mm/sl[aou]b: Move common kmem_cache_size() to slab.h
[linux-2.6-block.git] / mm / slob.c
CommitLineData
10cef602
MM
1/*
2 * SLOB Allocator: Simple List Of Blocks
3 *
4 * Matt Mackall <mpm@selenic.com> 12/30/03
5 *
6193a2ff
PM
6 * NUMA support by Paul Mundt, 2007.
7 *
10cef602
MM
8 * How SLOB works:
9 *
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
55394849
NP
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
95b35127 14 *
20cecbae
MM
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
20 *
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
10cef602
MM
26 *
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
55394849 28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
10cef602 29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
6193a2ff 30 * alloc_pages() directly, allocating compound pages so the page order
999d8795
EG
31 * does not have to be separately tracked.
32 * These objects are detected in kfree() because PageSlab()
d87a133f 33 * is false for them.
10cef602
MM
34 *
35 * SLAB is emulated on top of SLOB by simply calling constructors and
95b35127
NP
36 * destructors for every SLAB allocation. Objects are returned with the
37 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
38 * case the low-level allocator will fragment blocks to create the proper
39 * alignment. Again, objects of page-size or greater are allocated by
6193a2ff 40 * calling alloc_pages(). As SLAB objects know their size, no separate
95b35127 41 * size bookkeeping is necessary and there is essentially no allocation
d87a133f
NP
42 * space overhead, and compound pages aren't needed for multi-page
43 * allocations.
6193a2ff
PM
44 *
45 * NUMA support in SLOB is fairly simplistic, pushing most of the real
46 * logic down to the page allocator, and simply doing the node accounting
47 * on the upper levels. In the event that a node id is explicitly
6484eb3e 48 * provided, alloc_pages_exact_node() with the specified node id is used
6193a2ff
PM
49 * instead. The common case (or when the node id isn't explicitly provided)
50 * will default to the current node, as per numa_node_id().
51 *
52 * Node aware pages are still inserted in to the global freelist, and
53 * these are scanned for by matching against the node id encoded in the
54 * page flags. As a result, block allocations that can be satisfied from
55 * the freelist will only be done so on pages residing on the same node,
56 * in order to prevent random node placement.
10cef602
MM
57 */
58
95b35127 59#include <linux/kernel.h>
10cef602 60#include <linux/slab.h>
97d06609
CL
61#include "slab.h"
62
10cef602 63#include <linux/mm.h>
1f0532eb 64#include <linux/swap.h> /* struct reclaim_state */
10cef602
MM
65#include <linux/cache.h>
66#include <linux/init.h>
b95f1b31 67#include <linux/export.h>
afc0cedb 68#include <linux/rcupdate.h>
95b35127 69#include <linux/list.h>
4374e616 70#include <linux/kmemleak.h>
039ca4e7
LZ
71
72#include <trace/events/kmem.h>
73
60063497 74#include <linux/atomic.h>
95b35127 75
95b35127
NP
76/*
77 * slob_block has a field 'units', which indicates size of block if +ve,
78 * or offset of next block if -ve (in SLOB_UNITs).
79 *
80 * Free blocks of size 1 unit simply contain the offset of the next block.
81 * Those with larger size contain their size in the first SLOB_UNIT of
82 * memory, and the offset of the next free block in the second SLOB_UNIT.
83 */
55394849 84#if PAGE_SIZE <= (32767 * 2)
95b35127
NP
85typedef s16 slobidx_t;
86#else
87typedef s32 slobidx_t;
88#endif
89
10cef602 90struct slob_block {
95b35127 91 slobidx_t units;
55394849 92};
10cef602
MM
93typedef struct slob_block slob_t;
94
95b35127 95/*
20cecbae 96 * All partially free slob pages go on these lists.
95b35127 97 */
20cecbae
MM
98#define SLOB_BREAK1 256
99#define SLOB_BREAK2 1024
100static LIST_HEAD(free_slob_small);
101static LIST_HEAD(free_slob_medium);
102static LIST_HEAD(free_slob_large);
95b35127 103
95b35127
NP
104/*
105 * slob_page_free: true for pages on free_slob_pages list.
