
f9f58285
FF
4409 pr_err("SLUB resiliency testing\n");
4410 pr_err("-----------------------\n");
4411 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4412
4413 p = kzalloc(16, GFP_KERNEL);
4414 p[16] = 0x12;
f9f58285
FF
4415 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4416 p + 16);
a5a84755
CL
4417
4418 validate_slab_cache(kmalloc_caches[4]);
4419
4420 /* Hmmm... The next two are dangerous */
4421 p = kzalloc(32, GFP_KERNEL);
4422 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4423 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4424 p);
4425 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4426
4427 validate_slab_cache(kmalloc_caches[5]);
4428 p = kzalloc(64, GFP_KERNEL);
4429 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4430 *p = 0x56;
f9f58285
FF
4431 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4432 p);
4433 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4434 validate_slab_cache(kmalloc_caches[6]);
4435
f9f58285 4436 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4437 p = kzalloc(128, GFP_KERNEL);
4438 kfree(p);
4439 *p = 0x78;
f9f58285 4440 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4441 validate_slab_cache(kmalloc_caches[7]);
4442
4443 p = kzalloc(256, GFP_KERNEL);
4444 kfree(p);
4445 p[50] = 0x9a;
f9f58285 4446 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4447 validate_slab_cache(kmalloc_caches[8]);
4448
4449 p = kzalloc(512, GFP_KERNEL);
4450 kfree(p);
4451 p[512] = 0xab;
f9f58285 4452 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4453 validate_slab_cache(kmalloc_caches[9]);
4454}
4455#else
4456#ifdef CONFIG_SYSFS
4457static void resiliency_test(void) {};
4458#endif
4459#endif
4460
ab4d5ed5 4461#ifdef CONFIG_SYSFS
81819f0f 4462enum slab_stat_type {
205ab99d
CL
4463 SL_ALL, /* All slabs */
4464 SL_PARTIAL, /* Only partially allocated slabs */
4465 SL_CPU, /* Only slabs used for cpu caches */
4466 SL_OBJECTS, /* Determine allocated objects not slabs */
4467 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4468};
4469
205ab99d 4470#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4471#define SO_PARTIAL (1 << SL_PARTIAL)
4472#define SO_CPU (1 << SL_CPU)
4473#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4474#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4475
62e5c4b4
CG
4476static ssize_t show_slab_objects(struct kmem_cache *s,
4477 char *buf, unsigned long flags)
81819f0f
CL
4478{
4479 unsigned long total = 0;
81819f0f
CL
4480 int node;
4481 int x;
4482 unsigned long *nodes;
81819f0f 4483
e35e1a97 4484 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4485 if (!nodes)
4486 return -ENOMEM;
81819f0f 4487
205ab99d
CL
4488 if (flags & SO_CPU) {
4489 int cpu;
81819f0f 4490
205ab99d 4491 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4492 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4493 cpu);
ec3ab083 4494 int node;
49e22585 4495 struct page *page;
dfb4f096 4496
4db0c3c2 4497 page = READ_ONCE(c->page);
ec3ab083
CL
4498 if (!page)
4499 continue;
205ab99d 4500
ec3ab083
CL
4501 node = page_to_nid(page);
4502 if (flags & SO_TOTAL)
4503 x = page->objects;
4504 else if (flags & SO_OBJECTS)
4505 x = page->inuse;
4506 else
4507 x = 1;
49e22585 4508
ec3ab083
CL
4509 total += x;
4510 nodes[node] += x;
4511
4db0c3c2 4512 page = READ_ONCE(c->partial);
49e22585 4513 if (page) {
8afb1474
LZ
4514 node = page_to_nid(page);
4515 if (flags & SO_TOTAL)
4516 WARN_ON_ONCE(1);
4517 else if (flags & SO_OBJECTS)
4518 WARN_ON_ONCE(1);
4519 else
4520 x = page->pages;
bc6697d8
ED
4521 total += x;
4522 nodes[node] += x;
49e22585 4523 }
81819f0f
CL
4524 }
4525 }
4526
bfc8c901 4527 get_online_mems();
ab4d5ed5 4528#ifdef CONFIG_SLUB_DEBUG
205ab99d 4529 if (flags & SO_ALL) {
fa45dc25
CL
4530 struct kmem_cache_node *n;
4531
4532 for_each_kmem_cache_node(s, node, n) {
205ab99d 4533
d0e0ac97
CG
4534 if (flags & SO_TOTAL)
4535 x = atomic_long_read(&n->total_objects);
4536 else if (flags & SO_OBJECTS)
4537 x = atomic_long_read(&n->total_objects) -
4538 count_partial(n, count_free);
81819f0f 4539 else
205ab99d 4540 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4541 total += x;
4542 nodes[node] += x;
4543 }
4544
ab4d5ed5
CL
4545 } else
4546#endif
4547 if (flags & SO_PARTIAL) {
