slab: implement bulk free in SLAB allocator
[linux-2.6-block.git] / mm / slab_common.c
CommitLineData
039363f3
CL
1/*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6#include <linux/slab.h>
7
8#include <linux/mm.h>
9#include <linux/poison.h>
10#include <linux/interrupt.h>
11#include <linux/memory.h>
12#include <linux/compiler.h>
13#include <linux/module.h>
20cea968
CL
14#include <linux/cpu.h>
15#include <linux/uaccess.h>
b7454ad3
GC
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
039363f3
CL
18#include <asm/cacheflush.h>
19#include <asm/tlbflush.h>
20#include <asm/page.h>
2633d7a0 21#include <linux/memcontrol.h>
928cec9c
AR
22
23#define CREATE_TRACE_POINTS
f1b6eb6e 24#include <trace/events/kmem.h>
039363f3 25
97d06609
CL
26#include "slab.h"
27
28enum slab_state slab_state;
18004c5d
CL
29LIST_HEAD(slab_caches);
30DEFINE_MUTEX(slab_mutex);
9b030cb8 31struct kmem_cache *kmem_cache;
97d06609 32
423c929c
JK
33/*
34 * Set of flags that will prevent slab merging
35 */
36#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 SLAB_FAILSLAB)
39
230e9fc2
VD
40#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
41 SLAB_NOTRACK | SLAB_ACCOUNT)
423c929c
JK
42
43/*
44 * Merge control. If this is set then no merging of slab caches will occur.
45 * (Could be removed. This was introduced to pacify the merge skeptics.)
46 */
47static int slab_nomerge;
48
49static int __init setup_slab_nomerge(char *str)
50{
51 slab_nomerge = 1;
52 return 1;
53}
54
55#ifdef CONFIG_SLUB
56__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
57#endif
58
59__setup("slab_nomerge", setup_slab_nomerge);
60
07f361b2
JK
61/*
62 * Determine the size of a slab object
63 */
64unsigned int kmem_cache_size(struct kmem_cache *s)
65{
66 return s->object_size;
67}
68EXPORT_SYMBOL(kmem_cache_size);
69
77be4b13 70#ifdef CONFIG_DEBUG_VM
794b1248 71static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
72{
73 struct kmem_cache *s = NULL;
74
039363f3
CL
75 if (!name || in_interrupt() || size < sizeof(void *) ||
76 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
77 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
78 return -EINVAL;
039363f3 79 }
b920536a 80
20cea968
CL
81 list_for_each_entry(s, &slab_caches, list) {
82 char tmp;
83 int res;
84
85 /*
86 * This happens when the module gets unloaded and doesn't
87 * destroy its slab cache and no-one else reuses the vmalloc
88 * area of the module. Print a warning.
89 */
90 res = probe_kernel_address(s->name, tmp);
91 if (res) {
77be4b13 92 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
93 s->object_size);
94 continue;
95 }
20cea968
CL
96 }
97
98 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
99 return 0;
100}
101#else
794b1248 102static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
103{
104 return 0;
105}
20cea968
CL
106#endif
107
484748f0
CL
108void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
109{
110 size_t i;
111
112 for (i = 0; i < nr; i++)
113 kmem_cache_free(s, p[i]);
114}
115
865762a8 116int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
117 void **p)
118{
119 size_t i;
120
121 for (i = 0; i < nr; i++) {
122 void *x = p[i] = kmem_cache_alloc(s, flags);
123 if (!x) {
124 __kmem_cache_free_bulk(s, i, p);
865762a8 125 return 0;
484748f0
CL
126 }
127 }
865762a8 128 return i;
484748f0
CL
129}
130
127424c8 131#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
f7ce3190 132void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 133{
f7ce3190 134 s->memcg_params.is_root_cache = true;
426589f5 135 INIT_LIST_HEAD(&s->memcg_params.list);
f7ce3190
VD
136 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
137}
138
139static int init_memcg_params(struct kmem_cache *s,
140 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
141{
142 struct memcg_cache_array *arr;
33a690c4 143
f7ce3190
VD
144 if (memcg) {
145 s->memcg_params.is_root_cache = false;
146 s->memcg_params.memcg = memcg;
147 s->memcg_params.root_cache = root_cache;
33a690c4 148 return 0;
f7ce3190 149 }
33a690c4 150
f7ce3190 151 slab_init_memcg_params(s);
33a690c4 152
f7ce3190
VD
153 if (!memcg_nr_cache_ids)
154 return 0;
33a690c4 155
f7ce3190
VD
156 arr = kzalloc(sizeof(struct memcg_cache_array) +
157 memcg_nr_cache_ids * sizeof(void *),
158 GFP_KERNEL);
159 if (!arr)
160 return -ENOMEM;
33a690c4 161
f7ce3190 162 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
163 return 0;
164}
165
f7ce3190 166static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 167{
f7ce3190
VD
168 if (is_root_cache(s))
169 kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
33a690c4
VD
170}
171
f7ce3190 172static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 173{
f7ce3190 174 struct memcg_cache_array *old, *new;
6f817f4c 175
f7ce3190
VD
176 if (!is_root_cache(s))
177 return 0;
6f817f4c 178
f7ce3190
VD
179 new = kzalloc(sizeof(struct memcg_cache_array) +
180 new_array_size * sizeof(void *), GFP_KERNEL);
181 if (!new)
6f817f4c
VD
182 return -ENOMEM;
183
f7ce3190
VD
184 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
185 lockdep_is_held(&slab_mutex));
186 if (old)
187 memcpy(new->entries, old->entries,
188 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 189
f7ce3190
VD
190 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
191 if (old)
192 kfree_rcu(old, rcu);
6f817f4c
VD
193 return 0;
194}
195
55007d84
GC
196int memcg_update_all_caches(int num_memcgs)
197{
198 struct kmem_cache *s;
199 int ret = 0;
55007d84 200
05257a1a 201 mutex_lock(&slab_mutex);
55007d84 202 list_for_each_entry(s, &slab_caches, list) {
f7ce3190 203 ret = update_memcg_params(s, num_memcgs);
55007d84 204 /*
55007d84
GC
205 * Instead of freeing the memory, we'll just leave the caches
206 * up to this point in an updated state.
