Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / mm / slab_common.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
039363f3
CL
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
1c99ba29 13#include <linux/cache.h>
039363f3
CL
14#include <linux/compiler.h>
15#include <linux/module.h>
20cea968
CL
16#include <linux/cpu.h>
17#include <linux/uaccess.h>
b7454ad3
GC
18#include <linux/seq_file.h>
19#include <linux/proc_fs.h>
039363f3
CL
20#include <asm/cacheflush.h>
21#include <asm/tlbflush.h>
22#include <asm/page.h>
2633d7a0 23#include <linux/memcontrol.h>
928cec9c
AR
24
25#define CREATE_TRACE_POINTS
f1b6eb6e 26#include <trace/events/kmem.h>
039363f3 27
97d06609
CL
28#include "slab.h"
29
30enum slab_state slab_state;
18004c5d
CL
31LIST_HEAD(slab_caches);
32DEFINE_MUTEX(slab_mutex);
9b030cb8 33struct kmem_cache *kmem_cache;
97d06609 34
2d891fbc
KC
35#ifdef CONFIG_HARDENED_USERCOPY
36bool usercopy_fallback __ro_after_init =
37 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
38module_param(usercopy_fallback, bool, 0400);
39MODULE_PARM_DESC(usercopy_fallback,
40 "WARN instead of reject usercopy whitelist violations");
41#endif
42
657dc2f9
TH
43static LIST_HEAD(slab_caches_to_rcu_destroy);
44static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 slab_caches_to_rcu_destroy_workfn);
47
423c929c
JK
48/*
49 * Set of flags that will prevent slab merging
50 */
51#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
5f0d5a3a 52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
7ed2f9e6 53 SLAB_FAILSLAB | SLAB_KASAN)
423c929c 54
230e9fc2 55#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
75f296d9 56 SLAB_ACCOUNT)
423c929c
JK
57
58/*
59 * Merge control. If this is set then no merging of slab caches will occur.
423c929c 60 */
7660a6fd 61static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
423c929c
JK
62
63static int __init setup_slab_nomerge(char *str)
64{
7660a6fd 65 slab_nomerge = true;
423c929c
JK
66 return 1;
67}
68
69#ifdef CONFIG_SLUB
70__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
71#endif
72
73__setup("slab_nomerge", setup_slab_nomerge);
74
07f361b2
JK
75/*
76 * Determine the size of a slab object
77 */
78unsigned int kmem_cache_size(struct kmem_cache *s)
79{
80 return s->object_size;
81}
82EXPORT_SYMBOL(kmem_cache_size);
83
77be4b13 84#ifdef CONFIG_DEBUG_VM
f4957d5b 85static int kmem_cache_sanity_check(const char *name, unsigned int size)
039363f3 86{
039363f3
CL
87 if (!name || in_interrupt() || size < sizeof(void *) ||
88 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
89 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
90 return -EINVAL;
039363f3 91 }
b920536a 92
20cea968 93 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
94 return 0;
95}
96#else
f4957d5b 97static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
77be4b13
SK
98{
99 return 0;
100}
20cea968
CL
101#endif
102
484748f0
CL
103void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
104{
105 size_t i;
106
ca257195
JDB
107 for (i = 0; i < nr; i++) {
108 if (s)
109 kmem_cache_free(s, p[i]);
110 else
111 kfree(p[i]);
112 }
484748f0
CL
113}
114
865762a8 115int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
484748f0
CL
116 void **p)
117{
118 size_t i;
119
120 for (i = 0; i < nr; i++) {
121 void *x = p[i] = kmem_cache_alloc(s, flags);
122 if (!x) {
123 __kmem_cache_free_bulk(s, i, p);
865762a8 124 return 0;
484748f0
CL
125 }
126 }
865762a8 127 return i;
484748f0
CL
128}
129
127424c8 130#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
510ded33
TH
131
132LIST_HEAD(slab_root_caches);
133
f7ce3190 134void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 135{
9eeadc8b 136 s->memcg_params.root_cache = NULL;
f7ce3190 137 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
9eeadc8b 138 INIT_LIST_HEAD(&s->memcg_params.children);
92ee383f 139 s->memcg_params.dying = false;
f7ce3190
VD
140}
141
142static int init_memcg_params(struct kmem_cache *s,
143 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
144{
145 struct memcg_cache_array *arr;
33a690c4 146
9eeadc8b 147 if (root_cache) {
f7ce3190 148 s->memcg_params.root_cache = root_cache;
9eeadc8b
TH
149 s->memcg_params.memcg = memcg;
150 INIT_LIST_HEAD(&s->memcg_params.children_node);
bc2791f8 151 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
33a690c4 152 return 0;
f7ce3190 153 }
33a690c4 154
f7ce3190 155 slab_init_memcg_params(s);
33a690c4 156
f7ce3190
VD
157 if (!memcg_nr_cache_ids)
158 return 0;
33a690c4 159
f80c7dab
JW
160 arr = kvzalloc(sizeof(struct memcg_cache_array) +
161 memcg_nr_cache_ids * sizeof(void *),
162 GFP_KERNEL);
f7ce3190
VD
163 if (!arr)
164 return -ENOMEM;
33a690c4 165
f7ce3190 166 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
167 return 0;
168}
169
f7ce3190 170static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 171{
f7ce3190 172 if (is_root_cache(s))
f80c7dab
JW
173 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
174}
175
176static void free_memcg_params(struct rcu_head *rcu)
177{
178 struct memcg_cache_array *old;
179
180 old = container_of(rcu, struct memcg_cache_array, rcu);
181 kvfree(old);
33a690c4
VD
182}
183
f7ce3190 184static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 185{
f7ce3190 186 struct memcg_cache_array *old, *new;
6f817f4c 187
f80c7dab
JW
188 new = kvzalloc(sizeof(struct memcg_cache_array) +
189 new_array_size * sizeof(void *), GFP_KERNEL);
f7ce3190 190 if (!new)
6f817f4c
VD
191 return -ENOMEM;
192
f7ce3190
VD
193 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
194 lockdep_is_held(&slab_mutex));
195 if (old)
196 memcpy(new->entries, old->entries,
197 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 198
f7ce3190
VD
199 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
200 if (old)
f80c7dab 201 call_rcu(&old->rcu, free_memcg_params);
6f817f4c
VD
202 return 0;
203}
204
55007d84
GC
205int memcg_update_all_caches(int num_memcgs)
206{
207 struct kmem_cache *s;
208 int ret = 0;
55007d84 209
05257a1a 210 mutex_lock(&slab_mutex);
510ded33 211 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
f7ce3190 212 ret = update_memcg_params(s, num_memcgs);
55007d84 213 /*
55007d84
GC
214 * Instead of freeing the memory, we'll just leave the caches
215 * up to this point in an updated state.
