mm: slab/slub: coding style: whitespaces and tabs mixture
[linux-2.6-block.git] / mm / slab.h
CommitLineData
97d06609
CL
1#ifndef MM_SLAB_H
2#define MM_SLAB_H
3/*
4 * Internal slab definitions
5 */
6
07f361b2
JK
7#ifdef CONFIG_SLOB
8/*
9 * Common fields provided in kmem_cache by all slab allocators
10 * This struct is either used directly by the allocator (SLOB)
11 * or the allocator must include definitions for all fields
12 * provided in kmem_cache_common in their definition of kmem_cache.
13 *
14 * Once we can do anonymous structs (C11 standard) we could put a
15 * anonymous struct definition in these allocators so that the
16 * separate allocations in the kmem_cache structure of SLAB and
17 * SLUB is no longer needed.
18 */
19struct kmem_cache {
20 unsigned int object_size;/* The original size of the object */
21 unsigned int size; /* The aligned/padded/added on size */
22 unsigned int align; /* Alignment as calculated */
23 unsigned long flags; /* Active flags on the slab */
24 const char *name; /* Slab name for sysfs */
25 int refcount; /* Use counter */
26 void (*ctor)(void *); /* Called on object slot creation */
27 struct list_head list; /* List of all slab caches on the system */
28};
29
30#endif /* CONFIG_SLOB */
31
32#ifdef CONFIG_SLAB
33#include <linux/slab_def.h>
34#endif
35
36#ifdef CONFIG_SLUB
37#include <linux/slub_def.h>
38#endif
39
40#include <linux/memcontrol.h>
41
97d06609
CL
42/*
43 * State of the slab allocator.
44 *
45 * This is used to describe the states of the allocator during bootup.
46 * Allocators use this to gradually bootstrap themselves. Most allocators
47 * have the problem that the structures used for managing slab caches are
48 * allocated from slab caches themselves.
49 */
50enum slab_state {
51 DOWN, /* No slab functionality yet */
52 PARTIAL, /* SLUB: kmem_cache_node available */
ce8eb6c4 53 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
54 UP, /* Slab caches usable but not all extras yet */
55 FULL /* Everything is working */
56};
57
58extern enum slab_state slab_state;
59
18004c5d
CL
60/* The slab cache mutex protects the management structures during changes */
61extern struct mutex slab_mutex;
9b030cb8
CL
62
63/* The list of all slab caches on the system */
18004c5d
CL
64extern struct list_head slab_caches;
65
9b030cb8
CL
66/* The slab cache that manages slab cache information */
67extern struct kmem_cache *kmem_cache;
68
45906855
CL
69unsigned long calculate_alignment(unsigned long flags,
70 unsigned long align, unsigned long size);
71
f97d5f63
CL
72#ifndef CONFIG_SLOB
73/* Kmalloc array related functions */
74void create_kmalloc_caches(unsigned long);
2c59dd65
CL
75
76/* Find the kmalloc slab corresponding for a certain size */
77struct kmem_cache *kmalloc_slab(size_t, gfp_t);
f97d5f63
CL
78#endif
79
80
9b030cb8 81/* Functions provided by the slab allocators */
8a13a4cc 82extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
97d06609 83
45530c44
CL
84extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
85 unsigned long flags);
86extern void create_boot_cache(struct kmem_cache *, const char *name,
87 size_t size, unsigned long flags);
88
2633d7a0 89struct mem_cgroup;
423c929c
JK
90
91int slab_unmergeable(struct kmem_cache *s);
92struct kmem_cache *find_mergeable(size_t size, size_t align,
93 unsigned long flags, const char *name, void (*ctor)(void *));
12220dea 94#ifndef CONFIG_SLOB
2633d7a0 95struct kmem_cache *
a44cb944
VD
96__kmem_cache_alias(const char *name, size_t size, size_t align,
97 unsigned long flags, void (*ctor)(void *));
423c929c
JK
98
99unsigned long kmem_cache_flags(unsigned long object_size,
100 unsigned long flags, const char *name,
101 void (*ctor)(void *));
cbb79694 102#else
2633d7a0 103static inline struct kmem_cache *
a44cb944
VD
104__kmem_cache_alias(const char *name, size_t size, size_t align,
