Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-2.6-block.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3 14#include <linux/compiler.h>
d3fb45f3 15#include <linux/kfence.h>
039363f3 16#include <linux/module.h>
20cea968
CL
17#include <linux/cpu.h>
18#include <linux/uaccess.h>
b7454ad3 19#include <linux/seq_file.h>
963e84b0 20#include <linux/dma-mapping.h>
b035f5a6 21#include <linux/swiotlb.h>
b7454ad3 22#include <linux/proc_fs.h>
fcf8a1e4 23#include <linux/debugfs.h>
6011be59 24#include <linux/kmemleak.h>
e86f8b09 25#include <linux/kasan.h>
039363f3
CL
26#include <asm/cacheflush.h>
27#include <asm/tlbflush.h>
28#include <asm/page.h>
2633d7a0 29#include <linux/memcontrol.h>
5cf909c5 30#include <linux/stackdepot.h>
928cec9c 31
44405099 32#include "internal.h"
97d06609
CL
33#include "slab.h"
34
b347aa7b
VA
35#define CREATE_TRACE_POINTS
36#include <trace/events/kmem.h>
37
97d06609 38enum slab_state slab_state;
18004c5d
CL
39LIST_HEAD(slab_caches);
40DEFINE_MUTEX(slab_mutex);
9b030cb8 41struct kmem_cache *kmem_cache;
97d06609 42
657dc2f9
TH
43static LIST_HEAD(slab_caches_to_rcu_destroy);
44static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 slab_caches_to_rcu_destroy_workfn);
47
423c929c
JK
48/*
49 * Set of flags that will prevent slab merging
50 */
51#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
96d8dbb6 53 SLAB_FAILSLAB | SLAB_NO_MERGE)
423c929c 54
230e9fc2 55#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
6d6ea1e9 56 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
423c929c
JK
57
58/*
59 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 60 */
7660a6fd 61static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
62
63static int __init setup_slab_nomerge(char *str)
64{
7660a6fd 65 slab_nomerge = true;
423c929c
JK
66 return 1;
67}
68
82edd9d5
RA
69static int __init setup_slab_merge(char *str)
70{
71 slab_nomerge = false;
72 return 1;
73}
74
423c929c 75__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
82edd9d5 76__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
423c929c
JK
77
78__setup("slab_nomerge", setup_slab_nomerge);
82edd9d5 79__setup("slab_merge", setup_slab_merge);
423c929c 80
07f361b2
JK
81/*
82 * Determine the size of a slab object
83 */
84unsigned int kmem_cache_size(struct kmem_cache *s)
85{
86 return s->object_size;
87}
88EXPORT_SYMBOL(kmem_cache_size);
89
77be4b13 90#ifdef CONFIG_DEBUG_VM
f4957d5b 91static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 92{
74c1d3e0 93 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
77be4b13
SK
94 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
95 return -EINVAL;
039363f3 96 }
b920536a 97
20cea968 98 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
99 return 0;
100}
101#else
f4957d5b 102static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
103{
104 return 0;
105}
20cea968
CL
106#endif
107
692ae74a
BL
108/*
109 * Figure out what the alignment of the objects will be given a set of
110 * flags, a user specified alignment and the size of the objects.
111 */
f4957d5b
AD
112static unsigned int calculate_alignment(slab_flags_t flags,
113 unsigned int align, unsigned int size)
692ae74a
BL
114{
115 /*
116 * If the user wants hardware cache aligned objects then follow that
117 * suggestion if the object is sufficiently large.
118 *
119 * The hardware cache alignment cannot override the specified
120 * alignment though. If that is greater then use it.
121 */
122 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 123 unsigned int ralign;
692ae74a
BL
124
125 ralign = cache_line_size();
126 while (size <= ralign / 2)
127 ralign /= 2;
128 align = max(align, ralign);
129 }
130
d949a815 131 align = max(align, arch_slab_minalign());
692ae74a
BL
132
133 return ALIGN(align, sizeof(void *));
134}
135
423c929c
JK
136/*
137 * Find a mergeable slab cache
138 */
139int slab_unmergeable(struct kmem_cache *s)
140{
141 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
142 return 1;
143
423c929c
JK
144 if (s->ctor)
145 return 1;
146
346907ce 147#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
148 if (s->usersize)
149 return 1;
346907ce 150#endif
8eb8284b 151
423c929c
JK
152 /*
153 * We may have set a slab to be unmergeable during bootstrap.
154 */
155 if (s->refcount < 0)
156 return 1;
157
158 return 0;
159}
160
f4957d5b 161struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 162 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
163{
164 struct kmem_cache *s;
165
c6e28895 166 if (slab_nomerge)
423c929c
JK
167 return NULL;
168
169 if (ctor)
170 return NULL;
171
172 size = ALIGN(size, sizeof(void *));
173 align = calculate_alignment(flags, align, size);
174 size = ALIGN(size, align);
303cd693 175 flags = kmem_cache_flags(flags, name);
423c929c 176
c6e28895
GM
177 if (flags & SLAB_NEVER_MERGE)
178 return NULL;
179
c7094406 180 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
181 if (slab_unmergeable(s))
182 continue;
183
184 if (size > s->size)
185 continue;
186
187 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
188 continue;
189 /*
190 * Check if alignment is compatible.
