mm, sl[aou]b: Extract common code for kmem_cache_create()
[linux-2.6-block.git] / mm / slob.c
CommitLineData
10cef602
MM
1/*
2 * SLOB Allocator: Simple List Of Blocks
3 *
4 * Matt Mackall <mpm@selenic.com> 12/30/03
5 *
6193a2ff
PM
6 * NUMA support by Paul Mundt, 2007.
7 *
10cef602
MM
8 * How SLOB works:
9 *
10 * The core of SLOB is a traditional K&R style heap allocator, with
11 * support for returning aligned objects. The granularity of this
55394849
NP
12 * allocator is as little as 2 bytes, however typically most architectures
13 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
95b35127 14 *
20cecbae
MM
15 * The slob heap is a set of linked list of pages from alloc_pages(),
16 * and within each page, there is a singly-linked list of free blocks
17 * (slob_t). The heap is grown on demand. To reduce fragmentation,
18 * heap pages are segregated into three lists, with objects less than
19 * 256 bytes, objects less than 1024 bytes, and all other objects.
20 *
21 * Allocation from heap involves first searching for a page with
22 * sufficient free blocks (using a next-fit-like approach) followed by
23 * a first-fit scan of the page. Deallocation inserts objects back
24 * into the free list in address order, so this is effectively an
25 * address-ordered first fit.
10cef602
MM
26 *
27 * Above this is an implementation of kmalloc/kfree. Blocks returned
55394849 28 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
10cef602 29 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
6193a2ff 30 * alloc_pages() directly, allocating compound pages so the page order
d87a133f
NP
31 * does not have to be separately tracked, and also stores the exact
32 * allocation size in page->private so that it can be used to accurately
33 * provide ksize(). These objects are detected in kfree() because slob_page()
34 * is false for them.
10cef602
MM
35 *
36 * SLAB is emulated on top of SLOB by simply calling constructors and
95b35127
NP
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
6193a2ff 41 * calling alloc_pages(). As SLAB objects know their size, no separate
95b35127 42 * size bookkeeping is necessary and there is essentially no allocation
d87a133f
NP
43 * space overhead, and compound pages aren't needed for multi-page
44 * allocations.
6193a2ff
PM
45 *
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
6484eb3e 49 * provided, alloc_pages_exact_node() with the specified node id is used
6193a2ff
PM
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
52 *
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
10cef602
MM
58 */
59
95b35127 60#include <linux/kernel.h>
10cef602
MM
61#include <linux/slab.h>
62#include <linux/mm.h>
1f0532eb 63#include <linux/swap.h> /* struct reclaim_state */
10cef602
MM
64#include <linux/cache.h>
65#include <linux/init.h>
b95f1b31 66#include <linux/export.h>
afc0cedb 67#include <linux/rcupdate.h>
95b35127 68#include <linux/list.h>
4374e616 69#include <linux/kmemleak.h>
039ca4e7
LZ
70
71#include <trace/events/kmem.h>
72
60063497 73#include <linux/atomic.h>
95b35127 74
95b35127
NP
75/*
76 * slob_block has a field 'units', which indicates size of block if +ve,
77 * or offset of next block if -ve (in SLOB_UNITs).
78 *
79 * Free blocks of size 1 unit simply contain the offset of the next block.
80 * Those with larger size contain their size in the first SLOB_UNIT of
81 * memory, and the offset of the next free block in the second SLOB_UNIT.
82 */
55394849 83#if PAGE_SIZE <= (32767 * 2)
95b35127
NP
84typedef s16 slobidx_t;
85#else
86typedef s32 slobidx_t;
87#endif
88
10cef602 89struct slob_block {
95b35127 90 slobidx_t units;
55394849 91};
10cef602
MM
92typedef struct slob_block slob_t;
93
95b35127 94/*
20cecbae 95 * All partially free slob pages go on these lists.
95b35127 96 */
20cecbae
MM
97#define SLOB_BREAK1 256
98#define SLOB_BREAK2 1024
99static LIST_HEAD(free_slob_small);
100static LIST_HEAD(free_slob_medium);
101static LIST_HEAD(free_slob_large);
95b35127 102
95b35127
NP
103/*
104 * slob_page_free: true for pages on free_slob_pages list.
