slob: No need to zero mapping since it is no longer in use
[linux-2.6-block.git] / mm / slob.c
CommitLineData
10cef602
MM
1/*
2 * SLOB Allocator: Simple List Of Blocks
3 *
4 * Matt Mackall <mpm@selenic.com> 12/30/03
5 *
6193a2ff
PM
6 * NUMA support by Paul Mundt, 2007.
7 *
10cef602
MM
8 * How SLOB works:
9 *
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
55394849
NP
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
95b35127 14 *
20cecbae
MM
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
20 *
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
10cef602
MM
26 *
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
55394849 28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
10cef602 29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
6193a2ff 30 * alloc_pages() directly, allocating compound pages so the page order
d87a133f
NP
31 * does not have to be separately tracked, and also stores the exact
32 * allocation size in page->private so that it can be used to accurately
33 * provide ksize(). These objects are detected in kfree() because slob_page()
34 * is false for them.
10cef602
MM
35 *
36 * SLAB is emulated on top of SLOB by simply calling constructors and
95b35127
NP
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
6193a2ff 41 * calling alloc_pages(). As SLAB objects know their size, no separate
95b35127 42 * size bookkeeping is necessary and there is essentially no allocation
d87a133f
NP
43 * space overhead, and compound pages aren't needed for multi-page
44 * allocations.
6193a2ff
PM
45 *
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
6484eb3e 49 * provided, alloc_pages_exact_node() with the specified node id is used
6193a2ff
PM
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
52 *
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
10cef602
MM
58 */
59
95b35127 60#include <linux/kernel.h>
10cef602
MM
61#include <linux/slab.h>
62#include <linux/mm.h>
1f0532eb 63#include <linux/swap.h> /* struct reclaim_state */
10cef602
MM
64#include <linux/cache.h>
65#include <linux/init.h>
b95f1b31 66#include <linux/export.h>
afc0cedb 67#include <linux/rcupdate.h>
95b35127 68#include <linux/list.h>
4374e616 69#include <linux/kmemleak.h>
039ca4e7
LZ
70
71#include <trace/events/kmem.h>
72
60063497 73#include <linux/atomic.h>
95b35127 74
95b35127
NP
75/*
76 * slob_block has a field 'units', which indicates size of block if +ve,
77 * or offset of next block if -ve (in SLOB_UNITs).
78 *
79 * Free blocks of size 1 unit simply contain the offset of the next block.
80 * Those with larger size contain their size in the first SLOB_UNIT of
81 * memory, and the offset of the next free block in the second SLOB_UNIT.
82 */
55394849 83#if PAGE_SIZE <= (32767 * 2)
95b35127
NP
84typedef s16 slobidx_t;
85#else
86typedef s32 slobidx_t;
87#endif
88
10cef602 89struct slob_block {
95b35127 90 slobidx_t units;
55394849 91};
10cef602
MM
92typedef struct slob_block slob_t;
93
95b35127
NP
94/*
95 * free_slob_page: call before a slob_page is returned to the page allocator.
96 */
b8c24c4a 97static inline void free_slob_page(struct page *sp)
95b35127 98{
b8c24c4a 99 reset_page_mapcount(sp);
95b35127
NP
100}
101
102/*
20cecbae 103 * All partially free slob pages go on these lists.
95b35127 104 */
20cecbae
MM
105#define SLOB_BREAK1 256
106#define SLOB_BREAK2 1024
107static LIST_HEAD(free_slob_small);
108static LIST_HEAD(free_slob_medium);
109static LIST_HEAD(free_slob_large);
95b35127
NP
110
111/*
6e9ed0cc 112 * is_slob_page: True for all slob pages (false for bigblock pages)
95b35127 113 */
b8c24c4a 114static inline int is_slob_page(struct page *sp)
95b35127 115{
b8c24c4a 116 return PageSlab(sp);
95b35127
NP
117}
118
b8c24c4a 119static inline void set_slob_page(struct page *sp)
95b35127 120{
b8c24c4a 121 __SetPageSlab(sp);
95b35127
NP
122}
123
b8c24c4a 124static inline void clear_slob_page(struct page *sp)
95b35127 125{
b8c24c4a 126 __ClearPageSlab(sp);
95b35127
NP
127}
128
b8c24c4a 129static inline struct page *slob_page(const void *addr)
6e9ed0cc 130{
b8c24c4a 131 return virt_to_page(addr);
6e9ed0cc
AW
132}
133
95b35127
NP
134/*
135 * slob_page_free: true for pages on free_slob_pages list.