191 * Courtesy of Adrian Drzewiecki
192 */
193 if ((s->size & ~(align - 1)) != s->size)
194 continue;
195
196 if (s->size - size >= sizeof(void *))
197 continue;
198
199 return s;
200 }
201 return NULL;
202}
203
c9a77a79 204static struct kmem_cache *create_cache(const char *name,
613a5eb5 205 unsigned int object_size, unsigned int align,
7bbdb81e
AD
206 slab_flags_t flags, unsigned int useroffset,
207 unsigned int usersize, void (*ctor)(void *),
9855609b 208 struct kmem_cache *root_cache)
794b1248
VD
209{
210 struct kmem_cache *s;
211 int err;
212
8eb8284b
DW
213 if (WARN_ON(useroffset + usersize > object_size))
214 useroffset = usersize = 0;
215
794b1248
VD
216 err = -ENOMEM;
217 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
218 if (!s)
219 goto out;
220
221 s->name = name;
613a5eb5 222 s->size = s->object_size = object_size;
794b1248
VD
223 s->align = align;
224 s->ctor = ctor;
346907ce 225#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
226 s->useroffset = useroffset;
227 s->usersize = usersize;
346907ce 228#endif
794b1248 229
794b1248
VD
230 err = __kmem_cache_create(s, flags);
231 if (err)
232 goto out_free_cache;
233
234 s->refcount = 1;
235 list_add(&s->list, &slab_caches);
794b1248
VD
236 return s;
237
238out_free_cache:
7c4da061 239 kmem_cache_free(kmem_cache, s);
b9dad156
ZL
240out:
241 return ERR_PTR(err);
794b1248 242}
45906855 243
f496990f
MR
244/**
245 * kmem_cache_create_usercopy - Create a cache with a region suitable
246 * for copying to userspace
77be4b13
SK
247 * @name: A string which is used in /proc/slabinfo to identify this cache.
248 * @size: The size of objects to be created in this cache.
249 * @align: The required alignment for the objects.
250 * @flags: SLAB flags
8eb8284b
DW
251 * @useroffset: Usercopy region offset
252 * @usersize: Usercopy region size
77be4b13
SK
253 * @ctor: A constructor for the objects.
254 *
77be4b13
SK
255 * Cannot be called within a interrupt, but can be interrupted.
256 * The @ctor is run when new pages are allocated by the cache.
257 *
258 * The flags are
259 *
260 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
261 * to catch references to uninitialised memory.
262 *
f496990f 263 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
77be4b13
SK
264 * for buffer overruns.
265 *
266 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
267 * cacheline. This can be beneficial if you're counting cycles as closely
268 * as davem.
f496990f
MR
269 *
270 * Return: a pointer to the cache on success, NULL on failure.
77be4b13 271 */
2633d7a0 272struct kmem_cache *
f4957d5b
AD
273kmem_cache_create_usercopy(const char *name,
274 unsigned int size, unsigned int align,
7bbdb81e
AD
275 slab_flags_t flags,
276 unsigned int useroffset, unsigned int usersize,
8eb8284b 277 void (*ctor)(void *))
77be4b13 278{
40911a79 279 struct kmem_cache *s = NULL;
3dec16ea 280 const char *cache_name;
3965fc36 281 int err;
039363f3 282
afe0c26d
VB
283#ifdef CONFIG_SLUB_DEBUG
284 /*
671776b3 285 * If no slab_debug was enabled globally, the static key is not yet
afe0c26d
VB
286 * enabled by setup_slub_debug(). Enable it if the cache is being
287 * created with any of the debugging flags passed explicitly.
5cf909c5
OG
288 * It's also possible that this is the first cache created with
289 * SLAB_STORE_USER and we should init stack_depot for it.
afe0c26d
VB
290 */
291 if (flags & SLAB_DEBUG_FLAGS)
292 static_branch_enable(&slub_debug_enabled);
5cf909c5
OG
293 if (flags & SLAB_STORE_USER)
294 stack_depot_init();
afe0c26d
VB
295#endif
296
77be4b13 297 mutex_lock(&slab_mutex);
686d550d 298
794b1248 299 err = kmem_cache_sanity_check(name, size);
3aa24f51 300 if (err) {
3965fc36 301 goto out_unlock;
3aa24f51 302 }
686d550d 303
e70954fd
TG
304 /* Refuse requests with allocator specific flags */
305 if (flags & ~SLAB_FLAGS_PERMITTED) {
306 err = -EINVAL;
307 goto out_unlock;
308 }
309
d8843922
GC
310 /*
311 * Some allocators will constraint the set of valid flags to a subset
312 * of all flags. We expect them to define CACHE_CREATE_MASK in this
313 * case, and we'll just provide them with a sanitized version of the
314 * passed flags.
315 */
316 flags &= CACHE_CREATE_MASK;
686d550d 317
8eb8284b 318 /* Fail closed on bad usersize of useroffset values. */
346907ce
VB
319 if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
320 WARN_ON(!usersize && useroffset) ||
8eb8284b
DW
321 WARN_ON(size < usersize || size - usersize < useroffset))
322 usersize = useroffset = 0;
323
324 if (!usersize)
325 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 326 if (s)
3965fc36 327 goto out_unlock;
2633d7a0 328
3dec16ea 329 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
330 if (!cache_name) {
331 err = -ENOMEM;
332 goto out_unlock;
333 }
7c9adf5a 334
613a5eb5 335 s = create_cache(cache_name, size,
c9a77a79 336 calculate_alignment(flags, align, size),
9855609b 337 flags, useroffset, usersize, ctor, NULL);
794b1248
VD
338 if (IS_ERR(s)) {
339 err = PTR_ERR(s);
3dec16ea 340 kfree_const(cache_name);
794b1248 341 }
3965fc36
VD
342
343out_unlock:
20cea968 344 mutex_unlock(&slab_mutex);
03afc0e2 345
ba3253c7 346 if (err) {
686d550d 347 if (flags & SLAB_PANIC)
4acaa7d5 348 panic("%s: Failed to create slab '%s'. Error %d\n",
349 __func__, name, err);
686d550d 350 else {
4acaa7d5 351 pr_warn("%s(%s) failed with error %d\n",
352 __func__, name, err);
686d550d
CL
353 dump_stack();
354 }
686d550d
CL
355 return NULL;
356 }
039363f3
CL
357 return s;
358}
8eb8284b
DW
359EXPORT_SYMBOL(kmem_cache_create_usercopy);
360
f496990f
MR
361/**
362 * kmem_cache_create - Create a cache.
363 * @name: A string which is used in /proc/slabinfo to identify this cache.
364 * @size: The size of objects to be created in this cache.
