stat: Use size_t for sizes instead of unsigned
[linux-2.6-block.git] / mm / slab.h
CommitLineData
97d06609
CL
1#ifndef MM_SLAB_H
2#define MM_SLAB_H
3/*
4 * Internal slab definitions
5 */
6
7/*
8 * State of the slab allocator.
9 *
10 * This is used to describe the states of the allocator during bootup.
11 * Allocators use this to gradually bootstrap themselves. Most allocators
12 * have the problem that the structures used for managing slab caches are
13 * allocated from slab caches themselves.
14 */
15enum slab_state {
16 DOWN, /* No slab functionality yet */
17 PARTIAL, /* SLUB: kmem_cache_node available */
18 PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */
19 PARTIAL_L3, /* SLAB: kmalloc size for l3 struct available */
20 UP, /* Slab caches usable but not all extras yet */
21 FULL /* Everything is working */
22};
23
24extern enum slab_state slab_state;
25
18004c5d
CL
26/* The slab cache mutex protects the management structures during changes */
27extern struct mutex slab_mutex;
9b030cb8
CL
28
29/* The list of all slab caches on the system */
18004c5d
CL
30extern struct list_head slab_caches;
31
9b030cb8
CL
32/* The slab cache that manages slab cache information */
33extern struct kmem_cache *kmem_cache;
34
45906855
CL
35unsigned long calculate_alignment(unsigned long flags,
36 unsigned long align, unsigned long size);
37
f97d5f63
CL
38#ifndef CONFIG_SLOB
39/* Kmalloc array related functions */
40void create_kmalloc_caches(unsigned long);
41#endif
42
43
9b030cb8 44/* Functions provided by the slab allocators */
8a13a4cc 45extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
97d06609 46
45530c44
CL
47extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
48 unsigned long flags);
49extern void create_boot_cache(struct kmem_cache *, const char *name,
50 size_t size, unsigned long flags);
51
2633d7a0 52struct mem_cgroup;
cbb79694 53#ifdef CONFIG_SLUB
2633d7a0
GC
54struct kmem_cache *
55__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
56 size_t align, unsigned long flags, void (*ctor)(void *));
cbb79694 57#else
2633d7a0
GC
58static inline struct kmem_cache *
59__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
60 size_t align, unsigned long flags, void (*ctor)(void *))
cbb79694
CL
61{ return NULL; }
62#endif
63
64
d8843922
GC
65/* Legal flag mask for kmem_cache_create(), for various configurations */
66#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
67 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
68
69#if defined(CONFIG_DEBUG_SLAB)
70#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
71#elif defined(CONFIG_SLUB_DEBUG)
72#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
73 SLAB_TRACE | SLAB_DEBUG_FREE)
74#else
75#define SLAB_DEBUG_FLAGS (0)
76#endif
77
78#if defined(CONFIG_SLAB)
79#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
80 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
81#elif defined(CONFIG_SLUB)
82#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
83 SLAB_TEMPORARY | SLAB_NOTRACK)
84#else
85#define SLAB_CACHE_FLAGS (0)
86#endif
87
88#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
89
945cf2b6 90int __kmem_cache_shutdown(struct kmem_cache *);
945cf2b6 91
b7454ad3
GC
92struct seq_file;
93struct file;
b7454ad3 94
0d7561c6
GC
95struct slabinfo {
96 unsigned long active_objs;
97 unsigned long num_objs;
98 unsigned long active_slabs;
99 unsigned long num_slabs;
100 unsigned long shared_avail;
101 unsigned int limit;
102 unsigned int batchcount;
103 unsigned int shared;
104 unsigned int objects_per_slab;
105 unsigned int cache_order;
106};
107
108void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
109void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
110ssize_t slabinfo_write(struct file *file, const char __user *buffer,
111 size_t count, loff_t *ppos);
ba6c496e
GC
112
113#ifdef CONFIG_MEMCG_KMEM
114static inline bool is_root_cache(struct kmem_cache *s)
115{
116 return !s->memcg_params || s->memcg_params->is_root_cache;
117}
2633d7a0
GC
118
119static inline bool cache_match_memcg(struct kmem_cache *cachep,
120 struct mem_cgroup *memcg)
121{
122 return (is_root_cache(cachep) && !memcg) ||
123 (cachep->memcg_params->memcg == memcg);
124}
b9ce5ef4 125
1f458cbf
GC
126static inline void memcg_bind_pages(struct kmem_cache *s, int order)
127{
128 if (!is_root_cache(s))
129 atomic_add(1 << order, &s->memcg_params->nr_pages);
130}
131
132static inline void memcg_release_pages(struct kmem_cache *s, int order)
133{
134 if (is_root_cache(s))
135 return;
136
137 if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages))
138 mem_cgroup_destroy_cache(s);
139}
140
b9ce5ef4
GC
141static inline bool slab_equal_or_root(struct kmem_cache *s,
142 struct kmem_cache *p)
143{
144 return (p == s) ||
145 (s->memcg_params && (p == s->memcg_params->root_cache));
146}
749c5415
GC
147
148/*
149 * We use suffixes to the name in memcg because we can't have caches
150 * created in the system with the same name. But when we print them
151 * locally, better refer to them with the base name
152 */
153static inline const char *cache_name(struct kmem_cache *s)
154{
155 if (!is_root_cache(s))
156 return s->memcg_params->root_cache->name;
157 return s->name;
158}
159
160static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
161{
162 return s->memcg_params->memcg_caches[idx];
163}
943a451a
GC
164
165static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
166{
167 if (is_root_cache(s))
168 return s;
169 return s->memcg_params->root_cache;
170}
ba6c496e
GC
171#else
172static inline bool is_root_cache(struct kmem_cache *s)
173{
174 return true;
175}
176
2633d7a0
GC
177static inline bool cache_match_memcg(struct kmem_cache *cachep,
178 struct mem_cgroup *memcg)
179{
180 return true;
181}
b9ce5ef4 182
1f458cbf
GC
183static inline void memcg_bind_pages(struct kmem_cache *s, int order)
184{
185}
186
187static inline void memcg_release_pages(struct kmem_cache *s, int order)
188{
189}
190
b9ce5ef4
GC
191static inline bool slab_equal_or_root(struct kmem_cache *s,
192 struct kmem_cache *p)
193{
194 return true;
195}
749c5415
GC
196
197static inline const char *cache_name(struct kmem_cache *s)
198{
199 return s->name;
200}
201
202static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
203{
204 return NULL;
205}
943a451a
GC
206
207static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
208{
209 return s;
210}
ba6c496e 211#endif
b9ce5ef4
GC
212
213static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
214{
215 struct kmem_cache *cachep;
216 struct page *page;
217
218 /*
219 * When kmemcg is not being used, both assignments should return the
220 * same value. but we don't want to pay the assignment price in that
221 * case. If it is not compiled in, the compiler should be smart enough
222 * to not do even the assignment. In that case, slab_equal_or_root
223 * will also be a constant.
224 */
225 if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
226 return s;
227
228 page = virt_to_head_page(x);
229 cachep = page->slab_cache;
230 if (slab_equal_or_root(cachep, s))
231 return cachep;
232
233 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
234 __FUNCTION__, cachep->name, s->name);
235 WARN_ON_ONCE(1);
236 return s;
237}
97d06609 238#endif