fs: shrinker: always scan at least one object of each type
[linux-2.6-block.git] / mm / slab_common.c
CommitLineData
039363f3
CL
1/*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6#include <linux/slab.h>
7
8#include <linux/mm.h>
9#include <linux/poison.h>
10#include <linux/interrupt.h>
11#include <linux/memory.h>
12#include <linux/compiler.h>
13#include <linux/module.h>
20cea968
CL
14#include <linux/cpu.h>
15#include <linux/uaccess.h>
b7454ad3
GC
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
039363f3
CL
18#include <asm/cacheflush.h>
19#include <asm/tlbflush.h>
20#include <asm/page.h>
2633d7a0 21#include <linux/memcontrol.h>
928cec9c
AR
22
23#define CREATE_TRACE_POINTS
f1b6eb6e 24#include <trace/events/kmem.h>
039363f3 25
97d06609
CL
26#include "slab.h"
27
28enum slab_state slab_state;
18004c5d
CL
29LIST_HEAD(slab_caches);
30DEFINE_MUTEX(slab_mutex);
9b030cb8 31struct kmem_cache *kmem_cache;
97d06609 32
423c929c
JK
33/*
34 * Set of flags that will prevent slab merging
35 */
36#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 SLAB_FAILSLAB)
39
40#define SLAB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
41 SLAB_CACHE_DMA | SLAB_NOTRACK)
42
43/*
44 * Merge control. If this is set then no merging of slab caches will occur.
45 * (Could be removed. This was introduced to pacify the merge skeptics.)
46 */
47static int slab_nomerge;
48
49static int __init setup_slab_nomerge(char *str)
50{
51 slab_nomerge = 1;
52 return 1;
53}
54
55#ifdef CONFIG_SLUB
56__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
57#endif
58
59__setup("slab_nomerge", setup_slab_nomerge);
60
07f361b2
JK
61/*
62 * Determine the size of a slab object
63 */
64unsigned int kmem_cache_size(struct kmem_cache *s)
65{
66 return s->object_size;
67}
68EXPORT_SYMBOL(kmem_cache_size);
69
77be4b13 70#ifdef CONFIG_DEBUG_VM
794b1248 71static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
72{
73 struct kmem_cache *s = NULL;
74
039363f3
CL
75 if (!name || in_interrupt() || size < sizeof(void *) ||
76 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
77 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
78 return -EINVAL;
039363f3 79 }
b920536a 80
20cea968
CL
81 list_for_each_entry(s, &slab_caches, list) {
82 char tmp;
83 int res;
84
85 /*
86 * This happens when the module gets unloaded and doesn't
87 * destroy its slab cache and no-one else reuses the vmalloc
88 * area of the module. Print a warning.
89 */
90 res = probe_kernel_address(s->name, tmp);
91 if (res) {
77be4b13 92 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
93 s->object_size);
94 continue;
95 }
20cea968
CL
96 }
97
98 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
99 return 0;
100}
101#else
794b1248 102static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
103{
104 return 0;
105}
20cea968
CL
106#endif
107
55007d84 108#ifdef CONFIG_MEMCG_KMEM
33a690c4
VD
109static int memcg_alloc_cache_params(struct mem_cgroup *memcg,
110 struct kmem_cache *s, struct kmem_cache *root_cache)
111{
112 size_t size;
113
114 if (!memcg_kmem_enabled())
115 return 0;
116
117 if (!memcg) {
118 size = offsetof(struct memcg_cache_params, memcg_caches);
dbcf73e2 119 size += memcg_nr_cache_ids * sizeof(void *);
33a690c4
VD
120 } else
121 size = sizeof(struct memcg_cache_params);
122
123 s->memcg_params = kzalloc(size, GFP_KERNEL);
124 if (!s->memcg_params)
125 return -ENOMEM;
126
127 if (memcg) {
128 s->memcg_params->memcg = memcg;
129 s->memcg_params->root_cache = root_cache;
130 } else
131 s->memcg_params->is_root_cache = true;
132
133 return 0;
134}
135
136static void memcg_free_cache_params(struct kmem_cache *s)
137{
138 kfree(s->memcg_params);
139}
140
6f817f4c
VD
141static int memcg_update_cache_params(struct kmem_cache *s, int num_memcgs)
142{
143 int size;
144 struct memcg_cache_params *new_params, *cur_params;
145
146 BUG_ON(!is_root_cache(s));
147
148 size = offsetof(struct memcg_cache_params, memcg_caches);
149 size += num_memcgs * sizeof(void *);
150
151 new_params = kzalloc(size, GFP_KERNEL);
152 if (!new_params)
153 return -ENOMEM;
154
155 cur_params = s->memcg_params;
156 memcpy(new_params->memcg_caches, cur_params->memcg_caches,
dbcf73e2 157 memcg_nr_cache_ids * sizeof(void *));
6f817f4c
VD
158
159 new_params->is_root_cache = true;
160
161 rcu_assign_pointer(s->memcg_params, new_params);
162 if (cur_params)
163 kfree_rcu(cur_params, rcu_head);
164
165 return 0;
166}
167
55007d84
GC
168int memcg_update_all_caches(int num_memcgs)
169{
170 struct kmem_cache *s;
171 int ret = 0;
55007d84 172
05257a1a 173 mutex_lock(&slab_mutex);
55007d84
GC
174 list_for_each_entry(s, &slab_caches, list) {
175 if (!is_root_cache(s))
176 continue;
177
6f817f4c 178 ret = memcg_update_cache_params(s, num_memcgs);
55007d84 179 /*
55007d84
GC
180 * Instead of freeing the memory, we'll just leave the caches
181 * up to this point in an updated state.