365 * @align: The required alignment for the objects.
366 * @flags: SLAB flags
367 * @ctor: A constructor for the objects.
368 *
369 * Cannot be called within a interrupt, but can be interrupted.
370 * The @ctor is run when new pages are allocated by the cache.
371 *
372 * The flags are
373 *
374 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
375 * to catch references to uninitialised memory.
376 *
377 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
378 * for buffer overruns.
379 *
380 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
381 * cacheline. This can be beneficial if you're counting cycles as closely
382 * as davem.
383 *
384 * Return: a pointer to the cache on success, NULL on failure.
385 */
8eb8284b 386struct kmem_cache *
f4957d5b 387kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
388 slab_flags_t flags, void (*ctor)(void *))
389{
6d07d1cd 390 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
391 ctor);
392}
794b1248 393EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 394
0495e337
WL
395#ifdef SLAB_SUPPORTS_SYSFS
396/*
397 * For a given kmem_cache, kmem_cache_destroy() should only be called
398 * once or there will be a use-after-free problem. The actual deletion
399 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
400 * protection. So they are now done without holding those locks.
401 *
402 * Note that there will be a slight delay in the deletion of sysfs files
403 * if kmem_cache_release() is called indrectly from a work function.
404 */
405static void kmem_cache_release(struct kmem_cache *s)
406{
011568eb
XW
407 if (slab_state >= FULL) {
408 sysfs_slab_unlink(s);
409 sysfs_slab_release(s);
410 } else {
411 slab_kmem_cache_release(s);
412 }
0495e337
WL
413}
414#else
415static void kmem_cache_release(struct kmem_cache *s)
416{
417 slab_kmem_cache_release(s);
418}
419#endif
420
657dc2f9 421static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 422{
657dc2f9
TH
423 LIST_HEAD(to_destroy);
424 struct kmem_cache *s, *s2;
d5b3cf71 425
657dc2f9 426 /*
5f0d5a3a 427 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9 428 * @slab_caches_to_rcu_destroy list. The slab pages are freed
081a06fa 429 * through RCU and the associated kmem_cache are dereferenced
657dc2f9
TH
430 * while freeing the pages, so the kmem_caches should be freed only
431 * after the pending RCU operations are finished. As rcu_barrier()
432 * is a pretty slow operation, we batch all pending destructions
433 * asynchronously.
434 */
435 mutex_lock(&slab_mutex);
436 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
437 mutex_unlock(&slab_mutex);
d5b3cf71 438
657dc2f9
TH
439 if (list_empty(&to_destroy))
440 return;
441
442 rcu_barrier();
443
444 list_for_each_entry_safe(s, s2, &to_destroy, list) {
64dd6849 445 debugfs_slab_release(s);
d3fb45f3 446 kfence_shutdown_cache(s);
0495e337 447 kmem_cache_release(s);
657dc2f9 448 }
d5b3cf71
VD
449}
450
657dc2f9 451static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 452{
f9fa1d91
GT
453 /* free asan quarantined objects */
454 kasan_cache_shutdown(s);
455
657dc2f9
TH
456 if (__kmem_cache_shutdown(s) != 0)
457 return -EBUSY;
d5b3cf71 458
657dc2f9 459 list_del(&s->list);
d5b3cf71 460
5f0d5a3a 461 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
657dc2f9
TH
462 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
463 schedule_work(&slab_caches_to_rcu_destroy_work);
464 } else {
d3fb45f3 465 kfence_shutdown_cache(s);
64dd6849 466 debugfs_slab_release(s);
d5b3cf71 467 }
657dc2f9
TH
468
469 return 0;
d5b3cf71
VD
470}
471
41a21285
CL
472void slab_kmem_cache_release(struct kmem_cache *s)
473{
52b4b950 474 __kmem_cache_release(s);
3dec16ea 475 kfree_const(s->name);
41a21285
CL
476 kmem_cache_free(kmem_cache, s);
477}
478
945cf2b6
CL
479void kmem_cache_destroy(struct kmem_cache *s)
480{
46a9ea66 481 int err = -EBUSY;
d71608a8 482 bool rcu_set;
0495e337 483
bed0a9b5 484 if (unlikely(!s) || !kasan_check_byte(s))
3942d299
SS
485 return;
486
5a836bf6 487 cpus_read_lock();
945cf2b6 488 mutex_lock(&slab_mutex);
b8529907 489
d71608a8
FT
490 rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
491
46a9ea66
RA
492 s->refcount--;
493 if (s->refcount)
b8529907
VD
494 goto out_unlock;
495
46a9ea66
RA
496 err = shutdown_cache(s);
497 WARN(err, "%s %s: Slab cache still has objects when called from %pS",
7302e91f 498 __func__, s->name, (void *)_RET_IP_);
b8529907
VD
499out_unlock:
500 mutex_unlock(&slab_mutex);
5a836bf6 501 cpus_read_unlock();
46a9ea66 502 if (!err && !rcu_set)
0495e337 503 kmem_cache_release(s);
945cf2b6
CL
504}
505EXPORT_SYMBOL(kmem_cache_destroy);
506
03afc0e2
VD
507/**
508 * kmem_cache_shrink - Shrink a cache.
509 * @cachep: The cache to shrink.
510 *
511 * Releases as many slabs as possible for a cache.
512 * To help debugging, a zero exit status indicates all slabs were released.
a862f68a
MR
513 *
514 * Return: %0 if all slabs were released, non-zero otherwise
03afc0e2
VD
515 */
516int kmem_cache_shrink(struct kmem_cache *cachep)
517{
55834c59 518 kasan_cache_shrink(cachep);
7e1fa93d 519
610f9c00 520 return __kmem_cache_shrink(cachep);
03afc0e2
VD
521}
522EXPORT_SYMBOL(kmem_cache_shrink);
523
fda90124 524bool slab_is_available(void)
97d06609
CL
525{
526 return slab_state >= UP;
527}
b7454ad3 528
5bb1bb35 529#ifdef CONFIG_PRINTK
2dfe63e6
ME
530static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
531{
532 if (__kfence_obj_info(kpp, object, slab))
533 return;
534 __kmem_obj_info(kpp, object, slab);
535}
536
8e7f37f2
PM
537/**
538 * kmem_dump_obj - Print available slab provenance information
539 * @object: slab object for which to find provenance information.