207 */
208 if (ret)
05257a1a 209 break;
55007d84 210 }
55007d84
GC
211 mutex_unlock(&slab_mutex);
212 return ret;
213}
33a690c4 214#else
f7ce3190
VD
215static inline int init_memcg_params(struct kmem_cache *s,
216 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
217{
218 return 0;
219}
220
f7ce3190 221static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
222{
223}
127424c8 224#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
55007d84 225
423c929c
JK
226/*
227 * Find a mergeable slab cache
228 */
229int slab_unmergeable(struct kmem_cache *s)
230{
231 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
232 return 1;
233
234 if (!is_root_cache(s))
235 return 1;
236
237 if (s->ctor)
238 return 1;
239
240 /*
241 * We may have set a slab to be unmergeable during bootstrap.
242 */
243 if (s->refcount < 0)
244 return 1;
245
246 return 0;
247}
248
249struct kmem_cache *find_mergeable(size_t size, size_t align,
250 unsigned long flags, const char *name, void (*ctor)(void *))
251{
252 struct kmem_cache *s;
253
254 if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
255 return NULL;
256
257 if (ctor)
258 return NULL;
259
260 size = ALIGN(size, sizeof(void *));
261 align = calculate_alignment(flags, align, size);
262 size = ALIGN(size, align);
263 flags = kmem_cache_flags(size, flags, name, NULL);
264
54362057 265 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
266 if (slab_unmergeable(s))
267 continue;
268
269 if (size > s->size)
270 continue;
271
272 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
273 continue;
274 /*
275 * Check if alignment is compatible.
276 * Courtesy of Adrian Drzewiecki
277 */
278 if ((s->size & ~(align - 1)) != s->size)
279 continue;
280
281 if (s->size - size >= sizeof(void *))
282 continue;
283
95069ac8
JK
284 if (IS_ENABLED(CONFIG_SLAB) && align &&
285 (align > s->align || s->align % align))
286 continue;
287
423c929c
JK
288 return s;
289 }
290 return NULL;
291}
292
45906855
CL
293/*
294 * Figure out what the alignment of the objects will be given a set of
295 * flags, a user specified alignment and the size of the objects.
296 */
297unsigned long calculate_alignment(unsigned long flags,
298 unsigned long align, unsigned long size)
299{
300 /*
301 * If the user wants hardware cache aligned objects then follow that
302 * suggestion if the object is sufficiently large.
303 *
304 * The hardware cache alignment cannot override the specified
305 * alignment though. If that is greater then use it.
306 */
307 if (flags & SLAB_HWCACHE_ALIGN) {
308 unsigned long ralign = cache_line_size();
309 while (size <= ralign / 2)
310 ralign /= 2;
311 align = max(align, ralign);
312 }
313
314 if (align < ARCH_SLAB_MINALIGN)
315 align = ARCH_SLAB_MINALIGN;
316
317 return ALIGN(align, sizeof(void *));
318}
319
c9a77a79
VD
320static struct kmem_cache *create_cache(const char *name,
321 size_t object_size, size_t size, size_t align,
322 unsigned long flags, void (*ctor)(void *),
323 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
324{
325 struct kmem_cache *s;
326 int err;
327
328 err = -ENOMEM;
329 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
330 if (!s)
331 goto out;
332
333 s->name = name;
334 s->object_size = object_size;
335 s->size = size;
336 s->align = align;
337 s->ctor = ctor;
338
f7ce3190 339 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
340 if (err)
341 goto out_free_cache;
342
343 err = __kmem_cache_create(s, flags);
344 if (err)
345 goto out_free_cache;
346
347 s->refcount = 1;
348 list_add(&s->list, &slab_caches);
794b1248
VD
349out:
350 if (err)
351 return ERR_PTR(err);
352 return s;
353
354out_free_cache:
f7ce3190 355 destroy_memcg_params(s);
7c4da061 356 kmem_cache_free(kmem_cache, s);
794b1248
VD
357 goto out;
358}
45906855 359
77be4b13
SK
360/*
361 * kmem_cache_create - Create a cache.