136 */
b8c24c4a 137static inline int slob_page_free(struct page *sp)
95b35127 138{
b8c24c4a 139 return PageSlobFree(sp);
95b35127
NP
140}
141
b8c24c4a 142static void set_slob_page_free(struct page *sp, struct list_head *list)
95b35127 143{
20cecbae 144 list_add(&sp->list, list);
b8c24c4a 145 __SetPageSlobFree(sp);
95b35127
NP
146}
147
b8c24c4a 148static inline void clear_slob_page_free(struct page *sp)
95b35127
NP
149{
150 list_del(&sp->list);
b8c24c4a 151 __ClearPageSlobFree(sp);
95b35127
NP
152}
153
10cef602
MM
154#define SLOB_UNIT sizeof(slob_t)
155#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
156#define SLOB_ALIGN L1_CACHE_BYTES
157
afc0cedb
NP
158/*
159 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
160 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
161 * the block using call_rcu.
162 */
163struct slob_rcu {
164 struct rcu_head head;
165 int size;
166};
167
95b35127
NP
168/*
169 * slob_lock protects all slob allocator structures.
170 */
10cef602 171static DEFINE_SPINLOCK(slob_lock);
10cef602 172
95b35127
NP
173/*
174 * Encode the given size and next info into a free slob block s.
175 */
176static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
177{
178 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
179 slobidx_t offset = next - base;
bcb4ddb4 180
95b35127
NP
181 if (size > 1) {
182 s[0].units = size;
183 s[1].units = offset;
184 } else
185 s[0].units = -offset;
186}
10cef602 187
95b35127
NP
188/*
189 * Return the size of a slob block.
190 */
191static slobidx_t slob_units(slob_t *s)
192{
193 if (s->units > 0)
194 return s->units;
195 return 1;
196}
197
198/*
199 * Return the next free slob block pointer after this one.
200 */
201static slob_t *slob_next(slob_t *s)
202{
203 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
204 slobidx_t next;
205
206 if (s[0].units < 0)
207 next = -s[0].units;
208 else
209 next = s[1].units;
210 return base+next;
211}
212
213/*
214 * Returns true if s is the last free block in its page.
215 */
216static int slob_last(slob_t *s)
217{
218 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
219}
220
6e9ed0cc 221static void *slob_new_pages(gfp_t gfp, int order, int node)
6193a2ff
PM
222{
223 void *page;
224
225#ifdef CONFIG_NUMA
226 if (node != -1)
6484eb3e 227 page = alloc_pages_exact_node(node, gfp, order);
6193a2ff
PM
228 else
229#endif
230 page = alloc_pages(gfp, order);
231
232 if (!page)
233 return NULL;
234
235 return page_address(page);
236}
237
6e9ed0cc
AW
238static void slob_free_pages(void *b, int order)
239{
1f0532eb
NP
240 if (current->reclaim_state)
241 current->reclaim_state->reclaimed_slab += 1 << order;
6e9ed0cc
AW
242 free_pages((unsigned long)b, order);
243}
244
95b35127
NP
245/*
246 * Allocate a slob block within a given slob_page sp.