540 *
541 * This function uses pr_cont(), so that the caller is expected to have
542 * printed out whatever preamble is appropriate. The provenance information
543 * depends on the type of object and on how much debugging is enabled.
544 * For a slab-cache object, the fact that it is a slab object is printed,
545 * and, if available, the slab name, return address, and stack trace from
e548eaa1 546 * the allocation and last free path of that object.
8e7f37f2 547 *
6e284c55
ZL
548 * Return: %true if the pointer is to a not-yet-freed object from
549 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
550 * is to an already-freed object, and %false otherwise.
8e7f37f2 551 */
6e284c55 552bool kmem_dump_obj(void *object)
8e7f37f2
PM
553{
554 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
555 int i;
7213230a 556 struct slab *slab;
8e7f37f2
PM
557 unsigned long ptroffset;
558 struct kmem_obj_info kp = { };
559
6e284c55
ZL
560 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
561 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
562 return false;
7213230a 563 slab = virt_to_slab(object);
6e284c55
ZL
564 if (!slab)
565 return false;
566
7213230a 567 kmem_obj_info(&kp, object, slab);
8e7f37f2
PM
568 if (kp.kp_slab_cache)
569 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
570 else
571 pr_cont(" slab%s", cp);
2dfe63e6
ME
572 if (is_kfence_address(object))
573 pr_cont(" (kfence)");
8e7f37f2
PM
574 if (kp.kp_objp)
575 pr_cont(" start %px", kp.kp_objp);
576 if (kp.kp_data_offset)
577 pr_cont(" data offset %lu", kp.kp_data_offset);
578 if (kp.kp_objp) {
579 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
580 pr_cont(" pointer offset %lu", ptroffset);
581 }
346907ce
VB
582 if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
583 pr_cont(" size %u", kp.kp_slab_cache->object_size);
8e7f37f2
PM
584 if (kp.kp_ret)
585 pr_cont(" allocated at %pS\n", kp.kp_ret);
586 else
587 pr_cont("\n");
588 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
589 if (!kp.kp_stack[i])
590 break;
591 pr_info(" %pS\n", kp.kp_stack[i]);
592 }
e548eaa1
MS
593
594 if (kp.kp_free_stack[0])
595 pr_cont(" Free path:\n");
596
597 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
598 if (!kp.kp_free_stack[i])
599 break;
600 pr_info(" %pS\n", kp.kp_free_stack[i]);
601 }
602
6e284c55 603 return true;
8e7f37f2 604}
0d3dd2c8 605EXPORT_SYMBOL_GPL(kmem_dump_obj);
5bb1bb35 606#endif
8e7f37f2 607
45530c44 608/* Create a cache during boot when no slab services are available yet */
361d575e
AD
609void __init create_boot_cache(struct kmem_cache *s, const char *name,
610 unsigned int size, slab_flags_t flags,
611 unsigned int useroffset, unsigned int usersize)
45530c44
CL
612{
613 int err;
59bb4798 614 unsigned int align = ARCH_KMALLOC_MINALIGN;
45530c44
CL
615
616 s->name = name;
617 s->size = s->object_size = size;
59bb4798
VB
618
619 /*
620 * For power of two sizes, guarantee natural alignment for kmalloc
621 * caches, regardless of SL*B debugging options.
622 */
623 if (is_power_of_2(size))
624 align = max(align, size);
625 s->align = calculate_alignment(flags, align, size);
626
346907ce 627#ifdef CONFIG_HARDENED_USERCOPY
8eb8284b
DW
628 s->useroffset = useroffset;
629 s->usersize = usersize;
346907ce 630#endif
f7ce3190 631
45530c44
CL
632 err = __kmem_cache_create(s, flags);
633
634 if (err)
361d575e 635 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
636 name, size, err);
637
638 s->refcount = -1; /* Exempt from merging for now */
639}
640
0c474d31
CM
641static struct kmem_cache *__init create_kmalloc_cache(const char *name,
642 unsigned int size,
643 slab_flags_t flags)
45530c44
CL
644{
645 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
646
647 if (!s)
648 panic("Out of memory when creating slab %s\n", name);
649
0c474d31 650 create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size);
45530c44
CL
651 list_add(&s->list, &slab_caches);
652 s->refcount = 1;
653 return s;
654}
655
cc252eae 656struct kmem_cache *
a07057dc 657kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
2947a456 658{ /* initialization for https://llvm.org/pr42570 */ };
9425c58e
CL
659EXPORT_SYMBOL(kmalloc_caches);
660
3c615294
GR
661#ifdef CONFIG_RANDOM_KMALLOC_CACHES
662unsigned long random_kmalloc_seed __ro_after_init;
663EXPORT_SYMBOL(random_kmalloc_seed);
664#endif
665
2c59dd65
CL
666/*
667 * Conversion table for small slabs sizes / 8 to the index in the
668 * kmalloc array. This is necessary for slabs < 192 since we have non power
669 * of two cache sizes there. The size of larger slabs can be determined using
670 * fls.
671 */
5a9d31d9 672u8 kmalloc_size_index[24] __ro_after_init = {
2c59dd65
CL
673 3, /* 8 */
674 4, /* 16 */
675 5, /* 24 */
676 5, /* 32 */
677 6, /* 40 */
678 6, /* 48 */
679 6, /* 56 */
680 6, /* 64 */
681 1, /* 72 */
682 1, /* 80 */
683 1, /* 88 */
684 1, /* 96 */
685 7, /* 104 */
686 7, /* 112 */
687 7, /* 120 */
688 7, /* 128 */
689 2, /* 136 */
690 2, /* 144 */
691 2, /* 152 */
692 2, /* 160 */
693 2, /* 168 */
694 2, /* 176 */
695 2, /* 184 */
696 2 /* 192 */
697};
698
05a94065
KC
699size_t kmalloc_size_roundup(size_t size)
700{
8446a4de
DL
701 if (size && size <= KMALLOC_MAX_CACHE_SIZE) {
702 /*
703 * The flags don't matter since size_index is common to all.