fa45dc25 4548 struct kmem_cache_node *n;
81819f0f 4549
fa45dc25 4550 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4551 if (flags & SO_TOTAL)
4552 x = count_partial(n, count_total);
4553 else if (flags & SO_OBJECTS)
4554 x = count_partial(n, count_inuse);
81819f0f 4555 else
205ab99d 4556 x = n->nr_partial;
81819f0f
CL
4557 total += x;
4558 nodes[node] += x;
4559 }
4560 }
81819f0f
CL
4561 x = sprintf(buf, "%lu", total);
4562#ifdef CONFIG_NUMA
fa45dc25 4563 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4564 if (nodes[node])
4565 x += sprintf(buf + x, " N%d=%lu",
4566 node, nodes[node]);
4567#endif
bfc8c901 4568 put_online_mems();
81819f0f
CL
4569 kfree(nodes);
4570 return x + sprintf(buf + x, "\n");
4571}
4572
ab4d5ed5 4573#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4574static int any_slab_objects(struct kmem_cache *s)
4575{
4576 int node;
fa45dc25 4577 struct kmem_cache_node *n;
81819f0f 4578
fa45dc25 4579 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4580 if (atomic_long_read(&n->total_objects))
81819f0f 4581 return 1;
fa45dc25 4582
81819f0f
CL
4583 return 0;
4584}
ab4d5ed5 4585#endif
81819f0f
CL
4586
4587#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4588#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4589
4590struct slab_attribute {
4591 struct attribute attr;
4592 ssize_t (*show)(struct kmem_cache *s, char *buf);
4593 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4594};
4595
4596#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4597 static struct slab_attribute _name##_attr = \
4598 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4599
4600#define SLAB_ATTR(_name) \
4601 static struct slab_attribute _name##_attr = \
ab067e99 4602 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4603
81819f0f
CL
4604static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4605{
4606 return sprintf(buf, "%d\n", s->size);
4607}
4608SLAB_ATTR_RO(slab_size);
4609
4610static ssize_t align_show(struct kmem_cache *s, char *buf)
4611{
4612 return sprintf(buf, "%d\n", s->align);
4613}
4614SLAB_ATTR_RO(align);
4615
4616static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4617{
3b0efdfa 4618 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4619}
4620SLAB_ATTR_RO(object_size);
4621
4622static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4623{
834f3d11 4624 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4625}
4626SLAB_ATTR_RO(objs_per_slab);
4627
06b285dc
CL
4628static ssize_t order_store(struct kmem_cache *s,
4629 const char *buf, size_t length)
4630{
0121c619
CL
4631 unsigned long order;
4632 int err;
4633
3dbb95f7 4634 err = kstrtoul(buf, 10, &order);
0121c619
CL
4635 if (err)
4636 return err;
06b285dc
CL
4637
4638 if (order > slub_max_order || order < slub_min_order)
4639 return -EINVAL;
4640
4641 calculate_sizes(s, order);
4642 return length;
4643}
4644
81819f0f
CL
4645static ssize_t order_show(struct kmem_cache *s, char *buf)
4646{
834f3d11 4647 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4648}
06b285dc 4649SLAB_ATTR(order);
81819f0f 4650
73d342b1
DR
4651static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4652{
4653 return sprintf(buf, "%lu\n", s->min_partial);
4654}
4655
4656static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4657 size_t length)
4658{
4659 unsigned long min;
4660 int err;
4661
3dbb95f7 4662 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4663 if (err)
4664 return err;
4665
c0bdb232 4666 set_min_partial(s, min);
73d342b1
DR
4667 return length;
4668}
4669SLAB_ATTR(min_partial);
4670
49e22585
CL
4671static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4672{
4673 return sprintf(buf, "%u\n", s->cpu_partial);
4674}
4675
4676static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4677 size_t length)
4678{
4679 unsigned long objects;
4680 int err;
4681
3dbb95f7 4682 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4683 if (err)
4684 return err;
345c905d 4685 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4686 return -EINVAL;
49e22585
CL
4687
4688 s->cpu_partial = objects;
4689 flush_all(s);
4690 return length;
4691}
4692SLAB_ATTR(cpu_partial);
4693
81819f0f
CL
4694static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4695{
62c70bce
JP
4696 if (!s->ctor)