362 * @name: A string which is used in /proc/slabinfo to identify this cache.
363 * @size: The size of objects to be created in this cache.
364 * @align: The required alignment for the objects.
365 * @flags: SLAB flags
366 * @ctor: A constructor for the objects.
367 *
368 * Returns a ptr to the cache on success, NULL on failure.
369 * Cannot be called within a interrupt, but can be interrupted.
370 * The @ctor is run when new pages are allocated by the cache.
371 *
372 * The flags are
373 *
374 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
375 * to catch references to uninitialised memory.
376 *
377 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
378 * for buffer overruns.
379 *
380 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
381 * cacheline. This can be beneficial if you're counting cycles as closely
382 * as davem.
383 */
2633d7a0 384struct kmem_cache *
794b1248
VD
385kmem_cache_create(const char *name, size_t size, size_t align,
386 unsigned long flags, void (*ctor)(void *))
77be4b13 387{
40911a79 388 struct kmem_cache *s = NULL;
3dec16ea 389 const char *cache_name;
3965fc36 390 int err;
039363f3 391
77be4b13 392 get_online_cpus();
03afc0e2 393 get_online_mems();
05257a1a 394 memcg_get_cache_ids();
03afc0e2 395
77be4b13 396 mutex_lock(&slab_mutex);
686d550d 397
794b1248 398 err = kmem_cache_sanity_check(name, size);
3aa24f51 399 if (err) {
3965fc36 400 goto out_unlock;
3aa24f51 401 }
686d550d 402
d8843922
GC
403 /*
404 * Some allocators will constraint the set of valid flags to a subset
405 * of all flags. We expect them to define CACHE_CREATE_MASK in this
406 * case, and we'll just provide them with a sanitized version of the
407 * passed flags.
408 */
409 flags &= CACHE_CREATE_MASK;
686d550d 410
794b1248
VD
411 s = __kmem_cache_alias(name, size, align, flags, ctor);
412 if (s)
3965fc36 413 goto out_unlock;
2633d7a0 414
3dec16ea 415 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
416 if (!cache_name) {
417 err = -ENOMEM;
418 goto out_unlock;
419 }
7c9adf5a 420
c9a77a79
VD
421 s = create_cache(cache_name, size, size,
422 calculate_alignment(flags, align, size),
423 flags, ctor, NULL, NULL);
794b1248
VD
424 if (IS_ERR(s)) {
425 err = PTR_ERR(s);
3dec16ea 426 kfree_const(cache_name);
794b1248 427 }
3965fc36
VD
428
429out_unlock:
20cea968 430 mutex_unlock(&slab_mutex);
03afc0e2 431
05257a1a 432 memcg_put_cache_ids();
03afc0e2 433 put_online_mems();
20cea968
CL
434 put_online_cpus();
435
ba3253c7 436 if (err) {
686d550d
CL
437 if (flags & SLAB_PANIC)
438 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
439 name, err);
440 else {
441 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
442 name, err);
443 dump_stack();
444 }
686d550d
CL
445 return NULL;
446 }
039363f3
CL
447 return s;
448}
794b1248 449EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 450
c9a77a79 451static int shutdown_cache(struct kmem_cache *s,
d5b3cf71
VD
452 struct list_head *release, bool *need_rcu_barrier)
453{
cd918c55 454 if (__kmem_cache_shutdown(s) != 0)
d5b3cf71 455 return -EBUSY;
d5b3cf71
VD
456
457 if (s->flags & SLAB_DESTROY_BY_RCU)
458 *need_rcu_barrier = true;
459
d5b3cf71
VD
460 list_move(&s->list, release);
461 return 0;
462}
463
c9a77a79 464static void release_caches(struct list_head *release, bool need_rcu_barrier)
d5b3cf71
VD
465{
466 struct kmem_cache *s, *s2;
467
468 if (need_rcu_barrier)
469 rcu_barrier();
470
471 list_for_each_entry_safe(s, s2, release, list) {
472#ifdef SLAB_SUPPORTS_SYSFS
473 sysfs_slab_remove(s);
474#else
475 slab_kmem_cache_release(s);
476#endif
477 }
478}
479
127424c8 480#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
794b1248 481/*
776ed0f0 482 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
483 * @memcg: The memory cgroup the new cache is for.
484 * @root_cache: The parent of the new cache.
485 *
486 * This function attempts to create a kmem cache that will serve allocation
487 * requests going from @memcg to @root_cache. The new cache inherits properties
488 * from its parent.