704 * Neither does the caller for just getting ->object_size.
705 */
706 return kmalloc_slab(size, GFP_KERNEL, 0)->object_size;
707 }
708
05a94065 709 /* Above the smaller buckets, size is a multiple of page size. */
8446a4de 710 if (size && size <= KMALLOC_MAX_SIZE)
05a94065
KC
711 return PAGE_SIZE << get_order(size);
712
3c615294 713 /*
8446a4de
DL
714 * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR
715 * and very large size - kmalloc() may fail.
3c615294 716 */
8446a4de
DL
717 return size;
718
05a94065
KC
719}
720EXPORT_SYMBOL(kmalloc_size_roundup);
721
cb5d9fb3 722#ifdef CONFIG_ZONE_DMA
494c1dfe
WL
723#define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
724#else
725#define KMALLOC_DMA_NAME(sz)
726#endif
727
728#ifdef CONFIG_MEMCG_KMEM
729#define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
cb5d9fb3 730#else
494c1dfe
WL
731#define KMALLOC_CGROUP_NAME(sz)
732#endif
733
2f7c1c13
VB
734#ifndef CONFIG_SLUB_TINY
735#define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
736#else
737#define KMALLOC_RCL_NAME(sz)
738#endif
739
3c615294
GR
740#ifdef CONFIG_RANDOM_KMALLOC_CACHES
741#define __KMALLOC_RANDOM_CONCAT(a, b) a ## b
742#define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz)
743#define KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 1] = "kmalloc-rnd-01-" #sz,
744#define KMA_RAND_2(sz) KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 2] = "kmalloc-rnd-02-" #sz,
745#define KMA_RAND_3(sz) KMA_RAND_2(sz) .name[KMALLOC_RANDOM_START + 3] = "kmalloc-rnd-03-" #sz,
746#define KMA_RAND_4(sz) KMA_RAND_3(sz) .name[KMALLOC_RANDOM_START + 4] = "kmalloc-rnd-04-" #sz,
747#define KMA_RAND_5(sz) KMA_RAND_4(sz) .name[KMALLOC_RANDOM_START + 5] = "kmalloc-rnd-05-" #sz,
748#define KMA_RAND_6(sz) KMA_RAND_5(sz) .name[KMALLOC_RANDOM_START + 6] = "kmalloc-rnd-06-" #sz,
749#define KMA_RAND_7(sz) KMA_RAND_6(sz) .name[KMALLOC_RANDOM_START + 7] = "kmalloc-rnd-07-" #sz,
750#define KMA_RAND_8(sz) KMA_RAND_7(sz) .name[KMALLOC_RANDOM_START + 8] = "kmalloc-rnd-08-" #sz,
751#define KMA_RAND_9(sz) KMA_RAND_8(sz) .name[KMALLOC_RANDOM_START + 9] = "kmalloc-rnd-09-" #sz,
752#define KMA_RAND_10(sz) KMA_RAND_9(sz) .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz,
753#define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz,
754#define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz,
755#define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz,
756#define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz,
757#define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz,
758#else // CONFIG_RANDOM_KMALLOC_CACHES
759#define KMALLOC_RANDOM_NAME(N, sz)
760#endif
761
cb5d9fb3
PL
762#define INIT_KMALLOC_INFO(__size, __short_size) \
763{ \
764 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
2f7c1c13 765 KMALLOC_RCL_NAME(__short_size) \
494c1dfe
WL
766 KMALLOC_CGROUP_NAME(__short_size) \
767 KMALLOC_DMA_NAME(__short_size) \
3c615294 768 KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size) \
cb5d9fb3
PL
769 .size = __size, \
770}
cb5d9fb3 771
4066c33d 772/*
671776b3 773 * kmalloc_info[] is to make slab_debug=,kmalloc-xx option work at boot time.
d6a71648
HY
774 * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
775 * kmalloc-2M.
4066c33d 776 */
af3b5f87 777const struct kmalloc_info_struct kmalloc_info[] __initconst = {
cb5d9fb3
PL
778 INIT_KMALLOC_INFO(0, 0),
779 INIT_KMALLOC_INFO(96, 96),
780 INIT_KMALLOC_INFO(192, 192),
781 INIT_KMALLOC_INFO(8, 8),
782 INIT_KMALLOC_INFO(16, 16),
783 INIT_KMALLOC_INFO(32, 32),
784 INIT_KMALLOC_INFO(64, 64),
785 INIT_KMALLOC_INFO(128, 128),
786 INIT_KMALLOC_INFO(256, 256),
787 INIT_KMALLOC_INFO(512, 512),
788 INIT_KMALLOC_INFO(1024, 1k),
789 INIT_KMALLOC_INFO(2048, 2k),
790 INIT_KMALLOC_INFO(4096, 4k),
791 INIT_KMALLOC_INFO(8192, 8k),
792 INIT_KMALLOC_INFO(16384, 16k),
793 INIT_KMALLOC_INFO(32768, 32k),
794 INIT_KMALLOC_INFO(65536, 64k),
795 INIT_KMALLOC_INFO(131072, 128k),
796 INIT_KMALLOC_INFO(262144, 256k),
797 INIT_KMALLOC_INFO(524288, 512k),
798 INIT_KMALLOC_INFO(1048576, 1M),
d6a71648 799 INIT_KMALLOC_INFO(2097152, 2M)
4066c33d
GG
800};
801
f97d5f63 802/*
34cc6990
DS
803 * Patch up the size_index table if we have strange large alignment
804 * requirements for the kmalloc array. This is only the case for
805 * MIPS it seems. The standard arches will not generate any code here.