4697 return 0;
4698 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4699}
4700SLAB_ATTR_RO(ctor);
4701
81819f0f
CL
4702static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4703{
4307c14f 4704 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4705}
4706SLAB_ATTR_RO(aliases);
4707
81819f0f
CL
4708static ssize_t partial_show(struct kmem_cache *s, char *buf)
4709{
d9acf4b7 4710 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4711}
4712SLAB_ATTR_RO(partial);
4713
4714static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4715{
d9acf4b7 4716 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4717}
4718SLAB_ATTR_RO(cpu_slabs);
4719
4720static ssize_t objects_show(struct kmem_cache *s, char *buf)
4721{
205ab99d 4722 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4723}
4724SLAB_ATTR_RO(objects);
4725
205ab99d
CL
4726static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4727{
4728 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4729}
4730SLAB_ATTR_RO(objects_partial);
4731
49e22585
CL
4732static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4733{
4734 int objects = 0;
4735 int pages = 0;
4736 int cpu;
4737 int len;
4738
4739 for_each_online_cpu(cpu) {
4740 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4741
4742 if (page) {
4743 pages += page->pages;
4744 objects += page->pobjects;
4745 }
4746 }
4747
4748 len = sprintf(buf, "%d(%d)", objects, pages);
4749
4750#ifdef CONFIG_SMP
4751 for_each_online_cpu(cpu) {
4752 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4753
4754 if (page && len < PAGE_SIZE - 20)
4755 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4756 page->pobjects, page->pages);
4757 }
4758#endif
4759 return len + sprintf(buf + len, "\n");
4760}
4761SLAB_ATTR_RO(slabs_cpu_partial);
4762
a5a84755
CL
4763static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4764{
4765 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4766}
4767
4768static ssize_t reclaim_account_store(struct kmem_cache *s,
4769 const char *buf, size_t length)
4770{
4771 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4772 if (buf[0] == '1')
4773 s->flags |= SLAB_RECLAIM_ACCOUNT;
4774 return length;
4775}
4776SLAB_ATTR(reclaim_account);
4777
4778static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4779{
4780 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4781}
4782SLAB_ATTR_RO(hwcache_align);
4783
4784#ifdef CONFIG_ZONE_DMA
4785static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4786{
4787 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4788}
4789SLAB_ATTR_RO(cache_dma);
4790#endif
4791
4792static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4793{
4794 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4795}
4796SLAB_ATTR_RO(destroy_by_rcu);
4797
ab9a0f19
LJ
4798static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4799{
4800 return sprintf(buf, "%d\n", s->reserved);
4801}
4802SLAB_ATTR_RO(reserved);
4803
ab4d5ed5 4804#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4805static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4806{
4807 return show_slab_objects(s, buf, SO_ALL);
4808}
4809SLAB_ATTR_RO(slabs);
4810
205ab99d
CL
4811static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4812{
4813 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4814}
4815SLAB_ATTR_RO(total_objects);
4816
81819f0f
CL
4817static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4818{
4819 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4820}
4821
4822static ssize_t sanity_checks_store(struct kmem_cache *s,
4823 const char *buf, size_t length)
4824{
4825 s->flags &= ~SLAB_DEBUG_FREE;
b789ef51
CL
4826 if (buf[0] == '1') {
4827 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4828 s->flags |= SLAB_DEBUG_FREE;
b789ef51 4829 }
81819f0f
CL
4830 return length;
4831}
4832SLAB_ATTR(sanity_checks);
4833
4834static ssize_t trace_show(struct kmem_cache *s, char *buf)
4835{
4836 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4837}
4838
4839static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4840 size_t length)
4841{
c9e16131
CL
4842 /*
4843 * Tracing a merged cache is going to give confusing results
4844 * as well as cause other issues like converting a mergeable
4845 * cache into an umergeable one.