247 */
b8c24c4a 248static void *slob_page_alloc(struct page *sp, size_t size, int align)
10cef602 249{
6e9ed0cc 250 slob_t *prev, *cur, *aligned = NULL;
10cef602 251 int delta = 0, units = SLOB_UNITS(size);
10cef602 252
b8c24c4a 253 for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
95b35127
NP
254 slobidx_t avail = slob_units(cur);
255
10cef602
MM
256 if (align) {
257 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
258 delta = aligned - cur;
259 }
95b35127
NP
260 if (avail >= units + delta) { /* room enough? */
261 slob_t *next;
262
10cef602 263 if (delta) { /* need to fragment head to align? */
95b35127
NP
264 next = slob_next(cur);
265 set_slob(aligned, avail - delta, next);
266 set_slob(cur, delta, aligned);
10cef602
MM
267 prev = cur;
268 cur = aligned;
95b35127 269 avail = slob_units(cur);
10cef602
MM
270 }
271
95b35127
NP
272 next = slob_next(cur);
273 if (avail == units) { /* exact fit? unlink. */
274 if (prev)
275 set_slob(prev, slob_units(prev), next);
276 else
b8c24c4a 277 sp->freelist = next;
95b35127
NP
278 } else { /* fragment */
279 if (prev)
280 set_slob(prev, slob_units(prev), cur + units);
281 else
b8c24c4a 282 sp->freelist = cur + units;
95b35127 283 set_slob(cur + units, avail - units, next);
10cef602
MM
284 }
285
95b35127
NP
286 sp->units -= units;
287 if (!sp->units)
288 clear_slob_page_free(sp);
10cef602
MM
289 return cur;
290 }
95b35127
NP
291 if (slob_last(cur))
292 return NULL;
293 }
294}
10cef602 295
95b35127
NP
296/*
297 * slob_alloc: entry point into the slob allocator.
298 */
6193a2ff 299static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
95b35127 300{
b8c24c4a 301 struct page *sp;
d6269543 302 struct list_head *prev;
20cecbae 303 struct list_head *slob_list;
95b35127
NP
304 slob_t *b = NULL;
305 unsigned long flags;
10cef602 306
20cecbae
MM
307 if (size < SLOB_BREAK1)
308 slob_list = &free_slob_small;
309 else if (size < SLOB_BREAK2)
310 slob_list = &free_slob_medium;
311 else
312 slob_list = &free_slob_large;
313
95b35127
NP
314 spin_lock_irqsave(&slob_lock, flags);
315 /* Iterate through each partially free page, try to find room */
20cecbae 316 list_for_each_entry(sp, slob_list, list) {
6193a2ff
PM
317#ifdef CONFIG_NUMA
318 /*
319 * If there's a node specification, search for a partial
320 * page with a matching node id in the freelist.
321 */
b8c24c4a 322 if (node != -1 && page_to_nid(sp) != node)
6193a2ff
PM
323 continue;
324#endif
d6269543
MM
325 /* Enough room on this page? */
326 if (sp->units < SLOB_UNITS(size))
327 continue;
6193a2ff 328
d6269543
MM
329 /* Attempt to alloc */
330 prev = sp->list.prev;
331 b = slob_page_alloc(sp, size, align);
332 if (!b)
333 continue;
334
335 /* Improve fragment distribution and reduce our average
336 * search time by starting our next search here. (see
337 * Knuth vol 1, sec 2.5, pg 449) */
20cecbae
MM
338 if (prev != slob_list->prev &&
339 slob_list->next != prev->next)
340 list_move_tail(slob_list, prev->next);
d6269543 341 break;
10cef602 342 }
95b35127
NP
343 spin_unlock_irqrestore(&slob_lock, flags);
344
345 /* Not enough space: must allocate a new page */
346 if (!b) {
6e9ed0cc 347 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
95b35127 348 if (!b)
6e9ed0cc
AW
349 return NULL;
350 sp = slob_page(b);
95b35127
NP
351 set_slob_page(sp);
352
353 spin_lock_irqsave(&slob_lock, flags);
354 sp->units = SLOB_UNITS(PAGE_SIZE);
b8c24c4a 355 sp->freelist = b;
95b35127
NP
356 INIT_LIST_HEAD(&sp->list);
357 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
20cecbae 358 set_slob_page_free(sp, slob_list);
95b35127
NP
359 b = slob_page_alloc(sp, size, align);
360 BUG_ON(!b);
361 spin_unlock_irqrestore(&slob_lock, flags);
362 }
d07dbea4
CL
363 if (unlikely((gfp & __GFP_ZERO) && b))
364 memset(b, 0, size);
95b35127 365 return b;
10cef602
MM
366}
367
95b35127
NP
368/*
369 * slob_free: entry point into the slob allocator.