806 *
807 * Largest permitted alignment is 256 bytes due to the way we
808 * handle the index determination for the smaller caches.
809 *
810 * Make sure that nothing crazy happens if someone starts tinkering
811 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 812 */
34cc6990 813void __init setup_kmalloc_cache_index_table(void)
f97d5f63 814{
ac914d08 815 unsigned int i;
f97d5f63 816
2c59dd65 817 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
7d6b6cc3 818 !is_power_of_2(KMALLOC_MIN_SIZE));
2c59dd65
CL
819
820 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 821 unsigned int elem = size_index_elem(i);
2c59dd65 822
5a9d31d9 823 if (elem >= ARRAY_SIZE(kmalloc_size_index))
2c59dd65 824 break;
5a9d31d9 825 kmalloc_size_index[elem] = KMALLOC_SHIFT_LOW;
2c59dd65
CL
826 }
827
828 if (KMALLOC_MIN_SIZE >= 64) {
829 /*
0b8f0d87 830 * The 96 byte sized cache is not used if the alignment
2c59dd65
CL
831 * is 64 byte.
832 */
833 for (i = 64 + 8; i <= 96; i += 8)
5a9d31d9 834 kmalloc_size_index[size_index_elem(i)] = 7;
2c59dd65
CL
835
836 }
837
838 if (KMALLOC_MIN_SIZE >= 128) {
839 /*
840 * The 192 byte sized cache is not used if the alignment
841 * is 128 byte. Redirect kmalloc to use the 256 byte cache
842 * instead.
843 */
844 for (i = 128 + 8; i <= 192; i += 8)
5a9d31d9 845 kmalloc_size_index[size_index_elem(i)] = 8;
2c59dd65 846 }
34cc6990
DS
847}
848
963e84b0
CM
849static unsigned int __kmalloc_minalign(void)
850{
c15cdea5
CM
851 unsigned int minalign = dma_get_cache_alignment();
852
05ee7741
PT
853 if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) &&
854 is_swiotlb_allocated())
c15cdea5
CM
855 minalign = ARCH_KMALLOC_MINALIGN;
856
857 return max(minalign, arch_slab_minalign());
963e84b0
CM
858}
859
66b3dc1f
ZY
860static void __init
861new_kmalloc_cache(int idx, enum kmalloc_cache_type type)
a9730fca 862{
66b3dc1f 863 slab_flags_t flags = 0;
963e84b0
CM
864 unsigned int minalign = __kmalloc_minalign();
865 unsigned int aligned_size = kmalloc_info[idx].size;
866 int aligned_idx = idx;
867
2f7c1c13 868 if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
1291523f 869 flags |= SLAB_RECLAIM_ACCOUNT;
494c1dfe 870 } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
17c17367 871 if (mem_cgroup_kmem_disabled()) {
494c1dfe
WL
872 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
873 return;
874 }
875 flags |= SLAB_ACCOUNT;
33647783
OK
876 } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
877 flags |= SLAB_CACHE_DMA;
494c1dfe 878 }
1291523f 879
3c615294
GR
880#ifdef CONFIG_RANDOM_KMALLOC_CACHES
881 if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END)
882 flags |= SLAB_NO_MERGE;
883#endif
884
13e680fb
WL
885 /*
886 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
887 * KMALLOC_NORMAL caches.
888 */
889 if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
d5bf4857
VB
890 flags |= SLAB_NO_MERGE;
891
963e84b0
CM
892 if (minalign > ARCH_KMALLOC_MINALIGN) {
893 aligned_size = ALIGN(aligned_size, minalign);
894 aligned_idx = __kmalloc_index(aligned_size, false);
895 }
896
897 if (!kmalloc_caches[type][aligned_idx])
898 kmalloc_caches[type][aligned_idx] = create_kmalloc_cache(
899 kmalloc_info[aligned_idx].name[type],
900 aligned_size, flags);
901 if (idx != aligned_idx)
902 kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx];
a9730fca
CL
903}
904
34cc6990
DS
905/*
906 * Create the kmalloc array. Some of the regular kmalloc arrays
907 * may already have been created because they were needed to
908 * enable allocations for slab creation.
909 */
66b3dc1f 910void __init create_kmalloc_caches(void)
34cc6990 911{
13657d0a
PL
912 int i;
913 enum kmalloc_cache_type type;
34cc6990 914
494c1dfe
WL
915 /*
916 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
917 */
33647783 918 for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
306c4ac9 919 /* Caches that are NOT of the two-to-the-power-of size. */
7338999c 920 if (KMALLOC_MIN_SIZE <= 32)
306c4ac9 921 new_kmalloc_cache(1, type);
7338999c 922 if (KMALLOC_MIN_SIZE <= 64)
306c4ac9
HL
923 new_kmalloc_cache(2, type);
924
925 /* Caches that are of the two-to-the-power-of size. */
7338999c
HL
926 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
927 new_kmalloc_cache(i, type);
8a965b3b 928 }
3c615294
GR
929#ifdef CONFIG_RANDOM_KMALLOC_CACHES
930 random_kmalloc_seed = get_random_u64();
931#endif
8a965b3b 932
f97d5f63
CL
933 /* Kmalloc array is now usable */
934 slab_state = UP;
f97d5f63 935}
d6a71648 936
445d41d7
VB
937/**
938 * __ksize -- Report full size of underlying allocation
a2076201 939 * @object: pointer to the object
445d41d7
VB
940 *
941 * This should only be used internally to query the true size of allocations.
942 * It is not meant to be a way to discover the usable size of an allocation
943 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
944 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
945 * and/or FORTIFY_SOURCE.