182 */
183 if (ret)
05257a1a 184 break;
55007d84 185 }
55007d84
GC
186 mutex_unlock(&slab_mutex);
187 return ret;
188}
33a690c4
VD
189#else
190static inline int memcg_alloc_cache_params(struct mem_cgroup *memcg,
191 struct kmem_cache *s, struct kmem_cache *root_cache)
192{
193 return 0;
194}
195
196static inline void memcg_free_cache_params(struct kmem_cache *s)
197{
198}
199#endif /* CONFIG_MEMCG_KMEM */
55007d84 200
423c929c
JK
201/*
202 * Find a mergeable slab cache
203 */
204int slab_unmergeable(struct kmem_cache *s)
205{
206 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
207 return 1;
208
209 if (!is_root_cache(s))
210 return 1;
211
212 if (s->ctor)
213 return 1;
214
215 /*
216 * We may have set a slab to be unmergeable during bootstrap.
217 */
218 if (s->refcount < 0)
219 return 1;
220
221 return 0;
222}
223
224struct kmem_cache *find_mergeable(size_t size, size_t align,
225 unsigned long flags, const char *name, void (*ctor)(void *))
226{
227 struct kmem_cache *s;
228
229 if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
230 return NULL;
231
232 if (ctor)
233 return NULL;
234
235 size = ALIGN(size, sizeof(void *));
236 align = calculate_alignment(flags, align, size);
237 size = ALIGN(size, align);
238 flags = kmem_cache_flags(size, flags, name, NULL);
239
54362057 240 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
241 if (slab_unmergeable(s))
242 continue;
243
244 if (size > s->size)
245 continue;
246
247 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
248 continue;
249 /*
250 * Check if alignment is compatible.
251 * Courtesy of Adrian Drzewiecki
252 */
253 if ((s->size & ~(align - 1)) != s->size)
254 continue;
255
256 if (s->size - size >= sizeof(void *))
257 continue;
258
95069ac8
JK
259 if (IS_ENABLED(CONFIG_SLAB) && align &&
260 (align > s->align || s->align % align))
261 continue;
262
423c929c
JK
263 return s;
264 }
265 return NULL;
266}
267
45906855
CL
268/*
269 * Figure out what the alignment of the objects will be given a set of
270 * flags, a user specified alignment and the size of the objects.
271 */
272unsigned long calculate_alignment(unsigned long flags,
273 unsigned long align, unsigned long size)
274{
275 /*
276 * If the user wants hardware cache aligned objects then follow that
277 * suggestion if the object is sufficiently large.
278 *
279 * The hardware cache alignment cannot override the specified
280 * alignment though. If that is greater then use it.