4846 */
4847 if (s->refcount > 1)
4848 return -EINVAL;
4849
81819f0f 4850 s->flags &= ~SLAB_TRACE;
b789ef51
CL
4851 if (buf[0] == '1') {
4852 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4853 s->flags |= SLAB_TRACE;
b789ef51 4854 }
81819f0f
CL
4855 return length;
4856}
4857SLAB_ATTR(trace);
4858
81819f0f
CL
4859static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4860{
4861 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4862}
4863
4864static ssize_t red_zone_store(struct kmem_cache *s,
4865 const char *buf, size_t length)
4866{
4867 if (any_slab_objects(s))
4868 return -EBUSY;
4869
4870 s->flags &= ~SLAB_RED_ZONE;
b789ef51
CL
4871 if (buf[0] == '1') {
4872 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4873 s->flags |= SLAB_RED_ZONE;
b789ef51 4874 }
06b285dc 4875 calculate_sizes(s, -1);
81819f0f
CL
4876 return length;
4877}
4878SLAB_ATTR(red_zone);
4879
4880static ssize_t poison_show(struct kmem_cache *s, char *buf)
4881{
4882 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4883}
4884
4885static ssize_t poison_store(struct kmem_cache *s,
4886 const char *buf, size_t length)
4887{
4888 if (any_slab_objects(s))
4889 return -EBUSY;
4890
4891 s->flags &= ~SLAB_POISON;
b789ef51
CL
4892 if (buf[0] == '1') {
4893 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4894 s->flags |= SLAB_POISON;
b789ef51 4895 }
06b285dc 4896 calculate_sizes(s, -1);
81819f0f
CL
4897 return length;
4898}
4899SLAB_ATTR(poison);
4900
4901static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4902{
4903 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4904}
4905
4906static ssize_t store_user_store(struct kmem_cache *s,
4907 const char *buf, size_t length)
4908{
4909 if (any_slab_objects(s))
4910 return -EBUSY;
4911
4912 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
4913 if (buf[0] == '1') {
4914 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 4915 s->flags |= SLAB_STORE_USER;
b789ef51 4916 }
06b285dc 4917 calculate_sizes(s, -1);
81819f0f
CL
4918 return length;
4919}
4920SLAB_ATTR(store_user);
4921
53e15af0
CL
4922static ssize_t validate_show(struct kmem_cache *s, char *buf)
4923{
4924 return 0;
4925}
4926
4927static ssize_t validate_store(struct kmem_cache *s,
4928 const char *buf, size_t length)
4929{
434e245d
CL
4930 int ret = -EINVAL;
4931
4932 if (buf[0] == '1') {
4933 ret = validate_slab_cache(s);
4934 if (ret >= 0)
4935 ret = length;
4936 }
4937 return ret;
53e15af0
CL
4938}
4939SLAB_ATTR(validate);
a5a84755
CL
4940
4941static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4942{
4943 if (!(s->flags & SLAB_STORE_USER))
4944 return -ENOSYS;
4945 return list_locations(s, buf, TRACK_ALLOC);
4946}
4947SLAB_ATTR_RO(alloc_calls);
4948
4949static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4950{
4951 if (!(s->flags & SLAB_STORE_USER))
4952 return -ENOSYS;
4953 return list_locations(s, buf, TRACK_FREE);
4954}
4955SLAB_ATTR_RO(free_calls);
4956#endif /* CONFIG_SLUB_DEBUG */
4957
4958#ifdef CONFIG_FAILSLAB
4959static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4960{
4961 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4962}
4963
4964static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4965 size_t length)
4966{
c9e16131
CL
4967 if (s->refcount > 1)
4968 return -EINVAL;
4969
a5a84755
CL
4970 s->flags &= ~SLAB_FAILSLAB;
4971 if (buf[0] == '1')
4972 s->flags |= SLAB_FAILSLAB;
4973 return length;
4974}
4975SLAB_ATTR(failslab);
ab4d5ed5 4976#endif
53e15af0 4977
2086d26a
CL
4978static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4979{
4980 return 0;
4981}
4982
4983static ssize_t shrink_store(struct kmem_cache *s,
4984 const char *buf, size_t length)
4985{
832f37f5
VD
4986 if (buf[0] == '1')
4987 kmem_cache_shrink(s);
4988 else
2086d26a
CL
4989 return -EINVAL;
4990 return length;
4991}
4992SLAB_ATTR(shrink);
4993
81819f0f 4994#ifdef CONFIG_NUMA
9824601e 4995static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4996{
9824601e 4997 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4998}
4999
9824601e 5000static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5001 const char *buf, size_t length)
5002{
0121c619
CL
5003 unsigned long ratio;
5004 int err;
5005
3dbb95f7 5006 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5007 if (err)
5008 return err;
5009
e2cb96b7 5010 if (ratio <= 100)