216 */
217 if (ret)
05257a1a 218 break;
55007d84 219 }
55007d84
GC
220 mutex_unlock(&slab_mutex);
221 return ret;
222}
657dc2f9 223
510ded33 224void memcg_link_cache(struct kmem_cache *s)
657dc2f9 225{
510ded33
TH
226 if (is_root_cache(s)) {
227 list_add(&s->root_caches_node, &slab_root_caches);
228 } else {
229 list_add(&s->memcg_params.children_node,
230 &s->memcg_params.root_cache->memcg_params.children);
231 list_add(&s->memcg_params.kmem_caches_node,
232 &s->memcg_params.memcg->kmem_caches);
233 }
234}
235
236static void memcg_unlink_cache(struct kmem_cache *s)
237{
238 if (is_root_cache(s)) {
239 list_del(&s->root_caches_node);
240 } else {
241 list_del(&s->memcg_params.children_node);
242 list_del(&s->memcg_params.kmem_caches_node);
243 }
657dc2f9 244}
33a690c4 245#else
f7ce3190
VD
246static inline int init_memcg_params(struct kmem_cache *s,
247 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
248{
249 return 0;
250}
251
f7ce3190 252static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
253{
254}
657dc2f9 255
510ded33 256static inline void memcg_unlink_cache(struct kmem_cache *s)
657dc2f9
TH
257{
258}
127424c8 259#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
55007d84 260
692ae74a
BL
261/*
262 * Figure out what the alignment of the objects will be given a set of
263 * flags, a user specified alignment and the size of the objects.
264 */
f4957d5b
AD
265static unsigned int calculate_alignment(slab_flags_t flags,
266 unsigned int align, unsigned int size)
692ae74a
BL
267{
268 /*
269 * If the user wants hardware cache aligned objects then follow that
270 * suggestion if the object is sufficiently large.
271 *
272 * The hardware cache alignment cannot override the specified
273 * alignment though. If that is greater then use it.
274 */
275 if (flags & SLAB_HWCACHE_ALIGN) {
f4957d5b 276 unsigned int ralign;
692ae74a
BL
277
278 ralign = cache_line_size();
279 while (size <= ralign / 2)
280 ralign /= 2;
281 align = max(align, ralign);
282 }
283
284 if (align < ARCH_SLAB_MINALIGN)
285 align = ARCH_SLAB_MINALIGN;
286
287 return ALIGN(align, sizeof(void *));
288}
289
423c929c
JK
290/*
291 * Find a mergeable slab cache
292 */
293int slab_unmergeable(struct kmem_cache *s)
294{
295 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
296 return 1;
297
298 if (!is_root_cache(s))
299 return 1;
300
301 if (s->ctor)
302 return 1;
303
8eb8284b
DW
304 if (s->usersize)
305 return 1;
306
423c929c
JK
307 /*
308 * We may have set a slab to be unmergeable during bootstrap.
309 */
310 if (s->refcount < 0)
311 return 1;
312
313 return 0;
314}
315
f4957d5b 316struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
d50112ed 317 slab_flags_t flags, const char *name, void (*ctor)(void *))
423c929c
JK
318{
319 struct kmem_cache *s;
320
c6e28895 321 if (slab_nomerge)
423c929c
JK
322 return NULL;
323
324 if (ctor)
325 return NULL;
326
327 size = ALIGN(size, sizeof(void *));
328 align = calculate_alignment(flags, align, size);
329 size = ALIGN(size, align);
330 flags = kmem_cache_flags(size, flags, name, NULL);
331
c6e28895
GM
332 if (flags & SLAB_NEVER_MERGE)
333 return NULL;
334
510ded33 335 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
423c929c
JK
336 if (slab_unmergeable(s))
337 continue;
338
339 if (size > s->size)
340 continue;
341
342 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
343 continue;
344 /*
345 * Check if alignment is compatible.
346 * Courtesy of Adrian Drzewiecki
347 */
348 if ((s->size & ~(align - 1)) != s->size)
349 continue;
350
351 if (s->size - size >= sizeof(void *))
352 continue;
353
95069ac8
JK
354 if (IS_ENABLED(CONFIG_SLAB) && align &&
355 (align > s->align || s->align % align))
356 continue;
357
423c929c
JK
358 return s;
359 }
360 return NULL;
361}
362
c9a77a79 363static struct kmem_cache *create_cache(const char *name,
613a5eb5 364 unsigned int object_size, unsigned int align,
7bbdb81e
AD
365 slab_flags_t flags, unsigned int useroffset,
366 unsigned int usersize, void (*ctor)(void *),
c9a77a79 367 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
368{
369 struct kmem_cache *s;
370 int err;
371
8eb8284b
DW
372 if (WARN_ON(useroffset + usersize > object_size))
373 useroffset = usersize = 0;
374
794b1248
VD
375 err = -ENOMEM;
376 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
377 if (!s)
378 goto out;
379
380 s->name = name;
613a5eb5 381 s->size = s->object_size = object_size;
794b1248
VD
382 s->align = align;
383 s->ctor = ctor;
8eb8284b
DW
384 s->useroffset = useroffset;
385 s->usersize = usersize;
794b1248 386
f7ce3190 387 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
388 if (err)
389 goto out_free_cache;
390
391 err = __kmem_cache_create(s, flags);
392 if (err)
393 goto out_free_cache;
394
395 s->refcount = 1;
396 list_add(&s->list, &slab_caches);
510ded33 397 memcg_link_cache(s);
794b1248
VD
398out:
399 if (err)
400 return ERR_PTR(err);
401 return s;
402
403out_free_cache:
f7ce3190 404 destroy_memcg_params(s);
7c4da061 405 kmem_cache_free(kmem_cache, s);
794b1248
VD
406 goto out;
407}
45906855 408
77be4b13 409/*
8eb8284b 410 * kmem_cache_create_usercopy - Create a cache.
77be4b13
SK
411 * @name: A string which is used in /proc/slabinfo to identify this cache.
412 * @size: The size of objects to be created in this cache.
413 * @align: The required alignment for the objects.