281 */
282 if (flags & SLAB_HWCACHE_ALIGN) {
283 unsigned long ralign = cache_line_size();
284 while (size <= ralign / 2)
285 ralign /= 2;
286 align = max(align, ralign);
287 }
288
289 if (align < ARCH_SLAB_MINALIGN)
290 align = ARCH_SLAB_MINALIGN;
291
292 return ALIGN(align, sizeof(void *));
293}
294
794b1248
VD
295static struct kmem_cache *
296do_kmem_cache_create(char *name, size_t object_size, size_t size, size_t align,
297 unsigned long flags, void (*ctor)(void *),
298 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
299{
300 struct kmem_cache *s;
301 int err;
302
303 err = -ENOMEM;
304 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
305 if (!s)
306 goto out;
307
308 s->name = name;
309 s->object_size = object_size;
310 s->size = size;
311 s->align = align;
312 s->ctor = ctor;
313
314 err = memcg_alloc_cache_params(memcg, s, root_cache);
315 if (err)
316 goto out_free_cache;
317
318 err = __kmem_cache_create(s, flags);
319 if (err)
320 goto out_free_cache;
321
322 s->refcount = 1;
323 list_add(&s->list, &slab_caches);
794b1248
VD
324out:
325 if (err)
326 return ERR_PTR(err);
327 return s;
328
329out_free_cache:
330 memcg_free_cache_params(s);
7c4da061 331 kmem_cache_free(kmem_cache, s);
794b1248
VD
332 goto out;
333}
45906855 334
77be4b13
SK
335/*
336 * kmem_cache_create - Create a cache.
337 * @name: A string which is used in /proc/slabinfo to identify this cache.
338 * @size: The size of objects to be created in this cache.
339 * @align: The required alignment for the objects.
340 * @flags: SLAB flags
341 * @ctor: A constructor for the objects.
342 *
343 * Returns a ptr to the cache on success, NULL on failure.
344 * Cannot be called within a interrupt, but can be interrupted.
345 * The @ctor is run when new pages are allocated by the cache.
346 *
347 * The flags are
348 *
349 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
350 * to catch references to uninitialised memory.
351 *
352 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
353 * for buffer overruns.
354 *
355 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
356 * cacheline. This can be beneficial if you're counting cycles as closely
357 * as davem.
358 */
2633d7a0 359struct kmem_cache *
794b1248
VD
360kmem_cache_create(const char *name, size_t size, size_t align,
361 unsigned long flags, void (*ctor)(void *))
77be4b13 362{
794b1248
VD
363 struct kmem_cache *s;
364 char *cache_name;
3965fc36 365 int err;
039363f3 366
77be4b13 367 get_online_cpus();
03afc0e2 368 get_online_mems();
05257a1a 369 memcg_get_cache_ids();
03afc0e2 370
77be4b13 371 mutex_lock(&slab_mutex);
686d550d 372
794b1248 373 err = kmem_cache_sanity_check(name, size);
3aa24f51
AM
374 if (err) {
375 s = NULL; /* suppress uninit var warning */
3965fc36 376 goto out_unlock;
3aa24f51 377 }
686d550d 378
d8843922
GC
379 /*
380 * Some allocators will constraint the set of valid flags to a subset
381 * of all flags. We expect them to define CACHE_CREATE_MASK in this
382 * case, and we'll just provide them with a sanitized version of the
383 * passed flags.
384 */
385 flags &= CACHE_CREATE_MASK;
686d550d 386
794b1248
VD
387 s = __kmem_cache_alias(name, size, align, flags, ctor);
388 if (s)
3965fc36 389 goto out_unlock;
2633d7a0 390
794b1248
VD
391 cache_name = kstrdup(name, GFP_KERNEL);
392 if (!cache_name) {
393 err = -ENOMEM;
394 goto out_unlock;
395 }
7c9adf5a 396
794b1248
VD
397 s = do_kmem_cache_create(cache_name, size, size,
398 calculate_alignment(flags, align, size),
399 flags, ctor, NULL, NULL);
400 if (IS_ERR(s)) {
401 err = PTR_ERR(s);
402 kfree(cache_name);
403 }
3965fc36
VD
404
405out_unlock:
20cea968 406 mutex_unlock(&slab_mutex);
03afc0e2 407
05257a1a 408 memcg_put_cache_ids();
03afc0e2 409 put_online_mems();
20cea968
CL
410 put_online_cpus();
411
ba3253c7 412 if (err) {
686d550d
CL
413 if (flags & SLAB_PANIC)
414 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
415 name, err);
416 else {
417 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
418 name, err);
419 dump_stack();
420 }
686d550d
CL
421 return NULL;
422 }
039363f3
CL
423 return s;
424}