0121c619 5011 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5012
81819f0f
CL
5013 return length;
5014}
9824601e 5015SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5016#endif
5017
8ff12cfc 5018#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5019static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5020{
5021 unsigned long sum = 0;
5022 int cpu;
5023 int len;
5024 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5025
5026 if (!data)
5027 return -ENOMEM;
5028
5029 for_each_online_cpu(cpu) {
9dfc6e68 5030 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5031
5032 data[cpu] = x;
5033 sum += x;
5034 }
5035
5036 len = sprintf(buf, "%lu", sum);
5037
50ef37b9 5038#ifdef CONFIG_SMP
8ff12cfc
CL
5039 for_each_online_cpu(cpu) {
5040 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5041 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5042 }
50ef37b9 5043#endif
8ff12cfc
CL
5044 kfree(data);
5045 return len + sprintf(buf + len, "\n");
5046}
5047
78eb00cc
DR
5048static void clear_stat(struct kmem_cache *s, enum stat_item si)
5049{
5050 int cpu;
5051
5052 for_each_online_cpu(cpu)
9dfc6e68 5053 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5054}
5055
8ff12cfc
CL
5056#define STAT_ATTR(si, text) \
5057static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5058{ \
5059 return show_stat(s, buf, si); \
5060} \
78eb00cc
DR
5061static ssize_t text##_store(struct kmem_cache *s, \
5062 const char *buf, size_t length) \
5063{ \
5064 if (buf[0] != '0') \
5065 return -EINVAL; \
5066 clear_stat(s, si); \
5067 return length; \
5068} \
5069SLAB_ATTR(text); \
8ff12cfc
CL
5070
5071STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5072STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5073STAT_ATTR(FREE_FASTPATH, free_fastpath);
5074STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5075STAT_ATTR(FREE_FROZEN, free_frozen);
5076STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5077STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5078STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5079STAT_ATTR(ALLOC_SLAB, alloc_slab);
5080STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5081STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5082STAT_ATTR(FREE_SLAB, free_slab);
5083STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5084STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5085STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5086STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5087STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5088STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5089STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5090STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5091STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5092STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5093STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5094STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5095STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5096STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5097#endif
5098
06428780 5099static struct attribute *slab_attrs[] = {
81819f0f
CL
5100 &slab_size_attr.attr,
5101 &object_size_attr.attr,
5102 &objs_per_slab_attr.attr,
5103 &order_attr.attr,
73d342b1 5104 &min_partial_attr.attr,
49e22585 5105 &cpu_partial_attr.attr,
81819f0f 5106 &objects_attr.attr,
205ab99d 5107 &objects_partial_attr.attr,
81819f0f
CL
5108 &partial_attr.attr,
5109 &cpu_slabs_attr.attr,
5110 &ctor_attr.attr,
81819f0f
CL
5111 &aliases_attr.attr,
5112 &align_attr.attr,
81819f0f
CL
5113 &hwcache_align_attr.attr,
5114 &reclaim_account_attr.attr,
5115 &destroy_by_rcu_attr.attr,
a5a84755 5116 &shrink_attr.attr,
ab9a0f19 5117 &reserved_attr.attr,
49e22585 5118 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5119#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5120 &total_objects_attr.attr,
5121 &slabs_attr.attr,
5122 &sanity_checks_attr.attr,
5123 &trace_attr.attr,
81819f0f
CL
5124 &red_zone_attr.attr,
5125 &poison_attr.attr,
5126 &store_user_attr.attr,
53e15af0 5127 &validate_attr.attr,
88a420e4
CL
5128 &alloc_calls_attr.attr,
5129 &free_calls_attr.attr,
ab4d5ed5 5130#endif
81819f0f
CL
5131#ifdef CONFIG_ZONE_DMA
5132 &cache_dma_attr.attr,
5133#endif
5134#ifdef CONFIG_NUMA
9824601e 5135 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5136#endif
5137#ifdef CONFIG_SLUB_STATS