414 * @flags: SLAB flags
8eb8284b
DW
415 * @useroffset: Usercopy region offset
416 * @usersize: Usercopy region size
77be4b13
SK
417 * @ctor: A constructor for the objects.
418 *
419 * Returns a ptr to the cache on success, NULL on failure.
420 * Cannot be called within a interrupt, but can be interrupted.
421 * The @ctor is run when new pages are allocated by the cache.
422 *
423 * The flags are
424 *
425 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
426 * to catch references to uninitialised memory.
427 *
428 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
429 * for buffer overruns.
430 *
431 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
432 * cacheline. This can be beneficial if you're counting cycles as closely
433 * as davem.
434 */
2633d7a0 435struct kmem_cache *
f4957d5b
AD
436kmem_cache_create_usercopy(const char *name,
437 unsigned int size, unsigned int align,
7bbdb81e
AD
438 slab_flags_t flags,
439 unsigned int useroffset, unsigned int usersize,
8eb8284b 440 void (*ctor)(void *))
77be4b13 441{
40911a79 442 struct kmem_cache *s = NULL;
3dec16ea 443 const char *cache_name;
3965fc36 444 int err;
039363f3 445
77be4b13 446 get_online_cpus();
03afc0e2 447 get_online_mems();
05257a1a 448 memcg_get_cache_ids();
03afc0e2 449
77be4b13 450 mutex_lock(&slab_mutex);
686d550d 451
794b1248 452 err = kmem_cache_sanity_check(name, size);
3aa24f51 453 if (err) {
3965fc36 454 goto out_unlock;
3aa24f51 455 }
686d550d 456
e70954fd
TG
457 /* Refuse requests with allocator specific flags */
458 if (flags & ~SLAB_FLAGS_PERMITTED) {
459 err = -EINVAL;
460 goto out_unlock;
461 }
462
d8843922
GC
463 /*
464 * Some allocators will constraint the set of valid flags to a subset
465 * of all flags. We expect them to define CACHE_CREATE_MASK in this
466 * case, and we'll just provide them with a sanitized version of the
467 * passed flags.
468 */
469 flags &= CACHE_CREATE_MASK;
686d550d 470
8eb8284b
DW
471 /* Fail closed on bad usersize of useroffset values. */
472 if (WARN_ON(!usersize && useroffset) ||
473 WARN_ON(size < usersize || size - usersize < useroffset))
474 usersize = useroffset = 0;
475
476 if (!usersize)
477 s = __kmem_cache_alias(name, size, align, flags, ctor);
794b1248 478 if (s)
3965fc36 479 goto out_unlock;
2633d7a0 480
3dec16ea 481 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
482 if (!cache_name) {
483 err = -ENOMEM;
484 goto out_unlock;
485 }
7c9adf5a 486
613a5eb5 487 s = create_cache(cache_name, size,
c9a77a79 488 calculate_alignment(flags, align, size),
8eb8284b 489 flags, useroffset, usersize, ctor, NULL, NULL);
794b1248
VD
490 if (IS_ERR(s)) {
491 err = PTR_ERR(s);
3dec16ea 492 kfree_const(cache_name);
794b1248 493 }
3965fc36
VD
494
495out_unlock:
20cea968 496 mutex_unlock(&slab_mutex);
03afc0e2 497
05257a1a 498 memcg_put_cache_ids();
03afc0e2 499 put_online_mems();
20cea968
CL
500 put_online_cpus();
501
ba3253c7 502 if (err) {
686d550d
CL
503 if (flags & SLAB_PANIC)
504 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
505 name, err);
506 else {
1170532b 507 pr_warn("kmem_cache_create(%s) failed with error %d\n",
686d550d
CL
508 name, err);
509 dump_stack();
510 }
686d550d
CL
511 return NULL;
512 }
039363f3
CL
513 return s;
514}
8eb8284b
DW
515EXPORT_SYMBOL(kmem_cache_create_usercopy);
516
517struct kmem_cache *
f4957d5b 518kmem_cache_create(const char *name, unsigned int size, unsigned int align,
8eb8284b
DW
519 slab_flags_t flags, void (*ctor)(void *))
520{
6d07d1cd 521 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
8eb8284b
DW
522 ctor);
523}
794b1248 524EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 525
657dc2f9 526static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
d5b3cf71 527{
657dc2f9
TH
528 LIST_HEAD(to_destroy);
529 struct kmem_cache *s, *s2;
d5b3cf71 530
657dc2f9 531 /*
5f0d5a3a 532 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
657dc2f9
TH
533 * @slab_caches_to_rcu_destroy list. The slab pages are freed
534 * through RCU and and the associated kmem_cache are dereferenced
535 * while freeing the pages, so the kmem_caches should be freed only
536 * after the pending RCU operations are finished. As rcu_barrier()
537 * is a pretty slow operation, we batch all pending destructions
538 * asynchronously.
539 */
540 mutex_lock(&slab_mutex);
541 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
542 mutex_unlock(&slab_mutex);
d5b3cf71 543
657dc2f9
TH
544 if (list_empty(&to_destroy))
545 return;
546
547 rcu_barrier();
548
549 list_for_each_entry_safe(s, s2, &to_destroy, list) {
550#ifdef SLAB_SUPPORTS_SYSFS
551 sysfs_slab_release(s);
552#else
553 slab_kmem_cache_release(s);
554#endif
555 }
d5b3cf71
VD
556}
557
657dc2f9 558static int shutdown_cache(struct kmem_cache *s)
d5b3cf71 559{
f9fa1d91
GT
560 /* free asan quarantined objects */
561 kasan_cache_shutdown(s);
562
657dc2f9
TH
563 if (__kmem_cache_shutdown(s) != 0)
564 return -EBUSY;
d5b3cf71 565
510ded33 566 memcg_unlink_cache(s);
657dc2f9 567 list_del(&s->list);
d5b3cf71 568
5f0d5a3a 569 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
657dc2f9
TH
570 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
571 schedule_work(&slab_caches_to_rcu_destroy_work);
572 } else {
d5b3cf71 573#ifdef SLAB_SUPPORTS_SYSFS
bf5eb3de 574 sysfs_slab_release(s);
d5b3cf71
VD
575#else
576 slab_kmem_cache_release(s);
577#endif
578 }
657dc2f9
TH
579
580 return 0;
d5b3cf71
VD
581}
582
127424c8 583#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
794b1248 584/*
776ed0f0 585 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
586 * @memcg: The memory cgroup the new cache is for.