794b1248 425EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 426
d5b3cf71
VD
427static int do_kmem_cache_shutdown(struct kmem_cache *s,
428 struct list_head *release, bool *need_rcu_barrier)
429{
430 if (__kmem_cache_shutdown(s) != 0) {
431 printk(KERN_ERR "kmem_cache_destroy %s: "
432 "Slab cache still has objects\n", s->name);
433 dump_stack();
434 return -EBUSY;
435 }
436
437 if (s->flags & SLAB_DESTROY_BY_RCU)
438 *need_rcu_barrier = true;
439
440#ifdef CONFIG_MEMCG_KMEM
441 if (!is_root_cache(s)) {
442 struct kmem_cache *root_cache = s->memcg_params->root_cache;
443 int memcg_id = memcg_cache_id(s->memcg_params->memcg);
444
445 BUG_ON(root_cache->memcg_params->memcg_caches[memcg_id] != s);
446 root_cache->memcg_params->memcg_caches[memcg_id] = NULL;
447 }
448#endif
449 list_move(&s->list, release);
450 return 0;
451}
452
453static void do_kmem_cache_release(struct list_head *release,
454 bool need_rcu_barrier)
455{
456 struct kmem_cache *s, *s2;
457
458 if (need_rcu_barrier)
459 rcu_barrier();
460
461 list_for_each_entry_safe(s, s2, release, list) {
462#ifdef SLAB_SUPPORTS_SYSFS
463 sysfs_slab_remove(s);
464#else
465 slab_kmem_cache_release(s);
466#endif
467 }
468}
469
794b1248
VD
470#ifdef CONFIG_MEMCG_KMEM
471/*
776ed0f0 472 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
473 * @memcg: The memory cgroup the new cache is for.
474 * @root_cache: The parent of the new cache.
475 *
476 * This function attempts to create a kmem cache that will serve allocation
477 * requests going from @memcg to @root_cache. The new cache inherits properties
478 * from its parent.
479 */
d5b3cf71
VD
480void memcg_create_kmem_cache(struct mem_cgroup *memcg,
481 struct kmem_cache *root_cache)
2633d7a0 482{
3e0350a3 483 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
d5b3cf71 484 int memcg_id = memcg_cache_id(memcg);
bd673145 485 struct kmem_cache *s = NULL;
794b1248
VD
486 char *cache_name;
487
488 get_online_cpus();
03afc0e2
VD
489 get_online_mems();
490
794b1248
VD
491 mutex_lock(&slab_mutex);
492
d5b3cf71
VD
493 /*
494 * Since per-memcg caches are created asynchronously on first
495 * allocation (see memcg_kmem_get_cache()), several threads can try to
496 * create the same cache, but only one of them may succeed.
497 */
498 if (cache_from_memcg_idx(root_cache, memcg_id))
499 goto out_unlock;
500
3e0350a3
VD
501 cgroup_name(mem_cgroup_css(memcg)->cgroup,
502 memcg_name_buf, sizeof(memcg_name_buf));
073ee1c6 503 cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
3e0350a3 504 memcg_cache_id(memcg), memcg_name_buf);
794b1248
VD
505 if (!cache_name)
506 goto out_unlock;
507
508 s = do_kmem_cache_create(cache_name, root_cache->object_size,
509 root_cache->size, root_cache->align,
510 root_cache->flags, root_cache->ctor,
511 memcg, root_cache);
d5b3cf71
VD
512 /*
513 * If we could not create a memcg cache, do not complain, because
514 * that's not critical at all as we can always proceed with the root
515 * cache.
516 */
bd673145 517 if (IS_ERR(s)) {
794b1248 518 kfree(cache_name);
d5b3cf71 519 goto out_unlock;
bd673145 520 }
794b1248 521
d5b3cf71
VD
522 /*
523 * Since readers won't lock (see cache_from_memcg_idx()), we need a
524 * barrier here to ensure nobody will see the kmem_cache partially
525 * initialized.
526 */
527 smp_wmb();
528 root_cache->memcg_params->memcg_caches[memcg_id] = s;
529
794b1248
VD
530out_unlock:
531 mutex_unlock(&slab_mutex);
03afc0e2
VD
532
533 put_online_mems();
794b1248 534 put_online_cpus();
2633d7a0 535}
b8529907 536
d5b3cf71 537void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 538{
d5b3cf71
VD
539 LIST_HEAD(release);
540 bool need_rcu_barrier = false;
541 struct kmem_cache *s, *s2;
b8529907 542
d5b3cf71
VD
543 get_online_cpus();
544 get_online_mems();
b8529907 545
b8529907 546 mutex_lock(&slab_mutex);
d5b3cf71
VD
547 list_for_each_entry_safe(s, s2, &slab_caches, list) {
548 if (is_root_cache(s) || s->memcg_params->memcg != memcg)
549 continue;
550 /*
551 * The cgroup is about to be freed and therefore has no charges
552 * left. Hence, all its caches must be empty by now.