105 unsigned long flags, void (*ctor)(void *))
cbb79694 106{ return NULL; }
423c929c
JK
107
108static inline unsigned long kmem_cache_flags(unsigned long object_size,
109 unsigned long flags, const char *name,
110 void (*ctor)(void *))
111{
112 return flags;
113}
cbb79694
CL
114#endif
115
116
d8843922
GC
117/* Legal flag mask for kmem_cache_create(), for various configurations */
118#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
119 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
120
121#if defined(CONFIG_DEBUG_SLAB)
122#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
123#elif defined(CONFIG_SLUB_DEBUG)
124#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
125 SLAB_TRACE | SLAB_DEBUG_FREE)
126#else
127#define SLAB_DEBUG_FLAGS (0)
128#endif
129
130#if defined(CONFIG_SLAB)
131#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
132 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
133#elif defined(CONFIG_SLUB)
134#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
135 SLAB_TEMPORARY | SLAB_NOTRACK)
136#else
137#define SLAB_CACHE_FLAGS (0)
138#endif
139
140#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
141
945cf2b6 142int __kmem_cache_shutdown(struct kmem_cache *);
03afc0e2 143int __kmem_cache_shrink(struct kmem_cache *);
41a21285 144void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 145
b7454ad3
GC
146struct seq_file;
147struct file;
b7454ad3 148
0d7561c6
GC
149struct slabinfo {
150 unsigned long active_objs;
151 unsigned long num_objs;
152 unsigned long active_slabs;
153 unsigned long num_slabs;
154 unsigned long shared_avail;
155 unsigned int limit;
156 unsigned int batchcount;
157 unsigned int shared;
158 unsigned int objects_per_slab;
159 unsigned int cache_order;
160};
161
162void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
163void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
164ssize_t slabinfo_write(struct file *file, const char __user *buffer,
165 size_t count, loff_t *ppos);
ba6c496e
GC
166
167#ifdef CONFIG_MEMCG_KMEM
168static inline bool is_root_cache(struct kmem_cache *s)
169{
170 return !s->memcg_params || s->memcg_params->is_root_cache;
171}
2633d7a0 172
b9ce5ef4
GC
173static inline bool slab_equal_or_root(struct kmem_cache *s,
174 struct kmem_cache *p)
175{
176 return (p == s) ||
177 (s->memcg_params && (p == s->memcg_params->root_cache));
178}
749c5415
GC
179
180/*
181 * We use suffixes to the name in memcg because we can't have caches
182 * created in the system with the same name. But when we print them
183 * locally, better refer to them with the base name
184 */
185static inline const char *cache_name(struct kmem_cache *s)
186{
187 if (!is_root_cache(s))
188 return s->memcg_params->root_cache->name;
189 return s->name;
190}
191
f8570263
VD
192/*
193 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
194 * That said the caller must assure the memcg's cache won't go away. Since once
195 * created a memcg's cache is destroyed only along with the root cache, it is
196 * true if we are going to allocate from the cache or hold a reference to the
197 * root cache by other means. Otherwise, we should hold either the slab_mutex
198 * or the memcg's slab_caches_mutex while calling this function and accessing
199 * the returned value.
200 */
2ade4de8
QH
201static inline struct kmem_cache *
202cache_from_memcg_idx(struct kmem_cache *s, int idx)
749c5415 203{
959c8963 204 struct kmem_cache *cachep;
f8570263 205 struct memcg_cache_params *params;
959c8963 206
6f6b8951
AV
207 if (!s->memcg_params)
208 return NULL;
f8570263
VD
209
210 rcu_read_lock();
211 params = rcu_dereference(s->memcg_params);
212 cachep = params->memcg_caches[idx];
213 rcu_read_unlock();
959c8963
VD
214
215 /*
216 * Make sure we will access the up-to-date value. The code updating
217 * memcg_caches issues a write barrier to match this (see
218 * memcg_register_cache()).