370 */
10cef602
MM
371static void slob_free(void *block, int size)
372{
b8c24c4a 373 struct page *sp;
95b35127
NP
374 slob_t *prev, *next, *b = (slob_t *)block;
375 slobidx_t units;
10cef602 376 unsigned long flags;
d602daba 377 struct list_head *slob_list;
10cef602 378
2408c550 379 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602 380 return;
95b35127 381 BUG_ON(!size);
10cef602 382
6e9ed0cc 383 sp = slob_page(block);
95b35127 384 units = SLOB_UNITS(size);
10cef602 385
10cef602 386 spin_lock_irqsave(&slob_lock, flags);
10cef602 387
95b35127
NP
388 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
389 /* Go directly to page allocator. Do not pass slob allocator */
390 if (slob_page_free(sp))
391 clear_slob_page_free(sp);
6fb8f424 392 spin_unlock_irqrestore(&slob_lock, flags);
95b35127
NP
393 clear_slob_page(sp);
394 free_slob_page(sp);
1f0532eb 395 slob_free_pages(b, 0);
6fb8f424 396 return;
95b35127 397 }
10cef602 398
95b35127
NP
399 if (!slob_page_free(sp)) {
400 /* This slob page is about to become partially free. Easy! */
401 sp->units = units;
b8c24c4a 402 sp->freelist = b;
95b35127
NP
403 set_slob(b, units,
404 (void *)((unsigned long)(b +
405 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
d602daba
BL
406 if (size < SLOB_BREAK1)
407 slob_list = &free_slob_small;
408 else if (size < SLOB_BREAK2)
409 slob_list = &free_slob_medium;
410 else
411 slob_list = &free_slob_large;
412 set_slob_page_free(sp, slob_list);
95b35127
NP
413 goto out;
414 }
415
416 /*
417 * Otherwise the page is already partially free, so find reinsertion
418 * point.
419 */
420 sp->units += units;
10cef602 421
b8c24c4a
CL
422 if (b < (slob_t *)sp->freelist) {
423 if (b + units == sp->freelist) {
424 units += slob_units(sp->freelist);
425 sp->freelist = slob_next(sp->freelist);
679299b3 426 }
b8c24c4a
CL
427 set_slob(b, units, sp->freelist);
428 sp->freelist = b;
95b35127 429 } else {
b8c24c4a 430 prev = sp->freelist;
95b35127
NP
431 next = slob_next(prev);
432 while (b > next) {
433 prev = next;
434 next = slob_next(prev);
435 }
10cef602 436
95b35127
NP
437 if (!slob_last(prev) && b + units == next) {
438 units += slob_units(next);
439 set_slob(b, units, slob_next(next));
440 } else
441 set_slob(b, units, next);
442
443 if (prev + slob_units(prev) == b) {
444 units = slob_units(b) + slob_units(prev);
445 set_slob(prev, units, slob_next(b));
446 } else
447 set_slob(prev, slob_units(prev), b);
448 }
449out:
10cef602
MM
450 spin_unlock_irqrestore(&slob_lock, flags);
451}
452
95b35127
NP
453/*
454 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
455 */
456
6193a2ff 457void *__kmalloc_node(size_t size, gfp_t gfp, int node)
10cef602 458{
6cb8f913 459 unsigned int *m;
55394849 460 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
3eae2cb2 461 void *ret;
55394849 462
bd50cfa8
SR
463 gfp &= gfp_allowed_mask;
464
19cefdff 465 lockdep_trace_alloc(gfp);
cf40bd16 466
55394849 467 if (size < PAGE_SIZE - align) {
6cb8f913
CL
468 if (!size)
469 return ZERO_SIZE_PTR;
470