553 */
554 BUG_ON(do_kmem_cache_shutdown(s, &release, &need_rcu_barrier));
555 }
556 mutex_unlock(&slab_mutex);
b8529907 557
d5b3cf71
VD
558 put_online_mems();
559 put_online_cpus();
560
561 do_kmem_cache_release(&release, need_rcu_barrier);
b8529907 562}
794b1248 563#endif /* CONFIG_MEMCG_KMEM */
97d06609 564
41a21285
CL
565void slab_kmem_cache_release(struct kmem_cache *s)
566{
d5b3cf71 567 memcg_free_cache_params(s);
41a21285
CL
568 kfree(s->name);
569 kmem_cache_free(kmem_cache, s);
570}
571
945cf2b6
CL
572void kmem_cache_destroy(struct kmem_cache *s)
573{
d5b3cf71
VD
574 int i;
575 LIST_HEAD(release);
576 bool need_rcu_barrier = false;
577 bool busy = false;
578
945cf2b6 579 get_online_cpus();
03afc0e2
VD
580 get_online_mems();
581
945cf2b6 582 mutex_lock(&slab_mutex);
b8529907 583
945cf2b6 584 s->refcount--;
b8529907
VD
585 if (s->refcount)
586 goto out_unlock;
587
d5b3cf71
VD
588 for_each_memcg_cache_index(i) {
589 struct kmem_cache *c = cache_from_memcg_idx(s, i);
b8529907 590
d5b3cf71
VD
591 if (c && do_kmem_cache_shutdown(c, &release, &need_rcu_barrier))
592 busy = true;
945cf2b6 593 }
b8529907 594
d5b3cf71
VD
595 if (!busy)
596 do_kmem_cache_shutdown(s, &release, &need_rcu_barrier);
b8529907
VD
597
598out_unlock:
599 mutex_unlock(&slab_mutex);
d5b3cf71 600
03afc0e2 601 put_online_mems();
945cf2b6 602 put_online_cpus();
d5b3cf71
VD
603
604 do_kmem_cache_release(&release, need_rcu_barrier);
945cf2b6
CL
605}
606EXPORT_SYMBOL(kmem_cache_destroy);
607
03afc0e2
VD
608/**
609 * kmem_cache_shrink - Shrink a cache.
610 * @cachep: The cache to shrink.
611 *
612 * Releases as many slabs as possible for a cache.
613 * To help debugging, a zero exit status indicates all slabs were released.
614 */
615int kmem_cache_shrink(struct kmem_cache *cachep)
616{
617 int ret;
618
619 get_online_cpus();
620 get_online_mems();
621 ret = __kmem_cache_shrink(cachep);
622 put_online_mems();
623 put_online_cpus();
624 return ret;
625}
626EXPORT_SYMBOL(kmem_cache_shrink);
627
97d06609
CL
628int slab_is_available(void)
629{
630 return slab_state >= UP;
631}
b7454ad3 632
45530c44
CL
633#ifndef CONFIG_SLOB
634/* Create a cache during boot when no slab services are available yet */
635void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
636 unsigned long flags)
637{
638 int err;
639
640 s->name = name;
641 s->size = s->object_size = size;
45906855 642 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
45530c44
CL
643 err = __kmem_cache_create(s, flags);
644
645 if (err)
31ba7346 646 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
647 name, size, err);
648
649 s->refcount = -1; /* Exempt from merging for now */
650}
651
652struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
653 unsigned long flags)
654{
655 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
656
657 if (!s)
658 panic("Out of memory when creating slab %s\n", name);
659
660 create_boot_cache(s, name, size, flags);
661 list_add(&s->list, &slab_caches);
662 s->refcount = 1;
663 return s;
664}
665
9425c58e
CL
666struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
667EXPORT_SYMBOL(kmalloc_caches);
668
669#ifdef CONFIG_ZONE_DMA
670struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
671EXPORT_SYMBOL(kmalloc_dma_caches);
672#endif
673
2c59dd65
CL
674/*
675 * Conversion table for small slabs sizes / 8 to the index in the
676 * kmalloc array. This is necessary for slabs < 192 since we have non power
677 * of two cache sizes there. The size of larger slabs can be determined using
678 * fls.