946 *
a2076201 947 * Return: size of the actual memory used by @object in bytes
445d41d7 948 */
b1405135
HY
949size_t __ksize(const void *object)
950{
951 struct folio *folio;
952
953 if (unlikely(object == ZERO_SIZE_PTR))
954 return 0;
955
956 folio = virt_to_folio(object);
957
d5eff736
HY
958 if (unlikely(!folio_test_slab(folio))) {
959 if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
960 return 0;
961 if (WARN_ON(object != folio_address(folio)))
962 return 0;
b1405135 963 return folio_size(folio);
d5eff736 964 }
b1405135 965
946fa0db
FT
966#ifdef CONFIG_SLUB_DEBUG
967 skip_orig_size_check(folio_slab(folio)->slab_cache, object);
968#endif
969
b1405135
HY
970 return slab_ksize(folio_slab(folio)->slab_cache);
971}
26a40990 972
44405099
LL
973gfp_t kmalloc_fix_flags(gfp_t flags)
974{
975 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
976
977 flags &= ~GFP_SLAB_BUG_MASK;
978 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
979 invalid_mask, &invalid_mask, flags, &flags);
980 dump_stack();
981
982 return flags;
983}
984
7c00fce9
TG
985#ifdef CONFIG_SLAB_FREELIST_RANDOM
986/* Randomize a generic freelist */
ffe4dfe0 987static void freelist_randomize(unsigned int *list,
302d55d5 988 unsigned int count)
7c00fce9 989{
7c00fce9 990 unsigned int rand;
302d55d5 991 unsigned int i;
7c00fce9
TG
992
993 for (i = 0; i < count; i++)
994 list[i] = i;
995
996 /* Fisher-Yates shuffle */
997 for (i = count - 1; i > 0; i--) {
ffe4dfe0 998 rand = get_random_u32_below(i + 1);
7c00fce9
TG
999 swap(list[i], list[rand]);
1000 }
1001}
1002
1003/* Create a random sequence per cache */
1004int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1005 gfp_t gfp)
1006{
7c00fce9
TG
1007
1008 if (count < 2 || cachep->random_seq)
1009 return 0;
1010
1011 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1012 if (!cachep->random_seq)
1013 return -ENOMEM;
1014
ffe4dfe0 1015 freelist_randomize(cachep->random_seq, count);
7c00fce9
TG
1016 return 0;
1017}
1018
1019/* Destroy the per-cache random freelist sequence */
1020void cache_random_seq_destroy(struct kmem_cache *cachep)
1021{
1022 kfree(cachep->random_seq);
1023 cachep->random_seq = NULL;
1024}
1025#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1026
a9e0b9f2 1027#ifdef CONFIG_SLUB_DEBUG
0825a6f9 1028#define SLABINFO_RIGHTS (0400)
e9b4db2b 1029
b047501c 1030static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1031{
1032 /*
1033 * Output format version, so at least we can change it
1034 * without _too_ many complaints.
1035 */
bcee6e2a 1036 seq_puts(m, "slabinfo - version: 2.1\n");
756a025f 1037 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1038 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1039 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
bcee6e2a
GC
1040 seq_putc(m, '\n');
1041}
1042
c29b5b3d 1043static void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1044{
b7454ad3 1045 mutex_lock(&slab_mutex);
c7094406 1046 return seq_list_start(&slab_caches, *pos);
b7454ad3
GC
1047}
1048
c29b5b3d 1049static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1050{
c7094406 1051 return seq_list_next(p, &slab_caches, pos);
b7454ad3
GC
1052}
1053
c29b5b3d 1054static void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1055{
1056 mutex_unlock(&slab_mutex);
1057}
1058
b047501c 1059static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1060{
0d7561c6
GC
1061 struct slabinfo sinfo;
1062
1063 memset(&sinfo, 0, sizeof(sinfo));
1064 get_slabinfo(s, &sinfo);
1065
1066 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
10befea9 1067 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1068 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1069
1070 seq_printf(m, " : tunables %4u %4u %4u",
1071 sinfo.limit, sinfo.batchcount, sinfo.shared);
1072 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1073 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
0d7561c6 1074 seq_putc(m, '\n');
b7454ad3
GC
1075}
1076
1df3b26f 1077static int slab_show(struct seq_file *m, void *p)
749c5415 1078{
c7094406 1079 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
749c5415 1080
c7094406 1081 if (p == slab_caches.next)
1df3b26f 1082 print_slabinfo_header(m);
10befea9 1083 cache_show(s, m);
b047501c
VD
1084 return 0;
1085}
1086
852d8be0
YS
1087void dump_unreclaimable_slab(void)
1088{
7714304f 1089 struct kmem_cache *s;
852d8be0
YS
1090 struct slabinfo sinfo;
1091
1092 /*
1093 * Here acquiring slab_mutex is risky since we don't prefer to get
1094 * sleep in oom path. But, without mutex hold, it may introduce a
1095 * risk of crash.
1096 * Use mutex_trylock to protect the list traverse, dump nothing
1097 * without acquiring the mutex.