105 */
b8c24c4a 106static inline int slob_page_free(struct page *sp)
95b35127 107{
b8c24c4a 108 return PageSlobFree(sp);
95b35127
NP
109}
110
b8c24c4a 111static void set_slob_page_free(struct page *sp, struct list_head *list)
95b35127 112{
20cecbae 113 list_add(&sp->list, list);
b8c24c4a 114 __SetPageSlobFree(sp);
95b35127
NP
115}
116
b8c24c4a 117static inline void clear_slob_page_free(struct page *sp)
95b35127
NP
118{
119 list_del(&sp->list);
b8c24c4a 120 __ClearPageSlobFree(sp);
95b35127
NP
121}
122
10cef602
MM
123#define SLOB_UNIT sizeof(slob_t)
124#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
125#define SLOB_ALIGN L1_CACHE_BYTES
126
afc0cedb
NP
127/*
128 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
129 * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
130 * the block using call_rcu.
131 */
132struct slob_rcu {
133 struct rcu_head head;
134 int size;
135};
136
95b35127
NP
137/*
138 * slob_lock protects all slob allocator structures.
139 */
10cef602 140static DEFINE_SPINLOCK(slob_lock);
10cef602 141
95b35127
NP
142/*
143 * Encode the given size and next info into a free slob block s.
144 */
145static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
146{
147 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
148 slobidx_t offset = next - base;
bcb4ddb4 149
95b35127
NP
150 if (size > 1) {
151 s[0].units = size;
152 s[1].units = offset;
153 } else
154 s[0].units = -offset;
155}
10cef602 156
95b35127
NP
157/*
158 * Return the size of a slob block.
159 */
160static slobidx_t slob_units(slob_t *s)
161{
162 if (s->units > 0)
163 return s->units;
164 return 1;
165}
166
167/*
168 * Return the next free slob block pointer after this one.
169 */
170static slob_t *slob_next(slob_t *s)
171{
172 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
173 slobidx_t next;
174
175 if (s[0].units < 0)
176 next = -s[0].units;
177 else
178 next = s[1].units;
179 return base+next;
180}
181
182/*
183 * Returns true if s is the last free block in its page.
184 */
185static int slob_last(slob_t *s)
186{
187 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
188}
189
6e9ed0cc 190static void *slob_new_pages(gfp_t gfp, int order, int node)
6193a2ff
PM
191{
192 void *page;
193
194#ifdef CONFIG_NUMA
195 if (node != -1)
6484eb3e 196 page = alloc_pages_exact_node(node, gfp, order);
6193a2ff
PM
197 else
198#endif
199 page = alloc_pages(gfp, order);
200
201 if (!page)
202 return NULL;
203
204 return page_address(page);
205}
206
6e9ed0cc
AW
207static void slob_free_pages(void *b, int order)
208{
1f0532eb
NP
209 if (current->reclaim_state)
210 current->reclaim_state->reclaimed_slab += 1 << order;
6e9ed0cc
AW
211 free_pages((unsigned long)b, order);
212}
213
95b35127
NP
214/*
215 * Allocate a slob block within a given slob_page sp.
216 */
b8c24c4a 217static void *slob_page_alloc(struct page *sp, size_t size, int align)
10cef602 218{
6e9ed0cc 219 slob_t *prev, *cur, *aligned = NULL;
10cef602 220 int delta = 0, units = SLOB_UNITS(size);
10cef602 221
b8c24c4a 222 for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
95b35127
NP
223 slobidx_t avail = slob_units(cur);
224
10cef602
MM
225 if (align) {
226 aligned = (slob_t *)ALIGN((unsigned long)cur, align);
227 delta = aligned - cur;
228 }
95b35127
NP
229 if (avail >= units + delta) { /* room enough? */
230 slob_t *next;
231
10cef602 232 if (delta) { /* need to fragment head to align? */
95b35127
NP
233 next = slob_next(cur);
234 set_slob(aligned, avail - delta, next);
235 set_slob(cur, delta, aligned);
10cef602
MM
236 prev = cur;
237 cur = aligned;
95b35127 238 avail = slob_units(cur);
10cef602
MM
239 }
240
95b35127
NP
241 next = slob_next(cur);
242 if (avail == units) { /* exact fit? unlink. */
243 if (prev)
244 set_slob(prev, slob_units(prev), next);
245 else
b8c24c4a 246 sp->freelist = next;
95b35127
NP
247 } else { /* fragment */
248 if (prev)
249 set_slob(prev, slob_units(prev), cur + units);
250 else
b8c24c4a 251 sp->freelist = cur + units;
95b35127 252 set_slob(cur + units, avail - units, next);
10cef602
MM
253 }
254
95b35127
NP
255 sp->units -= units;
256 if (!sp->units)
257 clear_slob_page_free(sp);
10cef602
MM
258 return cur;
259 }
95b35127
NP
260 if (slob_last(cur))
261 return NULL;
262 }
263}
10cef602 264
95b35127
NP
265/*
266 * slob_alloc: entry point into the slob allocator.