679 */
680static s8 size_index[24] = {
681 3, /* 8 */
682 4, /* 16 */
683 5, /* 24 */
684 5, /* 32 */
685 6, /* 40 */
686 6, /* 48 */
687 6, /* 56 */
688 6, /* 64 */
689 1, /* 72 */
690 1, /* 80 */
691 1, /* 88 */
692 1, /* 96 */
693 7, /* 104 */
694 7, /* 112 */
695 7, /* 120 */
696 7, /* 128 */
697 2, /* 136 */
698 2, /* 144 */
699 2, /* 152 */
700 2, /* 160 */
701 2, /* 168 */
702 2, /* 176 */
703 2, /* 184 */
704 2 /* 192 */
705};
706
707static inline int size_index_elem(size_t bytes)
708{
709 return (bytes - 1) / 8;
710}
711
712/*
713 * Find the kmem_cache structure that serves a given size of
714 * allocation
715 */
716struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
717{
718 int index;
719
9de1bc87 720 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 721 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 722 return NULL;
907985f4 723 }
6286ae97 724
2c59dd65
CL
725 if (size <= 192) {
726 if (!size)
727 return ZERO_SIZE_PTR;
728
729 index = size_index[size_index_elem(size)];
730 } else
731 index = fls(size - 1);
732
733#ifdef CONFIG_ZONE_DMA
b1e05416 734 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
735 return kmalloc_dma_caches[index];
736
737#endif
738 return kmalloc_caches[index];
739}
740
f97d5f63
CL
741/*
742 * Create the kmalloc array. Some of the regular kmalloc arrays
743 * may already have been created because they were needed to
744 * enable allocations for slab creation.
745 */
746void __init create_kmalloc_caches(unsigned long flags)
747{
748 int i;
749
2c59dd65
CL
750 /*
751 * Patch up the size_index table if we have strange large alignment
752 * requirements for the kmalloc array. This is only the case for
753 * MIPS it seems. The standard arches will not generate any code here.
754 *
755 * Largest permitted alignment is 256 bytes due to the way we
756 * handle the index determination for the smaller caches.
757 *
758 * Make sure that nothing crazy happens if someone starts tinkering
759 * around with ARCH_KMALLOC_MINALIGN
760 */
761 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
762 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
763
764 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
765 int elem = size_index_elem(i);
766
767 if (elem >= ARRAY_SIZE(size_index))
768 break;
769 size_index[elem] = KMALLOC_SHIFT_LOW;
770 }
771
772 if (KMALLOC_MIN_SIZE >= 64) {
773 /*
774 * The 96 byte size cache is not used if the alignment
775 * is 64 byte.
776 */
777 for (i = 64 + 8; i <= 96; i += 8)
778 size_index[size_index_elem(i)] = 7;
779
780 }
781
782 if (KMALLOC_MIN_SIZE >= 128) {
783 /*
784 * The 192 byte sized cache is not used if the alignment
785 * is 128 byte. Redirect kmalloc to use the 256 byte cache
786 * instead.
787 */
788 for (i = 128 + 8; i <= 192; i += 8)
789 size_index[size_index_elem(i)] = 8;
790 }
8a965b3b
CL
791 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
792 if (!kmalloc_caches[i]) {
f97d5f63
CL
793 kmalloc_caches[i] = create_kmalloc_cache(NULL,
794 1 << i, flags);
956e46ef 795 }
f97d5f63 796
956e46ef
CM
797 /*
798 * Caches that are not of the two-to-the-power-of size.
799 * These have to be created immediately after the
800 * earlier power of two caches
801 */
802 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
803 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
8a965b3b 804
956e46ef
CM
805 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
806 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
8a965b3b
CL
807 }
808
f97d5f63
CL
809 /* Kmalloc array is now usable */
810 slab_state = UP;
811
812 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
813 struct kmem_cache *s = kmalloc_caches[i];
814 char *n;
815
816 if (s) {
817 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
818
819 BUG_ON(!n);
820 s->name = n;
821 }
822 }
823
824#ifdef CONFIG_ZONE_DMA
825 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
826 struct kmem_cache *s = kmalloc_caches[i];
827
828 if (s) {
829 int size = kmalloc_size(i);
830 char *n = kasprintf(GFP_NOWAIT,
831 "dma-kmalloc-%d", size);
832
833 BUG_ON(!n);
834 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
835 size, SLAB_CACHE_DMA | flags);
836 }
837 }
838#endif
839}
45530c44
CL
840#endif /* !CONFIG_SLOB */
841
cea371f4
VD
842/*
843 * To avoid unnecessary overhead, we pass through large allocation requests
844 * directly to the page allocator. We use __GFP_COMP, because we will need to
845 * know the allocation order to free the pages properly in kfree.