587 * @root_cache: The parent of the new cache.
588 *
589 * This function attempts to create a kmem cache that will serve allocation
590 * requests going from @memcg to @root_cache. The new cache inherits properties
591 * from its parent.
592 */
d5b3cf71
VD
593void memcg_create_kmem_cache(struct mem_cgroup *memcg,
594 struct kmem_cache *root_cache)
2633d7a0 595{
3e0350a3 596 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 597 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 598 struct memcg_cache_array *arr;
bd673145 599 struct kmem_cache *s = NULL;
794b1248 600 char *cache_name;
f7ce3190 601 int idx;
794b1248
VD
602
603 get_online_cpus();
03afc0e2
VD
604 get_online_mems();
605
794b1248
VD
606 mutex_lock(&slab_mutex);
607
2a4db7eb 608 /*
567e9ab2 609 * The memory cgroup could have been offlined while the cache
2a4db7eb
VD
610 * creation work was pending.
611 */
92ee383f 612 if (memcg->kmem_state != KMEM_ONLINE || root_cache->memcg_params.dying)
2a4db7eb
VD
613 goto out_unlock;
614
f7ce3190
VD
615 idx = memcg_cache_id(memcg);
616 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
617 lockdep_is_held(&slab_mutex));
618
d5b3cf71
VD
619 /*
620 * Since per-memcg caches are created asynchronously on first
621 * allocation (see memcg_kmem_get_cache()), several threads can try to
622 * create the same cache, but only one of them may succeed.
623 */
f7ce3190 624 if (arr->entries[idx])
d5b3cf71
VD
625 goto out_unlock;
626
f1008365 627 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
73f576c0
JW
628 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
629 css->serial_nr, memcg_name_buf);
794b1248
VD
630 if (!cache_name)
631 goto out_unlock;
632
c9a77a79 633 s = create_cache(cache_name, root_cache->object_size,
613a5eb5 634 root_cache->align,
f773e36d 635 root_cache->flags & CACHE_CREATE_MASK,
8eb8284b 636 root_cache->useroffset, root_cache->usersize,
f773e36d 637 root_cache->ctor, memcg, root_cache);
d5b3cf71
VD
638 /*
639 * If we could not create a memcg cache, do not complain, because
640 * that's not critical at all as we can always proceed with the root
641 * cache.
642 */
bd673145 643 if (IS_ERR(s)) {
794b1248 644 kfree(cache_name);
d5b3cf71 645 goto out_unlock;
bd673145 646 }
794b1248 647
d5b3cf71
VD
648 /*
649 * Since readers won't lock (see cache_from_memcg_idx()), we need a
650 * barrier here to ensure nobody will see the kmem_cache partially
651 * initialized.
652 */
653 smp_wmb();
f7ce3190 654 arr->entries[idx] = s;
d5b3cf71 655
794b1248
VD
656out_unlock:
657 mutex_unlock(&slab_mutex);
03afc0e2
VD
658
659 put_online_mems();
794b1248 660 put_online_cpus();
2633d7a0 661}
b8529907 662
01fb58bc
TH
663static void kmemcg_deactivate_workfn(struct work_struct *work)
664{
665 struct kmem_cache *s = container_of(work, struct kmem_cache,
666 memcg_params.deact_work);
667
668 get_online_cpus();
669 get_online_mems();
670
671 mutex_lock(&slab_mutex);
672
673 s->memcg_params.deact_fn(s);
674
675 mutex_unlock(&slab_mutex);
676
677 put_online_mems();
678 put_online_cpus();
679
680 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
681 css_put(&s->memcg_params.memcg->css);
682}
683
684static void kmemcg_deactivate_rcufn(struct rcu_head *head)
685{
686 struct kmem_cache *s = container_of(head, struct kmem_cache,
687 memcg_params.deact_rcu_head);
688
689 /*
690 * We need to grab blocking locks. Bounce to ->deact_work. The
691 * work item shares the space with the RCU head and can't be
692 * initialized eariler.
693 */
694 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
17cc4dfe 695 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
01fb58bc
TH
696}
697
698/**
699 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
700 * sched RCU grace period
701 * @s: target kmem_cache
702 * @deact_fn: deactivation function to call
703 *
704 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
705 * held after a sched RCU grace period. The slab is guaranteed to stay
706 * alive until @deact_fn is finished. This is to be used from
707 * __kmemcg_cache_deactivate().
708 */
709void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
710 void (*deact_fn)(struct kmem_cache *))
711{
712 if (WARN_ON_ONCE(is_root_cache(s)) ||
713 WARN_ON_ONCE(s->memcg_params.deact_fn))
714 return;
715
92ee383f
SB
716 if (s->memcg_params.root_cache->memcg_params.dying)
717 return;
718
01fb58bc
TH
719 /* pin memcg so that @s doesn't get destroyed in the middle */
720 css_get(&s->memcg_params.memcg->css);
721
722 s->memcg_params.deact_fn = deact_fn;
723 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
724}
725
2a4db7eb
VD
726void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
727{
728 int idx;
729 struct memcg_cache_array *arr;
d6e0b7fa 730 struct kmem_cache *s, *c;
2a4db7eb
VD
731
732 idx = memcg_cache_id(memcg);
733
d6e0b7fa
VD
734 get_online_cpus();
735 get_online_mems();
736
2a4db7eb 737 mutex_lock(&slab_mutex);
510ded33 738 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
2a4db7eb
VD
739 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
740 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
741 c = arr->entries[idx];
742 if (!c)
743 continue;
744
c9fc5864 745 __kmemcg_cache_deactivate(c);
2a4db7eb
VD
746 arr->entries[idx] = NULL;
747 }
748 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
749
750 put_online_mems();
751 put_online_cpus();
2a4db7eb
VD
752}
753
d5b3cf71 754void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 755{
d5b3cf71 756 struct kmem_cache *s, *s2;
b8529907 757
d5b3cf71
VD
758 get_online_cpus();
759 get_online_mems();
b8529907 760
b8529907 761 mutex_lock(&slab_mutex);
bc2791f8
TH
762 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
763 memcg_params.kmem_caches_node) {
d5b3cf71
VD
764 /*
765 * The cgroup is about to be freed and therefore has no charges
766 * left. Hence, all its caches must be empty by now.