106 */
b8c24c4a 107static inline int slob_page_free(struct page *sp)
95b35127 108{
b8c24c4a 109 return PageSlobFree(sp);
95b35127
NP
110}
111
b8c24c4a 112static void set_slob_page_free(struct page *sp, struct list_head *list)
95b35127 113{
20cecbae 114 list_add(&sp->list, list);
b8c24c4a 115 __SetPageSlobFree(sp);
95b35127
NP
116}
117
b8c24c4a 118static inline void clear_slob_page_free(struct page *sp)
95b35127
NP
119{
120 list_del(&sp->list);
b8c24c4a 121 __ClearPageSlobFree(sp);
95b35127
NP
122}
123
10cef602
MM
124#define SLOB_UNIT sizeof(slob_t)
125#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
126#define SLOB_ALIGN L1_CACHE_BYTES
127
afc0cedb
NP
128/*
129 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
130 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
131 * the block using call_rcu.
132 */
133struct slob_rcu {
134 struct rcu_head head;
135 int size;
136};
137
95b35127
NP
138/*
139 * slob_lock protects all slob allocator structures.
140 */
10cef602 141static DEFINE_SPINLOCK(slob_lock);
10cef602 142
95b35127
NP
143/*
144 * Encode the given size and next info into a free slob block s.
145 */
146static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
147{
148 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
149 slobidx_t offset = next - base;
bcb4ddb4 150
95b35127
NP
151 if (size > 1) {
152 s[0].units = size;
153 s[1].units = offset;
154 } else
155 s[0].units = -offset;
156}
10cef602 157
95b35127
NP
158/*
159 * Return the size of a slob block.
160 */
161static slobidx_t slob_units(slob_t *s)
162{
163 if (s->units > 0)
164 return s->units;
165 return 1;
166}
167
168/*
169 * Return the next free slob block pointer after this one.
170 */
171static slob_t *slob_next(slob_t *s)
172{
173 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
174 slobidx_t next;
175
176 if (s[0].units < 0)
177 next = -s[0].units;
178 else
179 next = s[1].units;
180 return base+next;
181}
182
183/*
184 * Returns true if s is the last free block in its page.
185 */
186static int slob_last(slob_t *s)
187{
188 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
189}
190
6e9ed0cc 191static void *slob_new_pages(gfp_t gfp, int order, int node)
6193a2ff
PM
192{
193 void *page;
194
195#ifdef CONFIG_NUMA
90f2cbbc 196 if (node != NUMA_NO_NODE)
6484eb3e 197 page = alloc_pages_exact_node(node, gfp, order);
6193a2ff
PM
198 else
199#endif
200 page = alloc_pages(gfp, order);
201
202 if (!page)
203 return NULL;
204
205 return page_address(page);
206}
207
6e9ed0cc
AW
208static void slob_free_pages(void *b, int order)
209{
1f0532eb
NP
210 if (current->reclaim_state)
211 current->reclaim_state->reclaimed_slab += 1 << order;
6e9ed0cc
AW
212 free_pages((unsigned long)b, order);
213}
214
95b35127
NP
215/*
216 * Allocate a slob block within a given slob_page sp.
217 */
b8c24c4a 218static void *slob_page_alloc(struct page *sp, size_t size, int align)
10cef602 219{
6e9ed0cc 220 slob_t *prev, *cur, *aligned = NULL;
10cef602 221 int delta = 0, units = SLOB_UNITS(size);
10cef602 222
b8c24c4a 223 for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
95b35127
NP
224 slobidx_t avail = slob_units(cur);
225
10cef602
MM
226 if (align) {
227 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
228 delta = aligned - cur;
229 }
95b35127
NP
230 if (avail >= units + delta) { /* room enough? */
231 slob_t *next;
232
10cef602 233 if (delta) { /* need to fragment head to align? */
95b35127
NP
234 next = slob_next(cur);
235 set_slob(aligned, avail - delta, next);
236 set_slob(cur, delta, aligned);
10cef602
MM
237 prev = cur;
238 cur = aligned;
95b35127 239 avail = slob_units(cur);
10cef602
MM
240 }
241
95b35127
NP
242 next = slob_next(cur);
243 if (avail == units) { /* exact fit? unlink. */
244 if (prev)
245 set_slob(prev, slob_units(prev), next);
246 else
b8c24c4a 247 sp->freelist = next;
95b35127
NP
248 } else { /* fragment */
249 if (prev)
250 set_slob(prev, slob_units(prev), cur + units);
251 else
b8c24c4a 252 sp->freelist = cur + units;
95b35127 253 set_slob(cur + units, avail - units, next);
10cef602
MM
254 }
255
95b35127
NP
256 sp->units -= units;
257 if (!sp->units)
258 clear_slob_page_free(sp);
10cef602
MM
259 return cur;
260 }
95b35127
NP
261 if (slob_last(cur))
262 return NULL;
263 }
264}
10cef602 265
95b35127
NP
266/*
267 * slob_alloc: entry point into the slob allocator.