5138 &alloc_fastpath_attr.attr,
5139 &alloc_slowpath_attr.attr,
5140 &free_fastpath_attr.attr,
5141 &free_slowpath_attr.attr,
5142 &free_frozen_attr.attr,
5143 &free_add_partial_attr.attr,
5144 &free_remove_partial_attr.attr,
5145 &alloc_from_partial_attr.attr,
5146 &alloc_slab_attr.attr,
5147 &alloc_refill_attr.attr,
e36a2652 5148 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5149 &free_slab_attr.attr,
5150 &cpuslab_flush_attr.attr,
5151 &deactivate_full_attr.attr,
5152 &deactivate_empty_attr.attr,
5153 &deactivate_to_head_attr.attr,
5154 &deactivate_to_tail_attr.attr,
5155 &deactivate_remote_frees_attr.attr,
03e404af 5156 &deactivate_bypass_attr.attr,
65c3376a 5157 &order_fallback_attr.attr,
b789ef51
CL
5158 &cmpxchg_double_fail_attr.attr,
5159 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5160 &cpu_partial_alloc_attr.attr,
5161 &cpu_partial_free_attr.attr,
8028dcea
AS
5162 &cpu_partial_node_attr.attr,
5163 &cpu_partial_drain_attr.attr,
81819f0f 5164#endif
4c13dd3b
DM
5165#ifdef CONFIG_FAILSLAB
5166 &failslab_attr.attr,
5167#endif
5168
81819f0f
CL
5169 NULL
5170};
5171
5172static struct attribute_group slab_attr_group = {
5173 .attrs = slab_attrs,
5174};
5175
5176static ssize_t slab_attr_show(struct kobject *kobj,
5177 struct attribute *attr,
5178 char *buf)
5179{
5180 struct slab_attribute *attribute;
5181 struct kmem_cache *s;
5182 int err;
5183
5184 attribute = to_slab_attr(attr);
5185 s = to_slab(kobj);
5186
5187 if (!attribute->show)
5188 return -EIO;
5189
5190 err = attribute->show(s, buf);
5191
5192 return err;
5193}
5194
5195static ssize_t slab_attr_store(struct kobject *kobj,
5196 struct attribute *attr,
5197 const char *buf, size_t len)
5198{
5199 struct slab_attribute *attribute;
5200 struct kmem_cache *s;
5201 int err;
5202
5203 attribute = to_slab_attr(attr);
5204 s = to_slab(kobj);
5205
5206 if (!attribute->store)
5207 return -EIO;
5208
5209 err = attribute->store(s, buf, len);
127424c8 5210#ifdef CONFIG_MEMCG
107dab5c 5211 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5212 struct kmem_cache *c;
81819f0f 5213
107dab5c
GC
5214 mutex_lock(&slab_mutex);
5215 if (s->max_attr_size < len)
5216 s->max_attr_size = len;
5217
ebe945c2
GC
5218 /*
5219 * This is a best effort propagation, so this function's return
5220 * value will be determined by the parent cache only. This is
5221 * basically because not all attributes will have a well
5222 * defined semantics for rollbacks - most of the actions will
5223 * have permanent effects.
5224 *
5225 * Returning the error value of any of the children that fail
5226 * is not 100 % defined, in the sense that users seeing the
5227 * error code won't be able to know anything about the state of
5228 * the cache.
5229 *
5230 * Only returning the error code for the parent cache at least
5231 * has well defined semantics. The cache being written to
5232 * directly either failed or succeeded, in which case we loop
5233 * through the descendants with best-effort propagation.
5234 */
426589f5
VD
5235 for_each_memcg_cache(c, s)
5236 attribute->store(c, buf, len);
107dab5c
GC
5237 mutex_unlock(&slab_mutex);
5238 }
5239#endif
81819f0f
CL
5240 return err;
5241}
5242
107dab5c
GC
5243static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5244{
127424c8 5245#ifdef CONFIG_MEMCG
107dab5c
GC
5246 int i;
5247 char *buffer = NULL;
93030d83 5248 struct kmem_cache *root_cache;
107dab5c 5249
93030d83 5250 if (is_root_cache(s))
107dab5c
GC
5251 return;
5252
f7ce3190 5253 root_cache = s->memcg_params.root_cache;
93030d83 5254
107dab5c
GC
5255 /*
5256 * This mean this cache had no attribute written. Therefore, no point
5257 * in copying default values around
5258 */
93030d83 5259 if (!root_cache->max_attr_size)
107dab5c
GC
5260 return;
5261
5262 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5263 char mbuf[64];
5264 char *buf;
5265 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5266
5267 if (!attr || !attr->store || !attr->show)
5268 continue;
5269
5270 /*
5271 * It is really bad that we have to allocate here, so we will
5272 * do it only as a fallback. If we actually allocate, though,
5273 * we can just use the allocated buffer until the end.
5274 *
5275 * Most of the slub attributes will tend to be very small in
5276 * size, but sysfs allows buffers up to a page, so they can
5277 * theoretically happen.