767 */
657dc2f9 768 BUG_ON(shutdown_cache(s));
d5b3cf71
VD
769 }
770 mutex_unlock(&slab_mutex);
b8529907 771
d5b3cf71
VD
772 put_online_mems();
773 put_online_cpus();
b8529907 774}
d60fdcc9 775
657dc2f9 776static int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
777{
778 struct memcg_cache_array *arr;
779 struct kmem_cache *c, *c2;
780 LIST_HEAD(busy);
781 int i;
782
783 BUG_ON(!is_root_cache(s));
784
785 /*
786 * First, shutdown active caches, i.e. caches that belong to online
787 * memory cgroups.
788 */
789 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
790 lockdep_is_held(&slab_mutex));
791 for_each_memcg_cache_index(i) {
792 c = arr->entries[i];
793 if (!c)
794 continue;
657dc2f9 795 if (shutdown_cache(c))
d60fdcc9
VD
796 /*
797 * The cache still has objects. Move it to a temporary
798 * list so as not to try to destroy it for a second
799 * time while iterating over inactive caches below.
800 */
9eeadc8b 801 list_move(&c->memcg_params.children_node, &busy);
d60fdcc9
VD
802 else
803 /*
804 * The cache is empty and will be destroyed soon. Clear
805 * the pointer to it in the memcg_caches array so that
806 * it will never be accessed even if the root cache
807 * stays alive.
808 */
809 arr->entries[i] = NULL;
810 }
811
812 /*
813 * Second, shutdown all caches left from memory cgroups that are now
814 * offline.
815 */
9eeadc8b
TH
816 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
817 memcg_params.children_node)
657dc2f9 818 shutdown_cache(c);
d60fdcc9 819
9eeadc8b 820 list_splice(&busy, &s->memcg_params.children);
d60fdcc9
VD
821
822 /*
823 * A cache being destroyed must be empty. In particular, this means
824 * that all per memcg caches attached to it must be empty too.
825 */
9eeadc8b 826 if (!list_empty(&s->memcg_params.children))
d60fdcc9
VD
827 return -EBUSY;
828 return 0;
829}
92ee383f
SB
830
831static void flush_memcg_workqueue(struct kmem_cache *s)
832{
833 mutex_lock(&slab_mutex);
834 s->memcg_params.dying = true;
835 mutex_unlock(&slab_mutex);
836
837 /*
838 * SLUB deactivates the kmem_caches through call_rcu_sched. Make
839 * sure all registered rcu callbacks have been invoked.
840 */
841 if (IS_ENABLED(CONFIG_SLUB))
842 rcu_barrier_sched();
843
844 /*
845 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
846 * deactivates the memcg kmem_caches through workqueue. Make sure all
847 * previous workitems on workqueue are processed.
848 */
849 flush_workqueue(memcg_kmem_cache_wq);
850}
d60fdcc9 851#else
657dc2f9 852static inline int shutdown_memcg_caches(struct kmem_cache *s)
d60fdcc9
VD
853{
854 return 0;
855}
92ee383f
SB
856
857static inline void flush_memcg_workqueue(struct kmem_cache *s)
858{
859}
127424c8 860#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
97d06609 861
41a21285
CL
862void slab_kmem_cache_release(struct kmem_cache *s)
863{
52b4b950 864 __kmem_cache_release(s);
f7ce3190 865 destroy_memcg_params(s);
3dec16ea 866 kfree_const(s->name);
41a21285
CL
867 kmem_cache_free(kmem_cache, s);
868}
869
945cf2b6
CL
870void kmem_cache_destroy(struct kmem_cache *s)
871{
d60fdcc9 872 int err;
d5b3cf71 873
3942d299
SS
874 if (unlikely(!s))
875 return;
876
92ee383f
SB
877 flush_memcg_workqueue(s);
878
945cf2b6 879 get_online_cpus();
03afc0e2
VD
880 get_online_mems();
881
945cf2b6 882 mutex_lock(&slab_mutex);
b8529907 883
945cf2b6 884 s->refcount--;
b8529907
VD
885 if (s->refcount)
886 goto out_unlock;
887
657dc2f9 888 err = shutdown_memcg_caches(s);
d60fdcc9 889 if (!err)
657dc2f9 890 err = shutdown_cache(s);
b8529907 891
cd918c55 892 if (err) {
756a025f
JP
893 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
894 s->name);
cd918c55
VD
895 dump_stack();
896 }
b8529907
VD
897out_unlock:
898 mutex_unlock(&slab_mutex);
d5b3cf71 899
03afc0e2 900 put_online_mems();
945cf2b6
CL
901 put_online_cpus();
902}
903EXPORT_SYMBOL(kmem_cache_destroy);
904
03afc0e2
VD
905/**
906 * kmem_cache_shrink - Shrink a cache.
907 * @cachep: The cache to shrink.
908 *
909 * Releases as many slabs as possible for a cache.
910 * To help debugging, a zero exit status indicates all slabs were released.
911 */
912int kmem_cache_shrink(struct kmem_cache *cachep)
913{
914 int ret;
915
916 get_online_cpus();
917 get_online_mems();
55834c59 918 kasan_cache_shrink(cachep);
c9fc5864 919 ret = __kmem_cache_shrink(cachep);
03afc0e2
VD
920 put_online_mems();
921 put_online_cpus();
922 return ret;
923}
924EXPORT_SYMBOL(kmem_cache_shrink);
925
fda90124 926bool slab_is_available(void)
97d06609
CL
927{
928 return slab_state >= UP;
929}
b7454ad3 930
45530c44
CL
931#ifndef CONFIG_SLOB
932/* Create a cache during boot when no slab services are available yet */
361d575e
AD
933void __init create_boot_cache(struct kmem_cache *s, const char *name,
934 unsigned int size, slab_flags_t flags,
935 unsigned int useroffset, unsigned int usersize)
45530c44
CL
936{
937 int err;
938
939 s->name = name;
940 s->size = s->object_size = size;
45906855 941 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
8eb8284b
DW
942 s->useroffset = useroffset;
943 s->usersize = usersize;
f7ce3190
VD
944
945 slab_init_memcg_params(s);
946
45530c44
CL
947 err = __kmem_cache_create(s, flags);
948
949 if (err)
361d575e 950 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
45530c44
CL
951 name, size, err);
952
953 s->refcount = -1; /* Exempt from merging for now */
954}
955
55de8b9c
AD
956struct kmem_cache *__init create_kmalloc_cache(const char *name,
957 unsigned int size, slab_flags_t flags,
958 unsigned int useroffset, unsigned int usersize)
45530c44
CL
959{
960 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
961
962 if (!s)
963 panic("Out of memory when creating slab %s\n", name);
964
6c0c21ad 965 create_boot_cache(s, name, size, flags, useroffset, usersize);
45530c44 966 list_add(&s->list, &slab_caches);
510ded33 967 memcg_link_cache(s);
45530c44
CL
968 s->refcount = 1;
969 return s;
970}
971
1c99ba29 972struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
9425c58e
CL
973EXPORT_SYMBOL(kmalloc_caches);
974
975#ifdef CONFIG_ZONE_DMA
1c99ba29 976struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
9425c58e
CL
977EXPORT_SYMBOL(kmalloc_dma_caches);
978#endif
979
2c59dd65
CL
980/*
981 * Conversion table for small slabs sizes / 8 to the index in the
982 * kmalloc array. This is necessary for slabs < 192 since we have non power
983 * of two cache sizes there. The size of larger slabs can be determined using
984 * fls.