1098 */
1099 if (!mutex_trylock(&slab_mutex)) {
1100 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1101 return;
1102 }
1103
1104 pr_info("Unreclaimable slab info:\n");
1105 pr_info("Name Used Total\n");
1106
7714304f 1107 list_for_each_entry(s, &slab_caches, list) {
10befea9 1108 if (s->flags & SLAB_RECLAIM_ACCOUNT)
852d8be0
YS
1109 continue;
1110
1111 get_slabinfo(s, &sinfo);
1112
1113 if (sinfo.num_objs > 0)
10befea9 1114 pr_info("%-17s %10luKB %10luKB\n", s->name,
852d8be0
YS
1115 (sinfo.active_objs * s->size) / 1024,
1116 (sinfo.num_objs * s->size) / 1024);
1117 }
1118 mutex_unlock(&slab_mutex);
1119}
1120
b7454ad3
GC
1121/*
1122 * slabinfo_op - iterator that generates /proc/slabinfo
1123 *
1124 * Output layout:
1125 * cache-name
1126 * num-active-objs
1127 * total-objs
1128 * object size
1129 * num-active-slabs
1130 * total-slabs
1131 * num-pages-per-slab
1132 * + further values on SMP and with statistics enabled
1133 */
1134static const struct seq_operations slabinfo_op = {
1df3b26f 1135 .start = slab_start,
276a2439
WL
1136 .next = slab_next,
1137 .stop = slab_stop,
1df3b26f 1138 .show = slab_show,
b7454ad3
GC
1139};
1140
1141static int slabinfo_open(struct inode *inode, struct file *file)
1142{
1143 return seq_open(file, &slabinfo_op);
1144}
1145
97a32539 1146static const struct proc_ops slabinfo_proc_ops = {
d919b33d 1147 .proc_flags = PROC_ENTRY_PERMANENT,
97a32539
AD
1148 .proc_open = slabinfo_open,
1149 .proc_read = seq_read,
97a32539
AD
1150 .proc_lseek = seq_lseek,
1151 .proc_release = seq_release,
b7454ad3
GC
1152};
1153
1154static int __init slab_proc_init(void)
1155{
97a32539 1156 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
b7454ad3
GC
1157 return 0;
1158}
1159module_init(slab_proc_init);
fcf8a1e4 1160
a9e0b9f2 1161#endif /* CONFIG_SLUB_DEBUG */
928cec9c 1162
9ed9cac1
KC
1163static __always_inline __realloc_size(2) void *
1164__do_krealloc(const void *p, size_t new_size, gfp_t flags)
928cec9c
AR
1165{
1166 void *ret;
fa9ba3aa 1167 size_t ks;
928cec9c 1168
38931d89 1169 /* Check for double-free before calling ksize. */
d12d9ad8
AK
1170 if (likely(!ZERO_OR_NULL_PTR(p))) {
1171 if (!kasan_check_byte(p))
1172 return NULL;
38931d89 1173 ks = ksize(p);
d12d9ad8
AK
1174 } else
1175 ks = 0;
928cec9c 1176
d12d9ad8 1177 /* If the object still fits, repoison it precisely. */
0316bec2 1178 if (ks >= new_size) {
0116523c 1179 p = kasan_krealloc((void *)p, new_size, flags);
928cec9c 1180 return (void *)p;
0316bec2 1181 }
928cec9c 1182
7bd230a2 1183 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
d12d9ad8
AK
1184 if (ret && p) {
1185 /* Disable KASAN checks as the object's redzone is accessed. */
1186 kasan_disable_current();
1187 memcpy(ret, kasan_reset_tag(p), ks);
1188 kasan_enable_current();
1189 }
928cec9c
AR
1190
1191 return ret;
1192}
1193
928cec9c
AR
1194/**
1195 * krealloc - reallocate memory. The contents will remain unchanged.
1196 * @p: object to reallocate memory for.
1197 * @new_size: how many bytes of memory are required.
1198 * @flags: the type of memory to allocate.
1199 *
1200 * The contents of the object pointed to are preserved up to the
15d5de49
BG
1201 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1202 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1203 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
a862f68a
MR
1204 *
1205 * Return: pointer to the allocated memory or %NULL in case of error
928cec9c 1206 */
7bd230a2 1207void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
928cec9c
AR
1208{
1209 void *ret;
1210
1211 if (unlikely(!new_size)) {
1212 kfree(p);
1213 return ZERO_SIZE_PTR;
1214 }
1215
1216 ret = __do_krealloc(p, new_size, flags);
772a2fa5 1217 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
928cec9c
AR
1218 kfree(p);
1219
1220 return ret;
1221}
7bd230a2 1222EXPORT_SYMBOL(krealloc_noprof);
928cec9c
AR
1223
1224/**
453431a5 1225 * kfree_sensitive - Clear sensitive information in memory before freeing
928cec9c
AR
1226 * @p: object to free memory of
1227 *
1228 * The memory of the object @p points to is zeroed before freed.
453431a5 1229 * If @p is %NULL, kfree_sensitive() does nothing.
928cec9c
AR
1230 *
1231 * Note: this function zeroes the whole allocated buffer which can be a good
1232 * deal bigger than the requested buffer size passed to kmalloc(). So be
1233 * careful when using this function in performance sensitive code.
1234 */
453431a5 1235void kfree_sensitive(const void *p)
928cec9c
AR
1236{
1237 size_t ks;
1238 void *mem = (void *)p;
1239
928cec9c 1240 ks = ksize(mem);
38931d89
KC
1241 if (ks) {
1242 kasan_unpoison_range(mem, ks);
fa9ba3aa 1243 memzero_explicit(mem, ks);
38931d89 1244 }
928cec9c
AR
1245 kfree(mem);
1246}
453431a5 1247EXPORT_SYMBOL(kfree_sensitive);
928cec9c 1248
10d1f8cb
ME
1249size_t ksize(const void *objp)
1250{
0d4ca4c9 1251 /*
38931d89
KC
1252 * We need to first check that the pointer to the object is valid.
1253 * The KASAN report printed from ksize() is more useful, then when
1254 * it's printed later when the behaviour could be undefined due to
1255 * a potential use-after-free or double-free.
0d4ca4c9 1256 *
611806b4
AK
1257 * We use kasan_check_byte(), which is supported for the hardware
1258 * tag-based KASAN mode, unlike kasan_check_read/write().
1259 *
1260 * If the pointed to memory is invalid, we return 0 to avoid users of
0d4ca4c9
ME
1261 * ksize() writing to and potentially corrupting the memory region.
1262 *
1263 * We want to perform the check before __ksize(), to avoid potentially
1264 * crashing in __ksize() due to accessing invalid metadata.
1265 */
611806b4 1266 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
0d4ca4c9
ME
1267 return 0;
1268
38931d89 1269 return kfence_ksize(objp) ?: __ksize(objp);
10d1f8cb
ME
1270}
1271EXPORT_SYMBOL(ksize);
1272
928cec9c
AR
1273/* Tracepoints definitions. */
1274EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1275EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
928cec9c
AR
1276EXPORT_TRACEPOINT_SYMBOL(kfree);
1277EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb 1278