5278 */
5279 if (buffer)
5280 buf = buffer;
93030d83 5281 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5282 buf = mbuf;
5283 else {
5284 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5285 if (WARN_ON(!buffer))
5286 continue;
5287 buf = buffer;
5288 }
5289
93030d83 5290 attr->show(root_cache, buf);
107dab5c
GC
5291 attr->store(s, buf, strlen(buf));
5292 }
5293
5294 if (buffer)
5295 free_page((unsigned long)buffer);
5296#endif
5297}
5298
41a21285
CL
5299static void kmem_cache_release(struct kobject *k)
5300{
5301 slab_kmem_cache_release(to_slab(k));
5302}
5303
52cf25d0 5304static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5305 .show = slab_attr_show,
5306 .store = slab_attr_store,
5307};
5308
5309static struct kobj_type slab_ktype = {
5310 .sysfs_ops = &slab_sysfs_ops,
41a21285 5311 .release = kmem_cache_release,
81819f0f
CL
5312};
5313
5314static int uevent_filter(struct kset *kset, struct kobject *kobj)
5315{
5316 struct kobj_type *ktype = get_ktype(kobj);
5317
5318 if (ktype == &slab_ktype)
5319 return 1;
5320 return 0;
5321}
5322
9cd43611 5323static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5324 .filter = uevent_filter,
5325};
5326
27c3a314 5327static struct kset *slab_kset;
81819f0f 5328
9a41707b
VD
5329static inline struct kset *cache_kset(struct kmem_cache *s)
5330{
127424c8 5331#ifdef CONFIG_MEMCG
9a41707b 5332 if (!is_root_cache(s))
f7ce3190 5333 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5334#endif
5335 return slab_kset;
5336}
5337
81819f0f
CL
5338#define ID_STR_LENGTH 64
5339
5340/* Create a unique string id for a slab cache:
6446faa2
CL
5341 *
5342 * Format :[flags-]size
81819f0f
CL
5343 */
5344static char *create_unique_id(struct kmem_cache *s)
5345{
5346 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5347 char *p = name;
5348
5349 BUG_ON(!name);
5350
5351 *p++ = ':';
5352 /*
5353 * First flags affecting slabcache operations. We will only
5354 * get here for aliasable slabs so we do not need to support
5355 * too many flags. The flags here must cover all flags that
5356 * are matched during merging to guarantee that the id is
5357 * unique.
5358 */
5359 if (s->flags & SLAB_CACHE_DMA)
5360 *p++ = 'd';
5361 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5362 *p++ = 'a';
5363 if (s->flags & SLAB_DEBUG_FREE)
5364 *p++ = 'F';
5a896d9e
VN
5365 if (!(s->flags & SLAB_NOTRACK))
5366 *p++ = 't';
230e9fc2
VD
5367 if (s->flags & SLAB_ACCOUNT)
5368 *p++ = 'A';
81819f0f
CL
5369 if (p != name + 1)
5370 *p++ = '-';
5371 p += sprintf(p, "%07d", s->size);
2633d7a0 5372
81819f0f
CL
5373 BUG_ON(p > name + ID_STR_LENGTH - 1);
5374 return name;
5375}
5376
5377static int sysfs_slab_add(struct kmem_cache *s)
5378{
5379 int err;
5380 const char *name;
45530c44 5381 int unmergeable = slab_unmergeable(s);
81819f0f 5382
81819f0f
CL
5383 if (unmergeable) {
5384 /*
5385 * Slabcache can never be merged so we can use the name proper.
5386 * This is typically the case for debug situations. In that
5387 * case we can catch duplicate names easily.
5388 */
27c3a314 5389 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5390 name = s->name;
5391 } else {
5392 /*
5393 * Create a unique name for the slab as a target
5394 * for the symlinks.
5395 */
5396 name = create_unique_id(s);
5397 }
5398
9a41707b 5399 s->kobj.kset = cache_kset(s);
26e4f205 5400 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5401 if (err)
80da026a 5402 goto out;
81819f0f
CL
5403
5404 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5405 if (err)
5406 goto out_del_kobj;
9a41707b 5407
127424c8 5408#ifdef CONFIG_MEMCG
9a41707b
VD
5409 if (is_root_cache(s)) {
5410 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5411 if (!s->memcg_kset) {
54b6a731
DJ
5412 err = -ENOMEM;
5413 goto out_del_kobj;
9a41707b
VD
5414 }
5415 }
5416#endif
5417
81819f0f
CL
5418 kobject_uevent(&s->kobj, KOBJ_ADD);
5419 if (!unmergeable) {
5420 /* Setup first alias */
5421 sysfs_slab_alias(s, s->name);
81819f0f 5422 }
54b6a731
DJ
5423out:
5424 if (!unmergeable)
5425 kfree(name);
5426 return err;
5427out_del_kobj:
5428 kobject_del(&s->kobj);
54b6a731 5429 goto out;
81819f0f
CL
5430}
5431
41a21285 5432void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5433{
97d06609 5434 if (slab_state < FULL)
2bce6485
CL
5435 /*
5436 * Sysfs has not been setup yet so no need to remove the
5437 * cache from sysfs.