985 */
d5f86655 986static u8 size_index[24] __ro_after_init = {
2c59dd65
CL
987 3, /* 8 */
988 4, /* 16 */
989 5, /* 24 */
990 5, /* 32 */
991 6, /* 40 */
992 6, /* 48 */
993 6, /* 56 */
994 6, /* 64 */
995 1, /* 72 */
996 1, /* 80 */
997 1, /* 88 */
998 1, /* 96 */
999 7, /* 104 */
1000 7, /* 112 */
1001 7, /* 120 */
1002 7, /* 128 */
1003 2, /* 136 */
1004 2, /* 144 */
1005 2, /* 152 */
1006 2, /* 160 */
1007 2, /* 168 */
1008 2, /* 176 */
1009 2, /* 184 */
1010 2 /* 192 */
1011};
1012
ac914d08 1013static inline unsigned int size_index_elem(unsigned int bytes)
2c59dd65
CL
1014{
1015 return (bytes - 1) / 8;
1016}
1017
1018/*
1019 * Find the kmem_cache structure that serves a given size of
1020 * allocation
1021 */
1022struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1023{
d5f86655 1024 unsigned int index;
2c59dd65 1025
9de1bc87 1026 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 1027 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 1028 return NULL;
907985f4 1029 }
6286ae97 1030
2c59dd65
CL
1031 if (size <= 192) {
1032 if (!size)
1033 return ZERO_SIZE_PTR;
1034
1035 index = size_index[size_index_elem(size)];
1036 } else
1037 index = fls(size - 1);
1038
1039#ifdef CONFIG_ZONE_DMA
b1e05416 1040 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
1041 return kmalloc_dma_caches[index];
1042
1043#endif
1044 return kmalloc_caches[index];
1045}
1046
4066c33d
GG
1047/*
1048 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1049 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1050 * kmalloc-67108864.
1051 */
af3b5f87 1052const struct kmalloc_info_struct kmalloc_info[] __initconst = {
4066c33d
GG
1053 {NULL, 0}, {"kmalloc-96", 96},
1054 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1055 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1056 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1057 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1058 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1059 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1060 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1061 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1062 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1063 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1064 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1065 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1066 {"kmalloc-67108864", 67108864}
1067};
1068
f97d5f63 1069/*
34cc6990
DS
1070 * Patch up the size_index table if we have strange large alignment
1071 * requirements for the kmalloc array. This is only the case for
1072 * MIPS it seems. The standard arches will not generate any code here.
1073 *
1074 * Largest permitted alignment is 256 bytes due to the way we
1075 * handle the index determination for the smaller caches.
1076 *
1077 * Make sure that nothing crazy happens if someone starts tinkering
1078 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 1079 */
34cc6990 1080void __init setup_kmalloc_cache_index_table(void)
f97d5f63 1081{
ac914d08 1082 unsigned int i;
f97d5f63 1083
2c59dd65
CL
1084 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1085 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1086
1087 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
ac914d08 1088 unsigned int elem = size_index_elem(i);
2c59dd65
CL
1089
1090 if (elem >= ARRAY_SIZE(size_index))
1091 break;
1092 size_index[elem] = KMALLOC_SHIFT_LOW;
1093 }
1094
1095 if (KMALLOC_MIN_SIZE >= 64) {
1096 /*
1097 * The 96 byte size cache is not used if the alignment
1098 * is 64 byte.
1099 */
1100 for (i = 64 + 8; i <= 96; i += 8)
1101 size_index[size_index_elem(i)] = 7;
1102
1103 }
1104
1105 if (KMALLOC_MIN_SIZE >= 128) {
1106 /*
1107 * The 192 byte sized cache is not used if the alignment
1108 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1109 * instead.
1110 */
1111 for (i = 128 + 8; i <= 192; i += 8)
1112 size_index[size_index_elem(i)] = 8;
1113 }
34cc6990
DS
1114}
1115
d50112ed 1116static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
a9730fca
CL
1117{
1118 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
6c0c21ad
DW
1119 kmalloc_info[idx].size, flags, 0,
1120 kmalloc_info[idx].size);
a9730fca
CL
1121}
1122
34cc6990
DS
1123/*
1124 * Create the kmalloc array. Some of the regular kmalloc arrays
1125 * may already have been created because they were needed to
1126 * enable allocations for slab creation.
1127 */
d50112ed 1128void __init create_kmalloc_caches(slab_flags_t flags)
34cc6990
DS
1129{
1130 int i;
1131
a9730fca
CL
1132 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1133 if (!kmalloc_caches[i])
1134 new_kmalloc_cache(i, flags);
f97d5f63 1135
956e46ef 1136 /*
a9730fca
CL
1137 * Caches that are not of the two-to-the-power-of size.