489 */
d5b3cf71
VD
490void memcg_create_kmem_cache(struct mem_cgroup *memcg,
491 struct kmem_cache *root_cache)
2633d7a0 492{
3e0350a3 493 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 494 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 495 struct memcg_cache_array *arr;
bd673145 496 struct kmem_cache *s = NULL;
794b1248 497 char *cache_name;
f7ce3190 498 int idx;
794b1248
VD
499
500 get_online_cpus();
03afc0e2
VD
501 get_online_mems();
502
794b1248
VD
503 mutex_lock(&slab_mutex);
504
2a4db7eb 505 /*
567e9ab2 506 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
507 * creation work was pending.
508 */
567e9ab2 509 if (!memcg_kmem_online(memcg))
2a4db7eb
VD
510 goto out_unlock;
511
f7ce3190
VD
512 idx = memcg_cache_id(memcg);
513 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
514 lockdep_is_held(&slab_mutex));
515
d5b3cf71
VD
516 /*
517 * Since per-memcg caches are created asynchronously on first
518 * allocation (see memcg_kmem_get_cache()), several threads can try to
519 * create the same cache, but only one of them may succeed.
520 */
f7ce3190 521 if (arr->entries[idx])
d5b3cf71
VD
522 goto out_unlock;
523
f1008365 524 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
073ee1c6 525 cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
f1008365 526 css->id, memcg_name_buf);
794b1248
VD
527 if (!cache_name)
528 goto out_unlock;
529
c9a77a79
VD
530 s = create_cache(cache_name, root_cache->object_size,
531 root_cache->size, root_cache->align,
532 root_cache->flags, root_cache->ctor,
533 memcg, root_cache);
d5b3cf71
VD
534 /*
535 * If we could not create a memcg cache, do not complain, because
536 * that's not critical at all as we can always proceed with the root
537 * cache.
538 */
bd673145 539 if (IS_ERR(s)) {
794b1248 540 kfree(cache_name);
d5b3cf71 541 goto out_unlock;
bd673145 542 }
794b1248 543
426589f5
VD
544 list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
545
d5b3cf71
VD
546 /*
547 * Since readers won't lock (see cache_from_memcg_idx()), we need a
548 * barrier here to ensure nobody will see the kmem_cache partially
549 * initialized.
550 */
551 smp_wmb();
f7ce3190 552 arr->entries[idx] = s;
d5b3cf71 553
794b1248
VD
554out_unlock:
555 mutex_unlock(&slab_mutex);
03afc0e2
VD
556
557 put_online_mems();
794b1248 558 put_online_cpus();
2633d7a0 559}
b8529907 560
2a4db7eb
VD
561void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
562{
563 int idx;
564 struct memcg_cache_array *arr;
d6e0b7fa 565 struct kmem_cache *s, *c;
2a4db7eb
VD
566
567 idx = memcg_cache_id(memcg);
568
d6e0b7fa
VD
569 get_online_cpus();
570 get_online_mems();
571
2a4db7eb
VD
572 mutex_lock(&slab_mutex);
573 list_for_each_entry(s, &slab_caches, list) {
574 if (!is_root_cache(s))
575 continue;
576
577 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
578 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
579 c = arr->entries[idx];
580 if (!c)
581 continue;
582
583 __kmem_cache_shrink(c, true);
2a4db7eb
VD
584 arr->entries[idx] = NULL;
585 }
586 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
587
588 put_online_mems();
589 put_online_cpus();
2a4db7eb
VD
590}
591
d60fdcc9
VD
592static int __shutdown_memcg_cache(struct kmem_cache *s,
593 struct list_head *release, bool *need_rcu_barrier)
594{
595 BUG_ON(is_root_cache(s));
596
597 if (shutdown_cache(s, release, need_rcu_barrier))
598 return -EBUSY;
599
600 list_del(&s->memcg_params.list);
601 return 0;
602}
603
d5b3cf71 604void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 605{
d5b3cf71
VD
606 LIST_HEAD(release);
607 bool need_rcu_barrier = false;
608 struct kmem_cache *s, *s2;
b8529907 609
d5b3cf71
VD
610 get_online_cpus();
611 get_online_mems();
b8529907 612
b8529907 613 mutex_lock(&slab_mutex);
d5b3cf71 614 list_for_each_entry_safe(s, s2, &slab_caches, list) {
f7ce3190 615 if (is_root_cache(s) || s->memcg_params.memcg != memcg)
d5b3cf71
VD
616 continue;
617 /*
618 * The cgroup is about to be freed and therefore has no charges
619 * left. Hence, all its caches must be empty by now.
620 */
d60fdcc9 621 BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
d5b3cf71
VD
622 }
623 mutex_unlock(&slab_mutex);
b8529907 624
d5b3cf71
VD
625 put_online_mems();
626 put_online_cpus();
627
c9a77a79 628 release_caches(&release, need_rcu_barrier);
b8529907 629}
d60fdcc9
VD
630
631static int shutdown_memcg_caches(struct kmem_cache *s,
632 struct list_head *release, bool *need_rcu_barrier)
633{
634 struct memcg_cache_array *arr;
635 struct kmem_cache *c, *c2;
636 LIST_HEAD(busy);
637 int i;
638
639 BUG_ON(!is_root_cache(s));
640
641 /*
642 * First, shutdown active caches, i.e. caches that belong to online
643 * memory cgroups.