846 */
52383431
VD
847void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
848{
849 void *ret;
850 struct page *page;
851
852 flags |= __GFP_COMP;
853 page = alloc_kmem_pages(flags, order);
854 ret = page ? page_address(page) : NULL;
855 kmemleak_alloc(ret, size, 1, flags);
856 return ret;
857}
858EXPORT_SYMBOL(kmalloc_order);
859
f1b6eb6e
CL
860#ifdef CONFIG_TRACING
861void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
862{
863 void *ret = kmalloc_order(size, flags, order);
864 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
865 return ret;
866}
867EXPORT_SYMBOL(kmalloc_order_trace);
868#endif
45530c44 869
b7454ad3 870#ifdef CONFIG_SLABINFO
e9b4db2b
WL
871
872#ifdef CONFIG_SLAB
873#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
874#else
875#define SLABINFO_RIGHTS S_IRUSR
876#endif
877
b047501c 878static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
879{
880 /*
881 * Output format version, so at least we can change it
882 * without _too_ many complaints.
883 */
884#ifdef CONFIG_DEBUG_SLAB
885 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
886#else
887 seq_puts(m, "slabinfo - version: 2.1\n");
888#endif
889 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
890 "<objperslab> <pagesperslab>");
891 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
892 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
893#ifdef CONFIG_DEBUG_SLAB
894 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
895 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
896 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
897#endif
898 seq_putc(m, '\n');
899}
900
1df3b26f 901void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 902{
b7454ad3 903 mutex_lock(&slab_mutex);
b7454ad3
GC
904 return seq_list_start(&slab_caches, *pos);
905}
906
276a2439 907void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3
GC
908{
909 return seq_list_next(p, &slab_caches, pos);
910}
911
276a2439 912void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
913{
914 mutex_unlock(&slab_mutex);
915}
916
749c5415
GC
917static void
918memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
919{
920 struct kmem_cache *c;
921 struct slabinfo sinfo;
922 int i;
923
924 if (!is_root_cache(s))
925 return;
926
927 for_each_memcg_cache_index(i) {
2ade4de8 928 c = cache_from_memcg_idx(s, i);
749c5415
GC
929 if (!c)
930 continue;
931
932 memset(&sinfo, 0, sizeof(sinfo));
933 get_slabinfo(c, &sinfo);
934
935 info->active_slabs += sinfo.active_slabs;
936 info->num_slabs += sinfo.num_slabs;
937 info->shared_avail += sinfo.shared_avail;
938 info->active_objs += sinfo.active_objs;
939 info->num_objs += sinfo.num_objs;
940 }
941}
942
b047501c 943static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 944{
0d7561c6
GC
945 struct slabinfo sinfo;
946
947 memset(&sinfo, 0, sizeof(sinfo));
948 get_slabinfo(s, &sinfo);
949
749c5415
GC
950 memcg_accumulate_slabinfo(s, &sinfo);
951
0d7561c6 952 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 953 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
954 sinfo.objects_per_slab, (1 << sinfo.cache_order));
955
956 seq_printf(m, " : tunables %4u %4u %4u",
957 sinfo.limit, sinfo.batchcount, sinfo.shared);
958 seq_printf(m, " : slabdata %6lu %6lu %6lu",
959 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
960 slabinfo_show_stats(m, s);
961 seq_putc(m, '\n');
b7454ad3
GC
962}
963
1df3b26f 964static int slab_show(struct seq_file *m, void *p)
749c5415
GC
965{
966 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
967
1df3b26f
VD
968 if (p == slab_caches.next)
969 print_slabinfo_header(m);
b047501c
VD
970 if (is_root_cache(s))
971 cache_show(s, m);
972 return 0;
973}
974
975#ifdef CONFIG_MEMCG_KMEM
976int memcg_slab_show(struct seq_file *m, void *p)
977{
978 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
979 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
980
981 if (p == slab_caches.next)
982 print_slabinfo_header(m);
983 if (!is_root_cache(s) && s->memcg_params->memcg == memcg)
984 cache_show(s, m);
985 return 0;