1138 * These have to be created immediately after the
1139 * earlier power of two caches
956e46ef 1140 */
a9730fca
CL
1141 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1142 new_kmalloc_cache(1, flags);
1143 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1144 new_kmalloc_cache(2, flags);
8a965b3b
CL
1145 }
1146
f97d5f63
CL
1147 /* Kmalloc array is now usable */
1148 slab_state = UP;
1149
f97d5f63
CL
1150#ifdef CONFIG_ZONE_DMA
1151 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1152 struct kmem_cache *s = kmalloc_caches[i];
1153
1154 if (s) {
0be70327 1155 unsigned int size = kmalloc_size(i);
f97d5f63 1156 char *n = kasprintf(GFP_NOWAIT,
0be70327 1157 "dma-kmalloc-%u", size);
f97d5f63
CL
1158
1159 BUG_ON(!n);
1160 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
6c0c21ad 1161 size, SLAB_CACHE_DMA | flags, 0, 0);
f97d5f63
CL
1162 }
1163 }
1164#endif
1165}
45530c44
CL
1166#endif /* !CONFIG_SLOB */
1167
cea371f4
VD
1168/*
1169 * To avoid unnecessary overhead, we pass through large allocation requests
1170 * directly to the page allocator. We use __GFP_COMP, because we will need to
1171 * know the allocation order to free the pages properly in kfree.
1172 */
52383431
VD
1173void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1174{
1175 void *ret;
1176 struct page *page;
1177
1178 flags |= __GFP_COMP;
4949148a 1179 page = alloc_pages(flags, order);
52383431
VD
1180 ret = page ? page_address(page) : NULL;
1181 kmemleak_alloc(ret, size, 1, flags);
505f5dcb 1182 kasan_kmalloc_large(ret, size, flags);
52383431
VD
1183 return ret;
1184}
1185EXPORT_SYMBOL(kmalloc_order);
1186
f1b6eb6e
CL
1187#ifdef CONFIG_TRACING
1188void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1189{
1190 void *ret = kmalloc_order(size, flags, order);
1191 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1192 return ret;
1193}
1194EXPORT_SYMBOL(kmalloc_order_trace);
1195#endif
45530c44 1196
7c00fce9
TG
1197#ifdef CONFIG_SLAB_FREELIST_RANDOM
1198/* Randomize a generic freelist */
1199static void freelist_randomize(struct rnd_state *state, unsigned int *list,
302d55d5 1200 unsigned int count)
7c00fce9 1201{
7c00fce9 1202 unsigned int rand;
302d55d5 1203 unsigned int i;
7c00fce9
TG
1204
1205 for (i = 0; i < count; i++)
1206 list[i] = i;
1207
1208 /* Fisher-Yates shuffle */
1209 for (i = count - 1; i > 0; i--) {
1210 rand = prandom_u32_state(state);
1211 rand %= (i + 1);
1212 swap(list[i], list[rand]);
1213 }
1214}
1215
1216/* Create a random sequence per cache */
1217int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1218 gfp_t gfp)
1219{
1220 struct rnd_state state;
1221
1222 if (count < 2 || cachep->random_seq)
1223 return 0;
1224
1225 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1226 if (!cachep->random_seq)
1227 return -ENOMEM;
1228
1229 /* Get best entropy at this stage of boot */
1230 prandom_seed_state(&state, get_random_long());
1231
1232 freelist_randomize(&state, cachep->random_seq, count);
1233 return 0;
1234}
1235
1236/* Destroy the per-cache random freelist sequence */
1237void cache_random_seq_destroy(struct kmem_cache *cachep)
1238{
1239 kfree(cachep->random_seq);
1240 cachep->random_seq = NULL;
1241}
1242#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1243
5b365771 1244#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
e9b4db2b 1245#ifdef CONFIG_SLAB
0825a6f9 1246#define SLABINFO_RIGHTS (0600)
e9b4db2b 1247#else
0825a6f9 1248#define SLABINFO_RIGHTS (0400)
e9b4db2b
WL
1249#endif
1250
b047501c 1251static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1252{
1253 /*
1254 * Output format version, so at least we can change it
1255 * without _too_ many complaints.
1256 */
1257#ifdef CONFIG_DEBUG_SLAB
1258 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1259#else
1260 seq_puts(m, "slabinfo - version: 2.1\n");
1261#endif
756a025f 1262 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
bcee6e2a
GC
1263 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1264 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1265#ifdef CONFIG_DEBUG_SLAB
756a025f 1266 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
bcee6e2a
GC
1267 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1268#endif
1269 seq_putc(m, '\n');
1270}
1271
1df3b26f 1272void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1273{
b7454ad3 1274 mutex_lock(&slab_mutex);
510ded33 1275 return seq_list_start(&slab_root_caches, *pos);
b7454ad3
GC
1276}
1277
276a2439 1278void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3 1279{
510ded33 1280 return seq_list_next(p, &slab_root_caches, pos);
b7454ad3
GC
1281}
1282
276a2439 1283void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1284{
1285 mutex_unlock(&slab_mutex);
1286}
1287
749c5415
GC
1288static void
1289memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1290{
1291 struct kmem_cache *c;
1292 struct slabinfo sinfo;
749c5415
GC
1293
1294 if (!is_root_cache(s))
1295 return;
1296
426589f5 1297 for_each_memcg_cache(c, s) {
749c5415
GC
1298 memset(&sinfo, 0, sizeof(sinfo));
1299 get_slabinfo(c, &sinfo);
1300
1301 info->active_slabs += sinfo.active_slabs;
1302 info->num_slabs += sinfo.num_slabs;
1303 info->shared_avail += sinfo.shared_avail;
1304 info->active_objs += sinfo.active_objs;
1305 info->num_objs += sinfo.num_objs;
1306 }
1307}
1308
b047501c 1309static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1310{
0d7561c6
GC
1311 struct slabinfo sinfo;
1312
1313 memset(&sinfo, 0, sizeof(sinfo));
1314 get_slabinfo(s, &sinfo);
1315
749c5415
GC
1316 memcg_accumulate_slabinfo(s, &sinfo);
1317
0d7561c6 1318 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1319 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1320 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1321
1322 seq_printf(m, " : tunables %4u %4u %4u",
1323 sinfo.limit, sinfo.batchcount, sinfo.shared);
1324 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1325 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1326 slabinfo_show_stats(m, s);
1327 seq_putc(m, '\n');
b7454ad3
GC
1328}
1329
1df3b26f 1330static int slab_show(struct seq_file *m, void *p)
749c5415 1331{
510ded33 1332 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
749c5415 1333
510ded33 1334 if (p == slab_root_caches.next)
1df3b26f 1335 print_slabinfo_header(m);
510ded33 1336 cache_show(s, m);
b047501c
VD
1337 return 0;
1338}
1339
852d8be0
YS
1340void dump_unreclaimable_slab(void)
1341{
1342 struct kmem_cache *s, *s2;
1343 struct slabinfo sinfo;
1344
1345 /*
1346 * Here acquiring slab_mutex is risky since we don't prefer to get
1347 * sleep in oom path. But, without mutex hold, it may introduce a
1348 * risk of crash.