644 */
645 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
646 lockdep_is_held(&slab_mutex));
647 for_each_memcg_cache_index(i) {
648 c = arr->entries[i];
649 if (!c)
650 continue;
651 if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
652 /*
653 * The cache still has objects. Move it to a temporary
654 * list so as not to try to destroy it for a second
655 * time while iterating over inactive caches below.
656 */
657 list_move(&c->memcg_params.list, &busy);
658 else
659 /*
660 * The cache is empty and will be destroyed soon. Clear
661 * the pointer to it in the memcg_caches array so that
662 * it will never be accessed even if the root cache
663 * stays alive.
664 */
665 arr->entries[i] = NULL;
666 }
667
668 /*
669 * Second, shutdown all caches left from memory cgroups that are now
670 * offline.
671 */
672 list_for_each_entry_safe(c, c2, &s->memcg_params.list,
673 memcg_params.list)
674 __shutdown_memcg_cache(c, release, need_rcu_barrier);
675
676 list_splice(&busy, &s->memcg_params.list);
677
678 /*
679 * A cache being destroyed must be empty. In particular, this means
680 * that all per memcg caches attached to it must be empty too.
681 */
682 if (!list_empty(&s->memcg_params.list))
683 return -EBUSY;
684 return 0;
685}
686#else
687static inline int shutdown_memcg_caches(struct kmem_cache *s,
688 struct list_head *release, bool *need_rcu_barrier)
689{
690 return 0;
691}
127424c8 692#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
97d06609 693
41a21285
CL
694void slab_kmem_cache_release(struct kmem_cache *s)
695{
52b4b950 696 __kmem_cache_release(s);
f7ce3190 697 destroy_memcg_params(s);
3dec16ea 698 kfree_const(s->name);
41a21285
CL
699 kmem_cache_free(kmem_cache, s);
700}
701
945cf2b6
CL
702void kmem_cache_destroy(struct kmem_cache *s)
703{
d5b3cf71
VD
704 LIST_HEAD(release);
705 bool need_rcu_barrier = false;
d60fdcc9 706 int err;
d5b3cf71 707
3942d299
SS
708 if (unlikely(!s))
709 return;
710
945cf2b6 711 get_online_cpus();
03afc0e2
VD
712 get_online_mems();
713
945cf2b6 714 mutex_lock(&slab_mutex);
b8529907 715
945cf2b6 716 s->refcount--;
b8529907
VD
717 if (s->refcount)
718 goto out_unlock;
719
d60fdcc9
VD
720 err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
721 if (!err)
cd918c55 722 err = shutdown_cache(s, &release, &need_rcu_barrier);
b8529907 723
cd918c55
VD
724 if (err) {
725 pr_err("kmem_cache_destroy %s: "
726 "Slab cache still has objects\n", s->name);
727 dump_stack();
728 }
b8529907
VD
729out_unlock:
730 mutex_unlock(&slab_mutex);
d5b3cf71 731
03afc0e2 732 put_online_mems();
945cf2b6 733 put_online_cpus();
d5b3cf71 734
c9a77a79 735 release_caches(&release, need_rcu_barrier);
945cf2b6
CL
736}
737EXPORT_SYMBOL(kmem_cache_destroy);
738
03afc0e2
VD
739/**
740 * kmem_cache_shrink - Shrink a cache.
741 * @cachep: The cache to shrink.
742 *
743 * Releases as many slabs as possible for a cache.
744 * To help debugging, a zero exit status indicates all slabs were released.
745 */
746int kmem_cache_shrink(struct kmem_cache *cachep)
747{
748 int ret;
749
750 get_online_cpus();
751 get_online_mems();
d6e0b7fa 752 ret = __kmem_cache_shrink(cachep, false);
03afc0e2
VD
753 put_online_mems();
754 put_online_cpus();
755 return ret;
756}
757EXPORT_SYMBOL(kmem_cache_shrink);
758
fda90124 759bool slab_is_available(void)
97d06609
CL
760{
761 return slab_state >= UP;
762}
b7454ad3 763
45530c44
CL
764#ifndef CONFIG_SLOB
765/* Create a cache during boot when no slab services are available yet */
766void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
767 unsigned long flags)
768{
769 int err;
770
771 s->name = name;
772 s->size = s->object_size = size;
45906855 773 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
f7ce3190
VD
774
775 slab_init_memcg_params(s);
776
45530c44
CL
777 err = __kmem_cache_create(s, flags);
778
779 if (err)
31ba7346 780 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
781 name, size, err);
782
783 s->refcount = -1; /* Exempt from merging for now */
784}
785
786struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
787 unsigned long flags)
788{
789 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
790
791 if (!s)
792 panic("Out of memory when creating slab %s\n", name);
793
794 create_boot_cache(s, name, size, flags);
795 list_add(&s->list, &slab_caches);
796 s->refcount = 1;
797 return s;
798}
799
9425c58e
CL
800struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
801EXPORT_SYMBOL(kmalloc_caches);
802
803#ifdef CONFIG_ZONE_DMA
804struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
805EXPORT_SYMBOL(kmalloc_dma_caches);
806#endif
807
2c59dd65
CL
808/*
809 * Conversion table for small slabs sizes / 8 to the index in the
810 * kmalloc array. This is necessary for slabs < 192 since we have non power
811 * of two cache sizes there. The size of larger slabs can be determined using
812 * fls.