5438 */
5439 return;
5440
127424c8 5441#ifdef CONFIG_MEMCG
9a41707b
VD
5442 kset_unregister(s->memcg_kset);
5443#endif
81819f0f
CL
5444 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5445 kobject_del(&s->kobj);
151c602f 5446 kobject_put(&s->kobj);
81819f0f
CL
5447}
5448
5449/*
5450 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5451 * available lest we lose that information.
81819f0f
CL
5452 */
5453struct saved_alias {
5454 struct kmem_cache *s;
5455 const char *name;
5456 struct saved_alias *next;
5457};
5458
5af328a5 5459static struct saved_alias *alias_list;
81819f0f
CL
5460
5461static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5462{
5463 struct saved_alias *al;
5464
97d06609 5465 if (slab_state == FULL) {
81819f0f
CL
5466 /*
5467 * If we have a leftover link then remove it.
5468 */
27c3a314
GKH
5469 sysfs_remove_link(&slab_kset->kobj, name);
5470 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5471 }
5472
5473 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5474 if (!al)
5475 return -ENOMEM;
5476
5477 al->s = s;
5478 al->name = name;
5479 al->next = alias_list;
5480 alias_list = al;
5481 return 0;
5482}
5483
5484static int __init slab_sysfs_init(void)
5485{
5b95a4ac 5486 struct kmem_cache *s;
81819f0f
CL
5487 int err;
5488
18004c5d 5489 mutex_lock(&slab_mutex);
2bce6485 5490
0ff21e46 5491 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5492 if (!slab_kset) {
18004c5d 5493 mutex_unlock(&slab_mutex);
f9f58285 5494 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5495 return -ENOSYS;
5496 }
5497
97d06609 5498 slab_state = FULL;
26a7bd03 5499
5b95a4ac 5500 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5501 err = sysfs_slab_add(s);
5d540fb7 5502 if (err)
f9f58285
FF
5503 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5504 s->name);
26a7bd03 5505 }
81819f0f
CL
5506
5507 while (alias_list) {
5508 struct saved_alias *al = alias_list;
5509
5510 alias_list = alias_list->next;
5511 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5512 if (err)
f9f58285
FF
5513 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5514 al->name);
81819f0f
CL
5515 kfree(al);
5516 }
5517
18004c5d 5518 mutex_unlock(&slab_mutex);
81819f0f
CL
5519 resiliency_test();
5520 return 0;
5521}
5522
5523__initcall(slab_sysfs_init);
ab4d5ed5 5524#endif /* CONFIG_SYSFS */
57ed3eda
PE
5525
5526/*
5527 * The /proc/slabinfo ABI
5528 */
158a9624 5529#ifdef CONFIG_SLABINFO
0d7561c6 5530void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5531{
57ed3eda 5532 unsigned long nr_slabs = 0;
205ab99d
CL
5533 unsigned long nr_objs = 0;
5534 unsigned long nr_free = 0;
57ed3eda 5535 int node;
fa45dc25 5536 struct kmem_cache_node *n;
57ed3eda 5537
fa45dc25 5538 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5539 nr_slabs += node_nr_slabs(n);
5540 nr_objs += node_nr_objs(n);
205ab99d 5541 nr_free += count_partial(n, count_free);
57ed3eda
PE
5542 }
5543
0d7561c6
GC
5544 sinfo->active_objs = nr_objs - nr_free;
5545 sinfo->num_objs = nr_objs;
5546 sinfo->active_slabs = nr_slabs;
5547 sinfo->num_slabs = nr_slabs;
5548 sinfo->objects_per_slab = oo_objects(s->oo);
5549 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5550}
5551
0d7561c6 5552void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5553{
7b3c3a50
AD
5554}
5555
b7454ad3
GC
5556ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5557 size_t count, loff_t *ppos)
7b3c3a50 5558{
b7454ad3 5559 return -EIO;
7b3c3a50 5560}
158a9624 5561#endif /* CONFIG_SLABINFO */