219 */
220 smp_read_barrier_depends();
221 return cachep;
749c5415 222}
943a451a
GC
223
224static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
225{
226 if (is_root_cache(s))
227 return s;
228 return s->memcg_params->root_cache;
229}
5dfb4175
VD
230
231static __always_inline int memcg_charge_slab(struct kmem_cache *s,
232 gfp_t gfp, int order)
233{
234 if (!memcg_kmem_enabled())
235 return 0;
236 if (is_root_cache(s))
237 return 0;
c67a8a68 238 return __memcg_charge_slab(s, gfp, order);
5dfb4175
VD
239}
240
241static __always_inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
242{
243 if (!memcg_kmem_enabled())
244 return;
245 if (is_root_cache(s))
246 return;
c67a8a68 247 __memcg_uncharge_slab(s, order);
5dfb4175 248}
ba6c496e
GC
249#else
250static inline bool is_root_cache(struct kmem_cache *s)
251{
252 return true;
253}
254
b9ce5ef4
GC
255static inline bool slab_equal_or_root(struct kmem_cache *s,
256 struct kmem_cache *p)
257{
258 return true;
259}
749c5415
GC
260
261static inline const char *cache_name(struct kmem_cache *s)
262{
263 return s->name;
264}
265
2ade4de8
QH
266static inline struct kmem_cache *
267cache_from_memcg_idx(struct kmem_cache *s, int idx)
749c5415
GC
268{
269 return NULL;
270}
943a451a
GC
271
272static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
273{
274 return s;
275}
5dfb4175
VD
276
277static inline int memcg_charge_slab(struct kmem_cache *s, gfp_t gfp, int order)
278{
279 return 0;
280}
281
282static inline void memcg_uncharge_slab(struct kmem_cache *s, int order)
283{
284}
ba6c496e 285#endif
b9ce5ef4
GC
286
287static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
288{
289 struct kmem_cache *cachep;
290 struct page *page;
291
292 /*
293 * When kmemcg is not being used, both assignments should return the
294 * same value. but we don't want to pay the assignment price in that
295 * case. If it is not compiled in, the compiler should be smart enough
296 * to not do even the assignment. In that case, slab_equal_or_root
297 * will also be a constant.
298 */
299 if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
300 return s;
301
302 page = virt_to_head_page(x);
303 cachep = page->slab_cache;
304 if (slab_equal_or_root(cachep, s))
305 return cachep;
306
307 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
c42e5715 308 __func__, cachep->name, s->name);
b9ce5ef4
GC
309 WARN_ON_ONCE(1);
310 return s;
311}
ca34956b 312
44c5356f 313#ifndef CONFIG_SLOB
ca34956b
CL
314/*
315 * The slab lists for all objects.
316 */
317struct kmem_cache_node {
318 spinlock_t list_lock;
319
320#ifdef CONFIG_SLAB
321 struct list_head slabs_partial; /* partial list first, better asm code */
322 struct list_head slabs_full;
323 struct list_head slabs_free;
324 unsigned long free_objects;
325 unsigned int free_limit;
326 unsigned int colour_next; /* Per-node cache coloring */
327 struct array_cache *shared; /* shared per node */
c8522a3a 328 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
329 unsigned long next_reap; /* updated without locking */
330 int free_touched; /* updated without locking */
331#endif
332
333#ifdef CONFIG_SLUB
334 unsigned long nr_partial;
335 struct list_head partial;
336#ifdef CONFIG_SLUB_DEBUG
337 atomic_long_t nr_slabs;
338 atomic_long_t total_objects;
339 struct list_head full;
340#endif
341#endif
342
343};
e25839f6 344
44c5356f
CL
345static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
346{
347 return s->node[node];
348}
349
350/*
351 * Iterator over all nodes. The body will be executed for each node that has
352 * a kmem_cache_node structure allocated (which is true for all online nodes)
353 */
354#define for_each_kmem_cache_node(__s, __node, __n) \
9163582c
MP
355 for (__node = 0; __node < nr_node_ids; __node++) \
356 if ((__n = get_node(__s, __node)))
44c5356f
CL
357
358#endif
359
276a2439
WL
360void *slab_next(struct seq_file *m, void *p, loff_t *pos);
361void slab_stop(struct seq_file *m, void *p);
5240ab40
AR
362
363#endif /* MM_SLAB_H */