813 */
814static s8 size_index[24] = {
815 3, /* 8 */
816 4, /* 16 */
817 5, /* 24 */
818 5, /* 32 */
819 6, /* 40 */
820 6, /* 48 */
821 6, /* 56 */
822 6, /* 64 */
823 1, /* 72 */
824 1, /* 80 */
825 1, /* 88 */
826 1, /* 96 */
827 7, /* 104 */
828 7, /* 112 */
829 7, /* 120 */
830 7, /* 128 */
831 2, /* 136 */
832 2, /* 144 */
833 2, /* 152 */
834 2, /* 160 */
835 2, /* 168 */
836 2, /* 176 */
837 2, /* 184 */
838 2 /* 192 */
839};
840
841static inline int size_index_elem(size_t bytes)
842{
843 return (bytes - 1) / 8;
844}
845
846/*
847 * Find the kmem_cache structure that serves a given size of
848 * allocation
849 */
850struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
851{
852 int index;
853
9de1bc87 854 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 855 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 856 return NULL;
907985f4 857 }
6286ae97 858
2c59dd65
CL
859 if (size <= 192) {
860 if (!size)
861 return ZERO_SIZE_PTR;
862
863 index = size_index[size_index_elem(size)];
864 } else
865 index = fls(size - 1);
866
867#ifdef CONFIG_ZONE_DMA
b1e05416 868 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
869 return kmalloc_dma_caches[index];
870
871#endif
872 return kmalloc_caches[index];
873}
874
4066c33d
GG
875/*
876 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
877 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
878 * kmalloc-67108864.
879 */
880static struct {
881 const char *name;
882 unsigned long size;
883} const kmalloc_info[] __initconst = {
884 {NULL, 0}, {"kmalloc-96", 96},
885 {"kmalloc-192", 192}, {"kmalloc-8", 8},
886 {"kmalloc-16", 16}, {"kmalloc-32", 32},
887 {"kmalloc-64", 64}, {"kmalloc-128", 128},
888 {"kmalloc-256", 256}, {"kmalloc-512", 512},
889 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
890 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
891 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
892 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
893 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
894 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
895 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
896 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
897 {"kmalloc-67108864", 67108864}
898};
899
f97d5f63 900/*
34cc6990
DS
901 * Patch up the size_index table if we have strange large alignment
902 * requirements for the kmalloc array. This is only the case for
903 * MIPS it seems. The standard arches will not generate any code here.
904 *
905 * Largest permitted alignment is 256 bytes due to the way we
906 * handle the index determination for the smaller caches.
907 *
908 * Make sure that nothing crazy happens if someone starts tinkering
909 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 910 */
34cc6990 911void __init setup_kmalloc_cache_index_table(void)
f97d5f63
CL
912{
913 int i;
914
2c59dd65
CL
915 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
916 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
917
918 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
919 int elem = size_index_elem(i);
920
921 if (elem >= ARRAY_SIZE(size_index))
922 break;
923 size_index[elem] = KMALLOC_SHIFT_LOW;
924 }
925
926 if (KMALLOC_MIN_SIZE >= 64) {
927 /*
928 * The 96 byte size cache is not used if the alignment
929 * is 64 byte.
930 */
931 for (i = 64 + 8; i <= 96; i += 8)
932 size_index[size_index_elem(i)] = 7;
933
934 }
935
936 if (KMALLOC_MIN_SIZE >= 128) {
937 /*
938 * The 192 byte sized cache is not used if the alignment
939 * is 128 byte. Redirect kmalloc to use the 256 byte cache
940 * instead.
941 */
942 for (i = 128 + 8; i <= 192; i += 8)
943 size_index[size_index_elem(i)] = 8;
944 }
34cc6990
DS
945}
946
ae6f2462 947static void __init new_kmalloc_cache(int idx, unsigned long flags)
a9730fca
CL
948{
949 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
950 kmalloc_info[idx].size, flags);
951}
952
34cc6990
DS
953/*
954 * Create the kmalloc array. Some of the regular kmalloc arrays
955 * may already have been created because they were needed to
956 * enable allocations for slab creation.