1349 * Use mutex_trylock to protect the list traverse, dump nothing
1350 * without acquiring the mutex.
1351 */
1352 if (!mutex_trylock(&slab_mutex)) {
1353 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1354 return;
1355 }
1356
1357 pr_info("Unreclaimable slab info:\n");
1358 pr_info("Name Used Total\n");
1359
1360 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1361 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1362 continue;
1363
1364 get_slabinfo(s, &sinfo);
1365
1366 if (sinfo.num_objs > 0)
1367 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1368 (sinfo.active_objs * s->size) / 1024,
1369 (sinfo.num_objs * s->size) / 1024);
1370 }
1371 mutex_unlock(&slab_mutex);
1372}
1373
5b365771 1374#if defined(CONFIG_MEMCG)
bc2791f8
TH
1375void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1376{
1377 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1378
1379 mutex_lock(&slab_mutex);
1380 return seq_list_start(&memcg->kmem_caches, *pos);
1381}
1382
1383void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1384{
1385 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1386
1387 return seq_list_next(p, &memcg->kmem_caches, pos);
1388}
1389
1390void memcg_slab_stop(struct seq_file *m, void *p)
1391{
1392 mutex_unlock(&slab_mutex);
1393}
1394
b047501c
VD
1395int memcg_slab_show(struct seq_file *m, void *p)
1396{
bc2791f8
TH
1397 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1398 memcg_params.kmem_caches_node);
b047501c
VD
1399 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1400
bc2791f8 1401 if (p == memcg->kmem_caches.next)
b047501c 1402 print_slabinfo_header(m);
bc2791f8 1403 cache_show(s, m);
b047501c 1404 return 0;
749c5415 1405}
b047501c 1406#endif
749c5415 1407
b7454ad3
GC
1408/*
1409 * slabinfo_op - iterator that generates /proc/slabinfo
1410 *
1411 * Output layout:
1412 * cache-name
1413 * num-active-objs
1414 * total-objs
1415 * object size
1416 * num-active-slabs
1417 * total-slabs
1418 * num-pages-per-slab
1419 * + further values on SMP and with statistics enabled
1420 */
1421static const struct seq_operations slabinfo_op = {
1df3b26f 1422 .start = slab_start,
276a2439
WL
1423 .next = slab_next,
1424 .stop = slab_stop,
1df3b26f 1425 .show = slab_show,
b7454ad3
GC
1426};
1427
1428static int slabinfo_open(struct inode *inode, struct file *file)
1429{
1430 return seq_open(file, &slabinfo_op);
1431}
1432
1433static const struct file_operations proc_slabinfo_operations = {
1434 .open = slabinfo_open,
1435 .read = seq_read,
1436 .write = slabinfo_write,
1437 .llseek = seq_lseek,
1438 .release = seq_release,
1439};
1440
1441static int __init slab_proc_init(void)
1442{
e9b4db2b
WL
1443 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1444 &proc_slabinfo_operations);
b7454ad3
GC
1445 return 0;
1446}
1447module_init(slab_proc_init);
5b365771 1448#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
928cec9c
AR
1449
1450static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1451 gfp_t flags)
1452{
1453 void *ret;
1454 size_t ks = 0;
1455
1456 if (p)
1457 ks = ksize(p);
1458
0316bec2 1459 if (ks >= new_size) {
505f5dcb 1460 kasan_krealloc((void *)p, new_size, flags);
928cec9c 1461 return (void *)p;
0316bec2 1462 }
928cec9c
AR
1463
1464 ret = kmalloc_track_caller(new_size, flags);
1465 if (ret && p)
1466 memcpy(ret, p, ks);
1467
1468 return ret;
1469}
1470
1471/**
1472 * __krealloc - like krealloc() but don't free @p.
1473 * @p: object to reallocate memory for.
1474 * @new_size: how many bytes of memory are required.
1475 * @flags: the type of memory to allocate.
1476 *
1477 * This function is like krealloc() except it never frees the originally
1478 * allocated buffer. Use this if you don't want to free the buffer immediately
1479 * like, for example, with RCU.
1480 */
1481void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1482{
1483 if (unlikely(!new_size))
1484 return ZERO_SIZE_PTR;
1485
1486 return __do_krealloc(p, new_size, flags);
1487
1488}
1489EXPORT_SYMBOL(__krealloc);
1490
1491/**
1492 * krealloc - reallocate memory. The contents will remain unchanged.
1493 * @p: object to reallocate memory for.
1494 * @new_size: how many bytes of memory are required.
1495 * @flags: the type of memory to allocate.
1496 *
1497 * The contents of the object pointed to are preserved up to the
1498 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1499 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1500 * %NULL pointer, the object pointed to is freed.
1501 */
1502void *krealloc(const void *p, size_t new_size, gfp_t flags)
1503{
1504 void *ret;
1505
1506 if (unlikely(!new_size)) {
1507 kfree(p);
1508 return ZERO_SIZE_PTR;
1509 }
1510
1511 ret = __do_krealloc(p, new_size, flags);
1512 if (ret && p != ret)
1513 kfree(p);
1514
1515 return ret;
1516}
1517EXPORT_SYMBOL(krealloc);
1518
1519/**
1520 * kzfree - like kfree but zero memory
1521 * @p: object to free memory of
1522 *
1523 * The memory of the object @p points to is zeroed before freed.
1524 * If @p is %NULL, kzfree() does nothing.
1525 *
1526 * Note: this function zeroes the whole allocated buffer which can be a good
1527 * deal bigger than the requested buffer size passed to kmalloc(). So be
1528 * careful when using this function in performance sensitive code.
1529 */
1530void kzfree(const void *p)
1531{
1532 size_t ks;
1533 void *mem = (void *)p;
1534
1535 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1536 return;
1537 ks = ksize(mem);
1538 memset(mem, 0, ks);
1539 kfree(mem);
1540}
1541EXPORT_SYMBOL(kzfree);
1542
1543/* Tracepoints definitions. */
1544EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1545EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1546EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1547EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1548EXPORT_TRACEPOINT_SYMBOL(kfree);
1549EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
4f6923fb
HM
1550
1551int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1552{
1553 if (__should_failslab(s, gfpflags))
1554 return -ENOMEM;
1555 return 0;
1556}
1557ALLOW_ERROR_INJECTION(should_failslab, ERRNO);