6193a2ff 471 m = slob_alloc(size + align, gfp, align, node);
3eae2cb2 472
239f49c0
MK
473 if (!m)
474 return NULL;
475 *m = size;
3eae2cb2
EGM
476 ret = (void *)m + align;
477
ca2b84cb
EGM
478 trace_kmalloc_node(_RET_IP_, ret,
479 size, size + align, gfp, node);
d87a133f 480 } else {
3eae2cb2 481 unsigned int order = get_order(size);
d87a133f 482
8df275af
DR
483 if (likely(order))
484 gfp |= __GFP_COMP;
485 ret = slob_new_pages(gfp, order, node);
d87a133f
NP
486 if (ret) {
487 struct page *page;
488 page = virt_to_page(ret);
489 page->private = size;
490 }
3eae2cb2 491
ca2b84cb
EGM
492 trace_kmalloc_node(_RET_IP_, ret,
493 size, PAGE_SIZE << order, gfp, node);
10cef602 494 }
3eae2cb2 495
4374e616 496 kmemleak_alloc(ret, size, 1, gfp);
3eae2cb2 497 return ret;
10cef602 498}
6193a2ff 499EXPORT_SYMBOL(__kmalloc_node);
10cef602
MM
500
501void kfree(const void *block)
502{
b8c24c4a 503 struct page *sp;
10cef602 504
2121db74
PE
505 trace_kfree(_RET_IP_, block);
506
2408c550 507 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602 508 return;
4374e616 509 kmemleak_free(block);
10cef602 510
6e9ed0cc
AW
511 sp = slob_page(block);
512 if (is_slob_page(sp)) {
55394849
NP
513 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
514 unsigned int *m = (unsigned int *)(block - align);
515 slob_free(m, *m + align);
d87a133f 516 } else
b8c24c4a 517 put_page(sp);
10cef602 518}
10cef602
MM
519EXPORT_SYMBOL(kfree);
520
d87a133f 521/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
fd76bab2 522size_t ksize(const void *block)
10cef602 523{
b8c24c4a 524 struct page *sp;
10cef602 525
ef8b4520
CL
526 BUG_ON(!block);
527 if (unlikely(block == ZERO_SIZE_PTR))
10cef602
MM
528 return 0;
529
6e9ed0cc
AW
530 sp = slob_page(block);
531 if (is_slob_page(sp)) {
70096a56
MM
532 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
533 unsigned int *m = (unsigned int *)(block - align);
534 return SLOB_UNITS(*m) * SLOB_UNIT;
535 } else
b8c24c4a 536 return sp->private;
10cef602 537}
b1aabecd 538EXPORT_SYMBOL(ksize);
10cef602
MM
539
540struct kmem_cache {
541 unsigned int size, align;
afc0cedb 542 unsigned long flags;
10cef602 543 const char *name;
51cc5068 544 void (*ctor)(void *);
10cef602
MM
545};
546
547struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 548 size_t align, unsigned long flags, void (*ctor)(void *))
10cef602
MM
549{
550 struct kmem_cache *c;
551
0701a9e6 552 c = slob_alloc(sizeof(struct kmem_cache),
5e18e2b8 553 GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
10cef602
MM
554
555 if (c) {
556 c->name = name;
557 c->size = size;
afc0cedb 558 if (flags & SLAB_DESTROY_BY_RCU) {
afc0cedb
NP
559 /* leave room for rcu footer at the end of object */
560 c->size += sizeof(struct slob_rcu);
561 }
562 c->flags = flags;
10cef602 563 c->ctor = ctor;
10cef602 564 /* ignore alignment unless it's forced */
5af60839 565 c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
55394849
NP
566 if (c->align < ARCH_SLAB_MINALIGN)
567 c->align = ARCH_SLAB_MINALIGN;
10cef602
MM
568 if (c->align < align)