957 */
958void __init create_kmalloc_caches(unsigned long flags)
959{
960 int i;
961
a9730fca
CL
962 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
963 if (!kmalloc_caches[i])
964 new_kmalloc_cache(i, flags);
f97d5f63 965
956e46ef 966 /*
a9730fca
CL
967 * Caches that are not of the two-to-the-power-of size.
968 * These have to be created immediately after the
969 * earlier power of two caches
956e46ef 970 */
a9730fca
CL
971 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
972 new_kmalloc_cache(1, flags);
973 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
974 new_kmalloc_cache(2, flags);
8a965b3b
CL
975 }
976
f97d5f63
CL
977 /* Kmalloc array is now usable */
978 slab_state = UP;
979
f97d5f63
CL
980#ifdef CONFIG_ZONE_DMA
981 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
982 struct kmem_cache *s = kmalloc_caches[i];
983
984 if (s) {
985 int size = kmalloc_size(i);
986 char *n = kasprintf(GFP_NOWAIT,
987 "dma-kmalloc-%d", size);
988
989 BUG_ON(!n);
990 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
991 size, SLAB_CACHE_DMA | flags);
992 }
993 }
994#endif
995}
45530c44
CL
996#endif /* !CONFIG_SLOB */
997
cea371f4
VD
998/*
999 * To avoid unnecessary overhead, we pass through large allocation requests
1000 * directly to the page allocator. We use __GFP_COMP, because we will need to
1001 * know the allocation order to free the pages properly in kfree.
1002 */
52383431
VD
1003void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1004{
1005 void *ret;
1006 struct page *page;
1007
1008 flags |= __GFP_COMP;
1009 page = alloc_kmem_pages(flags, order);
1010 ret = page ? page_address(page) : NULL;
1011 kmemleak_alloc(ret, size, 1, flags);
0316bec2 1012 kasan_kmalloc_large(ret, size);
52383431
VD
1013 return ret;
1014}
1015EXPORT_SYMBOL(kmalloc_order);
1016
f1b6eb6e
CL
1017#ifdef CONFIG_TRACING
1018void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1019{
1020 void *ret = kmalloc_order(size, flags, order);
1021 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1022 return ret;
1023}
1024EXPORT_SYMBOL(kmalloc_order_trace);
1025#endif
45530c44 1026
b7454ad3 1027#ifdef CONFIG_SLABINFO
e9b4db2b
WL
1028
1029#ifdef CONFIG_SLAB
1030#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1031#else
1032#define SLABINFO_RIGHTS S_IRUSR
1033#endif
1034
b047501c 1035static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1036{
1037 /*
1038 * Output format version, so at least we can change it
1039 * without _too_ many complaints.
1040 */
1041#ifdef CONFIG_DEBUG_SLAB
1042 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1043#else
1044 seq_puts(m, "slabinfo - version: 2.1\n");
1045#endif
1046 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
1047 "<objperslab> <pagesperslab>");
1048 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1049 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1050#ifdef CONFIG_DEBUG_SLAB
1051 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
1052 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1053 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1054#endif
1055 seq_putc(m, '\n');
1056}
1057
1df3b26f 1058void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1059{
b7454ad3 1060 mutex_lock(&slab_mutex);
b7454ad3
GC
1061 return seq_list_start(&slab_caches, *pos);
1062}
1063
276a2439 1064void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3
GC
1065{
1066 return seq_list_next(p, &slab_caches, pos);
1067}
1068
276a2439 1069void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1070{
1071 mutex_unlock(&slab_mutex);
1072}
1073
749c5415
GC
1074static void
1075memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1076{
1077 struct kmem_cache *c;
1078 struct slabinfo sinfo;
749c5415
GC
1079
1080 if (!is_root_cache(s))
1081 return;
1082
426589f5 1083 for_each_memcg_cache(c, s) {
749c5415
GC
1084 memset(&sinfo, 0, sizeof(sinfo));
1085 get_slabinfo(c, &sinfo);
1086
1087 info->active_slabs += sinfo.active_slabs;
1088 info->num_slabs += sinfo.num_slabs;
1089 info->shared_avail += sinfo.shared_avail;
1090 info->active_objs += sinfo.active_objs;
1091 info->num_objs += sinfo.num_objs;
1092 }
1093}
1094
b047501c 1095static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1096{
0d7561c6
GC
1097 struct slabinfo sinfo;
1098
1099 memset(&sinfo, 0, sizeof(sinfo));
1100 get_slabinfo(s, &sinfo);
1101
749c5415
GC
1102 memcg_accumulate_slabinfo(s, &sinfo);
1103
0d7561c6 1104 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1105 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1106 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1107
1108 seq_printf(m, " : tunables %4u %4u %4u",
1109 sinfo.limit, sinfo.batchcount, sinfo.shared);
1110 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1111 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1112 slabinfo_show_stats(m, s);
1113 seq_putc(m, '\n');
b7454ad3
GC
1114}
1115