267 */
6193a2ff 268static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
95b35127 269{
b8c24c4a 270 struct page *sp;
d6269543 271 struct list_head *prev;
20cecbae 272 struct list_head *slob_list;
95b35127
NP
273 slob_t *b = NULL;
274 unsigned long flags;
10cef602 275
20cecbae
MM
276 if (size < SLOB_BREAK1)
277 slob_list = &free_slob_small;
278 else if (size < SLOB_BREAK2)
279 slob_list = &free_slob_medium;
280 else
281 slob_list = &free_slob_large;
282
95b35127
NP
283 spin_lock_irqsave(&slob_lock, flags);
284 /* Iterate through each partially free page, try to find room */
20cecbae 285 list_for_each_entry(sp, slob_list, list) {
6193a2ff
PM
286#ifdef CONFIG_NUMA
287 /*
288 * If there's a node specification, search for a partial
289 * page with a matching node id in the freelist.
290 */
b8c24c4a 291 if (node != -1 && page_to_nid(sp) != node)
6193a2ff
PM
292 continue;
293#endif
d6269543
MM
294 /* Enough room on this page? */
295 if (sp->units < SLOB_UNITS(size))
296 continue;
6193a2ff 297
d6269543
MM
298 /* Attempt to alloc */
299 prev = sp->list.prev;
300 b = slob_page_alloc(sp, size, align);
301 if (!b)
302 continue;
303
304 /* Improve fragment distribution and reduce our average
305 * search time by starting our next search here. (see
306 * Knuth vol 1, sec 2.5, pg 449) */
20cecbae
MM
307 if (prev != slob_list->prev &&
308 slob_list->next != prev->next)
309 list_move_tail(slob_list, prev->next);
d6269543 310 break;
10cef602 311 }
95b35127
NP
312 spin_unlock_irqrestore(&slob_lock, flags);
313
314 /* Not enough space: must allocate a new page */
315 if (!b) {
6e9ed0cc 316 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
95b35127 317 if (!b)
6e9ed0cc 318 return NULL;
b5568280
CL
319 sp = virt_to_page(b);
320 __SetPageSlab(sp);
95b35127
NP
321
322 spin_lock_irqsave(&slob_lock, flags);
323 sp->units = SLOB_UNITS(PAGE_SIZE);
b8c24c4a 324 sp->freelist = b;
95b35127
NP
325 INIT_LIST_HEAD(&sp->list);
326 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
20cecbae 327 set_slob_page_free(sp, slob_list);
95b35127
NP
328 b = slob_page_alloc(sp, size, align);
329 BUG_ON(!b);
330 spin_unlock_irqrestore(&slob_lock, flags);
331 }
d07dbea4
CL
332 if (unlikely((gfp & __GFP_ZERO) && b))
333 memset(b, 0, size);
95b35127 334 return b;
10cef602
MM
335}
336
95b35127
NP
337/*
338 * slob_free: entry point into the slob allocator.
339 */
10cef602
MM
340static void slob_free(void *block, int size)
341{
b8c24c4a 342 struct page *sp;
95b35127
NP
343 slob_t *prev, *next, *b = (slob_t *)block;
344 slobidx_t units;
10cef602 345 unsigned long flags;
d602daba 346 struct list_head *slob_list;
10cef602 347
2408c550 348 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602 349 return;
95b35127 350 BUG_ON(!size);
10cef602 351
b5568280 352 sp = virt_to_page(block);
95b35127 353 units = SLOB_UNITS(size);
10cef602 354
10cef602 355 spin_lock_irqsave(&slob_lock, flags);
10cef602 356
95b35127
NP
357 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
358 /* Go directly to page allocator. Do not pass slob allocator */
359 if (slob_page_free(sp))
360 clear_slob_page_free(sp);
6fb8f424 361 spin_unlock_irqrestore(&slob_lock, flags);
b5568280
CL
362 __ClearPageSlab(sp);
363 reset_page_mapcount(sp);
1f0532eb 364 slob_free_pages(b, 0);
6fb8f424 365 return;
95b35127 366 }
10cef602 367
95b35127
NP
368 if (!slob_page_free(sp)) {
369 /* This slob page is about to become partially free. Easy! */
370 sp->units = units;
b8c24c4a 371 sp->freelist = b;
95b35127
NP
372 set_slob(b, units,
373 (void *)((unsigned long)(b +
374 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
d602daba
BL
375 if (size < SLOB_BREAK1)
376 slob_list = &free_slob_small;
377 else if (size < SLOB_BREAK2)
378 slob_list = &free_slob_medium;
379 else
380 slob_list = &free_slob_large;
381 set_slob_page_free(sp, slob_list);
95b35127
NP
382 goto out;
383 }
384
385 /*
386 * Otherwise the page is already partially free, so find reinsertion
387 * point.