749c5415 986}
b047501c 987#endif
749c5415 988
b7454ad3
GC
989/*
990 * slabinfo_op - iterator that generates /proc/slabinfo
991 *
992 * Output layout:
993 * cache-name
994 * num-active-objs
995 * total-objs
996 * object size
997 * num-active-slabs
998 * total-slabs
999 * num-pages-per-slab
1000 * + further values on SMP and with statistics enabled
1001 */
1002static const struct seq_operations slabinfo_op = {
1df3b26f 1003 .start = slab_start,
276a2439
WL
1004 .next = slab_next,
1005 .stop = slab_stop,
1df3b26f 1006 .show = slab_show,
b7454ad3
GC
1007};
1008
1009static int slabinfo_open(struct inode *inode, struct file *file)
1010{
1011 return seq_open(file, &slabinfo_op);
1012}
1013
1014static const struct file_operations proc_slabinfo_operations = {
1015 .open = slabinfo_open,
1016 .read = seq_read,
1017 .write = slabinfo_write,
1018 .llseek = seq_lseek,
1019 .release = seq_release,
1020};
1021
1022static int __init slab_proc_init(void)
1023{
e9b4db2b
WL
1024 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1025 &proc_slabinfo_operations);
b7454ad3
GC
1026 return 0;
1027}
1028module_init(slab_proc_init);
1029#endif /* CONFIG_SLABINFO */
928cec9c
AR
1030
1031static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1032 gfp_t flags)
1033{
1034 void *ret;
1035 size_t ks = 0;
1036
1037 if (p)
1038 ks = ksize(p);
1039
1040 if (ks >= new_size)
1041 return (void *)p;
1042
1043 ret = kmalloc_track_caller(new_size, flags);
1044 if (ret && p)
1045 memcpy(ret, p, ks);
1046
1047 return ret;
1048}
1049
1050/**
1051 * __krealloc - like krealloc() but don't free @p.
1052 * @p: object to reallocate memory for.
1053 * @new_size: how many bytes of memory are required.
1054 * @flags: the type of memory to allocate.
1055 *
1056 * This function is like krealloc() except it never frees the originally
1057 * allocated buffer. Use this if you don't want to free the buffer immediately
1058 * like, for example, with RCU.
1059 */
1060void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1061{
1062 if (unlikely(!new_size))
1063 return ZERO_SIZE_PTR;
1064
1065 return __do_krealloc(p, new_size, flags);
1066
1067}
1068EXPORT_SYMBOL(__krealloc);
1069
1070/**
1071 * krealloc - reallocate memory. The contents will remain unchanged.
1072 * @p: object to reallocate memory for.
1073 * @new_size: how many bytes of memory are required.
1074 * @flags: the type of memory to allocate.
1075 *
1076 * The contents of the object pointed to are preserved up to the
1077 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1078 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1079 * %NULL pointer, the object pointed to is freed.
1080 */
1081void *krealloc(const void *p, size_t new_size, gfp_t flags)
1082{
1083 void *ret;
1084
1085 if (unlikely(!new_size)) {
1086 kfree(p);
1087 return ZERO_SIZE_PTR;
1088 }
1089
1090 ret = __do_krealloc(p, new_size, flags);
1091 if (ret && p != ret)
1092 kfree(p);
1093
1094 return ret;
1095}
1096EXPORT_SYMBOL(krealloc);
1097
1098/**
1099 * kzfree - like kfree but zero memory
1100 * @p: object to free memory of
1101 *
1102 * The memory of the object @p points to is zeroed before freed.
1103 * If @p is %NULL, kzfree() does nothing.
1104 *
1105 * Note: this function zeroes the whole allocated buffer which can be a good
1106 * deal bigger than the requested buffer size passed to kmalloc(). So be
1107 * careful when using this function in performance sensitive code.
1108 */
1109void kzfree(const void *p)
1110{
1111 size_t ks;
1112 void *mem = (void *)p;
1113
1114 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1115 return;
1116 ks = ksize(mem);
1117 memset(mem, 0, ks);
1118 kfree(mem);
1119}
1120EXPORT_SYMBOL(kzfree);
1121
1122/* Tracepoints definitions. */
1123EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1124EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1125EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1126EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1127EXPORT_TRACEPOINT_SYMBOL(kfree);
1128EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);