268 */
6193a2ff 269static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
95b35127 270{
b8c24c4a 271 struct page *sp;
d6269543 272 struct list_head *prev;
20cecbae 273 struct list_head *slob_list;
95b35127
NP
274 slob_t *b = NULL;
275 unsigned long flags;
10cef602 276
20cecbae
MM
277 if (size < SLOB_BREAK1)
278 slob_list = &free_slob_small;
279 else if (size < SLOB_BREAK2)
280 slob_list = &free_slob_medium;
281 else
282 slob_list = &free_slob_large;
283
95b35127
NP
284 spin_lock_irqsave(&slob_lock, flags);
285 /* Iterate through each partially free page, try to find room */
20cecbae 286 list_for_each_entry(sp, slob_list, list) {
6193a2ff
PM
287#ifdef CONFIG_NUMA
288 /*
289 * If there's a node specification, search for a partial
290 * page with a matching node id in the freelist.
291 */
90f2cbbc 292 if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
6193a2ff
PM
293 continue;
294#endif
d6269543
MM
295 /* Enough room on this page? */
296 if (sp->units < SLOB_UNITS(size))
297 continue;
6193a2ff 298
d6269543
MM
299 /* Attempt to alloc */
300 prev = sp->list.prev;
301 b = slob_page_alloc(sp, size, align);
302 if (!b)
303 continue;
304
305 /* Improve fragment distribution and reduce our average
306 * search time by starting our next search here. (see
307 * Knuth vol 1, sec 2.5, pg 449) */
20cecbae
MM
308 if (prev != slob_list->prev &&
309 slob_list->next != prev->next)
310 list_move_tail(slob_list, prev->next);
d6269543 311 break;
10cef602 312 }
95b35127
NP
313 spin_unlock_irqrestore(&slob_lock, flags);
314
315 /* Not enough space: must allocate a new page */
316 if (!b) {
6e9ed0cc 317 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
95b35127 318 if (!b)
6e9ed0cc 319 return NULL;
b5568280
CL
320 sp = virt_to_page(b);
321 __SetPageSlab(sp);
95b35127
NP
322
323 spin_lock_irqsave(&slob_lock, flags);
324 sp->units = SLOB_UNITS(PAGE_SIZE);
b8c24c4a 325 sp->freelist = b;
95b35127
NP
326 INIT_LIST_HEAD(&sp->list);
327 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
20cecbae 328 set_slob_page_free(sp, slob_list);
95b35127
NP
329 b = slob_page_alloc(sp, size, align);
330 BUG_ON(!b);
331 spin_unlock_irqrestore(&slob_lock, flags);
332 }
d07dbea4
CL
333 if (unlikely((gfp & __GFP_ZERO) && b))
334 memset(b, 0, size);
95b35127 335 return b;
10cef602
MM
336}
337
95b35127
NP
338/*
339 * slob_free: entry point into the slob allocator.
340 */
10cef602
MM
341static void slob_free(void *block, int size)
342{
b8c24c4a 343 struct page *sp;
95b35127
NP
344 slob_t *prev, *next, *b = (slob_t *)block;
345 slobidx_t units;
10cef602 346 unsigned long flags;
d602daba 347 struct list_head *slob_list;
10cef602 348
2408c550 349 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602 350 return;
95b35127 351 BUG_ON(!size);
10cef602 352
b5568280 353 sp = virt_to_page(block);
95b35127 354 units = SLOB_UNITS(size);
10cef602 355
10cef602 356 spin_lock_irqsave(&slob_lock, flags);
10cef602 357
95b35127
NP
358 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
359 /* Go directly to page allocator. Do not pass slob allocator */
360 if (slob_page_free(sp))
361 clear_slob_page_free(sp);
6fb8f424 362 spin_unlock_irqrestore(&slob_lock, flags);
b5568280
CL
363 __ClearPageSlab(sp);
364 reset_page_mapcount(sp);
1f0532eb 365 slob_free_pages(b, 0);
6fb8f424 366 return;
95b35127 367 }
10cef602 368
95b35127
NP
369 if (!slob_page_free(sp)) {
370 /* This slob page is about to become partially free. Easy! */
371 sp->units = units;
b8c24c4a 372 sp->freelist = b;
95b35127
NP
373 set_slob(b, units,
374 (void *)((unsigned long)(b +
375 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
d602daba
BL
376 if (size < SLOB_BREAK1)
377 slob_list = &free_slob_small;
378 else if (size < SLOB_BREAK2)
379 slob_list = &free_slob_medium;
380 else
381 slob_list = &free_slob_large;
382 set_slob_page_free(sp, slob_list);
95b35127
NP
383 goto out;
384 }
385
386 /*
387 * Otherwise the page is already partially free, so find reinsertion
388 * point.