388 */
389 sp->units += units;
10cef602 390
b8c24c4a
CL
391 if (b < (slob_t *)sp->freelist) {
392 if (b + units == sp->freelist) {
393 units += slob_units(sp->freelist);
394 sp->freelist = slob_next(sp->freelist);
679299b3 395 }
b8c24c4a
CL
396 set_slob(b, units, sp->freelist);
397 sp->freelist = b;
95b35127 398 } else {
b8c24c4a 399 prev = sp->freelist;
95b35127
NP
400 next = slob_next(prev);
401 while (b > next) {
402 prev = next;
403 next = slob_next(prev);
404 }
10cef602 405
95b35127
NP
406 if (!slob_last(prev) && b + units == next) {
407 units += slob_units(next);
408 set_slob(b, units, slob_next(next));
409 } else
410 set_slob(b, units, next);
411
412 if (prev + slob_units(prev) == b) {
413 units = slob_units(b) + slob_units(prev);
414 set_slob(prev, units, slob_next(b));
415 } else
416 set_slob(prev, slob_units(prev), b);
417 }
418out:
10cef602
MM
419 spin_unlock_irqrestore(&slob_lock, flags);
420}
421
95b35127
NP
422/*
423 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
424 */
425
6193a2ff 426void *__kmalloc_node(size_t size, gfp_t gfp, int node)
10cef602 427{
6cb8f913 428 unsigned int *m;
55394849 429 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
3eae2cb2 430 void *ret;
55394849 431
bd50cfa8
SR
432 gfp &= gfp_allowed_mask;
433
19cefdff 434 lockdep_trace_alloc(gfp);
cf40bd16 435
55394849 436 if (size < PAGE_SIZE - align) {
6cb8f913
CL
437 if (!size)
438 return ZERO_SIZE_PTR;
439
6193a2ff 440 m = slob_alloc(size + align, gfp, align, node);
3eae2cb2 441
239f49c0
MK
442 if (!m)
443 return NULL;
444 *m = size;
3eae2cb2
EGM
445 ret = (void *)m + align;
446
ca2b84cb
EGM
447 trace_kmalloc_node(_RET_IP_, ret,
448 size, size + align, gfp, node);
d87a133f 449 } else {
3eae2cb2 450 unsigned int order = get_order(size);
d87a133f 451
8df275af
DR
452 if (likely(order))
453 gfp |= __GFP_COMP;
454 ret = slob_new_pages(gfp, order, node);
d87a133f
NP
455 if (ret) {
456 struct page *page;
457 page = virt_to_page(ret);
458 page->private = size;
459 }
3eae2cb2 460
ca2b84cb
EGM
461 trace_kmalloc_node(_RET_IP_, ret,
462 size, PAGE_SIZE << order, gfp, node);
10cef602 463 }
3eae2cb2 464
4374e616 465 kmemleak_alloc(ret, size, 1, gfp);
3eae2cb2 466 return ret;
10cef602 467}
6193a2ff 468EXPORT_SYMBOL(__kmalloc_node);
10cef602
MM
469
470void kfree(const void *block)
471{
b8c24c4a 472 struct page *sp;
10cef602 473
2121db74
PE
474 trace_kfree(_RET_IP_, block);
475
2408c550 476 if (unlikely(ZERO_OR_NULL_PTR(block)))
10cef602 477 return;
4374e616 478 kmemleak_free(block);
10cef602 479
b5568280
CL
480 sp = virt_to_page(block);
481 if (PageSlab(sp)) {
55394849
NP
482 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
483 unsigned int *m = (unsigned int *)(block - align);
484 slob_free(m, *m + align);
d87a133f 485 } else
b8c24c4a 486 put_page(sp);
10cef602 487}
10cef602
MM
488EXPORT_SYMBOL(kfree);
489
d87a133f 490/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
fd76bab2 491size_t ksize(const void *block)
10cef602 492{
b8c24c4a 493 struct page *sp;
10cef602 494
ef8b4520
CL
495 BUG_ON(!block);
496 if (unlikely(block == ZERO_SIZE_PTR))
10cef602
MM
497 return 0;
498
b5568280
CL
499 sp = virt_to_page(block);
500 if (PageSlab(sp)) {
70096a56
MM
501 int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
502 unsigned int *m = (unsigned int *)(block - align);
503 return SLOB_UNITS(*m) * SLOB_UNIT;
504 } else
b8c24c4a 505 return sp->private;
10cef602 506}
b1aabecd 507EXPORT_SYMBOL(ksize);
10cef602 508
039363f3 509struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
51cc5068 510 size_t align, unsigned long flags, void (*ctor)(void *))
10cef602