569 c->align = align;
bc0055ae
AM
570 } else if (flags & SLAB_PANIC)
571 panic("Cannot create slab cache %s\n", name);
10cef602 572
4374e616 573 kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL);
10cef602
MM
574 return c;
575}
576EXPORT_SYMBOL(kmem_cache_create);
577
133d205a 578void kmem_cache_destroy(struct kmem_cache *c)
10cef602 579{
4374e616 580 kmemleak_free(c);
7ed9f7e5
PM
581 if (c->flags & SLAB_DESTROY_BY_RCU)
582 rcu_barrier();
10cef602 583 slob_free(c, sizeof(struct kmem_cache));
10cef602
MM
584}
585EXPORT_SYMBOL(kmem_cache_destroy);
586
6193a2ff 587void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
10cef602
MM
588{
589 void *b;
590
bd50cfa8
SR
591 flags &= gfp_allowed_mask;
592
593 lockdep_trace_alloc(flags);
594
3eae2cb2 595 if (c->size < PAGE_SIZE) {
6193a2ff 596 b = slob_alloc(c->size, flags, c->align, node);
ca2b84cb
EGM
597 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
598 SLOB_UNITS(c->size) * SLOB_UNIT,
599 flags, node);
3eae2cb2 600 } else {
6e9ed0cc 601 b = slob_new_pages(flags, get_order(c->size), node);
ca2b84cb
EGM
602 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
603 PAGE_SIZE << get_order(c->size),
604 flags, node);
3eae2cb2 605 }
10cef602
MM
606
607 if (c->ctor)
51cc5068 608 c->ctor(b);
10cef602 609
4374e616 610 kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
10cef602
MM
611 return b;
612}
6193a2ff 613EXPORT_SYMBOL(kmem_cache_alloc_node);
10cef602 614
afc0cedb 615static void __kmem_cache_free(void *b, int size)
10cef602 616{
afc0cedb
NP
617 if (size < PAGE_SIZE)
618 slob_free(b, size);
10cef602 619 else
6e9ed0cc 620 slob_free_pages(b, get_order(size));
afc0cedb
NP
621}
622
623static void kmem_rcu_free(struct rcu_head *head)
624{
625 struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
626 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
627
628 __kmem_cache_free(b, slob_rcu->size);
629}
630
631void kmem_cache_free(struct kmem_cache *c, void *b)
632{
4374e616 633 kmemleak_free_recursive(b, c->flags);
afc0cedb
NP
634 if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
635 struct slob_rcu *slob_rcu;
636 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
afc0cedb
NP
637 slob_rcu->size = c->size;
638 call_rcu(&slob_rcu->head, kmem_rcu_free);
639 } else {
afc0cedb
NP
640 __kmem_cache_free(b, c->size);
641 }
3eae2cb2 642
ca2b84cb 643 trace_kmem_cache_free(_RET_IP_, b);
10cef602
MM
644}
645EXPORT_SYMBOL(kmem_cache_free);
646
647unsigned int kmem_cache_size(struct kmem_cache *c)
648{
649 return c->size;
650}
651EXPORT_SYMBOL(kmem_cache_size);
652
2e892f43
CL
653int kmem_cache_shrink(struct kmem_cache *d)
654{
655 return 0;
656}
657EXPORT_SYMBOL(kmem_cache_shrink);
658
84a01c2f
PM
659static unsigned int slob_ready __read_mostly;
660
661int slab_is_available(void)
662{
663 return slob_ready;
664}
665
bcb4ddb4
DG
666void __init kmem_cache_init(void)
667{
84a01c2f 668 slob_ready = 1;
10cef602 669}
bbff2e43
WF
670
671void __init kmem_cache_init_late(void)
672{
673 /* Nothing to do */
674}