389 */
390 sp->units += units;
10cef602 391
b8c24c4a
CL
392 if (b < (slob_t *)sp->freelist) {
393 if (b + units == sp->freelist) {
394 units += slob_units(sp->freelist);
395 sp->freelist = slob_next(sp->freelist);
679299b3 396 }
b8c24c4a
CL
397 set_slob(b, units, sp->freelist);
398 sp->freelist = b;
95b35127 399 } else {
b8c24c4a 400 prev = sp->freelist;
95b35127
NP
401 next = slob_next(prev);
402 while (b > next) {
403 prev = next;
404 next = slob_next(prev);
405 }
10cef602 406
95b35127
NP
407 if (!slob_last(prev) && b + units == next) {
408 units += slob_units(next);
409 set_slob(b, units, slob_next(next));
410 } else
411 set_slob(b, units, next);
412
413 if (prev + slob_units(prev) == b) {
414 units = slob_units(b) + slob_units(prev);
415 set_slob(prev, units, slob_next(b));
416 } else
417 set_slob(prev, slob_units(prev), b);
418 }
419out:
10cef602
MM
420 spin_unlock_irqrestore(&slob_lock, flags);
421}
422
95b35127
NP
423/*
424 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
425 */
426
f3f74101
EG
427static __always_inline void *
428__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
10cef602 429{
6cb8f913 430 unsigned int *m;
55394849 431 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
3eae2cb2 432 void *ret;
55394849 433
bd50cfa8
SR
434 gfp &= gfp_allowed_mask;
435
19cefdff 436 lockdep_trace_alloc(gfp);
cf40bd16 437
55394849 438 if (size < PAGE_SIZE - align) {
6cb8f913
CL
439 if (!size)
440 return ZERO_SIZE_PTR;
441
6193a2ff 442 m = slob_alloc(size + align, gfp, align, node);
3eae2cb2 443
239f49c0
MK
444 if (!m)
445 return NULL;
446 *m = size;
3eae2cb2
EGM
447 ret = (void *)m + align;
448
f3f74101 449 trace_kmalloc_node(caller, ret,
ca2b84cb 450 size, size + align, gfp, node);
d87a133f 451 } else {
3eae2cb2 452 unsigned int order = get_order(size);
d87a133f 453
8df275af
DR
454 if (likely(order))
455 gfp |= __GFP_COMP;
456 ret = slob_new_pages(gfp, order, node);
3eae2cb2 457
f3f74101 458 trace_kmalloc_node(caller, ret,
ca2b84cb 459 size, PAGE_SIZE << order, gfp, node);
10cef602 460 }
3eae2cb2 461
4374e616 462 kmemleak_alloc(ret, size, 1, gfp);
3eae2cb2 463 return ret;
10cef602 464}
f3f74101
EG
465
466void *__kmalloc_node(size_t size, gfp_t gfp, int node)
467{
468 return __do_kmalloc_node(size, gfp, node, _RET_IP_);
469}
6193a2ff 470EXPORT_SYMBOL(__kmalloc_node);
10cef602 471
f3f74101
EG
472#ifdef CONFIG_TRACING
473void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
474{
475 return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
476}
477
478#ifdef CONFIG_NUMA
82bd5508 479void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
f3f74101
EG
480 int node, unsigned long caller)
481{
482 return __do_kmalloc_node(size, gfp, node, caller);
483}
484#endif
485#endif
486
10cef602
MM
487void kfree(const void *block)
488{
b8c24c4a 489 struct page *sp;
10cef602 490
2121db74
PE
491 trace_kfree(_RET_IP_, block);
492
2408c550 493 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602 494 return;
4374e616 495 kmemleak_free(block);
10cef602 496
b5568280
CL
497 sp = virt_to_page(block);
498 if (PageSlab(sp)) {
55394849
NP
499 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
500 unsigned int *m = (unsigned int *)(block - align);
501 slob_free(m, *m + align);
d87a133f 502 } else
b8c24c4a 503 put_page(sp);
10cef602 504}
10cef602
MM
505EXPORT_SYMBOL(kfree);
506
d87a133f 507/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
fd76bab2 508size_t ksize(const void *block)
10cef602 509{
b8c24c4a 510 struct page *sp;
999d8795
EG
511 int align;
512 unsigned int *m;
10cef602 513
ef8b4520
CL
514 BUG_ON(!block);
515 if (unlikely(block == ZERO_SIZE_PTR))