1df3b26f 1116static int slab_show(struct seq_file *m, void *p)
749c5415
GC
1117{
1118 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1119
1df3b26f
VD
1120 if (p == slab_caches.next)
1121 print_slabinfo_header(m);
b047501c
VD
1122 if (is_root_cache(s))
1123 cache_show(s, m);
1124 return 0;
1125}
1126
127424c8 1127#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
b047501c
VD
1128int memcg_slab_show(struct seq_file *m, void *p)
1129{
1130 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1131 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1132
1133 if (p == slab_caches.next)
1134 print_slabinfo_header(m);
f7ce3190 1135 if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
b047501c
VD
1136 cache_show(s, m);
1137 return 0;
749c5415 1138}
b047501c 1139#endif
749c5415 1140
b7454ad3
GC
1141/*
1142 * slabinfo_op - iterator that generates /proc/slabinfo
1143 *
1144 * Output layout:
1145 * cache-name
1146 * num-active-objs
1147 * total-objs
1148 * object size
1149 * num-active-slabs
1150 * total-slabs
1151 * num-pages-per-slab
1152 * + further values on SMP and with statistics enabled
1153 */
1154static const struct seq_operations slabinfo_op = {
1df3b26f 1155 .start = slab_start,
276a2439
WL
1156 .next = slab_next,
1157 .stop = slab_stop,
1df3b26f 1158 .show = slab_show,
b7454ad3
GC
1159};
1160
1161static int slabinfo_open(struct inode *inode, struct file *file)
1162{
1163 return seq_open(file, &slabinfo_op);
1164}
1165
1166static const struct file_operations proc_slabinfo_operations = {
1167 .open = slabinfo_open,
1168 .read = seq_read,
1169 .write = slabinfo_write,
1170 .llseek = seq_lseek,
1171 .release = seq_release,
1172};
1173
1174static int __init slab_proc_init(void)
1175{
e9b4db2b
WL
1176 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1177 &proc_slabinfo_operations);
b7454ad3
GC
1178 return 0;
1179}
1180module_init(slab_proc_init);
1181#endif /* CONFIG_SLABINFO */
928cec9c
AR
1182
1183static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1184 gfp_t flags)
1185{
1186 void *ret;
1187 size_t ks = 0;
1188
1189 if (p)
1190 ks = ksize(p);
1191
0316bec2
AR
1192 if (ks >= new_size) {
1193 kasan_krealloc((void *)p, new_size);
928cec9c 1194 return (void *)p;
0316bec2 1195 }
928cec9c
AR
1196
1197 ret = kmalloc_track_caller(new_size, flags);
1198 if (ret && p)
1199 memcpy(ret, p, ks);
1200
1201 return ret;
1202}
1203
1204/**
1205 * __krealloc - like krealloc() but don't free @p.
1206 * @p: object to reallocate memory for.
1207 * @new_size: how many bytes of memory are required.
1208 * @flags: the type of memory to allocate.
1209 *
1210 * This function is like krealloc() except it never frees the originally
1211 * allocated buffer. Use this if you don't want to free the buffer immediately
1212 * like, for example, with RCU.
1213 */
1214void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1215{
1216 if (unlikely(!new_size))
1217 return ZERO_SIZE_PTR;
1218
1219 return __do_krealloc(p, new_size, flags);
1220
1221}
1222EXPORT_SYMBOL(__krealloc);
1223
1224/**
1225 * krealloc - reallocate memory. The contents will remain unchanged.
1226 * @p: object to reallocate memory for.
1227 * @new_size: how many bytes of memory are required.
1228 * @flags: the type of memory to allocate.
1229 *
1230 * The contents of the object pointed to are preserved up to the
1231 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1232 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1233 * %NULL pointer, the object pointed to is freed.
1234 */
1235void *krealloc(const void *p, size_t new_size, gfp_t flags)
1236{
1237 void *ret;
1238
1239 if (unlikely(!new_size)) {
1240 kfree(p);
1241 return ZERO_SIZE_PTR;
1242 }
1243
1244 ret = __do_krealloc(p, new_size, flags);
1245 if (ret && p != ret)
1246 kfree(p);
1247
1248 return ret;
1249}
1250EXPORT_SYMBOL(krealloc);
1251
1252/**
1253 * kzfree - like kfree but zero memory
1254 * @p: object to free memory of
1255 *
1256 * The memory of the object @p points to is zeroed before freed.
1257 * If @p is %NULL, kzfree() does nothing.
1258 *
1259 * Note: this function zeroes the whole allocated buffer which can be a good
1260 * deal bigger than the requested buffer size passed to kmalloc(). So be
1261 * careful when using this function in performance sensitive code.
1262 */
1263void kzfree(const void *p)
1264{
1265 size_t ks;
1266 void *mem = (void *)p;
1267
1268 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1269 return;
1270 ks = ksize(mem);
1271 memset(mem, 0, ks);
1272 kfree(mem);
1273}
1274EXPORT_SYMBOL(kzfree);
1275
1276/* Tracepoints definitions. */
1277EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1278EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1279EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1280EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1281EXPORT_TRACEPOINT_SYMBOL(kfree);
1282EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);