MM
511{
512 struct kmem_cache *c;
513
0701a9e6 514 c = slob_alloc(sizeof(struct kmem_cache),
5e18e2b8 515 GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
10cef602
MM
516
517 if (c) {
518 c->name = name;
3b0efdfa 519 c->size = c->object_size;
afc0cedb 520 if (flags & SLAB_DESTROY_BY_RCU) {
afc0cedb
NP
521 /* leave room for rcu footer at the end of object */
522 c->size += sizeof(struct slob_rcu);
523 }
524 c->flags = flags;
10cef602 525 c->ctor = ctor;
10cef602 526 /* ignore alignment unless it's forced */
5af60839 527 c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
55394849
NP
528 if (c->align < ARCH_SLAB_MINALIGN)
529 c->align = ARCH_SLAB_MINALIGN;
10cef602
MM
530 if (c->align < align)
531 c->align = align;
10cef602 532
039363f3
CL
533 kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL);
534 }
10cef602
MM
535 return c;
536}
10cef602 537
133d205a 538void kmem_cache_destroy(struct kmem_cache *c)
10cef602 539{
4374e616 540 kmemleak_free(c);
7ed9f7e5
PM
541 if (c->flags & SLAB_DESTROY_BY_RCU)
542 rcu_barrier();
10cef602 543 slob_free(c, sizeof(struct kmem_cache));
10cef602
MM
544}
545EXPORT_SYMBOL(kmem_cache_destroy);
546
6193a2ff 547void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
10cef602
MM
548{
549 void *b;
550
bd50cfa8
SR
551 flags &= gfp_allowed_mask;
552
553 lockdep_trace_alloc(flags);
554
3eae2cb2 555 if (c->size < PAGE_SIZE) {
6193a2ff 556 b = slob_alloc(c->size, flags, c->align, node);
ca2b84cb
EGM
557 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
558 SLOB_UNITS(c->size) * SLOB_UNIT,
559 flags, node);
3eae2cb2 560 } else {
6e9ed0cc 561 b = slob_new_pages(flags, get_order(c->size), node);
ca2b84cb
EGM
562 trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
563 PAGE_SIZE << get_order(c->size),
564 flags, node);
3eae2cb2 565 }
10cef602
MM
566
567 if (c->ctor)
51cc5068 568 c->ctor(b);
10cef602 569
4374e616 570 kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
10cef602
MM
571 return b;
572}
6193a2ff 573EXPORT_SYMBOL(kmem_cache_alloc_node);
10cef602 574
afc0cedb 575static void __kmem_cache_free(void *b, int size)
10cef602 576{
afc0cedb
NP
577 if (size < PAGE_SIZE)
578 slob_free(b, size);
10cef602 579 else
6e9ed0cc 580 slob_free_pages(b, get_order(size));
afc0cedb
NP
581}
582
583static void kmem_rcu_free(struct rcu_head *head)
584{
585 struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
586 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
587
588 __kmem_cache_free(b, slob_rcu->size);
589}
590
591void kmem_cache_free(struct kmem_cache *c, void *b)
592{
4374e616 593 kmemleak_free_recursive(b, c->flags);
afc0cedb
NP
594 if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
595 struct slob_rcu *slob_rcu;
596 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
afc0cedb
NP
597 slob_rcu->size = c->size;
598 call_rcu(&slob_rcu->head, kmem_rcu_free);
599 } else {
afc0cedb
NP
600 __kmem_cache_free(b, c->size);
601 }
3eae2cb2 602
ca2b84cb 603 trace_kmem_cache_free(_RET_IP_, b);
10cef602
MM
604}
605EXPORT_SYMBOL(kmem_cache_free);
606
607unsigned int kmem_cache_size(struct kmem_cache *c)
608{
609 return c->size;
610}
611EXPORT_SYMBOL(kmem_cache_size);
612
2e892f43
CL
613int kmem_cache_shrink(struct kmem_cache *d)
614{
615 return 0;
616}
617EXPORT_SYMBOL(kmem_cache_shrink);
618
84a01c2f
PM
619static unsigned int slob_ready __read_mostly;
620
621int slab_is_available(void)
622{
623 return slob_ready;
624}
625
bcb4ddb4
DG
626void __init kmem_cache_init(void)
627{
84a01c2f 628 slob_ready = 1;
10cef602 629}
bbff2e43
WF
630
631void __init kmem_cache_init_late(void)
632{
633 /* Nothing to do */
634}