10cef602
MM
516 return 0;
517
b5568280 518 sp = virt_to_page(block);
999d8795
EG
519 if (unlikely(!PageSlab(sp)))
520 return PAGE_SIZE << compound_order(sp);
521
522 align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
523 m = (unsigned int *)(block - align);
524 return SLOB_UNITS(*m) * SLOB_UNIT;
10cef602 525}
b1aabecd 526EXPORT_SYMBOL(ksize);
10cef602 527
8a13a4cc 528int __kmem_cache_create(struct kmem_cache *c, unsigned long flags)
10cef602 529{
8a13a4cc 530 size_t align = c->size;
10cef602 531
278b1bb1
CL
532 if (flags & SLAB_DESTROY_BY_RCU) {
533 /* leave room for rcu footer at the end of object */
534 c->size += sizeof(struct slob_rcu);
039363f3 535 }
278b1bb1 536 c->flags = flags;
278b1bb1
CL
537 /* ignore alignment unless it's forced */
538 c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
539 if (c->align < ARCH_SLAB_MINALIGN)
540 c->align = ARCH_SLAB_MINALIGN;
541 if (c->align < align)
542 c->align = align;
10cef602 543
278b1bb1 544 return 0;
10cef602 545}
10cef602 546
6193a2ff 547void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
10cef602
MM
548{
549 void *b;
550
bd50cfa8
SR
551 flags &= gfp_allowed_mask;
552
553 lockdep_trace_alloc(flags);
554
3eae2cb2 555 if (c->size < PAGE_SIZE) {
6193a2ff 556 b = slob_alloc(c->size, flags, c->align, node);
fe74fe2b 557 trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
ca2b84cb
EGM
558 SLOB_UNITS(c->size) * SLOB_UNIT,
559 flags, node);
3eae2cb2 560 } else {
6e9ed0cc 561 b = slob_new_pages(flags, get_order(c->size), node);
fe74fe2b 562 trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
ca2b84cb
EGM
563 PAGE_SIZE << get_order(c->size),
564 flags, node);
3eae2cb2 565 }
10cef602
MM
566
567 if (c->ctor)
51cc5068 568 c->ctor(b);
10cef602 569
4374e616 570 kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
10cef602
MM
571 return b;
572}
6193a2ff 573EXPORT_SYMBOL(kmem_cache_alloc_node);
10cef602 574
afc0cedb 575static void __kmem_cache_free(void *b, int size)
10cef602 576{
afc0cedb
NP
577 if (size < PAGE_SIZE)
578 slob_free(b, size);
10cef602 579 else
6e9ed0cc 580 slob_free_pages(b, get_order(size));
afc0cedb
NP
581}
582
583static void kmem_rcu_free(struct rcu_head *head)
584{
585 struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
586 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
587
588 __kmem_cache_free(b, slob_rcu->size);
589}
590
591void kmem_cache_free(struct kmem_cache *c, void *b)
592{
4374e616 593 kmemleak_free_recursive(b, c->flags);
afc0cedb
NP
594 if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
595 struct slob_rcu *slob_rcu;
596 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
afc0cedb
NP
597 slob_rcu->size = c->size;
598 call_rcu(&slob_rcu->head, kmem_rcu_free);
599 } else {
afc0cedb
NP
600 __kmem_cache_free(b, c->size);
601 }
3eae2cb2 602
ca2b84cb 603 trace_kmem_cache_free(_RET_IP_, b);
10cef602
MM
604}
605EXPORT_SYMBOL(kmem_cache_free);
606
945cf2b6
CL
607int __kmem_cache_shutdown(struct kmem_cache *c)
608{
609 /* No way to check for remaining objects */
610 return 0;
611}
612
2e892f43
CL
613int kmem_cache_shrink(struct kmem_cache *d)
614{
615 return 0;
616}
617EXPORT_SYMBOL(kmem_cache_shrink);
618
9b030cb8
CL
619struct kmem_cache kmem_cache_boot = {
620 .name = "kmem_cache",
621 .size = sizeof(struct kmem_cache),
622 .flags = SLAB_PANIC,
623 .align = ARCH_KMALLOC_MINALIGN,
624};
625
bcb4ddb4
DG
626void __init kmem_cache_init(void)
627{
9b030cb8 628 kmem_cache = &kmem_cache_boot;
97d06609 629 slab_state = UP;
10cef602 630}
bbff2e43
WF
631
632void __init kmem_cache_init_late(void)
633{
97d06609 634 slab_state = FULL;
bbff2e43 635}